WO2010058496A1 - セラミック組成物、セラミックグリーンシート、及びセラミック電子部品 - Google Patents

セラミック組成物、セラミックグリーンシート、及びセラミック電子部品 Download PDF

Info

Publication number
WO2010058496A1
WO2010058496A1 PCT/JP2009/003402 JP2009003402W WO2010058496A1 WO 2010058496 A1 WO2010058496 A1 WO 2010058496A1 JP 2009003402 W JP2009003402 W JP 2009003402W WO 2010058496 A1 WO2010058496 A1 WO 2010058496A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
weight
composition
content
glass composition
Prior art date
Application number
PCT/JP2009/003402
Other languages
English (en)
French (fr)
Inventor
金子和広
大賀聡
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2010539106A priority Critical patent/JP5273490B2/ja
Priority to CN200980146060.1A priority patent/CN102216238B/zh
Publication of WO2010058496A1 publication Critical patent/WO2010058496A1/ja
Priority to US13/109,482 priority patent/US8263230B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Definitions

  • the present invention relates to a ceramic composition, a ceramic green sheet, and a ceramic electronic component, and more particularly, a ceramic composition for low-temperature firing having a high dielectric constant, a ceramic green sheet using the ceramic composition, and the ceramic composition
  • the present invention relates to a ceramic electronic component such as a ceramic multilayer substrate and a composite LC component.
  • high-frequency dielectric ceramics are widely used, for example, for dielectric resonators and dielectric substrates for MICs.
  • This type of high frequency dielectric ceramic is required to have a large relative dielectric constant ⁇ r and Q value in order to reduce the size.
  • high-frequency dielectric ceramics have the disadvantage that when high-melting-point tungsten or molybdenum is used as the conductor material, these high-melting-point metals have a large specific resistance, so that the high-frequency characteristics of ceramic multilayer substrates are particularly limited. And it is expensive. For this reason, it is required to use a low-melting-point low-melting metal such as Ag or Cu as the conductor material.
  • xBaO—yTiO 2 —zReO 3/2 (where x, y and z represent mol%, and 8 ⁇ x ⁇ 18, 52.5 ⁇ y ⁇ 65, and 20 ⁇ z ⁇ 40)
  • X + y + z 100
  • Re is a rare earth element.
  • the BaO—TiO 2 —ReO 3 / 2- based ceramic composition represented by 10 to 45 wt% and alumina is 5 to 40 wt% 4 to 17.5 wt% B 2 O 3 , 28 to 50 wt% SiO 2 , 0 to 20 wt% Al 2 O 3 and 36 to 50 wt% MO (wherein MO is CaO, At least one selected from MgO, SrO, and BaO.) And 40 to 65% by weight of a borosilicate glass composition, and the BaO—TiO 2 —ReO 3 / 2- based ceramic composition And the total amount of alumina
  • Patent Document 1 has a relatively high relative dielectric constant ⁇ r of about 15, in order to meet the demand for further miniaturization of module products and the like today, a higher dielectric constant is required.
  • the rate ⁇ r is required.
  • the present invention has been made in view of such circumstances, and can suppress the shrinkage behavior at the time of firing, can dramatically improve the dielectric characteristics as compared with the conventional ceramic composition, and can ensure reliability.
  • An object is to provide a ceramic green sheet and a ceramic electronic component using the same.
  • the inventors of the present invention conducted intensive research to achieve the above object.
  • SrTiO 3 or CaTiO 3 having a high relative dielectric constant ⁇ r was added in a predetermined range, and a specific firing was further performed.
  • the binder component in a predetermined amount or less, it is easy to control the shrinkage behavior of the ceramic sintered body during firing, and a good dielectric constant with a relative dielectric constant ⁇ r of 40 or more and a Q value of 750 or more. It was found that a ceramic composition for low-temperature firing having characteristics can be obtained.
  • the glass composition itself has a function as a sintering aid that generates a liquid phase and promotes sintering between particles, but because the relative dielectric constant ⁇ r is low, Even if SrTiO 3 or CaTiO 3 having a high rate ⁇ r is added, it becomes difficult to obtain a ceramic composition having a desired high relative dielectric constant.
  • the ceramic composition according to the present invention is a B 2 O 3 —SiO 2 —Al 2 O 3 —MO glass composition (where M is Ca, At least one selected from Mg, Sr, and Ba, B 2 O 3 : 4 to 17.5 wt%, SiO 2 : 28 to 50 wt%, Al 2 O 3 : 0 to 20 wt% , MO: 36 to 50% by weight)) and 24 to 40% by weight, and at least one of SrTiO 3 and CaTiO 3 is contained by 46 to 75.4% by weight, and in terms of CuO At least one selected from Mn, Zn and Co, containing 0.1 to 5.0% by weight of Cu oxide and 0.5 to 7.0% by weight of Ca oxide in terms of CaO The metal oxides contained are converted to MnO and ZnO, respectively. It is characterized by being 10% by weight or less (including 0% by weight) in terms of CoO.
  • the ceramic green sheet according to the present invention is characterized in that the ceramic composition is formed into a sheet shape.
  • the ceramic electronic component according to the present invention is characterized by having a first ceramic layer made of a sintered body of the ceramic composition.
  • the ceramic electronic component of the present invention is characterized in that the first ceramic layer and a second ceramic layer having a relative dielectric constant lower than that of the first ceramic layer are laminated.
  • the second ceramic layer contains 51 to 60% by weight of ceramic powder, and a B 2 O 3 —SiO 2 —Al 2 O 3 —MO glass composition
  • M represents at least one selected from Ca, Mg, Sr, and Ba
  • B 2 O 3 5 to 17.5 wt%
  • SiO 2 28 to 44 wt%
  • Al 2 O 3 0 to 20% by weight
  • MO 36 to 50% by weight.
  • the ceramic electronic component of the present invention is characterized in that the ceramic powder is Al 2 O 3 .
  • the ceramic electronic component of the present invention is characterized by having a conductor pattern mainly composed of Ag or Cu.
  • the B 2 O 3 —SiO 2 —Al 2 O 3 —MO-based glass composition blended at a predetermined ratio is contained in an amount of 24 to 40% by weight, and among SrTiO 3 and CaTiO 3 46 to 75.4% by weight of at least one kind, 0.1 to 5.0% by weight of Cu oxide in terms of CuO, and 0.5 to 7.0% by weight of Ca oxide in terms of CaO
  • a metal oxide containing at least one selected from Mn, Zn, and Co is 10% by weight or less (however, 0% by weight is included) in terms of MnO, ZnO, and CoO. Therefore, it is possible to obtain a ceramic composition with improved dielectric properties while making it easy to control the shrinkage behavior of the ceramic sintered body during firing, and to achieve both the control of the shrinkage behavior and the dielectric properties. It is possible to obtain.
  • a ceramic composition having a good dielectric constant ⁇ r of 40 or more, a Q value of 750 or more, an insulation resistance logIR of 10 or more, and a good sinterability that can easily control the shrinkage behavior during firing. Can be obtained.
  • the first ceramic layer and the second ceramic layer having a relative dielectric constant lower than that of the first ceramic layer are laminated.
  • the ceramic substrate can be further miniaturized. It becomes possible.
  • the ceramic composition which comprises the 1st ceramic layer and the ceramic composition which comprises the 2nd ceramic layer are similar in the component composition of a glass composition, the characteristic variation and characteristic by mutual diffusion at the time of baking Since variations and the like are unlikely to occur and the thermal expansion coefficients are also approximate, structural defects such as delamination are unlikely to occur. Furthermore, since it is not necessary for the second ceramic layer to contain an alkali metal element, it is possible to avoid a decrease in resistance characteristics due to a reaction with a resistor constituting the resistance element.
  • FIG. 1 is a perspective view of a ceramic green sheet according to the present invention.
  • 1 is a perspective view illustrating a composite LC component as an embodiment (first embodiment) of a ceramic electronic component according to the present invention.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of FIG. 2. It is a disassembled perspective view of the ceramic sintered compact for demonstrating the manufacturing method of FIG. It is sectional drawing of the multilayer module as 2nd Embodiment of the ceramic electronic component which concerns on this invention.
  • the ceramic composition according to the present invention comprises (1) a B 2 O 3 —SiO 2 —Al 2 O 3 —MO glass composition (borosilicate glass composition; hereinafter simply referred to as “glass composition”). (2) at least one of SrTiO 3 and CaTiO 3 is contained at 46 to 75.4% by weight, (3) Cu oxide and Ca oxide (hereinafter referred to as the first) "Sintering aid component”) 0.1 to 5.0% by weight in terms of CuO and 0.5 to 7.0% by weight in terms of CaO, respectively (4) at least from Mn, Zn, Co
  • the oxide containing one kind hereinafter referred to as “second sintering aid component” is prepared to be 10% by weight or less (however, 0% by weight is included).
  • the element M in the glass composition is at least one selected from Ca, Mg, Sr, and Ba, and its component composition is B 2 O 3 : 4 to 17.5 wt%, SiO 2 : 28 to 50% by weight, Al 2 O 3 : 0 to 20% by weight, MO: 36 to 50% by weight.
  • the ceramic composition of the present invention has the above-described component composition, it can easily control the shrinkage behavior of the ceramic sintered body during firing, and has a high relative dielectric constant ⁇ r and Q value, and is subjected to high temperature and high humidity. However, it is possible to obtain a highly reliable ceramic composition that can withstand a long time.
  • the sintered ceramic body after firing should ensure a dimensional accuracy of 99% or more in the XY direction with respect to the ceramic molded body before firing. And having a relative dielectric constant ⁇ r of 40 or more, a Q value of 750 or more, and a highly reliable ceramic composition having an insulation resistance logIR of 10 or more even when left for a long time under high temperature and high humidity. .
  • the content of the glass composition Is required to be at least 24% by weight. That is, when the content of the glass composition is reduced to less than 24% by weight, the flowability of the glass is reduced during firing, so that the ceramic sintered body is easily contracted. In addition, the sinterability is also lowered, and it may be difficult to sinter at a low temperature.
  • the content of the glass composition exceeds 40% by weight, the content of the glass composition having a low relative dielectric constant becomes excessive, which may reduce the relative dielectric constant ⁇ r of the entire ceramic composition.
  • the composition components are blended so that the content of the glass composition is 24 to 40% by weight.
  • (A) B 2 O 3 B 2 O 3 is added to lower the softening temperature and promote viscous flow.
  • the content of B 2 O 3 in the glass composition is less than 4% by weight, the content is too small, For this reason, there exists a possibility that glass viscosity may become high and may cause a sintering defect.
  • the content of B 2 O 3 in the glass composition exceeds 17.5% by weight, the chemical stability of the glass composition deteriorates. As a result, when it is left for a long time under high temperature and high humidity, the insulation resistance logIR May decrease and reliability may be impaired.
  • the composition components are blended so that the content of B 2 O 3 in the glass composition is 4 to 17.5% by weight, preferably 5 to 10% by weight.
  • SiO 2 SiO 2 contributes to the stability of the glass composition.
  • the content of SiO 2 in the glass composition is less than 28% by weight, the chemical stability is deteriorated. As a result, under high temperature and high humidity. If it is left for a long time, the insulation resistance may be lowered and the reliability may be impaired.
  • the content of SiO 2 in the glass composition exceeds 50% by weight, the content is excessive and the glass viscosity is increased, and as a result, there is a possibility of causing poor sintering.
  • the composition components are blended so that the content of SiO 2 in the glass composition is 28 to 50% by weight, preferably 38 to 48% by weight.
  • (C) Al 2 O 3 Al 2 O 3 is added as necessary to stabilize the glass composition, but if the content of Al 2 O 3 in the glass composition exceeds 20% by weight, crystallization becomes difficult and the Q value is increased. There is a risk of lowering.
  • the composition component is blended.
  • MO MO is Ca, Mg, Sr, and / or Ba
  • MO MO is added to lower the softening temperature and promote viscous flow like B 2 O 3 , but the MO content in the glass composition If it is less than 36% by weight, the content is too small, and therefore the glass viscosity is increased, which may cause poor sintering.
  • MO content in the glass composition exceeds 50% by weight, the chemical stability of the glass composition deteriorates. As a result, the insulation resistance logIR decreases when left for a long time under high temperature and high humidity. There is a risk of damage.
  • the composition components are blended so that the MO content in the glass composition is 36 to 50% by weight, more preferably 40 to 46% by weight.
  • the content of the entire glass composition is 24 to 40% by weight
  • the composition range of the glass component is B 2 O 3 : 4 to 17.5% by weight (preferably 5 to 10 wt%), SiO 2 : 28 to 50 wt% (preferably 38 to 48 wt%, Al 2 O 3 : 0 to 20 wt% (preferably 4 to 10 wt%), MO: 36 to 50 wt% % (40 to 46% by weight), in combination with other additives, the desired effects can be obtained.
  • SrTiO 3 and CaTiO 3 SrTiO 3 has a relative dielectric constant ⁇ r of 250, and CaTiO 3 has a relative dielectric constant ⁇ r of 170, both of which have a high relative dielectric constant ⁇ r. Therefore, by adjusting the blending amount with the glass composition, The relative dielectric constant ⁇ r can be increased while controlling the shrinkage behavior of the ceramic sintered body during firing.
  • the total content of SrTiO 3 and CaTiO 3 is 46 to 75.4% by weight, thereby achieving both the control of the shrinkage behavior and the improvement of the dielectric properties. Yes.
  • the glass composition itself has a function as a sintering aid that generates a liquid phase and advances the sintering of particles, but has a low relative dielectric constant ⁇ r.
  • a sintering aid that generates a liquid phase and advances the sintering of particles, but has a low relative dielectric constant ⁇ r.
  • the liquid phase sintering action of the glass composition can be promoted, thereby suppressing the content of the glass composition to 40% by weight or less.
  • SrTiO 3 or CaTiO 3 it becomes possible to obtain a ceramic composition having a high relative dielectric constant that can be fired at a low temperature.
  • the Q value may be lowered.
  • the Cu oxide content is 0.1 to 5.0% by weight in terms of CuO
  • the Ca oxide is 0.5 to 7.0% by weight in terms of CaO. ing.
  • Second sintering aid component In addition to the first sintering aid component, metal oxidation containing at least one selected from Mn, Co, and Zn as the second sintering aid component It is possible to further improve the relative dielectric constant ⁇ r by adding a substance.
  • the second sintering aid component is added in order to obtain a higher relative dielectric constant.
  • these second sintering aid components can be contained in a range of 10% by weight or less in terms of MnO, CoO and ZnO, respectively.
  • FIG. 1 is a perspective view of a ceramic green sheet 1 obtained using the above ceramic composition.
  • the ceramic green sheet 1 can be easily manufactured as follows.
  • B 2 O 3 , SiO 2 , Al 2 O 3 , MO at least one of CaO, BaO, SrO, and MgO
  • SrTiO 3 and CaTiO 3 the first The sintering auxiliary component and, if necessary, the second sintering auxiliary component are prepared and weighed so as to obtain a predetermined component composition. Then, the weighed material is put into a ball mill together with a grinding medium such as PSZ (partially stabilized zirconia) balls, and is wet-mixed for a predetermined time and pulverized. Next, this pulverized product is evaporated to dryness and then calcined at a predetermined temperature for about 2 hours to obtain a calcined powder (ceramic composition).
  • a grinding medium such as PSZ (partially stabilized zirconia) balls
  • a binder, a solvent, and a plasticizer are added to the calcined powder and wet pulverized to form a slurry, which is then molded using a molding method such as a doctor blade method, thereby obtaining a predetermined thickness.
  • a ceramic green sheet molded into a can be produced.
  • FIG. 2 is a perspective view of the laminated LC component 20 according to one embodiment (first embodiment) of a ceramic electronic component.
  • the laminated LC component 20 is formed with a circuit constituting an inductance L and a capacitance C inside the ceramic sintered body 2.
  • the external electrodes 3a and 3b are formed at both ends of the ceramic sintered body 2, and the external electrodes 4a and 4b are formed at the substantially central portion. 3 is formed as an equivalent circuit LC resonance circuit.
  • rectangular ceramic green sheets 5a to 5m manufactured by the above method are prepared.
  • a laser processing machine is used so that the ceramic green sheets 5c to 5k can be electrically connected, and via holes 6a to 6d are formed at predetermined positions of the ceramic green sheets 5c to 5k.
  • a conductive paste mainly composed of Ag or Cu is screen-printed to form capacitor conductor patterns 7a to 7c and coil conductor patterns 8a to 8d.
  • the ceramic green sheets 5c to 5k are laminated, whereby the coil conductor patterns 8a to 8d are electrically connected in a coil shape to form a coil conductor.
  • the capacitor conductive patterns 7a to 7c and the ceramic green sheets 5f to 5h form a capacitance portion.
  • the ceramic green sheets 5a and 5b on which the conductor pattern is not formed and the ceramic green sheets 5l and 5m are sandwiched and pressed to produce a ceramic laminate.
  • a constraining layer containing an inorganic material that does not sinter at the sintering temperature (eg, 900 ° C.) of the ceramic laminate eg, a ceramic green sheet (alumina green sheet having a melting point of 1500 ° C. or more as a main component)
  • the ceramic sintered body 2 is manufactured. That is, the ceramic green sheets 5a to 5m formed by forming a ceramic composition into a sheet are sintered to form ceramic layers having a high relative dielectric constant, respectively, as well as capacitor conductor patterns 7a to 7c and coil conductor patterns 8a to 8d.
  • the via holes 6a to 6d are fired simultaneously with the ceramic green sheets 5a to 5m to form internal electrodes, that is, capacitor internal electrodes and coil conductors.
  • the constraining layer since the constraining layer is disposed on at least one main surface of the ceramic laminate, the constraining layer controls the shrinkage behavior in the main surface direction (XY direction) of the ceramic laminate. As a result, it is possible to obtain the ceramic sintered body 2 with high dimensional accuracy and less warpage.
  • the external electrodes 3a to 4b are formed by a thin film forming method such as application / baking of conductive paste, vapor deposition, plating, or sputtering. In this way, the laminated LC component 20 is manufactured.
  • the ceramic sintered body 2 is formed of the above ceramic composition, a low melting point metal mainly composed of Ag or Cu as an internal electrode material can be used. It can be produced by simultaneous firing at a low temperature. Then, it is possible to obtain the laminated LC component 20 which is controlled in the shrinkage behavior of the ceramic sintered body 2 and has a large relative dielectric constant ⁇ r and Q value and excellent dielectric properties and excellent reliability.
  • FIG. 5 is a cross-sectional view of a ceramic multilayer module 30 schematically showing a second embodiment of the ceramic electronic component according to the present invention.
  • This ceramic multilayer module 30 has electronic component elements 19 to 21 arranged on a ceramic multilayer substrate 10.
  • Examples of the electronic component elements 19 to 21 include semiconductor devices and chip type multilayer capacitors.
  • the ceramic multilayer substrate 10 includes a second ceramic layer group 12a having a relative dielectric constant ⁇ r lower than that of the first ceramic layer group 11 on both surfaces of the first ceramic layer group 11 made of a sintered body of the ceramic composition. , 12b are provided.
  • the first ceramic layer group 11 is formed by laminating a plurality of ceramic layers, and internal electrodes 13 and 14 are provided between the ceramic layers, thereby forming capacitor units C1 and C2.
  • via holes 17 and 18 and internal wirings 15 and 16 are appropriately formed in the second ceramic layer groups 12a and 12b and the first ceramic layer group 11 as necessary.
  • the electronic component elements 19 to 21 and the capacitor units C1 and C2 are electrically connected by the via holes 17 and 18 and the internal wirings 15 and 16 to form a ceramic multilayer module 30.
  • the first ceramic layer group 11 is formed of the above-described ceramic composition having a high relative dielectric constant (hereinafter referred to as “first ceramic composition”), and the second The ceramic layer groups 12a and 12b are formed of a second ceramic composition having a relative dielectric constant ⁇ r lower than that of the first ceramic composition.
  • the second ceramic composition has a component composition similar to that of the first ceramic composition.
  • the second ceramic composition contains 51 to 60% by weight of ceramic powder, and a B 2 O 3 —SiO 2 —Al 2 O 3 —MO-based glass composition (hereinafter referred to as “second glass”). Of 40 to 49% by weight ”.
  • the reason why the content of the second glass composition is 40 to 49% by weight is as follows.
  • the content of the second glass composition exceeds 49% by weight, crystallization of the glass proceeds excessively, and there is a possibility that the second ceramic layer groups 12a and 12b after firing may be distorted.
  • the content of the second glass composition is less than 40% by weight, the relative dielectric constant ⁇ r cannot be sufficiently lowered.
  • the second ceramic composition is blended so that the second glass composition is 40 to 49% by weight and the remainder is composed of ceramic powder.
  • each component composition of the second glass composition is the glass composition of the first ceramic composition except that the lower limit value of B 2 O 3 is 5 wt% and the upper limit value of SiO 2 is 44 wt%. Is the same.
  • the lower limit value of B 2 O 3 was set to 5% by weight in order to avoid the Q value of the second ceramic layer groups 12a and 12b from being lowered, and the upper limit value of SiO 2 was set to 44% by weight. The reason is that the sinterability may be improved too much and the relative dielectric constant ⁇ r may become too high.
  • Al 2 O 3 is preferred.
  • the second ceramic layer groups 11a and 11b having a relative dielectric constant ⁇ r lower than that of the first ceramic layer group 12 are formed of the second ceramic composition similar to the first ceramic composition.
  • characteristic variation and characteristic variation due to mutual diffusion during firing are less likely to occur.
  • the first ceramic composition and the second ceramic composition also have similar thermal expansion coefficients, so that structural defects such as delamination are unlikely to occur.
  • the second ceramic layer groups 11a and 11b do not need to contain an alkali metal element, for example, in the case of having a resistance element, avoiding a decrease in resistance characteristics due to a reaction with a resistor constituting the resistance element is avoided. can do.
  • the ceramic multilayer module 30 can be easily surface-mounted on a printed circuit board or the like using the lower surface side.
  • the internal electrodes 13, 14 and the internal wirings 15, 16 and the via holes 17, 18 are It is possible to perform simultaneous firing using a low-resistance and inexpensive low melting point metal such as Ag or Cu. That is, the capacitor units C1 and C2 can be configured using the co-fired ceramic multilayer substrate, and the module can be reduced in size.
  • the ceramic multilayer module 30 since the first ceramic layer group 11 uses the first ceramic composition, the ceramic multilayer module 30 has a high relative dielectric constant ⁇ r and Q value, excellent reliability, and good sinterability. Can be obtained.
  • the ceramic multilayer substrate 10 is fired by disposing a constraining layer on at least one main surface of the second ceramic layer group 12a, 12b by the same method as in the first embodiment.
  • a ceramic sintered body with controlled shrinkage behavior during firing can be easily produced.
  • the internal electrodes 13 and 14 adjacent in the thickness direction for taking out the electrostatic capacitance are embedded in the first ceramic layer group 11, an internal electrode having a relatively small area can be used as a large static electrode. Electric capacity can be obtained, and downsizing can be promoted. That is, a conductor for wiring is arranged on the second ceramic layer group 11a which is a low dielectric constant layer, and an element such as a capacitor or a filter is arranged on the first ceramic layer group which is a high dielectric constant layer. Thus, the ceramic substrate can be further reduced in size.
  • the laminated LC component 20 and the ceramic multilayer module 30 have been described.
  • the present invention can be applied to various chip-type multilayer electronic components such as a type multilayer dielectric antenna.
  • SrTiO 3 , CuO, and CaCO 3 were prepared.
  • the glass composition content is 36% by weight
  • the SrTiO 3 content is 56% by weight
  • the CuO content is 3.0% by weight
  • the CaCO 3 content is 5.0% by weight in terms of CaO.
  • these glass compositions, SrTiO 3 , CuO, and CaCO 3 were weighed.
  • ceramic green sheets were laminated to produce a ceramic laminate, and a constraining layer of alumina green sheets was placed on both sides of the ceramic laminate and crimped to produce a crimped body having a length of 55 mm, a width of 75 mm, and a thickness of 1 mm. .
  • a firing process is performed for 10 minutes at a firing temperature of 870 ° C. in an air atmosphere, and then the constraining layer is removed, and a ceramic sintered body (white substrate) of sample numbers 1 to 19 having a thickness of 0.65 mm Was made.
  • this pressure-bonded body was subjected to a firing treatment in an air atmosphere at a firing temperature of 870 ° C. for 10 minutes, after which the constraining layer was removed, and a ceramic sintered body in which internal electrodes were embedded was produced.
  • an Ag paste containing Ag as a main component is prepared, and the Ag paste is applied to both ends of the ceramic sintered body and baked at a temperature of 800 ° C. to form external electrodes.
  • a capacitor was produced.
  • the outer dimensions of the produced multilayer ceramic capacitor were 8 mm in length, 6 mm in width, 0.5 mm in thickness, 3 effective layers, and 4 mm 2 in effective electrode area.
  • sample evaluation Each sample (white substrate) of sample numbers 1 to 19 was evaluated for sinterability and shrinkage behavior during firing.
  • the red ink was dropped on the sample, and the sample in which the red ink stain occurred was judged to be poorly sintered.
  • the shrinkage behavior was evaluated by calculating the shrinkage rate as follows. That is, the longitudinal and lateral lengths of the ceramic laminate before sintering and the longitudinal and lateral lengths of the sintered ceramic body after sintering are measured according to the following formulas (1) and (2). Then, the vertical direction shrinkage rate and the horizontal direction shrinkage rate were calculated, and then the shrinkage rate was calculated by Equation (3).
  • PCT pressure cooker test
  • Table 1 shows the component composition of the glass composition of each sample
  • Table 2 shows the ceramic composition and measurement results of each sample.
  • Sample No. 5 was sintered poorly. This is probably because the CaO content in the glass composition was as low as 35.0% by weight and the glass viscosity was increased.
  • Sample No. 8 has an insulation resistance logIR after PCT as low as 4.8, and it was found that reliability was lowered. This is presumably because the content of CaO in the glass composition was as high as 55.0% by weight, and the chemical stability of the glass composition was deteriorated.
  • Sample number 9 was poorly sintered. This content of B 2 O 3 in the glass composition is as small as 2.0 wt%, is believed to be due to the glass viscosity becomes high.
  • Sample No. 13 was found to have a low insulation resistance logIR after PCT of 4.8, leading to a decrease in reliability. This is thought to be because the chemical stability of the glass composition was deteriorated because the content of CaO in the glass composition was as high as 52.0% by weight but the content of SiO 2 was as low as 26.0% by weight. .
  • Sample number 16 was poorly sintered. This is presumably because the glass viscosity increased because the SiO 2 content in the glass composition was as high as 53.0% by weight.
  • sample numbers 1 to 4, 6, 7, 10, 11, 14, 15, 17, and 18 have the glass composition in the range of the present invention, and the glass composition in the ceramic composition. 36% by weight, SrTiO 3 content is 56% by weight, CuO content is 3.0% by weight, and CaO content is 5.0% by weight, all within the scope of the present invention. Therefore, it was found that the sinterability is good and the shrinkage rate is 99% or more, and the shrinkage behavior during firing can be suppressed. Furthermore, it can be seen that the dielectric constant ⁇ r is 40 or more, the Q value is 750 or more, and desired desirable dielectric characteristics can be obtained, and further, the insulation resistance logIR after PCT is 10 or more to ensure reliability. It was.
  • Example 2 the composition of the glass composition was kept constant, samples having different contents of the glass composition, SrTiO 3 , and the first sintering aid component (CuO and CaO) were prepared, and the characteristics were evaluated. .
  • Example preparation B 2 O 3 , SiO 2 , Al 2 O 3 , and CaO were prepared as glass raw materials, and SrTiO 3 , CuO, and CaCO 3 were prepared as additives (fillers) other than the glass raw materials.
  • the glass raw material is weighed so that the content of the glass composition is the sample number G1 (within the scope of the present invention) in Table 1, so that the total content of the ceramic composition is Table 3.
  • the additive material was weighed. Note that the CaCO 3 were weighed so as to content shown in Table 3 in terms of CaO.
  • Table 3 shows component compositions of sample numbers 21 to 53.
  • Sample Nos. 21 to 23 had a shrinkage rate of 98.14 to 98.60, which was worse than 99.0%. This is probably because the glass composition content is as low as 20% by weight, so that the fluidity of the glass is lowered during firing, and the ceramic sintered body easily contracts. Moreover, since the content of the glass composition was as low as 20% by weight, firing at a low temperature of 870 ° C. was difficult, resulting in poor termination.
  • Sample Nos. 29 to 31 contain CaO but no CuO, so the relative dielectric constant ⁇ r is 24.7 to 32.4 and 40 or less, and the Q value is 531 to 667 and 750 or less. It was found that the desired dielectric properties could not be obtained.
  • Sample No. 34 was found to have a low relative dielectric constant ⁇ r of 34.8 because the CaO content was too low at 0.1% by weight, so that a desired high relative dielectric constant could not be obtained.
  • Sample Nos. 39 and 44 have an excessive CaO content of 10.0% by weight, and it has been found that the relative permittivity ⁇ r and Q value are decreased.
  • Sample No. 47 was found to have a Q value as low as 584 because the CuO content was excessive at 7.0% by weight, and a sufficiently large Q value could not be obtained.
  • sample numbers 24 to 28, 32, 33, 35 to 38, 40 to 43, 45, 46, and 48 to 50 have a glass composition content of 24 to 40% by weight and a SrTiO 3 content of 48. ⁇ 75.4 wt%, CuO content of 0.1 to 5.0 wt%, and CaO content of 0.5 to 7.0 wt% are all within the scope of the present invention. It was found that the cohesiveness was good and the shrinkage rate was 99% or more, and the shrinkage behavior during firing could be suppressed. Furthermore, the dielectric constant ⁇ r is 40 or more and the Q value is 750 or more, so that desired good dielectric characteristics can be obtained, and the insulation resistance logIR after the PCT test is 10 or more, and reliability can be secured. I understood.
  • Example 3 the composition of the glass composition, the content of the first sintering aid component (CuO and CaO) is constant, and the content of the second sintering aid component (MnO, CoO or ZnO) Samples with different amounts were prepared and evaluated for properties.
  • Example preparation B 2 O 3 , SiO 2 , Al 2 O 3 , and CaO are prepared as glass raw materials, and SrTiO 3 , CuO, CaCO 3 , MnCO 3 , CoO, and ZnO are prepared as additives (fillers) other than the glass raw materials. did.
  • the glass raw material is weighed so that the content of the glass composition is the sample number G1 (within the scope of the present invention) in Table 1, so that the total content of the ceramic composition is Table 5.
  • the additive material was weighed. Note that the CaCO 3 and MnCO 3 were weighed so that the content shown in Table 5 in terms of CaO and MnO terms.
  • Table 5 shows component compositions of sample numbers 61 to 75.
  • Sample Nos. 61 to 63 contain 5% by weight of the second sintering aid component, but do not contain the first sintering aid component (CuO and CaO), so that the relative dielectric constant ⁇ r And the Q value was found to be low. That is, it was confirmed that the first sintering aid component is indispensable in the composition system of the present invention.
  • Sample Nos. 67, 71 and 75 contain CuO 3.0% by weight and CaO 5.0% by weight within the scope of the present invention, but the SrTiO 3 content is as low as 41% by weight, Since the content of MnO, CoO, or ZnO is too high at 15% by weight, it has been found that the insulation resistance logIR is extremely reduced to 6.0 to 7.6 when left for a long time under high temperature and high humidity.
  • Sample Nos. 64 to 66, 68 to 70, and 72 to 74 have a SrTiO 3 content of 46.0 to 55.0% by weight and a second sintering aid component content of 1.0. Since it is in the range of the present invention to ⁇ 10.0 wt%, it was found that the sinterability is good, and the shrinkage rate is 99% or more, and the shrinkage behavior during firing can be suppressed. Furthermore, the dielectric constant ⁇ r is 40 or more and the Q value is 750 or more, so that desired good dielectric characteristics can be obtained, and the insulation resistance logIR after the PCT test is 10 or more, and reliability can be secured. I understood.
  • the first sintering When the second sintering aid component is contained in an amount of 5 to 10% by weight in addition to the auxiliary agent component, the relative dielectric constant ⁇ r is further increased as compared with the case where the second sintering aid component is not contained. It was found that improvement could be achieved.
  • Example 4 CaTiO 3 was used in place of SrTiO 3 , various samples were prepared, and the characteristics were evaluated.
  • Example preparation B 2 O 3 , SiO 2 , Al 2 O 3 , and CaO are prepared as glass raw materials, and CaTiO 3 , CuO, CaCO 3 , MnCO 3 , CoO, and ZnO are prepared as additives (fillers) other than the glass raw materials. did.
  • the glass raw material is weighed so that the content of the glass composition is the sample number G1 (within the scope of the present invention) of Table 1, and the total content of the ceramic composition is as shown in Table 7.
  • the additive material was weighed. Note that the CaCO 3 and MnCO 3 were weighed so that the content shown in Table 7 in terms of CaO and MnO terms.
  • Table 7 shows the component compositions of sample numbers 81-98.
  • sample evaluation For each of the sample numbers 81 to 98, the sinterability was evaluated in the same manner as in [Example 1], and the shrinkage behavior was evaluated.
  • Sample No. 81 has a low glass composition content of 20% by weight, and therefore, like Sample Nos. 21 to 23 (Tables 3 and 4), the flowability of the glass decreases during firing and the ceramic sintered body shrinks. The shrinkage rate became 98.18% and 99% or less. Moreover, firing at a low temperature of 870 ° C. became difficult, resulting in poor termination.
  • sample numbers 82 to 95 have a glass composition content of 24 to 40% by weight, a CaTiO 3 content of 48 to 75.4% by weight, and a CuO content of 0.1 to 5.0% by weight.
  • % And CaO content of 0.5 to 7.0% by weight are both within the scope of the present invention, so that the sinterability is good and the shrinkage ratio is 99% or more during firing. It was found that the shrinkage behavior of can also be suppressed.
  • the dielectric constant ⁇ r is 40 or more and the Q value is 750 or more, so that desired good dielectric characteristics can be obtained, and the insulation resistance logIR after the PCT test is 10 or more, and reliability can be secured. I understood.
  • the second sintering aid component is Although the relative permittivity ⁇ r tends to decrease slightly by the inclusion, it has been found that a desired high relative permittivity of 40 or more can be secured.
  • Suppression of shrinkage behavior of ceramic sintered body during firing and high relative dielectric constant can be achieved at the same time, and it is suitable for low-temperature firing, and can be used for ceramic electronic parts such as ceramic multilayer substrates and LC parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 B-SiO-Al-MO系ガラス組成物(M:Ca、Mg、Sr、及び/又はBa、B:4~17.5重量%、SiO:28~50重量%、Al:0~20重量%、MO:36~50重量%):24~40重量%、SrTiO及び/又はCaTiO:46~75.4重量%、CuO:0.1~5.0重量%、CaO:0.5~7.0重量%、MnO、ZnO、及び/又はCoO:10重量%以下(ただし、0重量%を含む。)に調製されている。このセラミック組成物を焼成してセラミック焼結体2を作製し、該セラミック焼結体2を有する複合LC部品20を得る。これにより焼成時の収縮挙動を抑制しつつ、誘電特性を従来と比べて飛躍的に向上させることができ、しかも信頼性を確保できるようにする。

Description

セラミック組成物、セラミックグリーンシート、及びセラミック電子部品
 本発明は、セラミック組成物、セラミックグリーンシート、及びセラミック電子部品に関し、より詳しくは高比誘電率を有する低温焼成用のセラミック組成物、このセラミック組成物を使用したセラミックグリーンシート、及びこのセラミック組成物を使用したセラミック多層基板や複合LC部品等のセラミック電子部品に関する。
 高周波用誘電体磁器は、近年、例えば、誘電体共振器やMIC用誘電体基板などに広く使用されている。この種の高周波用誘電体磁器では、小型化を図るために、比誘電率εrやQ値が大きいことが求められている。
 一方、高周波用誘電体磁器では、導体材料に高融点のタングステンやモリブデンを使用すると、これらの高融点金属は比抵抗が大きいことから、特にセラミック多層基板の高周波特性に限界が生じるという欠点があり、しかも高価である。このため、導体材料としては、AgやCu等の低抵抗でかつ安価な低融点金属を用いることが要請される。
 しかしながら、導体材料とセラミック材料とを同時焼成してセラミック焼結体を得るには、セラミック材料をこれらの低融点金属の融点よりも低い温度で焼成させる必要がある。
 そこで、セラミック成分とガラス成分との複合材料である低温焼成用のセラミック材料の研究が盛んに行われており、これを用いたセラミック多層基板の実用化が進められている。
 例えば、特許文献1では、xBaO-yTiO-zReO3/2(ただし、x、yおよびzはモル%を示し、8≦x≦18、52.5≦y≦65、および20≦z≦40であり、x+y+z=100であり、Reは希土類元素である。)で表される、BaO-TiO2 -ReO3/2系セラミック組成物を10~45重量%と、アルミナを5~40重量%と、4~17.5重量%のB、28~50重量%のSiO、0~20重量%のAlおよび36~50重量%のMO(ただし、MOは、CaO、MgO、SrOおよびBaOから選ばれた少なくとも1種である。)を含む、ホウケイ酸ガラス組成物を40~65重量%とを含み、かつ、前記BaO-TiO-ReO3/2系セラミック組成物と前記アルミナとの合計量が35重量%以上であるセラミック原料組成物が提案されている。
 この特許文献1では、ホウケイ酸ガラス組成物を含有させることにより、焼成時のセラミックスの収縮挙動を抑制することができ、また、ガラス粘度が高いことから、他の低温焼成基板と相互拡散するのを抑制できる。さらに、上記セラミック組成物を含有させることにより、比誘電率εrが15程度の高比誘電率を有するセラミック原料組成物を得ることができる。
国際公開第2006/046361号パンフレット
 しかしながら、上記特許文献1のセラミック原料組成物は、比誘電率εrが15程度と比較的高いものの、今日におけるモジュール商品等の更なる小型化の要請に対処するためには、より一層高い比誘電率εrが求められている。
 しかるに、比誘電率εrを高めるためにはガラス組成物の含有量を低くし、フィラーとなるセラミック粉末の含有量を高める必要がある。一方、ガラス組成物の含有量が低くなると、ガラス組成物の流動性が低下することから焼成処理によってセラミック焼結体は収縮し易くなる。したがって、焼成時の収縮挙動を制御し易くするためにはガラス組成物の含有量を増量する必要がある。すなわち、焼成時のセラミック焼結体の収縮挙動の制御と高比誘電率を両立させるのは困難な状況にある。
 本発明はこのような事情に鑑みなされたものであって、焼成時の収縮挙動を抑制しつつ、誘電特性を従来と比べて飛躍的に向上させることができ、しかも信頼性を確保できるセラミック組成物、これを利用したセラミックグリーンシート、及びセラミック電子部品を提供することを目的とする。
 本発明者らは上記目的を達成するために鋭意研究を行ったところ、特定組成のホウケイ酸ガラスに加え、比誘電率εrの高いSrTiO又はCaTiOを所定範囲で添加し、さらに特定の焼結助剤成分を所定量以下の範囲で含有させることにより、焼成時におけるセラミック焼結体の収縮挙動を制御し易くしつつ、比誘電率εrが40以上でQ値が750以上の良好な誘電特性を有する低温焼成用のセラミック組成物を得ることができるという知見を得た。
 すなわち、ガラス組成物は、それ自体が液相を生成して粒子同士の焼結を進める焼結助剤としての作用を有するが、比誘電率εrが低いことから含有量が多くなると、比誘電率εrの高いSrTiO又はCaTiOを添加しても、所望の高比誘電率を有するセラミック組成物を得るのが困難となる。
 しかしながら、本発明者らの鋭意研究の結果、焼結助剤としてCu酸化物及びCa酸化物を添加し、さらに必要に応じてMn、Co、Znの各酸化物を加えると、ガラス組成物の液相焼結作用が助長されるという知見を得た。そして、その結果、SrTiO又はCaTiOを添加して焼成することにより、低温焼成しても焼成時の収縮挙動を制御し易くしつつ、各種誘電特性及び信頼性の優れたセラミック組成物を得ることができることが分った。
 本発明はこのような知見に基づきなされたものであって、本発明に係るセラミック組成物は、B-SiO-Al-MO系ガラス組成物(ただし、MはCa、Mg、Sr、及びBaの中から選択された少なくとも1種を示し、B:4~17.5重量%、SiO:28~50重量%、Al:0~20重量%、MO:36~50重量%、である。)を24~40重量%含有すると共に、SrTiO及びCaTiOのうちの少なくとも1種を46~75.4重量%含有し、かつ、CuO換算で0.1~5.0重量%のCu酸化物と、CaO換算で0.5~7.0重量%のCa酸化物とを含み、Mn、Zn、Coの中から選択された少なくとも1種を含む金属酸化物がそれぞれ、MnO換算、ZnO換算、CoO換算で10重量%以下(ただし、0重量%を含む。)であることを特徴としている。
 また、本発明に係るセラミックグリーンシートは、上記セラミック組成物がシート状に成形されていることを特徴としている。
 また、本発明に係るセラミック電子部品は、上記セラミック組成物の焼結体からなる第1のセラミック層を有していることを特徴としている。
 また、本発明のセラミック電子部品は、前記第1のセラミック層と、該第1のセラミック層よりも比誘電率の低い第2のセラミック層とが積層されていることを特徴としている。
 また、本発明のセラミック電子部品は、前記第2のセラミック層が、セラミック粉末を51~60重量%含有し、かつ、B-SiO-Al-MO系ガラス組成物(ただし、MはCa、Mg、Sr、及びBaの中から選択された少なくとも1種を示し、B:5~17.5重量%、SiO:28~44重量%、Al:0~20重量%、MO:36~50重量%である。)を40~49重量%含有したセラミック組成物の焼結体であることを特徴としている。
 前記本発明のセラミック電子部品は、前記セラミック粉末はAlであることを特徴としている。
 また、本発明のセラミック電子部品は、Ag又はCuを主成分とする導体パターンを有していることを特徴としている。
 上記セラミック組成物によれば、所定比率に配合されたB-SiO-Al-MO系ガラス組成物を24~40重量%含有すると共に、SrTiO及びCaTiOのうちの少なくとも1種を46~75.4重量%含有し、かつ、CuO換算で0.1~5.0重量%のCu酸化物と、CaO換算で0.5~7.0重量%のCa酸化物とを含み、Mn、Zn、Coの中から選択された少なくとも1種を含む金属酸化物がそれぞれ、MnO換算、ZnO換算、CoO換算で10重量%以下(ただし、0重量%を含む。)であるので、焼成時におけるセラミック焼結体の収縮挙動を制御し易くしつつ、誘電特性の向上したセラミック組成物を得ることができ、前記収縮挙動の制御と誘電特性の両立が可能なセラミック組成物を得ることができる。
 具体的には、比誘電率εrが40以上、Q値が750以上、絶縁抵抗logIRが10以上の特性を有し、かつ焼成時の収縮挙動を制御し易い焼結性の良好なセラミック組成物を得ることができる。
 したがって、今日のモジュール商品等の更なる小型化に対応した高品質で誘電特性の良好なセラミックグリーンシート及びセラミック電子部品を実現することができる。
 また、本発明のセラミック電子部品は、前記第1のセラミック層と、該第1のセラミック層よりも比誘電率の低い第2のセラミック層とが積層されているので、例えば、低誘電率層である第2のセラミック層に配線のための導体を配し、高誘電率層である第1のセラミック層にコンデンサやフィルタのような素子を配することにより、セラミック基板の更なる小型化が可能となる。
 また、第1のセラミック層を構成するセラミック組成物と第2のセラミック層を構成するセラミック組成物は、ガラス組成物の成分組成が類似しているので、焼成時の相互拡散による特性変動や特性ばらつき等が生じにくく、また熱膨張係数も近似しているので、デラミネーション等の構造欠陥が生じにくい。さらに、第2のセラミック層は、アルカリ金属元素を含む必要がないので、抵抗素子を構成する抵抗体との反応による抵抗特性の低下を招くのを回避することができる。
本発明に係るセラミックグリーンシートの斜視図である。 本発明に係るセラミック電子部品の一実施の形態(第1の実施の形態)としての複合LC部品を示す斜視図である。 図2の等価回路を示す回路図である。 図2の製造方法を説明するためのセラミック焼結体の分解斜視図である。 本発明に係るセラミック電子部品の第2の実施の形態としての多層モジュールの断面図である。
 次に、本発明の実施の形態を詳説する。
 本発明に係るセラミック組成物は、(1)B-SiO-Al-MO系ガラス組成物(ホウケイ酸系ガラス組成物;以下、単に、「ガラス組成物」という。)を24~40重量%含有し、(2)SrTiO及びCaTiOのうちの少なくとも1種を46~75.4重量%含有し、(3)Cu酸化物及びCa酸化物(以下、第1の焼結助剤成分」という。)をそれぞれCuO換算で0.1~5.0重量%、CaO換算で0.5~7.0重量%含み、(4)Mn、Zn、Coの中から少なくとも1種を含む酸化物(以下、第2の焼結助剤成分」という。)が10重量%以下(ただし、0重量%を含む)となるように調製されている。
 また、ガラス組成物中の元素Mは、Ca、Mg、Sr、及びBaの中から選択された少なくとも1種を示し、その成分組成は、B:4~17.5重量%、SiO:28~50重量%、Al:0~20重量%、MO:36~50重量%となるように配合されている。
 本発明のセラミック組成物は、上述した成分組成を有することにより、焼成時のセラミック焼結体の収縮挙動を制御し易くすることができ、かつ比誘電率εrやQ値が高く、高温多湿下でも長時間耐えうる信頼性の優れたセラミック組成物を得ることができる。
 具体的には、特に後述する拘束層を用いた手法によれば、焼成後のセラミック焼結体は、焼成前のセラミック成形体に対しX-Y方向に99%以上の寸法精度を確保することができ、かつ比誘電率εrは40以上、Q値は750以上、かつ高温多湿下で長時間放置しても10以上の絶縁抵抗logIRを有する信頼性の優れたセラミック組成物を得ることができる。
 次に、セラミック組成物を上記組成成分に配合した理由を述べる。
(1)ガラス組成物
 上述したガラス組成物をセラミック組成物中に含有させることにより、1050℃以下、特に900℃前後の低温での焼成が可能となるが、そのためにはガラス組成物の含有量は、少なくとも24重量%以上必要である。すなわち、ガラス組成物の含有量を24重量%未満に低下させると、焼成時にガラスの流動性が低下することから、セラミック焼結体は収縮し易くなる。しかも、焼結性も低下し、低温で焼結させるのが困難になるおそれがある。
 一方、ガラス組成物の含有量が40重量%を超えると、比誘電率の低いガラス組成物の含有量が過剰となり、セラミック組成物全体の比誘電率εrが低下するおそれがある。
 そこで、本実施の形態では、ガラス組成物の含有量が、24~40重量%となるように組成成分を配合している。
 また、ガラス組成物中の構成成分(B、SiO、Al、MO)を上記範囲に限定したのは以下の理由による。
(a)B
 Bは、軟化温度を下げて粘性流動を促進するために添加されるが、ガラス組成物中のBの含有量が4重量%未満の場合は、含有量が少なすぎ、このためガラス粘度が高くなって焼結不良を招くおそれがある。一方、ガラス組成物中のBの含有量が17.5重量%を超えると、ガラス組成物の化学的安定性が劣化し、その結果、高温多湿下で長時間放置すると絶縁抵抗logIRが低下して信頼性を損なうおそれがある。
 そこで、本実施の形態では、ガラス組成物中のBの含有量が4~17.5重量%、好ましくは5~10重量%となるように組成成分を配合している。
(b)SiO
 SiOは、ガラス組成物の安定性に寄与するが、ガラス組成物中のSiOの含有量が28重量%未満の場合は、化学的安定性の劣化を招き、その結果、高温多湿下で長時間放置すると絶縁抵抗が低下して信頼性を損なうおそれがある。一方、ガラス組成物中のSiOの含有量が50重量%を超えると、含有量が過剰となってガラス粘度が高くなり、その結果、焼結不良を招くおそれがある。
 そこで、本実施の形態では、ガラス組成物中のSiOの含有量が28~50重量%、好ましくは38~48重量%となるように組成成分を配合している。
(c)Al
 Alはガラス組成物を安定化させるために必要に応じて添加されるが、ガラス組成物中のAlの含有量が20重量%を超えると、結晶化し難くなってQ値の低下を招くおそれがある。
 そこで、本実施の形態では、ガラス組成物中にAlが含まれていなくても差し支えないが、Alが含む場合は20重量%以下、好ましくは4~10重量%となるように組成成分を配合している。
(d)MO
 MO(MはCa、Mg、Sr、及び/又はBa)は、Bと同様、軟化温度を下げて粘性流動を促進するために添加されるが、ガラス組成物中のMOの含有量が36重量%未満の場合は、含有量が少なすぎ、このためガラス粘度が高くなって焼結不良を招くおそれがある。一方、ガラス組成物中のMOの含有量が50重量%を超えると、ガラス組成物の化学的安定性が劣化し、その結果、高温多湿下で長時間放置すると絶縁抵抗logIRが低下し、信頼性を損なうおそれがある。
 そこで、本実施の形態では、ガラス組成物中のMOの含有量は、36~50重量%、より好ましくは40~46重量%となるように組成成分を配合している。
 このように本実施の形態では、ガラス組成物全体の含有量を24~40重量%とし、かつそのガラス成分の構成成分の組成範囲をB:4~17.5重量%(好ましくは5~10重量%)、SiO:28~50重量%(好ましくは38~48重量%、Al:0~20重量%(好ましくは4~10重量%)、MO:36~50重量%(40~46重量%)とすることにより、他の添加物と相俟って所期の作用効果を得るようにしている。
(2)SrTiO及びCaTiO
 SrTiOは、比誘電率εrが250であり、CaTiOは、比誘電率εrが170であり、いずれも比誘電率εrが高いことから、ガラス組成物との配合量を調整することにより、焼成時におけるセラミック焼結体の収縮挙動を制御しつつ、比誘電率εrを高めることが可能となる。
 しかしながら、SrTiO及びCaTiOの含有量が総計で46重量%未満の場合は、ガラス組成物の含有量が相対的に多くなるため、焼成収縮は抑制できるが、十分に高い所望の比誘電率εrを得ることができなくなるおそれがある。
 一方、SrTiO及びCaTiOの含有量が総計で75.4重量%を超えると、焼結性が低下し、900℃前後の低温で焼結させようとしても十分に焼結せず、焼結不良を招くおそれがある。
 そこで、本実施の形態では、SrTiO及びCaTiOの含有量が総計で46~75.4重量%となるように配合し、これにより前記収縮挙動の制御と誘電特性の向上とを両立させている。
(3)第1の焼結助剤成分
 ガラス組成物は、それ自体が液相を生成して粒子同士の焼結を進める焼結助剤としての作用を有するが、比誘電率εrが低いことから含有量が多くなると、比誘電率εrの高いSrTiO又はCaTiOを添加しても、所望の高比誘電率を有するセラミック組成物を得るのが困難となる。
 しかしながら、Cu酸化物及びCa酸化物をガラス組成物に添加すると、ガラス組成物の液相焼結作用を助長することができ、これによりガラス組成物の含有量を40重量%以下に抑制しても、SrTiO又はCaTiOを添加することにより低温焼成可能な高比誘電率のセラミック組成物を得ることが可能となる。そして、そのためにはCu酸化物及びCa酸化物を、それぞれCuO換算で0.1重量%以上及びCaO換算で0.5重量%以上含有することが必要である。
 一方、Cu酸化物及びCa酸化物が、それぞれCuO換算で5.0重量%を超えたり、CaO換算で7.0重量%を超えると、Q値の低下を招くおそれがある。
 そこで、本実施の形態では、Cu酸化物の含有量がCuO換算で0.1~5.0重量%、Ca酸化物がCaO換算で0.5~7.0重量%となるように配合している。
(4)第2の焼結助剤成分
 前記第1の焼結助剤成分に加え、第2の焼結助剤成分としてMn、Co、Znの中から選択された少なくとも1種を含む金属酸化物を添加することによっても、比誘電率εrを更に向上させることが可能である。
 しかしながら、第2の焼結助剤成分の各成分が、それぞれMnO換算、CoO換算、ZnO換算で10重量%を超えると、Q値の低下や高温多湿下で長時間放置した場合、絶縁抵抗logIRの低下を招くおそれがある。
 そこで、第2の焼結助剤成分を含有させなくても所望の比誘電率εrを得ることはできるが、更なる高比誘電率を得るべく、第2の焼結助剤成分を添加する場合は、それぞれMnO、CoO、ZnO換算で10重量%以下の範囲で、これら第2の焼結助剤成分(Mn酸化物、Co酸化物及び/又はZn酸化物)を含有可能としている。
 次に、本発明のセラミックグリーンシートを説明する。
 図1は上記セラミック組成物を使用して得られたセラミックグリーンシート1の斜視図である。
 このセラミックグリーンシート1は、以下のようにして容易に製造することができる。
 すなわち、B、SiO、Al、MO(CaO、BaO、SrO、MgOのうちの少なくともいずれか1種)、SrTiO及びCaTiOのうちの少なくともいずれか1種、第1の焼結助剤成分、及び必要に応じて第2の焼結助剤成分を用意し、所定の成分組成となるように秤量する。そしてこの秤量物をPSZ(部分安定化ジルコニア)ボール等の粉砕媒体と共にボールミルに投入し、所定時間湿式で混合し粉砕する。次いで、この粉砕物を蒸発乾燥させた後、所定温度で約2時間仮焼し、仮焼粉末(セラミック組成物)を得る。
 次いで、この仮焼粉末に適量のバインダ、溶媒、及び可塑剤を添加して湿式粉砕し、スラリー状とした後、ドクターブレード法等の成形加工法を使用して成形加工し、これにより所定厚みに成形されたセラミックグリーンシートを作製することができる。
 そして、このセラミックグリーンシートを使用して各種セラミック電子部品を得ることができる。
 図2はセラミック電子部品の一実施の形態(第1の実施の形態)示す積層LC部品20の斜視図である。
 この積層LC部品20は、セラミック焼結体2の内部にインダクタンスL及び静電容量Cを構成する回路が形成されている。そして、セラミック焼結体2の両端部には、外部電極3a、3bが形成されると共に、略中央部には外部電極4a、4bが形成され、これにより積層LC部品20の内部には、図3に示すような等価回路のLC共振回路が形成されている。
 次に、この積層LC部品20の製造方法を図4を参照しながら説明する。
 まず、上述の方法で製造された矩形状のセラミックグリーンシート5a~5mを用意する。
 次に、セラミックグリーンシート5c~5k間が電気的に接続可能となるようにレーザ加工機を使用し、これらセラミックグリーンシート5c~5kの所定箇所にビアホール6a~6dを形成する。次いで、Ag又はCuを主成分とする導電性ペーストをスクリーン印刷し、コンデンサ用導体パターン7a~7c、及びコイル用導体パターン8a~8dを形成する。
 そして、ビアホール6a~6dに導電性ペーストを充填した後、セラミックグリーンシート5c~5kを積層し、これによりコイル用導体パターン8a~8dがコイル状に電気的に接続されてコイル導体が形成されると共に、コンデンサ用導体パターン7a~7cとセラミックグリーンシート5f~5hとで静電容量部が形成される。
 次いで、導体パターンの形成されていないセラミックグリーンシート5a、5b、及びセラミックグリーンシート5l、5mで挟持し、加圧してセラミック積層体を作製する。
 次いで、セラミック積層体の焼結温度(例えば、900℃)では焼結しないような無機材料を含有した拘束層(例えば、融点が1500℃以上のアルミナを主成分とするセラミックグリーンシート(アルミナグリーンシート))を少なくとも一方の主面上に配し、焼成した後、拘束層を除去する。そしてこれによりセラミック焼結体2が製造される。すなわち、セラミック組成物がシート成形されてなるセラミックグリーンシート5a~5mは焼結され、それぞれ高比誘電率のセラミック層を形成すると共に、コンデンサ用導体パターン7a~7c、コイル用導体パターン8a~8d、ビアホール6a~6dはセラミックグリーンシート5a~5mと同時焼成されて内部電極、すなわちコンデンサ用内部電極及びコイル導体を形成する。
 そして、本実施の形態では、拘束層を前記セラミック積層体の少なくとも一方の主面上に配しているので、該拘束層によってセラミック積層体の主面方向(XY方向)の収縮挙動が制御され、その結果高い寸法精度と反りが生じにくいセラミック焼結体2を得ることができる。
 この後、外部電極3a~4bを、導電ペーストの塗布・焼き付け、蒸着、めっき、或いはスパッタリングなどの薄膜形成法等により形成する。このようにして、積層LC部品20が製造される。
 このように本第1の実施の形態では、セラミック焼結体2が上記セラミック組成物で形成されているので、内部電極材料としてのAgやCuを主成分とする低融点金属を使用しても、低温で同時焼成で作製することができる。そして、セラミック焼結体2の収縮挙動が制御され、かつ比誘電率εrやQ値が大きく良好な誘電特性を有する信頼性にも優れた積層LC部品20を得ることができる。
 図5は、本発明に係るセラミック電子部品の第2の実施の形態を模式的に示したセラミック多層モジュール30の断面図である。
 このセラミック多層モジュール30は、セラミック多層基板10上に電子部品素子19~21が配されている。尚、電子部品素子19~21としては、半導体デバイス、チップ型積層コンデンサ等を挙げることができる。
 該セラミック多層基板10は、上記セラミック組成物の焼結体からなる第1のセラミック層群11の両面に該第1のセラミック層群11よりも比誘電率εrの低い第2のセラミック層群12a、12bが設けられている。
 第1のセラミック層群11は、複数のセラミック層が積層されてなると共に、各セラミック層の層間には内部電極13、14が設けられ、これによりコンデンサユニットC1、C2を形成している。
 また、第2のセラミック層群12a、12b及び第1のセラミック層群11には、ビアホール17、18や内部配線15、16が必要に応じて適宜形成されている。
 そして、上記ビアホール17、18及び内部配線15、16により、上記電子部品素子19~21と、コンデンサユニットC1、C2とが電気的に接続され、セラミック多層モジュール30を形成している。
 本第2の実施の形態では、第1のセラミック層群11が上述した高比誘電率を有するセラミック組成物(以下、「第1のセラミック組成物」という。)で形成されると共に、第2のセラミック層群12a、12bは、前記第1のセラミック組成物よりも比誘電率εrの低い第2のセラミック組成物で形成されている。
 そして、第2のセラミック組成物は、第1のセラミック組成物と類似の成分組成を有している。
 具体的には、第2のセラミック組成物は、セラミック粉末を51~60重量%含有し、かつ、B-SiO-Al-MO系ガラス組成物(以下、「第2のガラス組成物」という。)を40~49重量%含有している。
 ここで、第2のガラス組成物の含有量を40~49重量%としたのは以下の理由による。
 第2のガラス組成物の含有量が49重量%を超えると、ガラスの結晶化が過度に進み、焼成後の第2のセラミック層群12a、12bに歪みが生じるおそれがある。一方、第2のガラス組成物の含有量が40重量%未満になると、比誘電率εrを十分に低くすることができなくなる。
 そこで、本実施の形態では、第2のセラミック組成物は、第2のガラス組成物を40~49重量%とし、残部がセラミック粉末で構成されるように配合される。
 また、第2のガラス組成物の各成分組成は、Bの下限値を5重量%、SiOの上限値を44重量%とした以外は、第1のセラミック組成物のガラス組成物と同一である。
 ここで、Bの下限値を5重量%としたのは、第2のセラミック層群12a、12bのQ値が低くなるのを回避するためであり、SiOの上限値を44重量%としたのは、焼結性が向上しすぎて比誘電率εrが高くなりすぎるおそれがあるからである。
 尚、セラミック粉末としては、Alが好ましい。
 そして、このように第1のセラミック層群12よりも比誘電率εrの低い第2のセラミック層群11a、11bを第1のセラミック組成物と類似の第2のセラミック組成物で形成することにより、焼成時の相互拡散による特性変動や特性ばらつき等が生じ難くなる。また、第1のセラミック組成物と第2のセラミック組成物とでは、熱膨張係数も近似するので、デラミネーション等の構造欠陥が生じにくい。さらに、第2のセラミック層群11a、11bは、アルカリ金属元素を含む必要がないので、例えば抵抗素子を有する場合、抵抗素子を構成する抵抗体との反応による抵抗特性の低下を招くのを回避することができる。
 そして、外部と接続するための外部電極をセラミック多層基板の下面に形成することにより、セラミック積層モジュール30は、下面側を利用してプリント回路基板などに容易に表面実装することができる。
 また、本第2の実施の形態では、低温焼成に適した第1及び第2のセラミック組成物を使用しているので、内部電極13、14や内部配線15、16及びビアホール17、18は、AgやCuなどの低抵抗で安価な低融点金属を使用して同時焼成することが可能となる。すなわち、同時焼成型のセラミック多層基板を用いてコンデンサユニットC1、C2を構成することができることとなり、モジュールの小型化を図ることができる。加えて、上記第1のセラミック層群11が、上記第1のセラミック組成物を用いているので比誘電率εrやQ値が高く、信頼性の優れた焼結性の良好なセラミック多層モジュール30を得ることができる。
 尚、上記セラミック多層基板10は、第1の実施の形態と同様の方法により、第2のセラミック層群12a、12bの少なくともいずれか一方の主面に拘束層を配して焼成することにより、焼成時の収縮挙動が制御されたセラミック焼結体を容易に製造することができる。
 また、コンデンサユニットC1、C2では、静電容量を取り出すための厚み方向に隣り合う内部電極13、14が第1のセラミック層群11に埋設されるので、比較的小さな面積の内部電極で大きな静電容量を得ることができ、それによっても小型化を進めることができる。すなわち、低誘電率層である第2のセラミック層群11a上に配線のための導体を配し、高誘電率層である第1のセラミック層群にコンデンサやフィルタのような素子を配することにより、セラミック基板の更なる小型化が可能となる。
 尚、上記第1及び第2の実施の形態では、積層LC部品20及びセラミック多層モジュール30について説明したが、これらは一例であり本発明はこれらに限定されるものではない。すなわち、マルチチップモジュール用セラミック多層基板、ハイブリッドIC用セラミック多層基板などの各種セラミック多層基板、或いはこれらのセラミック多層基板に電子部品素子を搭載した様々なセラミック電子部品、さらにはチップ型積層コンデンサやチップ型積層誘電体アンテナなどの様々なチップ型積層電子部品に適用することができる。
 次に、本発明の実施例を具体的に説明する。
 この実施例1では、ガラス組成物、SrTiO、及び第1の焼結助剤成分(CuO及びCaO)の各含有量を一定とし、ガラス組成物の成分組成が異なる試料を作製し、特性を評価した。
〔試料の作製〕
 〔白基板の作製〕
 まず、ガラス素原料として、CaO、BaO、SrO、MgO、Al、SiO、及びBを用意した。そして、ガラス組成物が表1に示すような含有量となるように、前記ガラス素原料を秤量した。
 次いで、SrTiO、CuO、CaCOを用意した。そして、ガラス組成物の含有量が36重量%、SrTiOの含有量が56重量%、CuOの含有量が3.0重量%、CaCOの含有量がCaO換算で5.0重量%となるように、これらガラス組成物、SrTiO、CuO、及びCaCOを秤量した。
 そして、これら秤量物をジルコニア粉砕メディアと共にボールミルに投入し、16時間、湿式で混合し、仮焼粉末(セラミック組成物)を作製した。
 次いで、このセラミック組成物に適量のバインダ、溶媒、及び可塑剤を添加し、ボールミル内で2時間、湿式で混合粉砕し、スラリー状とした後、ドクターブレード法を使用して成形加工し、これにより厚みが25μmの試料番号1~19のセラミックグリーンシートを得た。
 次いで、セラミックグリーンシートを積層してセラミック積層体を作製し、さらにアルミナグリーンシートの拘束層をセラミック積層体の両面に配して圧着し、縦55mm、横75mm、厚み1mmの圧着体を作製した。
 そしてこの後、大気雰囲気下、870℃の焼成温度で10分間、焼成処理を行い、次いで、拘束層を除去し、厚みが0.65mmの試料番号1~19のセラミック焼結体(白基板)を作製した。
〔積層セラミックコンデンサの作製〕
 まず、Agを主成分とするAgペーストを用意した。そして、上述したセラミックグリーンシ-トの表面にAgペーストをスクリーン印刷し、導体パターンを形成した。次いで、静電容量が取得可能となるように導体パターンの形成されたセラミックグリーンシートを積層し、さらに導体パターンの形成されていないセラミックグリーンシートで狭持してセラミック積層体を作製した。そして、セラミック積層体の両面に拘束層を配して圧着体を作製した。
 次いで、この圧着体を、大気雰囲気下、焼成温度870℃で10分間、焼成処理を行い、その後拘束層を除去し、内部電極が埋設されたセラミック焼結体を作製した。
 次いで、Agを主成分としたAgペーストを用意し、前記セラミック焼結体の両端部にAgペーストを塗布し、800℃の温度で焼付け、外部電極を形成し、試料番号1~19の積層セラミックコンデンサを作製した。作製された積層セラミックコンデンサの外形寸法は、縦8mm、横6mm、厚み0.5mm、有効積層数3、有効電極面積は4mmであった。
〔試料の評価〕
 試料番号1~19の各試料(白基板)について、焼結性及び焼成時の収縮挙動を評価した。
 具体的には、焼結性は赤インクを試料に垂らし、赤インクの染みが生じた試料を焼結不良と判断した。
 収縮挙動は、以下のようにして収縮率を算出し、評価した。すなわち、焼結前のセラミック積層体の縦方向及び横方向の長さと、焼結後のセラミック焼結体の縦方向及び横方向の長さを測定し、下記数式(1)、(2)に従い、縦方向収縮率及び横方向収縮率を算出し、次いで数式(3)により収縮率を算出した。
 縦方向収縮率=(焼結後の縦方向の長さ/焼結前の縦方向の長さ)
                   ×100 ・・・(1)
 横方向収縮率=(焼結後の横方向の長さ/焼結前の横方向の長さ)
                   ×100 ・・・(2)
 収縮率=(縦方向収縮率+横方向収縮率)/2  ・・・(3)
 また、共振周波数6GHzで比誘電率εr及びQ値を測定した。尚、比誘電率εrは40以上、Q値は750以上を良品と判断した。
 また、PCT(プレッシャークッカーテスト)を行い、信頼性を評価した。すなわち、温度120℃、相対湿度85%で10Vの直流電圧を印加し、192時間放置し、その後、抵抗計で絶縁抵抗logIRを測定し、10以上を良品と判断した。
 表1は各試料のガラス組成物の成分組成を示し、表2は各試料のセラミック組成物と測定結果を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 試料番号5は、焼結不良となった。これはガラス組成物中のCaOの含有量が35.0重量%と少なく、ガラス粘度が高くなったためと思われる。
 試料番号8は、PCT後の絶縁抵抗logIRが4.8と低く、信頼性低下を招くことが分かった。これはガラス組成物中のCaOの含有量が55.0重量%と多く、このためガラス組成物の化学的安定性が劣化したためと思われる。
 試料番号9は、焼結不良となった。これはガラス組成物中のBの含有量が2.0重量%と少なく、ガラス粘度が高くなったためと思われる。
 試料番号12は、PCT後の絶縁抵抗logIRが4.8と低くなり、信頼性低下を招くことが分かった。これはガラス組成物中のBの含有量が20.0重量%と多く、このためガラス組成物の化学的安定性が劣化したためと思われる。
 試料番号13は、PCT後の絶縁抵抗logIRが4.8と低くなり、信頼性低下を招くことが分かった。これはガラス組成物中のCaOの含有量は52.0重量%と多いものの、SiOの含有量が26.0重量%と少ないため、ガラス組成物の化学的安定性が劣化したためと思われる。
 試料番号16は、焼結不良となった。これはガラス組成物中のSiOの含有量が53.0重量%と多いため、ガラス粘度が高くなったためと思われる。
 試料番号19は、Q値が550に低下した。これはガラス組成物中のAlの含有量が30.0重量%と多いため、ガラスの安定性は向上するものの、結晶化し難くなり、このためQ値の低下を招いたものと思われる。
 これに対し試料番号1~4、6、7、10、11、14、15、17、18は、ガラス組成物の成分組成が本発明の範囲内であり、しかもセラミック組成物中のガラス組成物の含有量が36重量%、SrTiOの含有量が56重量%、CuOの含有量が3.0重量%、及びCaOの含有量が5.0重量%といずれも本発明の範囲内であるので、焼結性は良好であり、また、収縮率は99%以上となって焼成時の収縮挙動も抑制できることが分かった。さらに、比誘電率εrも40以上、Q値も750以上となって所望の良好な誘電特性を得ることができ、しかもPCT後の絶縁抵抗logIRも10以上となって信頼性を確保できることも分かった。
 この実施例2では、ガラス組成物の成分組成を一定とし、ガラス組成物、SrTiO、第1の焼結助剤成分(CuO及びCaO)の含有量が異なる試料を作製し、特性を評価した。
〔試料の作製〕
 ガラス素原料としてB、SiO、Al、CaOを用意し、ガラス素原料以外の添加物(フィラー)としてSrTiO、CuO、及びCaCOを用意した。
 次いで、ガラス組成物の含有量が、前記表1の試料番号G1(本発明範囲内)となるようにガラス素原料を秤量すると共に、セラミック組成物の含有量が全体で表3となるように添加物原料を秤量した。尚、CaCOについてはCaO換算で表3に示す含有量となるように秤量した。
 そしてその後は、〔実施例1〕と同様の方法・手順で、試料番号21~53の白基板及び積層セラミックコンデンサを作製した。
 表3は試料番号21~53の成分組成を示している。
Figure JPOXMLDOC01-appb-T000003
〔試料の評価〕
 試料番号21~53の各試料について、〔実施例1〕と同様の方法で焼結性を評価し、収縮挙動を評価した。
 また、上記の各試料について、〔実施例1〕と同様の方法で比誘電率εr、Q値を測定し、さらにPCT試験を行って信頼性を評価した。
 これらの評価基準は、いずれも〔実施例1〕と同様である。
 表4はその測定結果を示している。
Figure JPOXMLDOC01-appb-T000004
 試料番号21~23は、収縮率が98.14~98.60と99.0%以下に悪化した。これはガラス組成物の含有量が20重量%と少ないため、焼成時にガラスの流動性が低下し、このためセラミック焼結体が収縮し易くなったためと思われる。また、ガラス組成物の含有量が20重量%と少ないことから、870℃の低温での焼成が困難となり、終結不良となった。
 試料番号29~31は、CaOは含有しているものの、CuOが含有されていないため、比誘電率εrが24.7~32.4と40以下であり、Q値も531~667と750以下であり、所望の誘電特性を得ることができないことが分った。
 試料番号34は、CaOの含有量が0.1重量%と少なすぎるため、比誘電率εrが34.8と低く、所望の高比誘電率を得ることができないことが分った。
 試料番号39及び44は、CaOの含有量が10.0重量%と過剰であるため、却って比誘電率εrやQ値が低下することが分った。
 試料番号47は、CuOの含有量が7.0重量%と過剰であるため、Q値が584と低く、十分に大きなQ値を得ることができないことが分った。
 試料番号51~53は、比誘電率εrの低いガラス組成物の含有量が44重量%と多いため、セラミック組成物の比誘電率εrも32.5~35.2と低くなり、所望の高比誘電率を得ることができないことが分った。また、Q値も750以下であり、低くなることが分かった。
 これに対し試料番号24~28、32、33、35~38、40~43、45、46、48~50は、ガラス組成物の含有量が24~40重量%、SrTiOの含有量が48~75.4重量%、CuOの含有量が0.1~5.0重量%、及びCaOの含有量が0.5~7.0重量%といずれも本発明の範囲内であるので、焼結性は良好であり、また、収縮率は99%以上となって焼成時の収縮挙動も抑制できることが分かった。さらに、比誘電率εrも40以上、Q値も750以上となって所望の良好な誘電特性を得ることができ、しかもPCT試験後の絶縁抵抗logIRも10以上となって信頼性を確保できることも分かった。
 この実施例3では、ガラス組成物の成分組成、第1の焼結助剤成分(CuO及びCaO)の含有量を一定とし、第2の焼結助剤成分(MnO、CoO又はZnO)の含有量が異なる試料を作製し、特性を評価した。
〔試料の作製〕
 ガラス素原料としてB、SiO、Al、CaOを用意し、ガラス素原料以外の添加物(フィラー)としてSrTiO、CuO、CaCO、MnCO、CoO、及びZnOを用意した。
 次いで、ガラス組成物の含有量が、前記表1の試料番号G1(本発明範囲内)となるようにガラス素原料を秤量すると共に、セラミック組成物の含有量が全体で表5となるように添加物原料を秤量した。尚、CaCO及びMnCOについてはCaO換算及びMnO換算で表5に示す含有量となるように秤量した。
 そしてその後は、〔実施例1〕と同様の方法・手順で、試料番号61~75の白基板及び積層セラミックコンデンサを作製した。
 表5は試料番号61~75の成分組成を示している。
Figure JPOXMLDOC01-appb-T000005
〔試料の評価〕
 試料番号61~75の各試料について、〔実施例1〕と同様の方法で焼結性を評価し、収縮挙動を評価した。
 また、上記の各試料について、〔実施例1〕と同様の方法で比誘電率εr、Q値を測定し、さらにPCT試験を行って信頼性を評価した。
 これらの評価基準は、いずれも〔実施例1〕と同様である。
 表6はその測定結果を示している。
Figure JPOXMLDOC01-appb-T000006
 試料番号61~63は、第2の焼結助剤成分を各5重量%含有しているものの、第1の焼結助剤成分(CuO及びCaO)を含有していないため、比誘電率εr及びQ値が低くなることが分かった。すなわち、本発明の組成系では第1の焼結助剤成分は必要不可欠であることが確認された。
 また、試料番号67、71及び75は、CuOを3.0重量%、CaOを5.0重量%と本発明範囲内で含有しているものの、SrTiOの含有量が41重量%と少なく、MnO、CoO、又はZnOの含有量が15重量%と多すぎるため、高温多湿下で長時間放置した場合に絶縁抵抗logIRが6.0~7.6と極端に低下することが分った。
 これに対し試料番号64~66、68~70、及び72~74は、SrTiOの含有量が46.0~55.0重量%、第2の焼結助剤成分の含有量が1.0~10.0重量%と本発明範囲内であるので、焼結性は良好であり、また、収縮率は99%以上となって焼成時の収縮挙動も抑制できることが分かった。さらに、比誘電率εrも40以上、Q値も750以上となって所望の良好な誘電特性を得ることができ、しかもPCT試験後の絶縁抵抗logIRも10以上となって信頼性を確保できることも分かった。
 特に、第2の焼結助剤成分が含有されていない試料番号1の試料(表2)と、試料番号64~66、68~70、及び72~74とを比較すると、第1の焼結助剤成分に加え、第2の焼結助剤成分を5~10重量%含有させた場合は、第2の焼結助剤成分が含有されていない場合に比べ、更なる比誘電率εrの向上を図り得ることが分かった。
 この実施例4では、SrTiOに代えてCaTiOを使用し、各種試料を作製して特性を評価した。
 〔試料の作製〕
 ガラス素原料としてB、SiO、Al、CaOを用意し、ガラス素原料以外の添加物(フィラー)としてCaTiO、CuO、CaCO、MnCO、CoO、及びZnOを用意した。
 次いで、ガラス組成物の含有量が、前記表1の試料番号G1(本発明範囲内)となるようにガラス素原料を秤量すると共に、セラミック組成物の含有量が全体で表7となるように添加物原料を秤量した。尚、CaCO及びMnCOについてはCaO換算及びMnO換算で表7に示す含有量となるように秤量した。
 そしてその後は、〔実施例1〕と同様の方法・手順で、試料番号81~98の白基板及び積層セラミックコンデンサを作製した。
 表7は試料番号81~98の成分組成を示している。
Figure JPOXMLDOC01-appb-T000007
〔試料の評価〕
 試料番号81~98の各試料について、〔実施例1〕と同様の方法で焼結性を評価し、収縮挙動を評価した。
 また、上記の各試料について、〔実施例1〕と同様の方法で比誘電率εr、Q値を測定し、さらにPCT試験を行って信頼性を評価した。
 これらの評価基準は、いずれも〔実施例1〕と同様である。
 表8はその測定結果を示している。
Figure JPOXMLDOC01-appb-T000008
 試料番号81は、ガラス組成物の含有量が20重量%と少ないため、試料番号21~23(表3、4)と同様、焼成時にガラスの流動性が低下してセラミック焼結体が収縮し易くなり、収縮率が98.18%と99%以下に悪化した。また、870℃の低温での焼成が困難となり、終結不良となった。
 試料番号96~98は、比誘電率εrの低いガラス組成物の含有量が44重量%と多いため、試料番号51~53(表3及び表4)と同様、セラミック組成物の比誘電率εrも30.8~34.8と低くなり、所望の高比誘電率を得ることができないことが分った。
 これに対し試料番号82~95は、ガラス組成物の含有量が24~40重量%、CaTiOの含有量が48~75.4重量%、CuOの含有量が0.1~5.0重量%、及びCaOの含有量が0.5~7.0重量%といずれも本発明の範囲内であるので、焼結性は良好であり、また、収縮率は99%以上となって焼成時の収縮挙動も抑制できることが分かった。さらに、比誘電率εrも40以上、Q値も750以上となって所望の良好な誘電特性を得ることができ、しかもPCT試験後の絶縁抵抗logIRも10以上となって信頼性を確保できることも分かった。
 また、第1の焼結助剤成分を含有していない試料番号88と、第2の焼結助剤成分を含有した試料番号89~91とを比較すると、第2の焼結助剤成分を含有させることにより比誘電率εrは若干低下傾向にあるものの、40以上の所望の高比誘電率を確保できることが分かった。
 このようにSrTiOに代えてCaTiOを使用した場合であっても、焼結性が良好であり、焼成時の収縮挙動も抑制でき、しかも所望の特性を有するセラミック電子部品の得られることが分った。
 焼成時のセラミック焼結体の収縮挙動の抑制と高比誘電率を両立させることができ、低温焼成に好適であり、セラミック多層基板やLC部品等のセラミック電子部品に利用可能である。
1 セラミックグリーンシート
2 セラミック焼結体
5a~5m セラミックグリーンシート
7a~7c 導体パターン
8a~8d 導体パターン
11 第1のセラミック層群(第1のセラミック層)
12a、12b 第2のセラミック層群(第2のセラミック層)
13 内部電極(導体パターン)
14 内部電極(導体パターン)
15 内部配線(導体パターン)
16 内部配線(導体パターン)

Claims (7)

  1.  B-SiO-Al-MO系ガラス組成物(ただし、MはCa、Mg、Sr、及びBaの中から選択された少なくとも1種を示し、B:4~17.5重量%、SiO:28~50重量%、Al:0~20重量%、MO:36~50重量%、である。)を24~40重量%含有すると共に、
     SrTiO及びCaTiOのうちの少なくとも1種を46~75.4重量%含有し、
     かつ、CuO換算で0.1~5.0重量%のCu酸化物と、CaO換算で0.5~7.0重量%のCa酸化物とを含み、
     Mn、Zn、Coの中から選択された少なくとも1種を含む金属酸化物がそれぞれ、MnO換算、ZnO換算、CoO換算で10重量%以下(ただし、0重量%を含む。)であることを特徴とするセラミック組成物。
  2.  請求項1記載のセラミック組成物がシート状に成形されていることを特徴とするセラミックグリーンシート。
  3.  請求項1記載のセラミック組成物の焼結体からなる第1のセラミック層を有していることを特徴とするセラミック電子部品。
  4.  前記第1のセラミック層と、該第1のセラミック層よりも比誘電率の低い第2のセラミック層とが積層されていることを特徴とする請求項3記載のセラミック電子部品。
  5.  前記第2のセラミック層は、セラミック粉末を51~60重量%含有し、かつ、B-SiO-Al-MO系ガラス組成物(ただし、MはCa、Mg、Sr、及びBaの中から選択された少なくとも1種を示し、B:5~17.5重量%、SiO:28~44重量%、Al:0~20重量%、MO:36~50重量%である。)を40~49重量%含有したセラミック組成物の焼結体であることを特徴とする請求項4記載のセラミック電子部品。
  6.  前記セラミック粉末はAlであることを特徴とする請求項5記載のセラミック電子部品。
  7.  Ag又はCuを主成分とする導体パターンを有していることを特徴とする請求項3乃至請求項6のいずれかに記載のセラミック電子部品。
PCT/JP2009/003402 2008-11-21 2009-07-21 セラミック組成物、セラミックグリーンシート、及びセラミック電子部品 WO2010058496A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010539106A JP5273490B2 (ja) 2008-11-21 2009-07-21 セラミック組成物、セラミックグリーンシート、及びセラミック電子部品
CN200980146060.1A CN102216238B (zh) 2008-11-21 2009-07-21 陶瓷组合物、陶瓷生片以及陶瓷电子部件
US13/109,482 US8263230B2 (en) 2008-11-21 2011-05-17 Ceramic composition, ceramic green sheet, and ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008298258 2008-11-21
JP2008-298258 2008-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/109,482 Continuation US8263230B2 (en) 2008-11-21 2011-05-17 Ceramic composition, ceramic green sheet, and ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2010058496A1 true WO2010058496A1 (ja) 2010-05-27

Family

ID=42197941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003402 WO2010058496A1 (ja) 2008-11-21 2009-07-21 セラミック組成物、セラミックグリーンシート、及びセラミック電子部品

Country Status (4)

Country Link
US (1) US8263230B2 (ja)
JP (1) JP5273490B2 (ja)
CN (1) CN102216238B (ja)
WO (1) WO2010058496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823144A (zh) * 2018-07-11 2021-05-18 福禄公司 高q ltcc介电组合物和器件
CN112851126A (zh) * 2021-03-19 2021-05-28 厦门Abb 避雷器有限公司 用于ZnO电阻片侧面绝缘的无铅复合玻璃粉、制备方法及玻璃釉

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355613B (zh) * 2014-10-22 2016-11-30 五行科技股份有限公司 一种陶瓷组合物
CN104496442B (zh) * 2014-11-27 2016-04-13 中国计量学院 一种低介电常数微波介质陶瓷粉体及其制备方法
CN104837309B (zh) * 2015-04-16 2018-01-23 北京赛乐米克材料科技有限公司 一种用于电子设备的黑色陶瓷部件及其制备方法
JP6458863B2 (ja) * 2015-05-15 2019-01-30 株式会社村田製作所 低温焼結セラミック材料、セラミック焼結体およびセラミック電子部品
CN115119394A (zh) * 2016-01-13 2022-09-27 株式会社村田制作所 层叠体以及电子部件
CN107311647A (zh) * 2017-06-30 2017-11-03 周远华 一种陶瓷组合物及其制备方法
CN107235742A (zh) * 2017-06-30 2017-10-10 周远华 一种陶瓷组合物及其制备方法
JP6740994B2 (ja) * 2017-11-29 2020-08-19 株式会社村田製作所 ガラス−セラミック−フェライト組成物および電子部品
US10910163B2 (en) * 2018-06-29 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component and board having the same mounted thereon
CN109516799B (zh) * 2019-01-22 2021-07-27 电子科技大学 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN110606738A (zh) * 2019-10-17 2019-12-24 湖南湘梅花电子陶瓷有限公司 一种高绝缘电子陶瓷材料及其生产工艺
CN110922184B (zh) * 2019-12-18 2022-07-12 广东国华新材料科技股份有限公司 一种复合微波介质陶瓷及其制备方法
WO2022191020A1 (ja) * 2021-03-12 2022-09-15 株式会社村田製作所 ガラスセラミック材料、積層体、及び、電子部品
CN114380509B (zh) * 2022-03-24 2022-07-08 西安宏星电子浆料科技股份有限公司 一种高耐腐蚀性介质浆料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030557B2 (ja) * 1987-11-28 2000-04-10 ティーディーケイ株式会社 誘電体磁器材料を用いた電子部品
JP2000351668A (ja) * 1999-06-08 2000-12-19 Murata Mfg Co Ltd セラミック基板用組成物およびセラミック回路部品
JP2006069822A (ja) * 2004-08-31 2006-03-16 Murata Mfg Co Ltd 誘電体セラミック組成物およびセラミック多層基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330557A (ja) 1989-06-27 1991-02-08 Sharp Corp 通信回線を用いる通信装置
JP2000143341A (ja) * 1998-09-11 2000-05-23 Murata Mfg Co Ltd 誘電体セラミック組成物及び積層セラミック部品
US7417001B2 (en) * 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) * 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
CN1826299B (zh) * 2004-03-01 2010-06-16 株式会社村田制作所 绝缘体陶瓷组合物、绝缘性陶瓷烧结体及层叠型陶瓷电子部件
US7368408B2 (en) * 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
ATE515486T1 (de) 2004-10-26 2011-07-15 Murata Manufacturing Co Keramikmaterialzusammensetzung, keramiksubstrat und irreversibles schaltungselement
JP4834997B2 (ja) 2005-01-26 2011-12-14 東レ株式会社 感光性誘電体ペーストおよびそれを用いた電子回路部品の製造方法
TW200639880A (en) * 2005-02-21 2006-11-16 Tdk Corp Thick-film resistor and its production process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030557B2 (ja) * 1987-11-28 2000-04-10 ティーディーケイ株式会社 誘電体磁器材料を用いた電子部品
JP2000351668A (ja) * 1999-06-08 2000-12-19 Murata Mfg Co Ltd セラミック基板用組成物およびセラミック回路部品
JP2006069822A (ja) * 2004-08-31 2006-03-16 Murata Mfg Co Ltd 誘電体セラミック組成物およびセラミック多層基板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823144A (zh) * 2018-07-11 2021-05-18 福禄公司 高q ltcc介电组合物和器件
CN112823144B (zh) * 2018-07-11 2023-01-24 福禄公司 高q ltcc介电组合物和器件
CN112851126A (zh) * 2021-03-19 2021-05-28 厦门Abb 避雷器有限公司 用于ZnO电阻片侧面绝缘的无铅复合玻璃粉、制备方法及玻璃釉
CN112851126B (zh) * 2021-03-19 2022-08-05 厦门Abb 避雷器有限公司 用于ZnO电阻片侧面绝缘的无铅复合玻璃粉、制备方法及玻璃釉

Also Published As

Publication number Publication date
US20110214908A1 (en) 2011-09-08
JPWO2010058496A1 (ja) 2012-04-12
CN102216238A (zh) 2011-10-12
US8263230B2 (en) 2012-09-11
JP5273490B2 (ja) 2013-08-28
CN102216238B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5273490B2 (ja) セラミック組成物、セラミックグリーンシート、及びセラミック電子部品
KR101181055B1 (ko) 유전체 자기 조성물, 복합 전자 부품 및 적층 세라믹콘덴서
KR100706687B1 (ko) 적층 세라믹 콘덴서
JP5056528B2 (ja) 絶縁体セラミック組成物およびそれを用いた絶縁体セラミック
KR101343091B1 (ko) 적층 세라믹 콘덴서의 제조방법 및 적층 세라믹 콘덴서
JP5104761B2 (ja) セラミック基板およびその製造方法
KR100363655B1 (ko) 유전체세라믹조성물및이를이용한세라믹전자부품
JP4786604B2 (ja) 誘電体磁器及びそれを用いた積層セラミックコンデンサ
JP5040918B2 (ja) ガラスセラミック組成物、ガラスセラミック焼結体および積層セラミック電子部品
JP5077362B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
JP5003683B2 (ja) ガラスセラミック組成物、ガラスセラミック焼結体および積層セラミック電子部品
CN103547544B (zh) 玻璃陶瓷组合物
WO2009041166A1 (ja) セラミック多層基板
JP2009132606A (ja) 誘電体組成物及びこれを用いた積層セラミックキャパシタ内蔵型低温同時焼成セラミック基板
JP2007063040A (ja) 誘電体磁器組成物の製造方法、および電子部品
KR100859264B1 (ko) 유전체 세라믹 및 적층 세라믹 커패시터
JP4752340B2 (ja) 誘電体セラミック組成物、および積層セラミックコンデンサ
WO2012043208A1 (ja) 誘電体セラミック、積層セラミック電子部品、およびこれらの製造方法
KR19980070404A (ko) 모놀리식 세라믹 커패시터
JP2010052970A (ja) セラミック組成物、セラミックグリーンシート、及びセラミック電子部品
JP2019176176A (ja) 積層セラミックコンデンサ
JP2003063861A (ja) 複合積層セラミック電子部品及びその製造方法
JP4146152B2 (ja) 誘電体磁器組成物及びセラミック電子部品
JP3615947B2 (ja) 誘電体磁器組成物と磁器コンデンサ
JP2003026472A (ja) 積層セラミック電子部品の製造方法、積層セラミック電子部品および積層セラミック電子部品製造用の生の複合積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146060.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827279

Country of ref document: EP

Kind code of ref document: A1