WO2010024385A1 - 金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法 - Google Patents
金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法 Download PDFInfo
- Publication number
- WO2010024385A1 WO2010024385A1 PCT/JP2009/065073 JP2009065073W WO2010024385A1 WO 2010024385 A1 WO2010024385 A1 WO 2010024385A1 JP 2009065073 W JP2009065073 W JP 2009065073W WO 2010024385 A1 WO2010024385 A1 WO 2010024385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metallic copper
- copper
- dispersion
- gelatin
- metal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
- C09D17/004—Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
- C09D17/006—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/50—Sympathetic, colour changing or similar inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1606—Antifouling paints; Underwater paints characterised by the anti-fouling agent
- C09D5/1612—Non-macromolecular compounds
- C09D5/1618—Non-macromolecular compounds inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
Definitions
- the present invention relates to a metallic copper dispersion containing metallic copper particles and a method for producing the same, as well as an electrode, a wiring pattern, a coating film formed using the same, and a decorative article, an antibacterial article formed with the coating film, and It is related with the manufacturing method of the metal copper containing film
- Dispersions containing metallic copper particles are generally coated with coating agents, paints, pastes, inks, etc., in which metallic copper particles are dispersed in a solvent, and additives such as binders, dispersants, and viscosity modifiers are further blended as necessary. It is a generic name including the composition of Such a dispersion utilizes the properties of the metal copper particles, for example, to ensure electrical continuity, or to various applications such as antistatic, electromagnetic shielding or metallic luster, antibacterial properties, etc. It is used. Moreover, in recent years, metallic copper particles having an average particle diameter of about 1 to 200 nm have been used as metallic copper particles to be blended, and their uses are expanding in various fields.
- Patent Document 1 discloses reduction by mixing a divalent copper oxide and a reducing agent in a medium in the presence of a complexing agent and a protective colloid. The production of metallic copper fine particles, and the dispersion of the obtained metallic copper fine particles in a dispersion medium to form a fluid composition.
- the dispersion medium include water solvents, hydrophilic organic solvents, hydrophobic The use of an organic solvent or the like.
- Patent Document 2 discloses a copper colloid solution containing copper colloidal particles and a high molecular weight pigment dispersant prepared by dissolving a copper compound in a solvent, adding a high molecular weight pigment dispersant, and then reducing it.
- the high molecular weight pigment dispersant a polymer having a comb-like structure having a pigment affinity group in the main chain and / or a plurality of side chains and having a plurality of side chains constituting a solvation portion is used. It is described.
- Patent Document 1 The metal copper fine particles described in Patent Document 1 are excellent in dispersion stability and can be heated and melted at a relatively low temperature, so that electrical continuity is ensured, or antistatic, electromagnetic shielding or metal is ensured. Although it is suitable for various applications such as imparting gloss and antibacterial properties, it is desirable to have a dispersion with excellent long-term dispersion stability to improve printability and paintability such as inkjet printing and spray coating. It is rare.
- the high molecular weight pigment dispersant to be used needs 50 to 1000 parts by weight with respect to 100 parts by weight of copper, and if it is less than 50 parts by weight, the dispersibility of the copper colloid particles is insufficient.
- a dispersion having excellent dispersion stability over a long period of time even with a smaller amount of dispersant is desired. Further, when the metal copper dispersion is applied by, for example, ink jet printing, a liquid having a lower viscosity is required to prevent nozzle clogging.
- a protective colloid for producing metal copper particles in an aqueous solvent in the method for producing metal copper particles described in Patent Document 1 As a result of various investigations, it is necessary to use both dispersants when dispersed in an organic solvent.
- a protective colloid gelatin having a difference between a specific amine value and an acid value is used.
- a polymer dispersing agent is used by using a specific polymer dispersing agent that compensates for the difference between the amine value and acid value of the gelatin as a dispersing agent.
- the present invention has been completed by finding that a metal copper dispersion having even better dispersion stability can be obtained by neutralizing the charge of gelatin present on the surface of metal copper particles. Furthermore, the simple manufacturing method of the metal copper containing film
- the present invention provides (1) a dispersion containing at least metallic copper particles having gelatin on the particle surface, a polymer dispersant, and an organic solvent, wherein the gelatin has a difference between an amine value and an acid value (amine Number-acid value) is 0 or less, and the polymer dispersant has a difference between amine value and acid value (amine value-acid value) of 0 to 50 (including 0 and 50, hereinafter the same).
- the copper oxide dispersion is subjected to solid-liquid separation, and then the obtained gelatin is present on the particle surface.
- an amine value and an acid value are used as the above-mentioned polymer dispersant.
- a method for producing a copper metal dispersion characterized in that a polymer dispersant having an (amine value-acid value) of 0 to 50 is used.
- the metal copper dispersion liquid according to (1) or (2) above (4) A decorative article or antibacterial article characterized by forming the coating film of (3) above, (4) 5) A method for producing a metal copper-containing film used for the electrodes, wiring patterns, design / decorative coating films, etc. of the above (3) and (4).
- the metal copper dispersion of the present invention can maintain the dispersion stability of metal copper particles in an organic solvent for a long period of time. For this reason, it is suitable for industrial use because the dispersion stability is maintained until the metal copper dispersion is prepared and used, and it is excellent in printability and paintability. Inkjet printing, Applicable to a wide range of painting methods such as spray painting. Further, depending on the purpose of use, the composition of paints, inks, pastes and the like can be arbitrarily designed by blending resin components and the like. Moreover, since the metallic copper dispersion liquid of this invention can use the polymer dispersing agent to be used in a comparatively small amount, it can be heated at a relatively low temperature to fuse the metallic copper particles.
- the metal copper dispersion of the present invention can adjust the viscosity of the dispersion relatively low even when the metal copper particles are at a high concentration, and is suitable for inkjet printing, spray coating, and the like. Furthermore, a metallic copper-containing film excellent in electrical conductivity and metallic color tone can be easily produced by applying the metallic copper dispersion liquid of the present invention to the surface of the base material, or irradiating with heat or laser light after coating. Can do. Therefore, the metal copper dispersion of the present invention is used as a material for ensuring electrical continuity, antistatic, electromagnetic wave shielding, metallic luster, antibacterial properties, and the like. It is used for the formation of fine electrodes such as printed wiring boards and circuit wiring patterns utilizing the electrical conductivity of the circuit, and for design and decoration applications utilizing the metal color tone of the metallic copper-containing film.
- the present invention is a dispersion in which metallic copper particles are dispersed in an organic solvent, and includes at least metallic copper particles having gelatin on the particle surface, a polymer dispersant, and an organic solvent.
- the dispersion, coating agent, paint Includes compositions referred to as pastes, inks, inks, and the like.
- the metal copper particles used in the present invention have the below-described gelatin on the surface thereof, and there are no particular restrictions on the particle diameter of the metal copper particles, components other than copper, etc., which should be appropriately selected according to the application. Can do.
- metal copper particles are easily available, it is preferable to appropriately use metal copper particles having an average particle diameter of about 1 nm to 10 ⁇ m, more preferably metal copper particles having an average particle diameter of about 1 nm to 1 ⁇ m.
- Metal copper particles having an average particle diameter of about 1 to 200 nm are more preferable because they can be used for applications in the direction, and in order to obtain finer electrodes and circuit wiring patterns, an average particle diameter in the range of 5 to 50 nm is used.
- metallic copper particles may contain impurities such as oxygen inevitably produced in the manufacturing method and foreign metal copper, or in advance, oxygen, metal oxides, and the like as necessary to prevent rapid oxidation of the metallic copper particles.
- An organic compound such as a complexing agent may be contained.
- the gelatin present on the surface of the copper metal particles has a difference between the amine value and the acid value, that is, (amine value-acid value) is 0 or less, more preferably in the range of ⁇ 50 to 0.
- gelatin is an animal protein having collagen as a parent substance.
- the raw material is pretreated with inorganic acid such as hydrochloric acid or sulfuric acid or lime.
- the former is called acid-treated gelatin, and the latter is called alkali-treated (or lime-treated) gelatin.
- the acid amide in the collagen is hydrolyzed to release ammonia and change to a carboxyl group, so that the isoionic point of gelatin is lowered.
- alkali-treated gelatin has been deamidated by nearly 100% in the lime picking process, so that the isoionic point is in the acidic range and is approximately pH 5.
- acid-treated gelatin has a short raw material treatment period and a low deamidation rate, so it has an isoionic point in the alkaline region and has a pH of about 8 to 9 which is close to collagen.
- gelatin has an amine value because it has a basic group and a hydroxyl group, and has an acid value because it has an acidic group.
- the gelatin present on the surface of the metal copper particles is preferably alkali-treated gelatin, and the difference between the amine value and the acid value measured by the method described later, that is, (amine value-acid value) is 0 or less, More preferably, it is in the range of ⁇ 50 to 0.
- Alkali-treated gelatin is preferred because it is more effective as a protective colloid of metallic copper particles than acid-treated gelatin.
- the metal copper particles in which the gelatin exists are dissociated in a solvent and are electrically negative. It is easy to aggregate in an organic solvent. Therefore, a polymer dispersant is mixed in order to neutralize the acid sites that cause the acid value of gelatin. Since the polymer dispersant has a hydroxyl group, an acidic group, a basic group, etc., like gelatin, it has an amine value and an acid value.
- the difference between the amine value and the acid value of gelatin that is, (amine value) Since the acid value is 0 or less, the acid value (acid point) of gelatin, the amine value (base point) that is higher than the level that compensates (neutralizes) the amine value (base point), the acid value (acid point) ), And it is important that the difference between the amine value and the acid value, that is, (amine value-acid value) is 0 to 50, more preferably in the range of 1 to 30. is there.
- the polymer dispersant may be electrostatically bonded to the acid point or base point of gelatin through the base point or acid point. For this reason, it is considered preferable that (amine value of polymer dispersant ⁇ weight of polymer dispersant) ⁇ (acid value of gelatin ⁇ weight of gelatin) is 0 or more.
- the amine values of gelatin and polymer dispersant indicate the total amount of free base and base, and are expressed in mg of potassium hydroxide equivalent to hydrochloric acid required to neutralize 1 g of the sample.
- the acid value indicates the total amount of free fatty acids and fatty acids, and is expressed in mg of potassium hydroxide required to neutralize 1 g of the sample.
- the amine value and acid value are measured by a method based on the following JIS K 7700 or ASTM D2074.
- any polymer dispersant having an (amine value-acid value) of 0 to 50 can be used.
- a tertiary amino group, a quaternary ammonium, a heterocyclic group having a basic nitrogen atom, a polymer or copolymer having a basic group such as a hydroxyl group, and having an acidic group such as a carboxyl group For this reason, the amine value and acid value of the polymer dispersant may be offset, and (amine value-acid value) may be zero.
- the polymer dispersant preferably has an amine value higher than the acid value, and (amine value-acid value) is preferably in the range of 1 to 30.
- the basic group or acidic group of the polymer dispersant is a functional group having an affinity for the gelatin-coated metal copper particles, and therefore preferably has one or more in the main chain and / or side chain of the polymer. A thing with several is more preferable.
- the basic group and the acidic group may be present at one end of the polymer main chain and / or one end of the side chain.
- a linear polymer such as an AB block polymer, a comb-shaped polymer having a plurality of side chains, or the like can be used.
- the weight average molecular weight of the polymer dispersant is not limited, but the weight average molecular weight measured by gel permeation chromatography is preferably in the range of 2,000 to 1,000,000.
- the dispersion stability is not sufficient, and if it exceeds 1000000, the viscosity is too high and handling tends to be difficult. More preferably, it is in the range of 4,000 to 1,000,000, and still more preferably in the range of 10,000 to 1,000,000.
- the polymer dispersant is preferably one containing few elements such as phosphorus, sodium and potassium, and more preferably one containing no such elements. It is not preferred that the polymer dispersant contains phosphorus, sodium, or potassium elements because they remain as ash when heated and fired to produce electrodes, wiring patterns, and the like. One or more of these polymer dispersants can be appropriately selected and used.
- the polymer dispersant examples include bases such as salts of long-chain polyaminoamides and polar acid esters, unsaturated polycarboxylic acid polyaminoamides, polyaminoamide polycarboxylates, and salts of long-chain polyaminoamides and acid polymers. And a polymer having a functional group. Further, acrylic polymers, acrylic copolymers, modified polyester acids, polyether ester acids, polyether carboxylic acids, polyalkyl carboxylic acid alkylammonium salts, amine salts, amidoamine salts and the like can be mentioned. As such a polymer dispersing agent, a commercially available one can be used.
- Examples of the commercially available products include DISPERBYK (registered trademark) -112, DISPERBYK-130, DISPERBYK-140, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-2155, DISPERBYK-2163, -DISPER 2164, DISPERBYK-180, DISPERBYK-2000, DISPERBYK-2163, DISPERBYK-2164, BYK (registered trademark) 9076, BYK 9077 (manufactured by Big Chemie), FLOREN DOPA-15B, FLOREN DOPA-15BHFS, FLOREN DOPA-22, FLOREN DOPA-33, Floren DOPA-44, Floren D PA-17HF, Florene TG-662C, Florene KTG-2400 (made by Kyoeisha Chemical Co., Ltd.), ED-117, ED-118, ED-212
- the organic solvent can be appropriately selected. Specifically, hydrocarbon solvents such as toluene, xylene, solvent naphtha, normal hexane, isohexane, cyclohexane, methylcyclohexane, normal heptane, tridecane, tetradecane, pentadecane, methanol, ethanol, Butanol, IPA (isopropyl alcohol), normal propyl alcohol, 2-butanol, TBA (tertiary butanol), alcohol solvents such as butanediol, ethylhexanol, benzyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, DIBK (diisobutyl ketone) , Cyclohexanone, ketone solvents such as DAA (diacetone alcohol), ethyl acetate, butyl acetate, methoxybuty
- the organic solvent preferably has a low viscosity in order to adapt to the low viscosity of the copper metal dispersion, and preferably has a range of 1 to 20 mPa ⁇ s.
- an organic solvent toluene, butyl carbitol, butanol, propylene glycol-1-monomethyl ether-2-acetate, butyl cellosolve, tetradecane and the like are preferably used.
- gelatin is present in the range of about 0.1 to 15 parts by weight with respect to 100 parts by weight of the copper metal particles, the desired effect can be obtained, and a more preferable range is about 0.1 to 10 parts by weight. is there.
- the polymer dispersant is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the metallic copper particles because the desired effect can be obtained. If the amount is too large, the conductivity may be hindered in the electrode material application, and the decoration appearance may cause white turbidity and the finished appearance may be deteriorated. A more preferred range is 0.1 to 10 parts by weight. As long as the effect of the present invention is not impaired, particles partially coated with colloid or particles not coated with colloid may be mixed.
- the concentration of metallic copper particles in the dispersion can be adjusted as appropriate. Specifically, the concentration of metallic copper particles can be adjusted to 10% by weight or more, preferably 10 to 80% by weight, About 70% by weight is more preferable.
- the viscosity of the dispersion can be adjusted relatively low even at a high concentration.
- the viscosity of the dispersion is preferably 100 mPa ⁇ s or less, more preferably 1 to 30 mPa ⁇ s, still more preferably 1 to 20 mPa ⁇ s.
- the concentration of the metallic copper particles in the dispersion is increased, the viscosity tends to increase.
- the dispersion of the present invention can maintain the above viscosity even when the concentration of the metallic copper particles is 15% by weight or more.
- the median diameter (cumulative median diameter, 50% particle diameter) obtained by measuring the metallic copper particles dispersed in the dispersion of the present invention with a dynamic light scattering particle size distribution analyzer depends on the size of the metallic copper particles used. However, it is preferably 1.0 ⁇ m or less, more preferably about 1 to 200 nm, and still more preferably about 1 to 100 nm.
- the preferred embodiment of the metallic copper dispersion of the present invention has a concentration of metallic copper particles of 15% by weight or more, a median diameter of metallic copper particles of 1 to 200 nm, and a viscosity of the dispersion. 100 mPa ⁇ s or less.
- the metal copper dispersion of the present invention includes a curable resin, a thickener, a plasticizer, a fungicide, a surfactant, a non-surfactant type, in addition to the metal copper particles, the organic solvent, and the polymer dispersant.
- a dispersant, a surface conditioner (leveling agent) and the like can be appropriately blended as necessary.
- the curable resin can further improve the adhesion between the coated material and the substrate.
- a dissolution type, an emulsion type, a colloidal dispersion type with respect to a low-polar non-aqueous solvent can be used without limitation.
- curable resin a well-known protein type polymer, an acrylic resin, a polyester resin, a urethane resin, a cellulose etc. can be used without a restriction
- the blending amount of the curable resin component is preferably 10 parts by weight or less with respect to 100 parts by weight of the metal copper particles, more preferably 8 parts by weight or less, and even more preferably 5 parts by weight or less.
- the surfactant a cationic surfactant is preferable, and a portion dissociating in an aqueous solvent and being electrically positive is a compound having a surface activity.
- (1) quaternary ammonium salt ((a) aliphatic quaternary ammonium salt ([RN (CH 3 ) 3 ] + X ⁇ , [RR′N (CH 3 ) 2 ] + X ⁇ , [RR′R ”N (CH 3 )] + X ⁇ , [RR′R ′′ R ′ ′′ N] + X ⁇ etc., where R, R ′, R ′′, R ′ ′′ are the same or different alkyls X represents a halogen atom such as Cl, Br, or I, and the same applies to the group, (b) an aromatic quaternary ammonium salt ([R 3 N (CH 2 Ar)] + X ⁇ , [RR′N ( CH 2 Ar) 2 ] + X ⁇ etc., where Ar represents an aryl group), (c) heterocyclic quaternary ammonium salt (pyridinium salt ([C 6 H 5 N—R] + X ⁇ ),
- aromatic quaternary ammonium salt include decyldimethylbenzylammonium chloride, lauryldimethylbenzylammonium chloride, and stearyldimethylbenzylammonium chloride.
- heterocyclic quaternary ammonium salts include cetylpyridinium chloride, alkylisoquinolium bromide, etc.
- Alkylamine salts include octylamine, decylamine, laurylamine, stearylamine, Examples include neutralized products obtained by neutralizing coconut oil amine, dioctylamine, distearylamine, trioctylamine, tristearylamine, dioctylmethylamine, etc. with inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and carboxylic acids such as acetic acid.
- a neutralized product obtained by reacting mercaptocarboxylic acid and / or a salt thereof on the metal copper particle surface with an alkylamine may be used as the alkylamine salt.
- the quaternary ammonium salts those having at least one alkyl group or benzyl group having 8 or more carbon atoms are particularly preferred.
- stearyltrimethylammonium chloride alkyl group Carbon number: 18
- octyltrimethylammonium chloride (same: 8), lauryltrimethylammonium chloride (same: 12), cetyltrimethylammonium chloride (same: 16), cetyltrimethylammonium bromide (same: 16), tetrabromide Octylammonium (same as 8), dimethyltetradecylbenzylammonium chloride (same as 14), distearyldimethylbenzylammonium chloride (same as 18), stearyldimethylbenzylammonium chloride (same as 18), benzalkonium chloride (same as above: 12-18) .
- alkylamines of the alkylamine salt those having at least one alkyl group having 8 or more carbon atoms are preferable.
- alkylamine examples include octylamine (same as 8), laurylamine ( 12), stearylamine (18 :), dioctylamine (8 :), dilaurylamine (12 :), distearylamine (18 :), trioctylamine (8 :), trilauryl Amine (same as above: 12).
- the surface conditioner controls the surface tension of the organic solvent dispersion to prevent defects such as repellency and craters. Acrylic surface conditioner, vinyl surface conditioner, silicone surface conditioner, fluorine System surface conditioners and the like.
- the addition amount of the surfactant and the surface conditioner can be appropriately adjusted.
- the amount is preferably 2.0 parts by weight or less, more preferably 0.2 parts by weight or less with respect to 100 parts by weight of the metal copper particles.
- the present invention after reducing copper oxide in an aqueous solvent in the presence of gelatin, solid-liquid separation is performed, and then the obtained copper metal particles having gelatin on the particle surface and the polymer dispersant are organically mixed.
- a polymer dispersant having a difference between amine value and acid value (amine value-acid value) of 0 to 50 is used as the agent.
- gelatin having a difference between amine value and acid value (amine value-acid value) of 0 or less is used as a protective colloid, and in the presence thereof, copper oxide and a reducing agent are mixed in an aqueous solvent and reduced. Metallic copper particles having gelatin on the particle surface are formed.
- the amount of gelatin used is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of copper oxide, since the produced copper fine particles are easy to disperse and stabilize, and is preferably in the range of 2 to 50 parts by weight.
- the “divalent copper oxide” has a copper valence of 2 (Cu 2+ ), and includes cupric oxide, cupric hydroxide, and mixtures thereof.
- the copper oxide may appropriately contain impurities such as other metals, metal compounds, and nonmetal compounds.
- reducing agent it is preferable to use one having a strong reducing power so that no monovalent copper oxide is generated and / or remains during the reduction reaction.
- hydrazine, hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate Hydrazine-based reducing agents such as hydrazine compounds such as sodium borohydride, sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and sodium phosphite salts thereof, Examples thereof include phosphorous acid and salts thereof such as sodium hypophosphite, and these may be used alone or in combination.
- hydrazine-based reducing agents are preferred because of their strong reducing power.
- the amount of the reducing agent used can be appropriately set as long as it is an amount capable of producing copper fine particles from the copper oxide, and is in the range of 0.2 to 5 mol with respect to 1 mol of copper contained in the copper oxide. Is preferred. If the reducing agent is less than the above range, the reaction is difficult to proceed, and copper fine particles are not sufficiently formed. A more preferable amount of the reducing agent used is in the range of 0.3 to 2 mol.
- the aqueous solvent is a solvent containing water, and examples thereof include water or a mixed solvent of water and an organic solvent such as alcohol, and an aqueous medium is preferably used industrially.
- the reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, because the reaction is easy to proceed.
- the range of 40 to 95 ° C. is more preferable because fine metallic copper fine particles can be obtained, and 60 to 95 ° C. Is more preferable, and the range of 80 to 95 ° C. is particularly preferable.
- the reaction time can be set by controlling the addition time of raw materials such as a reducing agent. For example, about 10 minutes to 6 hours is appropriate.
- a complexing agent can be used as necessary.
- the complexing agent used as necessary is considered to act in the process in which copper ions are eluted from the copper oxide or the copper oxide is reduced to produce metallic copper.
- the compound which can combine with copper ion or metallic copper and can form a copper complex compound is said, and nitrogen, oxygen, sulfur etc. are mentioned as a donor atom, for example.
- (1) Complexing agents in which nitrogen is a donor atom include (a) amines (for example, primary amines such as butylamine, ethylamine, propylamine, ethylenediamine, dibutylamine, diethylamine, dipropylamine, and piperidine Secondary amines such as imines such as pyrrolidine, tertiary amines such as tributylamine, triethylamine, and tripropylamine, and those having two or more primary to tertiary amines in one molecule of diethylenetriamine and triethylenetetramine ), (B) nitrogen-containing heterocyclic compounds (eg, imidazole, pyridine, bipyridine, etc.), (c) nitriles (eg, acetonitrile, benzonitrile, etc.) and cyanide compounds, (d) ammonia and ammonium compounds (eg, Ammonium chloride, ammonium sulfate, etc.),
- Examples of the complexing agent in which oxygen is a donor atom include (a) carboxylic acids (for example, oxycarboxylic acids such as citric acid, malic acid, tartaric acid and lactic acid, monocarboxylic acids such as acetic acid and formic acid, oxalic acid, Dicarboxylic acids such as malonic acid, aromatic carboxylic acids such as benzoic acid, etc.), (b) ketones (for example, monoketones such as acetone, diketones such as acetylacetone and benzoylacetone), (c) aldehydes, ( d) Alcohols (monohydric alcohols, glycols, glycerols, etc.), (e) quinones, (f) ethers, (g) phosphoric acid (normal phosphoric acid) and phosphoric acid compounds (for example, hexametaphosphoric acid) , Pyrophosphoric acid, phosphorous acid, hypophosphorous acid, etc.), (h) carb
- Complexing agents in which sulfur is a donor atom include (a) aliphatic thiols (eg, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, allyl mercaptan, dimethyl mercaptan, etc.), (B) alicyclic thiols (such as cyclohexyl thiol), (c) aromatic thiols (such as thiophenol), (d) thioketones, (e) thioethers, (f) polythiols, (g) thiocarbonate (Trithiocarbonates), (h) sulfur-containing heterocyclic compounds (eg, dithiol, thiophene, thiopyran, etc.), (i) thiocyanates and isothiocyanates, (j) inorganic sulfur compounds (eg, sodium sulf
- Complexing agents having two or more donor atoms include: (a) amino acids (the donor atoms are nitrogen and oxygen: neutral amino acids such as glycine and alanine, basic amino acids such as histidine and arginine) , Acidic amino acids such as aspartic acid and glutamic acid), (b) aminopolycarboxylic acids (the donor atom is nitrogen and oxygen: for example, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), ethylenediamine Diacetic acid (EDDA), ethylene glycol diethyl ether diamine tetraacetic acid (GEDA), etc.), (c) alkanolamines (donor atoms are nitrogen and oxygen, such as ethanolamine, diethanolamine, triethanolamine, etc.), (d) nitroso Compounds and nitrosyl compounds -Atoms are nitrogen and oxygen), (e) mercaptocarboxylic acids
- Examples of salts and derivatives of the above compounds include alkali metal salts thereof such as trisodium citrate, sodium / potassium tartrate, sodium hypophosphite, disodium ethylenediaminetetraacetate, carboxylic acids, and phosphoric acids. And esters such as sulfonic acid.
- alkali metal salts thereof such as trisodium citrate, sodium / potassium tartrate, sodium hypophosphite, disodium ethylenediaminetetraacetate, carboxylic acids, and phosphoric acids.
- esters such as sulfonic acid.
- the optimum amount of the complexing agent varies depending on the type of the complexing agent, it is appropriately set according to the type. If the amount of the complexing agent used is reduced, the primary particles of the metal fine particles can be reduced, and if the amount used is increased, the primary particles can be increased.
- a complexing agent containing at least one selected from nitrogen and oxygen as a donor atom is preferable because the effects of the present invention can be easily obtained.
- the complexing agent may be butylamine, ethylamine, propylamine, dibutylamine, diethylamine, dipropylamine, tributylamine, triethylamine, tripropylamine, imidazole, citric acid or an alkali metal salt thereof, acetylacetone, hypophosphorous acid or its It is preferable if it is at least one selected from alkali metal salts, histidine, arginine, ethylenediaminetetraacetic acid or alkali metal salts thereof, ethanolamine, and acetonitrile.
- the amount of the oxygen-based or nitrogen-based complexing agent used is preferably in the range of 0.01 to 200 parts by weight, and in the range of 0.1 to 200 parts by weight, as described above, with respect to 1000 parts by weight of the copper oxide.
- the range of 0.5 to 150 parts by weight is more preferable.
- a complexing agent in which at least one of the donor atoms is sulfur is used in an amount in the range of 0.01 to 2 parts by weight with respect to 1000 parts by weight of the copper oxide, a finer amount is obtained. It becomes easy to control the production
- the complexing agent containing sulfur include the mercaptocarboxylic acids, thioglycols, sulfur-containing amino acids, aliphatic thiols, alicyclic thiols, aromatic thiols, thioketones, thioethers, polythiols, thiols.
- Examples include carbonic acids, sulfur-containing heterocyclic compounds, thiocyanates and isothiocyanates, inorganic sulfur compounds, thionic acids, aminothiols, thioamides, thioureas, thiazoles, or salts or derivatives thereof.
- thioglycols such as mercaptocarboxylic acids and mercaptoethanol, and sulfur-containing amino acids are preferred because of their high effects, and the molecular weight is more preferably 200 or less, and even more preferably 180 or less.
- mercaptocarboxylic acids examples include mercaptopropionic acid (molecular weight 106), mercaptoacetic acid (92), thiodipropionic acid (178), mercaptosuccinic acid (149), dimercaptosuccinic acid (180). Thiodiglycolic acid (150) and cysteine (121), and one or more selected from these can be used.
- a more preferable use amount is in the range of 0.05 to 1 part by weight, and more preferably 0.05 part by weight or more and less than 0.5 part by weight.
- the order of addition of the respective raw materials when mixing the copper oxide and the reducing agent there is no limitation on the order of addition of the respective raw materials when mixing the copper oxide and the reducing agent.
- the copper oxide and the reducing agent are simultaneously added to an aqueous solvent containing gelatin.
- a complexing agent may be added at the time of reduction.
- (4) a method of adding a mixed solution of a complexing agent and a reducing agent to an aqueous solvent containing gelatin and copper oxide are examples of the order of addition of the respective raw materials when mixing the copper oxide and the reducing agent.
- the methods (3) and (4) are preferable because the reaction can be easily controlled, and the method (4) is particularly preferable.
- the copper oxide, reducing agent, gelatin, and complexing agent may be suspended or dissolved in an aqueous solvent before use in the reduction reaction.
- “Simultaneous parallel addition” refers to a method in which copper oxide and reducing agent or complexing agent and reducing agent are added separately at the same time during the reaction period, and both are continued during the reaction period. In addition to adding, one or both of them may be added intermittently.
- the metallic copper particles are solid-liquid separated and washed to obtain a solid metallic copper particle.
- the means for solid-liquid separation is not particularly limited, and means such as gravity filtration, pressure filtration, vacuum filtration, suction filtration, centrifugal filtration, and natural sedimentation can be used, but industrially pressure filtration, vacuum filtration, suction filtration. It is preferable to use a filter such as a filter press or a roll press because it has a high dewatering capacity and can be processed in large quantities.
- the solid metal copper particles may be dried by a usual method. Since metallic copper particles are easily oxidized, drying is preferably performed in an atmosphere of an inert gas such as nitrogen or argon in order to suppress oxidation. After drying, you may grind
- a polymer dispersant having a difference between the amine value and the acid value (amine value-acid value) of 0 to 50 is used. is important.
- the above-mentioned organic solvents and polymer dispersants can be used, and a wet mixer is used as a mixing method. For example, a stirrer, a helical mixer, a ribbon mixer, a fluidized mixer, etc. are fixed.
- Dispersion of rotary mixers such as mold mixers, cylindrical mixers, twin cylinder mixers, wet mills such as sand mills, ball mills, bead mills and colloid mills, shakers such as paint shakers, and ultrasonic dispersers
- a machine can be used.
- a metallic copper dispersion in which metallic copper particles are dispersed in an organic solvent is obtained.
- the copper metal particles may be pulverized using a pulverizer such as a compression pulverization mold, an impact compression pulverization mold, a shear pulverization mold, or a friction pulverization mold before mixing. May be mixed at the same time.
- a metal copper-containing film such as an electrode, a wiring pattern, a design / decorative coating film using the metal copper dispersion of the present invention
- the metallic copper-containing film is obtained by fixing metallic copper on a base material.
- a curable resin is added to the dispersion, a metal copper-containing film in which metal copper particles are more firmly fixed can be obtained.
- heat is applied to the coating film or laser light is irradiated, the metal copper particles are melted and bonded, and can be fixed more firmly.
- Such a metal copper-containing film is not limited in thickness, size, shape, and the like, and may be a thin film or a thick film, or may cover the entire surface or a part of the substrate.
- it may be a fine line formed on a part of the substrate, a line with a large width, or a fine dot.
- it can be used for electrodes and wiring patterns by utilizing the conductivity of metallic copper, and can also be used for decorative and antimicrobial applications by utilizing the color tone and antibacterial action of metallic copper.
- the decorative article and antibacterial article of the present invention are obtained by forming the metal copper-containing film on at least a part of the surface of the base material, and imparting the metal color tone or antibacterial property of the metal copper particles to the base material surface. It is a thing. It can be colored over the entire surface of the base material to give a metallic color and antibacterial properties, and a design, mark, logo mark can be formed on a part of the base material surface, and other characters, figures, symbols can be formed. You can also Base materials include inorganic materials such as metals, glass, ceramics, rocks, and concrete, organic materials such as rubber, plastic, paper, wood, leather, cloth, and fibers, and materials that combine or combine inorganic and organic materials. Can be used.
- antibacterial properties by forming a metallic copper-containing film on the raw material base material before processing the base material of those materials into the article to be used, or any article after processing the base material It can also be decorated to impart antibacterial properties. Moreover, decorating the surface of those previously coated on the surface of the base material to impart antibacterial properties is also included.
- an article that gives decoration or imparts antibacterial properties (1) Exteriors, interiors, bumpers, door knobs, side mirrors, front grills, lamp reflectors, display devices, etc. for transportation equipment such as automobiles, trucks, and buses, (2) Exteriors of electrical appliances such as TVs, refrigerators, microwave ovens, personal computers, mobile phones, cameras, remote controls, touch panels, front panels, etc.
- Step (a) in the production method of the present invention is a step of attaching the metal copper dispersion to the surface of the substrate.
- the step (b) is a step consisting of a step (b1) of heating the metal copper-containing film produced in the step (a) in an oxygen gas-containing atmosphere and a step (b2) of heating in a reducing gas atmosphere. is there.
- Step (c) is a step of irradiating the entire region or a partial region of the metallic copper-containing film with laser light after the step (a).
- a process (d) is a process of removing the metal copper containing film
- the step (e) is a step of transferring the metallic copper-containing film obtained in the steps (a) to (d) to another substrate.
- the metal copper-containing film can also be produced in the step (a), and the subsequent steps (b) to (e) are steps performed as necessary.
- a strong metallic copper-containing film can be produced, and by performing the step (e), the metallic copper-containing film can be directly formed.
- a metal copper-containing film can be easily produced even for difficult ones.
- the steps (a) and the subsequent steps can be performed by combining any of the steps (b) to (e). More preferably, printing is performed. Each step will be described below.
- Step (a) The metallic copper dispersion liquid of the present invention is adhered to a substrate (hereinafter, representatively described as “apply”).
- a substrate for example, a general-purpose printing method such as screen printing, gravure printing, flexographic printing, ink jet printing or offset printing, transfer method, spray, slit coater, curtain coater, bar coater, brush, brush or A general-purpose coating method using a spin coater or the like can be used.
- the thickness of the coating layer is not particularly limited and can be appropriately selected depending on the purpose of use and application, but is preferably 0.001 to 100 ⁇ m, more preferably 0.005 to 70 ⁇ m.
- the coating pattern at this time can be applied to the entire surface of the substrate, or can be applied in a pattern or pattern.
- the particle size of the metallic copper particles, the polymer dispersant, the organic solvent, and other compound types can be appropriately selected. Further, the viscosity of the dispersion and the metal copper concentration can be selected as appropriate.
- the metal copper dispersion of the present invention has the characteristics of low viscosity and high copper concentration, it can be suitably used particularly for ink jet printing, spray coating and the like.
- Inkjet printing is a method of forming a pattern of a predetermined shape by discharging droplets of a dispersion liquid from fine holes and landing on a substrate.
- the relative position between the nozzle, which is the discharge port for the metallic copper dispersion, and the substrate is changed according to the graphic information input to the computer by connecting an inkjet printer and a computer such as a personal computer.
- the dispersion liquid can be discharged to an arbitrary place, whereby a desired pattern can be drawn on the substrate.
- the thickness and width of the metal copper-containing film to be formed can be adjusted by the relative relationship of the nozzle diameter, the discharge amount of the dispersion liquid, and the moving speed of the nozzle and the substrate on which the discharge is formed. Therefore, it is possible to produce a fine metal copper-containing film, and to accurately discharge and form a metal copper-containing film at a desired location even on a large-area substrate having a side exceeding 1 to 2 m. Can do.
- the yield can be improved, and the dispersion liquid can be applied only to the necessary portions, thereby reducing the loss of the metallic copper dispersion liquid. it can.
- piezoelectric element type for example, piezoelectric element type, bubble jet type, air flow type, electrostatic induction type, acoustic ink print type, electrorheological ink type, continuous jet type
- it can be appropriately selected depending on the shape and thickness of the pattern, the type of the metallic copper dispersion, and the like.
- the viscosity of the metal copper dispersion is preferably 100 mPa ⁇ s or less, and more preferably 1 to 20 mPa ⁇ s, but this facilitates smoothening of the dispersion without clogging the discharge nozzles described above. This is so that it can be discharged.
- the particle diameter of the metallic copper particles depends on the nozzle diameter and the desired pattern shape, but is preferably 1 to 200 nm and more preferably 1 to 100 nm for prevention of nozzle clogging and preparation of a high-definition pattern.
- glass such as alkali-free glass, quartz glass, crystallized transparent glass, Pyrex (registered trademark) glass, sapphire glass, Al 2 O 3 , MgO, BeO, ZrO 2 , Y 2 O 3 , CaO, Inorganic materials such as GGG (Gadolinium, Gallium, Garnet), Acrylic resins such as PET (Polyethylene terephthalate), PEN (Polyethylene naphthalate), Polypropylene, Polycarbonate, Polymethylmethacrylate, Chlorinated chlorides such as polyvinyl chloride and vinyl chloride copolymers Organic materials such as vinyl resin, epoxy resin, polyarylate, polysulfone, polyethersulfone, polyimide, fluororesin, phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin, etc.
- GGG Gadolinium, Gallium, Garnet
- Acrylic resins such as PET (Polyethylene terephthalate), PEN (Polyethylene n
- a substrate, a silicon wafer, a metal plate, or the like formed of a composite material in which is dispersed can be used. Depending on the application, these materials can be appropriately selected to form a flexible substrate such as a film or a rigid substrate.
- the size is not limited, and the shape may be any shape such as a disk shape, a card shape, and a sheet shape, and the surface of the base material does not need to be a flat surface, and may have irregularities or curved surfaces. Good.
- An underlayer may be provided on the base material for the purpose of improving the flatness of the surface of the base material, improving the adhesive strength, and preventing alteration of the metallic copper-containing film.
- the material for the underlayer include polymethyl methacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleic anhydride copolymer, polyvinyl alcohol, N-methylol acrylamide, styrene / vinyl toluene copolymer, chlorosulfone.
- Polyethylene nitrocellulose, polyvinyl chloride, polyvinylidene chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, polyethylene, polypropylene, polycarbonate and other high-molecular substances, Examples thereof include surface-modifying agents such as thermosetting or photo / electron beam curable resins and coupling materials.
- a material excellent in adhesion between the base material and the metal copper-containing film is preferable.
- thermosetting or photo / electron beam curable resin and a coupling agent (for example, silane)
- a coupling agent for example, silane
- a surface modifier such as a coupling agent, a titanate coupling agent, a germanium coupling agent, an aluminum coupling agent), colloidal silica, or the like is preferable.
- the base layer is prepared by dissolving or dispersing the above materials in a suitable solvent to prepare a coating solution, and applying the coating solution to the substrate surface using a coating method such as spin coating, dip coating, extrusion coating, or bar coating. It can form by apply
- the layer thickness (when dried) of the underlayer is generally preferably 0.001 to 20 ⁇ m, and more preferably 0.005 to 10 ⁇ m.
- the heating and drying temperature can be appropriately set, but is preferably 150 ° C. or lower, more preferably 120 ° C. or lower in order to suppress oxidation of metallic copper.
- the heating time can also be set as appropriate.
- the atmosphere can also be set as appropriate, and can also be carried out in an inert gas atmosphere, a reducing gas atmosphere, or an oxygen gas-containing atmosphere (such as in the air).
- the inert gas N 2 gas, Ar gas, He gas, or the like can be used.
- the removal of the organic solvent by evaporation is not limited to heat drying, and natural drying or reduced pressure drying may be used.
- drying under reduced pressure the drying may be performed under a pressure lower than the atmospheric pressure, specifically under a vacuum pressure or a super vacuum pressure.
- Step (b1) After the step (a), if necessary, the metal copper-containing film is heated at an appropriate temperature.
- an organic compound contained in the metal copper-containing film such as gelatin or a polymer dispersant can be decomposed and / or vaporized (hereinafter referred to as “heat oxidation baking”).
- the heating is preferably performed in an oxygen-containing atmosphere to promote decomposition and / or vaporization of the organic compound, and more preferably in an oxygen-containing gas stream.
- the oxygen concentration in the atmosphere is preferably 10 to 10,000 ppm because the progress of oxidation of the metallic copper particles does not become so fast.
- the heating and oxidizing temperature can be appropriately set according to the type of the substrate, but is preferably 100 to 500 ° C, more preferably 120 to 300 ° C.
- the heating time can also be set appropriately, for example, about 10 minutes to 48 hours is appropriate.
- Step (b2) The copper-containing film is heated at an appropriate temperature in a reducing gas atmosphere (hereinafter referred to as “heat reduction baking”).
- the atmosphere is preferably in a reducing gas stream.
- the reduction reaction of the copper oxide formed in the previous step such as step (b1) to metallic copper and the fusion of metallic copper particles are caused.
- the nano-sized metal fine particles as in the present invention have a melting point lower than that of the bulk due to the size effect, and thus melt even in a relatively low temperature range. Thereby, the electrical resistance can be significantly reduced and the metal color tone can be improved in a short time.
- H 2 gas or CO gas can be used as the reducing gas, and N 2 gas containing about 0.1 to 5% of H 2 gas is preferable from the viewpoint of safety and availability.
- the heating temperature can be appropriately set according to the type of the substrate, but is preferably 100 to 500 ° C., more preferably 120 to 300 ° C., and even more preferably the heating temperature to 300 ° C. in the step (b1).
- the heating time can also be set appropriately, for example, about 10 minutes to 48 hours is appropriate.
- the volume resistance value of the obtained metallic copper-containing film can be set to the order of 10 ⁇ 5 ⁇ ⁇ cm or less.
- the step of evaporating and removing the organic solvent, the heat oxidation baking step (b1), and the heat reduction baking step (b2) performed as necessary may be performed individually or continuously. Moreover, it is not limited to the case where the heat oxidation baking step (b1) is performed after the heat drying step, and the heat oxidation baking step (b1) is performed after natural drying or reduced pressure drying without heating drying, In the baking step (b1), the organic solvent can also be removed by evaporation as a heating and drying step, and it is not necessary to clearly distinguish these steps.
- Step (c) The entire region or a partial region of the metal copper-containing film produced in the step (a) is irradiated with laser light.
- the laser light oscillated by the laser oscillator is collected by a lens, and the pattern is drawn on the substrate by moving the laser mounting portion or the substrate while irradiating the metal copper-containing film with the laser beam by appropriately setting the irradiation diameter.
- the laser light is absorbed by the metal copper-containing film, and the generated heat decomposes and / or vaporizes organic compounds such as gelatin and polymer dispersant and causes fusion of the metal copper particles, resulting in a laser of the metal copper-containing film. It is possible to reduce the electrical resistance of the irradiation part and improve the metal color tone. Nano-sized fine particles have a melting point lower than that of bulk due to the size effect, so that drawing can be performed with relatively low energy and at high speed.
- the wavelength of the laser beam can be arbitrarily selected within a range in which absorption by the metal copper-containing film is possible according to the type and blending amount of gelatin, polymer dispersant, complexing agent and the like to be used.
- Typical lasers include semiconductor lasers such as GaN, GaAsAl, and InGaAsP, excimer lasers such as ArF, KrF, and XeCl, dye lasers such as rhodamine, gases such as He—Ne, He—Cd, CO 2 , and Ar ions. Examples thereof include solid lasers such as lasers, free electron lasers, ruby lasers, and Nd: YAG lasers.
- higher harmonics such as second harmonic and third harmonic of these lasers may be used, and laser light of any wavelength in the ultraviolet region, visible light region, or infrared region can be used.
- continuous wave irradiation or pulse wave irradiation may be used.
- Each condition relating to the applied energy such as the irradiation diameter of the laser beam, the scanning speed, and the output can be appropriately set within a range in which the oxidation of the metallic copper, the ablation of the metallic copper-containing film, and the peening do not occur.
- the laser irradiation diameter can be appropriately set according to the pattern or pattern to be drawn, but is preferably 10 ⁇ m to 5 mm.
- the scanning speed can also be appropriately set according to other parameters, required accuracy, manufacturing capability, and the like.
- the atmosphere in which the laser light irradiation is performed can be appropriately set such as an inert gas atmosphere, a reducing gas atmosphere, an oxygen gas-containing atmosphere (atmospheric atmosphere), and the like.
- an inert gas atmosphere a reducing gas atmosphere
- an oxygen gas-containing atmosphere atmospheric atmosphere
- the metal copper dispersion of the present invention it is presumed to be due to the presence of gelatin. It is possible to form an excellent metallic copper-containing film. Specifically, it can be achieved by irradiating a continuous wave laser beam having an infrared wavelength in an oxygen gas-containing atmosphere (atmosphere) at a scanning speed of 1 to 500 mm / s in an output range of 1 to 140 W. .
- the main peak intensity of the Cu 2 O (111) plane is 20 or less when the main peak intensity of the metal copper (111) plane in the X-ray diffraction of the portion of the metal copper-containing film irradiated with the laser beam is 100.
- Adjust the laser irradiation conditions so that The output of the laser light is more preferably 10 to 100 W, and even more preferably 20 to 50 W.
- a semiconductor laser is preferable because it is suitable for irradiation with a continuous laser beam having an infrared wavelength.
- Equation 1 0.5 ⁇ 100W / (T ⁇ S ⁇ V) ⁇ 2.5
- T is the heat resistant temperature (K) of the substrate
- W is the laser output (W)
- S is the laser irradiation diameter (cm)
- V is the laser scanning speed (cm / s).
- the heat resistant temperature of the base material is the heat resistance of the base material and is a temperature at which the base material is altered.
- base material If it is a kind of base material and an organic substance, it varies depending on monomers constituting the base material, but it is about 400 ° C. for polyimide, about 150 ° C. for PET, and about 180 ° C. for PEN. This temperature can be confirmed, for example, by measuring an exothermic or endothermic peak by differential thermal analysis.
- Step (d) Furthermore, if necessary, unnecessary portions of the metal copper-containing film or portions not irradiated with the laser light in the step (c) may be removed by using an appropriate solvent.
- the solvent various solvents such as alcohols, glycol ethers, and aromatics can be used.
- the substrate can be removed by immersing the substrate in such a solvent or wiping with a cloth or paper soaked with the solvent.
- Step (e) Next, after step (a) or step (b) or step (c) or step (d), the entire region or a partial region of the metallic copper-containing film produced on the substrate is transferred to another substrate. You can also
- the steps (b) to (d) after the step (a) can be performed in any combination.
- the step (b) can be performed and the step (c) can be further performed.
- the step (c) and the step (d) are performed and the step (b) is further performed.
- the step (c) may be performed after the step (a), and the step (b2) may be further performed.
- the filtrate was washed by filtration until the specific conductivity of the filtrate reached 100 ⁇ S / cm or less, and dried in a nitrogen gas atmosphere at a temperature of 60 ° C. for 10 hours to obtain metal copper particles coated with gelatin.
- Comparative Examples 1 and 2 20 g of copper metal particles (50 nm) not coated with gelatin and an organic solvent in which the polymer dispersant is dissolved (the type of polymer dispersant used, its acid value, amine value, (amine value-acid value), amount added And types of organic solvents are shown in Table 3.) 20 g was mixed and suspended, and dispersed for 1 hour with a paint shaker to obtain a metal copper dispersion (samples V and W).
- Comparative Examples 3-5 20 g of copper metal particles coated with gelatin (50 nm) used in Example 1 and an organic solvent in which the polymer dispersant was dissolved (the type of polymer dispersant used, its acid value, amine value, (amine value-acid The addition amount and the kind of organic solvent are shown in Table 4.) 20 g was mixed and suspended, and dispersed for 1 hour with a paint shaker to obtain metallic copper dispersions (samples X to Z).
- Example 22 Next, a metal copper-containing film was tried using the metal copper dispersion liquid prepared in the above example.
- each of the copper metal dispersion samples D to G, K, L, N to Q, and S of the above example was hung on a polyimide substrate (Kapton (registered trademark) film 300V type 75 ⁇ m thickness manufactured by Toray DuPont Co., Ltd.)
- a coater # 6
- the solvent is evaporated by heating at 80 ° C. for 1 hour in an N 2 gas atmosphere.
- a copper-containing coating film was prepared.
- Step (b1) was performed at the oxygen concentration and the heating temperature shown in Table 8, and then the step (b2) was performed at the temperature shown in Table 8.
- Step (b2) was performed in a nitrogen gas atmosphere containing 3% hydrogen.
- An electric tubular furnace (KTF085N) was used for heating, the temperature rising and cooling were 10 ° C./min, and the heating time was 1 hour in each step.
- volume resistance value was measured about the obtained various samples, the state of the metal copper containing film
- a Loresta-GP type low resistivity meter manufactured by Mitsubishi Chemical Corporation was used for measuring the volume resistivity. About the external appearance of the metal copper containing film
- a metal copper-containing film produced using the metal copper dispersion of the present invention is first heated in an oxygen gas-containing atmosphere and then in a reducing gas atmosphere, whereby a metal copper-containing film having a metal color tone and low resistance is obtained. It turned out that it can produce.
- a metal copper-containing film having a specific resistance in the same order as that of bulk metal copper can be produced even at a relatively low temperature of 200 ° C., and can be applied to a substrate having lower heat resistance than polyimide.
- membrane after a process (b1) was 10 ⁇ 3 > ohm-cm or more, the external appearance was also black, and it did not have a metal color.
- Example 23 Furthermore, manufacture of the metal copper containing film
- the metal copper dispersion liquid (sample L) produced in Example 12 was hung on a polyimide base material, and the metal copper dispersion liquid was uniformly formed (about 14 ⁇ m) by a bar coater (# 6). After spreading, the solvent was evaporated by heating at 80 ° C. for 1 hour in an N 2 gas atmosphere to produce a metallic copper-containing coating film.
- a semiconductor laser was irradiated onto the coating film in the atmosphere, and the stage on which the semiconductor laser was placed was moved while applying energy to the coating film, and was drawn in a pattern (Laser processing apparatus FD-200 manufactured by Fine Devices). use).
- the laser was a continuous wave with a wavelength of 940 nm and the irradiation diameter was 2.16 mm.
- the laser output and scanning speed were the conditions shown in Table 9, and the wiring width was about 0.6 cm for samples 1 to 3, about 0.2 cm for sample 4, and about 1.2 cm for samples 5 to 8.
- membrane after laser beam irradiation the metallic copper containing coating film of the laser non-irradiated part was wiped off with the nonwoven fabric impregnated with toluene, and the metallic copper containing film
- FIG. 3 shows the XRD profile of the coating film of Sample 5.
- a RINTKU 2200 X-ray diffractometer (CuK ⁇ ray) manufactured by RIGAKU was used. Accepted diffraction peaks (2 [Theta]) is 43.3 °, 50.4 °, a peak attributed to both metallic copper at 74.1 °, copper oxides is not confirmed, that Cu 2 O of ( The main peak intensity of the (111) plane is 20 or less when the main peak (43.3 °) intensity of the (111) plane of Cu is 100.
- a metallic copper-containing coating film prepared using the metallic copper dispersion liquid of the present invention By irradiating a metallic copper-containing coating film prepared using the metallic copper dispersion liquid of the present invention with a laser, it has a metallic color tone and low resistance without causing copper oxidation even in the atmosphere. It was found that a metallic copper-containing film can be produced.
- Example 24 Subsequently, laser irradiation was performed in the same manner as in Example 23 except that PET (Lumirror (registered trademark) T-60, thickness: 75 ⁇ m, manufactured by Toray Industries, Inc.) was used as a base material to form a pattern. The results are shown in Table 10.
- PET Limirror (registered trademark) T-60, thickness: 75 ⁇ m, manufactured by Toray Industries, Inc.
- a metal copper-containing film having a metal color tone and a low resistance can be produced even on various substrates, particularly a low heat resistant substrate.
- a metal copper-containing film could be produced in the same manner even with a dispersion after one month.
- the linear pattern has been described.
- a surface pattern such as a decorative coating film, or a three-dimensional pattern formed by repeated lamination can be similarly implemented. .
- the metal copper dispersion liquid of the present invention can maintain the dispersion stability of metal copper particles in an organic solvent for a long period of time, the dispersion stability is maintained from the preparation of the metal copper dispersion liquid until use. It has excellent coating suitability and can be applied to a wide range of coating methods such as inkjet printing and spray coating. Further, depending on the purpose of use, the composition of paints, inks, pastes and the like can be arbitrarily designed by blending resin components and the like.
- a metallic copper-containing film can be produced even by heating at a relatively low temperature or laser irradiation, and a material that ensures electrical continuity, antistatic, electromagnetic shielding, metallic color tone.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Conductive Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Colloid Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
更に、金属銅分散液として、例えばインクジェット印刷等で塗布する場合には、ノズル閉塞を防止するためにより低粘度のものが求められている。
また、本発明の金属銅分散液は、使用する高分子分散剤を比較的少量とすることができるため、比較的低温で加熱して金属銅粒子を融着させることができる。
また、本発明の金属銅分散液は、金属銅粒子が高濃度であっても分散液の粘度を比較的低く調整することができ、インクジェット印刷、スプレー塗装等に好適である。
さらに、本発明の金属銅分散液を基材の表面に塗布したり、塗布後に加熱又はレーザー光を照射することにより、電気伝導性と金属色調に優れた金属銅含有膜を簡便に製造することができる。
このようなことから、本発明の金属銅分散液は、電気的導通を確保する材料、帯電防止、電磁波遮蔽、金属光沢、抗菌性等を付与する材料などに用いられ、特に、金属銅含有膜の導電性を活用したプリント配線基板等の微細電極及び回路配線パターンの形成、金属銅含有膜の金属色調を活用した意匠・装飾用途に用いられる。
(アミン価の測定方法)
ゼラチン又は高分子分散剤5g、ブロモクレゾールグリーンエタノール溶液数滴を300mLのエタノールと純水の混合溶媒に溶解させ、ファクター(補正係数)を算出した0.1M HClエタノール溶液を添加し、ブロモクレゾールグリーン指示薬の黄色が30秒続いた時の0.1M HClエタノール溶液の滴定量からアミン価を算出する。
(酸価の測定方法)
ゼラチン又は高分子分散剤5g、フェノールフタレイン液数滴を300mLの純水に溶解させ、ファクター(補正係数)を算出した0.1M KOHエタノール溶液を添加する。フェノールフタレイン指示薬の薄紅色が30秒続いた時の0.1M KOHエタノール溶液の滴定量から酸価を算出する。
(1)窒素がドナー原子である錯化剤としては、(a)アミン類(例えば、ブチルアミン、エチルアミン、プロピルアミン、エチレンジアミン等の1級アミン類、ジブチルアミン、ジエチルアミン、ジプロピルアミン、及び、ピペリジン、ピロリジン等のイミン類等の2級アミン類、トリブチルアミン、トリエチルアミン、トリプロピルアミン等の3級アミン類、ジエチレントリアミン、トリエチレンテトラミンの1分子内に1~3級アミンを2種以上有するもの等)、(b)窒素含有複素環式化合物(例えば、イミダゾール、ピリジン、ビピリジン等)、(c)ニトリル類(例えば、アセトニトリル、ベンゾニトリル等)及びシアン化合物、(d)アンモニア及びアンモニウム化合物(例えば、塩化アンモニウム、硫酸アンモニウム等)、(e)オキシム類等が挙げられる。
(2)酸素がドナー原子である錯化剤としては、(a)カルボン酸類(例えば、クエン酸、リンゴ酸、酒石酸、乳酸等のオキシカルボン酸類、酢酸、ギ酸等のモノカルボン酸類、シュウ酸、マロン酸等のジカルボン酸類、安息香酸等の芳香族カルボン酸類等)、(b)ケトン類(例えば、アセトン等のモノケトン類、アセチルアセトン、ベンゾイルアセトン等のジケトン類等)、(c)アルデヒド類、(d)アルコール類(1価アルコール類、グリコール類、グリセリン類等)、(e)キノン類、(f)エーテル類、(g)リン酸(正リン酸)及びリン酸系化合物(例えば、ヘキサメタリン酸、ピロリン酸、亜リン酸、次亜リン酸等)、(h)スルホン酸又はスルホン酸系化合物等が挙げられる。
(3)硫黄がドナー原子である錯化剤としては、(a)脂肪族チオール類(例えば、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n-ブチルメルカプタン、アリルメルカプタン、ジメチルメルカプタン等)、(b)脂環式チオール類(シクロヘキシルチオール等)、(c)芳香族チオール類(チオフェノール等)、(d)チオケトン類、(e)チオエーテル類、(f)ポリチオール類、(g)チオ炭酸類(トリチオ炭酸類)、(h)硫黄含有複素環式化合物(例えば、ジチオール、チオフェン、チオピラン等)、(i)チオシアナート類及びイソチオシアナート類、(j)無機硫黄化合物(例えば、硫化ナトリウム、硫化カリウム、硫化水素等)等が挙げられる。
(4)2種以上のドナー原子を有する錯化剤としては、(a)アミノ酸類(ドナー原子が窒素及び酸素:例えば、グリシン、アラニン等の中性アミノ酸類、ヒスチジン、アルギニン等の塩基性アミノ酸類、アスパラギン酸、グルタミン酸等の酸性アミノ酸類)、(b)アミノポリカルボン酸類(ドナー原子が窒素及び酸素:例えば、エチレンジアミンテトラ酢酸(EDTA)、ニトリロトリ酢酸(NTA)、イミノジ酢酸(IDA)、エチレンジアミンジ酢酸(EDDA)、エチレングリコールジエチルエーテルジアミンテトラ酢酸(GEDA)等)、(c)アルカノールアミン類(ドナー原子が窒素及び酸素:例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン等)、(d)ニトロソ化合物及びニトロシル化合物(ドナー原子が窒素及び酸素)、(e)メルカプトカルボン酸類(ドナーが硫黄及び酸素:例えば、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、ジメルカプトコハク酸、チオ酢酸、チオジグリコール酸等)、(f)チオグリコール類(ドナーが硫黄及び酸素:例えば、メルカプトエタノール、チオジエチレングリコール等)、(g)チオン酸類(ドナーが硫黄及び酸素)、(h)チオ炭酸類(ドナー原子が硫黄及び酸素:例えば、モノチオ炭酸、ジチオ炭酸、チオン炭酸)、(i)アミノチオール類(ドナーが硫黄及び窒素:アミノエチルメルカプタン、チオジエチルアミン等)、(j)チオアミド類(ドナー原子が硫黄及び窒素:例えば、チオホルムアミド等)、(k)チオ尿素類(ドナー原子が硫黄及び窒素)、(l)チアゾール類(ドナー原子が硫黄及び窒素:例えばチアゾール、ベンゾチアゾール等)、(m)含硫黄アミノ酸類(ドナーが硫黄、窒素及び酸素:システイン、メチオニン等)等が挙げられる。
(5)上記の化合物の塩や誘導体としては、例えば、クエン酸トリナトリウム、酒石酸ナトリウム・カリウム、次亜リン酸ナトリウム、エチレンジアミンテトラ酢酸ジナトリウム等のそれらのアルカリ金属塩や、カルボン酸、リン酸、スルホン酸等のエステル等が挙げられる。
このような錯化剤のうち、少なくとも1種を用いることができる。錯化剤の使用量は錯化剤の種類により最適量が異なるため、その種類に応じて適宜設定する。錯化剤の使用量を少なくすると、金属微粒子の一次粒子を小さくすることができ、使用量を多くすると、一次粒子を大きくすることができる。
装飾を施し、あるいは抗菌性を付与する物品の具体例としては、
(1)自動車、トラック、バスなどの輸送機器の外装、内装、バンパー、ドアノブ、サイドミラー、フロントグリル、ランプの反射板、表示機器等、
(2)テレビ、冷蔵庫、電子レンジ、パーソナルコンピューター、携帯電話、カメラなどの電化製品の外装、リモートコントロール、タッチパネル、フロントパネル等、
(3)家屋、ビル、デパート、ストアー、ショッピングモール、パチンコ店、結婚式場、葬儀場、神社仏閣などの建築物の外装、窓ガラス、玄関、表札、門扉、ドア、ドアノブ、ショーウインド、内装等、
(4)照明器具、家具、調度品、トイレ機器、仏壇仏具、仏像などの家屋設備、
(5)金物、食器などの什器、
(6)飲料水、タバコなどの自動販売機、
(7)合成洗剤、スキンケア、清涼飲料水、酒類、菓子類、食品、たばこ、医薬品などの容器、
(8)表装紙、ダンボール箱などの梱包用具、
(9)衣服、靴、鞄、メガネ、人口爪、人口毛、宝飾品などの衣装・装飾品、
(10)野球のバット、ゴルフのクラブなどのスポーツ用品、つり具などの趣味用品、
(11)鉛筆、色紙、ノート、年賀はがきなどの事務用品、机、椅子などの事務機器、
(12)書籍類のカバーやオビ等、人形、ミニカーなどのおもちゃ、定期券などのカード類、CD、DVDなどの記録媒体、などが挙げられる。また、人間の爪、皮膚、眉毛、髪の毛などを基材とすることができる。
以下に各工程を説明する。
本発明の金属銅分散液を基材に付着させる(以下では代表して「塗布する」と記載する)。金属銅分散液の塗布には、例えば、スクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷又はオフセット印刷等の汎用の印刷方法や転写方法、スプレー、スリットコーター、カーテンコーター、バーコーター、刷毛、筆又はスピンコーター等を使用した汎用の塗装法を用いることができる。塗布層の厚みについては特に規制は無く、使用目的、用途に応じて適宜選択できるが、0.001~100μmが好ましく、0.005~70μmがより好ましい。このときの塗布パターンは、基材の全面に塗布することも、パターン状や模様状に塗布することもできる。塗布方法や使用目的、用途に応じて、金属銅粒子の粒径や高分子分散剤、有機溶媒及びその他配合物の種類を適宜選択できる。また、分散液の粘度や金属銅濃度についても同様に適宜選択できる。
工程(a)の後、必要に応じて、金属銅含有膜を適当な温度で加熱する。加熱によりゼラチンや高分子分散剤等の金属銅含有膜に含まれる有機化合物を分解及び/又は気化させる(以降、「加熱酸化焼成」と記載する)ことができる。該加熱は、有機化合物の分解及び/又は気化促進のため酸素含有雰囲気下で行うことが好ましく、酸素含有ガス流中がより好ましい。雰囲気中の酸素濃度は10~10000ppmであると金属銅粒子の酸化の進行がそれほど早くならないため好ましい。加熱酸化焼成温度は基材の種類などに応じて適宜設定できるが、100~500℃が好ましく、120~300℃がより好ましい。加熱時間も適宜設定でき、例えば、10分~48時間程度が適当である。
銅含有膜を還元性ガス雰囲気下で適当な温度で加熱する(以降「加熱還元焼成」と記載する)。なお、該雰囲気は、還元性ガス流中が望ましい。本工程では、工程(b1)などの前工程で形成された銅酸化物の金属銅への還元反応と金属銅粒子同士の融着を起こさせる。これは、本発明のようなナノサイズの金属微粒子はサイズ効果によりバルクよりも融点が下がるため、比較的低温域でも溶融するためである。これにより短時間の工程で電気抵抗の著しい低減及び金属色調の向上も図ることができる。還元性ガスには例えばH2ガス、COガス等を用いることができ、安全性および入手容易性から、H2ガスを0.1~5%程度含むN2ガスが好ましい。加熱温度は基材の種類などに応じて適宜設定できるが、100~500℃が好ましく、120~300℃がより好ましく、工程(b1)の加熱温度~300℃とすると更に好ましい。加熱時間も適宜設定でき、例えば、10分~48時間程度が適当である。この加熱工程により、得られた金属銅含有膜の体積抵抗値を10-5Ω・cm以下のオーダーとすることができる。
工程(a)で作製した金属銅含有膜の全領域又は一部領域に、レーザー光を照射する。レーザー発振器で発振したレーザー光をレンズ集光し、照射径を適宜設定して金属銅含有膜にレーザー光を照射しながら、レーザー搭載部又は基材を移動させて基材上にパターンを描く。レーザー光は金属銅含有膜に吸収され、発生する熱でゼラチンや高分子分散剤等の有機化合物が分解及び/又は気化するとともに金属銅粒子の融着が起き、結果、金属銅含有膜のレーザー照射部の電気抵抗の低減や金属色調の向上を図ることができる。ナノサイズの微粒子はサイズ効果によりバルクと比較して融点が下がるため、比較的低いエネルギーで、かつ高速で描画することができる。
レーザー光の照射径、走査速度、出力等の印加エネルギーに係る各条件は、金属銅の酸化や金属銅含有膜のアブレーション、ピーニングが起こらない範囲で適宜設定することができる。レーザーの照射径は描画するパターンや模様にあわせて適宜設定できるが、10μm~5mmが好適である。走査速度も、その他のバラメータや必要精度、製造能力等に応じて適宜設定できる。
(数1)
0.5≦100W/(T・S・V)≦2.5
ここで、Tは基材の耐熱温度(K)、Wはレーザーの出力(W)、Sはレーザーの照射径(cm)、Vはレーザーの走査速度(cm/s)
基材の耐熱温度とは基材の耐熱性であり、基材に変質が起こる温度である。基材の種類、有機物であれば基材を構成するモノマーなどにより異なるが、ポリイミドであれば400℃程度、PETであれば150℃程度、PENであれば180℃程度である。この温度は、例えば示差熱分析による発熱又は吸熱ピークの測定により確認できる。
さらに、必要に応じて、金属銅含有膜のうち不必要な部分、あるいは、前記工程(c)のレーザー光を照射していない部分は適当な溶媒を用いるなどして除去しても良い。溶媒としては、アルコール系、グリコールエーテル系、芳香族系、など種々の溶媒を用いることができる。このような溶媒に基材を浸漬したり、溶媒を浸した布や紙で拭き取るなどして除去することができる。
次に、工程(a)又は工程(b)又は工程(c)又は工程(d)の後に、基材上に作製した金属銅含有膜の全領域又は一部領域を、別の基材に転写することもできる。
工業用酸化第二銅(エヌシーテック社製N-120)24g、保護コロイドとしてゼラチン(アミン価23、酸価29、アミン価-酸価=-6)2.8gを150ミリリットルの純水に添加、混合し、15%のアンモニア水を用いて混合液のpHを11に調整した後、20分かけて室温から90℃まで昇温した。昇温後、撹拌しながら、錯化剤として1%の3-メルカプトプロピオン酸溶液0.24gと、80%のヒドラジン一水和物10gを150ミリリットルの純水に混合した液を添加し、1時間かけて酸化銅と反応させ、ゼラチンで被覆した銅微粒子を生成させた。その後、濾液比導電率が100μS/cm以下になるまで濾過洗浄し、窒素ガスの雰囲気で60℃の温度で10時間かけて乾燥し、ゼラチンで被覆した金属銅粒子を得た。
上記方法にて合成したゼラチンで被覆した平均粒子径50nmの金属銅粒子20gと高分子分散剤を溶解した有機溶媒(用いた高分子分散剤の種類、その酸価、アミン価、(アミン価-酸価)、添加量と有機溶媒の種類を表1および表2に示す。)20gを混合・懸濁し、ペイントシェーカーにて1時間分散させ、本発明の金属銅分散液(試料A~U)を得た。金属銅粒子の平均粒子径は、電子顕微鏡写真にて1000個の粒子の一次粒子径をそれぞれ測定し、個数平均を算出して求めた。
なお、ゼラチン、高分子分散剤の酸価、アミン価は前記のJIS K 7700あるいはASTM D2074に準拠した方法で測定した。
ゼラチンを被覆していない金属銅粒子(50nm)20gと高分子分散剤を溶解した有機溶媒(用いた高分子分散剤の種類、その酸価、アミン価、(アミン価-酸価)、添加量と有機溶媒の種類を表3に示す。)20gを混合・懸濁し、ペイントシェーカーにて1時間分散させ、金属銅分散液(試料V、W)を得た。
実施例1で用いたゼラチンで被覆した金属銅粒子(50nm)20gと、高分子分散剤を溶解した有機溶媒(用いた高分子分散剤の種類、その酸価、アミン価、(アミン価-酸価)、添加量と有機溶媒の種類を表4に示す。)20gを混合・懸濁し、ペイントシェーカーにて1時間分散させ、金属銅分散液(試料X~Z)を得た。
また、金属銅分散液における金属銅粒子の粒度分布を動的光散乱法粒度分布測定装置(マイクロトラックUPA型:日機装社製)を用いて測定したところ、本発明の金属銅分散液は配合した金属銅粒子の粒度分布がシャープであり、メジアン径も1~200nmの範囲であることがわかった。この動的光散乱法粒度分布測定には、レーザーの信号強度が0.1~0.2になるように濃度調整した溶剤系スラリーを用いた。
また、金属銅分散液の粘度をE型粘度計(東機産業 RE80L)を用いて10rpmの条件で測定したところ、実施例1~7のブチルカルビトールを用いた試料A~Gは15mPa・sであり、実施例11、12のトルエンを用いた試料K、Lは1.8mPa・sであり、実施例14、15のブタノールを用いた試料N、Oは12mPa・sであり、その他の実施例も粘度は100mPa・s以下であった。
次いで、上記実施例で作製した金属銅分散液を用いて金属銅含有膜の作製を試みた。
まず、上記実施例の金属銅分散液試料D~G、K、L、N~Q、Sそれぞれをポリイミド基板(東レデュポン株式会社製 カプトン(登録商標)フィルム 300Vタイプ 75μm厚)上に垂らし、バーコーター(#6)により金属銅分散液が均一厚み(約14μm)になるように基材上に広げた後、N2ガス雰囲気中、80℃で1時間の加熱により、溶媒を蒸発させ、金属銅含有塗布膜を作製した。
次に、各試料について表8に示す酸素濃度および加熱温度で工程(b1)を行い、次いで表8に示す温度で工程(b2)を行った。工程(b2)は3%水素含有窒素ガス雰囲気下で行った。加熱には光洋サーモシステム社 電気管状炉(KTF085N)を使用し、昇温および降温は10℃/分とし、加熱時間は各工程とも1時間とした。
得られた各種試料について体積抵抗値を測定するとともに、金属銅含有膜の状態を目視観察した。体積抵抗値の測定には、ロレスタ-GP型低抵抗率計(三菱化学社製)を用いた。金属銅含有膜の外観については金属色調を評価した。結果を表8に示す。
なお、工程(b1)後の金属銅含有膜の体積抵抗値は103Ωcm以上で、外観も黒色で金属色を有していなかった。
さらに、レーザー光照射による金属銅含有膜の製造を試みた。
まず、実施例12で作製した金属銅分散液(試料L)をポリイミド基材上に垂らし、バーコーター(#6)により金属銅分散液が均一厚み(約14μm)になるように基材上に広げた後、N2ガス雰囲気中、80℃で1時間の加熱により、溶媒を蒸発させ、金属銅含有塗布膜を作製した。
次に、大気中で、半導体レーザーを塗布膜に照射し、エネルギーを塗布膜に印加しながら半導体レーザーを載せたステージを移動させてパターン状に描画した(ファインデバイス社製レーザー加工装置FD-200使用)。レーザーは、波長940nmの連続波、照射径は2.16mmとした。レーザー出力及び走査速度は、表9に記載の条件とし、配線幅は、試料1~3は約0.6cm、試料4は約0.2cm、試料5~8は約1.2cmとした。
そして、レーザー光照射後の金属銅含有膜について、トルエンを含浸させた不織布でレーザー未照射部分の金属銅含有塗布膜を拭き取り、金属銅含有膜を完成した。
レーザー光照射前後の試料1の塗膜表面の走査電子顕微鏡像を図1、図2に示す。得られた各種試料について体積抵抗値を測定するとともに、金属銅含有膜および基板の状態を目視観察した。金属銅含有膜の外観については金属色調を評価した。結果を表9に示す。
次いで、基材にPET(東レ社製ルミラー(登録商標)T-60 厚み75μm)を用いた以外は実施例23と同様にしてレーザー照射を行い、パターンを形成した。結果を表10に示す。
本発明の金属銅分散液を用いることで、比較的低温での加熱又はレーザー照射によっても金属銅含有膜を製造することができ、電気的導通を確保する材料、帯電防止、電磁波遮蔽、金属色調、抗菌性等を付与する材料などに幅広く用いられ、特に、近年活発に開発が進められている電極、回路配線パターンの形成といったナノテクノロジーの新規用途にも適用でき、また、金属色調による意匠性、装飾性の付与、抗菌性の付与などのメッキ技術の代替用途にも適用できる。
Claims (17)
- 少なくとも、ゼラチンを粒子表面に有する金属銅粒子、高分子分散剤及び有機溶媒を含む分散液であって、
前記のゼラチンは、アミン価と酸価の差(アミン価-酸価)が0以下であり、
前記の高分子分散剤は、アミン価と酸価の差(アミン価-酸価)が0~50である金属銅分散液。 - 有機溶媒が、炭化水素、アルコール、ケトン、エステル、エーテル、グリコール、グリコールエーテル、グリコールエステルから選ばれる少なくとも1種である請求項1に記載の金属銅分散液。
- 前記の高分子分散剤の配合量が、金属銅粒子100重量部に対して0.1~20重量部である請求項1又は2に記載の金属銅分散液。
- 粘度が100mPa・s以下である請求項1~3のいずれか一項に記載の金属銅分散液。
- 金属銅粒子のメジアン径が1~200nmである請求項1~4のいずれか一項に記載の金属銅分散液。
- 金属銅粒子の濃度が15重量%以上であり、金属銅粒子のメジアン径が1~200nmであって、粘度が100mPa・s以下である請求項1~3のいずれか一項に記載の金属銅分散液。
- ゼラチンの存在下、水系溶媒中で銅酸化物を還元した後、固液分離し、次いで、得られたゼラチンを粒子表面に有する金属銅粒子と高分子分散剤を有機溶媒に混合して分散させる金属銅分散液の製造方法であって、
前記のゼラチンとして、アミン価と酸価の差(アミン価-酸価)が0以下のゼラチンを用い、
前記の高分子分散剤として、アミン価と酸価の差(アミン価-酸価)が0~50の高分子分散剤を用いる金属銅分散液の製造方法。 - 請求項1~6のいずれか一項に記載の金属銅分散液を用いて形成される電極。
- 請求項1~6のいずれか一項に記載の金属銅分散液を用いて形成される配線パターン。
- 請求項1~6のいずれか一項に記載の金属銅分散液を用いて形成される塗膜。
- 少なくとも基材の表面の一部に請求項10に記載の塗膜を形成した装飾物品。
- 少なくとも基材の表面の一部に請求項10に記載の塗膜を形成した抗菌性物品。
- 基材の表面に請求項1~6のいずれか一項に記載の金属銅分散液を付着させる工程(a)を含む金属銅含有膜の製造方法。
- 工程(a)で作製した金属銅含有膜を、酸素ガス含有雰囲気下で加熱する工程(b1)と、還元性ガス雰囲気下で加熱する工程(b2)からなる工程(b)を含む請求項13記載の金属銅含有膜の製造方法。
- 工程(a)の後に、その金属銅含有膜の全領域又は一部領域にレーザー光を照射する工程(c)を含む請求項13記載の金属銅含有膜の製造方法。
- 工程(c)の後にレーザー照射を行わなかった領域の金属銅含有膜を除去する工程(d)を含む請求項15記載の金属銅含有膜の製造方法。
- 請求項13~16のいずれか一項に記載の工程により基材上に作製した金属銅含有膜の全領域または一部領域を、別の基材に転写する工程(e)を含む金属銅含有膜の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117004302A KR101494045B1 (ko) | 2008-08-29 | 2009-08-28 | 금속 구리 분산액 및 그 제조 방법 그리고 그것을 사용하여 형성한 전극, 배선 패턴, 도막, 그 도막을 형성한 장식 물품, 항균성 물품 및 그들의 제조 방법 |
CA2735151A CA2735151C (en) | 2008-08-29 | 2009-08-28 | Metallic copper dispersion and application thereof, and process for producing the metallic copper dispersion |
EP09810033.2A EP2319643B1 (en) | 2008-08-29 | 2009-08-28 | Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article |
CN2009801333860A CN102137728B (zh) | 2008-08-29 | 2009-08-28 | 金属铜分散液和其制造方法,以及使用它形成的电极、布线图案、涂膜、形成该涂膜的装饰物品、抗菌性物品和它们的制造方法 |
US13/060,898 US10071419B2 (en) | 2008-08-29 | 2009-08-28 | Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article |
JP2010526786A JP5355577B2 (ja) | 2008-08-29 | 2009-08-28 | 金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008222557 | 2008-08-29 | ||
JP2008-222557 | 2008-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010024385A1 true WO2010024385A1 (ja) | 2010-03-04 |
Family
ID=41721548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/065073 WO2010024385A1 (ja) | 2008-08-29 | 2009-08-28 | 金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10071419B2 (ja) |
EP (1) | EP2319643B1 (ja) |
JP (1) | JP5355577B2 (ja) |
KR (1) | KR101494045B1 (ja) |
CN (1) | CN102137728B (ja) |
CA (1) | CA2735151C (ja) |
TW (1) | TWI471168B (ja) |
WO (1) | WO2010024385A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102243181A (zh) * | 2011-04-08 | 2011-11-16 | 湖北富邦科技股份有限公司 | 一种粉体防结剂氨值测定方法 |
JP2012178334A (ja) * | 2011-02-25 | 2012-09-13 | Samsung Electro-Mechanics Co Ltd | 銅ナノペースト及びその形成方法、並びに銅ナノペーストを用いる電極形成方法 |
JP2013079408A (ja) * | 2011-09-30 | 2013-05-02 | Dainippon Printing Co Ltd | 銅微粒子分散体、パターン形成方法、及び銅パターン膜の製造方法 |
JP2013147678A (ja) * | 2012-01-17 | 2013-08-01 | Ishihara Sangyo Kaisha Ltd | 金属銅焼結膜の製造方法 |
JP2013175560A (ja) * | 2012-02-24 | 2013-09-05 | Hitachi Chemical Co Ltd | 140℃以下で導体化して得られる金属銅膜、金属銅パターン及びそれらの製造方法 |
JP2013197045A (ja) * | 2012-03-22 | 2013-09-30 | Asahi Glass Co Ltd | 導電性ペーストおよび導電膜付き基材 |
JP2014017364A (ja) * | 2012-07-09 | 2014-01-30 | Panasonic Corp | 部品実装基板の製造システム、および製造方法 |
JP2014029018A (ja) * | 2012-06-28 | 2014-02-13 | Nippon Steel & Sumikin Chemical Co Ltd | 分散性ニッケル微粒子スラリーの製造方法 |
JP2014047413A (ja) * | 2012-09-03 | 2014-03-17 | Ishihara Sangyo Kaisha Ltd | 金属微粒子分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品 |
JP2014188561A (ja) * | 2013-03-28 | 2014-10-06 | Nippon Steel & Sumikin Chemical Co Ltd | 接合方法 |
WO2015012356A1 (ja) | 2013-07-25 | 2015-01-29 | 石原産業株式会社 | 金属銅分散液及びその製造方法並びにその用途 |
WO2015133351A1 (ja) * | 2014-03-06 | 2015-09-11 | 日本発條株式会社 | 積層体および積層体の製造方法 |
JP2015181160A (ja) * | 2014-03-05 | 2015-10-15 | トッパン・フォームズ株式会社 | 導電パターンの形成方法及び導電性配線 |
WO2016031860A1 (ja) * | 2014-08-28 | 2016-03-03 | 石原産業株式会社 | 金属質銅粒子及びその製造方法 |
JP2016145397A (ja) * | 2015-02-09 | 2016-08-12 | 日立化成株式会社 | 銅膜の製造方法及びそれにより得られた導電体 |
JPWO2014163126A1 (ja) * | 2013-04-03 | 2017-02-16 | 株式会社ソフセラ | 銀粒子の粒子径の制御方法、銀粒子、銀粒子を含む抗菌剤、およびその利用 |
CN106694903A (zh) * | 2017-01-20 | 2017-05-24 | 济南大学 | 一种CuCl/Cu2O/Cu多孔纳米片的制备方法及所得产品 |
JP2018168439A (ja) * | 2017-03-30 | 2018-11-01 | 日立化成株式会社 | 電磁波遮蔽体の製造に用いられる組成物、及び電磁波遮蔽体の製造方法 |
WO2019017363A1 (ja) | 2017-07-18 | 2019-01-24 | 旭化成株式会社 | 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線 |
JP2022001629A (ja) * | 2020-06-22 | 2022-01-06 | 株式会社善管 | エスカレーター手摺りの抗菌コーティング剤 |
JPWO2022050392A1 (ja) * | 2020-09-04 | 2022-03-10 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011052396A1 (de) | 2011-08-04 | 2013-02-07 | Gelita Ag | Verfahren zur Herstellung einer stabilen Dispersion von Nanopartikeln, hergestellte Dispersion und deren Verwendung |
JP5450725B2 (ja) * | 2011-08-30 | 2014-03-26 | 富士フイルム株式会社 | コラーゲンペプチド被覆銅ナノ粒子、コラーゲンペプチド被覆銅ナノ粒子分散物、コラーゲンペプチド被覆銅ナノ粒子の製造方法、導電性インク、導電膜の製造方法、及び導体配線 |
JP5088760B1 (ja) | 2011-11-14 | 2012-12-05 | 石原薬品株式会社 | 銅微粒子分散液、導電膜形成方法及び回路基板 |
JP5088761B1 (ja) * | 2011-11-14 | 2012-12-05 | 石原薬品株式会社 | 銅微粒子分散液、導電膜形成方法及び回路基板 |
EP2608218B1 (en) * | 2011-12-21 | 2014-07-30 | Agfa-Gevaert | A dispersion comprising metallic, metal oxide or metal precursor nanoparticles, a polymeric dispersant and a thermally cleavable agent |
KR20150006091A (ko) * | 2012-02-29 | 2015-01-15 | 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. | 금속 전구체 나노입자들을 함유한 잉크 |
JP6042793B2 (ja) * | 2012-12-07 | 2016-12-14 | 富士フイルム株式会社 | 導電膜の製造方法、プリント配線基板 |
KR20150021698A (ko) * | 2013-08-21 | 2015-03-03 | 한국에너지기술연구원 | 옥살산염을 포함하는 화합물, 이를 포함하는 이산화탄소 흡수제, 이의 제조 방법 및 이산화탄소 제거 방법 |
WO2016136753A1 (ja) * | 2015-02-27 | 2016-09-01 | 日立化成株式会社 | 銅含有粒子、導体形成組成物、導体の製造方法、導体及び装置 |
US10064273B2 (en) | 2015-10-20 | 2018-08-28 | MR Label Company | Antimicrobial copper sheet overlays and related methods for making and using |
WO2017113023A1 (es) * | 2015-12-29 | 2017-07-06 | Gomez Marisol | Composicion antimicrobiana para el revestimiento de superficies |
EP3408238A1 (en) * | 2016-01-29 | 2018-12-05 | Corning Incorporated | Colorless material with improved antimicrobial performance |
US10823541B2 (en) * | 2016-05-18 | 2020-11-03 | San Diego State University Research Foundation | Methods and systems for ballistic manufacturing of micro/nano coatings and artifacts |
JP7132695B2 (ja) | 2016-12-20 | 2022-09-07 | Tomatec株式会社 | 金属微粒子、金属微粒子含有分散液及びその製造方法 |
KR101874996B1 (ko) * | 2016-12-27 | 2018-07-05 | 한남대학교 산학협력단 | 연마효율이 우수한 화학-기계적 연마 슬러리 |
JP6908398B2 (ja) * | 2017-03-08 | 2021-07-28 | 株式会社Adeka | 樹脂組成物、硬化物を形成する方法および硬化物 |
JP7104687B2 (ja) | 2017-03-16 | 2022-07-21 | 旭化成株式会社 | 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体 |
US11328835B2 (en) | 2017-03-16 | 2022-05-10 | Asahi Kasei Kabushiki Kaisha | Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern |
KR102559500B1 (ko) * | 2017-07-27 | 2023-07-24 | 아사히 가세이 가부시키가이샤 | 산화구리 잉크 및 이것을 이용한 도전성 기판의 제조 방법, 도막을 포함하는 제품 및 이것을 이용한 제품의 제조 방법, 도전성 패턴을 갖는 제품의 제조 방법, 및 도전성 패턴을 갖는 제품 |
TWI647082B (zh) * | 2017-12-19 | 2019-01-11 | 康豪奈米應用材料有限公司 | 銅抗菌母粒製造方法 |
CN108079991A (zh) * | 2017-12-26 | 2018-05-29 | 扬州大学 | 一种准单分散的负载型纳米铜催化剂的制备方法及其应用 |
CN108376761A (zh) * | 2018-02-11 | 2018-08-07 | 上海汇平新能源有限公司 | 一种锂离子电池正极极片的制备方法及锂离子电池 |
WO2019160798A1 (en) * | 2018-02-19 | 2019-08-22 | Arkema Inc. | Accelerator solutions useful for resin curing |
RU196297U1 (ru) * | 2019-07-29 | 2020-02-25 | Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) | Устройство для изготовления водной дисперсии наночастиц |
WO2021019675A1 (ja) * | 2019-07-30 | 2021-02-04 | 株式会社Fuji | 3次元積層造形による電子回路製造方法 |
US20230260680A1 (en) * | 2020-07-01 | 2023-08-17 | The Regents Of The University Of Michigan | Copper-anf composite conductor fabrication |
CN111808341A (zh) * | 2020-07-13 | 2020-10-23 | 温州航盛电子科技有限公司 | 一种pcba线路板防水贴膜及其工艺 |
US11517151B2 (en) | 2020-10-27 | 2022-12-06 | Sam J. ACHILLI | Heat resistant cooking apparatus |
CN113747716B (zh) * | 2021-09-06 | 2023-07-04 | Oppo广东移动通信有限公司 | 装饰件、壳体组件及其制备方法及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6155562B2 (ja) * | 1982-12-22 | 1986-11-28 | Shoei Kagaku Kogyo Kk | |
JP2004346429A (ja) | 1997-07-17 | 2004-12-09 | Nippon Paint Co Ltd | 貴金属又は銅のコロイド溶液及びその製造方法並びに塗料組成物及び樹脂成型物 |
WO2006019144A1 (ja) | 2004-08-20 | 2006-02-23 | Ishihara Sangyo Kaisha, Ltd. | 銅微粒子及びその製造方法 |
JP2007138092A (ja) * | 2005-11-22 | 2007-06-07 | Konica Minolta Holdings Inc | インクジェット用インク |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6119784A (ja) * | 1984-07-06 | 1986-01-28 | Nec Corp | 無電解めつき用銅コロイド触媒液およびその製造方法 |
JPS6155562A (ja) * | 1984-08-24 | 1986-03-20 | ダイキン工業株式会社 | 混合冷媒を用いた冷凍装置 |
JP2555770B2 (ja) * | 1989-12-29 | 1996-11-20 | 住友金属工業株式会社 | 銅厚膜回路用基板及びその製造方法 |
US5240640A (en) * | 1990-06-04 | 1993-08-31 | Coulter Corporation | In situ use of gelatin or an aminodextran in the preparation of uniform ferrite particles |
US7294366B2 (en) * | 1998-09-30 | 2007-11-13 | Optomec Design Company | Laser processing for heat-sensitive mesoscale deposition |
CN1328074A (zh) * | 2000-06-14 | 2001-12-26 | 北京燕山石油化工公司研究院 | 含导电聚合物组分-绝缘组分的复合材料水胶乳及其制法和应用 |
CN1206064C (zh) * | 2002-10-10 | 2005-06-15 | 武汉大学 | 一种镀银铜粉的制备方法 |
JP3939735B2 (ja) * | 2003-05-16 | 2007-07-04 | ハリマ化成株式会社 | 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法 |
GB2429665B (en) * | 2004-03-29 | 2009-07-08 | Nippon Paint Co Ltd | Method of forming bright coating film and bright coated article |
US8083972B2 (en) * | 2005-07-25 | 2011-12-27 | Sumitomo Metal Mining Co., Ltd. | Copper particulate dispersions and method for producing the same |
JP2007138062A (ja) * | 2005-11-21 | 2007-06-07 | Kaneka Corp | ポリ乳酸系樹脂組成物 |
CN100463745C (zh) * | 2007-06-13 | 2009-02-25 | 湖南大学 | 一种制备内嵌碳纳米管铜基复合颗粒的方法 |
-
2009
- 2009-08-28 KR KR1020117004302A patent/KR101494045B1/ko active IP Right Grant
- 2009-08-28 EP EP09810033.2A patent/EP2319643B1/en not_active Not-in-force
- 2009-08-28 US US13/060,898 patent/US10071419B2/en not_active Expired - Fee Related
- 2009-08-28 WO PCT/JP2009/065073 patent/WO2010024385A1/ja active Application Filing
- 2009-08-28 CN CN2009801333860A patent/CN102137728B/zh not_active Expired - Fee Related
- 2009-08-28 CA CA2735151A patent/CA2735151C/en not_active Expired - Fee Related
- 2009-08-28 JP JP2010526786A patent/JP5355577B2/ja active Active
- 2009-08-28 TW TW98129105A patent/TWI471168B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6155562B2 (ja) * | 1982-12-22 | 1986-11-28 | Shoei Kagaku Kogyo Kk | |
JP2004346429A (ja) | 1997-07-17 | 2004-12-09 | Nippon Paint Co Ltd | 貴金属又は銅のコロイド溶液及びその製造方法並びに塗料組成物及び樹脂成型物 |
WO2006019144A1 (ja) | 2004-08-20 | 2006-02-23 | Ishihara Sangyo Kaisha, Ltd. | 銅微粒子及びその製造方法 |
JP2007138092A (ja) * | 2005-11-22 | 2007-06-07 | Konica Minolta Holdings Inc | インクジェット用インク |
Non-Patent Citations (1)
Title |
---|
See also references of EP2319643A4 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012178334A (ja) * | 2011-02-25 | 2012-09-13 | Samsung Electro-Mechanics Co Ltd | 銅ナノペースト及びその形成方法、並びに銅ナノペーストを用いる電極形成方法 |
CN102243181A (zh) * | 2011-04-08 | 2011-11-16 | 湖北富邦科技股份有限公司 | 一种粉体防结剂氨值测定方法 |
JP2013079408A (ja) * | 2011-09-30 | 2013-05-02 | Dainippon Printing Co Ltd | 銅微粒子分散体、パターン形成方法、及び銅パターン膜の製造方法 |
JP2013147678A (ja) * | 2012-01-17 | 2013-08-01 | Ishihara Sangyo Kaisha Ltd | 金属銅焼結膜の製造方法 |
JP2013175560A (ja) * | 2012-02-24 | 2013-09-05 | Hitachi Chemical Co Ltd | 140℃以下で導体化して得られる金属銅膜、金属銅パターン及びそれらの製造方法 |
JP2013197045A (ja) * | 2012-03-22 | 2013-09-30 | Asahi Glass Co Ltd | 導電性ペーストおよび導電膜付き基材 |
KR20130108126A (ko) * | 2012-03-22 | 2013-10-02 | 아사히 가라스 가부시키가이샤 | 도전성 페이스트 및 도전막 부착 기재 |
KR101976855B1 (ko) | 2012-03-22 | 2019-05-09 | 에이지씨 가부시키가이샤 | 도전성 페이스트 및 도전막 부착 기재 |
JP2014029018A (ja) * | 2012-06-28 | 2014-02-13 | Nippon Steel & Sumikin Chemical Co Ltd | 分散性ニッケル微粒子スラリーの製造方法 |
JP2014017364A (ja) * | 2012-07-09 | 2014-01-30 | Panasonic Corp | 部品実装基板の製造システム、および製造方法 |
JP2014047413A (ja) * | 2012-09-03 | 2014-03-17 | Ishihara Sangyo Kaisha Ltd | 金属微粒子分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品 |
JP2014188561A (ja) * | 2013-03-28 | 2014-10-06 | Nippon Steel & Sumikin Chemical Co Ltd | 接合方法 |
JPWO2014163126A1 (ja) * | 2013-04-03 | 2017-02-16 | 株式会社ソフセラ | 銀粒子の粒子径の制御方法、銀粒子、銀粒子を含む抗菌剤、およびその利用 |
WO2015012356A1 (ja) | 2013-07-25 | 2015-01-29 | 石原産業株式会社 | 金属銅分散液及びその製造方法並びにその用途 |
US10507524B2 (en) | 2013-07-25 | 2019-12-17 | Ishihara Sangyo Kaisha, Ltd. | Metallic copper dispersion, method for manufacturing same, and usage for same |
CN105473259B (zh) * | 2013-07-25 | 2019-06-21 | 石原产业株式会社 | 金属铜分散液、其制备方法及其用途 |
CN105473259A (zh) * | 2013-07-25 | 2016-04-06 | 石原产业株式会社 | 金属铜分散液、其制备方法及其用途 |
JPWO2015012356A1 (ja) * | 2013-07-25 | 2017-03-02 | 石原産業株式会社 | 金属銅分散液及びその製造方法並びにその用途 |
JP2015181160A (ja) * | 2014-03-05 | 2015-10-15 | トッパン・フォームズ株式会社 | 導電パターンの形成方法及び導電性配線 |
JP2015168846A (ja) * | 2014-03-06 | 2015-09-28 | 日本発條株式会社 | 積層体および積層体の製造方法 |
WO2015133351A1 (ja) * | 2014-03-06 | 2015-09-11 | 日本発條株式会社 | 積層体および積層体の製造方法 |
JPWO2016031860A1 (ja) * | 2014-08-28 | 2017-06-15 | 石原産業株式会社 | 金属質銅粒子及びその製造方法 |
WO2016031860A1 (ja) * | 2014-08-28 | 2016-03-03 | 石原産業株式会社 | 金属質銅粒子及びその製造方法 |
JP2016145397A (ja) * | 2015-02-09 | 2016-08-12 | 日立化成株式会社 | 銅膜の製造方法及びそれにより得られた導電体 |
CN106694903A (zh) * | 2017-01-20 | 2017-05-24 | 济南大学 | 一种CuCl/Cu2O/Cu多孔纳米片的制备方法及所得产品 |
JP2018168439A (ja) * | 2017-03-30 | 2018-11-01 | 日立化成株式会社 | 電磁波遮蔽体の製造に用いられる組成物、及び電磁波遮蔽体の製造方法 |
WO2019017363A1 (ja) | 2017-07-18 | 2019-01-24 | 旭化成株式会社 | 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線 |
US11109492B2 (en) | 2017-07-18 | 2021-08-31 | Asahi Kasei Kabushiki Kaisha | Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring |
JP2022001629A (ja) * | 2020-06-22 | 2022-01-06 | 株式会社善管 | エスカレーター手摺りの抗菌コーティング剤 |
JPWO2022050392A1 (ja) * | 2020-09-04 | 2022-03-10 | ||
JP7399304B2 (ja) | 2020-09-04 | 2023-12-15 | 旭化成株式会社 | 金属配線の製造方法及びキット |
Also Published As
Publication number | Publication date |
---|---|
TWI471168B (zh) | 2015-02-01 |
CN102137728A (zh) | 2011-07-27 |
EP2319643A1 (en) | 2011-05-11 |
US10071419B2 (en) | 2018-09-11 |
KR101494045B1 (ko) | 2015-02-16 |
JP5355577B2 (ja) | 2013-11-27 |
TW201016311A (en) | 2010-05-01 |
EP2319643B1 (en) | 2019-03-27 |
KR20110052657A (ko) | 2011-05-18 |
CN102137728B (zh) | 2013-09-11 |
CA2735151C (en) | 2017-09-05 |
EP2319643A4 (en) | 2017-05-17 |
CA2735151A1 (en) | 2010-03-04 |
US20110155432A1 (en) | 2011-06-30 |
JPWO2010024385A1 (ja) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5355577B2 (ja) | 金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法 | |
JP6354760B2 (ja) | 金属銅分散液及びその製造方法並びにその用途 | |
WO2016031860A1 (ja) | 金属質銅粒子及びその製造方法 | |
KR100733748B1 (ko) | 콜로이드성 금속 용액, 이의 제조 방법 및 이를 함유하는도료 | |
JP5685372B2 (ja) | 金属インキ並びにそれを用いた金属含有膜及びその製造方法 | |
JP5507161B2 (ja) | 塗膜の製造方法 | |
JP5944668B2 (ja) | 金属銅焼結膜の製造方法 | |
JP4886444B2 (ja) | 流動性組成物及びそれを用いて形成した電極、配線パターン、塗膜並びにその塗膜を形成した装飾物品 | |
JP2008127680A (ja) | 金属分散液の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980133386.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09810033 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010526786 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2735151 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20117004302 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009810033 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060898 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |