WO2010032794A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2010032794A1
WO2010032794A1 PCT/JP2009/066275 JP2009066275W WO2010032794A1 WO 2010032794 A1 WO2010032794 A1 WO 2010032794A1 JP 2009066275 W JP2009066275 W JP 2009066275W WO 2010032794 A1 WO2010032794 A1 WO 2010032794A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
fan
fan motor
refrigerant
Prior art date
Application number
PCT/JP2009/066275
Other languages
English (en)
French (fr)
Inventor
英俊 新屋
小林 晋
悟史 奥田
隆一 鶴間
玉置 裕一
戸部 龍三
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP09814638.4A priority Critical patent/EP2339264B1/en
Publication of WO2010032794A1 publication Critical patent/WO2010032794A1/ja
Priority to US12/854,822 priority patent/US8555663B2/en
Priority to US14/030,937 priority patent/US8857199B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/04Self-contained movable devices, e.g. domestic refrigerators specially adapted for storing deep-frozen articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/04Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with more than one refrigeration unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/14Refrigerator multi units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays
    • F25D2400/361Interactive visual displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a refrigeration apparatus.
  • a refrigeration apparatus having two refrigerant circuits having a compressor, a condenser, a decompressor, and an evaporator is known (see, for example, JP-A-2005-90917).
  • the refrigerant discharged from the compressor is cooled by a condenser and liquefied, and after being depressurized by the decompressor and evaporated by the evaporator, for example, in common with two evaporators
  • the inside of the cold storage that is in thermal contact is cooled.
  • This refrigeration apparatus is provided with a temperature sensor that detects the temperature in the refrigerator, and controls the compressors of the two refrigerant circuits, for example, as follows. That is, when one or both compressors of the two refrigerant circuits are operated, the temperature detected by the temperature sensor falls from the upper limit value of the set temperature range to the lower limit value, and both compressors of the two refrigerant circuits are stopped. As a result, the temperature detected by the temperature sensor rises from the lower limit value to the upper limit value of the set temperature range. As described above, by alternately operating one or two compressors and stopping the two compressors, the internal temperature is maintained within the set temperature range.
  • the internal temperature is accurately controlled (that is, maintained within a predetermined set temperature range) even when the internal load becomes larger due to an increase in ambient temperature or the like.
  • the frequency of the period of operating both of the compressors (per unit time) Frequency) needs to be relatively increased.
  • an object of the present invention is to accurately control the temperature in the warehouse while suppressing the number of start-ups of the compressor.
  • a refrigeration apparatus of the present invention is configured to connect a first compressor, a first condenser, a first pressure reducer, and a first evaporator in a ring shape with a first refrigerant pipe to obtain a cooling action.
  • the second evaporator is annularly connected by a second refrigerant pipe, and the refrigerant discharged from the second compressor is condensed by the second condenser and then evaporated by the second evaporator to obtain a cooling action.
  • a second refrigerant circuit for detecting the temperature in the low-temperature storage in which the first evaporator and the second evaporator are arranged to cool the interior at the same time; and detection of the temperature sensor Each time the temperature reaches the first temperature, both the first compressor and the second compressor are operated.
  • First control for controlling the first compressor and the second compressor to be alternately operated each time the temperature detected by the temperature sensor reaches a second temperature lower than the first temperature.
  • the refrigeration apparatus of 1st Embodiment shows an example of the procedure of the process of the microcomputer in the control mode C which repeats driving
  • FIG. 2 is a cross-sectional view taken along line A-A ′ of the refrigeration apparatus 1 in FIG. 1.
  • A is a top view which shows the example of arrangement
  • (b) It is a front view of the condensation unit of (a).
  • FIG. 1 is a front view of an example of the refrigeration apparatus 1 of the first embodiment.
  • FIG. 2 is a side view of the refrigeration apparatus 1 of FIG.
  • FIG. 3 is a circuit diagram of an example of the first refrigerant circuit 100 and the second refrigerant circuit 200 of the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of a control circuit 300 that controls the first refrigerant circuit 100 and the second refrigerant circuit 200 according to the first embodiment.
  • the refrigeration apparatus 1 includes two refrigerant circuits (the first refrigerant circuit 100 and the second refrigerant circuit 200) that are substantially the same, and a temperature sensor 307 that detects the temperature in the refrigerator. And a microcomputer (first control device, second control device, identification device, first switching device, second switching device, discrimination device) 310, compressor relay (first control device, second control device) 305a, 305b. And relays (first control device, second control device) 306a, 306b.
  • the refrigeration apparatus 1 further includes an inner box 5, an outer box (heat insulating housing) 2, an inner door 51 a, an outer door (heat insulating door) 3, and a machine room 4.
  • an inner box 5 an outer box (heat insulating housing) 2
  • an inner door 51 a an outer door (heat insulating door) 3
  • a machine room 4 a machine room 4
  • most of the first refrigerant circuit 100 and the second refrigerant circuit 200 except the later-described evaporator 153 and heat exchangers 109 and 209 are stored in the machine room 4.
  • the inner box 5 is a substantially rectangular parallelepiped box made of, for example, a steel plate, and is divided into, for example, two storage chambers 51 for storing a storage object such as a frozen object or a living tissue.
  • Two front doors 51a made of resin, for example, are provided in the front openings of the two storage chambers 51 so as to be opened and closed via a predetermined hinge (not shown).
  • the outer box 2 is a substantially rectangular parallelepiped box made of steel, for example, and accommodates the machine room 4 and the inner box 5.
  • a predetermined heat insulating material (not shown) is filled between the inner box 5 and the outer box 2.
  • an outer door 3 for taking a storage object into and out of the storage chamber 51 is attached to the front opening of the outer box 2 through a hinge 33 so as to be opened and closed.
  • the outer door 3 is a substantially flat plate-shaped hollow body made of, for example, a steel plate filled with a predetermined heat insulating material (not shown) on its inner side, and a packing for ensuring airtightness in the outer box 2 is provided on the back surface thereof.
  • an operation panel 32 having, for example, a key for setting a desired temperature in the storage (inside the storage chamber 51), a display for displaying the current temperature in the storage, and the like is provided on the front thereof. It has been.
  • the handle 31 illustrated in FIG. 1 is for a user or the like to open and close the outer door 3, and fixes and fixes the state where the outer door 3 closes the front opening of the outer box 2.
  • a predetermined locking mechanism (not shown) for releasing is provided.
  • the first refrigerant circuit 100 includes a first compressor 101, a pre-condenser 102 and a capacitor 104 (first condenser), a decompressor 110 (first decompressor), and a first An evaporator 111 is provided, and a predetermined pipe (first refrigerant pipe) is formed in an annular shape so that the refrigerant discharged from the first compressor 101 returns to the compressor 101 again.
  • the first refrigerant circuit 100 further includes a flow divider 107 that separates gas and liquid, a decompressor 108 and a heat exchanger 109.
  • the first refrigerant circuit 100 includes an oil cooler 101a in an oil reservoir in the first compressor 101, a pipe 103 between the pre-condenser 102 and the oil cooler 101a, a dehydrator 106, a condenser 104, and a shunt 107.
  • a shock absorber 112 is further provided between the suction side of the first compressor 101 and the heat exchanger 109.
  • the first compressor 101 compresses the sucked refrigerant and discharges it to the pre-capacitor 102.
  • the pre-capacitor 102 is a meandering pipe made of, for example, copper or aluminum for radiating the refrigerant discharged from the first compressor 101.
  • the condenser 104 is a meandering pipe made of, for example, copper or aluminum for further dissipating heat from the refrigerant output from the pre-capacitor 102.
  • the pre-capacitor 102 and the capacitor 104 are integrally formed on the same tube plate.
  • a fan 105 is arranged and configured so as to be able to blow air to the capacitors 102 and 104 simultaneously.
  • the flow divider 107 divides the refrigerant output from the capacitor 104 into a liquid-phase refrigerant and a gas-phase refrigerant, and outputs the liquid-phase refrigerant to the decompressor 108 (capillary tube). Is output to the inner tube 109b of the heat exchanger 109.
  • the heat exchanger 109 is a double pipe made of, for example, copper or aluminum having an outer tube 109a and an inner tube 109b.
  • the liquid refrigerant decompressed by the decompressor 108 in the outer tube 109a evaporates, whereby the inner tube 109b.
  • the gas-phase refrigerant flowing through is cooled.
  • the decompressor 110 is, for example, a capillary tube that decompresses the refrigerant that has been cooled by the inner tube 109 b of the heat exchanger 109 to become a liquid phase and outputs the decompressed refrigerant to the first evaporator 111.
  • the first evaporator 111 is a tube made of, for example, copper or aluminum for evaporating the refrigerant decompressed by the decompressor 110, and is attached so as to be in thermal contact with the outer surface except the front opening of the inner box 5. Yes.
  • the inside of the warehouse is cooled by a cooling action when the refrigerant evaporates (vaporizes) in the first evaporator 111.
  • the refrigerant that has evaporated into a vapor phase is sucked into the compressor 101 together with the refrigerant that has evaporated in the outer tube 109a of the heat exchanger 109.
  • the dehydrator 106 removes moisture contained in the refrigerant.
  • the shock absorber 112 has a capillary tube 112a and an expansion tank 112b, and stores the gas-phase refrigerant on the suction side of the first compressor 101 in the expansion tank 112b via the capillary tube 112a. The amount of refrigerant circulating in the refrigerant circuit 100 is kept appropriate.
  • the second refrigerant circuit 200 includes the second compressor 201, the pre-condenser 202 and the condenser 204 (second condenser), the flow divider 207, the decompressor 208, the heat exchanger 209, and the decompressor. 210 (second decompressor) and a second evaporator 211, and annularly through a predetermined pipe (second refrigerant pipe) so that the refrigerant discharged from the second compressor 201 returns to the compressor 201 again. It is comprised and the refrigerant
  • the 2nd refrigerant circuit 200 is further provided with the oil cooler 201a, the piping 203, the dehydrator 206, and the buffer 212 similarly to the above-mentioned.
  • the heat exchanger 209 includes an outer tube 209a and an inner tube 209b.
  • the shock absorber 212 includes a capillary tube 212a and an expansion tank 212b.
  • a fan 205 is arranged in the vicinity of the pre-capacitor 202 and the capacitor 204 so as to be able to blow air to the capacitors 202 and 204 simultaneously.
  • the pipe 103 and the pipe 203 described above are overlapped with each other, as illustrated by the dotted lines in FIGS. 1 and 2, and the frame pipe 151 (the first refrigerant pipe between the first compressor and the first condenser, the first The second refrigerant pipe between the two compressors and the second condenser is attached so as to be in thermal contact with the peripheral portion of the front opening of the outer box 2 from the inside.
  • the peripheral portion of the front opening is a portion where the packing 34 is in close contact with the outer door 3 closed as described above, and this portion is added by a frame tube 151 through which high-temperature refrigerant discharged from the compressors 101 and 201 flows. Be warmed. Thereby, the dew condensation of the surrounding part of this front opening is prevented, and the airtightness in the outer case 2 improves.
  • first evaporator 111 and the second evaporator 211 constituting the evaporator 153 are arranged so as to cool the inside of the warehouse at the same time. That is, each of the first evaporator 111 and the second evaporator 211 is attached so as to be in thermal contact with the outer surface except the front opening of the inner box 5 so as not to overlap each other, as illustrated in FIG. Has been.
  • the temperature sensor 307 is a sensor that is attached to a predetermined position inside or outside the inner box 5 and detects the temperature inside the box. As illustrated in FIG. 4, the temperature sensor 307 is electrically connected to the control board 301, and outputs a signal indicating the detected temperature in the cabinet to the microcomputer 310.
  • the microcomputer 310 is mounted on the control board 301, and controls the operation of the first compressor 101 and the second compressor 201 according to the temperature detected by the temperature sensor 307, for example. , A CPU 311, a ROM 312, and a RAM (identification device) 313.
  • the CPU 311 executes processing related to such control
  • the ROM 312 stores a program or the like for the CPU 311 to execute such processing
  • the RAM 313 stores data necessary for such processing. To do.
  • the RAM 313 associates a flag “1” with information indicating the operating compressor and stops the stopped compressor. Is stored in association with the flag “0”.
  • the microcomputer 310 further includes a timer 314 (second timer) and a timer 315 (first timer) for measuring the change time of the detected temperature in the warehouse, the operation time of the compressors 101 and 201, and the like.
  • the control board 301 is supplied with power from the switching power supply 302.
  • the switching power supply 302 is supplied with power through a three-phase power cable 303.
  • the compressor relay 305a and the compressor relay 305b are provided in the first compressor 101 and the second compressor 201, respectively, and the corresponding compressors 101 and 201 and a three-phase power source are provided.
  • This is a relay for performing electrical connection or disconnection with the cable 303.
  • the relays 306 a and 306 b are provided in the compressor relay 305 a of the first compressor 101 and the compressor relay 305 b of the second compressor 201, respectively, and are output from the microcomputer 310.
  • This relay is a relay for causing the corresponding compressor relays 305a and 305b to perform the aforementioned connection or disconnection operation based on the control signal.
  • power is supplied to the first compressor 101 and the second compressor 201 through the three-phase power cable 303 when the manual power switch 304 is turned on. .
  • Electric power is supplied to the fan motors 105a and 205a that rotate the fans 105 and 205 through a three-phase power cable 303 via a predetermined relay (not shown) controlled by the microcomputer 310, respectively.
  • FIG. 5 shows a control mode in which the refrigeration apparatus 1 of the first embodiment repeats the operation of the first compressor 101 and the second compressor 201 alternately and one operation (control mode A described later). It is a flowchart which shows an example of the procedure of the process of the microcomputer 310 in FIG.
  • FIG. 6 shows a micro in a control mode (control mode B to be described later) in which the refrigeration apparatus 1 of the first embodiment alternately repeats the operation of one of the first compressor 101 and the second compressor 201 and the stop of the two.
  • 12 is a flowchart illustrating an example of a processing procedure of the computer 310.
  • FIG. 7 illustrates a control mode in which the refrigeration apparatus 1 according to the first embodiment alternately repeats the operation of one of the first compressor 101 and the second compressor 201 and the operation of the other one (control mode described later). It is a flowchart which shows an example of the process sequence of the microcomputer 310 in C).
  • FIG. 8 is a diagram showing the relationship between the internal temperature and the operating state of the first compressor 101 and the second compressor 201 when the control mode is A.
  • FIG. 9 is a diagram showing the relationship between the internal temperature and the operating state of the first compressor 101 and the second compressor 201 when the control mode is switched from A to B.
  • FIG. 10 is a diagram showing the relationship between the internal temperature and the operating state of the first compressor 101 and the second compressor 201 when the control mode is switched from B to A.
  • FIG. 11 is a diagram showing the relationship between the internal temperature and the operating state of the first compressor 101 and the second compressor 201 when the control mode is switched from B to C.
  • FIG. 12 is a diagram showing the relationship between the internal temperature and the operating state of the first compressor 101 and the second compressor 201 when the control mode is switched from A to C.
  • the microcomputer 310 determines whether the temperature T detected by the temperature sensor 307 is lower than the upper limit value (first temperature) (hereinafter referred to as “T1”) of the set temperature range in the cabinet. It discriminate
  • first temperature hereinafter referred to as “T1”
  • the microcomputer 310 starts operation of the first compressor 101 and the second compressor 201 (S101). While the two compressors 101 and 201 are operating, the detected temperature T decreases from T1 toward T2.
  • the internal load is relatively large due to the relatively high ambient temperature. In this case, the internal temperature decreases from T1 to T2 due to the operation of two compressors, but as will be described later, the internal temperature decreases from T2 to T1 when only one compressor is operated. Rise.
  • the microcomputer 310 determines whether or not the detected temperature T is higher than the lower limit value (second temperature) (hereinafter referred to as “T2”) of the set temperature range in the cabinet (S102). When it is determined that the detected temperature T is higher than T2 (S102: YES), the microcomputer 310 executes the process of step S102 again.
  • T2 lower limit value
  • the microcomputer 310 When it is determined that the detected temperature T has reached T2 (not higher than T2) (S102: NO), the microcomputer 310 resets the timers 314 and 315 and starts measuring time (S103). One compressor (the first compressor 101 or the second compressor 201) in operation associated with “1” is stopped (S104), and a flag “1” is set to the other compressor in operation in the RAM 313. In addition, the flag “0” is associated with the stopped compressor (S105). While only one of the two compressors 101 and 201 is operating, the detected temperature T rises from T2 to T1.
  • the microcomputer 310 determines whether or not the detected temperature T is lower than T2 (S106). When it is determined that the detected temperature T is equal to or higher than T2 (S106: NO), the microcomputer 310 determines whether the detected temperature T is lower than T1 (S109).
  • the microcomputer 310 determines whether or not the time t measured by the timer 315 that has started measuring in step S103 is longer than the predetermined time Y (step S103). S110).
  • the predetermined time Y is a reference time for determining whether or not the temperature in the storage is stable within the set temperature range, and specifically, a time during which the detected temperature T is between T1 and T2. Is longer than the predetermined time Y, it is determined that the internal temperature is stable within the set temperature range.
  • the microcomputer 310 executes the process of step S109 again.
  • the microcomputer 310 determines that the time t measured by the timer 314 that has started time counting in step S103 described above is greater than the predetermined time X. It is determined whether or not it is short (S111).
  • the predetermined time X is, for example, a reference required for the detected temperature T to rise from T2 to T1 during operation of one compressor that has not failed (the first compressor 101 or the second compressor 201). It's time.
  • step S101 When it is determined that the time t measured by the timer 314 is equal to or longer than the predetermined time X (S111: NO), the microcomputer 310 executes the process of step S101 again.
  • the microcomputer 310 If it is determined that the time t measured by the timer 314 is shorter than the predetermined time X (S111: YES), the microcomputer 310 operates, for example, to indicate that the operating compressor associated with the flag “1” has failed. The user is notified through the display of the panel 32 (S112), and the process of step S101 is executed again.
  • the first compressor 101 and the second compressor 201 are operated together during the time td by the process of the microcomputer 310 described above, so that the detected temperature T is from T1 to T2. Descend.
  • the second compressor 201 is in operation, but the first compressor 101 is stopped, so the detected temperature T rises from T2 to T1.
  • the flag “1” is associated with the operating second compressor 201 and the flag “0” is associated with the stopped first compressor 101. Yes.
  • the first compressor 101 and the second compressor 201 are both operated, so that the detected temperature T decreases from T1 to T2.
  • the first compressor 101 is operating, but the second compressor 201 is stopped, so the detected temperature T rises from T2 to T1.
  • the second compressor 201 associated with the flag “1” is stopped, and then the flag “1” is associated with the operating first compressor 101.
  • the flag “0” is associated with the stopped second compressor 201.
  • control mode A each time the detected temperature T reaches T1, both the first compressor 101 and the second compressor 201 are operated, and every time the detected temperature T reaches T2, the first compressor 101 and the second compressor 201 are operated. It is operated alternately (control mode A). That is, in the control mode A, as illustrated in FIG. 8, the operation of both the first compressor 101 and the second compressor 201 and the operation of only one are alternately performed when the detected temperature T is between T1 and T2.
  • the first compressor 101 and the second compressor 201 are alternately assigned to the operation of only one of them.
  • each compression is performed through the flag “0” or “1” stored in the RAM 313. Identifying the machine.
  • Each compressor is effectively identified by such a relatively inexpensive configuration using 1-bit data.
  • the time required for the detected temperature T to rise from T2 to T1 during the operation of one compressor is the reference time.
  • the time ts ′ of the dotted line portion of the broken line indicating the temperature change between T1 and T2 in FIG. 8 is shorter than the time ts of the other portion. This is because the capability of the first compressor 101 is This means that the temperature rise in the refrigerator becomes faster during the operation of the compressor 101 due to the decrease.
  • a time required for the temperature T detected by the temperature sensor 307 to rise from T2 to T1 and a predetermined time X that is a reference time are represented.
  • the microcomputer (arithmetic unit, discriminating device) 310 obtains the rate of change in detected temperature (for example, (T1-T2) / ts) during the period when only one compressor is operated and uses this as a reference
  • a failure may be determined by comparing with a ratio. For example, if the increase rate of the detected temperature per unit time is larger than the reference increase rate, it is determined that the corresponding compressor has failed.
  • the rate of change in detected temperature for example, (T1-T2) / ts
  • the detection temperature increase rate at time ts ′ ( ⁇ ts) is (T1 ⁇ T2) / ts ′, and the detection temperature increase rate at time ts is (T1 ⁇ T2) / ts. Therefore, it is determined that the first compressor 101 corresponding to the former having a larger value has failed.
  • At least one compressor 101, 201 is always operated by the operation in the control mode A as described above, a high-temperature refrigerant always flows through the above-described frame tube 151, and the front opening of the outer box 2 is opened. Condensation in the surrounding area is effectively prevented. Thereby, the airtightness in the outer box 2 further improves.
  • step S106 of FIG. 5 described above when it is determined that the detected temperature T is lower than T2 (S106: YES), the microcomputer 310 determines whether the detected temperature T is higher than T4 ( ⁇ T2) (S107). ).
  • the microcomputer 310 executes the process of step S107 again.
  • the microcomputer 310 stops the operating compressor associated with the flag “1” (S108). Then, the processing of the control mode B described below is executed. That is, even after the operation of the two compressors 101 and 201 is switched from one operation to one operation, for example, T4 (fourth temperature) in which the detected temperature T is lower than T2 due to a decrease in ambient temperature or the like. Is lowered to the control mode B for stopping both the compressors from the control mode A.
  • the microcomputer 310 determines whether or not the temperature T detected by the temperature sensor 307 is lower than T1 (S200). When it is determined that the detected temperature T is lower than T1 (S200: YES), the microcomputer 310 executes the process of step S200 again. As described above, while the two compressors 101 and 201 are stopped, the detected temperature T rises from T4 toward T1.
  • the microcomputer 310 When it is determined that the detected temperature T has reached T1 (not lower than T1) (S200: NO), the microcomputer 310 resets the timers 314 and 315 and starts measuring time (S201), and the flag “0”. Is started (S202), the flag “1” is associated with the operating compressor, and the stopped compressor is stopped. The flag “0” is associated with the compressor (S203). While only one of the two compressors 101 and 201 is in operation, the detected temperature T decreases from T1 toward T2.
  • the internal load is relatively small as the ambient temperature is relatively low. In this case, the internal temperature decreases from T1 to T2 by operating only one compressor, and the internal temperature increases from T2 to T1 by stopping the compressors of the two compressors. .
  • the microcomputer 310 determines whether or not the detected temperature T is higher than T1 (S204). When it is determined that the detected temperature T is equal to or lower than T1 (S204: NO), the microcomputer 310 determines whether or not the detected temperature T is higher than T2 (S206).
  • the microcomputer 310 determines whether or not the time t measured by the timer 315 that has started measuring in step S201 described above is longer than the predetermined time Y ( S207).
  • the predetermined time Y is a reference time for determining whether or not the temperature in the warehouse has stabilized within the set temperature range, as described above.
  • the predetermined time Y may be the same as the predetermined time Y described above, or may be different.
  • the microcomputer 310 stops the operating compressor associated with the flag “1” (S208), It is determined whether or not the time t measured by the timer 314 that has started counting in step S201 is longer than the predetermined time X ′ (S209).
  • the predetermined time X ′ is a reference time required for the detected temperature T to drop from T1 to T2 due to, for example, operation of one compressor that has not failed.
  • step S200 When it is determined that the time t measured by the timer 314 is equal to or shorter than the predetermined time X ′ (S209: NO), the microcomputer 310 executes the process of step S200 again.
  • step S200 If it is determined that the time t measured by the timer 314 is longer than the predetermined time X ′ (S209: YES), the microcomputer 310 indicates that the operating compressor associated with the flag “1” has failed, for example. The user is notified through the display of the operation panel 32 (S210), and the process of step S200 is executed again.
  • the first compressor 101 and the second compressor 201 are both operated during the time td by the processing of the microcomputer 310 described above, so that the detected temperature decreases from T1 to T2. (Time td).
  • the first compressor 101 is stopped, but the second compressor 201 is in operation, so the detected temperature T falls from T2 to T4. That is, as described above, even after the operation of the two compressors 101 and 201 is switched from one operation to one operation, for example, the detected temperature T is lower than T2 due to a decrease in the ambient temperature or the like. It will go down. Up to this point, control mode A processing has been performed.
  • the flag “1” is associated with the operating second compressor 201
  • the flag “0” is associated with the stopped first compressor 101. Yes.
  • the second compressor 201 is stopped, but since the first compressor 101 is in operation, the detected temperature T falls from T1 to T2.
  • the second compressor 201 associated with the flag “1” is stopped, and then the flag “1” is associated with the operating first compressor 101.
  • the flag “0” is associated with the stopped second compressor 201.
  • the first compressor 101 is stopped, but since the second compressor 201 is operated, the detected temperature T falls from T1 to T2.
  • the first compressor 101 associated with the flag “1” is stopped, and then the flag “1” is associated with the second compressor 201 in operation.
  • the flag “0” is associated with the stopped first compressor 101.
  • the frequency of the period (ts) during which only one unit is operated can be maintained at the same level for each of the compressors 101 and 201. Therefore, it is possible to accurately control the temperature in the refrigerator while suppressing the number of times the compressors 101 and 201 are started, and to prevent the deterioration of the deterioration between the compressors 101 and 201. This leads to an increase in the lifetime and maintenance cycle of the refrigeration apparatus 1, a reduction in power consumption caused by the starting current, and the like.
  • the time required for the detected temperature T to fall from T1 to T2 during the operation of one compressor is the reference time.
  • the time ts ′′ of the dotted line portion of the broken line indicating the temperature change between T1 and T2 in FIG. 9 is longer than the time ts of the other portion.
  • the capability of the second compressor 201 is This means that the temperature drop in the refrigerator has become slower during the operation of the compressor 201 due to the decrease, and this is notified when one of the two compressors 101, 201 fails. Therefore, for example, while the cooling capacity of the two refrigerant circuits 100 and 200 is maintained to some extent, the user who received the notification can specify one of the faults and repair or replace it. Such a failure determination can be realized without separately providing a diagnostic sensor such as a pressure sensor for each of the two compressors 101 and 201. Therefore, the manufacturing cost of the refrigeration apparatus 1 can be reduced. While The reduction of the cooling capacity can be suppressed.
  • the microcomputer 310 determines a compressor failure
  • a time required for the temperature T detected by the temperature sensor 307 to drop from T1 to T2 and a predetermined time X ′ as a reference time are shown.
  • the microcomputer (arithmetic unit, discriminating device) 310 obtains the rate of change in detected temperature (for example, (T1-T2) / ts) during the period when only one compressor is operated, and uses this as a reference.
  • a failure may be determined by comparing with a ratio. For example, if the decreasing rate of the detected temperature per unit time is smaller than the reference decreasing rate, it is determined that the corresponding compressor has failed. In the example of FIG.
  • the detection temperature increase rate at time ts ′′ (> ts) is (T1 ⁇ T2) / ts ′′, and the detection temperature decrease rate at time ts is (T1 ⁇ T2) / ts. Therefore, it is determined that the second compressor 201 corresponding to the former having a smaller value has failed.
  • step S204 of FIG. 6 determines whether the detected temperature T is lower than T3 (> T1) (S205). ).
  • the microcomputer 310 executes the process of step S205 again.
  • the microcomputer 310 executes the control mode A process. That is, even after the two compressors 101 and 201 are switched from the stop to the one operation, for example, the detected temperature T is higher than T1 (third temperature) T3 (third temperature) as the ambient temperature rises. If it has risen, the control mode B is switched to the control mode A in which both of the compressors are operated.
  • the operation of the refrigeration apparatus 1 is performed in the control mode B during the first time (ts ′′ + tn + ts ′).
  • the second compressor 201 is operated.
  • the detected temperature T has risen to T3, so that the operation of the refrigeration apparatus 1 is performed in the control mode A.
  • the refrigeration apparatus 1 is operated in the control mode B.
  • the internal load becomes larger due to, for example, an increase in ambient temperature, the internal temperature can be accurately controlled by switching to the control mode A operation.
  • step S207 of FIG. 6 described above when it is determined that the time t measured by the timer 315 is longer than the predetermined time Y (S207: YES), the microcomputer 310 executes the control mode C process described below. That is, it is determined that the temperature in the warehouse is stable within the set temperature range because the time during which the detected temperature T is between T1 and T2 is longer than the predetermined time Y.
  • the microcomputer 310 starts timing after resetting the timer 315 (S300), stops one of the compressors in operation associated with the flag “1”, The operation of the other stopped compressor associated with “0” is started (S301). Next, the microcomputer 310 associates the flag “1” with the compressor that has started operation, and associates the flag “0” with the compressor that has been stopped (S302).
  • the microcomputer 310 determines whether or not the time t measured by the timer 315 that has started time measurement in step S300 described above has reached the predetermined time Y (S303).
  • step S300 When it is determined that the time t measured by the timer 315 has reached the predetermined time Y (S303: NO), the microcomputer 310 executes the process of step S300 again.
  • the flag “1” is associated with the operating second compressor 201 and the flag “0” is associated with the stopped first compressor 101. Yes.
  • the operation of the first compressor 101 is started at the same time as the second compressor 201 is stopped.
  • the second compressor 201 associated with the flag “1” is stopped, and then the flag “1” is associated with the operating first compressor 101.
  • the flag “0” is associated with the stopped second compressor 201.
  • the first compressor 101 and the second compressor 201 are alternately operated every predetermined time Y. Thereby, the frequency of the period during which only one unit is operated can be maintained at the same level for each of the compressors 101 and 201. This leads to a longer life of the refrigeration apparatus 1 and a longer maintenance cycle.
  • the failed compressor can be easily identified by the change in the detected temperature described above.
  • the operation time of each of the compressors 101 and 201 in the control mode C is not limited to the predetermined time Y described above, and may be different, for example.
  • step S303 determines whether the time t measured by the timer 315 has not reached the predetermined time Y.
  • the microcomputer 310 first determines whether the temperature T detected by the temperature sensor 307 is lower than T1 (S304). Next, it is determined whether or not it is higher than T2 (S305).
  • the microcomputer 310 executes the process of step S100 in FIG. That is, since the refrigerating capacity is insufficient only by operating one of the compressors, the mode is switched to mode A.
  • step S200 executes the process of step S200 of FIG. That is, since the refrigerating capacity is sufficient only by the operation of either one of the compressors, the mode B is switched.
  • step S110 of FIG. 5 described above when it is determined that the time t measured by the timer 315 is longer than the predetermined time Y (S110: YES), the microcomputer 310 executes the control mode C process described below. That is, it is determined that the temperature in the warehouse is stable within the set temperature range because the time during which the detected temperature T is between T1 and T2 is longer than the predetermined time Y.
  • the processing procedure of the microcomputer 310 in the operation in the control mode C is the same as described above (see FIG. 7).
  • the flag “1” is associated with the operating first compressor 101 and the flag “0” is associated with the stopped second compressor 201. Yes.
  • the operation of the second compressor 201 is started simultaneously with the first compressor 101 being stopped.
  • the first compressor 101 associated with the flag “1” is stopped, and then the flag “1” is associated with the second compressor 201 in operation.
  • the flag “0” is associated with the stopped first compressor 101.
  • the first compressor 101 and the second compressor 201 are alternately operated every predetermined time Y. Thereby, the frequency of the period during which only one unit is operated can be maintained at the same level for each of the compressors 101 and 201. This leads to a longer life of the refrigeration apparatus 1 and a longer maintenance cycle.
  • the failed compressor can be easily identified by the change in the detected temperature described above.
  • the operation time of each of the compressors 101 and 201 in the control mode C is not limited to the predetermined time Y described above, and may be different, for example.
  • A, B, and C control modes described above which one is currently being performed is stored as a flag (for example, 0, 1, 2) previously associated with each mode in the RAM 313, for example. .
  • the microcomputer 310 refers to this flag as appropriate.
  • the flag “1” is associated with information indicating the operating compressor in the RAM 313.
  • the flag “0” is associated with the information indicating the stopped compressor and stored, but the present invention is not limited to this.
  • the compressors 101 and 201 are passed through predetermined means for detecting whether the compressor relays 305a and 305b and the relays 306a and 306b provided in the compressors 101 and 201 are connected or disconnected, respectively. The operation state may be identified.
  • the display of the operation panel 32 is used as means for notifying the failure of the compressors 101 and 201.
  • the present invention is not limited to this. In short, any such notification means may be used as long as it is a means for notifying the user or the like which compressor has failed.
  • each refrigerant circuit is composed of a compressor, a condenser, a decompressor, and an evaporator connected in a ring through refrigerant piping, and the refrigerant discharged from the compressor is condensed by the condenser to obtain a cooling action, and then the evaporator.
  • Any refrigerant circuit may be used as long as it evaporates in step (b).
  • a refrigeration apparatus including two refrigerant circuits having a compressor, a condenser, a decompression device, and an evaporator is known.
  • the refrigerant to be cooled in each of the two refrigerant circuits is evaporated after being compressed and condensed, for example, thereby cooling the cooling target that is in thermal contact with the two evaporators in common.
  • Such a refrigeration apparatus includes a fan for cooling each condenser in order to promote heat exchange in the condenser of each of the two refrigerant circuits. That is, the two condensers included in the two refrigerant circuits are individually cooled by the two fans.
  • the refrigeration apparatus when the cooling capacity of the refrigerant circuit having the condenser corresponding to the stopped fan is reduced, the refrigeration apparatus includes only one refrigerant circuit even though it includes two refrigerant circuits. The cooling capacity is halved.
  • the present invention has a higher cooling capacity than the case where only one refrigerant circuit is operated even if one of the two fans stops during operation of the two refrigerant circuits of the refrigeration apparatus.
  • the purpose is to maintain.
  • the refrigeration apparatus of the second embodiment has the same configuration as that shown in FIGS. 1 and 2 of the first embodiment, and the description for the same reference numerals is omitted.
  • the operation panel 32 is, for example, a control unit (for example, a control board 301) that controls the first compressor 101 and the second compressor 201, a predetermined temperature sensor (not shown) provided in the storage chamber 51, and the like. On the other hand, it is electrically connected via a predetermined wiring (not shown).
  • the outer surface of the inner box 5 and the inner surface of the outer box 2 are separated from each other by a predetermined distance, and the gap therebetween. Is filled with a heat insulating material 6.
  • the heat insulating material 6 is, for example, a polyurethane resin heat insulating material or a glass wool vacuum heat insulating material.
  • the heat insulating material 6 is also filled inside the outer door 3, and thereby heat insulation between the inner door 51 a and the outer door 3 is achieved.
  • the inner box 5 and the machine room 4 are also separated by a predetermined distance to achieve the same heat insulation as described above.
  • the refrigerant circuit of the second embodiment has the same configuration as the refrigerant corridor 150 shown in FIG. 3 of the first embodiment, and the control circuit for controlling the refrigerant circuit of the second embodiment is the same as that of the first embodiment.
  • the control circuit 300 has substantially the same configuration. That is, in the case of the first embodiment, the temperature sensor 307 is connected to the control board 301. In the case of the second embodiment, instead of the temperature sensor 307, the first compressor temperature sensor 307A and the second compressor temperature sensor. 307B, the first temperature sensor 307C, the second temperature sensor 307D, the first sensor 307E, and the second sensor 307F are connected to the control board 301. In addition, the description with respect to the same code
  • FIG. 14A is a plan view showing an arrangement example of the first compressor 101 and the second compressor 201, the first fan 105 and the second fan 205, and the condensing unit 152 in the refrigerant circuit 150 of FIG. is there.
  • This plan view is a view when seen in the direction of the arrow in B-B 'of FIG.
  • FIG. 14B is a front view of the condensing unit 152 in FIG. Note that the dotted lines in this front view are views when the pre-capacitor 102 and the capacitor 104 are viewed in the direction of the arrow in C-C 'of FIG.
  • coolant used for the refrigerant circuit 150 is a non-azeotropic refrigerant mixture which has R245fa, R600, R23, and R14, for example.
  • R245fa means pentafluoropropane (CHF 2 CH 2 CF 3 ), and the boiling point is + 15.3 ° C.
  • R600 means normal butane (nC 4 H 10 ) and has a boiling point of ⁇ 0.5 ° C.
  • R23 means trifluoromethane (CHF 3 ) and has a boiling point of ⁇ 82.1 ° C.
  • R14 means tetrafluoromethane (CF 4 ) and has a boiling point of ⁇ 127.9 ° C.
  • R600 has a high boiling point (evaporation temperature) and easily contains oil, water, and the like.
  • R245fa is a refrigerant for making the combustible R600 incombustible by mixing it with a predetermined ratio (for example, R245fa and R600 are 7: 3).
  • the refrigerant compressed by the first compressor 101 dissipates heat by the pre-condenser 102 and the capacitor 104, condenses into a liquid phase, and is then subjected to moisture removal processing by the dehydrator 106. Thereafter, the flow is divided into a refrigerant in a liquid state (mainly R245fa and R600 having a high boiling point) and a refrigerant (R23 and R14) in a gas state by the flow divider 107.
  • the refrigerant radiated by the pre-capacitor 102 is radiated again by the condenser 104 after the oil in the first compressor 101 is cooled by the oil cooler 101a.
  • the separated refrigerant in the liquid state (mainly R245fa, R600) is decompressed by the decompressor 108 and then evaporated in the outer tube 109a of the heat exchanger 109.
  • the diverted gaseous refrigerants (R23, R14) pass through the inner pipe 109b of the heat exchanger 109, and the heat of vaporization of the refrigerant (R245fa, R600) evaporated in the outer pipe 109a described above, and the first to be described later. It is cooled and condensed by the gas-phase refrigerant (R23, R14) which is the return from the one evaporator 111, and becomes a liquid state. At this time, the refrigerant that has not evaporated in the first evaporator 111 evaporates. The same applies to the second refrigerant circuit 200.
  • the boiling point of R245fa is approximately 15 ° C.
  • the boiling point of R600 is approximately 0 ° C.
  • the boiling point of R23 is approximately ⁇ 82 ° C.
  • the boiling point of R14 is approximately ⁇ 128 ° C.
  • R23 and R14 of the non-azeotropic refrigerant mixture are cooled by the evaporation action of R600, and R23 and R14 which are in the liquid phase are converted into the evaporation unit 153 (the first evaporator 111 and the second evaporator 211).
  • the object to be cooled can be cooled to a temperature corresponding to the boiling points of R23 and R14 (for example, approximately ⁇ 82 ° C. to ⁇ 128 ° C.).
  • the non-evaporated refrigerant in the first evaporator 111 and the second evaporator 211 is evaporated in the heat exchangers 109 and 209.
  • the refrigeration apparatus 1 is provided for cooling the pre-capacitor 102 and the capacitor 104 of the first refrigerant circuit 100 and the pre-capacitor 202 and the capacitor 204 of the second refrigerant circuit 200.
  • a first fan 105 and a second fan 205 are provided.
  • the 1st fan 105 and the 2nd fan 205 of 2nd Embodiment are propeller type air blowers which have the fan motors 105a and 205a, respectively.
  • the first fan 105 and the second fan 205 constitute a single air passage through which wind flows, with the casing forming the machine room 4 being regarded as a fan casing.
  • the pre-capacitor 102 and the capacitor 104 of the first refrigerant circuit 100 and the pre-capacitor 202 and the capacitor 204 of the second refrigerant circuit 200 are common tubes having a substantially rectangular shape.
  • the condensing unit 152 is configured by being integrated by the plate 152a. Further, as illustrated in FIG. 14B, each of the pre-condenser 102 and the capacitor 104 forms a refrigerant flow path that meanders in parallel with the substantially rectangular front surface of the condensing unit 152.
  • This configuration is the same for the pre-capacitor 202 and the capacitor 204, and these four capacitors 102, 104, 202, 204 are arranged in parallel in the condensing unit 152 from the front to the back in parallel with the substantially rectangular front surface ( 4 rows).
  • Each of the four rows of capacitors 102, 104, 202, 204 is installed to face both the first fan 105 and the second fan 205 installed in parallel behind the condensing unit 152.
  • the pre-capacitor 102 and the capacitor 104 illustrated by dotted lines in FIG. 14B extend from the left end to the right end of the sheet of FIG. , Extending from the upper side to the lower side of the sheet of FIG.
  • the pre-capacitor 202 and the capacitor 204 not shown in FIG. 14B have the same shape. Furthermore, the pre-capacitor 102 and the capacitor 104 are arranged in parallel in the second and fourth rows from the lower side of the paper surface of FIG. 14A in the condensing unit 152 having a substantially rectangular shape. The condenser 204 is arranged in parallel in the first and third rows from the lower side of the paper surface of the drawing in the condensing unit 152 having a substantially rectangular shape.
  • the pre-capacitor 102 and the capacitor 104 are not limited to such a configuration in the substantially rectangular condensing unit 152, for example, from the left end of the paper surface of FIG. It may extend to a position beyond the central portion, and may be folded and meandered at each of the left end and the position beyond the central portion.
  • the pre-capacitor 102 and the capacitor 104 are configured so that substantially all of the pre-capacitor 102 and the capacitor 104 are opposed to the first fan 105, but part of the pre-capacitor 102 and the capacitor 104 are opposed to the second fan 205. May be. The same applies to the pre-capacitor 202 and the capacitor 204.
  • both the first fan 105 and the second fan 205 are arranged in parallel so as to face the back surface of the condensing unit 152.
  • the first compressor 101 is disposed behind the first fan 105
  • the second compressor 201 is disposed behind the second fan 205.
  • the condensing unit 152, the first fan 105 and the second fan 205, and the first compressor 101 and the second compressor 201, which are illustrated in the figure, are arranged on the same horizontal plane.
  • the first fan 105 extends along substantially the entire rear surface of the condensing unit 152 and passes through the first fan 105 to at least one of the second compressors 201.
  • An air passage that covers substantially the entire first compressor 101 including a portion is formed.
  • the second fan 205 extends along substantially the entire rear surface of the condensing unit 152 and includes at least a part of the first compressor 101 via the second fan 205.
  • An air passage that covers substantially the entire second compressor 201 is formed.
  • the direction of ventilation by the 1st fan 105 and the 2nd fan 205 is a direction which goes to the back from the front of the freezing apparatus 1 (open arrow of Fig.14 (a)).
  • Control circuit >>>
  • the microcomputer 310 in the control board 301 outputs control signals for opening and closing the two relays 306a and 306b based on detection signals from the first compressor temperature sensor 307A and the second compressor temperature sensor 307B, respectively.
  • a control signal for starting or stopping the operation of the fan motors 105a and 205a is output.
  • the first compressor temperature sensor 307A detects the temperature of the first compressor 101
  • the second compressor temperature sensor 307B detects the temperature of the second compressor 201.
  • the microcomputer 310 When the microcomputer 310 detects that the temperature of the first compressor 101 detected by the first compressor temperature sensor 307A exceeds the predetermined temperature during the operation of the first compressor 101, the microcomputer 310 causes the first compressor 101 to By operating the compressor relay 305a corresponding to the Aircraft 101 through the corresponding relay 306a, the input of the three-phase voltage to the Aircraft 101 is cut off. This functions as a protection circuit for the temperature increase of the first compressor 101, and the same applies to the second compressor 201.
  • the first compressor 101 and the second compressor 201 are supplied with power from the three-phase power cable 303 when the power switch 304 is turned on, and start the refrigerant compression operation. .
  • the microcomputer 310 compares, for example, the temperature in the cabinet detected by the first temperature sensor 307C with a predetermined temperature, and according to the comparison result, the first compressor The rotational speed of a motor 101 (not shown) is controlled. This is to control the compression capacity of the first compressor 101 according to the temperature in the cabinet, and the same applies to the second compressor 201.
  • the first temperature sensor 307C and the second temperature sensor 307D may be the same sensor.
  • the microcomputer 310 controls the fan motors 105a and 205a separately from the control of the first compressor 101 and the second compressor 201 described above. .
  • the microcomputer 310 stops the operation of the fan motor 105a when detecting that the temperature of the first fan 105 detected by the first sensor 307E exceeds a predetermined temperature, for example. It is like that. This functions as a protection circuit for the temperature rise of the first fan 105, and the same applies to the second fan 205.
  • the first sensor 307E and the second sensor 307F may be shared by a single sensor provided in the vicinity of both the fan motors 105a and 205a, for example.
  • the first compressor 101 and the second compressor 201 that are in operation continue the refrigerant compression operation regardless of this. It has become.
  • the first and second condensers are arranged in a region where the air passage formed by the first fan 105 and the air passage formed by the second fan 205 are the same. Even if the blowing from one fan stops, both condensers are cooled by the blowing from the other fan.
  • the first compressor 101 is disposed so as to face the first fan 105
  • the second compressor 201 is disposed so as to face the second fan 205.
  • first fan 105 and the second fan 205 that are arranged in parallel are arranged to face the first compressor 101 and the second compressor 201 in the same air path, respectively. If either one of the two fans 205 rotates, even a compressor (the first compressor 101 or the second compressor 201) that is not opposed to the fan 205 is blown and cooled to at least a part thereof.
  • the first compressor 101 and the second compressor 201 that are performing the compression operation are configured to continue the operation regardless of this. Yes. That is, the first fan 105 and the second fan 205 rotate separately from the first compressor 101 and the second compressor 201.
  • the cooling capacity is a cooling capacity that exceeds the capacity of only one refrigerant circuit. Maintained.
  • the refrigeration apparatus 1 includes at least the first compressor 101, the first condenser (the pre-condenser 102, the condenser 104, and the like), and the first evaporator 111.
  • a second refrigerant circuit 200 including a refrigerant circuit 100, a second compressor 201, a second condenser (such as a pre-condenser 202 and a condenser 204), and a second evaporator 211, a first compressor 101, and a second compressor.
  • the fan 105 and the second fan 205 are the ones when one fan (the first fan 105 or the second fan 205) stops when both the first refrigerant circuit 100 and the second refrigerant circuit 200 are operating.
  • Fan may be disposed a first condenser and the second condenser as both cool.
  • the first and second condensers are operated by the other.
  • the operations of both refrigerant circuits 100 and 200 are continued while both are cooled. Therefore, the cooling capacity of the refrigeration apparatus 1 including the two refrigerant circuits 100 and 200 can be maintained higher than when only one refrigerant circuit is provided, for example, even if one of the fans stops.
  • the first and second compressors, the first fan 105, and the second fan 205 are one of the first refrigerant circuit 100 and the second refrigerant circuit 200 when both are operating.
  • the other fan is arranged to cool both the first compressor 101 and the second compressor 201.
  • the refrigeration apparatus 1 even if one of the fans stops during the operation of the first refrigerant circuit 100 and the second refrigerant circuit 200, the first compressor 101 and the second compressor 201 are cooled by the other fan. The increase in the compressor temperature can be suppressed.
  • the first fan 105 and the second fan 205 are arranged in parallel, and the first and second condensers are opposed to the first fan 105 and the second fan 205. Has been placed.
  • the first and second condensers are arranged in a region where the air passage formed by the first fan 105 and the air passage formed by the second fan 205 are the same. Even if the blowing from one fan stops, both condensers are cooled by the blowing from the other fan.
  • the first refrigerant circuit 100 and the second refrigerant circuit 200 are substantially the same unit refrigerant circuit, but are not limited to this, and have, for example, different configurations and capabilities. It may be.
  • the heat exchangers 109 and 209 are of the double pipe type having the outer pipes 109a and 209a and the inner pipes 109b and 209b. It may be a tube type or a plate type.
  • the refrigerant is a non-azeotropic refrigerant mixture having R245fa, R600, R23, and R14, but is not limited thereto.
  • R245fa and R600 only need to have boiling points such that when they are condensed by the condensing unit 152, they are in a substantially liquid state.
  • R23 and R14 may be refrigerants having boiling points that remain in a substantially gaseous state even when they are condensed in the condensing unit 152, but become substantially liquid in the heat exchangers 109 and 209. That's fine.
  • the condensing unit 152, the first fan 105, and the second fan 205 are arranged on the same horizontal plane, but the present invention is not limited to this. For example, even if there are steps on these arrangement surfaces, it is only necessary that each fan (the first fan 105 or the second fan 205) has an arrangement and posture capable of blowing air to the condensing unit 152.
  • the first fan 105 and the second fan 205 are propeller-type air blowers each having fan motors 105a and 205a, but are not limited thereto. In short, each fan only needs to have a predetermined configuration for cooling the condensing unit 152.
  • a refrigeration apparatus including two refrigerant circuits having a compressor, a condenser, a decompressor, and an evaporator is known.
  • the refrigerant discharged from the compressor is cooled and liquefied by the condenser, and then evaporated by the evaporator via the decompressor, for example, in common with the two evaporators.
  • the inside of the low temperature storage that is running is cooled.
  • This refrigeration apparatus includes a fan for promoting cooling of the refrigerant for the condensers of the two refrigerant circuits. That is, two fans individually blow air to the two condensers included in the two refrigerant circuits to promote heat exchange between the surrounding air and the refrigerant.
  • the refrigeration apparatus constantly monitors whether or not the fan motor that rotates each fan has failed.
  • the refrigeration apparatus detects, for example, the temperatures of the outlet portions of the two condensers through a predetermined temperature sensor. For example, when the temperature of the outlet portion of one condenser exceeds a predetermined temperature, the corresponding fan motor Judge that it has failed.
  • a failure detection method is based on the relationship between the fan and the condenser that the condenser is not sufficiently cooled when the fan motor fails and the fan stops, so that the temperature at the outlet of the condenser rises.
  • the refrigeration apparatus notifies the user or the like through predetermined notification means.
  • an object of the present invention is to suppress a decrease in the cooling capacity of the refrigeration apparatus due to the failure of the fan motor.
  • FIG. 15 is a circuit diagram illustrating an example of the first refrigerant circuit 10A and the second refrigerant circuit 20A of the refrigeration apparatus 1A according to the third embodiment.
  • FIG. 16 is a block diagram illustrating an example of a control circuit that controls the first refrigerant circuit 10A and the second refrigerant circuit 20A according to the third embodiment.
  • the refrigeration apparatus 1A detects the temperatures of the two refrigerant circuits (the first refrigerant circuit 10A and the second refrigerant circuit 20A) that are substantially identical and the temperature of the low-temperature storage 2A.
  • the refrigeration apparatus 1A includes a temperature sensor 131A and a temperature sensor 231A for detecting the temperature of the outlet of the condenser 13A and the temperature of the outlet of the condenser 23A, respectively. Further, the fan motors 14Aa and 24Aa are provided to the user and the like. As means for notifying the failure, a display (notification device) 41A and a buzzer 42A (notification device) are provided.
  • the first refrigerant circuit 10A includes a first compressor 11A, a pre-condenser 12A and a condenser 13A (first condenser), a first decompressor 15A, and a first evaporator 16A. And a predetermined pipe (first refrigerant pipe) is formed in an annular shape so that the refrigerant discharged from the first compressor 11A returns to the compressor 11A again.
  • the first compressor 11A compresses the sucked refrigerant and discharges it to the pre-capacitor 12A.
  • the pre-capacitor 12A is a meandering pipe made of, for example, copper or aluminum for dissipating heat from the refrigerant discharged from the first compressor 11A.
  • the capacitor 13A is a meandering pipe made of, for example, copper or aluminum for further dissipating the refrigerant output from the pre-capacitor 12A.
  • the first decompressor 15A is, for example, a capillary tube that decompresses the refrigerant that has been radiated and condensed by the condenser 13A into a liquid phase and outputs the refrigerant to the first evaporator 16A.
  • the first evaporator 16A is a pipe made of, for example, copper or aluminum for evaporating (vaporizing) the refrigerant decompressed by the first decompressor 15A, and is in thermal contact with the outer surface of the low temperature storage 2A of the refrigeration apparatus 1A. It is attached as follows. That is, the inside of the low temperature storage 2A is cooled by the cooling action when the refrigerant evaporates in the first evaporator 16A. The refrigerant that has evaporated into a vapor phase is sucked into the first compressor 11A.
  • the second refrigerant circuit 20A includes a second compressor 21A, a pre-condenser 22A and a condenser 23A (second condenser), a second decompressor 25A, and a second evaporator 26A, and the second compressor 21A.
  • a predetermined pipe (second refrigerant pipe) is formed in an annular shape so that the refrigerant discharged from the refrigerant returns to the compressor 21A again.
  • the capacitors 13A and 23A are integrally formed on, for example, the same tube plate. In the tube plate, as will be described later, the capacitors 13A and 23A are sequentially arranged close to each other in the same air path of the first fan 14A and the second fan 24A. Has been. Further, the temperature sensor 131A and the temperature sensor 231A described above are respectively attached to the outlet portion of the capacitor 13A and the outlet portion of the capacitor 23A, and these temperature sensors 131A and 231A are as illustrated in FIG. It is electrically connected to the control board 30A. Further, the first evaporator 16A and the second evaporator 26A are arranged to simultaneously cool the inside of the low temperature storage 2A.
  • each of the first evaporator 16A and the second evaporator 26A includes one evaporation pipe (not shown), and the two evaporation pipes are, for example, not overlapped with each other, for example, the low temperature storage 2 It is affixed so as to be in thermal contact with the outer surface.
  • the first temperature sensor 2Aa and the second temperature sensor 2Ab are electrically connected to the control board 30A as illustrated in FIG.
  • the first temperature sensor 2Aa is a sensor for controlling the first compressor 11A of the first refrigerant circuit 10A
  • the second temperature sensor 2Ab is a sensor for controlling the second compressor 21A of the second refrigerant circuit 20A.
  • both sensors 2Aa and 2Ab detect the temperature in the same low temperature storage 2A.
  • Both sensors 2Aa and 2Ab may be shared by a single sensor.
  • the first fan 14A and the second fan 24A are blowers for promoting the heat radiation of the refrigerant by blowing air to the capacitor 13A and the capacitor 23A, respectively.
  • capacitors 13 ⁇ / b> A and 23 ⁇ / b> A are arranged close to each other in order in the same air path formed by the juxtaposed first fan 14 ⁇ / b> A and second fan 24 ⁇ / b> A.
  • the fans 14A and 24A are arranged in parallel so as to be able to blow air to both the capacitors 13A and 23A.
  • the first fan 14A and the second fan 24A are disposed so as to face the first compressor 11A and the second compressor 21A, respectively.
  • the direction of air flow from the first fan 14A and the second fan 24A is the direction from the condensers 13A and 23A toward the compressors 11A and 21A (see white arrows in FIG. 15).
  • the first fan motor 14Aa and the second fan motor 24Aa are power sources that rotate the first fan 14A and the second fan 24A, respectively, as illustrated in FIG. Further, as illustrated in FIG. 16, the first fan motor 14Aa has a thermal fuse 141A inside, and the second fan motor 24Aa has a thermal fuse 241A inside.
  • the temperature fuses 141A and 241A are configured such that both the first fan 14A and the second fan 24A are stopped while the first refrigerant circuit 10A and the second refrigerant circuit 20A are in operation, and the temperature of the capacitors 13A and 23A is increased.
  • the first fan motor 14 ⁇ / b> Aa and the second fan motor 24 ⁇ / b> Aa are configured to be cut off when the temperature rises.
  • the first current transformer 142A and the second current transformer 242A are mounted on the control board 30A, and each of a current flowing through the first fan motor 14Aa and a current flowing through the second fan motor 24Aa. It is a transformer that converts the voltage value and outputs these voltage values to the microcomputer 31A.
  • These current transformers 142A and 242A are connected in series with the fan motors 14Aa and 24Aa, respectively. For example, when a lock current flows through the fan motors 14Aa and 24Aa, the voltage values of the corresponding current transformers 142A and 242A become values according to the lock current, for example, for disconnection of a circuit related to the fan motors 14Aa and 24Aa.
  • the voltage values of the corresponding current transformers 142A and 242A are zero. That is, the operation state of the fan motors 14Aa and 24A can be directly detected by referring to the voltage values of the current transformers 142A and 242A. Thereby, the accuracy of failure detection of the fan motors 14Aa and 24Aa is improved.
  • the microcomputer 31A is mounted on the control board 30A, and the first compressor 11A and the second compressor according to the detection outputs of the first temperature sensor 2Aa and the second temperature sensor 2Ab. 21A is controlled, and the operation of the first fan motor 14Aa and the second fan motor 24Aa is controlled according to the interruption / non-interruption of the thermal fuses 141A, 241A, and the first current transformer 142A and the second current transformer 242A are controlled.
  • the CPU 311A, the ROM 312A, the RAM 313A, and the like are provided to monitor the operating states of the first fan motor 14Aa and the second fan motor 24Aa based on the detection output.
  • the CPU 311A executes the processing related to the control and monitoring described above
  • the ROM 312A stores a program and the like for the CPU 311A to execute such processing
  • the RAM 313A stores data necessary for such processing.
  • the microcomputer 31A compares the temperature in the cabinet detected by the first temperature sensor 2Aa with the predetermined temperature stored in the RAM 313A in advance during operation of the first refrigerant circuit 10A, and the temperature in the cabinet is
  • the operation of the first compressor 11A is stopped through a predetermined relay (not shown), and when it is determined that the internal temperature is higher than the predetermined temperature, the first compressor 11A is transmitted through the predetermined relay. Start driving.
  • the present invention is not limited to this.
  • the operation of one of the compressors 11A and 21A may be stopped.
  • the microcomputer 31A intermittently operates the first compressor 11A and the second compressor 21A in order to make the temperature in the cold storage 2A constant.
  • the microcomputer 31A detects the interruption of the thermal fuse 141A of the first fan motor 14Aa described above by the fact that the voltage value of the first current transformer 142A is 0, a predetermined relay (non- Application of the voltage to the first fan motor 14Aa is stopped. The same applies to the stop of voltage application to the second fan motor 24Aa based on the interruption of the thermal fuse 241A of the second fan motor 24Aa.
  • the first compressor 11A, the second compressor 21A, the first fan motor 14Aa, the second fan motor 24Aa, and the switching power source 32A include a three-phase power cable 33A and a power source. Power is supplied through the switch 34A. Further, power is supplied from the switching power supply 32A to the control board 30A and the like.
  • the first fan 14A and the second fan 24A are arranged opposite to the capacitor 13A as illustrated in FIG. 15, even if the blowing from one fan stops, The condenser 13A is cooled by the air flow. The same applies to the capacitor 23A. Further, as illustrated in FIG. 15, the first fan 14A and the second fan 24A that are arranged in parallel are arranged to face the first compressor 11A and the second compressor 21A, respectively. If either one of 24A is rotating, at least a part of the compressor 11A, 21A that is not opposed to the compressor 11A is also blown and cooled. Further, as illustrated in FIG.
  • the supply of power to the first fan motor 14Aa and the second fan motor 24Aa is stopped by shutting off the internal temperature fuses 141A and 241A, while the first compressor
  • the stop of power supply to 11A and the second compressor 21A is performed by the microcomputer 31A based on the detection outputs of the first temperature sensor 2Aa and the second temperature sensor 2Ab. That is, the operation control of the fan motors 14Aa and 24Aa and the operation control of the compressors 11A and 21A are not related to each other. Therefore, even if one of the fans 14A and 24A is stopped during the operation of the refrigeration apparatus 1A, the operation of the compressors 11A and 21A of the corresponding refrigerant circuits 10A and 20A is not stopped in conjunction therewith.
  • the cooling capacity of the refrigeration apparatus 1A is maintained at a cooling capacity that exceeds the capacity of only one refrigerant circuit 10A, 20A.
  • FIG. 17 is a flowchart showing an example of a processing procedure of the microcomputer 31A at the time of failure detection and notification by the refrigeration apparatus 1A of the third embodiment.
  • the microcomputer 31A calculates the absolute value of the difference value between the voltage values A and B output from the first current transformer 142A and the second current transformer 242A, respectively (S400).
  • the microcomputer 31A determines whether or not the absolute value of the difference value obtained in step S400 is greater than or equal to a predetermined value X stored in advance in the RAM 313A (S401).
  • the predetermined value X is between the first current transformer 142A and the second current transformer 242A that can be generated when one of the first fan motor 14Aa and the second fan motor 24Aa is stopped and the other is rotating. It is a predetermined value based on the voltage difference.
  • the predetermined value X of the present embodiment is, for example, the smaller one of the following two values.
  • the first value is a voltage value corresponding to a lock current flowing through one of the two fan motors 14Aa and 24Aa, and a current flowing through the rotating one of the two fan motors 14Aa and 24Aa. Is a value obtained by subtracting the voltage value corresponding to.
  • the second value is a voltage value corresponding to a current flowing through one of the two fan motors 14Aa and 24Aa that is rotating. In this case, since no current flows through the other one of the two fan motors 14Aa and 24Aa, the corresponding voltage value is zero.
  • step S400 When it is determined that the absolute value of the difference value obtained in step S400 is less than the predetermined value X (S401: NO), the microcomputer 31A executes the process of step S400 again. That is, it is determined that the operating states of the two fan motors 14Aa and 24Aa are both rotating, and the microcomputer 31A continues to monitor the operating states of the fan motors 14Aa and 24Aa.
  • the microcomputer 31A When it is determined that the absolute value of the difference value obtained in step S400 is equal to or greater than the predetermined value X (S401: YES), the microcomputer 31A outputs the voltage output from each of the first current transformer 142A and the second current transformer 242A.
  • the values A and B are stored in the RAM 313A in association with information indicating the corresponding fan motors 14Aa and 24Aa (S402). That is, it is determined that one of the operating states of the two fan motors 14Aa and 24Aa is stopped and the other is rotating, and the microcomputer 31A determines the individual current transformers 142A and 242A individually as described below. Based on the voltage values A and B, it is determined which of the fan motors 14Aa and 24Aa has failed.
  • the microcomputer 31A determines whether or not the voltage value A of the first current transformer 142A corresponding to the first fan motor 14Aa is greater than or equal to a predetermined value Y stored in the RAM 313A in advance (S403).
  • the predetermined value Y is a voltage value corresponding to the lock current when the first fan motor 14Aa is stopped and the lock current flows through the first current transformer 142A.
  • the microcomputer 31A indicates that the first fan motor 14Aa (the motor corresponding to A) has failed.
  • the buzzer 42A While displaying through the display 41A, the buzzer 42A is sounded for a predetermined time measured by a predetermined timer (not shown), for example (S404), and the process of step S405 described later is executed. That is, in this case, it is determined that at least the first fan 14A is stopped to lock the first fan motor 14Aa, and the determination result is notified to the user or the like.
  • a predetermined timer not shown
  • the microcomputer 31A determines that the voltage value B of the second current transformer 242A corresponding to the second fan motor 24Aa is It is determined whether or not the predetermined value Y is stored in the RAM 313A in advance (S408).
  • the predetermined value Y is a voltage value corresponding to the lock current when the second fan motor 24Aa is stopped and a lock current is flowing through the second current transformer 242A.
  • the microcomputer 31A If it is determined that the voltage value B of the second current transformer 242A is equal to or greater than the predetermined value Y (S408: YES), the microcomputer 31A indicates that the second fan motor 24Aa (the motor corresponding to B) has failed. While displaying through the display 41A, the buzzer 42A is sounded for a predetermined time, for example (S409), and the process of step S405 described later is executed. That is, in this case, it is determined that at least the second fan 24A is stopped to lock the second fan motor 24Aa, and the determination result is notified to the user or the like.
  • the microcomputer 31A When it is determined that the voltage value B of the second current transformer 242A is less than the predetermined value Y (S408: NO), the microcomputer 31A indicates that the voltage value A of the first current transformer 142A corresponding to the first fan motor 14Aa is 0. It is determined whether or not (S410). If it is determined that the voltage value A of the first current transformer 142A is 0 (S410: YES), the microcomputer 31A indicates through the display 41A that the first fan motor 14Aa (the motor corresponding to A) has failed. At the same time, the buzzer 42A is sounded for a predetermined time, for example (S411), and the process of step S405 described later is executed. That is, in this case, it is determined that at least the first fan 14A is stopped due to, for example, disconnection of a circuit related to the first fan motor 14Aa, and the determination result is notified to the user or the like.
  • the microcomputer 31A determines the voltage value of the second current transformer 242A corresponding to the second fan motor 24Aa. It is determined whether or not B is 0 (S412). If it is determined that the voltage value B of the second current transformer 242A is 0 (S412: YES), the microcomputer 31A indicates through the display 41A that the second fan motor 24Aa (the motor corresponding to B) has failed. In addition to the display, the buzzer 42A is sounded, for example, for a predetermined time (S413), and the process of step S405 described later is executed. That is, in this case, it is determined that at least the second fan 24A is stopped due to, for example, disconnection of a circuit related to the second fan motor 24Aa, and the determination result is notified to the user or the like.
  • the microcomputer 31A executes the process of step S402 again. That is, the microcomputer 31A newly samples the voltage values A and B of the first current transformer 142A and the second current transformer 242A, and based on the new voltage values A and B, the fan motor 14Aa, It is determined again whether 24Aa is out of order.
  • steps S400 and S401 based on only the difference value between the voltage values A and B of the two current transformers 142A and 242A, it is first determined whether or not at least one of the fan motors 14A and 24A has a failure. Therefore, the processing load on the microcomputer 31A can be reduced. That is, it is possible to reduce the manufacturing cost of the refrigeration apparatus 1A by suppressing the processing capacity of the CPU 311A, the capacity of the RAM 313A, and the like.
  • the microcomputer 31A when it is notified that one of the two fan motors 14Aa and 24Aa has failed (S404, S409, S411, or S413), the microcomputer 31A includes the temperature sensor 131A and the temperature sensor 231A.
  • the detected temperature at the outlet of the capacitor 13A and the detected temperature at the outlet of the capacitor 23A are respectively referred to (S405), and the following processing is performed based on these temperatures.
  • the microcomputer 31A determines whether or not the two temperatures detected in step S405 are equal to or higher than a predetermined value Z stored in the RAM 313A in advance (S406).
  • the predetermined value Z is a value corresponding to the temperature when the temperatures of the outlet portions of the capacitors 13A and 23A rise because both the first fan motor 14Aa and the second fan motor 24Aa have failed.
  • the microcomputer 31A executes the process of step S400 again.
  • the microcomputer 31A displays the display in step S404, S409, S411, or S413 described above on the display 41A as the first fan motor.
  • 14Aa and the second fan motor 24Aa (the motors corresponding to A and B) are changed to a display indicating failure, and the buzzer 42A is sounded for a predetermined time, for example (S407), and the process is terminated. That is, in this case, for example, one of the two fan motors 14Aa and 24Aa is locked and the other circuit is disconnected, whereby both the first fan 14A and the second fan 24A are stopped. As a result, the capacitors 13A and 23A are stopped. It is determined that the temperature of the outlet portion is equal to or higher than a predetermined temperature, and the determination result is notified to the user or the like.
  • the temperature of the two fan motors 14Aa and 24Aa also rises accordingly.
  • the fuses 141A and 241A are cut off.
  • the lock current flowing through the two fan motors 14Aa and 24Aa becomes zero.
  • both the state in which the lock current flows through the two fan motors 14Aa and 24Aa and the state in which the current does not flow through the two fan motors 14Aa and 24Aa due to the interruption of the thermal fuses 141A and 241A are the steps described above. It cannot be determined by the process of S401. That is, the difference value between the voltage values A and B of the two current transformers 142A and 242A is substantially 0 in both cases.
  • the microcomputer 31A is the same as the above-described steps S405 to S407, for example, every predetermined time counted by a predetermined timer (not shown) separately from the processing after step S401 described above.
  • the process is executed.
  • the microcomputer 31A periodically determines whether or not both fan motors 14Aa and 24Aa have failed by detecting the temperature at the outlets of the capacitors 13A and 23A, and if it is determined that both have failed, Inform the user to that effect.
  • the microcomputer 31A may periodically determine whether or not both fan motors 14Aa and 24Aa have failed by detecting the voltages of the two current transformers 142A and 242A. That is, when both voltage values A and B are 0, it is determined that both fan motors 14Aa and 24Aa are out of order.
  • the capacitors 13A and 23A are integrally formed on the same tube plate, and are sequentially arranged in the tube plate in the vicinity of the same air path of the first fan 14A and the second fan 24A.
  • the present invention is not limited to this.
  • the pre-capacitors 12A and 22A are also integrally formed on the same tube plate as the capacitors 13A and 23A, and are arranged in order in the tube plate in the vicinity of the same air path of the first fan 14A and the second fan 24A. Also good.
  • the notification device is the display 41A and the buzzer 42A.
  • the notification device is not limited to this. In short, it may be a means for notifying the user or the like of the failure of the fan motors 14Aa and 24Aa. Anything can be used.
  • the notification content is only which of the fan motors 14Aa and 24Aa has failed, but is not limited thereto. For example, the failure content based on the voltage values A and B of the current transformers 142A and 242A. (Lock, circuit breakage, etc.) may be added.
  • steps S405 to S407 by the microcomputer 31A is executed after the processing of steps S404, S409, S411, and S413.
  • the present invention is not limited to this. .
  • the microcomputer 31 ⁇ / b> A determines that one fan motor has failed, and then determines whether or not the other fan motor has failed, and then determines the final determination result ( One of them or a failure of both) may be notified only once.
  • FIG. 18 is a flowchart illustrating another example of the processing procedure of the microcomputer 31A when the failure detection and notification are performed by the refrigeration apparatus 1A according to the third embodiment.
  • the processing in steps S500 to S502 in FIG. 18 is the same as the processing in steps S400 to S402 in FIG.
  • the discrimination processes in steps S503, S508, S513, and S518 in FIG. 18 are the same as the discrimination processes in steps S403, S408, S410, and S412 in FIG. That is, by these processes, it is determined which of the two fan motors 14Aa and 24Aa has failed and whether the failure is a lock or a circuit breakage.
  • the microcomputer 31A determines that the voltage value A of the first current transformer 142A is equal to or greater than the predetermined value Y described above (S503: YES), the outlet portions of the capacitors 13A and 23A detected by the temperature sensors 131A and 231A, respectively. (S504), it is determined whether or not the two temperatures are equal to or higher than the predetermined value Z described above (S505). For example, when it is determined that one of the two temperatures is less than the predetermined value Z (S505: NO), the microcomputer 31A displays that the first fan motor 14Aa (the motor corresponding to A) has failed.
  • step S500 is executed again.
  • the microcomputer 31A indicates that both fan motors 14Aa and 24Aa (motors corresponding to A and B) have failed. Is displayed on the display 41A, and the buzzer 42A is sounded for a predetermined time, for example (S506), and the process is terminated.
  • the microcomputer 31A determines that the voltage value B of the second current transformer 242A is equal to or greater than the predetermined value Y described above (S508: YES)
  • the microcomputer 31A refers to the temperatures at the outlets of the capacitors 13A and 23A as described above ( S509) It is determined whether or not the two temperatures are equal to or higher than the predetermined value Z described above (S510). If it is determined that one of the two temperatures is less than the predetermined value Z (S510: NO), the microcomputer 31A indicates that the second fan motor 24Aa (the motor corresponding to B) has failed. Similarly, notification is made (S512), and the process of step S500 is executed again.
  • the microcomputer 31A indicates that both fan motors 14Aa and 24Aa (motors corresponding to A and B) have failed.
  • the notification is made in the same manner as described above (S511), and the process is terminated.
  • the microcomputer 31A determines that the voltage value A of the first current transformer 142A is 0 (S513: YES)
  • the microcomputer 31A refers to the temperatures of the outlets of the capacitors 13A and 23A as described above (S514). It is determined whether or not the temperature is equal to or higher than the aforementioned predetermined value Z (S515). If it is determined that one of the two temperatures is less than the predetermined value Z (S515: NO), the microcomputer 31A indicates that the first fan motor 14Aa (the motor corresponding to A) has failed. Similarly, notification is made (S517), and the process of step S500 is executed again.
  • the microcomputer 31A indicates that both fan motors 14Aa and 24Aa (motors corresponding to A and B) have failed.
  • the notification is made in the same manner as described above (S516), and the process is terminated.
  • the microcomputer 31A determines that the voltage value B of the second current transformer 242A is 0 (S518: YES)
  • the microcomputer 31A refers to the temperatures of the outlets of the capacitors 13A and 23A as described above (S519). It is determined whether or not the temperature is equal to or higher than the predetermined value Z (S520). If it is determined that one of the two temperatures is less than the predetermined value Z (S520: NO), the microcomputer 31A indicates that the second fan motor 24Aa (the motor corresponding to B) has failed. Similarly, notification is made (S522), and the process of step S500 is executed again.
  • the microcomputer 31A indicates that both fan motors 14Aa and 24Aa (motors corresponding to A and B) have failed.
  • the notification is made in the same manner as described above (S521), and the process is terminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷凍装置において、第1圧縮機、第1凝縮器、第1減圧器、第1蒸発器を第1冷媒配管で環状に接続し、冷却作用を得るために前記第1圧縮機から吐出された冷媒を前記第1凝縮器で凝縮させた後に前記第1蒸発器で蒸発させる第1冷媒回路と、第2圧縮機、第2凝縮器、第2減圧器、第2蒸発器を第2冷媒配管で環状に接続し、冷却作用を得るために前記第2圧縮機から吐出された冷媒を前記第2凝縮器で凝縮させた後に前記第2蒸発器で蒸発させる第2冷媒回路と、前記第1蒸発器及び前記第2蒸発器が庫内を同時に冷却するように配置されている低温貯蔵庫の前記庫内の温度を検出する温度センサと、前記温度センサの検出温度が第1温度に達する都度、前記第1圧縮機及び前記第2圧縮機がともに運転されるように制御し、前記温度センサの検出温度が前記第1温度より低い第2温度に達する都度、前記第1圧縮機及び前記第2圧縮機が交互に運転されるように制御する第1制御装置と、を備える。

Description

冷凍装置
 本発明は、冷凍装置に関する。
 圧縮機、凝縮器、減圧器、及び蒸発器を有する冷媒回路を2基備えた冷凍装置が知られている(例えば、特開2005-90917号公報参照)。2基の冷媒回路の夫々において、圧縮機から吐出された冷媒は、凝縮器で冷却されて液化した後に減圧器による減圧を経て蒸発器で蒸発することによって、例えば2つの蒸発器に共通して熱接触している低温貯蔵庫の庫内が冷却される。
 この冷凍装置は、庫内の温度を検出する温度センサを備えており、2基の冷媒回路夫々の圧縮機を、例えば以下のように制御する。即ち、2基の冷媒回路の一方又は双方の圧縮機を運転すると、温度センサの検出温度は、設定温度範囲の上限値から下限値に下降し、2基の冷媒回路の双方の圧縮機を停止させると、温度センサの検出温度は、設定温度範囲の下限値から上限値まで上昇する。このように、1台又は2台の圧縮機の運転と、2台の圧縮機の停止とを交互に行なうことによって、庫内の温度は設定温度範囲内に維持される。
<関連出願の相互参照>
 この出願は、2008年9月22日に出願した日本特許出願2008-243064号に基づいて優先権を主張し、その内容を本願に援用する。
 ところで、前述した冷凍装置では、周囲温度の上昇等により庫内負荷がより大きくなった場合であっても庫内の温度を精度良く制御する(即ち、所定の設定温度範囲内に維持する)ためには、例えば、圧縮機を運転する期間ではこれを2台とも運転するとともに、2台とも停止させる期間をより短くすることによって、圧縮機を2台とも運転する期間の頻度(単位時間当たりの回数)を相対的に高める必要がある。
 しかし、この場合、圧縮機の起動回数が増えるために、リレー等の電装品の寿命が短くなるのみならず、起動電流を原因とする消費電力が増えるという問題がある。
 そこで、本発明は、圧縮機の起動回数を抑制しつつ、庫内の温度を精度良く制御することを目的とする。
 上記目的を達成するため、本発明の冷凍装置は、第1圧縮機、第1凝縮器、第1減圧器、第1蒸発器を第1冷媒配管で環状に接続し、冷却作用を得るために前記第1圧縮機から吐出された冷媒を前記第1凝縮器で凝縮させた後に前記第1蒸発器で蒸発させる第1冷媒回路と、第2圧縮機、第2凝縮器、第2減圧器、第2蒸発器を第2冷媒配管で環状に接続し、冷却作用を得るために前記第2圧縮機から吐出された冷媒を前記第2凝縮器で凝縮させた後に前記第2蒸発器で蒸発させる第2冷媒回路と、前記第1蒸発器及び前記第2蒸発器が庫内を同時に冷却するように配置されている低温貯蔵庫の前記庫内の温度を検出する温度センサと、前記温度センサの検出温度が第1温度に達する都度、前記第1圧縮機及び前記第2圧縮機がともに運転されるように制御し、前記温度センサの検出温度が前記第1温度より低い第2温度に達する都度、前記第1圧縮機及び前記第2圧縮機が交互に運転されるように制御する第1制御装置とを備える。
第1実施形態に係る冷凍装置の一例の正面図である。 図1の冷凍装置の側面図である。 第1実施形態の第1冷媒回路及び第2冷媒回路の一例の回路図である。 第1実施形態の第1冷媒回路及び第2冷媒回路の制御を司る制御回路の一例を示すブロック図である。 第1実施形態の冷凍装置が第1圧縮機及び第2圧縮機の2台の運転と1台の運転とを交互に繰り返す制御モードAにおけるマイクロコンピュータの処理の手順の一例を示すフローチャートである。 第1実施形態の冷凍装置が第1圧縮機及び第2圧縮機の1台の運転と2台の停止とを交互に繰り返す制御モードBにおけるマイクロコンピュータの処理の手順の一例を示すフローチャートである。 第1実施形態の冷凍装置が第1圧縮機及び第2圧縮機の一方の1台の運転と他方の1台の運転とを交互に繰り返す制御モードCにおけるマイクロコンピュータの処理の手順の一例を示すフローチャートである。 制御モードがAの場合の庫内の温度と第1圧縮機及び第2圧縮機の運転状態との関係を示すダイアグラムである。 制御モードがAからBへ切り替えられる場合の庫内の温度と第1圧縮機及び第2圧縮機の運転状態との関係を示すダイアグラムである。 制御モードがBからAへ切り替えられる場合の庫内の温度と第1圧縮機及び第2圧縮機の運転状態との関係を示すダイアグラムである。 制御モードがBからCへ切り替えられる場合の庫内の温度と第1圧縮機及び第2圧縮機の運転状態との関係を示すダイアグラムである。 制御モードがAからCへ切り替えられる場合の庫内の温度と第1圧縮機及び第2圧縮機の運転状態との関係を示すダイアグラムである。 図1の冷凍装置1のA-A’における断面図である。 (a)は、第2実施形態の冷媒回路における第1圧縮機及び第2圧縮機と、第1ファン及び第2ファンと、凝縮ユニットとの配置例を示す平面図であり、(b)は、(a)の凝縮ユニットの正面図である。 第3実施形態の冷凍装置の第1冷媒回路及び第2冷媒回路の一例を示す回路図である。 第3実施形態の第1冷媒回路及び第2冷媒回路の制御を司る制御回路の一例を示すブロック図である。 第3実施形態の冷凍装置による故障検出及び報知の際のマイクロコンピュータの処理手順の一例を示すフローチャートである。 第3実施形態の冷凍装置による故障検出及び報知の際のマイクロコンピュータの処理手順の他の一例を示すフローチャートである。
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
[第1実施形態]
===冷凍装置の構成===
 図1乃至図4を参照しつつ、第1実施形態の冷凍装置1の構成例について説明する。
 尚、図1は、第1実施形態の冷凍装置1の一例の正面図である。図2は、図1の冷凍装置1の側面図である。図3は、第1実施形態の第1冷媒回路100及び第2冷媒回路200の一例の回路図である。図4は、第1実施形態の第1冷媒回路100及び第2冷媒回路200の制御を司る制御回路300の一例を示すブロック図である。
 図1乃至図4に例示されるように、冷凍装置1は、略同一の2基の冷媒回路(第1冷媒回路100及び第2冷媒回路200)と、庫内の温度を検出する温度センサ307と、マイクロコンピュータ(第1制御装置、第2制御装置、識別装置、第1切替装置、第2切替装置、判別装置)310、圧縮機リレー(第1制御装置、第2制御装置)305a、305b、及びリレー(第1制御装置、第2制御装置)306a、306bとを備えている。
 尚、冷凍装置1は、図1及び図2に例示されるように、内箱5、外箱(断熱筐体)2、内扉51a、外扉(断熱扉)3、及び機械室4を更に備えており、同図の例示によれば、第1冷媒回路100及び第2冷媒回路200における後述する蒸発器153や熱交換器109、209等を除く殆どが機械室4に格納されている。
 内箱5は、例えば鋼板製の略直方体形状の箱であり、冷凍物や生体組織等の貯蔵対象を貯蔵するための例えば2つの貯蔵室51に分かれている。これら2つの貯蔵室51のそれぞれの正面開口には、例えば樹脂製の2つの内扉51aが所定のヒンジ(不図示)を介して開閉可能に設けられている。
 外箱2は、例えば鋼板製の略直方体形状の箱であり、機械室4及び内箱5を収容している。特に、内箱5と外箱2との間には、所定の断熱材(不図示)が充填されている。また、外箱2の正面開口には、貯蔵室51に対し貯蔵対象を出し入れするための外扉3がヒンジ33を介して開閉可能に取付けられている。外扉3は、内側に所定の断熱材(不図示)が充填された例えば鋼板製の略平板形状の中空体であり、その背面には、外箱2内の気密性を確保するためのパッキン34が設けられ、その正面には、例えば庫内(貯蔵室51内)の所望の温度を設定するためのキーや庫内の現在の温度を表示するためのディスプレイ等を有する操作パネル32が設けられている。
 尚、図1に例示されるハンドル31は、利用者等が外扉3の開閉操作をするためのものであり、外扉3が外箱2の正面開口を閉じた状態を固定及びこの固定を解除するための所定のロック機構(不図示)を有している。
<<<冷媒回路>>>
 第1冷媒回路100は、図3に例示されるように、第1圧縮機101と、プレコンデンサ102及びコンデンサ104(第1凝縮器)と、減圧器110(第1減圧器)と、第1蒸発器111とを備えて、第1圧縮機101から吐出された冷媒が再び同圧縮機101に戻るように所定の配管(第1冷媒配管)で環状に構成されている。また、第1冷媒回路100は、気液を分ける分流器107と、減圧器108及び熱交換器109とを更に備えている。更に、第1冷媒回路100は、オイルクーラ101aを第1圧縮機101内のオイル溜りに備え、配管103をプレコンデンサ102及びオイルクーラ101aの間に備え、デハイドレータ106をコンデンサ104及び分流器107の間に備え、緩衝器112を第1圧縮機101の吸込側及び熱交換器109の間に更に備えている。
 第1圧縮機101は、吸込んだ冷媒を圧縮してプレコンデンサ102に吐出する。 
 プレコンデンサ102は、第1圧縮機101から吐出される冷媒を放熱させるための例えば銅又はアルミニウム製の管を蛇行させたものである。コンデンサ104は、プレコンデンサ102から出力される冷媒を更に放熱させるための例えば銅又はアルミニウム製の管を蛇行させたものである。これらプレコンデンサ102及びコンデンサ104は、例えば同じ管板に一体に構成されている。尚、プレコンデンサ102及びコンデンサ104の近傍には、ファン105が、同コンデンサ102、104に同時に送風できるように配置構成されている。
 分流器107は、コンデンサ104から出力される冷媒を、液相の冷媒と、気相の冷媒とに分流し、液相の冷媒を減圧器108(キャピラリチューブ)に出力するとともに、気相の冷媒を熱交換器109の内側管109bに出力する。
 熱交換器109は、外側管109a及び内側管109bを有する例えば銅又はアルミニウム製の2重管であり、外側管109aにおいて減圧器108で減圧された液相冷媒が蒸発することによって、内側管109bを流れる気相冷媒を冷却する。
 減圧器110は、熱交換器109の内側管109bで冷却されて液相となった冷媒を減圧して第1蒸発器111に出力する例えばキャピラリチューブである。
 第1蒸発器111は、減圧器110によって減圧された冷媒を蒸発させるための例えば銅又はアルミニウム製の管であり、内箱5の正面開口を除く外面に熱的に接触するように貼付されている。冷媒が第1蒸発器111で蒸発(気化)する際の冷却作用によって庫内を冷却するようになっている。この蒸発して気相となった冷媒は、熱交換器109の外側管109aにて蒸発した先の冷媒とともに圧縮機101に吸い込まれる。
 尚、デハイドレータ106は、冷媒中に含まれる水分を除去する。また、緩衝器112は、キャピラリチューブ112a及び膨張タンク112bを有し、第1圧縮機101の吸込側における気相の冷媒を、キャピラリチューブ112aを介して膨張タンク112bに収容することによって、第1冷媒回路100を循環する冷媒の量を適正に保っている。
 第2冷媒回路200は、前述と同様に、第2圧縮機201と、プレコンデンサ202及びコンデンサ204(第2凝縮器)と、分流器207と、減圧器208及び熱交換器209と、減圧器210(第2減圧器)及び第2蒸発器211とを備えて、第2圧縮機201から吐出された冷媒が再び同圧縮機201に戻るように所定の配管(第2冷媒配管)で環状に構成され、前述と同様の冷媒が封入されている。また、第2冷媒回路200は、前述と同様に、オイルクーラ201aと、配管203と、デハイドレータ206と、緩衝器212とを更に備えている。ここで、熱交換器209は、外側管209a及び内側管209bを有する。また、緩衝器212は、キャピラリチューブ212a及び膨張タンク212bを有する。更に、プレコンデンサ202及びコンデンサ204の近傍には、ファン205が、同コンデンサ202、204に同時に送風できるように配置構成されている。
 尚、前述した配管103及び配管203は、図1及び図2の点線で例示されるように、互いに重ねてフレーム管151(第1圧縮機及び第1凝縮器の間の第1冷媒配管、第2圧縮機及び第2凝縮器の間の第2冷媒配管)として、外箱2の正面開口の周囲部分に対し内側から熱的に接触するように取り付けられている。この正面開口の周囲部分は、前述した外扉3を閉じた状態でパッキン34が密着する部分であり、この部分が、圧縮機101、201から吐出された高温の冷媒が流れるフレーム管151によって加温される。これにより、この正面開口の周囲部分の結露が防止されて、外箱2内の気密性が向上する。
 また、蒸発器153を構成する第1蒸発器111及び第2蒸発器211は、庫内を同時に冷却するように配置されている。つまり、第1蒸発器111及び第2蒸発器211の夫々は、図2に例示されるように、互いに重ならないように内箱5の正面開口を除く外面に対し熱的に接触するように貼付されている。
<<<制御回路>>>
 温度センサ307は、内箱5の内部又は外部の所定位置に取り付けられて、庫内の温度を検出するセンサである。温度センサ307は、図4に例示されるように、制御基板301と電気的に接続されており、庫内の検出温度を示す信号をマイクロコンピュータ310に出力する。
 マイクロコンピュータ310は、図4に例示されるように、制御基板301に搭載されており、例えば温度センサ307による検出温度に応じて第1圧縮機101及び第2圧縮機201の運転を制御するべく、CPU311と、ROM312と、RAM(識別装置)313とを備えている。ここで、CPU311は、このような制御に係る処理を実行し、ROM312は、CPU311がこのような処理を実行するためのプログラム等を記憶し、RAM313は、このような処理に必要なデータを記憶する。特に、RAM313は、第1圧縮機101及び第2圧縮機201のうちの一方のみが運転中である場合、運転中の圧縮機を示す情報にフラグ「1」を対応付けるとともに、停止中の圧縮機を示す情報にフラグ「0」を対応付けて記憶する。また、マイクロコンピュータ310は、庫内の検出温度の変化時間や圧縮機101、201の運転時間等を計時するタイマ314(第2タイマ)及びタイマ315(第1タイマ)を更に備えている。尚、制御基板301には、スイッチング電源302から電力が供給される。このスイッチング電源302には、3相の電源ケーブル303を通じて電力が供給される。
 圧縮機リレー305a及び圧縮機リレー305bは、図4に例示されるように、第1圧縮機101及び第2圧縮機201に夫々設けられており、対応する圧縮機101、201と3相の電源ケーブル303との電気的な接続又は遮断を行なうためのリレーである。
 リレー306a及びリレー306bは、図4に例示されるように、第1圧縮機101の圧縮機リレー305a及び第2圧縮機201の圧縮機リレー305bに夫々設けられており、マイクロコンピュータ310から出力される制御信号に基づいて、対応する圧縮機リレー305a、305bに前述した接続又は遮断の動作を行わせるためのリレーである。
 尚、本実施の形態の制御回路300では、手動の電源スイッチ304をオンにした時点で、第1圧縮機101及び第2圧縮機201に対して3相の電源ケーブル303を通じて電力が供給される。また、ファン105、205を夫々回転させるファンモータ105a、205aに対しては、マイクロコンピュータ310により制御される所定のリレー(不図示)を介し、3相の電源ケーブル303を通じて電力が供給される。
===冷凍装置の動作===
 図5乃至図12を参照しつつ、前述した構成を備えた冷凍装置1が庫内の検出温度に応じて第1圧縮機101及び第2圧縮機201の運転を制御する動作について説明する。 
 尚、図5は、第1実施形態の冷凍装置1が第1圧縮機101及び第2圧縮機201の2台の運転と1台の運転とを交互に繰り返す制御モード(後述する制御モードA)におけるマイクロコンピュータ310の処理の手順の一例を示すフローチャートである。
 図6は、第1実施形態の冷凍装置1が第1圧縮機101及び第2圧縮機201の1台の運転と2台の停止とを交互に繰り返す制御モード(後述する制御モードB)におけるマイクロコンピュータ310の処理の手順の一例を示すフローチャートである。
 図7は、第1実施形態の冷凍装置1が第1圧縮機101及び第2圧縮機201の一方の1台の運転と他方の1台の運転とを交互に繰り返す制御モード(後述する制御モードC)におけるマイクロコンピュータ310の処理の手順の一例を示すフローチャートである。
 図8は、制御モードがAの場合の庫内の温度と第1圧縮機101及び第2圧縮機201の運転状態との関係を示すダイアグラムである。
 図9は、制御モードがAからBへ切り替えられる場合の庫内の温度と第1圧縮機101及び第2圧縮機201の運転状態との関係を示すダイアグラムである。
 図10は、制御モードがBからAへ切り替えられる場合の庫内の温度と第1圧縮機101及び第2圧縮機201の運転状態との関係を示すダイアグラムである。
 図11は、制御モードがBからCへ切り替えられる場合の庫内の温度と第1圧縮機101及び第2圧縮機201の運転状態との関係を示すダイアグラムである。
 図12は、制御モードがAからCへ切り替えられる場合の庫内の温度と第1圧縮機101及び第2圧縮機201の運転状態との関係を示すダイアグラムである。
<<<制御モードA>>>
 図5に例示されるように、マイクロコンピュータ310は、温度センサ307による検出温度Tが庫内の設定温度範囲の上限値(第1温度)(以後「T1」と称する)より低いか否かを判別する(S100)。検出温度TがT1より低いと判別した場合(S100:YES)、マイクロコンピュータ310は、ステップS100の処理を再度実行する。
 検出温度TがT1に達した(T1より低くはない)と判別した場合(S100:NO)、マイクロコンピュータ310は、第1圧縮機101及び第2圧縮機201の運転を開始する(S101)。圧縮機101、201が2台とも運転されている間、検出温度TはT1からT2に向かって下降する。尚、ここでは、例えば周囲温度が相対的に高いことに伴って庫内負荷が相対的に大きい場合を想定している。この場合、2台の圧縮機の運転によって、庫内温度はT1からT2に向かって下降するが、後述するように、1台のみの圧縮機の運転では、庫内温度はT2からT1に向かって上昇する。
 マイクロコンピュータ310は、検出温度Tが庫内の設定温度範囲の下限値(第2温度)(以後「T2」と称する)より高いか否かを判別する(S102)。検出温度TがT2より高いと判別した場合(S102:YES)、マイクロコンピュータ310は、ステップS102の処理を再度実行する。
 検出温度TがT2に達した(T2より高くはない)と判別した場合(S102:NO)、マイクロコンピュータ310は、タイマ314、315をリセットした後に計時を開始させ(S103)、RAM313においてフラグ「1」が対応付けられた運転中の一方の圧縮機(第1圧縮機101又は第2圧縮機201)を停止させ(S104)、RAM313において、運転中の他方の圧縮機にフラグ「1」を対応付けるとともに、停止中の圧縮機にフラグ「0」を対応付ける(S105)。2台の圧縮機101、201のうちの1台のみが運転されている間、検出温度TはT2からT1に向かって上昇する。
 マイクロコンピュータ310は、検出温度TがT2より低いか否かを判別する(S106)。検出温度TがT2以上であると判別した場合(S106:NO)、マイクロコンピュータ310は、検出温度TがT1より低いか否かを判別する(S109)。
 検出温度TがT1より低いと判別した場合(S109:YES)、マイクロコンピュータ310は、前述したステップS103で計時を開始したタイマ315による計時時間tが所定時間Yより長いか否かを判別する(S110)。尚、この所定時間Yは、庫内の温度が設定温度範囲内で安定したか否かを判別するための基準時間であり、具体的には、検出温度TがT1及びT2の間にある時間が所定時間Yより長い場合に、設定温度範囲内で庫内の温度が安定したと判別される。タイマ315による計時時間tが所定時間Y以下であると判別した場合(S110:NO)、マイクロコンピュータ310は、ステップS109の処理を再度実行する。
 検出温度TがT1に達した(T1より低くはない)と判別した場合(S109:NO)、マイクロコンピュータ310は、前述したステップS103で計時を開始したタイマ314による計時時間tが所定時間Xより短いか否かを判別する(S111)。尚、この所定時間Xは、例えば、故障していない1台の圧縮機(第1圧縮機101又は第2圧縮機201)の運転中に検出温度TがT2からT1まで上昇するのに要する基準時間である。
 タイマ314による計時時間tが所定時間X以上であると判別した場合(S111:NO)、マイクロコンピュータ310は、ステップS101の処理を再度実行する。
 タイマ314による計時時間tが所定時間Xより短いと判別した場合(S111:YES)、マイクロコンピュータ310は、フラグ「1」が対応付けられた運転中の圧縮機が故障している旨を例えば操作パネル32のディスプレイを通じて利用者等に報知し(S112)、ステップS101の処理を再度実行する。
 図8に例示されるように、前述したマイクロコンピュータ310の処理によって、時間tdの間、第1圧縮機101及び第2圧縮機201はともに運転されることにより、検出温度TはT1からT2まで下降する。
 次の時間tsの間、第2圧縮機201は運転されているが、第1圧縮機101は停止されているため、検出温度TはT2からT1まで上昇する。尚、ここでは、前述したように、運転中の第2圧縮機201にフラグ「1」が対応付けられているとともに、停止中の第1圧縮機101にはフラグ「0」が対応付けられている。
 次の時間tdの間、第1圧縮機101及び第2圧縮機201はともに運転されることにより、検出温度TはT1からT2まで下降する。
 次の時間tsの間、第1圧縮機101は運転されているが、第2圧縮機201は停止されているため、検出温度TはT2からT1まで上昇する。尚、ここでは、前述したように、先ず、フラグ「1」が対応付けられた第2圧縮機201が停止され、次に、運転中の第1圧縮機101にフラグ「1」が対応付けられるとともに、停止中の第2圧縮機201にはフラグ「0」が対応付けられる。
 以下同様に、検出温度TがT1に達する都度、第1圧縮機101及び第2圧縮機201がともに運転され、検出温度TがT2に達する都度、第1圧縮機101及び第2圧縮機201が交互に運転される(制御モードA)。つまり、制御モードAでは、図8に例示されるように、検出温度TがT1及びT2の間で、第1圧縮機101及び第2圧縮機201の双方の運転と一方のみの運転とが交互に繰り返され、当該一方のみの運転には、第1圧縮機101及び第2圧縮機201が交互に割り当てられる。これにより、例えば周囲温度の上昇等により庫内負荷がより大きくなった場合でも、圧縮機101、201が2台とも停止されている期間が無い分、2台とも運転する期間(td)の頻度を抑制することができる。また、1台のみを運転する期間(ts)の頻度を、各圧縮機101、201について同程度に維持できる。よって、圧縮機101、201の起動回数を抑制しつつ庫内の温度を精度良く制御できる上に、同圧縮機101、201間の劣化の偏りを防止できる。これは、冷凍装置1の寿命及びメインテナンス周期の長期化や、起動電流を原因とする消費電力の低減等につながる。尚、本実施の形態では、前述した圧縮機1台のみの運転に対し2台の圧縮機101、201を交互に割り当てるために、RAM313に記憶されるフラグ「0」又は「1」を通じて各圧縮機を識別している。このように1ビットのデータを用いた比較的コストのかからない構成によって、各圧縮機が効果的に識別される。
 また、制御モードAでは、図5のステップS111:YES及びS112に例示されるように、1台の圧縮機の運転中に検出温度TがT2からT1まで上昇するのに要する時間がその基準時間である所定時間Xよりも短いことを以って、当該1台の圧縮機が故障していると判別されるとともに、これが報知される。例えば、図8におけるT1及びT2の間の温度変化を示す折れ線のうち点線部分の時間ts’が他の部分の時間tsよりも短くなっているが、これは、第1圧縮機101の能力が低下したために同圧縮機101の運転中に庫内の温度上昇がより速くなったことを意味する。これにより、2台の圧縮機101、201のうちの一方が故障した時点でその旨が報知されるため、例えば、2つの冷媒回路100、200の冷却能力が或る程度維持されている間に、報知を受けた利用者等は故障した一方を特定するとともにこれを修理・交換することができる。また、このような故障判別は、2台の圧縮機101、201の夫々に対し圧力センサ等の診断用のセンサを別途設けることなく実現できる。よって、冷凍装置1の製造コストを抑制しつつ、その冷却能力の低下を抑制できる。
 尚、図5の例示では、マイクロコンピュータ310が圧縮機の故障を判別するにあたり、温度センサ307による検出温度TがT2からT1まで上昇するのに要する時間と、基準時間である所定時間Xとを比較するものであったが、これに限定されるものではない。例えば、マイクロコンピュータ(演算装置、判別装置)310は、1台の圧縮機のみを運転する期間における検出温度の変化の割合(例えば(T1-T2)/ts)を求めて、これを基準となる割合と比較することによって故障を判別するものであってもよい。例えば、単位時間当たりの検出温度の上昇割合が、基準となる上昇割合よりも大きければ、該当する圧縮機は故障していると判別される。図8の例示では、時間ts’(<ts)における検出温度の上昇割合は(T1-T2)/ts’であり、時間tsにおける検出温度の上昇割合は(T1-T2)/tsであるため、より大きな値の前者に該当する第1圧縮機101は故障していると判別される。
 また、以上のような制御モードAの運転によって少なくとも1台の圧縮機101、201が常時運転されるため、前述したフレーム管151には高温の冷媒が常時流れて、外箱2の正面開口の周囲部分の結露は効果的に防止される。これにより、外箱2内の気密性がより一層向上する。
<<<制御モードAからBへの切り替え>>>
 前述した図5のステップS106において、検出温度TがT2より低いと判別した場合(S106:YES)、マイクロコンピュータ310は、検出温度TがT4(<T2)より高いか否かを判別する(S107)。
 検出温度TがT4より高いと判別した場合(S107:YES)、マイクロコンピュータ310は、ステップS107の処理を再度実行する。
 検出温度TがT4に達した(T4より高くはない)と判別した場合(S107:NO)、マイクロコンピュータ310は、フラグ「1」が対応付けられた運転中の圧縮機を停止させ(S108)、以下述べる制御モードBの処理を実行する。つまり、2台の圧縮機101、201の運転から1台の運転に切り替えられた後であっても、例えば周囲温度の下降等に伴って検出温度TがT2よりも低いT4(第4温度)まで下降してしまった場合、制御モードAから、圧縮機を2台とも停止させる制御モードBに切り替えられる。
 図6に例示されるように、マイクロコンピュータ310は、温度センサ307による検出温度TがT1より低いか否かを判別する(S200)。検出温度TがT1より低いと判別した場合(S200:YES)、マイクロコンピュータ310は、ステップS200の処理を再度実行する。前述したように、圧縮機101、201が2台とも停止されている間、検出温度TはT4からT1に向かって上昇する。
 検出温度TがT1に達した(T1より低くはない)と判別した場合(S200:NO)、マイクロコンピュータ310は、タイマ314、315をリセットした後に計時を開始させ(S201)、フラグ「0」が対応付けられた停止中の圧縮機(第1圧縮機101又は第2圧縮機201)の運転を開始し(S202)、この運転中の圧縮機にフラグ「1」を対応付けるとともに、停止中の圧縮機にフラグ「0」を対応付ける(S203)。2台の圧縮機101、201のうちの1台のみが運転されている間、検出温度TはT1からT2に向かって下降する。尚、ここでは、前述したように周囲温度が相対的に低いことに伴って庫内負荷が相対的に小さい場合を想定している。この場合、1台のみの圧縮機の運転によって、庫内温度はT1からT2に向かって下降し、2台の圧縮機の圧縮機の停止によって、庫内温度はT2からT1に向かって上昇する。
 マイクロコンピュータ310は、検出温度TがT1より高いか否かを判別する(S204)。検出温度TがT1以下であると判別した場合(S204:NO)、マイクロコンピュータ310は、検出温度TがT2より高いか否かを判別する(S206)。
 検出温度TがT2より高いと判別した場合(S206:YES)、マイクロコンピュータ310は、前述したステップS201で計時を開始したタイマ315による計時時間tが所定時間Yより長いか否かを判別する(S207)。尚、この所定時間Yは、前述したように、庫内の温度が設定温度範囲内で安定したか否かを判別するための基準時間である。この所定時間Yは、前述した所定時間Yと同じであってもよいし、異なっていてもよい。タイマ315による計時時間tが所定時間Y以下であると判別した場合(S207:NO)、マイクロコンピュータ310は、ステップS206の処理を再度実行する。
 検出温度TがT2に達した(T2より高くない)と判別した場合(S206:NO)、マイクロコンピュータ310は、フラグ「1」が対応付けられた運転中の圧縮機を停止させ(S208)、前述したステップS201で計時を開始したタイマ314による計時時間tが所定時間X’より長いか否かを判別する(S209)。尚、この所定時間X’は、例えば、故障していない1台の圧縮機の運転によって検出温度TがT1からT2まで下降するのに要する基準時間である。
 タイマ314による計時時間tが所定時間X’以下であると判別した場合(S209:NO)、マイクロコンピュータ310は、ステップS200の処理を再度実行する。
 タイマ314による計時時間tが所定時間X’より長いと判別した場合(S209:YES)、マイクロコンピュータ310は、フラグ「1」が対応付けられた運転中の圧縮機が故障している旨を例えば操作パネル32のディスプレイを通じて利用者等に報知し(S210)、ステップS200の処理を再度実行する。
 図9に例示されるように、前述したマイクロコンピュータ310の処理によって、時間tdの間、第1圧縮機101及び第2圧縮機201はともに運転されることにより、検出温度はT1からT2まで下降する(時間td)。
 次の時間ts’の間、第1圧縮機101は停止されているが、第2圧縮機201は運転されているため、検出温度TはT2からT4まで下降する。つまり、前述したように、2台の圧縮機101、201の運転から1台の運転に切り替えられた後であっても、例えば周囲温度の下降等に伴って検出温度TがT2よりも低いT4まで下降してしまう。尚、ここまでは、制御モードAの処理が行われている。また、ここでは、前述したように、運転中の第2圧縮機201にフラグ「1」が対応付けられているとともに、停止中の第1圧縮機101にはフラグ「0」が対応付けられている。
 次の時間tnの間、第1圧縮機101及び第2圧縮機201はともに停止されているため、検出温度TはT4からT1まで上昇する。尚、ここからは、制御モードBの処理が行われる。
 次の時間tsの間、第2圧縮機201は停止されているが、第1圧縮機101は運転されているため、検出温度TはT1からT2まで下降する。尚、ここでは、前述したように、先ず、フラグ「1」が対応付けられた第2圧縮機201が停止され、次に、運転中の第1圧縮機101にフラグ「1」が対応付けられるとともに、停止中の第2圧縮機201にはフラグ「0」が対応付けられる。
 次の時間tnの間、第1圧縮機101及び第2圧縮機201はともに停止されているため、検出温度TはT2からT1まで上昇する。
 次の時間tsの間、第1圧縮機101は停止されているが、第2圧縮機201は運転されているため、検出温度TはT1からT2まで下降する。尚、ここでは、前述したように、先ず、フラグ「1」が対応付けられた第1圧縮機101が停止され、次に、運転中の第2圧縮機201にフラグ「1」が対応付けられるとともに、停止中の第1圧縮機101にはフラグ「0」が対応付けられる。
 以下同様に、検出温度TがT1に達する都度、第1圧縮機101及び第2圧縮機201のいずれか一方が交互に運転開始され、検出温度TがT2に達するまでの間継続される(制御モードB)。つまり、制御モードBでは、図9に例示されるように、検出温度TがT1及びT2の間で、第1圧縮機101及び第2圧縮機201の一方のみの運転と双方の停止とが交互に繰り返され、当該一方のみの運転時には、第1圧縮機101及び第2圧縮機201が交互に割り当てられる。これにより、冷凍装置1を制御モードAで運転中に例えば周囲温度の下降等により庫内負荷がより小さくなった場合でも、制御モードBの運転に切り替えることによって、庫内の温度を精度良く制御できる。また、1台のみを運転する期間(ts)の頻度を、各圧縮機101、201について同程度に維持できる。よって、圧縮機101、201の起動回数を抑制しつつ庫内の温度を精度良く制御できる上に、同圧縮機101、201間の劣化の偏りを防止できる。これは、冷凍装置1の寿命及びメインテナンス周期の長期化や、起動電流を原因とする消費電力の低減等につながる。
 また、制御モードBでは、図6のステップS209:YES及びS210に例示されるように、1台の圧縮機の運転中に検出温度TがT1からT2まで下降するのに要する時間がその基準時間である所定時間X’よりも長いことを以って、当該1台の圧縮機が故障していると判別されるとともに、これが報知される。例えば、図9におけるT1及びT2の間の温度変化を示す折れ線のうち点線部分の時間ts”が他の部分の時間tsよりも長くなっているが、これは、第2圧縮機201の能力が低下したために同圧縮機201の運転中に庫内の温度降下がより遅くなったことを意味する。これにより、2台の圧縮機101、201のうちの一方が故障した時点でその旨が報知されるため、例えば、2つの冷媒回路100、200の冷却能力が或る程度維持されている間に、報知を受けた利用者等は故障した一方を特定するとともにこれを修理・交換することができる。また、このような故障判別は、2台の圧縮機101、201の夫々に対し圧力センサ等の診断用のセンサを別途設けることなく実現できる。よって、冷凍装置1の製造コストを抑制しつつ、その冷却能力の低下を抑制できる。
 尚、図6の例示では、マイクロコンピュータ310が圧縮機の故障を判別するにあたり、温度センサ307による検出温度TがT1からT2まで下降するのに要する時間と、基準時間である所定時間X’とを比較するものであったが、これに限定されるものではない。例えば、マイクロコンピュータ(演算装置、判別装置)310は、1台の圧縮機のみを運転する期間における検出温度の変化の割合(例えば(T1-T2)/ts)を求めて、これを基準となる割合と比較することによって故障を判別するものであってもよい。例えば、単位時間当たりの検出温度の下降割合が、基準となる下降割合よりも小さければ、該当する圧縮機は故障していると判別される。図9の例示では、時間ts”(>ts)における検出温度の上昇割合は(T1-T2)/ts”であり、時間tsにおける検出温度の下降割合は(T1-T2)/tsであるため、より小さな値の前者に該当する第2圧縮機201は故障していると判別される。
<<<制御モードBからAへの切り替え>>>
 前述した図6のステップS204において、検出温度TがT1より高いと判別した場合(S204:YES)、マイクロコンピュータ310は、検出温度TがT3(>T1)より低いか否かを判別する(S205)。
 検出温度TがT3より低いと判別した場合(S205:YES)、マイクロコンピュータ310は、ステップS205の処理を再度実行する。
 検出温度TがT3に達した(T3より低くはない)と判別した場合(S205:NO)、マイクロコンピュータ310は、制御モードAの処理を実行する。つまり、2台の圧縮機101、201の停止から1台の運転に切り替えられた後であっても、例えば周囲温度の上昇等に伴って検出温度TがT1よりも高いT3(第3温度)まで上昇してしまった場合、制御モードBから、圧縮機を2台とも運転する制御モードAに切り替えられる。
 図10に例示されるように、最初の時間(ts”+tn+ts’)の間、冷凍装置1の運転は制御モードBで行われるが、そのうちの時間ts’の間では、第2圧縮機201が運転されているにもかかわらず、検出温度TはT3まで上昇している。そこで、これ以後、冷凍装置1の運転は制御モードAで行われる。これにより、冷凍装置1を制御モードBで運転中に例えば周囲温度の上昇等により庫内負荷がより大きくなった場合でも、制御モードAの運転に切り替えることによって、庫内の温度を精度良く制御できる。
<<<制御モードBからCへの切り替え>>>
 前述した図6のステップS207において、タイマ315による計時時間tが所定時間Yより長いと判別した場合(S207:YES)、マイクロコンピュータ310は、以下述べる制御モードCの処理を実行する。つまり、検出温度TがT1及びT2の間にある時間が所定時間Yより長いことを以って、庫内の温度が設定温度範囲内で安定したと判別される。
 図7に例示されるように、マイクロコンピュータ310は、タイマ315をリセットした後に計時を開始させ(S300)、フラグ「1」が対応付けられた運転中の一方の圧縮機を停止させるとともに、フラグ「0」が対応付けられた停止中の他方の圧縮機の運転を開始する(S301)。次に、マイクロコンピュータ310は、運転が開始された圧縮機にフラグ「1」を対応付けるとともに、停止された圧縮機にフラグ「0」を対応付ける(S302)。
 マイクロコンピュータ310は、前述したステップS300で計時を開始したタイマ315による計時時間tが所定時間Yに達したか否かを判別する(S303)。
 タイマ315による計時時間tが所定時間Yに達したと判別した場合(S303:NO)、マイクロコンピュータ310は、ステップS300の処理を再度実行する。
 図11の最初の時間帯ts”において検出温度TがT2に達することなくT1から緩やかに下降している間、第2圧縮機201の運転は、その運転時間が所定時間Yに達するまで(つまり、ts”=Yとなるまで)継続される。尚、ここでは、前述したように、運転中の第2圧縮機201にフラグ「1」が対応付けられているとともに、停止中の第1圧縮機101にはフラグ「0」が対応付けられている。
 第2圧縮機201の運転時間が所定時間Yに達すると、第2圧縮機201が停止されると同時に第1圧縮機101の運転が開始される。尚、ここでは、前述したように、先ず、フラグ「1」が対応付けられた第2圧縮機201が停止され、次に、運転中の第1圧縮機101にフラグ「1」が対応付けられるとともに、停止中の第2圧縮機201にはフラグ「0」が対応付けられる。
 以後、第1圧縮機101及び第2圧縮機201が所定時間Yごとに交互に運転される。これにより、1台のみを運転する期間の頻度を、各圧縮機101、201について同程度に維持できる。これは、冷凍装置1の寿命及びメインテナンス周期の長期化につながる。
 また、制御モードCでは2台の圧縮機101、201が交互に運転されるため、例えば前述した検出温度の変化等によって、故障した圧縮機の特定が容易となる。尚、制御モードCにおける各圧縮機101、201の運転時間は、前述した所定時間Yに限定されるものではなく、例えばこれと異なっていてもよい。
 一方で、ステップS303においてタイマ315による計時時間tが所定時間Yに達していないと判別した場合、マイクロコンピュータ310は、温度センサ307による検出温度Tが、先ず、T1より低いか否か(S304)、次に、T2より高いか否か(S305)を判別する。そして、検出温度TがT1に達したと判別した場合(S304:NO)、マイクロコンピュータ310は、図5のステップS100の処理を実行する。これは即ち、いずれか一方の圧縮機の運転だけでは冷凍能力が足りなくなったので、モードAに切り替えるものである。また、検出温度TがT2に達したと判別した場合(S305:NO)、マイクロコンピュータ310は、図6のステップS200の処理を実行する。これは即ち、いずれか一方の圧縮機の運転だけで冷凍能力が十分に足りているので、モードBに切り替えるものである。
<<<制御モードAからCへの切り替え>>>
 前述した図5のステップS110において、タイマ315による計時時間tが所定時間Yより長いと判別した場合(S110:YES)、マイクロコンピュータ310は、以下述べる制御モードCの処理を実行する。つまり、検出温度TがT1及びT2の間にある時間が所定時間Yより長いことを以って、庫内の温度が設定温度範囲内で安定したと判別される。 
 制御モードCの運転におけるマイクロコンピュータ310の処理の手順は、前述と同様である(図7参照)。
 図12の最初の時間帯ts”において検出温度TがT1に達することなくT2から緩やかに上昇している間、第1圧縮機101の運転は、その運転時間が所定時間Yに達するまで(つまり、ts”=Yとなるまで)継続される。尚、ここでは、前述したように、運転中の第1圧縮機101にフラグ「1」が対応付けられているとともに、停止中の第2圧縮機201にはフラグ「0」が対応付けられている。
 第1圧縮機101の運転時間が所定時間Yに達すると、第1圧縮機101が停止されると同時に第2圧縮機201の運転が開始される。尚、ここでは、前述したように、先ず、フラグ「1」が対応付けられた第1圧縮機101が停止され、次に、運転中の第2圧縮機201にフラグ「1」が対応付けられるとともに、停止中の第1圧縮機101にはフラグ「0」が対応付けられる。
 以後、第1圧縮機101及び第2圧縮機201が所定時間Yごとに交互に運転される。これにより、1台のみを運転する期間の頻度を、各圧縮機101、201について同程度に維持できる。これは、冷凍装置1の寿命及びメインテナンス周期の長期化につながる。
 また、制御モードCでは2台の圧縮機101、201が交互に運転されるため、例えば前述した検出温度の変化等によって、故障した圧縮機の特定が容易となる。尚、制御モードCにおける各圧縮機101、201の運転時間は、前述した所定時間Yに限定されるものではなく、例えばこれと異なっていてもよい。
 尚、以上述べたA、B、Cの制御モードについて、現在その何れが行なわれているかは、例えばRAM313において各モードに予め対応付けられたフラグ(例えば0、1、2)として記憶されている。マイクロコンピュータ310は、適時このフラグを参照するようになっている。
===その他の実施の形態===
 前述した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更や改良等が可能であり、また本発明はその等価物も含むものである。
 前述した実施の形態では、第1圧縮機101及び第2圧縮機201の何れが運転中であるかを識別するために、RAM313において運転中の圧縮機を示す情報にフラグ「1」が対応付けられるとともに、停止中の圧縮機を示す情報にフラグ「0」が対応付けられて記憶されるものであったが、これに限定されるものではない。例えば、圧縮機101、201に夫々設けられている圧縮機リレー305a、305b及びリレー306a、306bが接続又は遮断の何れの状態であるかを検出するための所定の手段を通じて、圧縮機101、201の運転状態を識別するものであってもよい。
 前述した実施の形態では、圧縮機101、201の故障を報知する手段として、操作パネル32のディスプレイが用いられたが、これに限定されるものではない。このような報知手段は、要するに、利用者等に何れの圧縮機が故障しているかを報知するための手段であれば、如何なるものであってもよい。
 前述した実施の形態では、2基の冷媒回路として、図3に例示される第1冷媒回路100及び第2冷媒回路200が用いられたが、これに限定されるものではない。各冷媒回路は、要するに、圧縮機、凝縮器、減圧器、蒸発器を冷媒配管で環状に接続し、冷却作用を得るために圧縮機から吐出された冷媒を凝縮器で凝縮させた後に蒸発器で蒸発させる冷媒回路であれば、如何なるものであってもよい。
[第2実施形態]
 圧縮機、凝縮器、減圧装置、及び蒸発器を有する冷媒回路を2基備えた冷凍装置が知られている。
 2基の冷媒回路のそれぞれにおいて冷媒が圧縮され凝縮された後に蒸発することによって、例えば2つの蒸発器に共通に熱接触している冷却対象が冷却される。
 このような冷凍装置は、2基の冷媒回路それぞれの凝縮器での熱交換を促進するために、各凝縮器を冷却するためのファンを備えている。つまり、2基の冷媒回路が有する2つの凝縮器は、2つのファンによってそれぞれ個別に冷却されるようになっている。
 ところで、前述した冷凍装置において、もし2つのファンのうちの一方が例えばファンモータの故障等によって停止した場合、このファンに対応する凝縮器では、冷媒と空気との熱交換量が低下する。このため、凝縮器における冷媒の凝縮量が低下して、蒸発器における冷媒の吸熱量(蒸発量)が低下する。これは、冷媒回路の冷却能力の低下を招く。
 このように、停止したファンに対応する凝縮器を有する冷媒回路の冷却能力が低下した場合、冷凍装置は、2基の冷媒回路を備えているにもかかわらず、1基の冷媒回路のみを備えた場合と実質的に同じになり、冷却能力が半減する。
 一方のファンが故障して停止すると、高圧側での冷媒圧力が高くなり、保護装置が作動し、動作中の圧縮機を停止させてしまう。ファンの故障後の冷凍装置の冷却能力は、1基の冷媒回路のみを備えた場合と同程度のレベルまで下がってしまう。
 そこで、本発明は、冷凍装置の2基の冷媒回路の動作中に2つのファンの一方が停止しても、冷凍装置の冷却能力を1基の冷媒回路のみで運転した場合よりも高い能力に維持することを目的とする。
===冷凍装置===
 第2実施形態の冷凍装置は第1実施形態の図1及び図2に示す構成と同一の構成を備えていることとし、同一符号に対する説明は省略する。尚、操作パネル32は、例えば、第1圧縮機101及び第2圧縮機201や、貯蔵室51に設けられた所定の温度センサ(不図示)等を統括制御する制御部(例えば制御基板301)に対し、所定の配線(不図示)を介して電気的に接続されている。
 尚、第2実施形態では、内箱5の冷却効率を高めるべく、図13に例示されるように、内箱5の外面と、外箱2の内面とを所定距離だけ離間させて、その間隙に断熱材6が充填されている。この断熱材6は、例えば、ポリウレタン樹脂断熱材や、ガラスウール製の真空断熱材等である。また、図13に例示されるように、外扉3の内側にも断熱材6が充填されており、これによって、内扉51aと、外扉3との間の断熱が図られる。更に、図1及び図2に例示されるように、内箱5と、機械室4とについても、所定距離だけ離間されて、前述と同様の断熱が図られている。
===冷媒回路===
 第2実施形態の冷媒回路は第1実施形態の図3に示される冷媒回廊150と同一の構成を備えていることとし、第2実施形態の冷媒回路を制御する制御回路は第1実施形態の制御回路300と略同一の構成を備えている。つまり、第1実施形態の場合、温度センサ307が制御基板301に接続されるが、第2実施形態の場合、温度センサ307の代わりに、第1圧縮機温度センサ307A、第2圧縮機温度センサ307B、第1温度センサ307C、第2温度センサ307D、第1センサ307E、第2センサ307Fが制御基板301に接続される。尚、同一符号に対する説明は省略する。
 第1実施形態の図3及び図4と第2実施形態の図14を参照しつつ、第2実施形態の冷媒回路150の構成例について説明する。図14(a)は、図3の冷媒回路150における第1圧縮機101及び第2圧縮機201と、第1ファン105及び第2ファン205と、凝縮ユニット152との配置例を示す平面図である。尚、この平面図は、図1のB-B’において矢印の方向に見た場合の図である。図14(b)は、図14(a)の凝縮ユニット152の正面図である。尚、この正面図における点線は、プレコンデンサ102及びコンデンサ104を、図14のC-C’において矢印の方向に見た場合の図である。
 第2実施形態において、冷媒回路150に使用される冷媒は、例えば、R245fa、R600、R23、及びR14を有する非共沸混合冷媒である。ここで、R245faは、ペンタフルオロプロパン(CHF2CH2CF3)を意味し、沸点は+15.3℃である。R600は、ノルマルブタン(n-C4H10)を意味し、沸点は-0.5℃である。R23は、トリフルオロメタン(CHF3)を意味し、沸点は-82.1℃である。R14は、テトラフルオロメタン(CF4)を意味し、沸点は-127.9℃である。
 尚、R600は、沸点(蒸発温度)が高く、オイルや水等を含有し易いものである。また、R245faは、可燃性のR600と所定比率(例えばR245faとR600とが7:3)で混合することにより、これを不燃化するための冷媒である。
 第1冷媒回路100においては、第1圧縮機101で圧縮された冷媒は、プレコンデンサ102及びコンデンサ104で放熱し凝縮して液相となった後、デハイドレータ106で水分除去の処理が施された後、分流器107で液体の状態の冷媒(主に沸点の高いR245fa、R600)と、気体の状態の冷媒(R23、R14)とに分流される。尚、第2実施形態では、プレコンデンサ102で放熱した冷媒は、オイルクーラ101aで第1圧縮機101内のオイルを冷却した後、再度、コンデンサ104で放熱する。
 分流された液体の状態の冷媒(主にR245fa、R600)は、減圧器108で減圧された後に、熱交換器109の外側管109aにおいて蒸発する。
 分流された気体の状態の冷媒(R23、R14)は、熱交換器109の内側管109bを通過する間、前述した外側管109aで蒸発した冷媒(R245fa、R600)の気化熱と、後述する第1蒸発器111からの戻りである気相の冷媒(R23、R14)とによって冷却されて凝縮し、液体の状態になる。この時、第1蒸発器111で蒸発しなかった冷媒が蒸発する。 
 尚、以上は、第2冷媒回路200についても同様である。
 また、前述したように、R245faの沸点はおよそ15℃であり、R600の沸点はおよそ0℃であり、R23の沸点はおよそ-82℃であり、R14の沸点はおよそ-128℃であるため、冷媒回路100及び200では非共沸混合冷媒のうちのR23及びR14をR600の蒸発作用で冷却し、液相となったR23、R14を蒸発ユニット153(第1蒸発器111及び第2蒸発器211)に導いて蒸発させることにより、冷却対象を例えばR23及びR14の沸点に相当する温度(例えばおよそ-82℃乃至-128℃)まで冷却することができる。尚、第1蒸発器111及び第2蒸発器211での未蒸発冷媒は熱交換器109、209で蒸発するものである。
<<<凝縮ユニット、ファン、圧縮機>>>
 図14(a)に例示されるように、冷凍装置1には、第1冷媒回路100のプレコンデンサ102及びコンデンサ104と、第2冷媒回路200のプレコンデンサ202及びコンデンサ204とを冷却するための第1ファン105及び第2ファン205が設けられている。尚、第2実施形態の第1ファン105及び第2ファン205は、ファンモータ105a、205aをそれぞれ有するプロペラ式の送風装置である。第1ファン105及び第2ファン205は、機械室4をなす筐体をファンケーシングに見立てて、風の流れる1つの風路を構成している。
 また、図14(a)に例示されるように、第1冷媒回路100のプレコンデンサ102及びコンデンサ104と、第2冷媒回路200のプレコンデンサ202及びコンデンサ204とは、略直方形状の共通の管板152aによりまとめられて凝縮ユニット152を構成している。また、図14(b)に例示されるように、プレコンデンサ102及びコンデンサ104のそれぞれは、凝縮ユニット152の略矩形状の正面と平行に蛇行する冷媒流路を形成している。この構成は、プレコンデンサ202及びコンデンサ204についても同様であり、これら4つのコンデンサ102、104、202、204は、凝縮ユニット152において、その略矩形状の正面と平行に、正面から背面にかけて並列(4列)に形成されている。そして、これら4列のコンデンサ102、104、202、204のそれぞれは、凝縮ユニット152の背後に並列して設置された第1ファン105及び第2ファン205の双方と対向するように設置されている。即ち、図14(b)において点線で図示したプレコンデンサ102及びコンデンサ104は、略直方形状の凝縮ユニット152において、同図の紙面の左端から右端にかけて延在し各端部で折り返して蛇行するとともに、同図の紙面の上側から下側にかけて延在している。また、図14(b)に図示していないプレコンデンサ202及びコンデンサ204も、同様の形状をなしている。更に、プレコンデンサ102及びコンデンサ104は、略直方形状をなす凝縮ユニット152において、図14(a)の紙面の下側から2列目及び4列目に並列に配置されており、プレコンデンサ202及びコンデンサ204は、略直方形状をなす凝縮ユニット152において、同図の紙面の下側から1列目及び3列目に並列に配置されている。
 尚、このような構成に限定されるものではなく、プレコンデンサ102及びコンデンサ104は、略直方形状の凝縮ユニット152において、図14(b)の紙面の左端から、例えば凝縮ユニット152の左右方向の中央部を越えた位置にかけて延在し、前記左端及び前記中央部を越えた位置のそれぞれで折り返して蛇行してもよい。つまり、プレコンデンサ102及びコンデンサ104は、例えば、第1ファン105に対してはその略全部が対向しているが、第2ファン205に対してはその一部が対向する形状をなすものであってもよい。以上は、プレコンデンサ202及びコンデンサ204についても同様である。
 更に、図14(a)に例示されるように、第1ファン105及び第2ファン205の双方は、凝縮ユニット152の背面に対向するように並列に配置されている。また、第1圧縮機101は第1ファン105の背後に配置され、第2圧縮機201は第2ファン205の背後に配置されている。尚、同図に例示される、凝縮ユニット152と、第1ファン105及び第2ファン205と、第1圧縮機101及び第2圧縮機201とは、同一水平面上に配置されている。
 このような配置によって、第2実施形態では、第1ファン105は、例えば、凝縮ユニット152の背面の略全面に沿うとともに、この第1ファン105を経由して、第2圧縮機201の少なくとも一部を含む第1圧縮機101の略全体をカバーする送風路を形成するようになっている。同様に、第2実施形態では、第2ファン205は、例えば、凝縮ユニット152の背面の略全面に沿うとともに、この第2ファン205を経由して、第1圧縮機101の少なくとも一部を含む第2圧縮機201の略全体をカバーする送風路を形成するようになっている。
 尚、第2実施形態では、第1ファン105及び第2ファン205による送風の方向は、冷凍装置1の正面から背面に向かう方向である(図14(a)の白抜きの矢印)。
<<<制御回路>>>
 制御基板301内のマイクロコンピュータ310は、第1圧縮機温度センサ307A及び第2圧縮機温度センサ307Bからの検出信号に基づいて2つのリレー306a、306bをそれぞれ開閉するための制御信号を出力したり、ファンモータ105a、205aの運転を開始又は停止するための制御信号を出力したりする。また、第1圧縮機温度センサ307Aは、第1圧縮機101の温度を検出し、第2圧縮機温度センサ307Bは、第2圧縮機201の温度を検出する。
 マイクロコンピュータ310は、第1圧縮機101の動作中に、第1圧縮機温度センサ307Aにより検出された第1圧縮機101の温度が所定温度を超えたことを検出すると、第1圧縮機101に対応するリレー306aを通じて同機101に対応する圧縮機リレー305aを動作させることにより、同機101に対する3相電圧の入力を遮断するようになっている。これは、第1圧縮機101の温度上昇に係る保護回路として機能するものであり、第2圧縮機201についても同様である。尚、第1圧縮機101及び第2圧縮機201は、電源スイッチ304をオンにした時点で、3相の電源ケーブル303から電力が供給されて、冷媒の圧縮動作を開始するようになっている。また、不図示ではあるが、マイクロコンピュータ310は、例えば、第1温度センサ307Cにより検出された庫内の温度と予め定められた温度とを比較し、その比較結果に応じて、第1圧縮機101のモータ(不図示)の回転速度を制御するようになっている。これは、庫内の温度に応じて第1圧縮機101の圧縮能力を制御するものであり、第2圧縮機201についても同様である。尚、第1温度センサ307C及び第2温度センサ307Dは、同一のセンサであってもよい。
 一方、図4に例示されるように、マイクロコンピュータ310は、以上述べた第1圧縮機101及び第2圧縮機201の制御とは別々に、ファンモータ105a、205aを制御するようになっている。また、不図示ではあるが、マイクロコンピュータ310は、例えば第1センサ307Eにより検出された第1ファン105の温度が予め定められた温度を越えたことを検出すると、ファンモータ105aの運転を停止するようになっている。これは、第1ファン105の温度上昇に係る保護回路として機能するものであり、第2ファン205についても同様である。尚、第1センサ307E及び第2センサ307Fは、例えば双方のファンモータ105a、205aの近傍に設けられる単一のセンサで共用していてもよい。
 つまり、第2実施形態では、例えばファンモータ105a、205aが故障しても、動作中の第1圧縮機101及び第2圧縮機201は、これとは無関係に冷媒の圧縮動作を継続するようになっている。
 以上述べた構成によれば、第1及び第2凝縮器は、第1ファン105により形成される送風路と、第2ファン205により形成される送風路とが同一になる領域に配置されるため、一方のファンからの送風が停止しても他方のファンからの送風によって双方の凝縮器が冷却される。また、第1圧縮機101は第1ファン105と対向するように配置され、第2圧縮機201は第2ファン205と対向するように配置されている。
 また、並列する第1ファン105及び第2ファン205は、同じ風路内において、第1圧縮機101及び第2圧縮機201とそれぞれ対向するように配置されているため、第1ファン105及び第2ファン205の何れか一方が回転すれば、これと対向していない圧縮機(第1圧縮機101又は第2圧縮機201)であっても、少なくともその一部に対して送風されて冷却される。
 更に、制御回路300においては、例えばファンモータ105a、205aが故障しても、圧縮動作中の第1圧縮機101及び第2圧縮機201はこれとは関係なく動作を継続するように構成されている。つまり、第1ファン105及び第2ファン205は、第1圧縮機101及び第2圧縮機201とは個別に回転する。
 以上から、冷凍装置1の動作中にたとえ一方のファン(第1ファン105又は第2ファン205)が停止したとしても、その冷却能力は、1基の冷媒回路のみによる能力を超えた冷却能力に維持される。
 以上説明したように、第2実施形態の冷凍装置1は、少なくとも、第1圧縮機101と、第1凝縮器(プレコンデンサ102やコンデンサ104等)と、第1蒸発器111とを有する第1冷媒回路100と、第2圧縮機201と、第2凝縮器(プレコンデンサ202やコンデンサ204等)と、第2蒸発器211とを有する第2冷媒回路200と、第1圧縮機101及び第2圧縮機201とは個別に動作する第1ファン105と、第1圧縮機101及び第2圧縮機201とは個別に動作する第2ファン205とを備え、第1及び第2凝縮器と第1ファン105及び第2ファン205とは、第1冷媒回路100及び第2冷媒回路200が共に動作しているときに一方のファン(第1ファン105又は第2ファン205)が停止した場合、他方のファンが第1凝縮器及び第2凝縮器を共に冷却するように配置されていればよい。
 この冷凍装置1によれば、第1冷媒回路100及び第2冷媒回路200の動作中に第1ファン105及び第2ファン205の一方が停止しても、他方によって第1及び第2凝縮器が共に冷却されつつ、双方の冷媒回路100、200の動作が継続される。よって、2基の冷媒回路100、200を備えた冷凍装置1の冷却能力は、たとえ一方のファンが停止しても、例えば1基の冷媒回路のみを備えた場合よりも高く維持され得る。
 また、前述した冷凍装置1において、第1及び第2圧縮機と第1ファン105及び第2ファン205とは、第1冷媒回路100及び第2冷媒回路200が共に動作しているときに一方のファンが停止した場合、他方のファンが第1圧縮機101及び第2圧縮機201を共に冷却するように配置されている。
 この冷凍装置1によれば、第1冷媒回路100及び第2冷媒回路200の動作中にたとえ一方のファンが停止しても、他方のファンによって第1圧縮機101及び第2圧縮機201が冷却され圧縮機の温度の上昇を抑制できるものである。
 また、前述した冷凍装置1において、第1ファン105及び第2ファン205は、並列に配置され、第1及び第2凝縮器は、第1ファン105及び第2ファン205に共に相対向するように配置されている。
 この冷凍装置1によれば、第1及び第2凝縮器は、第1ファン105により形成される送風路と、第2ファン205により形成される送風路とが同一になる領域に配置されるため、一方のファンからの送風が停止しても他方のファンからの送風によって双方の凝縮器が冷却される。
===その他の実施の形態===
 前述した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更や改良等が可能であり、また本発明はその等価物も含むものである。
 前述した実施の形態では、第1冷媒回路100及び第2冷媒回路200は、略同一の単元冷媒回路であったが、これに限定されるものではなく、例えば互いに異なる構成や能力等を有するものであってもよい。
 前述した実施の形態では、熱交換器109、209は、外側管109a、209a及び内側管109b、209bを有する2重管式のものであったが、これに限定されるものではなく、例えば多管式のもの、プレート式のものであってもよい。
 前述した実施の形態では、冷媒は、R245fa、R600、R23、及びR14を有する非共沸混合冷媒であったが、これに限定されるものではない。例えば、R245fa及びR600は、これが凝縮ユニット152で凝縮されると略液体の状態になるような沸点を有するものであればよい。また、例えば、R23及びR14は、これらが凝縮ユニット152で凝縮されても略気体の状態のままであるが、熱交換器109、209で略液体の状態になるような沸点を有する冷媒であればよい。
 前述した実施の形態では、凝縮ユニット152と、第1ファン105及び第2ファン205とは、同一水平面上に配置されていたが、これに限定されるものではない。例えば、これらの配置面に段差があっても、各ファン(第1ファン105又は第2ファン205)が凝縮ユニット152に送風可能な配置及び姿勢をとっていればよい。
 前述した実施の形態では、第1ファン105及び第2ファン205は、ファンモータ105a、205aをそれぞれ有するプロペラ式の送風装置であったが、これに限定されるものではない。各ファンは、要するに、凝縮ユニット152を冷却するための所定の構成を有していればよい。
 そして、第1実施形態の冷凍装置に対して第2実施形態の冷凍装置を適用することも可能である。
[第3実施形態]
 圧縮機、凝縮器、減圧器、及び蒸発器を有する冷媒回路を2基備えた冷凍装置が知られている。2基の冷媒回路の夫々において、圧縮機から吐出された冷媒は、凝縮器で冷却されて液化した後に減圧器を経て蒸発器で蒸発することによって、例えば2つの蒸発器に共通して熱接触している低温貯蔵庫の庫内が冷却される。
 この冷凍装置は、2基の冷媒回路夫々の凝縮器について冷媒の冷却を促進するためのファンを備えている。つまり、2基の冷媒回路が有する2つの凝縮器に対して、2つのファンが夫々個別に送風して、周囲の空気と冷媒との熱交換を促進するようになっている。
 このように、凝縮器の熱交換に対するファンの役割は重要であるため、冷凍装置は、各ファンを回転させるファンモータが故障したか否かを常時監視している。冷凍装置は、例えば、所定の温度センサを通じて2つの凝縮器の出口部の温度を夫々検出しており、例えば一方の凝縮器の出口部の温度が所定温度を超えた場合、該当のファンモータが故障したと判断する。このような故障検出の方法は、ファンモータが故障してファンが停止すると、凝縮器は十分に冷却されないため、その出口部の温度が上昇するというファン及び凝縮器の関係によるものである。冷凍装置は、ファンモータの故障を検出すると、所定の報知手段を通じて利用者等にその旨を報知する。
 ところで、前述した冷凍装置では、2つのファンのうちの例えば一方がファンモータの故障によって停止した場合、このファンが本来送風するべき凝縮器の冷媒と空気との熱交換量が低下するため、同凝縮器における冷媒の凝縮量が低下する。これは、該当の冷媒回路の蒸発器における冷媒の吸熱量(蒸発量)を低下させ、よって冷凍装置の冷却能力の低下を招くという問題がある。
 また、前述したように、凝縮器の出口部の温度の上昇を以って該当のファンモータが故障していると判断する場合、このような故障検出及び報知の時点で既に冷凍装置の冷却能力は低下しているため、当該故障検出及び報知が冷凍装置の冷却能力の低下の抑制につながらないという問題がある。
 そこで、本発明は、ファンモータの故障に起因する冷凍装置の冷却能力の低下を抑制することを目的とする。
===冷凍装置の構成===
 図15及び図16を参照しつつ、第3実施形態の冷凍装置1Aの構成例について説明する。図15は、第3実施形態の冷凍装置1Aの第1冷媒回路10A及び第2冷媒回路20Aの一例を示す回路図である。図16は、第3実施形態の第1冷媒回路10A及び第2冷媒回路20Aの制御を司る制御回路の一例を示すブロック図である。
 図15び図16に例示されるように、冷凍装置1Aは、略同一の2基の冷媒回路(第1冷媒回路10A及び第2冷媒回路20A)と、低温貯蔵庫2Aの庫内の温度を検出する第1温度センサ2Aa及び第2温度センサ2Abと、第1ファン14A及び第1ファンモータ14Aaと、第2ファン24A及び第2ファンモータ24Aaと、第1ファンモータ14Aaの温度ヒューズ141A(第3温度センサ)と、第2ファンモータ24Aaの温度ヒューズ241A(第4温度センサ)と、第1ファンモータ14Aaの電流を検出する第1電流トランス142A(検出装置)と、第2ファンモータ24Aaの電流を検出する第2電流トランス242A(検出装置)と、マイクロコンピュータ31A(制御装置)とを備えている。また、この冷凍装置1Aは、コンデンサ13Aの出口部の温度及びコンデンサ23Aの出口部の温度を夫々検出する温度センサ131A及び温度センサ231Aを備え、更に、利用者等に対しファンモータ14Aa、24Aaの故障を報知するための手段として、ディスプレイ(報知装置)41A及びブザー42A(報知装置)を備えている。
 第1冷媒回路10Aは、図15に例示されるように、第1圧縮機11Aと、プレコンデンサ12A及びコンデンサ13A(第1凝縮器)と、第1減圧器15Aと、第1蒸発器16Aとを備えて、第1圧縮機11Aから吐出された冷媒が再び同圧縮機11Aに戻るように所定の配管(第1冷媒配管)で環状に構成されている。
 第1圧縮機11Aは、吸込んだ冷媒を圧縮してプレコンデンサ12Aに吐出する。
 プレコンデンサ12Aは、第1圧縮機11Aから吐出される冷媒を放熱させるための例えば銅又はアルミニウム製の管を蛇行させたものである。
 コンデンサ13Aは、プレコンデンサ12Aから出力される冷媒を更に放熱させるための例えば銅又はアルミニウム製の管を蛇行させたものである。
 第1減圧器15Aは、コンデンサ13Aで放熱して凝縮し液相になった冷媒を減圧して、第1蒸発器16Aに出力する例えばキャピラリチューブである。
 第1蒸発器16Aは、第1減圧器15Aによって減圧された冷媒を蒸発(気化)させるための例えば銅又はアルミニウム製の管であり、冷凍装置1Aの低温貯蔵庫2Aの外面に熱的に接触するように取り付けられている。つまり、冷媒が第1蒸発器16Aで蒸発する際の冷却作用によって、低温貯蔵庫2Aの庫内を冷やすようになっている。この蒸発して気相となった冷媒は、第1圧縮機11Aに吸い込まれる。
 以上は、第2冷媒回路20Aについても同様である。第2冷媒回路20Aは、第2圧縮機21Aと、プレコンデンサ22A及びコンデンサ23A(第2凝縮器)と、第2減圧器25Aと、第2蒸発器26Aとを備えて、第2圧縮機21Aから吐出された冷媒が再び同圧縮機21Aに戻るように所定の配管(第2冷媒配管)で環状に構成されている。
 尚、コンデンサ13A、23Aは、例えば同じ管板に一体に構成されており、当該管板において、後述するように、第1ファン14A及び第2ファン24Aの同一風路内に近接して順に配置されている。また、コンデンサ13Aの出口部及びコンデンサ23Aの出口部には、前述した温度センサ131A及び温度センサ231Aが夫々取り付けられており、これらの温度センサ131A、231Aは、図16に例示されるように、制御基板30Aと電気的に接続されている。更に、第1蒸発器16A及び第2蒸発器26Aは、低温貯蔵庫2Aの庫内を同時に冷却するように配置されている。つまり、第1蒸発器16A及び第2蒸発器26Aは、それぞれが1本の蒸発パイプ(不図示)から構成されており、これら2本の蒸発パイプが、例えば、互いに重ならないように低温貯蔵庫2の外面に対し熱的に接触するように貼付されている。
 第1温度センサ2Aa及び第2温度センサ2Abは、図16に例示されるように、制御基板30Aと電気的に接続されている。第1温度センサ2Aaは第1冷媒回路10Aの第1圧縮機11Aを制御するためのセンサであり、第2温度センサ2Abは第2冷媒回路20Aの第2圧縮機21Aを制御するためのセンサであるが、双方のセンサ2Aa、2Abは同一の低温貯蔵庫2Aの庫内の温度を検出している。尚、双方のセンサ2Aa、2Abは単一のセンサで共用されるものであってもよい。
 第1ファン14A及び第2ファン24Aは、図15に例示されるように、コンデンサ13A及びコンデンサ23Aに夫々送風することによって、冷媒の放熱を促進するための送風機である。図15に模式的に例示されるように、並置された第1ファン14A及び第2ファン24Aによって形成される同一の風路内にはコンデンサ13A、23Aが近接して順に配置されており、各ファン14A、24Aは双方のコンデンサ13A、23Aに送風可能に並列に配置されている。また、図15に模式的に例示されるように、第1ファン14A及び第2ファン24Aは、第1圧縮機11A及び第2圧縮機21Aに夫々相対向するように配置されている。尚、第3実施形態では、第1ファン14A及び第2ファン24Aの送風の方向は、コンデンサ13A、23Aから圧縮機11A、21Aに向かう方向である(図15の白抜きの矢印参照)。
 第1ファンモータ14Aa及び第2ファンモータ24Aaは、図15に例示されるように、第1ファン14A及び第2ファン24Aを夫々回転させる動力源である。また、図16に例示されるように、第1ファンモータ14Aaは内部に温度ヒューズ141Aを有しており、第2ファンモータ24Aaは内部に温度ヒューズ241Aを有している。第3実施形態では、温度ヒューズ141A、241Aは、第1冷媒回路10A及び第2冷媒回路20Aの稼動中に第1ファン14A及び第2ファン24Aの双方が停止してコンデンサ13A、23Aの温度が上昇することに伴い第1ファンモータ14Aa及び第2ファンモータ24Aaの温度が上昇することによって遮断されるように構成されている。
 第1電流トランス142A及び第2電流トランス242Aは、図16に例示されるように、制御基板30Aに搭載されており、第1ファンモータ14Aaを流れる電流及び第2ファンモータ24Aaを流れる電流を夫々電圧に変換して、これらの電圧値をマイクロコンピュータ31Aに出力するトランスである。これらの電流トランス142A、242Aは、ファンモータ14Aa、24Aaと夫々直列に接続されている。例えばファンモータ14Aa、24Aaにロック電流が流れている場合、該当する電流トランス142A、242Aの電圧値はロック電流に応じた値になり、例えばファンモータ14Aa、24Aaに係る回路の断線等のために電流が流れていない場合、該当する電流トランス142A、242Aの電圧値は0となる。つまり、電流トランス142A、242Aの電圧値を参照することによって、ファンモータ14Aa、24Aの運転状態を夫々直接検出することができる。これにより、ファンモータ14Aa、24Aaの故障検出の精度が向上する。
 マイクロコンピュータ31Aは、図16に例示されるように、制御基板30Aに搭載されており、第1温度センサ2Aa及び第2温度センサ2Abの検出出力に応じて第1圧縮機11A及び第2圧縮機21Aの運転を制御し、温度ヒューズ141A、241Aの遮断・不遮断に応じて第1ファンモータ14Aa及び第2ファンモータ24Aaの運転を制御するとともに、第1電流トランス142A及び第2電流トランス242Aの検出出力に基づいて第1ファンモータ14Aa及び第2ファンモータ24Aaの運転状態を監視するべく、CPU311A、ROM312A、RAM313A等を有している。ここで、CPU311Aは、前述した制御や監視等に係る処理を実行し、ROM312Aは、CPU311Aがこのような処理を実行するためのプログラム等を記憶し、RAM313Aは、このような処理に必要なデータを記憶する。
 このマイクロコンピュータ31Aは、例えば、第1冷媒回路10Aの稼動中に、第1温度センサ2Aaにより検出された庫内の温度と予めRAM313Aに記憶された所定温度とを比較し、庫内の温度が所定温度以下であると判別すると、所定のリレー(不図示)を通じて第1圧縮機11Aの運転を停止し、庫内の温度が所定温度より高いと判別すると、所定のリレーを通じて第1圧縮機11Aの運転を開始する。これは、第2温度センサ2Abの検出出力に基づく第2圧縮機21Aの運転の制御においても同様である。但し、これに限定されるものではなく、例えば庫内の温度が所定温度以下であると判別された場合、何れか一方の圧縮機11A、21Aの運転が停止されるものであってもよい。このように、低温貯蔵庫2Aの庫内の温度を一定にするために、マイクロコンピュータ31Aは、第1圧縮機11A及び第2圧縮機21Aを断続的に運転する。
 また、このマイクロコンピュータ31Aは、例えば、前述した第1ファンモータ14Aaの温度ヒューズ141Aの遮断を、第1電流トランス142Aの電圧値が0であることを以って検出すると、所定のリレー(不図示)を通じて第1ファンモータ14Aaに対する電圧の印加を停止する。これは、第2ファンモータ24Aaの温度ヒューズ241Aの遮断に基づく第2ファンモータ24Aaへの電圧印加の停止においても同様である。
 尚、図16に例示されるように、第1圧縮機11A、第2圧縮機21A、第1ファンモータ14Aa、第2ファンモータ24Aa、及びスイッチング電源32Aには、三相の電源ケーブル33A及び電源スイッチ34Aを通じて電力が供給される。また、制御基板30A等には、スイッチング電源32Aから電力が供給される。
 以上、図15に例示されるように、第1ファン14A及び第2ファン24Aは、コンデンサ13Aに相対向して配置されているため、一方のファンからの送風が停止しても他方のファンからの送風によってコンデンサ13Aが冷却される。これは、コンデンサ23Aについても同様である。また、図15に例示されるように、並列する第1ファン14A及び第2ファン24Aは第1圧縮機11A及び第2圧縮機21Aと夫々相対向するように配置されているため、ファン14A、24Aの何れか一方が回転していれば、これと対向していない圧縮機11A、21Aに対しても、少なくともその一部が送風されて冷却される。更に、図16に例示されるように、第1ファンモータ14Aa及び第2ファンモータ24Aaへの電力供給の停止は、夫々の内部の温度ヒューズ141A、241Aの遮断を通じて行なわれる一方、第1圧縮機11A及び第2圧縮機21Aへの電力供給の停止は、第1温度センサ2Aa及び第2温度センサ2Abの検出出力に基づいてマイクロコンピュータ31Aによって行なわれる。つまり、ファンモータ14Aa、24Aaの運転制御と、圧縮機11A、21Aの運転制御とは相互に無関係である。よって、冷凍装置1Aの動作中にたとえ一方のファン14A、24Aが停止したとしても、該当する冷媒回路10A、20Aの圧縮機11A、21Aの運転がこれに連動して停止されることはないため、冷凍装置1Aの冷却能力は、1基の冷媒回路10A、20Aのみによる能力を超えた冷却能力に維持される。
===冷凍装置の動作===
 図17を参照しつつ、前述した構成を備えた冷凍装置1Aが第1ファンモータ14Aa及び第2ファンモータ24Aaの故障を検出しその旨を報知する動作について説明する。同図は、第3実施形態の冷凍装置1Aによる故障検出及び報知の際のマイクロコンピュータ31Aの処理手順の一例を示すフローチャートである。
 マイクロコンピュータ31Aは、第1電流トランス142A及び第2電流トランス242Aから夫々出力される電圧の値A、Bの差分値の絶対値を求める(S400)。
 マイクロコンピュータ31Aは、ステップS400で求めた差分値の絶対値が、予めRAM313Aに記憶された所定値X以上であるか否かを判別する(S401)。尚、この所定値Xは、第1ファンモータ14Aa及び第2ファンモータ24Aaのうちの一方が停止し他方が回転している場合に発生し得る第1電流トランス142A及び第2電流トランス242Aの間の電圧差に基づいて予め定められた値である。本実施の形態の所定値Xは、例えば、以下の2つの値のうちの小さい方である。即ち、第1の値は、2つのファンモータ14Aa、24Aaのうちの停止した一方に流れるロック電流に対応する電圧値から、2つのファンモータ14Aa、24Aaのうちの回転している他方に流れる電流に対応する電圧値を減算した値である。第2の値は、2つのファンモータ14Aa、24Aaのうちの回転している一方に流れる電流に対応する電圧値である。尚、この場合、2つのファンモータ14Aa、24Aaのうちの停止した他方には電流は流れていないため、これに対応する電圧値は0である。
 ステップS400で求めた差分値の絶対値が所定値X未満であると判別した場合(S401:NO)、マイクロコンピュータ31Aは、ステップS400の処理を再度実行する。つまり、2つのファンモータ14Aa、24Aaの運転状態は双方が回転している状態であると判別して、マイクロコンピュータ31Aは、ファンモータ14Aa、24Aaの運転状態の監視を継続する。
 ステップS400で求めた差分値の絶対値が所定値X以上であると判別した場合(S401:YES)、マイクロコンピュータ31Aは、第1電流トランス142A及び第2電流トランス242Aの夫々から出力される電圧の値A、Bを、該当のファンモータ14Aa、24Aaを示す情報と対応付けてRAM313Aに記憶させる(S402)。つまり、2つのファンモータ14Aa、24Aaの運転状態は一方が停止し他方が回転している状態であると判別して、マイクロコンピュータ31Aは、以下述べるように、各電流トランス142A、242Aの個別の電圧値A、Bに基づいて、何れのファンモータ14Aa、24Aaが故障しているかを判別する。
 マイクロコンピュータ31Aは、第1ファンモータ14Aaに対応する第1電流トランス142Aの電圧値Aが、予めRAM313Aに記憶された所定値Y以上であるか否かを判別する(S403)。尚、この所定値Yは、第1ファンモータ14Aaが停止して第1電流トランス142Aにロック電流が流れている場合の当該ロック電流に対応する電圧値である。第1電流トランス142Aの電圧値Aが所定値Y以上であると判別した場合(S403:YES)、マイクロコンピュータ31Aは、第1ファンモータ14Aa(Aに対応するモータ)が故障している旨をディスプレイ41Aを通じて表示するとともに、ブザー42Aを例えば所定のタイマ(不図示)で計時される所定時間だけ鳴らし(S404)、後述するステップS405の処理を実行する。つまり、この場合、第1ファンモータ14Aaのロックのために、少なくとも第1ファン14Aは停止していると判別されて、この判別結果が利用者等に報知される。
 第1電流トランス142Aの電圧値Aが所定値Y未満であると判別した場合(S403:NO)、マイクロコンピュータ31Aは、第2ファンモータ24Aaに対応する第2電流トランス242Aの電圧値Bが、予めRAM313Aに記憶された所定値Y以上であるか否かを判別する(S408)。尚、この所定値Yは、第2ファンモータ24Aaが停止して第2電流トランス242Aにロック電流が流れている場合の当該ロック電流に対応する電圧値である。第2電流トランス242Aの電圧値Bが所定値Y以上であると判別した場合(S408:YES)、マイクロコンピュータ31Aは、第2ファンモータ24Aa(Bに対応するモータ)が故障している旨をディスプレイ41Aを通じて表示するとともに、ブザー42Aを例えば所定時間だけ鳴らし(S409)、後述するステップS405の処理を実行する。つまり、この場合、第2ファンモータ24Aaのロックのために、少なくとも第2ファン24Aは停止していると判別されて、この判別結果が利用者等に報知される。
 第2電流トランス242Aの電圧値Bが所定値Y未満であると判別した場合(S408:NO)、マイクロコンピュータ31Aは、第1ファンモータ14Aaに対応する第1電流トランス142Aの電圧値Aが0であるか否かを判別する(S410)。第1電流トランス142Aの電圧値Aが0であると判別した場合(S410:YES)、マイクロコンピュータ31Aは、第1ファンモータ14Aa(Aに対応するモータ)が故障している旨をディスプレイ41Aを通じて表示するとともに、ブザー42Aを例えば所定時間だけ鳴らし(S411)、後述するステップS405の処理を実行する。つまり、この場合、第1ファンモータ14Aaに係る例えば回路の断線等のために、少なくとも第1ファン14Aは停止していると判別されて、この判別結果が利用者等に報知される。
 第1電流トランス142Aの電圧値Aが0ではない(即ち0より大きい)と判別した場合(S410:NO)、マイクロコンピュータ31Aは、第2ファンモータ24Aaに対応する第2電流トランス242Aの電圧値Bが0であるか否かを判別する(S412)。第2電流トランス242Aの電圧値Bが0であると判別した場合(S412:YES)、マイクロコンピュータ31Aは、第2ファンモータ24Aa(Bに対応するモータ)が故障している旨をディスプレイ41Aを通じて表示するとともに、ブザー42Aを例えば所定時間だけ鳴らし(S413)、後述するステップS405の処理を実行する。つまり、この場合、第2ファンモータ24Aaに係る例えば回路の断線等のために、少なくとも第2ファン24Aは停止していると判別されて、この判別結果が利用者等に報知される。
 第2電流トランス242Aの電圧値Bが0ではない(即ち0より大きい)と判別した場合(S412:NO)、マイクロコンピュータ31Aは、ステップS402の処理を再度実行する。つまり、マイクロコンピュータ31Aは、第1電流トランス142A及び第2電流トランス242Aの夫々の電圧値A、Bを新たにサンプリングし、この新たな電圧値A、Bに基づいて、何れのファンモータ14Aa、24Aaが故障しているかを再度判別する。
 以上、2つのファンモータ14Aa、24Aaのうちの一方が故障した時点でその旨が報知されるため、他方が稼動して双方のコンデンサ13A、23Aの熱交換量が維持されている間に、報知を受けた利用者等は、故障した一方を特定するとともにこれを修理・交換することができる。これは、冷凍装置1Aの冷却能力の低下の抑制につながる。尚、ブザー42Aを所定時間鳴らすことは、利用者等に対しディスプレイ41Aの表示を見ることを促すものであり、これによって故障の旨の報知をより確実なものにできる。また、ステップS400及びS401では、2つの電流トランス142A、242Aの電圧値A、Bの差分値のみに基づいて、少なくともファンモータ14A、24Aの何れかに故障があるか否かを先ず判別しているため、マイクロコンピュータ31Aの処理の負荷が小さくて済む。つまり、CPU311Aの処理能力やRAM313Aの容量等を抑制して、冷凍装置1Aの製造コストを低減できる。
 第3実施形態では、2つのファンモータ14Aa、24Aaのうちの一方が故障していると報知した場合(S404、S409、S411、又はS413)、マイクロコンピュータ31Aは、温度センサ131A及び温度センサ231Aにより夫々検出されたコンデンサ13Aの出口部の温度及びコンデンサ23Aの出口部の温度を参照し(S405)、これらの温度に基づいて以下の処理を行う。
 マイクロコンピュータ31Aは、ステップS405で検出された2つの温度が、予めRAM313Aに記憶された所定値Z以上であるか否かを判別する(S406)。尚、この所定値Zは、第1ファンモータ14Aa及び第2ファンモータ24Aaの双方が故障したためにコンデンサ13A、23Aの出口部の温度が上昇した場合の当該温度に対応する値である。
 例えば2つの温度のうちの一方が所定値Z未満であると判別した場合(S406:NO)、マイクロコンピュータ31Aは、ステップS400の処理を再度実行する。
 例えば2つの温度が所定値Z以上であると判別した場合(S406:YES)、マイクロコンピュータ31Aは、ディスプレイ41A上で、前述したステップS404、S409、S411、又はS413における表示を、第1ファンモータ14Aa及び第2ファンモータ24Aa(A、Bに対応するモータ)が故障している旨の表示に変更するとともに、ブザー42Aを例えば所定時間だけ鳴らし(S407)、処理を終了する。つまり、この場合、2つのファンモータ14Aa、24Aaのうちの例えば一方がロックし他方の回路が断線することによって第1ファン14A及び第2ファン24Aの双方が停止し、その結果、コンデンサ13A、23Aの出口部の温度が所定温度以上であると判別されて、この判別結果が利用者等に報知される。
 尚、第3実施形態では、例えば2つのファンモータ14Aa、24Aaがロックしたためにコンデンサ13A、23Aの温度が上昇した場合、2つのファンモータ14Aa、24Aaの温度もこれに伴い上昇するために、温度ヒューズ141A、241Aは遮断される。これにより、2つのファンモータ14Aa、24Aaに流れていたロック電流は0となる。このようなファンモータ14Aa、24Aaの運転制御によって、ロック電流による電力の無駄な消費を回避できる。
 しかし、2つのファンモータ14Aa、24Aaにロック電流が流れている状態と、温度ヒューズ141A、241Aの遮断によって2つのファンモータ14Aa、24Aaに電流が流れなくなった状態とは、双方とも、前述したステップS401の処理によって判別することができない。即ち、2つの電流トランス142A、242Aの電圧値A、Bの差分値は何れの場合も略0である。
 そこで、図示してはいないが、マイクロコンピュータ31Aは、前述したステップS401以降の処理とは別に、例えば所定のタイマ(不図示)で計時される所定時間毎に、前述したステップS405乃至S407と同様の処理を実行するようになっている。つまり、マイクロコンピュータ31Aは、コンデンサ13A、23Aの出口部の温度検出によって、双方のファンモータ14Aa、24Aaの故障の有無を定期的に判別し、もし双方が故障していると判別した場合、その旨を利用者に報知する。或いは、マイクロコンピュータ31Aは、2つの電流トランス142A、242Aの電圧検出によって、双方のファンモータ14Aa、24Aaの故障の有無を定期的に判別してもよい。つまり、双方の電圧値A、Bが0の場合、双方のファンモータ14Aa、24Aaは故障していると判別される。
===その他の実施の形態===
 前述した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更や改良等が可能であり、また本発明はその等価物も含むものである。
 前述した実施の形態では、コンデンサ13A、23Aのみが、同じ管板に一体に構成され、当該管板において第1ファン14A及び第2ファン24Aの同一風路内に近接して順に配置されていたが、これに限定されるものではない。例えば、プレコンデンサ12A、22Aも、コンデンサ13A、23Aと同じ管板に一体に構成され、当該管板において第1ファン14A及び第2ファン24Aの同一風路内に近接して順に配置されていてもよい。
 前述した実施の形態では、報知装置を、ディスプレイ41A及びブザー42Aとしたが、これに限定されるものではなく、要するに、利用者等にファンモータ14Aa、24Aaの故障を報知するための手段であればいかなるものであってもよい。また、報知内容は、ファンモータ14Aa、24Aaの何れが故障しているかのみであったが、これに限定されるものではなく、例えば、電流トランス142A、242Aの電圧値A、Bに基づく故障内容(ロックや回路の断線等)を加えてもよい。
 前述した実施の形態では、マイクロコンピュータ31AによるステップS405乃至S407の処理を、ステップS404、S409、S411、及びS413の夫々の処理の後に実行するものであったが、これに限定されるものではない。
 以下、図18に例示されるように、マイクロコンピュータ31Aは、一方のファンモータが故障していると判別した後に、他方のファンモータの故障の有無を判別してから、最終的な判別結果(一方が故障又は双方が故障)を1度だけ報知するものであってもよい。
 尚、図18は、第3実施形態の冷凍装置1Aによる故障検出及び報知の際のマイクロコンピュータ31Aの処理手順の他の一例を示すフローチャートである。また、図18におけるステップS500乃至S502の処理は、図17におけるステップS400乃至S402の処理と夫々同じである。更に、図18におけるステップS503、S508、S513、及びS518の判別処理は、図17におけるステップS403、S408、S410、及びS412の判別処理と夫々同じである。つまり、これらの処理によって、2つのファンモータ14Aa、24Aaのうちの何れが故障しているかということと、その故障がロック又は回路の断線の何れかということとが判別される。
 マイクロコンピュータ31Aは、第1電流トランス142Aの電圧値Aが前述した所定値Y以上であると判別した場合(S503:YES)、温度センサ131A、231Aにより夫々検出されたコンデンサ13A、23Aの出口部の温度を参照し(S504)、2つの温度が前述した所定値Z以上であるか否かを判別する(S505)。例えば2つの温度のうちの一方が所定値Z未満であると判別した場合(S505:NO)、マイクロコンピュータ31Aは、第1ファンモータ14Aa(Aに対応するモータ)が故障している旨をディスプレイ41Aを通じて表示するとともに、ブザー42を例えば所定時間だけ鳴らし(S507)、ステップS500の処理を再度実行する。一方、例えば2つの温度が所定値Z以上であると判別した場合(S505:YES)、マイクロコンピュータ31Aは、双方のファンモータ14Aa、24Aa(A、Bに対応するモータ)が故障している旨をディスプレイ41Aを通じて表示するとともに、ブザー42Aを例えば所定時間だけ鳴らし(S506)、処理を終了する。
 マイクロコンピュータ31Aは、第2電流トランス242Aの電圧値Bが前述した所定値Y以上であると判別した場合(S508:YES)、前述と同様にコンデンサ13A、23Aの出口部の温度を参照し(S509)、2つの温度が前述した所定値Z以上であるか否かを判別する(S510)。2つの温度のうちの一方が所定値Z未満であると判別した場合(S510:NO)、マイクロコンピュータ31Aは、第2ファンモータ24Aa(Bに対応するモータ)が故障している旨を前述と同様に報知し(S512)、ステップS500の処理を再度実行する。一方、2つの温度が所定値Z以上であると判別した場合(S510:YES)、マイクロコンピュータ31Aは、双方のファンモータ14Aa、24Aa(A、Bに対応するモータ)が故障している旨を前述と同様に報知し(S511)、処理を終了する。
 マイクロコンピュータ31Aは、第1電流トランス142Aの電圧値Aが0であると判別した場合(S513:YES)、前述と同様にコンデンサ13A、23Aの出口部の温度を参照し(S514)、2つの温度が前述した所定値Z以上であるか否かを判別する(S515)。2つの温度のうちの一方が所定値Z未満であると判別した場合(S515:NO)、マイクロコンピュータ31Aは、第1ファンモータ14Aa(Aに対応するモータ)が故障している旨を前述と同様に報知し(S517)、ステップS500の処理を再度実行する。一方、2つの温度が所定値Z以上であると判別した場合(S515:YES)、マイクロコンピュータ31Aは、双方のファンモータ14Aa、24Aa(A、Bに対応するモータ)が故障している旨を前述と同様に報知し(S516)、処理を終了する。
 マイクロコンピュータ31Aは、第2電流トランス242Aの電圧値Bが0であると判別した場合(S518:YES)、前述と同様にコンデンサ13A、23Aの出口部の温度を参照し(S519)、2つの温度が前述した所定値Z以上であるか否かを判別する(S520)。2つの温度のうちの一方が所定値Z未満であると判別した場合(S520:NO)、マイクロコンピュータ31Aは、第2ファンモータ24Aa(Bに対応するモータ)が故障している旨を前述と同様に報知し(S522)、ステップS500の処理を再度実行する。一方、2つの温度が所定値Z以上であると判別した場合(S520:YES)、マイクロコンピュータ31Aは、双方のファンモータ14Aa、24Aa(A、Bに対応するモータ)が故障している旨を前述と同様に報知し(S521)、処理を終了する。
 以上の処理によれば、双方のファンモータ14Aa、24Aaの故障を表示する場合、その前段階で一方のファンモータの故障をディスプレイ41に表示させるという命令を省くことができるため、その分だけプログラムを簡略化できる。
 そして、第1実施形態の冷凍装置に対して第3実施形態の冷凍装置を適用することも可能である。
1 冷凍装置  2 外箱  3 外扉  4 機械室  5 内箱
31 ハンドル  32 操作パネル  33 ヒンジ
34 パッキン  51 貯蔵室  51a 内扉
100 第1冷媒回路  101 第1圧縮機
101a オイルクーラ  102、202 プレコンデンサ
103、203 配管  104、204 コンデンサ
105、205 ファン  105a、205a ファンモータ
106、206 デハイドレータ  107、207 分流器
108、110、208、210 減圧器
109、209 熱交換器  109a、209a 外側管
109b、209b 内側管  111 第1蒸発器
112、212 緩衝器  112a、212a キャピラリチューブ
112b、212b 膨張タンク  151 フレーム管
153 蒸発器  200 第2冷媒回路  201 第2圧縮機
211 第2蒸発器  300 制御回路  301 制御基板
302 スイッチング電源  303 電源ケーブル
304 電源スイッチ  305a、305b 圧縮機リレー
306a、306b リレー  307 温度センサ
307A 第1圧縮機温度センサ  307B 第2圧縮機温度センサ
307C 第1温度センサ  307D 第2温度センサ
307E 第1センサ  307F 第2センサ
310 マイクロコンピュータ  311 CPU  312 ROM
313 RAM  314、315 タイマ  1A 冷凍装置
2A 低温貯蔵庫  2Aa 第1温度センサ
2Ab 第2温度センサ  10A 第1冷媒回路
11A 第1圧縮機12A プレコンデンサ  13A コンデンサ
14A 第1ファン  14Aa 第1ファンモータ
15A 第1減圧器  16A 第1蒸発器  20A 第2冷媒回路
21A 第2圧縮機  22A プレコンデンサ
23A コンデンサ  24A 第2ファン
24Aa 第2ファンモータ  25A 第2減圧器
26A 第2蒸発器  30A 制御基板
31A マイクロコンピュータ  32A スイッチング電源
33A 電源ケーブル  34A 電源スイッチ
41A ディスプレイ42A ブザー
131A、231A 温度センサ  141A、241A 温度ヒューズ
142A 第1電流トランス  242A 第2電流トランス
311A CPU  312A ROM  313A RAM

Claims (8)

  1.  第1圧縮機、第1凝縮器、第1減圧器、第1蒸発器を第1冷媒配管で環状に接続し、冷却作用を得るために前記第1圧縮機から吐出された冷媒を前記第1凝縮器で凝縮させた後に前記第1蒸発器で蒸発させる第1冷媒回路と、
     第2圧縮機、第2凝縮器、第2減圧器、第2蒸発器を第2冷媒配管で環状に接続し、冷却作用を得るために前記第2圧縮機から吐出された冷媒を前記第2凝縮器で凝縮させた後に前記第2蒸発器で蒸発させる第2冷媒回路と、
     前記第1蒸発器及び前記第2蒸発器が庫内を同時に冷却するように配置されている低温貯蔵庫の前記庫内の温度を検出する温度センサと、
     前記温度センサの検出温度が第1温度に達する都度、前記第1圧縮機及び前記第2圧縮機がともに運転されるように制御し、前記温度センサの検出温度が前記第1温度より低い第2温度に達する都度、前記第1圧縮機及び前記第2圧縮機が交互に運転されるように制御する第1制御装置と、
     を備えたことを特徴とする冷凍装置。
  2.  前記温度センサの検出温度が前記第1温度に達する都度、前記第1圧縮機及び前記第2圧縮機が交互に運転開始されるとともに前記検出温度が前記第2温度に達するまで運転継続されるように制御する第2制御装置と、
     前記温度センサの検出温度が前記第1温度より高い第3温度に達した場合、前記第2制御装置の制御から前記第1制御装置の制御へ切り替え、前記温度センサの検出温度が前記第2温度より低い第4温度に達した場合、前記第1制御装置の制御から前記第2制御装置の制御へ切り替える第1切替装置と、
     を更に備えたことを特徴とする請求項1に記載の冷凍装置。
  3.  前記第1圧縮機及び前記第2圧縮機の運転が交互に開始されると、前記温度センサの検出温度が前記第1温度及び前記第2温度の間の温度である時間を夫々計時するタイマと、
     前記タイマの計時時間が所定時間を超えた場合、前記第1圧縮機及び前記第2圧縮機の運転を切り替える第2切替装置と、
     を備えたことを特徴とする請求項2に記載の冷凍装置。
  4.  前記第1蒸発器と前記第2蒸発器とを同時に同一の庫内の冷却を可能に配置し、
     前記第1圧縮機及び前記第2圧縮機の夫々の運転を制御するための第1温度センサ及び第2温度センサを前記温度センサとして前記庫内の温度を検出可能に設けると共に、第1ファン及び第2ファンを同一の風路内に近接して順に配置される前記第1凝縮器及び前記第2凝縮器に送風可能に並列に配置し、
     前記第1ファン及び前記第2ファンを夫々第1センサ及び第2センサの検出する温度に基づいて制御する制御装置を備え
     前記第1ファン及び前記第2ファンは前記第1凝縮器に相対向して配置され、
     前記風路内において、前記第1ファンは前記第1圧縮機に相対向し、前記第2ファンは前記第2圧縮機に相対向している
     ことを特徴とする請求項1に記載の冷凍装置。
  5.  低温貯蔵庫の前記庫内の温度を検出する前記温度センサとしての第1温度センサ及び第2温度センサと、
     第1ファンと、
     第2ファンと、
     前記第1ファンを回転させる第1ファンモータと、
     前記第2ファンを回転させる第2ファンモータと、
     前記第1ファンモータの温度を検出する第3温度センサと、
     前記第2ファンモータの温度を検出する第4温度センサと、
     前記第1ファンモータ及び前記第2ファンモータの電流を検出する検出装置と、
     制御装置と、を備え、
     前記第1蒸発器及び前記第2蒸発器は、前記庫内を同時に冷却するように配置され、
     前記第1ファン及び前記第2ファンは、前記第1ファン及び前記第2ファンの同一風路内に近接して順に配置される前記第1凝縮器及び前記第2凝縮器に送風可能に並列に配置され、
     前記制御装置は、前記第1温度センサ及び前記第2温度センサの検出出力に応じて、前記第1圧縮機及び前記第2圧縮機の運転を夫々制御し、前記第3温度センサ及び前記第4温度センサの検出出力に応じて、前記第1ファンモータ及び前記第2ファンモータの運転を夫々制御し、更に、前記第1ファンモータ及び前記第2ファンモータの故障を報知するために、前記検出装置の検出出力を基に、前記第1ファンモータ及び前記第2ファンモータの運転状態を監視する
     ことを特徴とする請求項1に記載の冷凍装置。
  6.  前記検出装置は、前記第1ファンモータ及び前記第2ファンモータの電流を電圧として夫々検出する第1電流トランス及び第2電流トランスを有し、
     前記制御装置は、前記第1電流トランス及び前記第2電流トランスの電圧を基に、前記第1ファンモータ及び前記第2ファンモータの運転状態を監視する
     ことを特徴とすることを特徴とする請求項5に記載の冷凍装置。
  7.  前記制御装置は、前記第1電流トランス及び前記第2電流トランスの各電圧の差分値に基づいて、前記第1ファンモータ及び前記第2ファンモータが故障したか否かを判別する
     ことを特徴とする請求項6に記載の冷凍装置。
  8.  前記制御装置は、前記差分値の絶対値が所定値より大であるとき、前記第1ファンモータ及び前記第2ファンモータの何れか一方又は両方が故障したものと判別する
     ことを特徴とする請求項7に記載の冷凍装置。
PCT/JP2009/066275 2008-09-22 2009-09-17 冷凍装置 WO2010032794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09814638.4A EP2339264B1 (en) 2008-09-22 2009-09-17 Refrigerating device
US12/854,822 US8555663B2 (en) 2008-09-22 2010-08-11 Refrigerating apparatus
US14/030,937 US8857199B2 (en) 2008-09-22 2013-09-18 Refrigerating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008243064A JP5624713B2 (ja) 2008-09-22 2008-09-22 冷凍装置
JP2008-243064 2008-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/854,822 Continuation US8555663B2 (en) 2008-09-22 2010-08-11 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
WO2010032794A1 true WO2010032794A1 (ja) 2010-03-25

Family

ID=42039616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066275 WO2010032794A1 (ja) 2008-09-22 2009-09-17 冷凍装置

Country Status (6)

Country Link
US (2) US8555663B2 (ja)
EP (1) EP2339264B1 (ja)
JP (1) JP5624713B2 (ja)
KR (1) KR101109212B1 (ja)
CN (1) CN101684979B (ja)
WO (1) WO2010032794A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078444A (ja) * 2017-10-24 2019-05-23 福島工業株式会社 保冷庫

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559788B1 (ko) * 2009-01-30 2015-10-13 엘지전자 주식회사 냉장고
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
JP5645453B2 (ja) * 2010-04-21 2014-12-24 三菱重工業株式会社 空気調和装置
JP5625582B2 (ja) * 2010-07-26 2014-11-19 ダイキン工業株式会社 冷凍装置
JP5588785B2 (ja) * 2010-08-20 2014-09-10 株式会社Afrex 食品保存庫
KR101861665B1 (ko) * 2011-07-20 2018-05-28 엘지전자 주식회사 냉장고
KR101504234B1 (ko) * 2011-08-31 2015-03-19 삼성전자 주식회사 냉장고 및 그 제어 방법
JP5955522B2 (ja) * 2011-09-27 2016-07-20 株式会社東芝 冷蔵庫
KR102103951B1 (ko) * 2012-07-06 2020-04-24 삼성전자주식회사 냉장고
EP2685188B1 (en) * 2012-07-10 2019-12-18 Samsung Electronics Co., Ltd Refrigerator and control method for the same
JP5370551B1 (ja) * 2012-07-31 2013-12-18 ダイキン工業株式会社 コンテナ用冷凍装置
US10145589B2 (en) * 2013-03-15 2018-12-04 Whirlpool Corporation Net heat load compensation control method and appliance for temperature stability
CN103277930B (zh) * 2013-06-08 2014-12-10 高天罡 双压缩机节能空调
CN104422231B (zh) 2013-09-05 2017-06-23 Lg电子株式会社 冰箱及其控制方法
KR102169112B1 (ko) * 2013-09-05 2020-10-22 엘지전자 주식회사 냉장고 및 그 제어방법
KR102168586B1 (ko) 2013-11-29 2020-10-22 삼성전자주식회사 냉장고
CN103692194A (zh) * 2013-12-18 2014-04-02 沈阳顺达重矿机械制造有限公司 圆锥破碎机铜衬套的冷装方法及制冷装置
KR101620430B1 (ko) * 2014-04-14 2016-05-12 엘지전자 주식회사 냉장고 및 그 제어방법
JP5805833B1 (ja) * 2014-07-28 2015-11-10 木村工機株式会社 ヒートポンプ式空気調和機
CN106196682A (zh) * 2015-07-30 2016-12-07 青岛海尔特种电器有限公司 双制冷系统、超低温制冷设备及制冷方法
CN107560208B (zh) * 2016-06-30 2020-08-04 新特能源股份有限公司 一种氟利昂制冷系统
US20180195794A1 (en) * 2017-01-12 2018-07-12 Emerson Climate Technologies, Inc. Diagnostics And Control For Micro Booster Supermarket Refrigeration System
EP3614080B1 (en) * 2017-05-24 2021-11-24 PHC Holdings Corporation Refrigeration device
KR102126890B1 (ko) * 2018-06-28 2020-06-25 엘지전자 주식회사 냉장고의 제어방법
JP2020139710A (ja) * 2019-02-28 2020-09-03 有限会社エムアールナカオ 海上輸送用コンテナ冷凍機および海上輸送用冷凍コンテナ
IT201900006004A1 (it) * 2019-04-17 2020-10-17 Irinox S P A Abbattitore professionale
US11137805B2 (en) * 2019-06-14 2021-10-05 Klinge Corporation Dual redundant cooling system for a container
CN112556279A (zh) * 2019-09-25 2021-03-26 海信(山东)冰箱有限公司 一种双压缩机制冷冰箱
CN110887285B (zh) * 2019-11-01 2021-09-24 合肥华凌股份有限公司 一种冰箱的控制方法、冰箱、电子设备及介质
CN111059862B (zh) * 2019-12-10 2021-06-11 海信(山东)冰箱有限公司 一种冰箱的运行模式控制方法及冰箱
CN113911563A (zh) * 2021-10-14 2022-01-11 中南大学湘雅医院 一种用于肾脏病理标本的冷冻保存箱
KR102567614B1 (ko) * 2022-09-27 2023-08-17 한화시스템 주식회사 냉매 처리 장치 및 냉매 처리 장치의 운용 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679018A (en) * 1979-12-04 1981-06-29 Diesel Kiki Co Ltd Control circuit of cooling cycle for automobile
JPH0534045A (ja) * 1991-07-25 1993-02-09 Zexel Corp 冷凍車の冷凍制御装置
JPH06109335A (ja) * 1992-09-29 1994-04-19 Mitsubishi Heavy Ind Ltd 冷凍ユニット
JP2005090917A (ja) 2003-09-19 2005-04-07 Hoshizaki Electric Co Ltd 冷却貯蔵庫

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN147574B (ja) 1976-11-19 1980-04-19 Uss Eng & Consult
JPS606016B2 (ja) 1979-06-06 1985-02-15 松下電器産業株式会社 光学的記録再生装置
GB2180921B (en) * 1985-09-25 1990-01-24 Sanyo Electric Co Refrigeration system
JPS62210370A (ja) 1986-06-10 1987-09-16 三洋電機株式会社 冷却装置
JPS62210371A (ja) 1986-06-10 1987-09-16 三洋電機株式会社 冷却装置
JPH01203863A (ja) 1988-02-09 1989-08-16 Maruta Kucho Kk 冷凍装置およびその故障予知方法
JP3011486B2 (ja) 1991-05-16 2000-02-21 三洋電機株式会社 故障予知、警報システム
JP3003360B2 (ja) * 1992-03-05 2000-01-24 富士電機株式会社 自動販売機の冷却制御装置
JPH0642845A (ja) 1992-07-27 1994-02-18 Daikin Ind Ltd 冷凍装置の運転制御装置
JPH10160313A (ja) * 1996-11-22 1998-06-19 Sanyo Electric Co Ltd 冷却装置
JPH11211325A (ja) * 1998-01-20 1999-08-06 Sanyo Electric Co Ltd 冷蔵庫
JP2001068886A (ja) 1999-08-27 2001-03-16 Hitachi Ltd 電子装置用冷却装置
JP2003227675A (ja) 2002-02-06 2003-08-15 Sanyo Electric Co Ltd 冷蔵庫
JP2005106454A (ja) 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2005156080A (ja) 2003-11-28 2005-06-16 Hitachi Home & Life Solutions Inc 冷蔵庫
KR100619733B1 (ko) * 2004-08-14 2006-09-08 엘지전자 주식회사 유니터리 공기조화기의 운전제어방법
JP4447408B2 (ja) 2004-09-01 2010-04-07 エムケー精工株式会社 低温貯蔵庫
JP2007218493A (ja) 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 農産物低温貯蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679018A (en) * 1979-12-04 1981-06-29 Diesel Kiki Co Ltd Control circuit of cooling cycle for automobile
JPH0534045A (ja) * 1991-07-25 1993-02-09 Zexel Corp 冷凍車の冷凍制御装置
JPH06109335A (ja) * 1992-09-29 1994-04-19 Mitsubishi Heavy Ind Ltd 冷凍ユニット
JP2005090917A (ja) 2003-09-19 2005-04-07 Hoshizaki Electric Co Ltd 冷却貯蔵庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078444A (ja) * 2017-10-24 2019-05-23 福島工業株式会社 保冷庫

Also Published As

Publication number Publication date
EP2339264B1 (en) 2018-04-25
KR101109212B1 (ko) 2012-01-30
US8555663B2 (en) 2013-10-15
US8857199B2 (en) 2014-10-14
JP2010071627A (ja) 2010-04-02
EP2339264A1 (en) 2011-06-29
KR20100033951A (ko) 2010-03-31
US20140060098A1 (en) 2014-03-06
CN101684979A (zh) 2010-03-31
JP5624713B2 (ja) 2014-11-12
US20110030402A1 (en) 2011-02-10
CN101684979B (zh) 2011-11-09
EP2339264A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2010032794A1 (ja) 冷凍装置
KR100687933B1 (ko) 냉장고 및 그 운전제어방법
WO2019215877A1 (ja) 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法
JP5313093B2 (ja) 冷凍装置
KR20040103485A (ko) 냉각 장치
RU2409794C1 (ru) Холодильник
JP2008175477A (ja) 保冷庫
KR101476492B1 (ko) 냉동장치
JP2012042143A (ja) 冷蔵庫
JP5829312B2 (ja) 冷凍装置
JP5568652B2 (ja) 冷凍装置
KR101492680B1 (ko) 냉동장치
JP5355008B2 (ja) 冷凍装置
JP5524459B2 (ja) 冷凍装置
JP2015048998A (ja) 冷蔵庫
JP7356219B2 (ja) 冷却貯蔵庫
JP2014145586A (ja) 冷凍装置
JP7215919B2 (ja) 冷却貯蔵庫
JP2007040666A (ja) 冷蔵庫の制御装置
JP2005140415A (ja) 冷凍冷蔵ユニット及びこれを用いた冷蔵庫
KR19980058366U (ko) 가연성냉매를 사용하는 냉장고
JP2011112265A (ja) コンテナ用冷凍装置
JP2005300091A (ja) 冷蔵庫
JP2005106325A (ja) 冷蔵庫
JP2012174167A (ja) 自動販売機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009814638

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE