WO2010032609A1 - オレフィンの製造方法およびその製造装置 - Google Patents

オレフィンの製造方法およびその製造装置 Download PDF

Info

Publication number
WO2010032609A1
WO2010032609A1 PCT/JP2009/065270 JP2009065270W WO2010032609A1 WO 2010032609 A1 WO2010032609 A1 WO 2010032609A1 JP 2009065270 W JP2009065270 W JP 2009065270W WO 2010032609 A1 WO2010032609 A1 WO 2010032609A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ethane
fraction
catalyst
reactor
Prior art date
Application number
PCT/JP2009/065270
Other languages
English (en)
French (fr)
Inventor
光弘 関口
角田 隆
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to BRPI0918927-0A priority Critical patent/BRPI0918927B1/pt
Priority to EP09814454.6A priority patent/EP2336275B1/en
Priority to US13/119,150 priority patent/US9309470B2/en
Priority to CN200980136362.0A priority patent/CN102159680B/zh
Priority to JP2010529708A priority patent/JP5562245B2/ja
Priority to KR1020117005990A priority patent/KR101271915B1/ko
Publication of WO2010032609A1 publication Critical patent/WO2010032609A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/20Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/10Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond in hydrocarbons containing no six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/187Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/06Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • C10G2300/807Steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins

Definitions

  • the present invention relates to an olefin production method and apparatus for producing an olefin having 3 or more carbon atoms by pyrolysis of ethane and catalytic conversion with a zeolite catalyst.
  • Patent Document 1 discloses a method for producing propylene from ethylene obtained by thermally decomposing ethane in the presence of water vapor using a metathesis reaction.
  • Patent Document 1 requires a compression step. Furthermore, this method requires a complicated and multi-stage purification process in order to remove low-boiling substances, high-boiling substances, acetylene, and water contained in the product gas generated by the thermal decomposition together with ethylene. Therefore, a method for producing an olefin having 3 or more carbon atoms more simply is desired.
  • An object of the present invention is to provide a method for producing an olefin having 3 or more carbon atoms from ethane, which is simpler and more stable, and an apparatus for producing the same.
  • the present inventors have obtained ethane as a medium-pore-diameter zeolite-containing catalyst without purifying a gas obtained by thermally decomposing ethane in the presence of water vapor.
  • the inventors have found that an olefin having 3 or more carbon atoms can be stably produced by bringing them into contact with each other, thereby completing the present invention.
  • the present invention provides the following method for producing an olefin having 3 or more carbon atoms.
  • this invention provides the manufacturing apparatus of the following C3 or more olefins.
  • a production apparatus for producing an olefin having 3 or more carbon atoms from ethane Connected to a first reactor for pyrolyzing ethane in the presence of water vapor to obtain ethane cracked gas, and receiving and cooling the ethane cracked gas flowing out from the first reactor to obtain a cooled fraction
  • a second reactor connected to the cooler and filled with a catalyst containing an intermediate pore size zeolite for receiving the cooled fraction flowing out of the cooler and bringing it into contact with the catalyst.
  • Olefin production equipment Connected to a first reactor for pyrolyzing ethane in the presence of water vapor to obtain ethane cracked gas, and receiving and cooling the ethane cracked gas flowing out from the first reactor to obtain a cooled fraction
  • a second reactor connected to the cooler and filled with a catalyst containing an intermediate pore size zeolite for
  • An apparatus for producing an olefin having 3 or more carbon atoms from ethane connected to a first reactor for thermally decomposing ethane in the presence of water vapor to obtain ethane decomposition gas, A chiller for receiving and cooling the ethane decomposition gas flowing out from one reactor to obtain a cooled fraction; and a cooling heavy fraction connected to the cooler and flowing out from the cooler, A gas-liquid separator for separating the gas into a liquid and a cooling gas; and the cooling gas connected to the gas-liquid separator and filled with a catalyst containing an intermediate pore size zeolite and flowing out of the gas-liquid separator A second reactor for accepting and contacting the catalyst with the catalyst.
  • the production method and production apparatus of the present invention it is possible to provide a method for producing an olefin having 3 or more carbon atoms from ethane in a simple and stable manner, and a production apparatus therefor.
  • the present embodiment modes for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary.
  • the following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention only to this embodiment.
  • the present invention can be implemented in various forms without departing from the gist thereof.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • FIG. 1 is a schematic view of a production apparatus that can be used in the olefin production method of the present embodiment.
  • the olefin production apparatus shown in FIG. 1 includes a first reactor (pyrolysis reactor 1), a cooler 2, a second reactor (catalyst reactor 3), and a separation device 4.
  • Ethane and water vapor are supplied to the pyrolysis reactor 1 through a pipe 11.
  • the pyrolysis reactor 1 containing ethane and water vapor is provided with a convection section (not shown), and the ethane and water vapor are preheated to about 600 ° C. there.
  • a preheater may be installed outside the pyrolysis reactor 1 as necessary. The ethane preheated together with the steam is further heated and pyrolyzed in the pyrolysis reactor 1 to generate ethane cracking gas containing ethylene (ethane pyrolysis step).
  • the ethane raw material supplied to the pyrolysis reactor 1 may contain a small amount of methane, propane, etc. in addition to ethane.
  • the ethane raw material may be separated from natural gas, fractionated from petroleum gas, or by-produced by thermal decomposition of naphtha or heavy oil. Alternatively, the ethane raw material may be ethane generated in the production process of other products.
  • the reaction temperature (pyrolysis temperature) in the ethane pyrolysis step is preferably in the range of 780 to 880 ° C.
  • the reaction pressure is preferably in the range of 0.05 to 1 MPa, more preferably in the range of 0.1 to 0.5 MPa.
  • the mass ratio of water vapor to ethane is preferably 0.1 to 2.0 in terms of water vapor / ethane, and more preferably 0.2 to 1.0.
  • the residence time of steam and ethane in the thermal decomposition reactor 1 is preferably 5 seconds or less, and more preferably 2 seconds or less. From the viewpoint of suppressing coking, it is preferable that steam and ethane are supplied to the pyrolysis reactor 1 together.
  • the outlet pressure can be measured at the measurement point of the reaction pressure, but since there is substantially no pressure difference between the inlet and the outlet, the reaction pressure can be measured at either the inlet or the outlet.
  • the ethane decomposition gas may contain, for example, unreacted ethane, water, hydrogen, carbon monoxide, carbon dioxide, alkanes other than ethane, olefins other than ethylene, and aromatic hydrocarbons in addition to ethylene.
  • alkanes include methane, propane, butane, pentane and hexane.
  • olefins include propylene, butene, pentene, and hexene.
  • the aromatic hydrocarbon include benzene, toluene, xylene, ethylbenzene, and styrene.
  • the ethane cracking gas may contain cycloalkanes such as cyclopentane, methylcyclopentane and cyclohexane, and cycloolefins such as cyclopentene, methylcyclopentene and cyclohexene.
  • the ethane decomposition gas usually contains acetylene compounds such as acetylene and methylacetylene, and diolefin (diene) compounds such as propadiene, butadiene, pentadiene, and cyclopentadiene.
  • the pyrolysis reactor 1 is connected to the cooler 2 via a pipe 12.
  • a normal heat exchanger is preferably used.
  • water vapor is employed as the refrigerant, and the amount of heat of the ethane pyrolysis gas can be recovered as high-pressure water vapor, which can be used as a power source for the separation process described later.
  • the cooler 2 shown in FIG. 1 is 1 unit
  • the ethane decomposition gas containing ethylene flowing out from the thermal decomposition reactor 1 is supplied to the cooler 2 via the pipe 12.
  • the ethane decomposition gas is cooled to 600 ° C. or lower to obtain a cooled fraction (cooling step).
  • the reaction of olefins in the ethane cracking gas can be prevented.
  • a preferable cooling temperature is in the range of 300 to 600 ° C.
  • ethylene (described later) is converted to an olefin having 3 or more carbon atoms without reheating with a pyrolysis gas or a heater, or intermediate heating in a catalytic reactor.
  • the reaction temperature for the conversion of can be adjusted to a suitable range. This is because the conversion reaction is an exothermic reaction, and if the temperature of the fraction to be subjected to the reaction is within this range, it is maintained at an appropriate temperature by the reaction heat without requiring heating.
  • the cooling temperature is preferably 300 to 550 ° C., more preferably 300 to 500 ° C., and particularly preferably 300 to 450 ° C.
  • the cooler 2 is connected to the catalytic reactor 3 via a pipe 13.
  • the catalyst reactor 3 is filled with a catalyst containing an intermediate pore size zeolite (hereinafter simply referred to as “zeolite-containing catalyst”).
  • zeolite-containing catalyst a catalyst containing an intermediate pore size zeolite
  • the ethane decomposition gas cooled by the cooler 2 is supplied to the catalyst reactor 3 via the pipe 13 and is brought into contact with the zeolite-containing catalyst in the catalyst reactor 3.
  • ethylene contained in the ethane cracking gas is converted into olefins having 3 or more carbon atoms, and a contact gas containing these olefins is obtained (contact conversion step).
  • the ethane decomposition gas is cooled by the cooler 2 and flows out from the cooler 2 as a cooling fraction, and is supplied to the catalytic reactor 3 as it is without being subjected to a purification treatment, so that the catalytic conversion reaction is performed. To be served.
  • a part of cooling fraction liquefies, as long as the whole quantity is supplied to catalytic conversion reaction, it is included by this embodiment. Even if the liquefied fraction is supplied to the catalytic reactor 3, there is substantially no obstacle.
  • acetylene compounds and diene compounds contained in the ethane decomposition gas are also supplied to the catalyst reactor 3. These compounds are rich in polymerizability, and the polymerized product caulks the zeolite-containing catalyst to block its active site, which causes catalyst deterioration. From the viewpoint of stabilizing the catalytic conversion reaction of ethylene by preventing deterioration of the catalyst due to coking, acetylene compounds and diene compounds may be reduced to the minimum by treatment such as distillation separation and partial hydrogenation prior to the reaction. It has been considered preferable.
  • the conversion reaction from ethylene to an olefin having 3 or more carbon atoms is an exothermic reaction, and the amount of heat generation increases as the amount of ethylene conversion increases. Therefore, in order to precisely control the conversion reaction temperature, the reaction heat is effective. It is also required to cope with the removal (heat removal). Therefore, the catalytic reactor 3 is required to have a performance that can cope with these problems.
  • the type of the catalyst reactor 3 is not particularly limited, and any reactor type such as a fixed bed type reactor, a fluidized bed type reactor, or a moving bed type reactor can be used.
  • the catalyst reactor 3 is a fixed bed reactor, a swing type catalyst reactor capable of switching between a catalytic conversion reaction and a catalyst regeneration step described later is preferable from the viewpoint of the above-described catalyst coking countermeasures. From the viewpoint of removing reaction heat, a multi-tube type catalytic reactor is preferable.
  • the outlet gas composition of the catalytic reactor 3 varies. Therefore, in order to keep the composition within a certain range, the temperature of the ethane decomposition gas at the inlet of the catalytic reactor 3 is increased with time, or the intermediate heating temperature in the catalytic reactor 3 is increased, that is, the reactor is heated by external heating. The internal temperature may be raised.
  • Examples of a method for increasing the temperature of the ethane decomposition gas at the inlet of the catalyst reactor 3 include a method for increasing the cooling temperature of the cooler 2 and a method for reheating with a preheater provided upstream of the catalyst reactor 3.
  • a fluid bed type, riser type or spouted bed type catalyst reactor is preferably used. More preferably, from the viewpoint of efficiency when the catalyst is regenerated, a catalyst circulation type reactor having a catalyst regeneration device in a fluidized bed reactor is used.
  • the catalyst circulation type reactor has a pipe that connects them so that the catalyst can be circulated between the fluidized bed reactor and the catalyst regeneration device.
  • a catalytic conversion reaction of ethylene proceeds using a zeolite-containing catalyst. A part of the zeolite-containing catalyst subjected to the catalytic conversion reaction is withdrawn from the fluidized bed reactor continuously or intermittently, and is supplied to the catalyst regeneration device via a pipe.
  • the catalyst regeneration device At least a part of the carbonaceous compound (coke) attached to the zeolite-containing catalyst is combusted by a catalyst regeneration method described later.
  • the coke adhering to the catalyst is removed by combustion, whereby the catalyst performance is recovered.
  • the zeolite-containing catalyst is re-supplied to the fluidized bed reactor via the pipe.
  • a heat removal facility such as a cooling coil is preferably used for removing reaction heat generated by the catalytic conversion reaction.
  • the regeneration method of the catalyst is as follows.
  • a zeolite-containing catalyst is used for a long-term reaction, a carbonaceous compound may be formed on the catalyst, and the catalytic activity may be reduced.
  • a fixed bed reactor by temporarily stopping the supply of the raw material (ethane decomposition gas) to the reactor, supplying a gas containing oxygen, and burning the coke accumulated in the zeolite-containing catalyst, The zeolite-containing catalyst can be regenerated.
  • a part of the zeolite-containing catalyst is continuously or intermittently extracted from the reactor, calcined with a gas containing oxygen, and the attached coke is burned.
  • the zeolite-containing catalyst can be regenerated.
  • the regenerated zeolite-containing catalyst can be returned to the reactor.
  • air or a mixed gas composed of air and an inert gas at a high temperature, preferably 400 to 700 ° C., the coke burns and the catalyst is regenerated.
  • the zeolite in the zeolite-containing catalyst charged in the catalyst reactor 3 is a so-called “medium pore diameter zeolite” having a pore diameter of 5 to 6.5 mm.
  • the term “medium pore diameter zeolite” means that the pore diameter ranges from a small pore diameter zeolite represented by A-type zeolite and a large pore diameter represented by mordenite, X-type and Y-type zeolite. It means a zeolite in the middle of the pore diameter of the zeolite, and means a zeolite having a so-called oxygen 10-membered ring in its crystal structure.
  • the silica / alumina ratio (molar ratio; the same shall apply hereinafter) of zeolite is preferably 20 or more from the viewpoint of stability as a catalyst.
  • the upper limit of the silica / alumina ratio is not particularly limited, but from the viewpoint of catalytic activity, generally, the silica / alumina ratio is more preferably in the range of 20 to 1000, and in the range of 20 to 500. And more preferably 20 to 300.
  • the silica / alumina ratio of the zeolite can be determined by a known method, for example, by completely dissolving the zeolite in an alkaline aqueous solution and analyzing the resulting solution by plasma emission spectroscopy.
  • Zeolite is not particularly limited as long as it falls within the category of “medium pore diameter zeolite”.
  • Examples of the medium pore diameter zeolite include ZSM-5 and so-called pentasil-type zeolite having a structure similar to ZSM-5. That is, examples of the intermediate pore diameter zeolite include ZSM-5, ZSM-8, ZSM-11, ZSM-12, ZSM-18, ZSM-23, ZSM-35, and ZSM-39.
  • a zeolite represented by an MFI structure in a skeleton structure type according to the IUPAC recommendation can be mentioned, and specifically, ZSM-5 can be mentioned.
  • the “silica / alumina ratio” of metalloaluminosilicate or metallosilicate is calculated after converting the amount of aluminum atoms substituted by the above elements into the number of moles of Al 2 O 3 (alumina).
  • the method for forming the zeolite-containing catalyst is not particularly limited and may be a general method. Specific examples include a method of spray drying a catalyst precursor, a method of compression molding, and a method of extrusion molding.
  • a binder or a diluent for molding matrix
  • the binder and the diluent for molding are not particularly limited, but porous refractory inorganic oxides such as alumina, silica, silica / alumina, zirconia, titania, diatomaceous earth, and clay can be used alone or in combination. .
  • the mass ratio of the medium pore diameter zeolite to the binder and the molding diluent is medium pore diameter zeolite / (binder and molding diluent), preferably in the range of 10/90 to 90/10, more preferably 20 The range is from / 80 to 80/20.
  • the slurry containing the intermediate pore size zeolite before spray drying is selected from the group consisting of nitrate, acetate and carbonate for the purpose of improving the shape and mechanical strength.
  • One or more water-soluble compounds may be added.
  • Preferable water-soluble compounds include ammonium salts that have high water solubility and can be decomposed and removed from the catalyst by calcination.
  • the zeolite-containing catalyst may be subjected to heat treatment, preferably in the presence of water vapor, prior to contact with the ethane decomposition gas that is a cooling fraction.
  • the temperature of the heat treatment is preferably 500 ° C. or higher, more preferably 500 to 900 ° C., regardless of the presence or absence of water vapor.
  • the heat treatment is preferably performed under the condition that the partial pressure of water vapor is 0.01 atm or more.
  • the acid amount (hereinafter referred to as TPD acid amount) determined from the high temperature desorption amount in the temperature-programmed desorption (TPD) spectrum of ammonia. May be used).
  • TPD acid amount determined from the high temperature desorption amount in the temperature-programmed desorption (TPD) spectrum of ammonia. May be used).
  • the conversion reaction proceeds when the zeolite-containing catalyst has a TPD acid amount exceeding zero.
  • the amount of TPD acid is preferably 20 ⁇ mol / g-zeolite or more, more preferably 20 to 500 ⁇ mol / g-zeolite, and particularly preferably 20 to 300 ⁇ mol / g-zeolite.
  • the upper limit of the amount of TPD acid is set from the viewpoint of olefin yield.
  • the amount of TPD acid is measured by the following method. First, a sample catalyst is placed in a measurement cell of a temperature programmed desorption spectrum measuring apparatus, the inside of the measurement cell is replaced with helium gas, and the temperature is maintained at 100 ° C. Next, after the pressure in the measurement cell is reduced once, ammonia gas is supplied to set the pressure in the measurement cell to 100 Torr, and this state is maintained for 30 minutes to adsorb ammonia to the catalyst. The inside of the measurement cell is again depressurized to remove ammonia not adsorbed on the catalyst, and the inside of the cell is returned to atmospheric pressure with helium.
  • the measurement cell was connected to a quadrupole mass spectrometer, the pressure in the cell was set to 200 Torr, and the temperature in the cell was increased to 600 ° C. at a temperature increase rate of 8.33 ° C./min.
  • the temperature rising desorption spectrum is obtained by detecting the desorbed ammonia.
  • the pressure in the cell during desorption is adjusted to be maintained at about 200 Torr.
  • the obtained temperature-programmed desorption spectrum is divided by waveform separation based on Gaussian distribution, and the ammonia desorption amount is obtained from the sum of the areas of waveforms (peaks) having a peak top at a desorption temperature of 240 ° C. or higher.
  • the value divided by the mass of the zeolite contained therein (unit: ⁇ mol / g-zeolite) is the TPD acid amount.
  • 240 ° C.” is an index used only for determining the position of the peak top, and does not mean that only the area of the 240 ° C. or higher portion is obtained. As long as the peak top is a waveform of 240 ° C.
  • the “area of the waveform” is the total area including the portion below 240 ° C.
  • the sum of the areas of the respective waveforms is used.
  • the zeolite-containing catalyst may contain at least one metal element selected from the group consisting of metals belonging to Group IB of the Periodic Table (hereinafter simply referred to as “Group IB metal”).
  • Group IB metal metals belonging to Group IB of the Periodic Table
  • “containing a metal element” means that the intermediate pore size zeolite in the zeolite-containing catalyst contains the metal element in a corresponding cation state, or that the metal element is contained in the zeolite-containing catalyst in the form of metal or oxidation. It means that it is carried in the state of an object.
  • the “periodic table” in this specification refers to the cycle described in CRC Handbook of Chemistry and Physics, 75th edition, David R. Lide et al., CRC Press Inc. (1994-1995), pages 1-15. Means the table.
  • the zeolite-containing catalyst contains a group IB metal element, that is, at least one metal element selected from the group consisting of copper, silver and gold. More preferred group IB metals include copper and silver, and more preferably silver. Examples of the method for causing the zeolite-containing catalyst to contain at least one metal element selected from the group consisting of a group IB metal element include a method for containing a group IB metal element in the medium pore diameter zeolite.
  • the ion exchange treatment may be a liquid phase method or a solid phase method.
  • the ion exchange treatment of the solid phase method is a method in which a solution containing a group IB metal is impregnated in a medium pore diameter zeolite (not containing a group IB metal) or a zeolite-containing catalyst.
  • a salt of a Group IB metal for example, silver nitrate, silver acetate, silver sulfate, copper chloride, copper sulfate, copper nitrate, or gold chloride can be used. Of these, silver nitrate and copper nitrate are preferably used, and silver nitrate is more preferably used.
  • the content of the group IB metal in the intermediate pore size zeolite is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total amount of the intermediate pore size zeolite.
  • the content of the group IB metal can be determined by X-ray fluorescence analysis or the like.
  • ion exchange site of the intermediate pore size zeolite contained in the zeolite-containing catalyst is exchanged with a group IB metal cation and / or proton.
  • ion exchange sites other than those exchanged with group IB metal cations and / or protons may be exchanged with alkali metal cations, alkaline earth metal cations, and other metal cations.
  • the reaction temperature is preferably 400 to 650 ° C., more preferably 450 to 600 ° C.
  • the partial pressure of the ethane decomposition gas is desirably low, and is usually 0.01 to 1 MPa, more preferably 0.05 to 0.5 MPa.
  • Weight hourly space velocity WHSV of ethane decomposition gas to the mass of the zeolite-containing catalyst 0.1 ⁇ 50hr -1, preferably in the range of 0.2 ⁇ 20 hr -1.
  • the catalytic conversion reaction is carried out under conditions in which paraffin does not substantially react, the conversion reaction of ethylene in the ethane cracking gas is selectively promoted, and the conversion reaction of paraffin is suppressed.
  • by-products such as methane, ethane, propane, and butane due to the paraffin conversion reaction are suppressed, and separation and purification of olefins having 3 or more carbon atoms from the reaction mixture are easy.
  • the reaction to produce olefins having 3 or more carbon atoms by catalytic conversion of olefins containing 2 or more carbons mainly composed of ethylene contained in ethane cracking gas is an equilibrium reaction, and in terms of equilibrium, the conversion rate of ethylene, which is a representative component Shows the maximum yield of olefins having 3 or more carbon atoms in the vicinity of 60 to 70% by mass. Therefore, in order to efficiently obtain an olefin having 3 or more carbon atoms, the ethylene conversion is preferably in the range of 45 to 85% by mass, more preferably 50 to 80% by mass.
  • the conversion rate of ethylene is calculated by the following formula (2).
  • Ethylene conversion rate (ethylene concentration in ethane cracking gas supplied to catalyst reactor 3 ⁇ ethylene concentration in contact gas flowing out from catalyst reactor 3) / ethylene in ethane cracking gas supplied to catalyst reactor 3 Concentration x 100 (2)
  • the catalytic reactor 3 is connected to the separation device 4 via a pipe 14.
  • the contact gas containing an olefin having 3 or more carbon atoms obtained in the catalyst reactor 3 is supplied to the separation device 4 via the pipe 14 and separated into each fraction by the separation device 4 (separation step).
  • each fraction is separated by various methods such as fractional distillation and extraction, or a combination thereof.
  • the separation device 4 is not particularly limited as long as it is a device suitable for those methods, and may be a distillation column such as a plate column or a packed column, for example.
  • gasoline fraction refers to a fraction having a boiling point in the range of 30 to 220 ° C.
  • Acrylonitrile and polypropylene can be produced from propylene collected via the pipe 16 by the method described in Japanese Patent No. 3214984.
  • FIG. 2 is a schematic view of a production apparatus that can be used in another olefin production method of the present embodiment.
  • a gas-liquid separator 5 is connected between the cooler 2 and the catalytic reactor 3, and a heavy component recovery tank 6 is connected to the gas-liquid separator 5.
  • Separation device 8 for separating the C4 fraction flowing out from the separation device 4 into isobutene and normal butene, and a separation device 7 for separating the gasoline fraction into aromatic hydrocarbons and C5 fraction.
  • piping for supplying each fraction separated by the separation devices 4 and 7 to the thermal decomposition reactor 1 or the catalytic reactor 3 is provided. is there.
  • the cooling fraction obtained by cooling the ethane decomposition gas in the cooler 2 is a liquid heavy fraction that is a condensate contained therein and a lighter cooling gas than that.
  • the gas-liquid separator 5 is not particularly limited as long as it is a device capable of separating gas and liquid, and may be, for example, a flash drum or a cyclone gas-liquid separator.
  • the liquid heavy fraction separated by the gas-liquid separator 5 is extracted into the heavy component recovery tank 6 through the pipe 19, and the gas component that does not liquefy, that is, the cooling gas, is supplied through the pipe 13 to the catalytic reactor. 3 is sent.
  • the liquid heavy fraction does not flow into the catalytic reactor 3, it is not an embodiment in which the entire amount of the cooled fraction is supplied to the catalytic reactor 3. It is different from the manufacturing method. However, when paying attention to the cooling gas that has not been liquefied, since the entire amount is subjected to the catalytic conversion reaction as it is without undergoing a purification treatment, the production method in terms of having no gas purification step. And in common.
  • the component composition contained in the liquid heavy fraction and the cooling gas depends on the temperature and pressure of the cooler 2.
  • the liquid heavy fraction mainly contains components having a boiling point higher than that of aromatic hydrocarbons and water
  • the cooling gas mainly contains ethylene and ethane.
  • the temperature of the cooling process In order to remove a part of the cooling fraction as a liquid heavy fraction, it may be necessary to set the temperature of the cooling process to be low to some extent. As a result, the temperature of the cooling gas flowing out from the gas-liquid separator 5 Can be lower than the feed temperature suitable for the subsequent reaction. In this case, it may be necessary to reheat the catalyst reactor 3 before supplying it to the catalyst reactor 3, which is not preferable in terms of heat. However, since the removal of the heavy fraction has an effect of suppressing the coking deterioration of the zeolite-containing catalyst packed in the catalyst reactor 3, the removal of the liquid heavy fraction is preferable in this respect.
  • the cooling temperature of the ethane decomposition gas in the cooler 2 at least a part of the water contained in the ethane decomposition gas can be condensed and removed.
  • the cooling gas may need to be reheated as described above.
  • the removal of the heavy liquid fraction is preferable in terms of producing an effect of suppressing permanent (dealuminum) deterioration of the zeolite-containing catalyst. .
  • aromatic hydrocarbons recovered here can produce benzene at a high concentration by dealkylation reaction as in the later-described aromatic hydrocarbons recovered from the gasoline fraction via the pipe 29, and are disproportionated. It is also possible to produce toluene at a high concentration by the reaction.
  • various fractions are recycled and reused as raw materials.
  • at least a part of unreacted ethylene recovered from the separation device 4 through the pipe 15 is recycled through the pipe 21 and merged with the cooling fraction or the cooling gas in the pipe 13, and then the catalytic reactor 3.
  • the gas-liquid separator 5 is installed in the middle of the pipe 13, and the position where the recycled ethylene is combined with the cooling fraction or the cooling gas may be upstream or downstream of the gas-liquid separator 5. None, but downstream is preferred.
  • At least a part of the ethane fractionated by the separation device 4 is recycled through the pipe 20, merged with ethane that has not been recycled in the pipe 11, and then supplied to the pyrolysis reactor 1.
  • the separation apparatus 4 fractionated into a fraction having 2 or less carbon atoms (hereinafter referred to as “C2-fraction”) and a fraction having 3 or more carbon atoms (hereinafter referred to as “C3 + fraction”).
  • C2-fraction fraction having 2 or less carbon atoms
  • C3 + fraction fraction having 3 or more carbon atoms
  • the remaining fraction is recycled through the pipe 21 as ethane-containing gas.
  • a part of the C4 fraction recovered from the separation device 4 via the pipe 17 is also recycled via the pipe 22, merged with the cooling fraction or the cooling gas in the pipe 13, and then supplied to the catalytic reactor 3.
  • the gas-liquid separator 5 is installed in the middle of the pipe 13
  • the joining position of the recycled C4 fraction and the cooling fraction or the cooling gas is not limited to the upstream or downstream of the gas-liquid separator 5.
  • the downstream of the separator 5 is preferred.
  • after connecting the downstream end of the piping 22 in the middle of the piping 21 and combining the recycled ethylene and the C4 fraction they may be combined with the cooling fraction or the cooling gas (not shown). .
  • a part of the gasoline fraction recovered from the separation device 4 through the pipe 18 is also recycled through the pipe 23, merged with the cooling fraction or the cooling gas in the pipe 13, and then supplied to the catalytic reactor 3.
  • the gas-liquid separator 5 is installed in the middle of the pipe 13, and the recycled gasoline fraction is merged with the cooling gas downstream of the gas-liquid separator 5, or is merged with the cooling fraction upstream ( Not shown).
  • the separation device 7 in this case is not particularly limited as long as it is a device capable of separating the C5 fraction from other components, and may be, for example, a distillation tower or a gas-liquid separator.
  • the recycled C5 fraction is merged with the cooling fraction or the cooling gas in the pipe 13.
  • the gas-liquid separator 5 is installed in the middle of the pipe 13, it is preferable to combine the recycled C5 fraction and the cooling fraction or the cooling gas with the cooling gas downstream of the gas-liquid separator 5.
  • the recycled C5 fraction may be merged with the cooled fraction upstream of the gas-liquid separator 5 (not shown).
  • a gasoline fraction is supplied to the separation device 7 to extract aromatic hydrocarbons, and one of the remaining fractions (raffinate) from which only the aromatic hydrocarbons have flowed out through the pipe 29
  • the part may be recycled via the pipe 26.
  • the separation device 7 in this case is not particularly limited as long as it can extract aromatic hydrocarbons from a gasoline fraction, and may be, for example, a distillation column.
  • the gas-liquid separator 5 is installed in the middle of the pipe 13, and the recycled raffinate is merged with the cooling gas downstream of the gas-liquid separator 5, or is merged with the cooling fraction upstream (not shown).
  • the fractions recycled to the catalytic reactor 3 such as the ethylene, C4 fraction, and gasoline fraction are heated in advance to the temperature of the cooling gas that has passed through the cooler 2, or the cooling temperature in the cooler 2 is increased. It is desirable to suitably adjust the temperature of the fraction supplied to the catalyst reactor 3.
  • the cooling gas and the recycle fraction may be merged and then reheated with a heater (not shown) and supplied to the catalyst reactor 3.
  • the separation device 8 is not particularly limited as long as it can separate isobutene and normal butene, and examples thereof include distillation columns such as a plate column and a packed column.
  • methyl methacrylate can be produced by the method described in Japanese Patent No. 4076227. Further, from normal butene, butanol can be produced by a method described in JP-A-2005-225781 or the like, or methyl ethyl ketone or butadiene can be produced by a method described in JP-B 3-2126. Is possible.
  • FIG. 3 shows a schematic diagram of an olefin production apparatus (pyrolysis-catalytic conversion reaction apparatus) used in the following Examples.
  • the “holding pressure recovery unit” and “recovery unit” in FIG. 3 are provided with a separation device, and the components separated by the separation device are converted into a pyrolysis reactor and a cooler. Pipes were installed so that they could be recycled into fixed bed and fluidized bed reactors.
  • the measurement methods performed in the examples are as follows. (1) Measurement of silica / alumina ratio of zeolite 0.2 g of zeolite was added to 50 g of 5N NaOH aqueous solution. This was transferred to a stainless steel micro cylinder with a Teflon (registered trademark) inner tube, and the micro cylinder was sealed. The zeolite was completely dissolved by holding the micro bomb in an oil bath for 15 to 70 hours. The obtained zeolite solution was diluted with ion-exchanged water, the silicon and aluminum concentrations in the diluted solution were measured with a plasma emission spectrometer (ICP apparatus), and the silica / alumina ratio of the zeolite was calculated from the results.
  • ICP apparatus plasma emission spectrometer
  • the ICP apparatus and measurement conditions were as follows. Equipment: Rigaku Denki Co., Ltd., trade name “JOBIN YVON (JY138 ULTRACE)” Measurement conditions Silicon measurement wavelength: 251.60 nm Aluminum measurement wavelength: 396.152 nm Plasma power: 1.0 kW Nebulizer gas: 0.28 L / min Sheath gas: 0.3 to 0.8 L / min Coolant gas: 13 L / min
  • the inside of the cell was depressurized to 0.01 Torr. Subsequently, ammonia gas was supplied into the cell, and the pressure was adjusted to 100 Torr. In this state, the measurement cell was held for 30 minutes, and ammonia was adsorbed on the catalyst. The inside of the cell was again decompressed to remove ammonia that was not adsorbed on the catalyst, and then helium was supplied to the measurement cell as a carrier gas to return the inside of the cell to atmospheric pressure. Thereafter, the pressure in the cell is set to be maintained at 200 Torr, and the temperature is increased to 600 ° C. at a temperature increase rate of 8.33 ° C./min. Ammonia desorbed from the catalyst was detected by a mass spectrometer, and a temperature programmed desorption spectrum was obtained.
  • the obtained temperature-programmed desorption spectrum was divided by waveform separation based on Gaussian distribution using waveform analysis software “Wave Analysis” (trade name) manufactured by Nippon Bell Co., Ltd.
  • the ammonia desorption amount was calculated based on a separately obtained calibration curve from the total area of waveforms having a peak top at a desorption temperature of 240 ° C. or higher, and converted to the mass of zeolite (unit: ⁇ mol / g-zeolite).
  • Example 1 An H-type ZSM-5 zeolite having a silica / alumina ratio of 27 was kneaded with silica sol and extruded to obtain a columnar catalyst having a diameter of 2 mm and a length of 3 to 5 mm.
  • the zeolite content in the obtained molded product was 50% by mass.
  • the obtained molded product was dried in air at 120 ° C. for 6 hours and then calcined in air at 700 ° C. for 5 hours.
  • This calcined columnar catalyst was stirred and ion exchanged in a 1N nitric acid aqueous solution, washed with water, and dried in the atmosphere at 120 ° C. for 5 hours to obtain a zeolite-containing catalyst.
  • the amount of TPD acid of this zeolite-containing catalyst was 222 ⁇ mol / g-catalyst. That is, the amount of TPD acid in terms of zeolite mass was 444 ⁇ mol / g-zeolite.
  • Example 2 H-type ZSM-5 zeolite having a silica / alumina ratio of 412 was kneaded with silica sol and extruded.
  • the zeolite content in the obtained molded product was 50% by mass.
  • the obtained molded product was dried at 120 ° C. in the air for 6 hours and then calcined in the air at 700 ° C. for 5 hours to obtain a columnar catalyst having a diameter of 2 mm and a length of 3 to 5 mm.
  • the obtained columnar catalyst was stirred and ion exchanged in a 1N nitric acid aqueous solution, washed with water, and dried in the atmosphere at 120 ° C. for 5 hours to obtain a zeolite-containing catalyst.
  • the amount of TPD acid of the zeolite-containing catalyst was 43 ⁇ mol / g-catalyst. That is, the amount of TPD acid in terms of the mass of zeolite was 86 ⁇ mol / g-zeolite.
  • the thermal decomposition reaction was performed in the same manner as in Example 1. Subsequently, the ethane decomposition gas flowing out from the thermal decomposition reactor was cooled to 397 ° C. with a cooler to obtain a cooled fraction. 12.3 g / hour of the obtained cooling fraction was passed through a 15 mm inner diameter stainless steel fixed bed reactor filled with 8.56 g of the zeolite-containing catalyst and contacted at a reaction temperature of 550 ° C. and a reaction pressure of 0.14 MPaG. A conversion reaction was performed. Table 2 shows the yield of each component in the ethane decomposition gas and the contact gas 18 hours after the start of the reaction.
  • Example 3 To 2000 g of silica sol (manufactured by Nalco, silica content 15% by mass), 40 g of nitric acid (manufactured by Wako Pure Chemicals, reagent containing 60% by mass of nitric acid) was added to adjust the pH to 1.1. 100 g of ammonium nitrate (manufactured by Wako Pure Chemicals, special grade reagent) was added thereto, and then 300 g of NH 4 type ZSM-5 zeolite having a silica / alumina ratio of 42 was added to prepare a catalyst raw material slurry. The obtained catalyst raw material slurry was stirred at 25 ° C.
  • the spray drying conditions of the catalyst raw material slurry were a spray dryer inlet fluid temperature: 220 ° C. and an outlet fluid temperature: 130 ° C., and the spray drying method was a rotating disk method.
  • the obtained dry powder was calcined in the air at 700 ° C. for 5 hours using a muffle furnace to obtain a powdered catalyst.
  • the obtained powdery catalyst was ion-exchanged in a 1N-diluted nitric acid aqueous solution at 25 ° C. for 1 hour, washed with water, and dried in air at 120 ° C. for 5 hours to prepare an ion-exchange catalyst.
  • This ion exchange catalyst is packed in a stainless steel reactor having an inner diameter of 60 mm ⁇ , and subjected to steam treatment for 24 hours under conditions of a temperature of 650 ° C., 0.1 MPaG, a steam flow rate of 12 g / hour, and a nitrogen flow rate of 22.4 NL / hour.
  • the amount of TPD acid in the obtained zeolite-containing catalyst was 17 ⁇ mol / g-catalyst. That is, the amount of TPD acid in terms of mass of zeolite was 34 ⁇ mol / g-zeolite.
  • a pyrolysis reaction was performed in the same manner as in Example 1 except that the outlet temperature of the pyrolysis reactor was 855 ° C.
  • the ethane decomposition gas flowing out from the thermal decomposition reactor was cooled to 415 ° C. with a cooler to obtain a cooled fraction.
  • the obtained cooling fraction water content 27.6% by mass
  • 221 g / hour was passed through a stainless steel fluidized bed reactor having an inner diameter of 52.7 mm packed with 212 g of the zeolite-containing catalyst, and the reaction temperature was 550 ° C.
  • the catalytic conversion reaction was started at a reaction pressure of 0.14 MPaG.
  • Example 4 Except that the cooling fraction 221 g / hour flowing through the fluidized bed reactor was replaced with a mixed gas of 193 g / hour cooling fraction and 21 g / hour of ethylene, and this mixed gas was passed through the fluidized bed reactor at 373 ° C. In the same manner as in No. 3, a contact gas was obtained.
  • Example 4 corresponds to the case where 70% of the unreacted ethylene remaining in the contact gas is recycled. Table 4 shows the yield of each component in the mixed gas and the contact gas in the steady state.
  • Example 5 The same procedure as in Example 3 was performed until the start of the catalytic conversion reaction.
  • the obtained contact gas is cooled to 10 ° C. using a heat exchanger (not shown) at the outlet of the fluidized bed reactor, and then supplied to a gas-liquid separator (not shown) to separate water. It was supplied to a distillation column (not shown) as a separation device. A mixed liquid of the C4 fraction and the gasoline fraction was extracted from the bottom of the column, and 50% of the mixture was recycled to the fluidized bed reactor.
  • the supply amount of the cooled fraction after stabilization to the fluidized bed reactor is 190 g / hour
  • the supply amount of the recycled C4 / gasoline fraction to the fluidized bed reactor is 25 g / hour
  • These mixed gases were reheated before being supplied to the fluidized bed reactor, and the temperature at the inlet of the fluidized bed reactor was 423 ° C.
  • Table 4 shows the yield of each component in the mixed gas and the steady state contact gas. From this result, the total yield of C3 to C5 olefins per ethane fed to the pyrolysis reactor is 24.6% by mass in Example 3 of 1 pass, while in Example 4 of recycling. It was 31.8% by mass and 26.2% by mass in Example 5, and it was found that the yield of olefins having 3 or more carbon atoms was increased by recycling.
  • Example 6 H-type ZSM-5 zeolite having a silica / alumina ratio of 280 was kneaded with silica sol and extruded. The zeolite content in the obtained molded product was 50% by mass. The obtained molded product was dried at 120 ° C. in the air for 6 hours and then calcined in the air at 700 ° C. for 5 hours to obtain a columnar catalyst having a diameter of 2 mm and a length of 3 to 5 mm. The obtained columnar catalyst was stirred and ion exchanged in a 1N nitric acid aqueous solution, washed with water, and dried in the atmosphere at 120 ° C. for 5 hours to obtain a zeolite-containing catalyst.
  • the pyrolysis reaction was performed in the same manner as in Example 1 except that the outlet temperature of the pyrolysis reactor was 810 ° C. Subsequently, the ethane decomposition gas flowing out from the thermal decomposition reactor was cooled to 372 ° C. with a cooler to obtain a cooled fraction. Of the obtained cooling fraction (water content 27.7 mass%), 46.7 g / hour was passed through a stainless steel fixed bed reactor having an inner diameter of 27 mm packed with 30.0 g of the zeolite-containing catalyst, and the reaction temperature was 500. The catalytic conversion reaction was started at 0 ° C. and a reaction pressure of 0.14 MPaG.
  • Table 5 shows the yield of each component in the ethane decomposition gas and the contact gas after the reaction was continued for 24 hours. These yields are based on the assumption that ethane (excluding recycled ones) supplied to the pyrolysis reactor is 100% by mass, and that the entire cooling fraction after the pyrolysis reaction is supplied to the fixed bed reactor. And expressed as a percentage by mass. The ethane content in the catalytic reaction gas 24 hours after the start of the reaction was 53.1% by mass on a dry basis.
  • the amount of ethane newly supplied to the olefin production apparatus could be reduced.
  • Example 7 The zeolite-containing catalyst prepared in Example 1 was charged into a quartz glass reactor having an inner diameter of 20 mm ⁇ , temperature 650 ° C., normal pressure, water vapor flow rate 31.8 g / hour, nitrogen flow rate 2.76 NL / hour, air flow rate 6.72 NL.
  • the zeolite-containing catalyst according to Example 7 was obtained by performing steam treatment for 24 hours under the conditions of / hour.
  • the amount of TPD acid of the obtained zeolite-containing catalyst was 21 ⁇ mol / g catalyst. That is, the amount of TPD acid in terms of the mass of zeolite was 42 ⁇ mol / g-zeolite.
  • a thermal decomposition reaction was carried out in the same manner as in Example 3. Subsequently, when the ethane decomposition gas flowing out from the pyrolysis reactor was cooled to 80 ° C. with a cooler, a condensate was generated. Therefore, a gas-liquid separator (not shown) provided in the middle of the outlet pipe of the cooler was used. The condensate (heavy fraction) was separated and recovered. As a result, a heavy fraction of 15% by mass of the ethane decomposition gas was recovered. 12.0 g / hour of the remaining cooling gas (water content: 15.6% by mass) obtained by separating the heavy fraction from the ethane cracking gas was reheated to 389 ° C.
  • the present invention is useful as an industrial production method from the viewpoint of diversity of olefin production raw materials. Since the present invention can stably produce an olefin having 3 or more carbon atoms from ethane by a simple method, it is extremely advantageous for industrial implementation.
  • Pipe for recovering heavy fraction from the cooled fraction 20 ... Pipe for recycling ethane 21 ... piping for recycling ethylene, 22 ... C4 Piping for recycling the fraction, 23 ... Piping for recycling the gasoline fraction, 24 ... Piping for collecting the C5 fraction, 25 ... Piping for recycling the C5 fraction, 26 ... Recycling the raffinate Piping, 27 ... pipe for collecting isobutene, 28 ... pipe for collecting normal butene, 29 ... pipe for collecting aromatic hydrocarbons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 本発明は、エタンから炭素数3以上のオレフィンを製造する方法であって、より簡便で、かつ安定なオレフィンの製造方法を提供する。本発明は、水蒸気の共存下でエタンを熱分解して得られるエタン分解ガスを600℃以下に冷却して冷却留分を得る工程と、前記冷却留分を中間細孔径ゼオライトを含有する触媒と接触させて炭素数3以上のオレフィンを含む接触ガスを得る工程と、を有するオレフィンの製造方法を提供する。

Description

オレフィンの製造方法およびその製造装置
 本発明は、エタンの熱分解及びゼオライト触媒との接触転化によって炭素数3以上のオレフィンを製造するオレフィンの製造方法及びその製造装置に関する。
 エタンを熱分解し、エチレンを効率よく得る方法は広く知られている。しかし、従来知られている方法では、エチレンは高収率で得られるものの、炭素数3以上のオレフィンはごく僅かしか生成しない。
 例えば特許文献1には、エタンを水蒸気の存在下で熱分解して得られたエチレンから、メタセシス反応を用いてプロピレンを製造する方法が開示されている。
米国特許第7223895号明細書
 しかしながら、特許文献1に記載の方法は圧縮工程を必要とする。さらにこの方法では、上記熱分解による生成ガスにエチレンと共に含まれる低沸物、高沸物、アセチレン、及び水を除去するために、複雑且つ多段階の精製工程が必要である。よって、より簡便に炭素数3以上のオレフィンを製造する方法が求められている。
 本発明の目的は、エタンから炭素数3以上のオレフィンを製造する方法であって、より簡便で、かつ安定なオレフィンの製造方法及びその製造装置を提供することにある。
 本発明者らは、上述の課題を解決するために検討を重ねた結果、エタンを水蒸気の存在下で熱分解して得られるガスを精製しなくても、エタンを中間細孔径ゼオライト含有触媒と接触させることで、炭素数3以上のオレフィンを安定に製造できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の炭素数3以上のオレフィンの製造方法を提供する。
[1]水蒸気の共存下でエタンを熱分解して得られるエタン分解ガスを600℃以下に冷却して冷却留分を得る工程と、前記冷却留分を中間細孔径ゼオライトを含有する触媒と接触させて炭素数3以上のオレフィンを含む接触ガスを得る工程と、を有するオレフィンの製造方法。
[2]水蒸気の共存下でエタンを熱分解して得られるエタン分解ガスを600℃以下に冷却して冷却留分を得る工程と、前記冷却留分を液状の重質留分と冷却ガスとに分離する工程と、前記冷却ガスを中間細孔径ゼオライトを含有する触媒と接触させて炭素数3以上のオレフィンを含む接触ガスを得る工程と、を有するオレフィンの製造方法。
[3]前記重質留分から芳香族炭化水素の一部又は全部を分離して回収する工程を更に有する、上記[2]の製造方法。
[4]前記接触ガスを得る工程において、前記冷却留分又は前記冷却ガスを流動床反応器内で前記触媒と接触させ、前記接触ガスを得る工程を経た前記触媒の一部を前記流動床式反応器から連続的又は断続的に抜き出し、酸素を含むガスに接触させて前記触媒に付着した炭素質化合物の少なくとも一部を燃焼する工程と、前記燃焼する工程を経た前記触媒を前記流動床式反応器に再供給する工程と、を更に有する、上記[1]~[3]のいずれか一つの製造方法。
[5]前記冷却留分を得る工程において、前記エタン分解ガスを300~600℃に冷却する、上記[1]~[4]のいずれか一つの製造方法。
[6]前記接触ガスからエタンを分離する工程と、前記エタンの少なくとも一部を前記エタンを熱分解する際の原料としてリサイクルする工程と、を更に有する、上記[1]~[5]のいずれか一つの製造方法。
[7]前記接触ガスを得る工程において、前記エタン分解ガスに含まれるエチレンから、プロピレン、C4留分及びガソリン留分からなる群より選択される少なくとも一種を生成させる、上記[1]~[6]のいずれか一つの製造方法。
[8]前記少なくとも一種の一部及び/又は前記接触ガスを得る工程を経た未反応のエチレンの少なくとも一部を前記接触ガスを得る工程の原料としてリサイクルする、上記[7]の製造方法。
[9]前記C4留分からイソブテン及び/又はノルマルブテンを分離して回収する工程を更に有する、上記[7]又は[8]の製造方法。
[10]前記ガソリン留分から芳香族炭化水素の一部又は全部を分離して回収する工程を更に有する、上記[7]~[9]のいずれか一つの製造方法。
 また、本発明は、以下の炭素数3以上のオレフィンの製造装置を提供する。
[11]エタンから炭素数3以上のオレフィンを製造するための製造装置であって、
 水蒸気の共存下でエタンを熱分解してエタン分解ガスを得るための第一の反応器に接続され、前記第一の反応器から流出した前記エタン分解ガスを受け入れ冷却して冷却留分を得るための冷却器と、
 該冷却器に接続され、かつ、中間細孔径ゼオライトを含有する触媒が充填され、前記冷却器から流出した前記冷却留分を受け入れ前記触媒に接触させるための第二の反応器と、を具備するオレフィンの製造装置。
[12]エタンから炭素数3以上のオレフィンを製造するための装置であって、水蒸気の共存下でエタンを熱分解してエタン分解ガスを得るための第一の反応器に接続され、前記第一の反応器から流出した前記エタン分解ガスを受け入れ冷却して冷却留分を得るための冷却器と、前記冷却器に接続され、前記冷却器から流出した前記冷却留分を液状の重質留分と冷却ガスとに分離するための気液分離器と、前記気液分離器に接続され、かつ、中間細孔径ゼオライトを含有する触媒が充填され、前記気液分離器から流出した前記冷却ガスを受け入れ前記触媒に接触させるための第二の反応器と、を具備するオレフィンの製造装置。
 本発明の製造方法および製造装置によれば、簡便で、かつ安定にエタンから炭素数3以上のオレフィンを製造する方法及びその製造装置を提供することができる。
本実施形態のオレフィンの製造方法に用いる製造装置を示す概略図である。 別の本実施形態のオレフィンの製造方法に用いる製造装置を示す概略図である。 本発明の実施例で用いたオレフィンの製造装置を示す概略図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、必要に応じて図面を参照しつつ詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明をこの本実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 図1は、本実施形態のオレフィンの製造方法に使用可能な製造装置の概略図である。図1に示すオレフィンの製造装置は、第一の反応器(熱分解反応器1)と、冷却器2と、第二の反応器(触媒反応器3)と、分離装置4とを具備する。
 熱分解反応器1には、エタン及び水蒸気が配管11を介して供給される。エタン及び水蒸気を収容した熱分解反応器1は、図示しないコンベクション部を備えており、エタン及び水蒸気は、そこで600℃程度に予熱される。なお、コンベクション部に代えて/加えて、必要に応じて熱分解反応器1の外部に予熱器が設置されてもよい。水蒸気と共に予熱されたエタンは、熱分解反応器1内で更に加熱され熱分解してエチレンを含有するエタン分解ガスを生成する(エタン熱分解工程)。
 熱分解反応器1に供給されるエタン原料は、エタンの他、少量のメタン、プロパン等を含んでいてもよい。また、エタン原料は、天然ガスから分離されたものでも、石油ガス中から分留されたものでも、ナフサや重質油の熱分解で副生したものでもよい。あるいは、エタン原料は、その他の製品の製造過程で生じたエタンでもよい。
 エタン熱分解工程における反応温度(熱分解温度)は、780~880℃の範囲であると好ましい。反応圧力は0.05~1MPaの範囲であると好ましく、より好ましくは0.1~0.5MPaの範囲である。水蒸気とエタンとの質量比は、水蒸気/エタンで0.1~2.0の範囲であると好ましく、より好ましくは0.2~1.0の範囲である。水蒸気及びエタンの熱分解反応器1内での滞留時間は5秒以下であると好ましく、より好ましくは2秒以下である。コーキング抑制の観点で、水蒸気及びエタンは熱分解反応器1に共に供給されるのが好ましい。反応圧力の測定箇所について、例えば出口圧力を測定することができるが、入口と出口とで圧力差は実質的にないから、入口及び出口のいずれで反応圧力を測定しても差し支えない。
 下記式(1)により導出されるエタン転化率は40~80質量%の範囲であると好ましく、より好ましくは60~80質量%の範囲である。エタン転化率が40質量%以上であると、より十分なエチレン収量を確保することができる。熱分解反応器1の材質の耐熱性の観点から、エタン転化率が80質量%以下であると好ましい。
 エタン転化率=(熱分解反応器入口の供給流中のエタン濃度-熱分解反応器出口の排出流中のエタン濃度)/熱分解反応器入口の供給流中のエタン濃度×100  (1)
 エタン分解ガスはエチレンの他、例えば、未反応エタン、水、水素、一酸化炭素、二酸化炭素、エタン以外のアルカン類、エチレン以外のオレフィン類、芳香族炭化水素を含んでもよい。アルカン類の例としては、メタン、プロパン、ブタン、ペンタン、ヘキサンが挙げられる。オレフィン類の例としては、プロピレン、ブテン、ペンテン、ヘキセンが挙げられる。芳香族炭化水素の例としては、ベンゼン、トルエン、キシレン、エチルベンゼン、スチレンが挙げられる。エタン分解ガスは、上述のもの以外に、シクロペンタン、メチルシクロペンタン、シクロヘキサンなどのシクロアルカン類、シクロペンテン、メチルシクロペンテン、シクロヘキセンなどのシクロオレフィン類を含んでもよい。
 また、エタン分解ガスは、アセチレン、メチルアセチレンなどのアセチレン化合物類、及び、プロパジエン、ブタジエン、ペンタジエン、シクロペンタジエンなどのジオレフィン(ジエン)化合物類を通常含む。
 熱分解反応器1は配管12を介して冷却器2に接続されている。冷却器2としては、通常の熱交換器が好ましく用いられる。この場合、冷媒として水蒸気が採用され、エタン熱分解ガスの持つ熱量が高圧水蒸気として回収され、後述する分離工程の動力源とされることも可能である。なお、図1に示す冷却器2は1器であるが、必要に応じて、複数の冷却器が設置されてもよい。
 熱分解反応器1から流出したエチレンを含むエタン分解ガスは、配管12を経由して冷却器2に供給される。冷却器2においてエタン分解ガスを600℃以下に冷却し冷却留分を得る(冷却工程)。エタン分解ガスを600℃以下に冷却することで、エタン分解ガス中のオレフィンの反応が防ぐことができる。
 好ましい冷却温度は、300~600℃の範囲である。上記冷却温度をこの温度の範囲に制御することで、熱分解ガスや加熱器による再加熱、あるいは触媒反応器内での中間加熱等を施すことなく、後述するエチレンから炭素数3以上のオレフィンへの転化の反応温度を好適な範囲に調整することができる。なぜなら、当該転化反応は発熱反応であるので、反応に供される留分の温度をこの範囲にしておけば、加熱を要することなく、反応熱によって適切な温度に維持されるためである。同様の観点から、冷却温度は300~550℃であると好ましく、300~500℃であると更に好ましく、300~450℃であると特に好ましい。
 冷却器2は配管13を介して触媒反応器3に接続されている。触媒反応器3には、中間細孔径ゼオライトを含有する触媒(以下、単に「ゼオライト含有触媒」という。)が充填されている。冷却器2で冷却したエタン分解ガスを配管13を経由して触媒反応器3に供給し、触媒反応器3内でゼオライト含有触媒と接触させる。これによりエタン分解ガスに含まれるエチレンを炭素数3以上のオレフィンに転化し、それらのオレフィンを含む接触ガスを得る(接触転化工程)。すなわち、エタン分解ガスは冷却器2で冷却されて冷却留分として冷却器2から流出し、精製処理を施されることなく、実質的に全量がそのまま触媒反応器3に供給され、接触転化反応に供される。なお、冷却留分の一部が液化する場合も、その全量を接触転化反応に供給する限り、この実施形態に包含される。液化した留分を触媒反応器3に供給しても、実質的に障害はない。
 この際、エタン分解ガスに含まれる先述のアセチレン化合物類、ジエン化合物類も触媒反応器3に供給される。これらの化合物は重合性に富んでおり、重合物はゼオライト含有触媒をコーキングしてその活性点を塞ぐため、触媒劣化の原因となる。コーキングによる触媒の劣化を防いでエチレンの接触転化反応を安定化する観点から、アセチレン化合物類やジエン化合物類は、その反応に先立って蒸留分離、部分水添等の処理により極限まで少なくすることが好ましいと考えられてきた。そのため、従来、炭素数3以上のオレフィンの製造において、エチレンの接触転化反応に先立って、エチレンを精製し、アセチレン化合物類等を除去している。しかしながら、かかる前処理を工業的に実施する場合、工程数の増加を要する点で甚だ不利であるといわざるを得ない。そこで、本発明者は種々の検討を重ねた結果、エタン分解ガスを冷却するだけで、精製することなくそのまま触媒反応器3に導入することを見出した。一般に、各反応毎に生成物を精製して次のステップに進めるのが多段階の化学反応を進める上で常識的である。また、反応を阻害する物質をその系から除去するのも常識的である。これらに鑑みても、エチレンを含む冷却留分を精製することなく接触転化反応に供する方法は、画期的であるといえる。
 なお、エチレンから炭素数3以上のオレフィンへの転化反応は発熱反応であり、エチレン転化量が増えるほど発熱量は増大するため、転化反応温度を精密に制御するためには、反応熱の効果的な除去(除熱)という対応も求められる。よって、触媒反応器3には、これらの課題に対応できる性能が求められる。
 触媒反応器3の形式は、特に制限されず、固定床式反応器、流動床式反応器、移動床式反応器などのいずれの反応器形式も利用できる。
 触媒反応器3が固定床式反応器の場合、上述した触媒のコーキング対策の観点から、接触転化反応と後述する触媒再生工程との切り替えが可能なスウィング形式の触媒反応器が好ましい。また、反応熱除去の観点からは、マルチチューブタイプの触媒反応器が好ましい。触媒へのコーキングが進行するのに伴い、触媒反応器3の出口ガス組成が変動する。そこで、その組成を一定の範囲に保つために、経時的に触媒反応器3入口でのエタン分解ガスの温度を上げるか、触媒反応器3内の中間加熱温度を上げる、すなわち外部加熱により反応器内部の温度を上げてもよい。触媒反応器3入口でのエタン分解ガスの温度を上げる方法として、前述の冷却器2の冷却温度を上げる方法、触媒反応器3の上流に設けた予熱器で再加熱する方法が挙げられる。
 触媒反応器3が流動床式反応器の場合、フルードベッド型、ライザー型、噴流床型の触媒反応器が好ましく用いられる。より好ましくは、触媒を再生する場合の効率化の観点から、流動床式反応器に触媒再生装置を備えた触媒循環型の反応器が用いられる。触媒循環型の反応器は、流動床式反応器と触媒再生装置との間で触媒が循環可能なように、それらを接続する配管を有する。流動床式反応器においては、ゼオライト含有触媒を用いたエチレンの接触転化反応が進行する。その接触転化反応に供されたゼオライト含有触媒の一部は連続的又は断続的に流動床式反応器から抜き出され、配管を経由して触媒再生装置に供給される。触媒再生装置においては、後述の触媒の再生方法により、ゼオライト含有触媒に付着した炭素質化合物(コーク)の少なくとも一部が燃焼される。触媒に付着したコークが燃焼により除去されることで、触媒性能は回復し、その後、ゼオライト含有触媒は配管を経由して流動床式反応器に再供給される。接触転化反応により発生する反応熱の除去には、冷却コイルのような除熱設備が好ましく用いられる。
 上記触媒の再生方法は以下の通りである。ゼオライト含有触媒は、長期間反応に用いると触媒上に炭素質化合物が生成し、その触媒活性が低下することがある。固定床式反応器を用いた場合、反応器への原料(エタン分解ガス)の供給を一時的に停止して酸素を含むガスを供給し、ゼオライト含有触媒に蓄積したコークを燃焼させることによって、ゼオライト含有触媒を再生することができる。また、移動床式及び流動床式反応器の場合、その反応器からゼオライト含有触媒の一部を連続的又は断続的に抜き出し、酸素を含むガスを用いて焼成し、付着したコークを燃焼させることによってゼオライト含有触媒の再生を行うことができる。再生後のゼオライト含有触媒は反応器に戻すことができる。コークの付着した触媒を、空気又は空気と不活性ガスとからなる混合ガスと、高温、好ましくは400~700℃で接触させることによりコークが燃焼し、触媒が再生される。
 触媒反応器3に充填されるゼオライト含有触媒中のゼオライトは、5~6.5Åの細孔径を有する、いわゆる「中間細孔径ゼオライト」である。ここで、用語「中間細孔径ゼオライト」とは、細孔径の範囲が、A型ゼオライトに代表される小細孔径ゼオライトの細孔径と、モルデナイトやX型やY型ゼオライトに代表される大細孔径ゼオライトの細孔径との中間にあるゼオライトを意味し、その結晶構造中にいわゆる酸素10員環を有するゼオライトを意味する。
 ゼオライトのシリカ/アルミナ比(モル比。以下同様。)は、触媒としての安定性の観点から、20以上であると好ましい。シリカ/アルミナ比の上限は特に限定されるものではないが、触媒活性の観点で、一般的には、シリカ/アルミナ比は20~1000の範囲であるとより好ましく、20~500の範囲であると更に好ましく、20~300が特に好ましい。ゼオライトのシリカ/アルミナ比は、公知の方法、例えばゼオライトをアルカリ水溶液に完全に溶解し、得られる溶液をプラズマ発光分光分析法により分析することで求めることができる。
 ゼオライトは、「中間細孔径ゼオライト」の範疇である限り特に制限されない。中間細孔径ゼオライトの例として、ZSM-5、及び、ZSM-5に類似の構造を有するいわゆるペンタシル型ゼオライトが挙げられる。すなわち、中間細孔径ゼオライトの例として、ZSM-5、ZSM-8、ZSM-11、ZSM-12、ZSM-18、ZSM-23、ZSM-35、ZSM-39が挙げられる。好ましい中間細孔径ゼオライトとして、IUPAC勧告に従った骨格構造タイプでMFI構造と表されるゼオライトが挙げられ、具体的には、ZSM-5が挙げられる。
 中間細孔径ゼオライトとして、ゼオライト骨格を構成するアルミニウム(Al)原子の一部がガリウム(Ga)、鉄(Fe)、ホウ素(B)、クロム(Cr)などの元素で置換されたメタロアルミノシリケートや、ゼオライト骨格を構成するアルミニウム原子が全て上記の元素で置換されたメタロシリケートを用いることもできる。メタロアルミノシリケート又はメタロシリケートの「シリカ/アルミナ比」は、上記元素に置換されたアルミニウム原子の量をAl(アルミナ)のモル数に換算した上で、算出される。
 ゼオライト含有触媒の成形方法は特に限定されず、一般的な方法でよい。具体的には、触媒の前駆体を噴霧乾燥する方法、圧縮成形する方法、押出成形する方法が挙げられる。ゼオライト含有触媒の成形には、バインダーや成形用希釈剤(マトリックス)を用いることができる。バインダーや成形用希釈剤として、特に制限はないが、アルミナ、シリカ、シリカ/アルミナ、ジルコニア、チタニア、ケイソウ土、粘土等の多孔性耐火性無機酸化物を単独、又は混合して用いることができる。これらのバインダー及び/又は成形用希釈剤は、市販のものを用いてもよく、常法により合成してもよい。中間細孔径ゼオライトとバインダー及び成形用希釈剤との質量比率は、中間細孔径ゼオライト/(バインダー及び成形用希釈剤)で、好ましくは10/90~90/10の範囲であり、より好ましくは20/80~80/20の範囲である。
 噴霧乾燥によりゼオライト含有触媒を成形する際は、形状改善、機械的強度の向上を目的として、噴霧乾燥前の中間細孔径ゼオライトを含有するスラリーに、硝酸塩、酢酸塩及び炭酸塩からなる群より選ばれる水溶性化合物を1種以上添加してもよい。好ましい水溶性化合物として、水溶性が高く、かつ、焼成により触媒から分解除去できるアンモニウム塩が挙げられる。
 劣化抑制や選択性改善の目的で、冷却留分であるエタン分解ガスとの接触に先立って、ゼオライト含有触媒に加熱処理、好ましくは水蒸気共存下で加熱処理を施してもよい。加熱処理の温度は、水蒸気存在の有無を問わず、500℃以上が好ましく、500~900℃がより好ましい。水蒸気を共存させる場合、好ましくは水蒸気の分圧が0.01気圧以上の条件で加熱処理が施される。
 エチレンの接触転化反応における、ゼオライト含有触媒の初期活性の指標の一つとして、アンモニア昇温脱離(TPD:Temperature programmed desorption)スペクトルにおける高温脱離量から求められる酸量(以下、TPD酸量と言う。)が用いられてもよい。ゼオライト含有触媒がゼロを超えるTPD酸量を有することで転化反応は進行する。TPD酸量は、好ましくは20μmol/g-ゼオライト以上であり、より好ましくは、20~500μmol/g-ゼオライトであり、特に好ましくは20~300μmol/g-ゼオライトである。TPD酸量の上限はオレフィン収率の観点で設定される。
 TPD酸量は、以下の方法で測定されるものである。
 まず、昇温脱離スペクトル測定装置の測定セルにサンプルの触媒を入れ、測定セル内をヘリウムガスで置換し、温度を100℃に保持する。次いで、測定セル内を一旦減圧した後、アンモニアガスを供給して測定セル内の圧力を100Torrとし、その状態で30分間保持し、触媒にアンモニアを吸着させる。測定セル内を再度、減圧して触媒に吸着されていないアンモニアを除去し、ヘリウムによりセル内を大気圧に戻す。その後、測定セルを四重極型質量分析計に接続し、セル内の圧力を200Torrに設定し、セル内を8.33℃/分の昇温速度で600℃まで昇温しながら、触媒から脱離してくるアンモニアを検出して昇温脱離スペクトルを得る。脱離の間のセル内の圧力は約200Torrに保たれるように調整する。
 得られた昇温脱離スペクトルをガウス分布に基づく波形分離により分割し、240℃以上の脱離温度でピークトップを有する波形(ピーク)の面積の総和からアンモニア脱離量を求め、これを触媒中に含有されるゼオライトの質量で除した値(単位はμmol/g-ゼオライト)をTPD酸量とする。なお、「240℃」は、ピークトップの位置の判断にのみ用いる指標であって、240℃以上の部分の面積のみを求めるという趣旨ではない。ピークトップが240℃以上の波形である限り、その「波形の面積」は、240℃未満の部分も含む全面積を求める。240℃以上にピークトップを有する波形が複数ある場合は、それぞれの波形の面積の和とする。
 ゼオライト含有触媒は、周期律表第IB族に属する金属(以下、単に「IB族金属」という。)元素からなる群より選ばれる少なくとも1種の金属元素を含有していてもよい。ここで、「金属元素を含有する」とは、ゼオライト含有触媒中の中間細孔径ゼオライトが上記金属元素を対応する陽イオンの状態で含むこと、又は、ゼオライト含有触媒に上記金属元素が金属若しくは酸化物の状態で担持されていることを意味する。また、本明細書中「周期律表」は、CRC Handbook of Chemistry and Physics、75th edition、David R. Lideら著、CRC Press Inc.発行(1994-1995年)、1-15頁に記載の周期律表を意味する。
 上述のとおり、ゼオライト含有触媒が、IB族金属元素、すなわち、銅、銀及び金からなる群より選ばれる少なくとも1種の金属元素を含有することは好ましい形態の一つである。より好ましいIB族金属としては、銅、銀が挙げられ、更に好ましくは銀である。
 ゼオライト含有触媒に、IB族金属元素からなる群より選ばれる少なくとも1種の金属元素を含有させる方法としては、中間細孔径ゼオライトにIB族金属元素を含有させる方法が挙げられる。より具体的には、IB族金属を含有していない中間細孔径ゼオライト又はゼオライト含有触媒をイオン交換する方法が挙げられ、イオン交換処理は液相法でも固相法でもよい。固相法のイオン交換処理は、IB族金属を含む溶液を、(IB族金属を含有していない)中間細孔径ゼオライト又はゼオライト含有触媒に含浸する方法である。IB族金属を含む溶液の調製には、IB族金属の塩、例えば、硝酸銀、酢酸銀、硫酸銀、塩化銅、硫酸銅、硝酸銅、塩化金を用いることができる。これらの中で好ましくは、硝酸銀、硝酸銅が用いられ、より好ましくは、硝酸銀が用いられる。中間細孔径ゼオライト中のIB族金属の含有量は、中間細孔径ゼオライトの全量に対して0.1~10質量%が好ましく、より好ましくは0.2~5質量%である。IB族金属の含有量はX線蛍光分析法などにより求めることができる。
 ゼオライト含有触媒に含まれる中間細孔径ゼオライトのイオン交換サイトの少なくとも一部は、IB族金属カチオン及び/又はプロトンで交換されていることが好ましい。また、IB族金属カチオン及び/又はプロトンで交換された以外のイオン交換サイトは、アルカリ金属カチオン、アルカリ土類金属カチオン及びその他の金属カチオンで交換されていてもよい。
 触媒反応器3において、エタン分解ガスの冷却留分がゼオライト含有触媒に接触すると、エタン分解ガスに含まれるエチレンが接触転化反応により炭素数3以上のオレフィンに転化する。その接触転化反応は、原料であるエタン分解ガス中のエチレンが高選択率で炭素数3以上のオレフィンに転化され、エタン分解ガス中に共存するパラフィンが実質的に反応しない、以下に示すような反応条件で行うことが好ましい。
 すなわち、反応温度は、好ましくは400~650℃、より好ましくは450~600℃である。エタン分解ガスの分圧は低いほうが望ましく、通常0.01~1MPa、より好ましくは0.05~0.5MPaである。ゼオライト含有触媒の質量に対するエタン分解ガスの重量時間空間速度WHSVは、0.1~50hr-1、好ましくは0.2~20hr-1の範囲である。
 パラフィンが実質的に反応しない条件で接触転化反応を行うと、エタン分解ガス中のエチレンの転化反応が選択的に促進され、パラフィンの転化反応が抑制される。その結果、パラフィンの転化反応によるメタン、エタン、プロパン、ブタン等の副生が抑制され、反応混合物からの炭素数3以上のオレフィンの分離及び精製が容易である。
 エタン分解ガスに含まれるエチレンを主成分とする炭素数2以上のオレフィンを接触転化して炭素数3以上のオレフィンを生成する反応は平衡反応であり、平衡上、代表成分であるエチレンの転化率が60~70質量%近傍で炭素数3以上のオレフィンの最大収率を示す。したがって、効率的に炭素数3以上のオレフィンを得るには、エチレン転化率は45~85質量%の範囲が好ましく、50~80質量%がより好ましい。ここで、エチレンの転化率は下記計算式(2)により算出される。
 エチレン転化率=(触媒反応器3に供給されるエタン分解ガス中のエチレン濃度-触媒反応器3から流出する接触ガス中のエチレン濃度)/触媒反応器3に供給されるエタン分解ガス中のエチレン濃度×100  (2)
 触媒反応器3は配管14を介して分離装置4に接続される。触媒反応器3で得られた炭素数3以上のオレフィンを含有する接触ガスは、配管14を介して、分離装置4に供給され、分離装置4で各留分に分離される(分離工程)。分離工程において、各留分は分留、抽出など、種々の方法又はそれらの組み合わせによって分離される。分離装置4は、それらの方法に適した装置であれば特に限定されず、例えば棚段塔や充填塔などの蒸留塔であってもよい。接触ガスを分離した後、配管15を介してエチレン(及び存在する場合はそれよりも軽質な留分)、配管16を介してプロピレン、配管17を介してブテンを含むC4留分、そして配管18を介して芳香族炭化水素を含むガソリン留分を回収する。ここで「ガソリン留分」とは、沸点30~220℃の範囲の留分を指す。
 配管16を介して回収されたプロピレンから、特許第3214984号公報等に記載の方法によって、アクリロニトリルやポリプロピレンを製造することができる。
 図2は、本実施形態の別のオレフィンの製造方法に使用可能な製造装置の概略図である。図2に示すオレフィンの製造装置は、(1)冷却器2と触媒反応器3との間に気液分離器5が接続されており、更にその気液分離器5に重質分回収タンク6が接続されており、(2)分離装置4から流出したC4留分をイソブテンとノルマルブテンとに分離する分離装置8、ガソリン留分を芳香族炭化水素とC5留分とに分離する分離装置7とを備え、(3)分離装置4、7で分離した各留分を熱分解反応器1又は触媒反応器3に供給するための配管が設けられている以外、図1に示すものと同様である。ここでは、図1に示すオレフィンの製造装置及びそれに関連するオレフィンの製造方法との相違点のみ以下に説明する。
 気液分離器5では、エタン分解ガスを冷却器2で冷却することにより得られた冷却留分が、そこに含まれる凝縮液である液状の重質留分とそれよりも軽質な冷却ガスとに分離される(気液分離工程)。気液分離器5は、気体と液体とを分離可能な装置であれば特に限定されず、例えばフラッシュドラムやサイクロン式気液分離器であってもよい。気液分離器5で分離された液状の重質留分は、配管19を介して重質分回収タンク6へ抜き出され、液化しないガス成分、すなわち冷却ガスは配管13を介して触媒反応器3へ送られる。この場合、液状の重質留分は触媒反応器3に流入しないから、冷却留分の全量が触媒反応器3に供給される態様ではない点で、図1に示す製造装置を用いたオレフィンの製造方法と相違する。ただし、液化されなかった冷却ガスに着目すると、実質的に全量が精製の処理を経ないで、そのまま接触転化反応に供されるから、ガスを精製する工程を有しないという点では、当該製造方法と共通する。
 液状の重質留分及び冷却ガスに含まれる成分組成は、冷却器2の温度及び圧力に依存する。例えば、液状の重質留分には主に芳香族炭化水素以上の沸点を有する成分や水が含まれ、冷却ガスには主にエチレンやエタンが含まれる。
 冷却留分の一部を液状の重質留分として除去するには、冷却工程の温度をある程度低く設定する必要が生じる場合があり、その結果、気液分離器5から流出する冷却ガスの温度が後段の反応に適する供給温度よりも低くなり得る。この場合、触媒反応器3に供給する前に再加熱する必要が生じて熱的には好ましくない場合もある。しかしながら、重質留分の除去は、触媒反応器3に充填されたゼオライト含有触媒のコーキング劣化を抑制する効果を奏するので、この点で液状の重質留分の除去は好ましい面もある。
 冷却器2におけるエタン分解ガスの冷却温度によっては、エタン分解ガス中に含まれる水の少なくとも一部を凝縮、除去させることも可能である。この場合も上記と同様に、冷却ガスを再加熱する必要が生じる場合もあるが、ゼオライト含有触媒の永久(脱アルミ)劣化を抑制する効果を生む点で液状の重質留分の除去は好ましい。
 配管19を介して重質分回収タンク6に抜き出された重質留分から、更に芳香族炭化水素を抽出することも可能である。ここで回収される芳香族炭化水素は、配管29を介してガソリン留分から回収される後述の芳香族炭化水素と同様に、脱アルキル反応により高濃度でベンゼンを生成することができ、不均化反応により高濃度でトルエンを生成することもできる。
 本実施形態では、原料であるエタンの単位量当たりの各製品の収量を高めるため、様々な留分をリサイクルし、原料として再利用する。例えば、分離装置4から配管15を介して回収した未反応のエチレンの少なくとも一部を、配管21を介してリサイクルし、配管13において冷却留分又は冷却ガスと合流させた後、触媒反応器3へ供給する。図2に示す例では配管13の途中に気液分離器5が設置されており、リサイクルしたエチレンを冷却留分又は冷却ガスと合流させる位置は、この気液分離器5の上流でも下流でも差し支えないが、下流の方が好ましい。
 分離装置4で分留したエタンの少なくとも一部を、配管20を介してリサイクルし、配管11においてリサイクルされていないエタンと合流させた後、熱分解反応器1へ供給する。あるいは、分離装置4で、炭素数2以下の留分(以下、「C2-留分」という。)と、炭素数3以上の留分(以下、「C3+留分」という)とに分留した後、C2-留分からエチレンだけを抽出、回収したような場合は、その残りの留分をエタン含有ガスとして、配管21を介してリサイクルする。ただし、この場合は、リサイクルする留分を一部にとどめ、後続の接触工程における不活性成分であるメタンの蓄積を避けることが好ましい。
 分離装置4から配管17を介して回収したC4留分の一部も、配管22を介してリサイクルさせ、配管13において冷却留分又は冷却ガスと合流させた後、触媒反応器3へ供給する。配管13の途中に気液分離器5が設置されている場合、リサイクルしたC4留分と冷却留分又は冷却ガスとの合流位置は気液分離器5の上流又は下流に限定されないが、気液分離器5の下流の方が好ましい。また、配管22の下流側末端を配管21の途中に接続し、リサイクルしたエチレンとC4留分とを合流させた後に、それらを冷却留分又は冷却ガスと合流してもよい(図示せず)。
 さらに、分離装置4から配管18を介して回収したガソリン留分の一部も、配管23を介してリサイクルさせ、配管13において冷却留分又は冷却ガスと合流させた後、触媒反応器3へ供給する。この場合、配管13の途中に気液分離器5が設置されており、リサイクルしたガソリン留分を気液分離器5の下流で冷却ガスと合流させるか、あるいは上流で冷却留分と合流させる(図示せず)。
 配管18を介して回収したガソリン留分を分離装置7に供給して、C5留分をその他の成分と分離した後、配管24を介して回収したC5留分の一部を、配管25を介してリサイクルする。この場合の分離装置7は、C5留分をその他の成分と分離可能な装置であれば特に限定されず、例えば蒸留塔や気液分離器であってもよい。リサイクルしたC5留分は、配管13において冷却留分又は冷却ガスと合流される。配管13の途中に気液分離器5が設置されている場合、リサイクルしたC5留分と、冷却留分又は冷却ガスとを気液分離器5の下流で冷却ガスと合流させる方が好ましい。もちろん、リサイクルしたC5留分を気液分離器5の上流で冷却留分と合流させてもよい(図示せず)。
 C5留分のリサイクルに代えて、ガソリン留分を分離装置7に供給して芳香族炭化水素を抽出し、配管29を介して芳香族炭化水素のみを流出した残りの留分(ラフィネート)の一部を、配管26を介してリサイクルしてもよい。この場合の分離装置7は、ガソリン留分から芳香族炭化水素を抽出できる装置であれば特に限定されず、例えば蒸留塔であってもよい。この場合、配管13の途中に気液分離器5が設置されており、リサイクルしたラフィネートを気液分離器5の下流で冷却ガスと合流させるか、あるいは上流で冷却留分と合流させる(図示せず)。
 上述のエチレン、C4留分、ガソリン留分等の触媒反応器3へリサイクルする留分は、冷却器2を経た冷却ガスの温度まで予め加熱する、あるいは、冷却器2での冷却温度を高めることで触媒反応器3に供給する留分の温度を好適に調節することが望ましい。また、その冷却ガス及びリサイクル留分を合流させた後、加熱器(図示せず)で再加熱して、触媒反応器3に供給してもよい。
 配管17を介して回収されるC4留分の全て、又はそのC4留分のうち配管22を介して触媒反応器3にリサイクルする以外のものは、分離装置8にて分離され、配管27を介してイソブテンを、配管28を介してノルマルブテンを回収することもできる。分離装置8は、イソブテンとノルマルブテンとを分離できる装置であれば特に限定されず、例えば棚段塔及び充填塔などの蒸留塔が挙げられる。
 回収されたイソブテンからは、特許第4076227号公報等に記載の方法によってメタクリル酸メチルを製造することができる。また、ノルマルブテンからは、特開2005-225781号公報等に記載の方法によりブタノールを製造したり、メチルエチルケトンや、特公平3-2126号公報等に記載の方法によりブタジエンを製造したりすることも可能である。
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。図3に、下記の実施例で用いたオレフィンの製造装置(熱分解-接触転化反応装置)の概略図を示す。なお、図示していないが、図3中の「保圧回収ユニット」及び「回収ユニット」には分離装置が備えられており、その分離装置により分離された各成分を熱分解反応器、冷却器、固定床反応器、流動床反応器にリサイクルできるよう配管が設置されていた。
 実施例において行われた測定方法は下記のとおりである。
(1)ゼオライトのシリカ/アルミナ比の測定
 ゼオライト0.2gを5NのNaOH水溶液50gに加えた。これをテフロン(登録商標)製内管付きのステンレス製マイクロボンベに移し、マイクロボンベを密閉した。オイルバス中でマイクロボンベを15~70時間保持することにより、ゼオライトを完全に溶解した。得られたゼオライトの溶液をイオン交換水で希釈し、希釈液中の珪素、アルミニウム濃度をプラズマ発光分光分析計(ICP装置)にて測定し、その結果からゼオライトのシリカ/アルミナ比を算出した。
 ICP装置及び測定条件は下記のとおりであった。
 装置:理学電気社製、商品名「JOBIN YVON(JY138 ULTRACE)」
 測定条件
  珪素測定波長    : 251.60nm
  アルミニウム測定波長: 396.152nm
  プラズマパワー   : 1.0kw
  ネブライザーガス  : 0.28L/分
  シースガス     : 0.3~0.8L/分
  クーラントガス   : 13L/分
(2)TPD酸量の測定
 日本ベル株式会社製の全自動昇温脱離スペクトル装置「TPD-1-ATw」(商品名)を用い、付属のマニュアルに準じて下記の方法にて触媒のTPD酸量を測定した。
 まず、専用ガラス製セルに触媒試料100mgを充填した。この際、触媒試料が成形体の場合には粉末状にして充填した。次いで、キャリアガスとしてヘリウムを50cc/分でセルに供給しながら、前処理として500℃まで昇温して1時間加熱処理を施した後、100℃に温度設定した。温度が100℃で安定した後、セル内を0.01Torrまで減圧した。続いて、セル内にアンモニアガスを供給し、圧力を100Torrに調整した。その状態で測定セルを30分間保持し、触媒にアンモニアを吸着させた。セル内を再度減圧して、触媒に吸着されていないアンモニアを除去した後、次いで、測定セルにキャリアガスとしてヘリウムを供給し、セル内を大気圧に戻した。しかる後、セル内の圧力が200Torrに保たれるように設定し、8.33℃/分の昇温速度で600℃まで昇温しながら、セルと接続されたアネルバ株式会社製の四重極型質量分析計で触媒から脱離してくるアンモニアを検出し、昇温脱離スペクトルを得た。
 得られた昇温脱離スペクトルを日本ベル株式会社製の波形解析ソフト『WaveAnalysis』(商品名)を用いて、ガウス分布に基づく波形分離により分割した。
 波形分離解析の結果、240℃以上の脱離温度でピークトップを有する波形の面積の総和から、別途求めた検量線に基づいてアンモニア脱離量を求め、ゼオライトの質量当たりに換算した(単位はμmol/g-ゼオライト)。
(3)生成物の組成分析
 エタン分解ガス(冷却留分)を冷却器の出口から、あるいは接触ガスを固定床又は流動床反応器の出口から、図3中の「分析ユニット」に備えられる直接ガスクロマトグラフィー(検出器:TCD、FID)に導入して組成を分析した。なお、ガスクロマトグラフィーによる分析は以下の条件で行った。
(ガスクロマトグラフィー分析条件)
 装置 : 島津製作所社製、商品名「GC-17A」
 カラム: 米国SUPELCO社製カスタムキャピラリーカラム、商品名「SPB-1」、内径 0.25mm、長さ 60m、フィルム厚 3.0μm
 サンプルガス量: 1mL(サンプリングラインは200~300℃に保温)
 昇温プログラム: 40℃で12分間保持し、次いで5℃/分で200℃まで昇温した後、200℃で22分間保持する。
 スプリット比: 200:1
 キャリアガス(窒素)流量: 120mL/分
 FID検出器: エアー供給圧50kPa(約500mL/分)、水素供給圧60kPa(約50mL/分)
 測定方法: TCD検出器とFID検出器とを直列に連結して、水素及び炭素数1及び2の炭化水素をTCD検出器で検出し、炭素数3以上の炭化水素をFID検出器で検出した。分析開始10分後に、検出の出力をTCDからFIDに切り替えた。
[実施例1]
 シリカ/アルミナ比が27であるH型のZSM-5ゼオライトをシリカゾルと混練、押出成形し、直径2mm、長さ3~5mmの柱状触媒を得た。得られた成形物におけるゼオライトの含有量は50質量%であった。得られた成形物を大気中、120℃で6時間乾燥した後、大気中、700℃で5時間焼成した。この焼成処理した柱状触媒を1N-硝酸水溶液中で攪拌しイオン交換した後、水洗し、大気中、120℃で5時間乾燥し、ゼオライト含有触媒を得た。このゼオライト含有触媒のTPD酸量は、222μmol/g-触媒であった。すなわち、ゼオライトの質量換算でTPD酸量は444μmol/g-ゼオライトであった。
 内径9.4mm、全長4.0mのU字管型熱分解反応器に、600℃に加熱したエタン1.21kg/時間、水蒸気0.47kg/時間を供給し、熱分解反応器の出口温度を847℃、出口圧力を0.21MPaGに設定して熱分解反応を行った。次いで、熱分解反応器から流出したエタン分解ガスを冷却器で250℃まで冷却し、冷却留分を得た。
 得られた冷却留分(含水率:27.7質量%)のうち32.2g/時間を390℃まで加熱器(図示せず)により再加熱した後、上記ゼオライト含有触媒8.0gを充填した内径15mmのステンレス製固定床反応器に流通し、反応温度550℃、反応圧力0.07MPaGで接触転化反応を行った。エタン分解ガス及び反応開始4時間後の接触ガスにおける各成分の収率(ドライベース。以下同様。)を表1に示す。なお、実施例1~3の収率は熱分解反応器に供給するエタンを100質量%とし、熱分解反応後の冷却留分の全量が反応器に供給されたと仮定して、質量百分率で示される。
[実施例2]
 シリカ/アルミナ比が412であるH型のZSM-5ゼオライトをシリカゾルと混練し、押出成形した。得られた成形物におけるゼオライトの含有量は50質量%であった。得られた成形物を大気中、120℃で6時間乾燥した後、大気中、700℃で5時間焼成し、直径2mm、長さ3~5mmの柱状触媒を得た。得られた柱状触媒を1N-硝酸水溶液中で攪拌しイオン交換した後、水洗し、大気中、120℃で5時間乾燥し、ゼオライト含有触媒を得た。このゼオライト含有触媒のTPD酸量は、43μmol/g-触媒であった。すなわち、ゼオライトの質量換算でTPD酸量は86μmol/g-ゼオライトであった。
 実施例1と同様にして熱分解反応を行った。次いで、熱分解反応器から流出したエタン分解ガスを冷却器で397℃まで冷却し、冷却留分を得た。得られた冷却留分のうち12.3g/時間を、上記ゼオライト含有触媒8.56gを充填した内径15mmのステンレス製固定床反応器に流通し、反応温度550℃、反応圧力0.14MPaGで接触転化反応を行った。エタン分解ガス及び反応開始18時間後の接触ガスにおける各成分の収率を表2に示す。
[実施例3]
 シリカゾル(Nalco社製、シリカ含有率15質量%)2000gに硝酸(和光純薬製、硝酸60質量%含有試薬)40gを加えpHを1.1に調整した。そこに硝酸アンモニウム(和光純薬製、特級試薬)100gを添加し、次いでシリカ/アルミナ比が42であるNH型のZSM-5ゼオライト300gを添加して触媒原料スラリーを調製した。得られた触媒原料スラリーを25℃で3時間撹拌した後、噴霧乾燥機で噴霧乾燥して乾燥粉末を得た。触媒原料スラリーの噴霧乾燥条件は、噴霧乾燥機入口流体温度:220℃、出口流体温度:130℃であり、噴霧乾燥の方式は回転円盤方式であった。得られた乾燥粉末をマッフル炉を用いて700℃で5時間、空気下で焼成し粉末状触媒を得た。
 得られた粉末状触媒を1N-希硝酸水溶液中、25℃で1時間イオン交換した後、水洗し、大気中、120℃で5時間乾燥し、イオン交換触媒を調製した。このイオン交換触媒を内径60mmφのステンレス製反応器に充填し、温度650℃、0.1MPaG、水蒸気流量12g/時間、窒素流量22.4NL/時間の条件で24時間水蒸気処理を行い、ゼオライト含有触媒を得た。得られたゼオライト含有触媒のTPD酸量は、17μmol/g-触媒であった。すなわち、ゼオライトの質量換算でTPD酸量は34μmol/g-ゼオライトであった。
 熱分解反応器の出口温度を855℃とする以外は実施例1と同様にして熱分解反応を行った。次いで、熱分解反応器から流出したエタン分解ガスを冷却器で415℃まで冷却し、冷却留分を得た。得られた冷却留分(含水率27.6質量%)のうち221g/時間を、上記ゼオライト含有触媒212gを充填した内径52.7mmのステンレス製流動床反応器に流通し、反応温度550℃、反応圧力0.14MPaGで接触転化反応を開始した。反応開始後1時間毎に、反応器からゼオライト含有触媒9.0gを抜き出し、マッフル炉において空気雰囲気下、580℃で2時間焼成した。この焼成により、ゼオライト含有触媒に付着した炭素質化合物はほぼ100%除去された。反応開始4時間後までは、抜き出したゼオライト含有触媒に代えて新たなゼオライト含有触媒9.0gを上記流動床反応器に追加したが、5時間後からは、上記焼成後のゼオライト含有触媒9.0gを流動床反応器に戻した。
 エタン分解ガス及び定常状態における接触ガスにおける各成分の収率を表3に示す。
[実施例4]
 流動床反応器に流通する冷却留分221g/時間を冷却留分193g/時間とエチレン21g/時間との混合ガスに代え、この混合ガスを373℃で流動床反応器に流通した以外は実施例3と同様にして接触ガスを得た。この実施例4は、接触ガス中に残存する未反応エチレンの70%をリサイクルした場合に相当する。
 上記混合ガス及び定常状態における接触ガスにおける各成分の収率を表4に示す。
[実施例5]
 接触転化反応の開始まで実施例3と同様にした。得られた接触ガスを流動床反応器の出口で熱交換器(図示せず)を用いて10℃まで冷却した後、気液分離器(図示せず)に供給し、水を分離してから分離装置である蒸留塔(図示せず)に供給した。塔底からC4留分とガソリン留分との混合液を抜き出し、その50%を流動床反応器にリサイクルした。接触転化反応の条件について、安定後の冷却留分の流動床反応器への供給量は190g/時間、リサイクルしたC4/ガソリン留分の流動床反応器への供給量は25g/時間であり、これらの混合ガスを流動床反応器に供給する前に再加熱し、流動床反応器入口での温度は423℃だった。
 上記混合ガス及び定常状態の接触ガスにおける各成分の収率を表4に示す。
 この結果から、熱分解反応器に供給されるエタン当たりのC3~C5オレフィンの合計収率は、1パスの実施例3で24.6質量%であるのに対して、リサイクルの実施例4で31.8質量%、実施例5で26.2質量%であり、リサイクルによって炭素数3以上のオレフィン収率が高まっていることがわかった。
[実施例6]
 シリカ/アルミナ比が280であるH型のZSM-5ゼオライトをシリカゾルと混練し、押出成形した。得られた成形物におけるゼオライトの含有量は50質量%であった。得られた成形物を大気中、120℃で6時間乾燥した後、大気中、700℃で5時間焼成し、直径2mm、長さ3~5mmの柱状触媒を得た。得られた柱状触媒を1N-硝酸水溶液中で攪拌しイオン交換した後、水洗し、大気中、120℃で5時間乾燥し、ゼオライト含有触媒を得た。
 熱分解反応器の出口温度を810℃とする以外は実施例1と同様にして熱分解反応を行った。次いで、熱分解反応器から流出したエタン分解ガスを冷却器で372℃まで冷却し、冷却留分を得た。
 得られた冷却留分(含水率27.7質量%)のうち46.7g/時間を、上記ゼオライト含有触媒30.0gを充填した内径27mmのステンレス製固定床反応器に流通し、反応温度500℃、反応圧力0.14MPaGで接触転化反応を開始した。
 反応を24時間継続した後のエタン分解ガス及び接触ガスにおける各成分の収率を表5に示す。なお、これらの収率は熱分解反応器に供給するエタン(リサイクルしたものを除く。)を100質量%とし、熱分解反応後の冷却留分の全量が固定床反応器に供給されたと仮定して、質量百分率で示される。
 反応開始から24時間後の触媒反応ガス中のエタン含有量はドライベースで53.1質量%であった。炭素数3以上のオレフィンを含む接触ガスからエタンを分離して回収し、少なくとも一部を熱分解反応器へリサイクルすることで、オレフィンの製造装置に新たに供給するエタン量を削減できた。
[実施例7]
 実施例1で調製したゼオライト含有触媒を内径20mmφの石英ガラス製反応器に充填し、温度650℃、常圧、水蒸気流量31.8g/時間、窒素流量2.76NL/時間、空気流量6.72NL/時間の条件で24時間水蒸気処理を行い、実施例7に係るゼオライト含有触媒を得た。得られたゼオライト含有触媒のTPD酸量は、21μmol/g触媒であった。すなわち、ゼオライトの質量換算でTPD酸量は42μmol/g-ゼオライトであった。
 実施例3と同様にして熱分解反応を行った。次いで、熱分解反応器から流出したエタン分解ガスを冷却器で80℃まで冷却したところ、凝縮液が発生したので、冷却器の出口配管の途中に設けた気液分離器(図示せず)で凝縮液(重質留分)を分離し回収した。その結果、エタン分解ガスの15質量%の重質留分が回収された。
 エタン分解ガスから重質留分を分離した残りの冷却ガス(含水率:15.6質量%)のうち12.0g/時間を389℃まで加熱器(図示せず)により再加熱した後、上記ゼオライト含有触媒8.56gを充填した内径15mmのステンレス製固定床反応器に流通し、反応温度550℃、反応圧力0.12MPaGで接触転化反応を行った。冷却ガス及び反応開始13時間後の接触ガスにおける各成分の収率を表6に示す。なお、これらの収率は熱分解反応器に供給するエタンを100質量%とし、冷却ガスの全量が固定床反応器に供給されたと仮定して、質量百分率で示される。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 本出願は、2008年9月17日出願の日本特許出願(特願2008-237886)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のオレフィンの製造方法及びその製造装置により、簡便かつ安定に、エタンから炭素数3以上のオレフィンを製造することが可能である。また、本発明は、オレフィン製造原料の多様性の観点から工業的製造方法として有用である。本発明は、エタンから炭素数3以上のオレフィンを簡便な方法で安定に製造できるので、工業的に実施する上で極めて有利である。
 1・・・熱分解反応器、2・・・冷却器、3・・・触媒反応器、4、7、8・・・分離装置、5・・・気液分離器、6・・・重質分回収タンク、11・・・エタン及び水蒸気を熱分解反応器へ供給する配管、12・・・エタン分解ガスを冷却器へ供給する配管、13・・・冷却留分又は冷却ガスを触媒反応器へ供給する配管、14・・・接触ガスを分離装置へ供給する配管、15・・・分離装置からエチレンを回収する配管、16・・・分離装置からプロピレンを回収する配管、17・・・分離装置からC4留分を回収する配管、18・・・分離装置からガソリン留分を回収する配管、19・・・冷却留分から重質留分を回収する配管、20・・・エタンをリサイクルする配管、21・・・エチレンをリサイクルする配管、22・・・C4留分をリサイクルする配管、23・・・ガソリン留分をリサイクルする配管、24・・・C5留分を回収する配管、25・・・C5留分をリサイクルする配管、26・・・ラフィネートをリサイクルする配管、27・・・イソブテンを回収する配管、28・・・ノルマルブテンを回収する配管、29・・・芳香族炭化水素を回収する配管。

Claims (12)

  1.  水蒸気の共存下でエタンを熱分解して得られるエタン分解ガスを600℃以下に冷却して冷却留分を得る工程と、前記冷却留分を中間細孔径ゼオライトを含有する触媒と接触させて炭素数3以上のオレフィンを含む接触ガスを得る工程と、を有するオレフィンの製造方法。
  2.  水蒸気の共存下でエタンを熱分解して得られるエタン分解ガスを600℃以下に冷却して冷却留分を得る工程と、前記冷却留分を液状の重質留分と冷却ガスとに分離する工程と、前記冷却ガスを中間細孔径ゼオライトを含有する触媒と接触させて炭素数3以上のオレフィンを含む接触ガスを得る工程と、を有するオレフィンの製造方法。
  3.  前記重質留分から芳香族炭化水素の一部又は全部を分離して回収する工程を更に有する、請求項2に記載の製造方法。
  4.  前記接触ガスを得る工程において、前記冷却留分又は前記冷却ガスを流動床反応器内で前記触媒と接触させ、
     前記接触ガスを得る工程を経た前記触媒の一部を前記流動床式反応器から連続的又は断続的に抜き出し、酸素を含むガスに接触させて前記触媒に付着した炭素質化合物の少なくとも一部を燃焼する工程と、
     前記燃焼する工程を経た前記触媒を前記流動床式反応器に再供給する工程と、
    を更に有する、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記冷却留分を得る工程において、前記エタン分解ガスを300~600℃に冷却する、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記接触ガスからエタンを分離する工程と、前記エタンの少なくとも一部を前記エタンを熱分解する際の原料としてリサイクルする工程と、を更に有する、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記接触ガスを得る工程において、前記エタン分解ガスに含まれるエチレンから、プロピレン、C4留分及びガソリン留分からなる群より選択される少なくとも一種を生成させる、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記少なくとも一種の一部及び/又は前記接触ガスを得る工程を経た未反応のエチレンの少なくとも一部を前記接触ガスを得る工程の原料としてリサイクルする、請求項7に記載の製造方法。
  9.  前記C4留分からイソブテン及び/又はノルマルブテンを分離して回収する工程を更に有する、請求項7又は8に記載の製造方法。
  10.  前記ガソリン留分から芳香族炭化水素の一部又は全部を分離して回収する工程を更に有する、請求項7~9のいずれか一項に記載の製造方法。
  11.  エタンから炭素数3以上のオレフィンを製造するための装置であって、
     水蒸気の共存下でエタンを熱分解してエタン分解ガスを得るための第一の反応器に接続され、前記第一の反応器から流出した前記エタン分解ガスを受け入れ冷却して冷却留分を得るための冷却器と、
     該冷却器に接続され、かつ、中間細孔径ゼオライトを含有する触媒が充填され、前記冷却器から流出した前記冷却留分を受け入れ前記触媒に接触させるための第二の反応器と、
    を具備するオレフィンの製造装置。
  12.  エタンから炭素数3以上のオレフィンを製造するための装置であって、
     水蒸気の共存下でエタンを熱分解してエタン分解ガスを得るための第一の反応器に接続され、前記第一の反応器から流出した前記エタン分解ガスを受け入れ冷却して冷却留分を得るための冷却器と、
     前記冷却器に接続され、前記冷却器から流出した前記冷却留分を液状の重質留分と冷却ガスとに分離するための気液分離器と、
     前記気液分離器に接続され、かつ、中間細孔径ゼオライトを含有する触媒が充填され、前記気液分離器から流出した前記冷却ガスを受け入れ前記触媒に接触させるための第二の反応器と、
    を具備するオレフィンの製造装置。
PCT/JP2009/065270 2008-09-17 2009-09-01 オレフィンの製造方法およびその製造装置 WO2010032609A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0918927-0A BRPI0918927B1 (pt) 2008-09-17 2009-09-01 Processo para produzir olefina, e, aparelho para produzir olefina tendo 3 ou mais átomos de carbono a partir de etano
EP09814454.6A EP2336275B1 (en) 2008-09-17 2009-09-01 Process for producing olefin
US13/119,150 US9309470B2 (en) 2008-09-17 2009-09-01 Process and apparatus for producing olefin
CN200980136362.0A CN102159680B (zh) 2008-09-17 2009-09-01 烯烃的制造方法及其制造装置
JP2010529708A JP5562245B2 (ja) 2008-09-17 2009-09-01 オレフィンの製造方法およびその製造装置
KR1020117005990A KR101271915B1 (ko) 2008-09-17 2009-09-01 올레핀의 제조 방법 및 그 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008237886 2008-09-17
JP2008-237886 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032609A1 true WO2010032609A1 (ja) 2010-03-25

Family

ID=42039443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065270 WO2010032609A1 (ja) 2008-09-17 2009-09-01 オレフィンの製造方法およびその製造装置

Country Status (9)

Country Link
US (1) US9309470B2 (ja)
EP (1) EP2336275B1 (ja)
JP (1) JP5562245B2 (ja)
KR (1) KR101271915B1 (ja)
CN (1) CN102159680B (ja)
BR (1) BRPI0918927B1 (ja)
MY (1) MY161668A (ja)
TW (1) TWI385140B (ja)
WO (1) WO2010032609A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254947A (ja) * 2011-06-08 2012-12-27 Toyota Motor Corp C2−4オレフィンの製造方法
JP2017530935A (ja) * 2014-07-03 2017-10-19 クールブルック オーユー 処理および回転機械型反応炉
KR20200015793A (ko) * 2017-07-18 2020-02-12 루머스 테크놀로지 엘엘씨 올레핀 제조를 위한 통합된 열 및 접촉 분해
JP2020528051A (ja) * 2017-07-18 2020-09-17 ルーマス テクノロジー エルエルシー オレフィン製造のための一体化された熱分解・脱水素プロセス
JP7105397B1 (ja) * 2021-01-27 2022-07-22 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法
WO2022163725A1 (ja) * 2021-01-27 2022-08-04 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3164465A2 (en) * 2014-07-01 2017-05-10 Anellotech, Inc. Improved processes for recovering valuable components from a catalytic fast pyrolysis process
WO2016164542A1 (en) * 2015-04-10 2016-10-13 Waters Technologies Corporation Cooling liquid eluent of a carbon dioxide based chromatography system after gas-liquid separation
US10941357B2 (en) 2018-04-16 2021-03-09 Swift Fuels, Llc Process for converting C2—C5 hydrocarbons to gasoline and diesel fuel blendstocks
KR102341433B1 (ko) * 2020-01-10 2021-12-20 인하대학교 산학협력단 에테인 탈수소화 반응에서 촉매 비활성화 방지를 위해 이산화탄소 및 산소 기체를 사용하는 에틸렌 제조방법
KR20220095593A (ko) 2020-12-30 2022-07-07 한국화학연구원 에틸렌-프로필렌 전환용 제올라이트 촉매, 이의 제조방법 및 이를 이용한 프로필렌의 제조방법
CN114763315B (zh) * 2021-01-11 2024-05-17 中国石油化工股份有限公司 一种制取低碳烯烃的催化转化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032126A (ja) 1989-01-31 1991-01-08 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem 口腔内抗真菌予防薬およびその使用法
JPH03503656A (ja) * 1988-04-11 1991-08-15 モービル・オイル・コーポレーション アルカンおよびアルケンのハイオクタンガソリンへの転化
JPH0476227B2 (ja) 1983-11-05 1992-12-03 Handotai Energy Kenkyusho
JPH08113606A (ja) * 1994-10-14 1996-05-07 Sekiyu Kodan 低級炭化水素の重合方法
JPH10507164A (ja) * 1994-09-30 1998-07-14 アンスティテュ フランセ デュ ペトロール エタンの熱分解
JP3214984B2 (ja) 1993-08-10 2001-10-02 旭化成株式会社 アンモ酸化に用いる触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JP2005120281A (ja) * 2003-10-17 2005-05-12 Daido Steel Co Ltd 炭化水素原料ガスの熱分解炉管
US20050107650A1 (en) * 2003-11-18 2005-05-19 Charles Sumner Production of propylene from steam cracking of hydrocarbons, particularly ethane
JP2005225781A (ja) 2004-02-10 2005-08-25 Asahi Kasei Chemicals Corp ブチルアルコール及び/又はメチルエチルケトンの製造方法
WO2007046986A2 (en) * 2005-10-19 2007-04-26 Marathon Oil Company Process for converting gaseous alkanes to olefins and liquid hydrocarbons
JP2008237886A (ja) 2007-02-28 2008-10-09 Toshiba Corp X線ct装置及びその制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360587A (en) * 1966-07-29 1967-12-26 Uop Process Division Ethylene production and recovery thereof
US4100218A (en) * 1977-05-31 1978-07-11 Mobil Oil Corporation Ethane conversion process
US4547615A (en) 1983-06-16 1985-10-15 Nippon Zeon Co. Ltd. Process for producing conjugated diolefins
US4560536A (en) 1983-08-26 1985-12-24 Mobil Oil Corporation Catalytic conversion with catalyst regeneration sequence
US4717782A (en) * 1985-09-13 1988-01-05 Mobil Oil Corporation Catalytic process for oligomerizing ethene
US5043517A (en) * 1989-10-30 1991-08-27 Mobil Oil Corporation Upgrading light olefin fuel gas in a fluidized bed catalyst reactor and regeneration of the catalyst
US5138112A (en) * 1990-08-31 1992-08-11 Uop Process for converting a C2 -C6 aliphatic hydrocarbon to high octane transportable fuel
CN1034586C (zh) 1993-11-05 1997-04-16 中国石油化工总公司 多产低碳烯烃的催化转化方法
US5777188A (en) * 1996-05-31 1998-07-07 Phillips Petroleum Company Thermal cracking process
AU7956398A (en) * 1997-06-10 1998-12-30 Exxon Chemical Patents Inc. Multi-reactor system for enhanced light olefin make
US6187987B1 (en) * 1998-07-30 2001-02-13 Exxon Mobil Corporation Recovery of aromatic hydrocarbons using lubricating oil conditioned membranes
US6242661B1 (en) * 1999-07-16 2001-06-05 Catalytic Distillation Technologies Process for the separation of isobutene from normal butenes
DE10000889C2 (de) * 2000-01-12 2002-12-19 Mg Technologies Ag Verfahren zum Erzeugen von C¶2¶- und C¶3¶-Olefinen aus Kohlenwasserstoffen
US7510644B2 (en) * 2000-10-20 2009-03-31 Lummus Technology Inc. Zeolites and molecular sieves and the use thereof
WO2003053570A1 (fr) 2001-12-21 2003-07-03 Asahi Kasei Chemicals Corporation Composition catalytique d'oxyde
US7462275B2 (en) 2004-07-20 2008-12-09 Indian Oil Corporation Limited Process for conversion of hydrocarbons to saturated LPG and high octane gasoline

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476227B2 (ja) 1983-11-05 1992-12-03 Handotai Energy Kenkyusho
JPH03503656A (ja) * 1988-04-11 1991-08-15 モービル・オイル・コーポレーション アルカンおよびアルケンのハイオクタンガソリンへの転化
JPH032126A (ja) 1989-01-31 1991-01-08 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem 口腔内抗真菌予防薬およびその使用法
JP3214984B2 (ja) 1993-08-10 2001-10-02 旭化成株式会社 アンモ酸化に用いる触媒組成物及びこれを用いたアクリロニトリルまたはメタクリロニトリルの製造方法
JPH10507164A (ja) * 1994-09-30 1998-07-14 アンスティテュ フランセ デュ ペトロール エタンの熱分解
JPH08113606A (ja) * 1994-10-14 1996-05-07 Sekiyu Kodan 低級炭化水素の重合方法
JP2005120281A (ja) * 2003-10-17 2005-05-12 Daido Steel Co Ltd 炭化水素原料ガスの熱分解炉管
US20050107650A1 (en) * 2003-11-18 2005-05-19 Charles Sumner Production of propylene from steam cracking of hydrocarbons, particularly ethane
US7223895B2 (en) 2003-11-18 2007-05-29 Abb Lummus Global Inc. Production of propylene from steam cracking of hydrocarbons, particularly ethane
JP2005225781A (ja) 2004-02-10 2005-08-25 Asahi Kasei Chemicals Corp ブチルアルコール及び/又はメチルエチルケトンの製造方法
WO2007046986A2 (en) * 2005-10-19 2007-04-26 Marathon Oil Company Process for converting gaseous alkanes to olefins and liquid hydrocarbons
JP2008237886A (ja) 2007-02-28 2008-10-09 Toshiba Corp X線ct装置及びその制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAVID R. LIDE ET AL.: "CRC Handbook of Chemistry and Physics", 1994, CRC PRESS INC., pages: 1 - 15
See also references of EP2336275A4
TOSHIHIDE BABA: "Methane no Zotan Hanno ni yoru Ekitai Nenryo no Gosei", IWATANI NAOHARU KINEN ZAIDAN KENKYU HOKOKUSHO, vol. 29, 2006, pages 67 - 69, XP008144707 *
WANG ET AL.: "Upgrading of Ethane over HZSM-5 Supported Mo and Re Catalysts with Membrane Reactors", DAI 88 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 2001, pages 9, XP008144706 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254947A (ja) * 2011-06-08 2012-12-27 Toyota Motor Corp C2−4オレフィンの製造方法
JP2017530935A (ja) * 2014-07-03 2017-10-19 クールブルック オーユー 処理および回転機械型反応炉
KR20200015793A (ko) * 2017-07-18 2020-02-12 루머스 테크놀로지 엘엘씨 올레핀 제조를 위한 통합된 열 및 접촉 분해
JP2020528051A (ja) * 2017-07-18 2020-09-17 ルーマス テクノロジー エルエルシー オレフィン製造のための一体化された熱分解・脱水素プロセス
JP2020528053A (ja) * 2017-07-18 2020-09-17 ルーマス テクノロジー エルエルシー オレフィン製造のための一体化された熱・接触分解
US11155759B2 (en) 2017-07-18 2021-10-26 Lummus Technology Llc Integrated thermal cracking and dehydrogenation process for olefin production
US11174440B2 (en) 2017-07-18 2021-11-16 Lummus Technology Llc Integrated thermal and catalytic cracking for olefin production
JP7032512B2 (ja) 2017-07-18 2022-03-08 ルーマス テクノロジー エルエルシー オレフィン製造のための一体化された熱分解・脱水素プロセス
KR102386466B1 (ko) * 2017-07-18 2022-04-14 루머스 테크놀로지 엘엘씨 올레핀 제조를 위한 통합된 열 및 접촉 분해
JP7105397B1 (ja) * 2021-01-27 2022-07-22 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法
WO2022163725A1 (ja) * 2021-01-27 2022-08-04 日本化薬株式会社 触媒及びそれを用いた不飽和カルボン酸の製造方法

Also Published As

Publication number Publication date
CN102159680A (zh) 2011-08-17
US20110172477A1 (en) 2011-07-14
TW201016641A (en) 2010-05-01
JPWO2010032609A1 (ja) 2012-02-09
US9309470B2 (en) 2016-04-12
EP2336275A4 (en) 2012-07-18
CN102159680B (zh) 2014-11-05
EP2336275B1 (en) 2016-11-23
BRPI0918927B1 (pt) 2018-03-06
TWI385140B (zh) 2013-02-11
BRPI0918927A2 (pt) 2016-11-01
MY161668A (en) 2017-05-15
KR101271915B1 (ko) 2013-06-05
EP2336275A1 (en) 2011-06-22
JP5562245B2 (ja) 2014-07-30
KR20110055647A (ko) 2011-05-25

Similar Documents

Publication Publication Date Title
JP5562245B2 (ja) オレフィンの製造方法およびその製造装置
CN102753656B (zh) 消除蒸汽裂化器单元的瓶颈以增加丙烯产量的方法
KR101217915B1 (ko) 에탄올로부터의 올레핀의 제조 방법
JP4953817B2 (ja) エチレン及びプロピレンの製造法
JP4819679B2 (ja) オレフィンの生産
KR101227221B1 (ko) 에탄올로부터의 올레핀의 제조 방법
Tago et al. Selective production of isobutylene from acetone over alkali metal ion-exchanged BEA zeolites
US20070246400A1 (en) Zeolite Catalysts
JP5014138B2 (ja) エチレン及びプロピレンを製造する方法
TWI342306B (ja)
WO2023145941A1 (ja) エタノールの変換方法、及びその他炭化水素の製造方法
JP4921788B2 (ja) エチレン及びプロピレンを製造する方法
WO2012169651A1 (en) Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms
JP7018174B2 (ja) 芳香族炭化水素の製造方法
JP2019518824A (ja) 内部発熱材料と結合した炭化水素分解
JP2023177331A (ja) アルコールの変換方法、及び炭化水素の製造方法
WO2015038390A1 (en) Production of olefins from a methane conversion process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136362.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529708

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117005990

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13119150

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009814454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009814454

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0918927

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 020110024129 DE 15/03/2011 E COMPROVE, CASO NECESSARIO, QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) "OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.".

ENP Entry into the national phase

Ref document number: PI0918927

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110315