WO2010026814A1 - 排気ガス浄化用触媒及びその製造方法 - Google Patents

排気ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
WO2010026814A1
WO2010026814A1 PCT/JP2009/060443 JP2009060443W WO2010026814A1 WO 2010026814 A1 WO2010026814 A1 WO 2010026814A1 JP 2009060443 W JP2009060443 W JP 2009060443W WO 2010026814 A1 WO2010026814 A1 WO 2010026814A1
Authority
WO
WIPO (PCT)
Prior art keywords
rhodium
zirconium
catalyst
exhaust gas
cerium
Prior art date
Application number
PCT/JP2009/060443
Other languages
English (en)
French (fr)
Inventor
哲郎 内藤
雅紀 中村
若松 広憲
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP09811343.4A priority Critical patent/EP2322274B1/en
Priority to JP2010527730A priority patent/JP4752977B2/ja
Priority to CN200980133779.1A priority patent/CN102137718B/zh
Priority to US13/060,918 priority patent/US8273681B2/en
Publication of WO2010026814A1 publication Critical patent/WO2010026814A1/ja
Priority to US13/592,998 priority patent/US8569201B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • B01J35/394
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst and a method for producing the same. More specifically, the present invention is suitable for purifying nitrogen oxides (NOx) in exhaust gas discharged from lean burn engines and the like, can reduce the amount of noble metal used, and further purifies after durability.
  • the present invention relates to an exhaust gas purifying catalyst and a manufacturing method thereof.
  • An object of the present invention is to provide an exhaust gas purifying catalyst that can hardly reduce the catalyst performance even after endurance and can reduce the amount of catalyst components used, and a method for producing the same.
  • the exhaust gas purifying catalyst according to the first aspect of the present invention contains rhodium, at least one element selected from the group consisting of calcium, lanthanum, cerium, neodymium and yttrium and zirconium, and supports the rhodium. And a zirconium-containing oxide, and at least one NOx adsorbent selected from the group consisting of magnesium, barium, sodium, potassium and cesium, and the dispersity of the rhodium is fired at 900 ° C. in air for 3 hours. After that, it is 20% or more.
  • a method for producing an exhaust gas purifying catalyst according to the second aspect of the present invention comprises a zirconium-containing oxide containing at least one element selected from the group consisting of calcium, lanthanum, cerium, neodymium and yttrium and zirconium. Mixing the water to prepare an aqueous solution of the zirconium-containing oxide, mixing the aqueous solution of the zirconium-containing oxide and the aqueous solution of the rhodium salt, and supporting the rhodium on the zirconium-containing oxide; The pH when the rhodium salt aqueous solution and the zirconium-containing oxide aqueous solution are mixed is adjusted to 7 or more.
  • FIG. 1 is a perspective view and a partially enlarged view of an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • the exhaust gas purifying catalyst of the present invention is a catalyst containing rhodium (Rh), a zirconium-containing oxide supporting the rhodium, and a NOx adsorbent. And in the said catalyst, the dispersion degree of rhodium is 20% or more after baking at 900 degreeC in the air for 3 hours.
  • nitrogen oxide (NOx) is adsorbed in a lean region where the fuel is thinner than the stoichiometric air-fuel ratio, and a stoichiometric region (theoretical air-fuel ratio region) or a rich region where the fuel is richer than the stoichiometric air-fuel ratio. It is sufficient if NOx can be released with.
  • magnesium (Mg), barium (Ba), sodium (Na), potassium (K) or cesium (Cs), and any mixture thereof can be used as the NOx adsorbent.
  • zirconium-containing oxide examples include calcium (Ca), lanthanum (La), cerium (Ce), neodymium (Nd), yttrium (Y), and a mixture thereof, and an oxide containing zirconium (Zr).
  • Ca calcium
  • lanthanum La
  • Ce cerium
  • Nd neodymium
  • Y yttrium
  • Zr oxide containing zirconium
  • the reason for using such a zirconium-containing oxide in the present invention is as follows. First, as a mechanism of aggregation of noble metals such as rhodium, (1) aggregation due to movement of the noble metal due to heat and (2) aggregation of noble metal due to aggregation of the carrier itself supporting the noble metal are known. . Conventionally, alumina (Al 2 O 3 ) having a large surface area has been used as a noble metal support in order to suppress the aggregation of (1), and the distance between the noble metals has been increased in advance.
  • the present invention has been made based on the above findings. That is, aggregation of zirconia is suppressed by adding a predetermined element such as lanthanum to zirconia (ZrO 2 ). Moreover, a grain boundary can be generated between zirconia particles by adding the predetermined element. And since rhodium can exist stably in this grain boundary, the aggregation of (1) is also suppressed. Thus, the exhaust gas purifying catalyst of the present invention can keep rhodium in a highly dispersed state on the surface of zirconium even after endurance in a high temperature atmosphere. As a result, a decrease in catalyst activity after durability is significantly suppressed.
  • a predetermined element such as lanthanum to zirconia (ZrO 2 ).
  • the element added to zirconia is preferably calcium (Ca), lanthanum (La), cerium (Ce), neodymium (Nd), or yttrium (Y). Further, these elements may be mixed and added to zirconia. The amount of the element added is preferably such that the content ratio (Zr: added element) is 99.5: 0.5 to 95: 5 on a molar basis.
  • lanthanum is particularly preferable as an element added to zirconia. By adding lanthanum, it is considered that lanthanum and zirconia are complexed and aggregation of zirconia is easily suppressed.
  • the amount of lanthanum added is preferably such that the content ratio (Zr: La) is 99.5: 0.5 to 95: 5 on a molar basis. If the addition ratio of lanthanum is less than 0.5, the suppression of zirconia aggregation may be insufficient. On the other hand, when the addition ratio exceeds 5, lanthanum oxide or the like is formed, and as a result, the heat resistance of zirconia may decrease.
  • the supported amount of rhodium in the catalyst layers 2 and 3 provided inside the monolithic structure type carrier 1 may be 3 mass% or less. preferable.
  • the distance between the rhodium particles supported on the surface of the zirconium-containing oxide as a carrier can be increased.
  • the degree of rhodium dispersion can be improved. Since the amount of rhodium supported corresponds to 3/4 to 1/2 of the conventional lean NOx trap catalyst, the cost can be reduced according to the present invention.
  • the dispersion degree of rhodium is first calcined at 900 ° C. for 3 hours in the air containing zirconium containing rhodium. Thereafter, the calcined rhodium-supporting zirconium-containing oxide is applied to a metal dispersion degree measuring device, and the amount of carbon monoxide (CO) adsorbed on rhodium is measured. Then, the degree of dispersion can be determined from the carbon monoxide adsorption amount according to the following equation (1). If the degree of dispersion is less than 20%, aggregates of noble metals are formed and the active surface area is reduced, so that the catalytic activity is reduced.
  • the exhaust gas purifying catalyst of the present invention can contain other components in addition to rhodium, zirconium-containing oxide and NOx adsorbent.
  • the exhaust gas purifying catalyst can contain, for example, platinum (Pt), cerium, and the like. In this case, it is preferable to use platinum supported on the surface of an oxide containing cerium and aluminum. Furthermore, it is preferable to support a part or all of platinum on the surface of the cerium particles.
  • the catalyst of the present invention it is possible to further improve the NOx purification rate by containing platinum in addition to rhodium.
  • platinum is effective in improving the oxidation performance of the catalyst. Therefore, when the exhaust gas purifying catalyst of the present invention is used in a lean burn engine, among hydrocarbons (HC), carbon monoxide (CO) and hydrogen (H 2 ) introduced as a reducing agent during a rich spike, It is possible to efficiently oxidize and detoxify the gas species that have not been consumed in the NOx reduction reaction. Further, by placing platinum on the surface of cerium, a chemical bond of Pt—O—Ce (platinum-oxygen-cerium) is formed. Therefore, platinum movement due to heat can be prevented, and aggregation of platinum can be suppressed.
  • HC hydrocarbons
  • CO carbon monoxide
  • H 2 hydrogen
  • the exhaust gas purifying catalyst of the present invention can be configured to use a so-called honeycomb carrier as a monolithic carrier and to form one or a plurality of catalyst layers. Specifically, as shown in FIG. 1, a plurality of catalyst layers 2 and 3 can be formed in each cell inside the honeycomb carrier 1. In FIG. 1, the catalyst layer has a two-layer structure, but the catalyst layer may be a single layer, or may be three or more layers.
  • cerium is contained in the entire catalyst layer in an amount of 20 to 40% by mass as ceria (CeO 2 ), and the outermost layer of the plurality of catalyst layers.
  • the amount of ceria contained in is preferably 20 to 40% by mass of the whole ceria. That is, in the exhaust gas purifying catalyst of FIG. 1, 20 to 40% by mass of cerium is contained in the catalyst layers 2 and 3 as ceria (CeO 2 ), and the amount of ceria contained in the catalyst layer 3 which is the outermost layer is the catalyst. It is preferable to be 20 to 40% by mass of the whole ceria contained in the layers 2 and 3. By adopting such a configuration, the NOx purification rate can be further improved.
  • the amount of ceria in the outermost layer exceeds 40% by mass, hydrocarbon (HC), carbon monoxide (CO), and hydrogen (H 2 ) entering the catalyst as a reducing agent during the rich spike are ceria. May react with oxygen (O 2 ) released from the atmosphere. Therefore, the reducing agent is not used for the reduction reaction of nitrogen oxides, and the NOx purification performance may be reduced.
  • the reducing agent at the time of rich spike reacts with oxygen released from ceria present in the outermost layer. Therefore, the reducing agent may not reach the inside of the catalyst.
  • the exhaust gas purifying catalyst of the present invention described above is suitable for use in an internal combustion engine in which the exhaust gas repeats mainly an oxygen-excess atmosphere (lean atmosphere) and a fuel excess atmosphere (rich atmosphere) having a high reducing agent concentration. is there.
  • the exhaust gas purifying catalyst of the present invention is suitably used for lean burn engines, direct injection engines, and diesel engines.
  • the catalyst of the present invention does not exclude use in an internal combustion engine that burns at a stoichiometric air-fuel ratio (stoichiometric).
  • rhodium is supported on the zirconium-containing oxide by an impregnation method by mixing an aqueous solution of a rhodium salt and an aqueous solution of a zirconium-containing oxide.
  • the pH when the rhodium salt aqueous solution and the zirconium-containing oxide aqueous solution are mixed is adjusted to 7 or more.
  • rhodium By adjusting the pH of the mixed solution of the rhodium salt aqueous solution and the zirconium-containing oxide aqueous solution to 7 or more, rhodium can be highly dispersed in the zirconium-containing oxide. Can be maintained.
  • a zirconium-containing oxide containing at least one element selected from the group consisting of calcium, lanthanum, cerium, neodymium and yttrium and zirconium, and water are mixed, and the zirconium-containing oxidation is performed.
  • An aqueous solution of the product is prepared.
  • the pH of the aqueous solution of the zirconium-containing oxide is preferably neutral or alkaline.
  • the pH of the aqueous solution of the zirconium-containing oxide is preferably in the range of 7-10.
  • a rhodium salt and water are mixed to prepare an aqueous rhodium salt solution.
  • the pH of the aqueous rhodium salt solution is preferably neutral or alkaline.
  • the rhodium salt is preferably a hexaammine rhodium salt, and more preferably hexaammine rhodium (III) chloride ([Rh (NH 3 ) 6 ] Cl 3 ).
  • An aqueous solution of a hexaammine rhodium salt has a pH of 11.7, for example, and is suitable for the production method of the present invention.
  • pH of each above-mentioned aqueous solution can be measured by using a commercially available pH meter.
  • the aqueous solution of the zirconium-containing oxide and the aqueous rhodium salt solution are mixed and stirred to support rhodium on the zirconium-containing oxide.
  • the zirconium-containing oxide aqueous solution supported on the surface of rhodium is dried and fired. Thereby, a zirconium-containing oxide in which rhodium is supported in a highly dispersed state is obtained.
  • a zirconium-containing oxide carrying rhodium, water, and a binder are mixed to prepare a slurry.
  • the honeycomb catalyst can be obtained by applying the slurry to the inside of the honeycomb carrier, drying and firing. Thereafter, the honeycomb catalyst is impregnated with an aqueous solution of NOx adsorbent and dried, whereby the exhaust gas purifying catalyst of the present invention can be obtained.
  • the honeycomb catalyst is impregnated with an aqueous solution of NOx adsorbent and dried, whereby the exhaust gas purifying catalyst of the present invention can be obtained.
  • about other components other than rhodium, a zirconium containing oxide, and NOx adsorption material, such as the above-mentioned platinum, cerium, and an alumina it is preferable to mix in the said slurry with the said zirconium containing oxide.
  • rhodium can be highly dispersed in the zirconium-containing oxide by adjusting the pH of the mixed solution of the rhodium salt aqueous solution and the zirconium-containing oxide aqueous solution to 7 or more.
  • the following can be considered as the mechanism.
  • the pH of the aqueous solution becomes 7 or more.
  • an acidic aqueous solution specifically, pH 1.2
  • rhodium nitrate which is usually used as a rhodium source
  • aggregates of rhodium are formed due to contact between the acid and the alkali.
  • rhodium cannot be realized.
  • a neutral or alkaline aqueous rhodium salt solution is mixed with an aqueous solution of a zirconium-containing oxide, there is no significant change in pH, and therefore rhodium aggregates are difficult to form. Therefore, rhodium can be highly dispersed on the surface of the zirconium-containing oxide.
  • both the aqueous rhodium salt solution and the aqueous solution of the zirconium-containing oxide have a pH of 7 or more and the two aqueous solutions are mixed. Note that the technical scope of the present invention is not limited to the embodiment in which the effect is exhibited by the mechanism.
  • Example 1 First, an aqueous solution of lanthanum-added zirconia was prepared by putting commercially available lanthanum-added zirconia (La—ZrO 2 ) into ion-exchanged water and mixing it. In the lanthanum-added zirconia, the molar ratio of lanthanum to zirconia is 1:99. Next, a considerable amount of hexaamminerhodium aqueous solution was mixed with the aqueous solution of lanthanum-added zirconia so that the rhodium carrying concentration was 0.18% by mass and stirred. Next, the mixed solution of lanthanum-added zirconia and rhodium was dried and calcined at 400 ° C. for 1 hour to prepare rhodium-supported lanthanum-added zirconia powder.
  • La—ZrO 2 lanthanum-added zirconia
  • the obtained rhodium-supported lanthanum-added zirconia powder, boehmite, nitric acid, and ion-exchanged water were put into a magnetic pot and shaken with alumina balls to obtain a slurry. Further, a ceramic honeycomb carrier (400 cells / 6 mil, 0.119 L) was immersed in this slurry. Next, excess slurry adhering to the honeycomb carrier was removed with an air stream, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the honeycomb catalyst of this example.
  • the coating amount of the catalyst layer in the honeycomb catalyst of this example was 400 g / L, and the rhodium carrying amount was 0.7 g / L.
  • barium (Ba) as a NOx adsorbent is supported on the obtained honeycomb catalyst, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the exhaust gas purification catalyst of this example. It was.
  • the amount of barium supported in the exhaust gas purification catalyst of this example was 28 g / L as barium oxide (BaO).
  • Table 1 shows the type of noble metal in the catalyst, the aqueous rhodium solution used, the rhodium loading concentration in the catalyst, the composition of the carrier carrying rhodium, and the type of NOx adsorbent.
  • Table 2 shows the rhodium dispersity measured by the method described later, the pH of the aqueous solution in which the carrier carrying rhodium is dispersed, and the pH of the solution in which the carrier carrying rhodium and the rhodium salt aqueous solution are mixed.
  • Example 2 Except that the NOx adsorbent was changed from barium (Ba) to magnesium (Mg), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 2 is shown in Table 1. Further, Table 2 shows the rhodium dispersibility and the like of Example 2.
  • the amount of magnesium supported in the exhaust gas purifying catalyst of this example was 10 g / L as magnesium oxide (MgO).
  • Example 3 Except that the NOx adsorbent was changed from barium (Ba) to sodium (Na), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 3 is shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 3.
  • the amount of sodium supported in the exhaust gas purifying catalyst of this example was 5 g / L as sodium oxide (Na 2 O).
  • Example 4 Except that the NOx adsorbent was changed from barium (Ba) to potassium (K), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 4 is shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 4.
  • the amount of potassium supported in the exhaust gas purifying catalyst of this example was 5 g / L as potassium oxide (K 2 O).
  • Example 5 Except that the NOx adsorbent was changed from barium (Ba) to cesium (Cs), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • Table 1 shows the catalyst specifications of Example 5.
  • Table 2 shows the rhodium dispersity and the like of Example 5.
  • the amount of cesium supported in the exhaust gas purifying catalyst of this example was 20 g / L as cesium oxide (Cs 2 O).
  • Example 6 Except that the lanthanum-added zirconia was changed to commercially available calcium-added zirconia (Ca—ZrO 2 ), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • Table 1 shows the catalyst specifications of Example 6.
  • Table 2 shows the rhodium dispersity and the like of Example 6.
  • the molar ratio of calcium to zirconia is 1:99.
  • Example 7 Except that the lanthanum-added zirconia was changed to commercially available cerium-added zirconia (Ce—ZrO 2 ), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specifications of Example 7 are shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 7. In the cerium-added zirconia, the molar ratio of cerium to zirconia is 1:99.
  • Example 8 Except for changing the lanthanum-added zirconia to a commercially available neodymium-added zirconia (Nd—ZrO 2 ), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 8 is shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 8. In the neodymium-added zirconia, the molar ratio of neodymium and zirconia is 1:99.
  • Example 9 Except that the lanthanum-added zirconia was changed to commercially available yttrium-added zirconia (Y-ZrO 2 ), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 9 is shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 9. In the yttrium-doped zirconia, the molar ratio of yttrium to zirconia is 1:99.
  • Comparative Example 1 Except that the lanthanum-added zirconia was changed to commercially available alumina (Al 2 O 3 ), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specifications of Comparative Example 1 are shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Comparative Example 1.
  • Comparative Example 2 (Comparative Example 2) Except that the lanthanum-added zirconia was changed to commercially available zirconia (ZrO 2 ) containing no additive element, the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specifications of Comparative Example 2 are shown in Table 1.
  • Table 2 shows the rhodium dispersity and the like of Comparative Example 2.
  • Example 10 Except for changing La (1) -ZrO 2 (99) to La (0.5) -ZrO 2 (99.5), the same operation as in Example 1 was repeated, and the exhaust gas purifying catalyst of this example Got.
  • the catalyst specification of Example 10 is shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 10. Note that La (0.5) -ZrO 2 (99.5) indicates lanthanum-added zirconia in which the molar ratio of lanthanum to zirconia is 0.5: 99.5.
  • Example 11 Except for changing La (1) -ZrO 2 (99) to La (5) -ZrO 2 (95), the same operation as in Example 1 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 11 is shown in Table 1.
  • Table 2 shows the rhodium dispersity and the like of Example 11. Note that La (5) -ZrO 2 (95) indicates lanthanum-added zirconia in which the molar ratio of lanthanum to zirconia is 5:95.
  • Example 12 Except that the rhodium carrying concentration was 0.06% by mass, the same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst of this example.
  • the catalyst specifications of Example 12 are shown in Table 1.
  • Table 2 shows the rhodium dispersity and the like of Example 12.
  • Example 13 Except that the rhodium carrying concentration was 0.36% by mass, the same operation as in Example 1 was repeated to obtain the exhaust gas purifying catalyst of this example.
  • the catalyst specification of Example 13 is shown in Table 1.
  • Table 2 shows the rhodium dispersity and the like of Example 13.
  • Example 14 The same operation as in Example 1 was performed to prepare rhodium-supported lanthanum-added zirconia powder. Next, a predetermined amount of platinum is supported on commercially available cerium-added alumina (Ce (20) -Al 2 O 3 ), dried and then fired at 400 ° C. for 1 hour to obtain platinum-supported cerium-added alumina powder for an inner layer. It was. Also, a predetermined amount of platinum was supported on commercially available cerium-added alumina (Ce (20) -Al 2 O 3 ), dried, and then fired at 400 ° C. for 1 hour to obtain a platinum-supported cerium-added alumina powder for the surface layer. . Ce (20) -Al 2 O 3 refers to cerium-added alumina having a molar ratio of cerium to alumina of 20:80.
  • the obtained inner layer platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water were put into a magnetic pot, and shaken with alumina balls to obtain an inner layer slurry.
  • the rhodium-supported lanthanum-added zirconia powder, surface-supported platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water are put into a magnetic pot and shaken together with the alumina balls, thereby surface layer A slurry was obtained.
  • a ceramic honeycomb carrier 400 cells / 6 mil, 0.119 L was immersed in the inner layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream.
  • the honeycomb carrier on which the inner layer was formed was immersed in the surface layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the honeycomb catalyst of this example.
  • the coating amount of the catalyst layer in the honeycomb catalyst of this example was 400 g / L
  • the loading amount of the entire noble metal was 4.3 g / L
  • the mass ratio of platinum and rhodium was 5: 1.
  • a predetermined amount of barium as an NOx adsorbent was supported on the obtained honeycomb catalyst, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain an exhaust gas purification catalyst of this example.
  • Table 2 shows the rhodium dispersity measured by the method described later, the pH of the aqueous solution in which the carrier carrying rhodium is dispersed, and the pH of the solution in which the carrier carrying rhodium and the rhodium salt aqueous solution are mixed.
  • Example 15 Except that Ce (20) -Al 2 O 3 was changed to Ce (12) -Al 2 O 3 , the same operation as in Example 14 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 15 is shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 15. Note that Ce (12) -Al 2 O 3 represents cerium-added alumina having a molar ratio of cerium to alumina of 12:88.
  • Example 16 Except that Ce (20) -Al 2 O 3 was changed to Ce (28) -Al 2 O 3 , the same operation as in Example 14 was repeated to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specification of Example 16 is shown in Table 1.
  • Table 2 shows the rhodium dispersity and the like of Example 16.
  • Ce (28) -Al 2 O 3 represents cerium-added alumina having a molar ratio of cerium to alumina of 28:72.
  • Example 17 The same operation as in Example 1 was performed to prepare rhodium-supported lanthanum-added zirconia powder. Next, a predetermined amount of platinum is supported on commercially available cerium-added alumina (Ce (22) -Al 2 O 3 ), dried, and fired at 400 ° C. for 1 hour to obtain platinum-supported cerium-added alumina powder for an inner layer. It was. Also, a predetermined amount of platinum was supported on commercially available cerium-added alumina (Ce (14) -Al 2 O 3 ), dried, and then fired at 400 ° C. for 1 hour to obtain a platinum-supported cerium-added alumina powder for the surface layer. .
  • Ce (22) -Al 2 O 3 refers to cerium-added alumina having a molar ratio of cerium to alumina of 22:78.
  • Ce (14) -Al 2 O 3 is cerium-added alumina having a molar ratio of cerium to alumina of 14:86.
  • an inner layer slurry was obtained by putting platinum-supported cerium-added alumina powder for the inner layer, boehmite, nitric acid, and ion-exchanged water into a magnetic pot and shaking with the alumina balls.
  • the surface-supported cerium-added alumina powder, the rhodium-supported lanthanum-added zirconia powder, boehmite, nitric acid, and ion-exchanged water are put into a magnetic pot, and shaken with the alumina balls, whereby a slurry for the surface layer is obtained.
  • a ceramic honeycomb carrier 400 cells / 6 mil, 0.119 L was immersed in the inner layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream.
  • the honeycomb carrier on which the inner layer was formed was immersed in the surface layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the honeycomb catalyst of this example.
  • the coating amount of the catalyst layer in the honeycomb catalyst of this example was 400 g / L
  • the loading amount of the entire noble metal was 4.3 g / L
  • the mass ratio of platinum and rhodium was 5: 1.
  • Example 17 Thereafter, a predetermined amount of barium as an NOx adsorbent was supported on the obtained honeycomb catalyst, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain an exhaust gas purification catalyst of this example.
  • the catalyst specifications of Example 17 are shown in Table 1. Further, Table 2 shows the rhodium dispersity and the like of Example 17.
  • Example 18 Ce and (22) -Al 2 O 3 to Ce (17) -Al 2 O 3 , except that the Ce (14) -Al 2 O 3 to Ce (28) -Al 2 O 3 is as in Example 17
  • the same operation was repeated to obtain the exhaust gas purifying catalyst of this example.
  • the catalyst specifications of Example 18 are shown in Table 1.
  • Table 2 shows the rhodium dispersity and the like of Example 18. Note that Ce (17) -Al 2 O 3 is cerium-added alumina having a cerium-to-alumina molar ratio of 17:83, and Ce (28) -Al 2 O 3 is a cerium-to-alumina molar ratio of 28. : The cerium addition alumina which is 72.
  • Example 19 Commercially available lanthanum-added zirconia (La-ZrO 2 ) was added to ion-exchanged water and mixed to prepare an aqueous solution of lanthanum-added zirconia.
  • the molar ratio of lanthanum to zirconia is 1:99.
  • a considerable amount of hexaammine rhodium aqueous solution was mixed with the lanthanum-added zirconia aqueous solution and stirred so that the rhodium carrying concentration was 3% by mass.
  • the mixed solution of lanthanum-added zirconia and rhodium was dried and calcined at 400 ° C. for 1 hour to prepare rhodium-supported lanthanum-added zirconia powder.
  • cerium-added alumina (Ce (20) -Al 2 O 3 ) so that the platinum support concentration was 1.6% by mass, dried, and then fired at 400 ° C. for 1 hour.
  • a platinum-supported cerium-added alumina powder for use was obtained.
  • platinum is supported on a commercially available cerium-added alumina (Ce (20) -Al 2 O 3 ) so that the platinum support concentration is 4% by mass, dried, and calcined at 400 ° C. for 1 hour to form platinum for the surface layer.
  • a supported cerium-added alumina powder was obtained.
  • Ce (20) -Al 2 O 3 refers to cerium-added alumina having a molar ratio of cerium to alumina of 20:80.
  • the obtained inner layer platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water were put into a magnetic pot and shaken with alumina balls to obtain an inner layer slurry.
  • the rhodium-supported lanthanum-added zirconia powder, surface-supported platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water are put into a magnetic pot, and shaken with alumina balls. I got a slurry.
  • a ceramic honeycomb carrier 400 cells / 6 mil, 0.119 L was immersed in the inner layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream.
  • the honeycomb carrier on which the inner layer was formed was immersed in the surface layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the honeycomb catalyst of this example.
  • the coating amount of the catalyst layer in the honeycomb catalyst of this example was 405.5 g / L
  • the loading amount of the entire noble metal was 8.5 g / L
  • the mass ratio of platinum and rhodium was 5: 1. .
  • the supported amount of barium was 28 g / L as barium oxide (BaO)
  • the supported amount of cerium was 5 g / L as cerium oxide (CeO 2 ).
  • Example 3 First, lanthanum-added zirconia used in Example 1 (La (1) -ZrO 2 (99)) was charged into ion-exchanged water and mixed to prepare an aqueous solution of lanthanum-added zirconia. Next, an aqueous rhodium nitrate solution is mixed with an aqueous solution of lanthanum-added zirconia so that the rhodium-carrying concentration is 1.5% by mass, dried, and calcined at 400 ° C. for 1 hour. Zirconia powder was prepared. A commercially available rhodium nitrate aqueous solution was used.
  • a predetermined amount of platinum was supported on Ce (20) -Al 2 O 3 , dried and then fired at 400 ° C. for 1 hour to obtain an inner layer platinum-supported cerium-added alumina powder.
  • a predetermined amount of platinum was supported on commercially available cerium-added alumina (Ce (20) -Al 2 O 3 ), dried, and then fired at 400 ° C. for 1 hour to obtain a platinum-supported cerium-added alumina powder for the surface layer. .
  • the obtained inner layer platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water were put into a magnetic pot, and shaken with alumina balls to obtain an inner layer slurry.
  • the rhodium-supported lanthanum-added zirconia powder, the surface-supported platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water are put into a magnetic pot and shaken with the alumina balls, thereby surface layer A slurry was obtained.
  • a ceramic honeycomb carrier 400 cells / 6 mil, 0.119 L was immersed in the inner layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream.
  • the honeycomb carrier on which the inner layer was formed was immersed in the surface layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the honeycomb catalyst of this example.
  • the coating amount of the catalyst layer in the honeycomb catalyst of this example was 400 g / L
  • the loading amount of the entire noble metal was 4.3 g / L
  • the mass ratio of platinum and rhodium was 5: 1.
  • Example 4 First, lanthanum-added zirconia (La (1) -ZrO 2 (99)) used in Example 1 was put into ion-exchanged water and dispersed, and then adjusted to pH 6 of the aqueous solution using nitric acid. did. Next, a considerable amount of hexaammine rhodium aqueous solution was mixed with the aqueous solution whose pH was adjusted to 6 so that the rhodium carrying concentration was 1.5 mass% and stirred. Thereafter, the mixed solution of lanthanum-added zirconia and rhodium was dried and calcined at 400 ° C. for 1 hour to prepare rhodium-supported lanthanum-added zirconia powder.
  • La (1) -ZrO 2 (99) used in Example 1 was put into ion-exchanged water and dispersed, and then adjusted to pH 6 of the aqueous solution using nitric acid. did.
  • a predetermined amount of platinum was supported on Ce (20) -Al 2 O 3 , dried and then fired at 400 ° C. for 1 hour to obtain an inner layer platinum-supported cerium-added alumina powder.
  • a predetermined amount of platinum was supported on commercially available cerium-added alumina (Ce (20) -Al 2 O 3 ), dried, and then fired at 400 ° C. for 1 hour to obtain a platinum-supported cerium-added alumina powder for the surface layer. .
  • the obtained inner layer platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water were put into a magnetic pot, and shaken with alumina balls to obtain an inner layer slurry.
  • the rhodium-supported lanthanum-added zirconia powder, the surface-supported platinum-supported cerium-added alumina powder, boehmite, nitric acid, and ion-exchanged water are put into a magnetic pot and shaken with the alumina balls, thereby surface layer A slurry was obtained.
  • a ceramic honeycomb carrier 400 cells / 6 mil, 0.119 L was immersed in the inner layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream.
  • the honeycomb carrier on which the inner layer was formed was immersed in the surface layer slurry. Thereafter, excess slurry adhered to the honeycomb carrier was removed, dried at 120 ° C., and fired at 400 ° C. in an air stream to obtain the honeycomb catalyst of this example.
  • the coating amount of the catalyst layer in the honeycomb catalyst of this example was 400 g / L
  • the loading amount of the entire noble metal was 4.3 g / L
  • the mass ratio of platinum and rhodium was 5: 1.
  • Rhodium dispersity was calculated from the carbon monoxide adsorption amount.
  • Table 2 shows the rhodium dispersity of the catalyst of each example. The rhodium dispersity was measured using a metal dispersibility measuring apparatus BEL-METAL-3 manufactured by Nippon Bell Co., Ltd. according to the following procedure.
  • the rhodium-carrying zirconia powder or the rhodium-carrying alumina powder of each example was baked in air at 900 ° C. for 3 hours in a baking furnace.
  • the powder of each example after firing was heated up to 400 ° C. at 10 ° C./min in a He 100% gas stream, and then at 400 ° C. in an O 2 100% gas stream for 15 minutes. Oxidation treatment was performed. Then, purged for 5 minutes at He 100% gas, 400 ° C., for 15 minutes reduction treatment was performed at H 2 40% / He balance gas flow. Next, the temperature was lowered to 50 ° C. in a He 100% gas stream.
  • an exhaust gas purification catalyst of each example was arranged behind a V-type 6-cylinder 3.5L engine manufactured by Nissan Motor Co., Ltd. Next, the catalyst inlet temperature was adjusted to 700 ° C., and a durability treatment was performed for 50 hours in an exhaust gas atmosphere. The fuel used was unleaded gasoline.
  • the exhaust gas purifying catalyst in each example was cut so that the catalyst capacity was 40 cc.
  • the cut catalyst of each example was evaluated using a laboratory evaluation apparatus.
  • the gas type and concentration shown in Table 3 were adjusted, and evaluation was performed by switching between lean (60 seconds) and rich (4 seconds).
  • the evaluation temperature (catalyst inlet temperature) was 300 ° C.
  • the NOx purification rate ( ⁇ NOx) was calculated based on the following equation (3). The obtained results are also shown in Table 2.
  • Examples 1 to 9 relating to the exhaust gas purifying catalyst of the present invention have significantly improved NOx purification rates as compared with Comparative Examples 1 and 2. This is considered to be due to the fact that the rhodium dispersibility in Examples 1 to 9 is higher than those in Comparative Examples 1 and 2. In particular, when Examples 1 to 9 and Comparative Example 2 are compared, the degree of rhodium dispersion of Examples 1 to 9 is 20% or more. Therefore, by adding the additive element to zirconium, zirconium itself is added to rhodium. It can be seen that aggregation can be suppressed.
  • Examples 1, 10 and 11 are compared, by setting the content ratio of zirconium and lanthanum in the range of 99.5: 0.5 to 95: 5 on a molar basis, aggregation of zirconia is sufficiently suppressed. It can be seen that the production of lanthanum oxide can be suppressed and the catalytic activity can be increased.
  • Example 1 Compared Example 1 and Examples 14 to 18, it can be seen that the NOx purification rate is significantly improved by containing platinum and ceria in the catalyst. This is considered to be a result of the reduction of NOx being promoted by the catalytic activity of platinum supported on cerium in addition to the catalytic activity of highly dispersed rhodium.
  • an exhaust gas purification catalyst in which rhodium is highly dispersed can be obtained. Moreover, since the catalyst performance of the obtained catalyst is difficult to reduce even after endurance, the amount of the catalyst component used can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 排気ガス浄化用触媒は、ロジウムと、カルシウム、ランタン、セリウム、ネオジム及びイットリウムから成る群より選ばれる少なくとも1種の元素と、ジルコニウムとを含有し、前記ロジウムを担持するジルコニウム含有酸化物と、マグネシウム、バリウム、ナトリウム、カリウム及びセシウムから成る群より選ばれる少なくとも1種のNOx吸着材と、を含有する。さらに、前記ロジウムの分散度が、空気中900℃で3時間焼成した後において20%以上である。  また、前記排気ガス浄化用触媒の製造方法は、前記ジルコニウム含有酸化物と、水とを混合し、前記ジルコニウム含有酸化物の水溶液を調製する工程と、前記ジルコニウム含有酸化物の水溶液と、ロジウム塩の水溶液とを混合し、前記ジルコニウム含有酸化物にロジウムを担持する工程と、を有する。そして、前記ロジウム塩の水溶液と、前記ジルコニウム含有酸化物の水溶液とを混合したときのpHを7以上にする。

Description

排気ガス浄化用触媒及びその製造方法
 本発明は、排気ガス浄化用触媒及びその製造方法に関する。更に詳細には、本発明は、リーンバーンエンジン等から排出される排気ガス中の窒素酸化物(NOx)を浄化するのに好適であり、貴金属使用量を低減でき、さらに耐久後においても浄化性能が低下し難い排気ガス浄化用触媒及びその製造方法に関する。
 近年、石油資源の枯渇問題や地球温暖化問題から、低燃費自動車の要求が高まっており、特に希薄燃焼自動車が注目されている。かかる希薄燃焼自動車に使用される触媒では、酸素過剰雰囲気下における窒素酸化物(NOx)の浄化作用が必要となる。しかし、通常の三元触媒では、過剰に存在する酸素の影響から窒素酸化物の浄化が不十分となる。このため、酸素過剰なリーン領域で窒素酸化物を浄化できる触媒が望まれている。そして、従来、リーン領域で窒素酸化物をトラップして浄化する、いわゆるリーンNOxトラップ触媒が提案されている(例えば、特許文献1参照)。
特開2007-301530号公報
 しかしながら、このような従来のリーンNOxトラップ触媒では、耐久試験後に触媒成分である貴金属の凝集が進行して、貴金属の活性表面積が減少し、触媒性能が低下するという問題があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、耐久後においても触媒性能が低下し難く、触媒成分の使用量を低減することが可能な排気ガス浄化用触媒及びその製造方法を提供することにある。
 本発明の第一の態様に係る排気ガス浄化用触媒は、ロジウムと、カルシウム、ランタン、セリウム、ネオジム及びイットリウムから成る群より選ばれる少なくとも1種の元素とジルコニウムとを含有し、前記ロジウムを担持するジルコニウム含有酸化物と、マグネシウム、バリウム、ナトリウム、カリウム及びセシウムから成る群より選ばれる少なくとも1種のNOx吸着材と、を含有し、前記ロジウムの分散度が、空気中900℃で3時間焼成した後において20%以上である。
 本発明の第二の態様に係る排気ガス浄化用触媒の製造方法は、カルシウム、ランタン、セリウム、ネオジム及びイットリウムから成る群より選ばれる少なくとも1種の元素とジルコニウムとを含有するジルコニウム含有酸化物と、水とを混合し、前記ジルコニウム含有酸化物の水溶液を調製する工程と、前記ジルコニウム含有酸化物の水溶液と、ロジウム塩の水溶液とを混合し、前記ジルコニウム含有酸化物にロジウムを担持する工程と、を有し、前記ロジウム塩の水溶液と、前記ジルコニウム含有酸化物の水溶液とを混合したときのpHを7以上にする。
図1は、本発明の実施の形態に係る排気ガス浄化用触媒の斜視図及び部分拡大図である。
 以下、本発明の排気ガス浄化用触媒につき詳細に説明する。本発明の排気ガス浄化用触媒は、ロジウム(Rh)と、前記ロジウムを担持するジルコニウム含有酸化物と、NOx吸着材と、を含有する触媒である。そして、前記触媒において、ロジウムの分散度が、空気中900℃で3時間焼成した後において20%以上である。
 ここで、NOx吸着材としては、燃料が理論空燃比よりも薄いリーン領域で窒素酸化物(NOx)を吸着し、ストイキ領域(理論空燃比領域)又は、燃料が理論空燃比よりも濃いリッチ領域でNOxを放出できれば十分である。具体的には、NOx吸着材として、マグネシウム(Mg)、バリウム(Ba)、ナトリウム(Na)、カリウム(K)又はセシウム(Cs)、及びこれらの任意の混合物を用いることができる。
 前記ジルコニウム含有酸化物としては、カルシウム(Ca)、ランタン(La)、セリウム(Ce)、ネオジム(Nd)又はイットリウム(Y)、及びこれらの混合物と、ジルコニウム(Zr)と、を含有する酸化物を用いることができる。特に、ジルコニア(ZrO)にランタン(La)を添加したランタン添加ジルコニア(La-ZrO)を好ましく用いることが好ましい。
 本発明において、かかるジルコニウム含有酸化物を使用する理由は次の通りである。まず、ロジウムなどの貴金属が凝集するメカニズムとして、(1)熱による貴金属の移動に伴う凝集と、(2)貴金属が担持されている担体自体の凝集に伴う貴金属の凝集と、が知られている。従来より、(1)の凝集を抑制すべく、表面積が大きいアルミナ(Al)を貴金属担体として使用し、予め貴金属間の距離を大きくしていた。しかし、アルミナの凝集に伴い貴金属が凝集したり、ロジウムがアルミナに固溶したりして、ロジウムの触媒活性が低下することが知られていた。これに対し、ロジウムにおけるアルミナへの固溶を抑制すべく、ジルコニア(ZrO)が使用されてきた。しかし、ジルコニアは耐熱性が低いので、ジルコニア同士で凝集が起こり易い。その結果、(2)の凝集が起こり、ロジウムの触媒活性は低下することが分かった。
 本発明は、上述の知見を踏まえてなされたものである。つまり、ジルコニア(ZrO)にランタン等の所定元素を添加することにより、ジルコニアの凝集を抑制している。また、かかる所定元素を添加することにより、ジルコニア粒子間に粒界を発生させることができる。そして、ロジウムはこの粒界に安定して存在できるようになるため、(1)の凝集も抑制している。このように、本発明の排気ガス浄化用触媒は、高温雰囲気下の耐久後においても、ジルコニウムの表面においてロジウムを高分散状態に保持することができる。その結果、耐久後の触媒活性の低下が有意に抑制されている。
 なお、上述のように、前記ジルコニウム含有酸化物において、ジルコニアに添加する元素としては、カルシウム(Ca)、ランタン(La)、セリウム(Ce)、ネオジム(Nd)又はイットリウム(Y)が好ましい。また、これらの元素を混合してジルコニアに添加しても良い。前記元素の添加量としては、含有比(Zr:添加元素)がモル基準で99.5:0.5~95:5となるようにすることが好ましい。ジルコニアに添加する元素として、前記元素の中でも特にランタンが好ましい。ランタンを添加することにより、ランタンとジルコニアとの複合化が進行してジルコニアの凝集が抑制され易くなるためと考えられる。ランタンの添加量としては、含有比(Zr:La)がモル基準で99.5:0.5~95:5となるようにすることが好ましい。ランタンの添加割合が0.5未満では、ジルコニアの凝集の抑制が不十分になることがある。逆に、添加割合が5を超えると、ランタンの酸化物などが形成され、その結果、ジルコニアの耐熱性が低下することがある。
 また、図1に示すように、本発明の排気ガス浄化用触媒において、一体構造型担体1の内部に設けられた触媒層2,3における、ロジウムの担持量を3質量%以下にすることが好ましい。このようにロジウムの担持量を低くすることにより、担体であるジルコニウム含有酸化物の表面に担持されたロジウム粒子間の距離を大きくすることができる。その結果、ロジウムの分散度を向上させることができる。なお、かかるロジウムの担持量は、従来のリーンNOxトラップ触媒の3/4~1/2に相当するので、本発明によればコストダウンを図ることができる。
 ここで、本発明において、ロジウムの分散度は、まず、ロジウムを担持したジルコニウム含有酸化物を空気中900℃で3時間焼成する。その後、焼成したロジウム担持ジルコニウム含有酸化物を金属分散度測定装置にかけ、ロジウムに対する一酸化炭素(CO)の吸着量を測定する。そして、一酸化炭素吸着量から、次式(1)に従って、分散度を求めることができる。なお、この分散度が20%未満では、貴金属の凝集体が形成され、活性表面積が低下するため、触媒活性が低下する。
Figure JPOXMLDOC01-appb-M000001
 本発明の排気ガス浄化用触媒は、ロジウム、ジルコニウム含有酸化物及びNOx吸着材以外にも他の成分を含むことが可能である。前記排気ガス浄化用触媒は、例えば、白金(Pt)やセリウムなどを含むことが可能である。この場合、白金は、セリウムとアルミニウムとを含む酸化物の表面に担持して用いることが好ましい。更に白金の一部又は全部をセリウム粒子の表面に担持させておくのが好ましい。
 本発明の触媒において、ロジウムに加え、白金を含有させることにより、NOx浄化率を更に向上させることが可能となる。加えて、白金は触媒の酸化性能を向上させるのに有効である。よって、本発明の排気ガス浄化用触媒をリーンバーンエンジンに用いた場合、リッチスパイク時に還元剤として導入される炭化水素類(HC)、一酸化炭素(CO)及び水素(H)のうち、NOxの還元反応で消費されなかったガス種を効率よく酸化させ、無害化することができる。また、白金をセリウムの表面に配置することにより、Pt-O-Ce(白金-酸素-セリウム)という化学結合が形成される。そのため、熱による白金の移動を防ぎ、白金の凝集を抑制することができる。
 本発明の排気ガス浄化用触媒は、一体構造型の担体として、いわゆるハニカム担体を用い、一層又は複数層の触媒層を形成するように構成することができる。具体的には、図1に示すように、ハニカム担体1内部の各セル内に、複数層の触媒層2,3を形成することができる。なお、図1では触媒層が二層構造となっているが、触媒層は単層であっても良く、さらに三層以上であっても良い。
 そして、複数層の触媒層を有する積層構造をとる場合、当該触媒層全体の中にセリウムがセリア(CeO)として20~40質量%含まれ、且つ、前記複数の触媒層のうちの最表層に含まれるセリア量がセリア全体の20~40質量%となるようにすることが好ましい。つまり、図1の排気ガス浄化用触媒では、触媒層2,3中にセリウムがセリア(CeO)として20~40質量%含まれ、且つ、最表層たる触媒層3に含まれるセリア量が触媒層2,3中に含まれるセリア全体の20~40質量%となるようにすることが好ましい。かかる構成を採用することにより、NOx浄化率を更に向上させることができる。なお、最表層のセリア量が40質量%を超える場合、リッチスパイク時において、触媒中に還元剤として進入してくる炭化水素(HC)、一酸化炭素(CO)及び水素(H)がセリアから放出される酸素(O)と反応してしまうことがある。そのため、前記還元剤が窒素酸化物の還元反応に使用されず、NOx浄化性能が低下することがある。特に、最表層のセリア量が多くなると、リッチスパイク時の還元剤が最表層に存在するセリアから放出された酸素と反応してしまう。そのため、還元剤が触媒内部にまで届かなくなるおそれがある。一方、セリア量が20質量%未満の場合、貴金属として白金を用い、担体としてアルミナを用いたとき、白金がセリア上に担持される割合が減少し、アルミナ上に担持される割合が増加する。そのため、上述の白金-酸素-セリウムという化学結合が形成されにくくなり、白金の凝集抑制が不十分になることがある。
 以上に説明した本発明の排気ガス浄化用触媒は、排気ガスが、主として酸素過剰雰囲気(リーン雰囲気)と還元剤濃度が高い燃料過剰雰囲気(リッチ雰囲気)とを繰り返す内燃機関に用いるのに好適である。具体的には、本発明の排気ガス浄化用触媒は、リーンバーンエンジン、直噴エンジン及びディーゼルエンジンに好適に用いられる。なお、本発明の触媒は、理論空燃比(ストイキ)で燃焼する内燃機関への使用を排除するものではない。
 次に、本発明の排気ガス浄化用触媒の製造方法について説明する。前記触媒の製造方法において、ロジウムの前記ジルコニウム含有酸化物への担持を、ロジウム塩の水溶液とジルコニウム含有酸化物の水溶液との混合による含浸法により行う。そして、この含浸担持に際し、ロジウム塩の水溶液とジルコニウム含有酸化物の水溶液とを混合したときのpHを7以上にする。ロジウム塩の水溶液とジルコニウム含有酸化物の水溶液との混合溶液のpHを7以上とすることにより、ロジウムをジルコニウム含有酸化物に高分散させることができ、この高分散性を耐久後においても長期間に維持できるようになる。
 より詳細に説明すると、まず、カルシウム、ランタン、セリウム、ネオジム及びイットリウムから成る群より選ばれる少なくとも1種の元素とジルコニウムとを含有するジルコニウム含有酸化物と、水とを混合し、前記ジルコニウム含有酸化物の水溶液を調製する。この際、前記ジルコニウム含有酸化物の水溶液のpHは中性ないしアルカリ性になっていることが好ましい。具体的には、ジルコニウム含有酸化物の水溶液のpHが7~10の範囲にあることが好ましい。
 次に、ロジウム塩と、水とを混合し、ロジウム塩水溶液を調製する。この際も、前記ロジウム塩水溶液のpHは中性やアルカリ性になっていることが好ましい。なお、ロジウム塩としては、ヘキサアンミンロジウム塩であることが好ましく、ヘキサアンミンロジウム(III)塩化物([Rh(NH)]Cl)であることがより好ましい。ヘキサアンミンロジウム塩の水溶液は、例えばpHが11.7となるため、本発明の製造方法に好適である。なお、上述の各水溶液のpHは、市販のpHメータを用いることにより測定できる。
 そして、前記ジルコニウム含有酸化物の水溶液と、ロジウム塩水溶液とを混合し、攪拌することにより、ロジウムをジルコニウム含有酸化物上に担持させる。次に、ロジウムが表面に担持したジルコニウム含有酸化物の水溶液を乾燥させ、焼成する。これにより、ロジウムが高分散で担持されたジルコニウム含有酸化物が得られる。
 その後、ロジウムが担持されたジルコニウム含有酸化物と、水と、バインダとを混合し、スラリを調製する。そして、前記スラリを前記ハニカム担体の内部に塗布し、乾燥、焼成することにより、ハニカム触媒を得ることができる。その後、NOx吸着材の水溶液をハニカム触媒に含浸させ、乾燥させることにより、本発明の排気ガス浄化用触媒を得ることができる。なお、上述の白金、セリウム及びアルミナなど、ロジウム、ジルコニウム含有酸化物及びNOx吸着材以外の他の成分については、前記ジルコニウム含有酸化物と共に前記スラリ内に混合することが好ましい。
 上述のように、ロジウム塩水溶液とジルコニウム含有酸化物水溶液の混合溶液のpHを7以上とすることにより、ロジウムをジルコニウム含有酸化物に高分散させることができる。そのメカニズムとしては、次のことが考えられる。上述のジルコニウム含有酸化物を水に分散ないし溶解させると、その水溶液のpHは7以上となる。このような水溶液に対し、ロジウム源として通常使用される硝酸ロジウムのような酸性水溶液(具体的にはpH1.2)を混合すると、酸とアルカリとの接触によりロジウムの凝集体が形成されてしまい、ロジウムの高分散性を実現できないと考えられる。しかし、ジルコニウム含有酸化物の水溶液に、中性又はアルカリ性のロジウム塩水溶液を混合しても、pHの大きな変化がないため、ロジウムの凝集体が生成しにくい。そのため、ジルコニウム含有酸化物の表面にロジウムを高分散させることができる。
 また、例えば、ランタン添加ジルコニア(La-ZrO)を酸性水溶液中に混合すると、La-ZrO中のランタンの溶出が進行してしまい、ジルコニア中のランタン量が減少し、ジルコニアの耐熱性が低下する。この結果、高温耐久後において、ジルコニアが凝集することによりロジウムが凝集又は埋没してしまい、NOx浄化性能が低下することになる。このような見地から、本発明の製造方法では、ロジウムの含浸担持に際し、酸とアルカリとの接触を回避するか又は最小限に抑えることが重要である。よって、ロジウムのジルコニウム含有酸化物への含浸担持に際し、ロジウム塩水溶液とジルコニウム含有酸化物の水溶液のpHを共に7以上として、両水溶液を混合することが好ましい。なお、本発明の技術的範囲が前記メカニズムによって効果が発現する実施態様に限定されるわけではない。
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 まず、市販のランタン添加ジルコニア(La-ZrO)をイオン交換水に投入し、混合することで、ランタン添加ジルコニアの水溶液を調製した。なお、前記ランタン添加ジルコニアにおける、ランタンとジルコニアのモル比は1:99である。次に、ロジウム担持濃度が0.18質量%となるように、ランタン添加ジルコニアの水溶液に対して相当量のヘキサアンミンロジウム水溶液を混合し、攪拌した。次に、前記ランタン添加ジルコニアとロジウムの混合溶液を乾燥して、400℃で1時間焼成することで、ロジウム担持ランタン添加ジルコニア粉末を調製した。
 次に、得られたロジウム担持ランタン添加ジルコニア粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、スラリを得た。さらに、このスラリにセラミックス製ハニカム担体(400セル/6ミル、0.119L)を浸漬した。次に、ハニカム担体に付着した余剰のスラリを空気流にて除去し、120℃で乾燥し、空気気流下400℃で焼成することにより、本例のハニカム触媒を得た。なお、本例のハニカム触媒における触媒層のコート量は400g/Lであり、ロジウム担持量は0.7g/Lであった。
 この後、得られたハニカム触媒に所定量のNOx吸着材としてのバリウム(Ba)を担持し、120℃で乾燥し、空気気流下400℃で焼成し、本例の排気ガス浄化用触媒を得た。なお、本例の排気ガス浄化用触媒におけるバリウムの担持量は、酸化バリウム(BaO)として28g/Lとした。触媒中の貴金属の種類、使用したロジウム水溶液、触媒中のロジウム担持濃度、ロジウムを担持した担体の組成及びNOx吸着材の種類を表1に示す。また、後述する方法により測定したロジウム分散度、ロジウムを担持する担体が分散した水溶液のpH、ロジウムを担持する担体とロジウム塩水溶液とが混合した溶液のpHを表2に示す。
(実施例2)
 NOx吸着材をバリウム(Ba)からマグネシウム(Mg)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例2の触媒仕様を表1に示す。
また、実施例2のロジウム分散度等を表2に示す。なお、本例の排気ガス浄化用触媒におけるマグネシウムの担持量は、酸化マグネシウム(MgO)として10g/Lとした。
(実施例3)
 NOx吸着材をバリウム(Ba)からナトリウム(Na)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例3の触媒仕様を表1に示す。また、実施例3のロジウム分散度等を表2に示す。なお、本例の排気ガス浄化用触媒におけるナトリウムの担持量は、酸化ナトリウム(NaO)として5g/Lとした。
(実施例4)
 NOx吸着材をバリウム(Ba)からカリウム(K)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例4の触媒仕様を表1に示す。また、実施例4のロジウム分散度等を表2に示す。なお、本例の排気ガス浄化用触媒におけるカリウムの担持量は、酸化カリウム(KO)として5g/Lとした。
(実施例5)
 NOx吸着材をバリウム(Ba)からセシウム(Cs)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例5の触媒仕様を表1に示す。また、実施例5のロジウム分散度等を表2に示す。なお、本例の排気ガス浄化用触媒におけるセシウムの担持量は、酸化セシウム(CsO)として20g/Lとした。
(実施例6)
 ランタン添加ジルコニアを市販のカルシウム添加ジルコニア(Ca-ZrO)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例6の触媒仕様を表1に示す。また、実施例6のロジウム分散度等を表2に示す。なお、前記カルシウム添加ジルコニアにおいて、カルシウムとジルコニアのモル比は1:99である。
(実施例7)
 ランタン添加ジルコニアを市販のセリウム添加ジルコニア(Ce-ZrO)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例7の触媒仕様を表1に示す。また、実施例7のロジウム分散度等を表2に示す。なお、前記セリウム添加ジルコニアにおいて、セリウムとジルコニアのモル比は1:99である。
(実施例8)
 ランタン添加ジルコニアを市販のネオジム添加ジルコニア(Nd-ZrO)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例8の触媒仕様を表1に示す。また、実施例8のロジウム分散度等を表2に示す。なお、前記ネオジム添加ジルコニアにおいて、ネオジムとジルコニアのモル比は1:99である。
(実施例9)
 ランタン添加ジルコニアを市販のイットリウム添加ジルコニア(Y-ZrO)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例9の触媒仕様を表1に示す。また、実施例9のロジウム分散度等を表2に示す。なお、前記イットリウム添加ジルコニアにおいて、イットリウムとジルコニアのモル比は1:99である。
(比較例1)
 ランタン添加ジルコニアを市販のアルミナ(Al)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。比較例1の触媒仕様を表1に示す。また、比較例1のロジウム分散度等を表2に示す。
(比較例2)
 ランタン添加ジルコニアを、添加元素を含有しない市販のジルコニア(ZrO)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。比較例2の触媒仕様を表1に示す。また、比較例2のロジウム分散度等を表2に示す。
(実施例10)
 La(1)-ZrO(99)を、La(0.5)-ZrO(99.5)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例10の触媒仕様を表1に示す。また、実施例10のロジウム分散度等を表2に示す。なお、La(0.5)-ZrO(99.5)とは、ランタンとジルコニアのモル比が0.5:99.5であるランタン添加ジルコニアを示す。
(実施例11)
 La(1)-ZrO(99)を、La(5)-ZrO(95)に変更した以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例11の触媒仕様を表1に示す。また、実施例11のロジウム分散度等を表2に示す。なお、La(5)-ZrO(95)とは、ランタンとジルコニアのモル比が5:95であるランタン添加ジルコニアを示す。
(実施例12)
 ロジウム担持濃度を0.06質量%とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例12の触媒仕様を表1に示す。また、実施例12のロジウム分散度等を表2に示す。
(実施例13)
 ロジウム担持濃度を0.36質量%とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例13の触媒仕様を表1に示す。また、実施例13のロジウム分散度等を表2に示す。
(実施例14)
 実施例1と同様の操作を行い、ロジウム担持ランタン添加ジルコニア粉末を調製した。次に、市販のセリウム添加アルミナ(Ce(20)-Al)に所定量の白金を担持し、乾燥後、400℃で1時間焼成し、内層用の白金担持セリウム添加アルミナ粉末を得た。また、市販のセリウム添加アルミナ(Ce(20)-Al)に所定量の白金を担持し、乾燥後、400℃で1時間焼成し、表層用の白金担持セリウム添加アルミナ粉末を得た。なお、Ce(20)-Alとは、セリウムとアルミナのモル比が20:80であるセリウム添加アルミナを示す。
 得られた内層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、内層用スラリを得た。次に、前記ロジウム担持ランタン添加ジルコニア粉末と、表層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、表層用スラリを得た。
 そして、前記内層用スラリにセラミックス製ハニカム担体(400セル/6ミル、0.119L)を浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成した。次に、内層を形成したハニカム担体を前記表層スラリに浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成することで、本例のハニカム触媒を得た。なお、本例のハニカム触媒における触媒層のコート量は400g/Lであり、貴金属全体の担持量は4.3g/Lとし、白金とロジウムの質量比は5:1になるようにした。
 この後、得られたハニカム触媒に所定量のNOx吸着材としてのバリウムを担持し、120℃で乾燥し、空気気流下400℃で焼成し、本例の排気ガス浄化用触媒を得た。触媒中の貴金属の種類、使用したロジウム水溶液、触媒中のロジウム担持濃度、ロジウムを担持した担体の組成、白金を担持した担体の組成、NOx吸着材の種類、触媒中のセリウム量及び表層中のセリウム量を表1に示す。また、後述する方法により測定したロジウム分散度、ロジウムを担持する担体が分散した水溶液のpH、ロジウムを担持する担体とロジウム塩水溶液とが混合した溶液のpHを表2に示す。
(実施例15)
 Ce(20)-AlをCe(12)-Alに変更した以外は、実施例14と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例15の触媒仕様を表1に示す。また、実施例15のロジウム分散度等を表2に示す。なお、Ce(12)-Alとは、セリウムとアルミナのモル比が12:88であるセリウム添加アルミナを示す。
(実施例16)
 Ce(20)-AlをCe(28)-Alに変更した以外は、実施例14と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例16の触媒仕様を表1に示す。また、実施例16のロジウム分散度等を表2に示す。なお、Ce(28)-Alとは、セリウムとアルミナのモル比が28:72であるセリウム添加アルミナを示す。
(実施例17)
 実施例1と同様の操作を行い、ロジウム担持ランタン添加ジルコニア粉末を調製した。次に、市販のセリウム添加アルミナ(Ce(22)-Al)に所定量の白金を担持し、乾燥後、400℃で1時間焼成し、内層用の白金担持セリウム添加アルミナ粉末を得た。また、市販のセリウム添加アルミナ(Ce(14)-Al)に所定量の白金を担持し、乾燥後、400℃で1時間焼成し、表層用の白金担持セリウム添加アルミナ粉末を得た。なお、Ce(22)-Alとは、セリウムとアルミナのモル比が22:78であるセリウム添加アルミナを示す。また、Ce(14)-Alとは、セリウムとアルミナのモル比が14:86であるセリウム添加アルミナを示す。
 次に、内層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、内層用スラリを得た。 また、表層用の白金担持セリウム添加アルミナ粉末と、ロジウム担持ランタン添加ジルコニア粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、表層用スラリを得た。
 そして、前記内層用スラリにセラミックス製ハニカム担体(400セル/6ミル、0.119L)を浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成した。次に、内層を形成したハニカム担体を前記表層スラリに浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成することで、本例のハニカム触媒を得た。なお、本例のハニカム触媒における触媒層のコート量は400g/Lであり、貴金属全体の担持量は4.3g/Lとし、白金とロジウムの質量比は5:1になるようにした。
 この後、得られたハニカム触媒に所定量のNOx吸着材としてのバリウムを担持し、120℃で乾燥し、空気気流下400℃で焼成し、本例の排気ガス浄化用触媒を得た。実施例17の触媒仕様を表1に示す。また、実施例17のロジウム分散度等を表2に示す。
(実施例18)
 Ce(22)-AlをCe(17)-Alに、Ce(14)-AlをCe(28)-Alに変更した以外は、実施例17と同様の操作を繰り返し、本例の排気ガス浄化用触媒を得た。実施例18の触媒仕様を表1に示す。また、実施例18のロジウム分散度等を表2に示す。なお、Ce(17)-Alとはセリウムとアルミナのモル比が17:83であるセリウム添加アルミナを示し、Ce(28)-Alとはセリウムとアルミナのモル比が28:72であるセリウム添加アルミナを示す。
(実施例19)
 市販のランタン添加ジルコニア(La-ZrO)をイオン交換水に投入し、混合することで、ランタン添加ジルコニアの水溶液を調製した。なお、前記ランタン添加ジルコニアにおける、ランタンとジルコニアのモル比は1:99である。次に、ロジウム担持濃度が3質量%となるように、ランタン添加ジルコニアの水溶液に対して相当量のヘキサアンミンロジウム水溶液を混合し、攪拌した。次に、前記ランタン添加ジルコニアとロジウムの混合溶液を乾燥して、400℃で1時間焼成することで、ロジウム担持ランタン添加ジルコニア粉末を調製した。
 次に、市販のセリウム添加アルミナ(Ce(20)-Al)に白金担持濃度が1.6質量%となるように白金を担持し、乾燥後、400℃で1時間焼成し、内層用の白金担持セリウム添加アルミナ粉末を得た。同様に市販のセリウム添加アルミナ(Ce(20)-Al)に白金担持濃度が4質量%となるように白金を担持し、乾燥後、400℃で1時間焼成し、表層用の白金担持セリウム添加アルミナ粉末を得た。なお、Ce(20)-Alとは、セリウムとアルミナのモル比が20:80であるセリウム添加アルミナを示す。
 得られた内層用白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、内層用スラリを得た。次に、前記ロジウム担持ランタン添加ジルコニア粉末と、表層用白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、表層用スラリを得た。
 そして、前記内層用スラリにセラミックス製ハニカム担体(400セル/6ミル、0.119L)を浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成した。次に、内層を形成したハニカム担体を前記表層スラリに浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成することで、本例のハニカム触媒を得た。なお、本例のハニカム触媒における触媒層のコート量は405.5g/Lであり、貴金属全体の担持量は8.5g/Lとし、白金とロジウムの質量比は5:1になるようにした。
 この後、得られたハニカム触媒に所定量のNOx吸着材としてのバリウムおよびセリウムを担持し、120℃で乾燥し、空気気流下400℃で焼成し、本例の排気ガス浄化用触媒を得た。なお、本例の排気ガス浄化用触媒におけるバリウムの担持量は酸化バリウム(BaO)として28g/L、セリウムの担持量は酸化セリウム(CeO)として5g/Lとした。
(比較例3)
 まず、実施例1で使用したランタン添加ジルコニア(La(1)-ZrO(99))をイオン交換水に投入し、混合することで、ランタン添加ジルコニアの水溶液を調製した。次に、ロジウム担持濃度が1.5質量%となるように、ランタン添加ジルコニアの水溶液に対して相当量の硝酸ロジウム水溶液を混合し、乾燥して400℃で1時間焼成し、ロジウム担持ランタン添加ジルコニア粉末を調製した。なお、硝酸ロジウム水溶液は市販のものを使用した。
 次に、Ce(20)-Alに所定量の白金を担持し、乾燥後400℃で1時間焼成し、内層用白金担持セリウム添加アルミナ粉末を得た。また、市販のセリウム添加アルミナ(Ce(20)-Al)に所定量の白金を担持し、乾燥後、400℃で1時間焼成し、表層用の白金担持セリウム添加アルミナ粉末を得た。
 得られた内層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、内層用スラリを得た。次に、前記ロジウム担持ランタン添加ジルコニア粉末と、表層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、表層用スラリを得た。
 そして、前記内層用スラリにセラミックス製ハニカム担体(400セル/6ミル、0.119L)を浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成した。次に、内層を形成したハニカム担体を前記表層スラリに浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成することで、本例のハニカム触媒を得た。なお、本例のハニカム触媒における触媒層のコート量は400g/Lであり、貴金属全体の担持量は4.3g/Lとし、白金とロジウムの質量比は5:1になるようにした。
 この後、得られたハニカム触媒に所定量のNOx吸着材としてのバリウムを担持し、120℃で乾燥し、空気気流下400℃で焼成し、本例の排気ガス浄化用触媒を得た。比較例3の触媒仕様を表1に示す。また、比較例3のロジウム分散度等を表2に示す。
(比較例4)
 まず、実施例1で使用したランタン添加ジルコニア(La(1)-ZrO(99))をイオン交換水に投入し、分散させた後、硝酸を用いて水溶液のpHが6になるように調整した。次に、このpHを6に調整した水溶液に、ロジウム担持濃度が1.5質量%になるように相当量のヘキサアンミンロジウム水溶液を混合し、攪拌した。その後、前記ランタン添加ジルコニアとロジウムの混合溶液を乾燥して、400℃で1時間焼成することで、ロジウム担持ランタン添加ジルコニア粉末を調製した。
 次に、Ce(20)-Alに所定量の白金を担持し、乾燥後400℃で1時間焼成し、内層用白金担持セリウム添加アルミナ粉末を得た。また、市販のセリウム添加アルミナ(Ce(20)-Al)に所定量の白金を担持し、乾燥後、400℃で1時間焼成し、表層用の白金担持セリウム添加アルミナ粉末を得た。
 得られた内層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、内層用スラリを得た。次に、前記ロジウム担持ランタン添加ジルコニア粉末と、表層用の白金担持セリウム添加アルミナ粉末と、ベーマイトと、硝酸と、イオン交換水とを磁性ポットに投入し、アルミナボールと共に振とうすることで、表層用スラリを得た。
 そして、前記内層用スラリにセラミックス製ハニカム担体(400セル/6ミル、0.119L)を浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成した。次に、内層を形成したハニカム担体を前記表層スラリに浸漬した。その後、ハニカム担体に付着した余剰のスラリを除去し、120℃で乾燥し、空気気流下400℃で焼成することで、本例のハニカム触媒を得た。なお、本例のハニカム触媒における触媒層のコート量は400g/Lであり、貴金属全体の担持量は4.3g/Lとし、白金とロジウムの質量比は5:1になるようにした。
 この後、得られたハニカム触媒に所定量のNOx吸着材としてのバリウムを担持し、120℃で乾燥し、空気気流下400℃で焼成し、本例の排気ガス浄化用触媒を得た。比較例4の触媒仕様を表1に示す。また、比較例4のロジウム分散度等を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[性能評価]
(1)ロジウム分散度
 各例の排気ガス浄化用触媒について、一酸化炭素吸着量によりロジウム分散度を算出した。各例の触媒のロジウム分散度を表2に示す。なお、ロジウム分散度の測定には、日本ベル株式会社製金属分散度測定装置BEL-METAL-3を用い、以下の手順に従った測定した。
 まず、各例のロジウム担持ジルコニア粉末又はロジウム担持アルミナ粉末を、焼成炉にて、空気中、900℃、3時間焼成した。次に、焼成後の各例の粉末を、He100%ガス気流中にて、10℃/minで400℃まで昇温し、次に、400℃、O100%ガス気流中にて、15分間酸化処理を行った。そして、He100%ガスにて5分間パージし、400℃、H40%/Heバランスガス気流中にて15分間還元処理を行った。次に、He100%ガス気流中にて50℃まで降温した。そして、CO10%/Heバランスガスをパルス的に流入させて、以下に示す(1)式に従い、一酸化炭素吸着量からロジウム分散度を求めた。なお、単位吸着量は以下の(2)式により求めた。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
(2)NOx浄化率
・耐久条件
 まず、日産自動車株式会社製V型6気筒3.5Lエンジンの後方に、各例の排気ガス浄化用触媒を配置した。次に、触媒入口温度が700℃になるように調整し、排気ガス雰囲気下で50時間耐久処理を行った。なお、使用燃料は無鉛ガソリンとした。
・評価条件
 まず、各例の排気ガス浄化用触媒を触媒容量が40ccとなるように切断した。次に、切断した各例の触媒を、ラボ評価装置を用いて評価を行った。なお、前記ラボ評価装置では、表3に示すガス種及び濃度となるように調整し、リーン(60秒)とリッチ(4秒)を切り替え、評価を行った。なお、評価温度(触媒入口温度)は、300℃とした。そして、NOx浄化率(ηNOx)は、次の(3)式に基づいて算出した。得られた結果を表2に併記する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-T000007
 表2より、本発明の排気ガス浄化用触媒に係る実施例1~9は、比較例1及び2と比べ、NOx浄化率が大幅に向上していることがわかる。これは、実施例1~9におけるロジウムの分散度が比較例1及び2と比べ高くなっていることに起因していると考える。特に、実施例1~9と比較例2を比較すると、実施例1~9のロジウム分散度20%以上となっていることから、ジルコニウムに前記添加元素を加えることにより、ロジウムに加えジルコニウム自体の凝集が抑制できることがわかる。
 また、実施例1、10及び11を比較すると、ジルコニウムとランタンの含有比をモル基準で99.5:0.5~95:5の範囲とすることにより、ジルコニアの凝集が十分に抑制されつつ、ランタン酸化物の生成を抑制でき、触媒活性を高くできることがわかる。
 また、実施例1と実施例14~18を比較すると、触媒中に白金及びセリアを含有させることにより、NOx浄化率が大幅に向上することがわかる。これは、高分散されたロジウムの触媒活性に加え、セリウム上に担持された白金の触媒活性により、NOxの還元が促進された結果と考える。
 しかし、実施例14~18及び比較例3及び4を比較すると、たとえ触媒中に白金及びセリアを含有させたとしても、ロジウムを担持する担体とロジウム塩水溶液が混合した溶液のpHが酸性の場合、ロジウムの凝集が発生し、NOx浄化率が低下してしまう。このことから、ロジウムを担持する担体とロジウム塩水溶液が混合した溶液のpHを7以上とすることにより、ロジウムが高分散し、触媒活性が向上することがわかる。
 特願2008-224272号 (出願日:2009年9月2日)の全内容は、ここに援用される。
 以上、実施の形態及び実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明の製造方法によれは、ロジウムが高分散された排気ガス浄化用触媒を得ることができる。また、得られた触媒は、耐久後においても触媒性能が低減し難いため、触媒成分の使用量を低減することが可能である。
 1  一体構造型担体
 2  触媒層(内層)
 3  触媒層(表層)

Claims (8)

  1.  ロジウムと、
     カルシウム、ランタン、セリウム、ネオジム及びイットリウムから成る群より選ばれる少なくとも1種の元素と、ジルコニウムとを含有し、前記ロジウムを担持するジルコニウム含有酸化物と、
     マグネシウム、バリウム、ナトリウム、カリウム及びセシウムから成る群より選ばれる少なくとも1種のNOx吸着材と、
     を含有し、
     前記ロジウムの分散度が、空気中900℃で3時間焼成した後において20%以上であることを特徴とする排気ガス浄化用触媒。
  2.  前記ジルコニウム含有酸化物が、ジルコニウムと、ランタンとを含有し、
     前記ジルコニウムとランタンとの含有比(Zr:La)が、モル基準で99.5:0.5~95:5であることを特徴とする請求項1に記載の排気ガス浄化用触媒。
  3.  前記ロジウムの担持量が3質量%以下であることを特徴とする請求項1又は2に記載の排気ガス浄化用触媒。
  4.  更に白金を含有し、
     前記白金が、セリウムと、アルミニウムとを含有する酸化物に担持されており、
     前記白金の少なくとも一部が前記セリウム上に担持されていることを特徴とする請求項1乃至3のいずれか一項に記載の排気ガス浄化用触媒。
  5.  複数の触媒層を有し、触媒層中にセリウムがセリア(CeO)として20~40質量%含まれ、且つ、前記複数の触媒層のうちの最表層に含まれるセリア量がセリア全体の20~40質量%であることを特徴とする請求項4に記載の排気ガス浄化用触媒。
  6.  カルシウム、ランタン、セリウム、ネオジム及びイットリウムから成る群より選ばれる少なくとも1種の元素とジルコニウムとを含有するジルコニウム含有酸化物と、水とを混合し、前記ジルコニウム含有酸化物の水溶液を調製する工程と、
     前記ジルコニウム含有酸化物の水溶液と、ロジウム塩の水溶液とを混合し、前記ジルコニウム含有酸化物にロジウムを担持する工程と、
     を有し、
     前記ロジウム塩の水溶液と、前記ジルコニウム含有酸化物の水溶液とを混合したときのpHを7以上にすることを特徴とする排気ガス浄化用触媒の製造方法。
  7.  前記ロジウム塩の水溶液のpH及び前記ジルコニウム含有酸化物の水溶液のpHが共に7以上であることを特徴とする請求項6に記載の排気ガス浄化用触媒の製造方法。
  8.  前記ロジウム塩は、ヘキサアンミンロジウム塩であることを特徴とする請求項6又は7に記載の排気ガス浄化用触媒の製造方法。
PCT/JP2009/060443 2008-09-02 2009-06-08 排気ガス浄化用触媒及びその製造方法 WO2010026814A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09811343.4A EP2322274B1 (en) 2008-09-02 2009-06-08 Exhaust gas purifying catalyst and method for producing the same
JP2010527730A JP4752977B2 (ja) 2008-09-02 2009-06-08 排気ガス浄化用触媒及びその製造方法
CN200980133779.1A CN102137718B (zh) 2008-09-02 2009-06-08 废气净化用催化剂及其制造方法
US13/060,918 US8273681B2 (en) 2008-09-02 2009-06-08 Exhaust gas purifying catalyst and method for manufacturing the same
US13/592,998 US8569201B2 (en) 2008-09-02 2012-08-23 Exhaust gas purifying catalyst and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-224272 2008-09-02
JP2008224272 2008-09-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/060,918 A-371-Of-International US8273681B2 (en) 2008-09-02 2009-06-08 Exhaust gas purifying catalyst and method for manufacturing the same
US13/592,998 Division US8569201B2 (en) 2008-09-02 2012-08-23 Exhaust gas purifying catalyst and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010026814A1 true WO2010026814A1 (ja) 2010-03-11

Family

ID=41796988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060443 WO2010026814A1 (ja) 2008-09-02 2009-06-08 排気ガス浄化用触媒及びその製造方法

Country Status (5)

Country Link
US (2) US8273681B2 (ja)
EP (1) EP2322274B1 (ja)
JP (1) JP4752977B2 (ja)
CN (2) CN104353457B (ja)
WO (1) WO2010026814A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847434A (zh) * 2011-06-29 2013-01-02 福特环球技术公司 无贵金属稀NOx捕集器
KR20150086490A (ko) * 2012-11-12 2015-07-28 바스프 에스이 산화 촉매 및 이의 제조 방법
CN106457226A (zh) * 2014-05-13 2017-02-22 日产自动车株式会社 废气净化用催化剂
JP7446991B2 (ja) 2017-08-28 2024-03-11 ビーエーエスエフ コーポレーション リン耐性三元触媒

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358525B2 (en) * 2008-12-04 2016-06-07 Johnson Matthey Public Limited Company NOx storage materials for sensor applications
JP5642107B2 (ja) * 2012-03-30 2014-12-17 本田技研工業株式会社 鞍乗型車両用排気ガス浄化装置及びそれに用いるパラジウム単層触媒
IN2014DN10247A (ja) * 2012-05-15 2015-08-07 Rennovia Inc
US10464052B2 (en) 2012-11-12 2019-11-05 Basf Se Oxidation catalyst and method for its preparation
CN103557061A (zh) * 2013-11-06 2014-02-05 苏州佑瑞检测技术有限公司 一种固液混合式汽车尾气净化装置
US10634030B2 (en) * 2014-12-08 2020-04-28 Basf Corporation Nitrous oxide removal catalysts for exhaust systems
JP6978434B2 (ja) * 2016-05-05 2021-12-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company NOxアドソーバ触媒
GB2557873A (en) * 2016-05-05 2018-07-04 Johnson Matthey Plc NOx Adsorber catalyst
JP6131370B1 (ja) * 2016-06-10 2017-05-17 千代田化工建設株式会社 合成ガス製造触媒用担体及びその製造方法、合成ガス製造触媒及びその製造方法、並びに合成ガスの製造方法
GB2560942A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
GB2560940A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc Three layer NOx Adsorber catalyst
GB2560941A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
JP6408062B1 (ja) * 2017-04-28 2018-10-17 株式会社キャタラー 排ガス浄化用触媒
CN112166213A (zh) * 2018-04-04 2021-01-01 尤尼弗瑞克斯 I 有限责任公司 活化的多孔纤维和包括该纤维的产品
EP3990175A1 (en) * 2019-06-27 2022-05-04 BASF Corporation Catalytic article and method of manufacturing the catalytic article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320252A (ja) * 2002-05-02 2003-11-11 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2005305217A (ja) * 2004-04-16 2005-11-04 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及び排ガス浄化方法
JP2007252996A (ja) * 2006-03-21 2007-10-04 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びそれを用いた排ガス浄化方法
JP2007301530A (ja) 2006-05-15 2007-11-22 Mazda Motor Corp 排気ガス浄化用触媒

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977129A (en) * 1989-03-13 1990-12-11 W. R Grace & Co.-Conn. Auto exhaust catalyst composition having low H2 S emissions and method of making the catalyst
JP3498453B2 (ja) * 1995-11-27 2004-02-16 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
JPH09234367A (ja) 1995-12-25 1997-09-09 Cataler Kogyo Kk ディーゼルエンジン排ガス浄化用触媒
US7276212B2 (en) * 2001-10-01 2007-10-02 Engelhard Corporation Exhaust articles for internal combustion engines
JP4329432B2 (ja) * 2003-07-15 2009-09-09 トヨタ自動車株式会社 排ガス浄化用触媒
JP3912377B2 (ja) * 2003-12-25 2007-05-09 日産自動車株式会社 排ガス浄化用触媒粉末の製造方法
JP4959129B2 (ja) * 2004-02-16 2012-06-20 株式会社キャタラー 排ガス浄化用触媒
JP4547930B2 (ja) * 2004-02-17 2010-09-22 日産自動車株式会社 触媒、触媒の調製方法及び排ガス浄化用触媒
JP4547935B2 (ja) * 2004-02-24 2010-09-22 日産自動車株式会社 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
JP4513372B2 (ja) * 2004-03-23 2010-07-28 日産自動車株式会社 排ガス浄化用触媒及び排ガス浄化触媒
JP4513384B2 (ja) * 2004-03-31 2010-07-28 日産自動車株式会社 高耐熱性排ガス浄化用触媒及びその製造方法
US7767163B2 (en) * 2004-04-20 2010-08-03 Umicore Ag & Co. Kg Exhaust treatment devices
JP4165443B2 (ja) * 2004-04-27 2008-10-15 トヨタ自動車株式会社 金属酸化物粒子の製造方法、及び排ガス浄化触媒
US7795172B2 (en) * 2004-06-22 2010-09-14 Basf Corporation Layered exhaust treatment catalyst
CN1981237B (zh) * 2004-07-07 2010-05-05 太阳油墨制造株式会社 光固化性·热固化性树脂组合物和使用其的干膜、及其固化物
EP1786562A2 (en) * 2004-07-08 2007-05-23 Nissan Motor Co., Ltd. Catalyst, exhaust gas purification catalyst, and method for manufacturing same
JP5106748B2 (ja) * 2004-11-08 2012-12-26 株式会社キャタラー 排ガス浄化用触媒
WO2006057067A1 (ja) * 2004-11-25 2006-06-01 Cataler Corporation 排ガス浄化用触媒
JP4696546B2 (ja) * 2004-12-10 2011-06-08 マツダ株式会社 排気ガス浄化用触媒
EP1839749B1 (en) * 2004-12-14 2014-10-08 Nissan Motor Co., Ltd. Catalyst, exhaust gas clarifying catalyst, and method for producing catalyst
JP5200315B2 (ja) * 2004-12-22 2013-06-05 日産自動車株式会社 排気ガス浄化触媒、及び排気ガス浄化触媒の製造方法
US7618919B2 (en) * 2005-01-28 2009-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support and method of producing the same
JP4179299B2 (ja) * 2005-03-23 2008-11-12 トヨタ自動車株式会社 触媒担体粉末及び排ガス浄化触媒
USRE46145E1 (en) * 2005-06-20 2016-09-13 Chiyoda Corporation Uniformly, highly dispersed metal catalyst and process for producing the same
JP5021188B2 (ja) * 2005-08-01 2012-09-05 株式会社キャタラー 排ガス浄化用触媒
JP4687389B2 (ja) * 2005-10-26 2011-05-25 マツダ株式会社 排気ガス浄化触媒
JP4826207B2 (ja) * 2005-10-28 2011-11-30 日産自動車株式会社 排ガス浄化触媒及び排ガス浄化触媒の製造方法
US7625836B2 (en) * 2005-12-13 2009-12-01 Cataler Corporation Heat-resistant oxide
JP5216189B2 (ja) * 2005-12-22 2013-06-19 株式会社キャタラー 排ガス浄化用触媒
US7923407B2 (en) * 2006-03-16 2011-04-12 Ict Co., Ltd. Catalyst for exhaust gas purification, production method therefor, and method for purification of exhaust gas using the catalyst
JP4881758B2 (ja) * 2006-04-28 2012-02-22 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
US7550124B2 (en) * 2006-08-21 2009-06-23 Basf Catalysts Llc Layered catalyst composite
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
US7517510B2 (en) * 2006-08-21 2009-04-14 Basf Catalysts Llc Layered catalyst composite
US7754171B2 (en) * 2007-02-02 2010-07-13 Basf Corporation Multilayered catalyst compositions
US8067330B2 (en) * 2007-02-15 2011-11-29 Mazda Motor Corporation Catalytic material and catalyst for purifying exhaust gas component
US7977276B2 (en) * 2007-04-12 2011-07-12 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method of producing the same
US8007750B2 (en) * 2007-07-19 2011-08-30 Basf Corporation Multilayered catalyst compositions
JP4849034B2 (ja) * 2007-08-08 2011-12-28 マツダ株式会社 触媒付パティキュレートフィルタ
US8038951B2 (en) * 2007-08-09 2011-10-18 Basf Corporation Catalyst compositions
US7879755B2 (en) * 2007-08-09 2011-02-01 Basf Corporation Catalyst compositions
US7622096B2 (en) * 2007-08-09 2009-11-24 Basf Catalysts Llc Multilayered catalyst compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320252A (ja) * 2002-05-02 2003-11-11 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2005305217A (ja) * 2004-04-16 2005-11-04 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及び排ガス浄化方法
JP2007252996A (ja) * 2006-03-21 2007-10-04 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びそれを用いた排ガス浄化方法
JP2007301530A (ja) 2006-05-15 2007-11-22 Mazda Motor Corp 排気ガス浄化用触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2322274A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847434A (zh) * 2011-06-29 2013-01-02 福特环球技术公司 无贵金属稀NOx捕集器
KR20150086490A (ko) * 2012-11-12 2015-07-28 바스프 에스이 산화 촉매 및 이의 제조 방법
JP2015535485A (ja) * 2012-11-12 2015-12-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸化触媒およびその製造方法
KR102118663B1 (ko) 2012-11-12 2020-06-03 바스프 에스이 산화 촉매 및 이의 제조 방법
CN106457226A (zh) * 2014-05-13 2017-02-22 日产自动车株式会社 废气净化用催化剂
JP7446991B2 (ja) 2017-08-28 2024-03-11 ビーエーエスエフ コーポレーション リン耐性三元触媒

Also Published As

Publication number Publication date
CN104353457A (zh) 2015-02-18
JP4752977B2 (ja) 2011-08-17
US8273681B2 (en) 2012-09-25
EP2322274A1 (en) 2011-05-18
EP2322274B1 (en) 2014-03-12
US20120322652A1 (en) 2012-12-20
US20110160049A1 (en) 2011-06-30
JPWO2010026814A1 (ja) 2012-02-02
EP2322274A4 (en) 2012-04-11
CN104353457B (zh) 2017-05-24
CN102137718B (zh) 2015-09-16
CN102137718A (zh) 2011-07-27
US8569201B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
JP4752977B2 (ja) 排気ガス浄化用触媒及びその製造方法
KR101438953B1 (ko) 저온에서의 NOx 흡장성능이 개선된 LNT촉매
US8975204B2 (en) Exhaust-gas-purifying catalyst
JP2010029752A (ja) 排気ガス浄化触媒装置、並びに排気ガス浄化方法
JP2003320252A (ja) 排気ガス浄化触媒及びその製造方法
EP3632537A1 (en) Exhaust gas purification catalyst device
JP3965676B2 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JPH10286462A (ja) 排気ガス浄化用触媒
JP2004074138A (ja) 排ガス浄化用触媒及び排ガス浄化方法
JP4923412B2 (ja) 排ガス浄化触媒
JP2006224032A (ja) 排ガス浄化用触媒
JP4797838B2 (ja) ガス浄化触媒
JP2002143683A (ja) 排気ガス浄化用触媒及びその製造方法
JPH09313938A (ja) 排気ガス浄化用触媒
JP4852595B2 (ja) 排ガス浄化触媒
JPH09248462A (ja) 排気ガス浄化用触媒
JP5328133B2 (ja) 排ガス浄化用触媒
JP2003135970A (ja) 排気ガス浄化用触媒
JP2004230241A (ja) 排気ガス浄化触媒及びその製造方法
JP7228451B2 (ja) 自動車用排ガス浄化触媒
JP5677682B2 (ja) 排気浄化触媒
JP4504307B2 (ja) 内燃機関の排ガス浄化装置及び排ガス浄化触媒
JP2015093227A (ja) 排ガス浄化触媒とその製造方法
JP2003326164A (ja) 排気ガス浄化触媒、その製造方法及び排気ガス浄化装置
JP2745644B2 (ja) 排気ガス浄化用触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133779.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527730

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009811343

Country of ref document: EP