WO2010016242A1 - 光学部品及び光学部品の製造方法 - Google Patents
光学部品及び光学部品の製造方法 Download PDFInfo
- Publication number
- WO2010016242A1 WO2010016242A1 PCT/JP2009/003721 JP2009003721W WO2010016242A1 WO 2010016242 A1 WO2010016242 A1 WO 2010016242A1 JP 2009003721 W JP2009003721 W JP 2009003721W WO 2010016242 A1 WO2010016242 A1 WO 2010016242A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- layer
- optical component
- inorganic material
- high refractive
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
Definitions
- the present invention relates to an optical component and a method for manufacturing the optical component.
- plastic lenses are often used for spectacle lenses because of their advantages of being lightweight, excellent in impact resistance and easy to dye.
- an antireflection film is usually provided on both surfaces for the purpose of preventing surface reflection.
- optical performance such as low reflection characteristics (broadband low reflection characteristics) over the entire visible range of 400 nm to 700 nm, adhesion, scratch resistance, heat resistance, chemical resistance High performance is also required for physical properties such as
- an optical component such as a spectacle lens
- an optical component including a plastic base material and an antireflection film disposed on the base material as disclosed in the following patent document is known. It has been.
- the base material is made of plastic
- the antireflection film is usually made of an inorganic material, and its coefficient of thermal expansion is lower than that of the base material (plastic). This is because, particularly at high temperatures, a greater amount of thermal stress is received due to the difference in thermal expansion coefficient, and cracks may occur.
- An object of the aspect of the present invention is to provide a balanced optical component having good performance in both reflection characteristics and heat resistance, and a method for manufacturing the same.
- An optical component includes a plastic base material and an antireflection film disposed on the base material, and the antireflection film is disposed on the base material side and has high refraction.
- a high refractive index layer in which a plurality of refractive index inorganic materials and low refractive index inorganic materials are alternately stacked, and a low refractive index inorganic material that is disposed on the high refractive index layer and has a lower refractive index than the high refractive index layer.
- a thickness of the layer made of the low refractive index inorganic material in the antireflective film with respect to the total film thickness, and the total film thickness of the antireflective film is not less than 170 nm and not more than 200 nm. Is 70% or more and 80% or less.
- the total thickness of the antireflection film is set to 170 nm or more and 200 nm or less, good performance is ensured for both reflection characteristics and heat resistance.
- the total film thickness of the antireflection film is less than 170 nm, there is a possibility that the reflection characteristics deteriorate and sufficient performance cannot be obtained, and when it exceeds 200 nm, thermal expansion between the substrate and the antireflection film is likely to occur. There is a possibility that thermal stress due to the coefficient difference increases and cracks occur.
- silicon dioxide which is a typical low refractive index inorganic material, has a high compressive stress and can be expected to improve heat resistance.
- the ratio of the thickness of the layer made of the low refractive index inorganic material By setting the ratio of the thickness of the layer made of the low refractive index inorganic material to 70% or more, it is possible to secure a good compressive stress property as the whole antireflection film and to improve the heat resistance. Further, by setting the ratio of the thickness of the layer made of the low refractive index inorganic material to 80% or less, a good antireflection function as the whole antireflection film is ensured.
- a method for manufacturing an optical component comprising: heating a plastic substrate; adjusting the substrate to a predetermined temperature by the heating; and forming an antireflection film on the substrate.
- the step of forming the antireflection film includes a step of forming a high refractive index layer in which a plurality of high refractive index inorganic materials and low refractive index inorganic materials are alternately stacked, and on the high refractive index layer.
- a treatment for forming a low refractive index layer made of a low refractive index inorganic material having a lower refractive index than that of the high refractive index layer, and the total thickness of the antireflection film is from 170 nm to 200 nm, and The ratio of the thickness of the layer made of the low refractive index inorganic material in the antireflection film to the total film thickness is 70% or more and 80% or less.
- the total thickness of the antireflection film is set to 170 nm or more and 200 nm or less, both the reflection characteristics and heat resistance of the optical component obtained as described above are ensured to have good performance. Is possible.
- the ratio of the thickness of the layer made of the low refractive index inorganic material is set to 70% or more and 80% or less, it is possible to improve heat resistance and to secure a good antireflection function.
- FIG. 3 is a spectral characteristic diagram of an antireflection film according to Example 1.
- 6 is a spectral characteristic diagram of an antireflection film according to Example 2.
- FIG. 6 is a spectral characteristic diagram of an antireflection film according to Example 3.
- FIG. 6 is a spectral characteristic diagram of an antireflection film according to Example 4.
- 6 is a spectral characteristic diagram of an antireflection film according to Comparative Example 1.
- FIG. 1 is a side sectional view schematically showing an optical component in an embodiment of the present invention.
- reference numeral 1 denotes an optical component for a spectacle lens.
- the optical component 1 includes a plastic base material 2 and an antireflection film 3 disposed on the surface of the base material 2.
- a functional thin film 4 is disposed between the surface of the substrate 2 and the antireflection film 3.
- the functional thin film 4 includes a primer layer 5 and a hard coat layer 6.
- the films 3 and 4 disposed on the surface of the base material 2 will be mainly described. However, actually, the films formed on the surface of the back surface of the base material 2 are also described. Films equivalent to 3 and 4 are formed.
- the substrate 2 is shown as a flat plate, but the surface (back surface) of the substrate 2 for spectacle lenses is usually curved and curved.
- the films 3 and 4 formed on the substrate 2 are also curved along the surface (back surface) of the substrate 2.
- the base material 2 is, for example, a transparent plastic such as acrylic resin, thiourethane resin, methacrylic resin, allyl resin, episulfide resin, polycarbonate resin, polyurethane resin, polyester resin, polystyrene resin, episulfide resin. Polyether-sulfone resin, poly-4-methylpentene-1 resin, diethylene glycol bisallyl carbonate resin (CR-39), polyvinyl chloride resin, halogen-containing copolymer, sulfur-containing copolymer, etc. .
- the refractive index (nd) of the base material 2 for example, one selected from 1.50, 1.60, 1.67, and 1.74 can be used.
- the base material 2 when making the refractive index of the base material 2 1.6 or more, as the base material 2, it is preferable to use an allyl carbonate resin, an acrylate resin, a methacrylate resin, a thiourethane resin, or the like.
- the base material 2 may not be transparent as long as it has translucency.
- the base material 2 may be formed by containing an inorganic material without being made of only plastic (synthetic resin).
- the functional thin film 4 is disposed between the base material 2 and the antireflection film 3 as described above, and is in contact with the primer layer 5 disposed in contact with the base material 2, and the primer layer 5. And a hard coat layer 6 disposed in contact with the antireflection film 3.
- the primer layer 5 is for improving the adhesion between the substrate 2 and the hard coat layer 6 and functions as an adhesion layer.
- the primer layer 5 is also for absorbing an impact on the optical component 1 and functions as an impact absorbing layer.
- the primer layer 5 is mainly composed of a polyurethane-based resin, and in this embodiment, the polyurethane-based resin contains, for example, fine particles of an inorganic material.
- the primer layer 5 may include at least one of acrylic resin, methacrylic resin, and organosilicon resin.
- the thickness (actual thickness) of the primer layer 5 is preferably about 0.5 ⁇ m or more and 1.0 ⁇ m or less.
- Such a primer layer 5 can be formed on the base material 2 with a predetermined thickness by immersing the base material 2 in the forming material solution of the primer layer 5 and then lifting and drying.
- a material for forming the primer layer 5 for example, a solution obtained by dispersing or dissolving the resin to be the primer layer 5 and the inorganic oxide fine particle sol in water or an alcohol solvent and mixing them can be used.
- the hard coat layer 6 has a function of protecting the base material 2 and suppressing damage to the base material 2, and functions as a scratch-resistant film.
- the hard coat layer 6 is made of, for example, an organosiloxane hard coat layer.
- the organosiloxane hard coat layer is obtained by dispersing inorganic oxide fine particles in an organosiloxane resin.
- the inorganic oxide for example, rutile type titanium oxide, oxides of silicon, tin, zirconium, and antimony are preferably used.
- the hard coat layer 6 may be an organic silicon-based resin containing colloidal silica as disclosed in, for example, Japanese Patent Publication No. 4-55615.
- the thickness (actual thickness) of the hard coat layer 6 is preferably about 2 ⁇ m to 4 ⁇ m.
- the hard coat layer 6 has a predetermined thickness on the primer layer 5 on the substrate 2 by immersing the substrate 2 on which the primer layer 5 is formed in the forming material solution of the hard coat layer 6 and then lifting and drying. It can be formed.
- the liquid for forming the hard coat layer 6 for example, a liquid obtained by dispersing or dissolving the resin to be the hard coat layer 6 and the inorganic oxide fine particle sol in water or an alcohol solvent and mixing them can be used. .
- the type (physical properties) of the resin that is the main component of the functional thin film 4 is selected, or the resin that is the main component of the resin. This can be done by selecting the type (physical properties) of the fine particles to be added.
- the functional thin film 4 is formed including the primer layer 5 and the hard coat layer 6.
- the primer layer 5 and the hard coat layer 6 in the functional thin film 4 can be omitted.
- a transparent conductive film or a dielectric film made of ITO (Indium Tin Oxide) or the like may be provided in addition to the primer layer 5 and the hard coat layer 6.
- the antireflection film 3 has a multilayer structure including a high refractive index layer 7 having a multilayer structure and a low refractive index layer 8.
- the high refractive index layer 7 is disposed on the substrate 2 and is formed by laminating a plurality of high refractive index inorganic materials and low refractive index inorganic materials alternately.
- the low refractive index layer 8 is disposed on the high refractive index layer 7 and is made of a low refractive index inorganic material having a lower refractive index than the high refractive index layer 7.
- the antireflection film 3 has a function of preventing reflection of incident light. In the present embodiment, the antireflection film 3 is designed to prevent reflection of visible light (having a wavelength of 400 nm to 700 nm, for example).
- the high refractive index layer 7 is designed so that the refractive index of the entire layer 7 is about 1.6.
- the high refractive index layer 7 includes a first layer 9 made of a high refractive index inorganic material provided on the substrate 2 side, and a low refractive index inorganic material provided on the first layer 9. And a third layer 11 made of a high refractive index inorganic material provided on the second layer 10.
- the first layer 9 is provided in contact with the hard coat layer 6 and is made of zirconium dioxide (ZrO 2 ) having a refractive index of 2.0.
- Zirconium dioxide has a high tensile stress, so that it tends to crack when thermally expanded at high temperatures.
- titanium dioxide (TiO 2 ) or tantalum dioxide (Ta 2 O 5 ) can be used as the high refractive index inorganic material constituting the first layer 9.
- it can also be formed of an oxide of an alloy composed of a plurality of kinds of zirconium, titanium, and tantalum.
- Y 2 O 3 yttrium dioxide
- Nb 2 O 5 niobium dioxide
- the adhesion between the first layer 9 and the hard coat layer 6 can be obtained by forming the first layer 9 with the high refractive index inorganic material (ZrO 2 ).
- the adhesion (adhesive strength) between the layer (ZrO 2 ) made of the high refractive index inorganic material and the hard coat layer 6 is more closely adhered to the layer (SiO 2 ) made of the low refractive index inorganic material and the hard coat layer 6. This is because it is larger than the property (adhesion).
- the adhesiveness (adhesive force) between the high refractive index layer (ZrO 2 ) and the substrate 2 is lower. Since it is larger than the adhesiveness (adhesive force) between the layer (SiO 2 ) and the substrate 2, the adhesiveness is more advantageous.
- the second layer 10 is provided in contact with the first layer 9 and is made of silicon dioxide (SiO 2 ) having a refractive index of 1.47. Since this silicon dioxide has a high compressive stress, and therefore it is difficult for cracks to occur even when thermally expanded at high temperatures, an improvement in heat resistance can be expected.
- SiO 2 silicon dioxide
- MgF 2 having a refractive index of 1.36 can be used as the low refractive index inorganic material constituting the second layer 10 in addition to SiO 2 .
- the third layer 11 is provided in contact with the second layer 10 and is made of zirconium dioxide (ZrO 2 ) in the same manner as the first layer 9.
- the third layer 11 can also be formed of a high refractive index inorganic material other than ZrO 2 , similarly to the first layer 9.
- the high refractive index layer 7 is not formed with the three-layer structure of the first layer 9, the second layer 10, and the third layer 11 as described above. It can also be composed of layers, or four or more layers.
- the low refractive index layer 8 is provided in contact with the third layer 11 and is made of silicon dioxide (SiO 2 ) as in the second layer 10.
- the antireflection film 3 including the high refractive index layer 7 and the low refractive index layer 8 has a total film thickness of 170 nm or more and 200 nm or less.
- the ratio of the thickness of the layer made of the low refractive index inorganic material (SiO 2 ) to the total film thickness, that is, the sum of the thickness of the second layer 10 in the high refractive index layer 7 and the thickness of the low refractive index layer 8. Is 70% or more and 80% or less.
- the total film thickness of the antireflection film 3 is less than 170 nm, there is a risk that the reflection characteristics are deteriorated and sufficient performance cannot be obtained.
- the total film thickness exceeds 200 nm, there is a risk between the substrate 2 and the antireflection film 3. Thermal stress due to the difference in thermal expansion coefficient increases, and cracks are likely to occur.
- the total film thickness of the antireflection film 3 is set to 170 nm or more and 200 nm or less, it is possible to ensure good performance in both reflection characteristics and heat resistance. In addition, in order to fully exhibit said performance, it is more preferable to make an upper limit into 185 nm or less.
- Silicon dioxide (SiO 2 ) as a low-refractive index inorganic material forming the second layer 10 and the low-refractive index layer 8 has a high compressive stress and is resistant to cracking even when thermally expanded at high temperatures. Improvement can be expected.
- the ratio of the thickness of the layer made of the low refractive index inorganic material (silicon dioxide) is 70% or more of the total film thickness, good compressive stress property is secured as the whole antireflection film 3 and heat resistance is improved. be able to.
- it is 80% or less a good antireflection function as the whole antireflection film 3 can be secured.
- the lower limit is more preferably set to 74% or more.
- the fluorine-substituted alkyl group-containing organosilicon compound is included on the antireflection film 3, that is, on the outermost layer (low refractive index layer 8) of the antireflection film 3 farthest from the substrate 2.
- a water / oil repellent film 12 is provided.
- the water / oil repellent film 12 is mainly composed of a fluorine-substituted alkyl group-containing organosilicon compound and has liquid repellency (water repellency, oil repellency). That is, this water / oil repellent film 12 reduces the surface energy of the optical component, exhibits functions of preventing water scorching and dirt, and improves the sliding performance of the surface of the optical component. As a result, scratch resistance is improved. Can be improved.
- the fluorine-substituted alkyl group-containing organosilicon compound the following general formula (1):
- Rf represents a linear or branched perfluoroalkyl group having 1 to 16 carbon atoms
- Y represents iodine or hydrogen
- Y ′ represents hydrogen or a lower alkyl group
- Y ′′ represents Represents a fluorine or trifluoromethyl group
- R 1 represents a hydrolyzable group
- R 2 represents hydrogen or an inert monovalent organic group
- a, b, c and d are each an integer of 0 to 200 E represents 0 or 1
- s and t each represents an integer of 0 to 2
- w represents an integer of 1 to 10.
- X represents oxygen or a divalent organic group
- X ′ represents a hydrolyzable group
- X ′′ represents a divalent organic silicone group
- R 3 represents carbon.
- q represents an integer of 1 to 3
- m, n and o each represents an integer of 0 to 200
- p represents 1 or 2
- r Represents an integer of 2 to 20
- k represents an integer of 0 to 2
- z represents an integer of 0 to 10 when k is 0 or 1.
- Rf 2 represents a divalent linear perfluoropolyether group
- R 4 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group
- R 5 represents a hydrolyzable group.
- I represents an integer of 0 to 2
- j represents an integer of 1 to 5
- u represents 2 or 3.
- a fluorine-substituted alkyl group-containing organosilicon compound selected from the general formulas (1) to (5) and the general formula (6) is preferably used in combination.
- fluorine-substituted alkyl group-containing organosilicon compound represented by the general formulas (1) to (5) OPTOOL-DSX, OPTOOL-AES4, etc. manufactured by Daikin Industries, Ltd. can be used.
- fluorine-substituted alkyl group-containing organosilicon compound represented by the general formula (6) KY-130, KY-164 manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
- the manufacturing method of the present embodiment includes a step of forming the functional thin film 4 (primer layer 5 and hard coat layer 6) on the substrate 2 in the same manner as in the past, a step of heating the substrate 2, and heating. After adjusting the base material 2 to a predetermined temperature (for example, 70 ° C.), forming the antireflection film 3 on the base material 2, forming the water / oil repellent film 12 on the antireflection film 3, Is provided.
- a predetermined temperature for example, 70 ° C.
- the step of forming the antireflection film 3 includes a process of alternately stacking a plurality of high refractive index inorganic materials and low refractive index inorganic materials to form a high refractive index layer 7 having a multilayer structure, And forming a low refractive index layer 8 made of a low refractive index inorganic material.
- a vacuum deposition method is suitably used for forming each of these layers.
- FIG. 2 is a diagram illustrating an example of a vapor deposition apparatus 30 for forming each layer of the antireflection film 3.
- the vapor deposition apparatus 30 includes a first chamber 31, a second chamber 32, and a third chamber 33. Each of the first, second, and third chambers 31, 32, and 33 is reduced in pressure to a substantially vacuum and held in that state.
- the vapor deposition apparatus 30 can adjust each internal temperature of the 1st, 2nd, 3rd chamber 31, 32, 33 by the temperature control means which is not shown in figure.
- the vapor deposition apparatus 30 includes a holding member 34 in each internal space of the first, second, and third chambers 31, 32, and 33.
- the holding member 34 has a curved upper surface (holding surface) and is configured to be rotatable, and holds the plurality of base materials 2 on the upper surface.
- the vapor deposition source 35 of the vapor deposition apparatus 30 is disposed in a space inside the second chamber 32.
- the vapor deposition source 35 includes a first vapor deposition source 35A made of zirconium dioxide (ZrO 2 ) and a second vapor deposition source 35B made of silicon dioxide (SiO 2 ).
- a light source device 36 capable of irradiating the vapor deposition source 35 with a beam is disposed.
- the light source device 36 emits a beam and irradiates the vapor deposition source 35, thereby releasing the material (vapor) for forming the antireflection film 3 from the vapor deposition source 35.
- a ZrO 2 steam released from the first deposition source 35A it is supplied by depositing on the substrate 2 held by the holding member 34. Thereby, the first layer 9 and the third layer 11 in the high refractive index layer 7 of the antireflection film 3 can be formed.
- the second vapor deposition source 35B with a beam SiO 2 vapor is released from the second vapor deposition source 35B, and is supplied onto the substrate 2 held by the holding member 34 for vapor deposition. Thereby, the second layer 10 and the low refractive index layer 8 in the high refractive index layer 7 of the antireflection film 3 can be formed.
- the first vapor deposition source 35A and the second vapor deposition source 35B are alternately irradiated with a beam, and the substrate 2 held by the holding member 34 is made of a high refractive index inorganic material. Layers and layers made of a low refractive index inorganic material can be alternately formed and stacked.
- the total thickness of the antireflection film 3 is 170 nm or more and 200 nm or less, and the ratio of the thickness of the layer made of the low refractive index inorganic material in the antireflection film 3 to the total thickness is 70. % To 80%.
- a vapor deposition source made of zirconium oxide (ZrO) is used as the first vapor deposition source 35A, and the first vapor deposition source 35A is irradiated with a beam while introducing oxygen into the internal space of the second chamber 32, so that zirconium dioxide (ZrO 2 ). You may make it form the high refractive index inorganic material layer which consists of these.
- a method for forming the water / oil repellent film 12 there are a wet method such as a dipping method, a spin coat method and a spray method, or a dry method such as a vacuum deposition method.
- the dipping method is common and often used.
- This method is a method of forming a film by forming up to the antireflection film 3 and immersing the optical component in a solution obtained by dissolving a fluorine-substituted alkyl group-containing organosilicon compound in an organic solvent, pulling it up under certain conditions, and drying it.
- organic solvent perfluorohexane, perfluoro-4-methoxybutane, perfluoro-4-ethoxybutane, metaxylene hexafluoride, or the like is used.
- the dilution concentration with an organic solvent is preferably 0.01 to 0.5% by weight, more preferably 0.03 to 0.1% by weight. If the concentration is too low, the water / oil repellent layer 12 having a sufficient film thickness cannot be obtained, and if the concentration is too high, uneven coating tends to occur and the material cost increases.
- This method is a method of forming the water- and oil-repellent film 12 by heating and evaporating the fluorine-substituted alkyl group-containing organosilicon compound in a vacuum chamber.
- the total film thickness of the antireflection film 3 is set to 170 nm or more and 200 nm or less, both the reflection characteristics and the heat resistance are ensured as described above. be able to. Further, since the ratio of the thickness of the layer made of the low refractive index inorganic material is set to 70% or more and 80% or less, the heat resistance can be improved and a good antireflection function can be secured. Therefore, both the reflection characteristics and the heat resistance are balanced with good performance.
- a silicon hard coat layer having a refractive index of 1.67 was formed on a plastic substrate by a conventionally known heat curing method. Thereafter, an antireflection film was formed on the hard coat layer by a vacuum deposition method as described below.
- Example 1 The substrate was set on the holding member 34 of the vapor deposition apparatus 30 shown in FIG. 2, the temperature in the chamber was heated to 70 ° C., and the exhaust pressure was reduced until the pressure became 1.0 ⁇ 10 ⁇ 3 Pa. In this state, the substrate was subjected to Ar ion beam cleaning for 60 seconds under the conditions of an acceleration voltage of 500 V and an acceleration current of 100 mA.
- ZrO 2 (refractive index 2.00) as the first layer 9 in the high refractive index layer 7 has an optical film thickness of 0.05 ⁇ (physical film thickness 14 nm).
- SiO 2 (refractive index 1.47) as the second layer 10 is formed with an optical film thickness of 0.08 ⁇ (physical film thickness 30 nm), and ZrO 2 (refractive index 2.00) as the third layer 11 is formed.
- With an optical film thickness of 0.12 ⁇ physical film thickness of 34 nm).
- SiO 2 refractive index 1.457 as the low refractive index layer 8 was formed with an optical film thickness of 0.29 ⁇ (physical film thickness 109 nm), thereby forming the antireflection film 3.
- ⁇ is the center wavelength of the design and is 550 nm.
- Example 1 the total thickness (total thickness) of the antireflection film was 187 nm, and the ratio of the thickness of the layer made of the low refractive index inorganic material to the total thickness was 74%.
- Example 2 In the same manner as in Example 1, the antireflection film 3 composed of the high refractive index layer 7 and the low refractive index layer 8 was formed. However, in Example 2, the first layer 9 is formed of ZrO 2 with an optical film thickness of 0.04 ⁇ (physical film thickness 11 nm), and the second layer 10 is formed of SiO 2 with an optical film thickness of 0.08 ⁇ (physical film thickness). thickness was formed at 29 nm), a third layer 11 formed by ZrO 2 in the optical film thickness 0.09Ramuda (physical thickness 25 nm), a low refractive index layer 8 optical film thickness by the SiO 2 0.29 ⁇ ( (Physical film thickness 109 nm). In this example, Ar ion beam assist was performed under the conditions of an acceleration voltage of 500 V and an acceleration current of 100 mA when the layers were stacked.
- Ar ion beam assist was performed under the conditions of an acceleration voltage of 500 V and an acceleration current of 100 mA when the layers were stacked.
- Example 2 the total thickness (total thickness) of the antireflection film was 174 nm, and the ratio of the thickness of the layer made of the low refractive index inorganic material to the total thickness was 79%.
- Example 3 In the same manner as in Example 1, the antireflection film 3 composed of the high refractive index layer 7 and the low refractive index layer 8 was formed.
- the first layer 9 is formed of ZrO 2 with an optical film thickness of 0.04 ⁇ (physical film thickness of 11 nm)
- the second layer 10 is formed of SiO 2 with an optical film thickness of 0.07 ⁇ (physical film thickness).
- the third layer 11 is formed of ZrO 2 with an optical film thickness of 0.09 ⁇ (physical film thickness of 26 nm)
- the low refractive index layer 8 is formed of SiO 2 with an optical film thickness of 0.29 ⁇ (with a film thickness of 25 nm). (Physical film thickness 108 nm).
- Ar ion beam assist was performed under the conditions of an acceleration voltage of 500 V and an acceleration current of 100 mA when the layers were stacked.
- Example 3 the total thickness (total thickness) of the antireflection film was 170 nm, and the ratio of the thickness of the layer made of the low refractive index inorganic material to the total thickness was 78%.
- Example 4 In the same manner as in Example 1, the antireflection film 3 composed of the high refractive index layer 7 and the low refractive index layer 8 was formed.
- the first layer 9 is formed of ZrO 2 with an optical film thickness of 0.06 ⁇ (physical film thickness of 18 nm)
- the second layer 10 is formed of SiO 2 with an optical film thickness of 0.09 ⁇ (physical film thickness).
- the third layer 11 is formed of ZrO 2 with an optical film thickness of 0.14 ⁇ (physical film thickness of 39 nm)
- the low refractive index layer 8 is formed of SiO 2 with an optical film thickness of 0.29 ⁇ (with a film thickness of 34 nm). (Physical film thickness 109 nm).
- Ar ion beam assist was performed under the conditions of an acceleration voltage of 500 V and an acceleration current of 100 mA when the layers were stacked.
- Example 4 the total thickness (total thickness) of the antireflection film was 200 nm, and the ratio of the thickness of the layer made of the low refractive index inorganic material to the total thickness was 72%.
- the antireflection film 3 composed of the high refractive index layer 7 and the low refractive index layer 8 was formed.
- the high refractive index layer 7 is made up of a first layer made of a low refractive index inorganic material (SiO 2 ), a second layer made of a high refractive index inorganic material (ZrO 2 ), and a low refractive index inorganic material ( A four-layer structure of a third layer made of SiO 2 ) and a fourth layer made of a high refractive index inorganic material (ZrO 2 ) was adopted.
- the first layer is formed of SiO 2 with an optical film thickness of 0.10 ⁇ (physical film thickness 30 nm)
- the second layer is formed of ZrO 2 with an optical film thickness of 0.16 ⁇ (physical film thickness).
- the third layer is formed of SiO 2 with an optical film thickness of 0.06 ⁇ (physical film thickness of 20 nm)
- the fourth layer is formed of ZrO 2 with an optical film thickness of 0.25 ⁇ (physical film thickness of 58 nm).
- the low refractive index layer was formed of SiO 2 with an optical film thickness of 0.28 ⁇ (physical film thickness 93 nm). Note that ⁇ is the center wavelength of the design and is 500 nm.
- the total thickness (total thickness) of the antireflection film was 238 nm, and the ratio of the thickness of the layer made of the low refractive index inorganic material to the total thickness was 60%.
- Table 1 summarizes the materials (substances), optical film thickness, and physical film thickness of each layer of Examples 1 to 4 and Comparative Example 1.
- Table 1 summarizes the materials (substances), optical film thickness, and physical film thickness of each layer of Examples 1 to 4 and Comparative Example 1.
- the first layer, the second layer, the third layer, the fourth layer, and the fifth layer are shown in the order of formation from the substrate side.
- optical article (lens) thus obtained was subjected to the following performance test.
- Example 2 As a result of performing such a performance test, in Example 2, the load for occurrence of load cracking was 74 kg, while that in Comparative Example 1 was 40 kg. Therefore, it was confirmed that Example 2 which is a product of the present invention is excellent in strength (load resistance).
- FIGS. 3 is a spectral characteristic diagram of Example 1
- FIG. 4 is a spectral characteristic diagram of Example 2
- FIG. 5 is a spectral characteristic diagram of Example 3
- FIG. 6 is a spectral characteristic diagram of Example 4
- FIG. 2 is a spectral characteristic diagram of Example 1.
- FIG. 3 to 7 the horizontal axis represents the wavelength of light incident on the antireflection film, and the vertical axis represents the reflectance of the antireflection film.
- the optical component according to the present invention has, for example, a reflective characteristic of 1.0% or less in terms of luminous reflectance, and has excellent performance that is well balanced in heat resistance and load-resistant cracks. .
- an excellent optical component that has high performance for suppressing the occurrence of cracks such as heat resistance and load bearing performance and that suppresses a decrease in transmittance in optical characteristics is manufactured.
- the antireflection film is formed by alternately laminating a high refractive index inorganic material and a low refractive index inorganic material in a continuous state.
- these high refractive index inorganic material and low refractive index inorganic material are formed.
- a functional thin film may be provided.
- a transparent conductive film or dielectric film made of ITO or the like is disposed between a layer made of a high refractive index inorganic material and a layer made of a low refractive index inorganic material.
- the film may function as an antistatic film. In this case, however, the thickness of the functional thin film (antistatic film) needs to be 20 nm or less so as not to impair the reflection characteristics of the antireflection film.
- optical component of the present invention can be used not only for spectacle lenses but also for camera lenses, for example.
- the film while performing ion beam assist when the layers of the antireflection film are laminated.
- the inert gas at least one gas selected from oxygen gas or a mixed gas of inert gas and oxygen gas can be used, and among them, it is preferable to use an inert gas, Argon (Ar) is preferably used.
- SYMBOLS 1 Optical component, 2 ... Base material, 3 ... Antireflection film, 4 ... Functional thin film, 5 ... Primer layer (functional thin film), 6 ... Hard-coat layer (functional thin film), 7 ... High refractive index layer, 8 ... Low refractive index layer, 9 ... First layer, 10 ... Second layer, 11 ... Third layer, 12 ... Water / oil repellent film
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Eyeglasses (AREA)
Abstract
光学部品(1)は、プラスチック製の基材(2)と、基材(2)上に配設された反射防止膜(3)とを備える。反射防止膜(3)は、基材(2)側に、高屈折率無機材料と低屈折率無機材料とが交互に複数積層されてなる多層構造の高屈折率層(7)を有し、高屈折率層(7)上に、この高屈折率層(7)より低い屈折率の低屈折率無機材料からなる低屈折率層(8)を有した複層構成となっている。反射防止膜(3)の全膜厚は170nm以上200nm以下である。この全膜厚に対する反射防止膜(3)中の低屈折率無機材料からなる層の厚さの割合は、70%以上80%以下である。
Description
本発明は、光学部品及び光学部品の製造方法に関する。
本願は、2008年8月4日に出願された特願2008-200737号に基づき優先権を主張し、その内容をここに援用する。
本願は、2008年8月4日に出願された特願2008-200737号に基づき優先権を主張し、その内容をここに援用する。
近年、眼鏡レンズでは、軽量で耐衝撃性に優れ、かつ染色しやすいとの利点から、プラスチックレンズが多く用いられている。眼鏡レンズに使用されるプラスチックレンズでは、表面反射を防止する目的で、通常はその両面に反射防止膜が施されている。
眼鏡レンズ用反射防止膜としては、400nm~700nmの可視領域全域にわたって、低い反射特性(広帯域低反射特性)を有することなどの光学性能に加え、密着性、耐擦傷性、耐熱性、耐薬品性などの物性に関しても高い性能が要求されている。
このような眼鏡レンズ等の光学部品としては、例えば下記特許文献に開示されているような、プラスチックの基材と、その基材上に配設される反射防止膜とを備えた光学部品が知られている。
しかしながら、これらの先行技術では必ずしも満足のできる物性の反射防止膜を得るのは困難であった。それは、要求される物性の中には、トレードオフの関係にあるものも少なくないためである。例えば、反射防止膜の膜厚を厚くすれば、耐擦傷性は向上するものの、ハードコートとの密着性が低下し、さらには耐熱性も低下してしまう傾向がある。すなわち、前記したように基材はプラスチック製であるのに対し、反射防止膜は通常無機材料からなり、基材(プラスチック)に比べて熱膨張率係数が低いため、膜厚を厚くした場合、特に高温時において熱膨張係数差により熱ストレスをより多く受けてしまい、クラックを発生してしまうことがあるからである。
本発明の態様における目的は、反射特性及び耐熱性について、共に良好な性能を有するバランスのとれた光学部品及びその製造方法を提供することにある。
本発明の一態様における光学部品は、プラスチック製の基材と、前記基材上に配設された反射防止膜と、を備え、前記反射防止膜は、前記基材側に配され、高屈折率無機材料と低屈折率無機材料とが交互に複数積層された高屈折率層と、前記高屈折率層上に配され、前記高屈折率層より低い屈折率の低屈折率無機材料からなる低屈折率層とを有し、前記反射防止膜の全膜厚が170nm以上200nm以下であり、かつ、前記全膜厚に対する前記反射防止膜中の前記低屈折率無機材料からなる層の厚さの割合が、70%以上80%以下である。
この光学部品によれば、反射防止膜の全膜厚を170nm以上200nm以下にしたので、反射特性及び耐熱性について共に良好な性能が確保される。反射防止膜の全膜厚が170nm未満になると、反射特性が低下して十分な性能が得られなくなる可能性があり、また、200nmを超えると、基材と反射防止膜との間の熱膨張係数差による熱ストレスが大きくなってクラックを発生してしまう可能性がある。また、代表的な低屈折率無機材料である二酸化珪素は、圧縮応力が高く、耐熱性の向上が期待できる。低屈折率無機材料からなる層の厚さの割合を70%以上としたことにより、反射防止膜全体として良好な圧縮応力性が確保され、耐熱性の向上を図ることが可能になる。また、低屈折率無機材料からなる層の厚さの割合を80%以下としたことにより、反射防止膜全体としての良好な反射防止機能が確保される。
本発明の別の態様における光学部品の製造方法は、プラスチック製の基材を加熱する工程と、前記加熱によって前記基材を所定温度に調整した後、前記基材上に反射防止膜を形成する工程と、を備え、前記反射防止膜を形成する工程は、高屈折率無機材料と低屈折率無機材料とを交互に複数積層した高屈折率層を形成する処理と、前記高屈折率層上に、前記高屈折率層より低い屈折率の低屈折率無機材料からなる低屈折率層を形成する処理と、を有するとともに、前記反射防止膜の全膜厚が170nm以上200nm以下であり、かつ、前記全膜厚に対する前記反射防止膜中の前記低屈折率無機材料からなる層の厚さの割合が、70%以上80%以下である。
この光学部品の製造方法によれば、反射防止膜の全膜厚を170nm以上200nm以下にしたので、前述したように得られる光学部品の反射特性及び耐熱性について、共に良好な性能を確保することが可能になる。また、低屈折率無機材料からなる層の厚さの割合を70%以上80%以下としたので、耐熱性の向上を図り、かつ、良好な反射防止機能を確保することが可能になる。
本発明の態様によれば、反射特性及び耐熱性について、共に良好な性能を有するバランスのとれた光学部品を提供することができる。
以下、本発明を実施形態によって詳しく説明する。
図1は、本発明の実施形態における光学部品を模式的に示す側断面図であり、図1において符号1は眼鏡レンズ用の光学部品である。
この光学部品1は、プラスチック製の基材2と、基材2の表面上に配設された反射防止膜3とを備える。基材2の表面と反射防止膜3との間には、本実施形態では機能性薄膜4が配設されている。本実施形態において、機能性薄膜4は、プライマー層5とハードコート層6とからなる。
この光学部品1は、プラスチック製の基材2と、基材2の表面上に配設された反射防止膜3とを備える。基材2の表面と反射防止膜3との間には、本実施形態では機能性薄膜4が配設されている。本実施形態において、機能性薄膜4は、プライマー層5とハードコート層6とからなる。
なお、以下の説明においては、基材2の表面に配設されている各膜3、4について主に説明するが、実際には、基材2の裏面にも、表面に形成される各膜3、4と同等の膜が形成されている。
また、図1においては、便宜上、基材2を平板として図示しているが、眼鏡レンズ用の基材2の表面(裏面)は、通常、曲率を有し、湾曲している。また、基材2の表面(裏面)が湾曲しているとき、その基材2上に形成される各膜3、4も、基材2の表面(裏面)に沿って湾曲している。
基材2は、例えば透明なプラスチックであるアクリル系樹脂、チオウレタン系樹脂、メタクリル系樹脂、アリル系樹脂、エピスルフィド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、エピスルフィド樹脂、ポリエ-テルサルホン樹脂ポリ4-メチルペンテン-1樹脂、ジエチレングリコールビスアリルカーボネート樹脂(CR-39)、ポリ塩化ビニル樹脂、ハロゲン含有共重合体、及びイオウ含有共重合体等によって形成されたものである。本実施形態において、基材2の屈折率(nd)としては、例えば1.50、1.60、1.67、及び1.74のうちから選択されたものを用いることができる。なお、基材2の屈折率を1.6以上にする場合、基材2としては、アリルカーボネート系樹脂、アクリレート系樹脂、メタクリレート系樹脂、及びチオウレタン系樹脂等を使用することが好ましい。また、基材2は透光性を有していれば透明でなくてもよい。さらに、基材2は、プラスチック(合成樹脂)のみからなることなく、無機材料を含有して形成されていてもよい。
機能性薄膜4は、前記したように基材2と反射防止膜3との間に配置されたもので、基材2に接して配設されたプライマー層5と、このプライマー層5に接し、かつ反射防止膜3に接して配設されたハードコート層6とからなる。
プライマー層5は、基材2とハードコート層6との密着性を良好にするためのもので、密着層として機能するようになっている。また、プライマー層5は、光学部品1に対する衝撃を吸収するためのものでもあり、衝撃吸収層としても機能するようになっている。
このプライマー層5は、ポリウレタン系樹脂を主成分とするもので、本実施形態では、ポリウレタン系樹脂に例えば無機材料の微粒子を含有させたものである。なお、プライマー層5は、アクリル系樹脂、メタクリル系樹脂、及び有機珪素系樹脂の少なくとも一種を含んでいてもよい。プライマー層5の厚み(実際の厚み)については、0.5μm以上1.0μm以下程度とするのが好ましい。
このようなプライマー層5は、プライマー層5の形成材料液に基材2を浸漬し、その後引き上げて乾燥することにより、基材2上に所定の厚さで形成することができる。プライマー層5の形成材料液としては、例えば水又はアルコール系の溶媒に、前記したプライマー層5となる樹脂と無機酸化物微粒子ゾルとを分散又は溶解し、混合した液を用いることができる。
ハードコート層6は、基材2を保護し、基材2の損傷を抑制する機能を有するもので、耐擦傷性膜として機能するようになっている。
ハードコート層6は、例えばオルガノシロキサン系ハードコート層からなっている。オルガノシロキサン系ハードコート層は、オルガノシロキサン系樹脂に無機酸化物の微粒子を分散させたものである。無機酸化物としては、例えばルチル型の酸化チタンや、ケイ素、錫、ジルコニウム、及びアンチモンの酸化物が好適に用いられる。また、ハードコート層6として、例えば特公平4-55615号公報に開示されているような、コロイド状シリカ含有の有機ケイ素系樹脂であってもよい。ハードコート層6の厚み(実際の厚み)については、2μm以上4μm以下程度とするのが好ましい。
ハードコート層6は、ハードコート層6の形成材料液に、プライマー層5を形成した基材2を浸漬し、その後引き上げて乾燥することにより、基材2上のプライマー層5上に所定の厚さで形成することができる。ハードコート層6の形成材料液としては、例えば水又はアルコール系の溶媒に、前記したハードコート層6となる樹脂と無機酸化物微粒子ゾルとを分散又は溶解し、混合した液を用いることができる。
これらプライマー層5及びハードコート層6を含む機能性薄膜4については、その屈折率と、基材2の屈折率とがほぼ同じであれば、機能性薄膜4と基材2との界面での反射で生じる干渉縞の発生及び透過率の低下を抑制することができる。したがって、基材2の屈折率に応じて、機能性薄膜4の屈折率を調整するのが望ましい。機能性薄膜4(プライマー層5、ハードコート層6)の屈折率の調整については、機能性薄膜4の主成分となる樹脂の種類(物性)を選択すること、あるいは、その主成分となる樹脂に添加する微粒子の種類(物性)を選択すること等によって行うことができる。
なお、本実施形態においては、機能性薄膜4がプライマー層5及びハードコート層6を含んで形成されている。代替的に、機能性薄膜4における、例えばプライマー層5とハードコート層6とのうち、いずれか一方、あるいは両方を省略することができる。また、機能性薄膜4の構成膜として、例えばITO(Indium Tin Oxide)などからなる透明導電膜や誘電体膜を、前記プライマー層5及びハードコート層6に加えて配設してもよい。
反射防止膜3は、多層構造の高屈折率層7と、低屈折率層8とを有した複層構成を有する。高屈折率層7は、前記基材2に配され、高屈折率無機材料と低屈折率無機材料とが交互に複数積層されてなる。低屈折率層8は、該高屈折率層7上に配され、高屈折率層7より低い屈折率の低屈折率無機材料からなる。反射防止膜3は、入射した光の反射を防止する機能を有する。本実施形態において、反射防止膜3は、可視光(波長が例えば400nm以上700nm以下)の反射を防止するように設計されている。
高屈折率層7は、層7全体で屈折率が1.6程度となるように設計されている。本実施形態では、高屈折率層7は、前記基材2側に設けられた高屈折率無機材料よりなる第1層9と、該第1層9上に設けられた低屈折率無機材料よりなる第2層10と、該第2層10上に設けられた高屈折率無機材料よりなる第3層11と、からなっている。
第1層9は、ハードコート層6に接して設けられたもので、屈折率が2.0の二酸化ジルコニウム(ZrO2)からなっている。この二酸化ジルコニウムは引張応力が高く、したがって高温時に熱膨張した際、クラックが生じ易い。なお、第1層9を構成する高屈折率無機材料としては、ZrO2以外にも、例えば二酸化チタン(TiO2)や二酸化タンタル(Ta2O5)を用いることもできる。さらには、ジルコニウム、チタン、タンタルの複数種からなる合金の酸化物によって形成することもできる。また、これら以外にも、例えば酸化アルミニウム(Al2O3)、二酸化イットリウム(Y2O3)、二酸化ハフニウム(HfO2)、Nb2O5(二酸化ニオブ)を用いることもできる。
ここで、このように第1層9を高屈折率無機材料(ZrO2)で形成することにより、第1層9とハードコート層6との間の密着性を得ることができる。すなわち、高屈折率無機材料からなる層(ZrO2)とハードコート層6との密着性(密着力)のほうが、低屈折率無機材料からなる層(SiO2)とハードコート層6との密着性(密着力)よりも大きいためである。また、機能性薄膜4(プライマー層5、ハードコート層6)が省略された場合においても、高屈折率層(ZrO2)と基材2との密着性(密着力)のほうが、低屈折率層(SiO2)と基材2との密着性(密着力)よりも大きいため、密着性についてより有利になる。
第2層10は、第1層9に接して設けられたもので、屈折率が1.47の二酸化珪素(SiO2)からなっている。この二酸化珪素は圧縮応力が高く、したがって高温時、熱膨張した際にもクラックが生じにくいため、耐熱性の向上が期待できる。なお、第2層10を構成する低屈折率無機材料としては、SiO2以外にも、例えば屈折率が1.36のMgF2を用いることができる。
第3層11は、第2層10に接して設けられたもので、第1層9と同様に二酸化ジルコニウム(ZrO2)からなっている。なお、この第3層11についても、第1層9と同様に、ZrO2以外の高屈折率無機材料によって形成することもできる。
また、高屈折率層7については、前記したように第1層9、第2層10、第3層11の三層構造で形成することなく、後述する膜厚についての条件を満たせば、二層、あるいは四層以上で構成することもできる。
低屈折率層8は、前記第3層11に接して設けられたもので、前記第2層10と同様に二酸化珪素(SiO2)からなっている。
このような高屈折率層7と低屈折率層8とからなる反射防止膜3は、その全膜厚が170nm以上200nm以下である。そして、この全膜厚に対する低屈折率無機材料(SiO2)からなる層の厚さ、すなわち高屈折率層7中の第2層10の厚さと低屈折率層8の厚さの和の割合は、70%以上80%以下である。
反射防止膜3の全膜厚が170nm未満になると、反射特性が低下して十分な性能が得られなくなるおそれがあり、また、200nmを超えると、基材2と反射防止膜3との間の熱膨張係数差による熱ストレスが大きくなり、クラックが発生し易くなる。反射防止膜3の全膜厚を170nm以上200nm以下とすることにより、反射特性及び耐熱性について共に良好な性能を確保することができる。
なお、上記の性能を十分に発揮するには、上限値を185nm以下とすることがより好ましい。
なお、上記の性能を十分に発揮するには、上限値を185nm以下とすることがより好ましい。
第2層10及び低屈折率層8を形成する低屈折率無機材料としての二酸化珪素(SiO2)は、圧縮応力が高く、高温時、熱膨張した際にもクラックが生じにくいため、耐熱性の向上が期待できる。低屈折率無機材料(二酸化珪素)からなる層の厚さの割合を全膜厚の70%以上であることにより、反射防止膜3全体として良好な圧縮応力性が確保され、耐熱性を向上することができる。また、それが80%以下であることにより、反射防止膜3全体としての良好な反射防止機能を確保することができる。
なお、上記の性能を十分に発揮するには、下限値を74%以上とすることがより好ましい。また、上記の性能を十分に発揮するには、上限値を79%以下とすることがより好ましい。
なお、上記の性能を十分に発揮するには、下限値を74%以上とすることがより好ましい。また、上記の性能を十分に発揮するには、上限値を79%以下とすることがより好ましい。
また、本実施形態では、反射防止膜3の上、すなわち前記基材2から最も遠い反射防止膜3の最外層(低屈折率層8)の上に、フッ素置換アルキル基含有有機ケイ素化合物を含む撥水撥油膜12が設けられている。
この撥水撥油膜12は、フッ素置換アルキル基含有有機ケイ素化合物を主成分とするもので、撥液性(撥水性、撥油性)を有するものである。すなわち、この撥水撥油膜12は、光学部品の表面エネルギーを低下させ、水やけ防止、汚れ防止の機能を発揮するとともに、光学部品表面のすべり性能を向上させ、その結果として、耐擦傷性を向上させることができる。
フッ素置換アルキル基含有有機ケイ素化合物としては、下記一般式(1):
この撥水撥油膜12は、フッ素置換アルキル基含有有機ケイ素化合物を主成分とするもので、撥液性(撥水性、撥油性)を有するものである。すなわち、この撥水撥油膜12は、光学部品の表面エネルギーを低下させ、水やけ防止、汚れ防止の機能を発揮するとともに、光学部品表面のすべり性能を向上させ、その結果として、耐擦傷性を向上させることができる。
フッ素置換アルキル基含有有機ケイ素化合物としては、下記一般式(1):
(式(1)中、Rfは炭素数1~16の直鎖状又は分岐状パーフルオロアルキル基を表し、Yはヨウ素又は水素を表し、Y’は水素または低級アルキル基を表し、Y”はフッ素又はトリフルオロメチル基を表し、R1は加水分解可能な基を表し、R2は水素又は不活性な一価の有機基を表し、a、b、c、dはそれぞれ0~200の整数を表し、eは0又は1を表し、sおよびtはそれぞれ0~2の整数を表し、wは1~10の整数を表す。)
及び下記一般式(2)~(5):
及び下記一般式(2)~(5):
(式(2)~(5)中、Xは酸素又は二価の有機基を表し、X’は加水分解可能な基を表し、X”は二価の有機シリコーン基を表し、R3は炭素数1~22の直鎖状又は分岐上アルキレン基を表し、qは1~3の整数を表し、m、n、oはそれぞれ0~200の整数を表し、pは1又は2を表し、rは2~20の整数を表し、kは0~2の整数を表し、zはkが0又は1である場合に0~10の整数を表す。)
及び下記一般式(6):
及び下記一般式(6):
の中から選択される。
ここで、撥水撥油膜12に優れた耐久性を付与するには、一般式(1)~(5)の中から選択されるフッ素置換アルキル基含有有機ケイ素化合物と、一般式(6)から選択されるフッ素置換アルキル基含有有機ケイ素化合物とを組み合わせて用いるのが好ましい。
一般式(1)~(5)で示されるフッ素置換アルキル基含有有機ケイ素化合物としては、ダイキン工業株式会社製オプツール-DSX、オプツール-AES4などを用いることができる。また、一般式(6)示されるフッ素置換アルキル基含有有機ケイ素化合物としては、信越化学工業株式会社製KY-130、KY-164などを用いることができる。
次に、前記光学部品1の製造方法に基づき、本発明の光学部品の製造方法の一実施形態について説明する。
本実施形態の製造方法は、基材2に対して従来と同様の方法で機能性薄膜4(プライマー層5、ハードコート層6)を形成する工程と、基材2を加熱する工程と、加熱によって基材2を所定温度(例えば70℃)に調整した後、この基材2上に反射防止膜3を形成する工程と、反射防止膜3上に撥水撥油膜12を形成する工程と、を備える。
反射防止膜3を形成する工程は、高屈折率無機材料と低屈折率無機材料とを交互に複数積層して多層構造の高屈折率層7を形成する処理と、この高屈折率層7上に、低屈折率無機材料からなる低屈折率層8を形成する処理と、を有している。これら各層の形成には、真空蒸着法が好適に用いられ。
図2は、反射防止膜3の各層を形成するための蒸着装置30の一例を示す図である。図2に示すように蒸着装置30は、第1チャンバ31と第2チャンバ32と第3チャンバ33とを備える。これら第1、第2、第3チャンバ31、32、33は、それぞれの内部がほぼ真空に減圧され、その状態に保持されるようになっている。また、蒸着装置30は、図示しない温調手段により、第1、第2、第3チャンバ31、32、33のそれぞれの内部温度が調整可能になっている。
蒸着装置30は、第1、第2、第3チャンバ31、32、33のそれぞれの内部空間に、保持部材34を備えている。保持部材34は、その上面(保持面)が曲面状になっており、かつ、回転可能に構成されており、この上面上に複数の基材2を保持するようになっている。
蒸着装置30の蒸着源35は、第2チャンバ32の内側の空間に配置されている。蒸着源35は、二酸化ジルコニウム(ZrO2)からなる第1蒸着源35Aと、二酸化珪素(SiO2)からなる第2蒸着源35Bとを有してなる。また、第2チャンバ32には、蒸着源35にビームを照射可能な光源装置36が配置されている。光源装置36は、ビームを射出して蒸着源35に照射することにより、蒸着源35から反射防止膜3を形成するための材料(蒸気)を放出させるようになっている。
例えば、第1蒸着源35Aにビームを照射することにより、ZrO2の蒸気を第1蒸着源35Aから放出させ、保持部材34に保持されている基材2上に供給し蒸着させる。これにより、反射防止膜3の高屈折率層7における第1層9と第3層11を形成することができる。同様に、第2蒸着源35Bにビームを照射することにより、SiO2の蒸気を第2蒸着源35Bから放出させ、保持部材34に保持されている基材2上に供給し蒸着させる。これにより、反射防止膜3の高屈折率層7における第2層10と、低屈折率層8を形成することができる。
すなわち、第1蒸着源35Aに対するビームの照射と第2蒸着源35Bに対するビームの照射とを交互に行うことにより、保持部材34に保持されている基材2上に、高屈折率無機材料からなる層と低屈折率無機材料からなる層とを交互に形成し積層することができる。本実施形態において、反射防止膜3の全膜厚を170nm以上200nm以下であり、かつ、この全膜厚に対する反射防止膜3中の低屈折率無機材料からなる層の厚さの割合が、70%以上80%以下である。
なお、第1蒸着源35Aとして酸化ジルコニウム(ZrO)からなる蒸着源を用い、第2チャンバ32の内部空間に酸素を導入しながら第1蒸着源35Aにビームを照射し、二酸化ジルコニウム(ZrO2)からなる高屈折率無機材料層を形成するようにしてもよい。
このようにして反射防止膜3を形成したら、これの上に撥水撥油膜12を形成する。
撥水撥油膜12の形成方法としては、ディッピング法、スピンコート法、スプレー法などの湿式法、あるいは真空蒸着法などの乾式法がある。
湿式法の中では、ディッピング法が一般的であり、よく用いられる。この方法は、フッ素置換アルキル基含有有機ケイ素化合物を有機溶剤に溶解した液中に、反射防止膜3まで形成し光学部品を浸漬し、一定条件で引き上げ、乾燥させて成膜する方法である。有機溶剤としては、パーフルオロヘキサン、パーフルオロ-4-メトキシブタン、パーフルオロ-4-エトキシブタン、メタキシレンヘキサフルオライドなどが使用される。
有機溶剤による希釈濃度は、0.01~0.5重量%が好ましく、0.03~0.1重量%がより好ましい。濃度が低すぎると十分な膜厚の撥水撥油層12が得られず、また、濃度が高すぎると塗布むらが発生しやすく、材料コストも高くなってしまう。
乾式法の中では、真空蒸着法がよく用いられる。この方法は、フッ素置換アルキル基含有有機ケイ素化合物を真空槽内で加熱して蒸発させ、撥水撥油膜12を形成する方法である。
このようにして形成された光学部品1にあっては、反射防止膜3の全膜厚を170nm以上200nm以下にしたので、前述したように反射特性及び耐熱性について、共に良好な性能を確保することができる。また、低屈折率無機材料からなる層の厚さの割合を70%以上80%以下としたので、耐熱性を向上し、かつ、良好な反射防止機能を確保することができる。したがって、反射特性及び耐熱性について、共に良好な性能を有するバランスのとれたものとなる。
また、光学部品の製造方法にあっては、このようなバランスのとれた優れた光学部品を確実に提供することができる。
[実施例]
次に、本発明に係る光学部品の性能を評価するため、本発明品(実施例1~実施例4)及び比較品(比較例1)を製造し、得られた光学部品についてその性能を評価した。
次に、本発明に係る光学部品の性能を評価するため、本発明品(実施例1~実施例4)及び比較品(比較例1)を製造し、得られた光学部品についてその性能を評価した。
本発明品、比較品の全てについて、プラスチック製の基材上に、屈折率1.67のシリコン系ハードコート層を従来公知の加熱硬化法によって形成した。その後、このハードコート層上に、以下に示すようにしてそれぞれ真空蒸着法で反射防止膜を成膜した。
<実施例1>
前記基材を図2に示した蒸着装置30の保持部材34にセットし、チャンバ内の温度を70℃に加熱し、また、圧力を1.0×10-3Paになるまで排気減圧した。その状態で、加速電圧500V、加速電流100mAの条件のもとで前記基材にArイオンビームクリーニングを60秒間施した。
前記基材を図2に示した蒸着装置30の保持部材34にセットし、チャンバ内の温度を70℃に加熱し、また、圧力を1.0×10-3Paになるまで排気減圧した。その状態で、加速電圧500V、加速電流100mAの条件のもとで前記基材にArイオンビームクリーニングを60秒間施した。
その後、基材側(ハードコート層側)から順に、高屈折率層7における第1層9としてのZrO2 (屈折率2.00)を光学的膜厚0.05λ(物理膜厚14nm)で形成し、第2層10としてのSiO2 (屈折率1.47)を光学的膜厚0.08λ(物理膜厚30nm)で形成し、第3層11としてのZrO2 (屈折率2.00)を光学的膜厚0.12λ(物理膜厚34nm)で形成した。さらに、低屈折率層8としてのSiO2 (屈折率1.47)を光学的膜厚0.29λ(物理膜厚109nm)で形成し、これによって反射防止膜3を形成した。なお、λは、設計の中心波長であって550nmとした。
この実施例1では、反射防止膜の全膜厚(総膜厚)が187nm、全膜厚に対する低屈折率無機材料からなる層の厚さの割合が74%となった。
<実施例2>
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この実施例2では、第1層9をZrO2によって光学的膜厚0.04λ(物理膜厚11nm)で形成し、第2層10をSiO2によって光学的膜厚0.08λ(物理膜厚29nm)で形成し、第3層11をZrO2によって光学的膜厚0.09λ(物理膜厚25nm)で形成し、低屈折率層8をSiO2によって光学的膜厚0.29λ(物理膜厚109nm)で形成した。なお、本例では、各層の積層時において、加速電圧500V、加速電流100mAの条件でArイオンビームアシストを行った。
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この実施例2では、第1層9をZrO2によって光学的膜厚0.04λ(物理膜厚11nm)で形成し、第2層10をSiO2によって光学的膜厚0.08λ(物理膜厚29nm)で形成し、第3層11をZrO2によって光学的膜厚0.09λ(物理膜厚25nm)で形成し、低屈折率層8をSiO2によって光学的膜厚0.29λ(物理膜厚109nm)で形成した。なお、本例では、各層の積層時において、加速電圧500V、加速電流100mAの条件でArイオンビームアシストを行った。
この実施例2では、反射防止膜の全膜厚(総膜厚)が174nm、全膜厚に対する低屈折率無機材料からなる層の厚さの割合が79%となった。
<実施例3>
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この実施例3では、第1層9をZrO2によって光学的膜厚0.04λ(物理膜厚11nm)で形成し、第2層10をSiO2によって光学的膜厚0.07λ(物理膜厚25nm)で形成し、第3層11をZrO2によって光学的膜厚0.09λ(物理膜厚26nm)で形成し、低屈折率層8をSiO2によって光学的膜厚0.29λ(物理膜厚108nm)で形成した。なお、本例では、各層の積層時において、加速電圧500V、加速電流100mAの条件でArイオンビームアシストを行った。
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この実施例3では、第1層9をZrO2によって光学的膜厚0.04λ(物理膜厚11nm)で形成し、第2層10をSiO2によって光学的膜厚0.07λ(物理膜厚25nm)で形成し、第3層11をZrO2によって光学的膜厚0.09λ(物理膜厚26nm)で形成し、低屈折率層8をSiO2によって光学的膜厚0.29λ(物理膜厚108nm)で形成した。なお、本例では、各層の積層時において、加速電圧500V、加速電流100mAの条件でArイオンビームアシストを行った。
この実施例3では、反射防止膜の全膜厚(総膜厚)が170nm、全膜厚に対する低屈折率無機材料からなる層の厚さの割合が78%となった。
<実施例4>
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この実施例4では、第1層9をZrO2によって光学的膜厚0.06λ(物理膜厚18nm)で形成し、第2層10をSiO2によって光学的膜厚0.09λ(物理膜厚34nm)で形成し、第3層11をZrO2によって光学的膜厚0.14λ(物理膜厚39nm)で形成し、低屈折率層8をSiO2によって光学的膜厚0.29λ(物理膜厚109nm)で形成した。なお、本例では、各層の積層時において、加速電圧500V、加速電流100mAの条件でArイオンビームアシストを行った。
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この実施例4では、第1層9をZrO2によって光学的膜厚0.06λ(物理膜厚18nm)で形成し、第2層10をSiO2によって光学的膜厚0.09λ(物理膜厚34nm)で形成し、第3層11をZrO2によって光学的膜厚0.14λ(物理膜厚39nm)で形成し、低屈折率層8をSiO2によって光学的膜厚0.29λ(物理膜厚109nm)で形成した。なお、本例では、各層の積層時において、加速電圧500V、加速電流100mAの条件でArイオンビームアシストを行った。
この実施例4では、反射防止膜の全膜厚(総膜厚)が200nm、全膜厚に対する低屈折率無機材料からなる層の厚さの割合が72%となった。
<比較例1>
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この比較例1では、高屈折率層7を低屈折率無機材料(SiO2)からなる第1層、高屈折率無機材料(ZrO2)からなる第2層、低屈折率無機材料(SiO2)からなる第3層、高屈折率無機材料(ZrO2)からなる第4層の、4層構造とした。すなわち、この比較例1では、第1層をSiO2によって光学的膜厚0.10λ(物理膜厚30nm)で形成し、第2層をZrO2によって光学的膜厚0.16λ(物理膜厚37nm)で形成し、第3層をSiO2によって光学的膜厚0.06λ(物理膜厚20nm)で形成し、第4層をZrO2によって光学的膜厚0.25λ(物理膜厚58nm)で形成し、低屈折率層をSiO2によって光学的膜厚0.28λ(物理膜厚93nm)で形成した。なお、λは、設計の中心波長であって500nmとした。
実施例1と同様にして、高屈折率層7と低屈折率層8とからなる反射防止膜3を形成した。ただし、この比較例1では、高屈折率層7を低屈折率無機材料(SiO2)からなる第1層、高屈折率無機材料(ZrO2)からなる第2層、低屈折率無機材料(SiO2)からなる第3層、高屈折率無機材料(ZrO2)からなる第4層の、4層構造とした。すなわち、この比較例1では、第1層をSiO2によって光学的膜厚0.10λ(物理膜厚30nm)で形成し、第2層をZrO2によって光学的膜厚0.16λ(物理膜厚37nm)で形成し、第3層をSiO2によって光学的膜厚0.06λ(物理膜厚20nm)で形成し、第4層をZrO2によって光学的膜厚0.25λ(物理膜厚58nm)で形成し、低屈折率層をSiO2によって光学的膜厚0.28λ(物理膜厚93nm)で形成した。なお、λは、設計の中心波長であって500nmとした。
この比較例1では、反射防止膜の全膜厚(総膜厚)が238nm、全膜厚に対する低屈折率無機材料からなる層の厚さの割合が60%となった。
これら実施例1~4、比較例1の各層の材質(物質)及び光学的膜厚、物理膜厚について、表1にまとめて示す。なお、表1中では、基材側から形成する順に、第1層、第2層、第3層、第4層、第5層として示している。
このようにして得られた光学物品(レンズ)について、以下の性能試験を行った。
(耐熱クラック発生温度試験)
各光学物品を70℃の温風オーブンの中に5分間入れ、温度を10℃上昇させる毎に目視によってクラックの有無を確認した。
なお、クラックによっては試料が冷めると見えにくくなるため、目視による確認は、オーブンから試料を取り出した後、20秒以内に評価を行った。また、評価後試料が完全に冷えてから、次の温度での評価を開始した。
各光学物品を70℃の温風オーブンの中に5分間入れ、温度を10℃上昇させる毎に目視によってクラックの有無を確認した。
なお、クラックによっては試料が冷めると見えにくくなるため、目視による確認は、オーブンから試料を取り出した後、20秒以内に評価を行った。また、評価後試料が完全に冷えてから、次の温度での評価を開始した。
(耐荷重クラック発生試験)
下記の眼鏡レンズ用玉摺り機を用い、光学物品を70kgのチャッキング圧力にて保持し、所定の形状に削った後、蛍光灯、集光灯下にてクラックの有無を目視で確認した。
玉摺り機 : ニデック社製 LE9000
使用カップ: カニ目用極小カップ
下記の眼鏡レンズ用玉摺り機を用い、光学物品を70kgのチャッキング圧力にて保持し、所定の形状に削った後、蛍光灯、集光灯下にてクラックの有無を目視で確認した。
玉摺り機 : ニデック社製 LE9000
使用カップ: カニ目用極小カップ
このような性能試験を行った結果、実施例1~4のものは、いずれも耐熱クラック発生温度が150℃以上であるのに対し、比較例1のものは、100℃であった。また、実施例1~4のものは、いずれも耐荷重クラック発生試験ではクラックが確認されなかったのに対し、比較例1のものではわずかながらクラックの発生が認められた。したがって、本発明品である実施例1~4は、耐熱性や強度(耐荷重性)に優れていることが確認された。
次に、前記の実施例2と比較例1の光学物品(レンズ)について、以下の性能試験を行った。
(耐荷重クラック発生圧力試験)
眼鏡レンズ用玉摺り機用カップを用いて光学物品を保持し、この光学部品の表面に対して、垂直に荷重を30kgから10秒間加えた。10kg上昇させる毎に、蛍光灯、集光灯下にてクラックの有無を目視で確認した。
使用カップ: カニ目用極小カップ
眼鏡レンズ用玉摺り機用カップを用いて光学物品を保持し、この光学部品の表面に対して、垂直に荷重を30kgから10秒間加えた。10kg上昇させる毎に、蛍光灯、集光灯下にてクラックの有無を目視で確認した。
使用カップ: カニ目用極小カップ
このような性能試験を行った結果、実施例2のものは、耐荷重クラック発生荷重が74kgであるのに対し、比較例1のものは40kgであった。したがって、本発明品である実施例2は、強度(耐荷重性)に優れていることが確認された。
次に、実施例1~4、比較例1で形成した各光学部品について、その反射防止膜の分光特性を調べた。得られた結果を、図3~図7の各分光特性図に示す。なお、図3は実施例1の分光特性図、図4は実施例2の分光特性図、図5は実施例3の分光特性図、図6は実施例4の分光特性図、図7は比較例1の分光特性図である。また、図3~図7では、横軸は反射防止膜に入射する光の波長を表し、縦軸は反射防止膜の反射率を表している。
図3~図6に示した結果より、本発明品(実施例1~実施例4)は、良好な反射特性を有していることが確認された。
したがって、本発明に係る光学部品は、たとえば視感反射率で1.0%以下の反射特性を有し、かつ、耐熱性、耐荷重クラックにおいてもバランスのとれた優れた性能を有するものとなる。また、本発明に係る製造方法によれば、耐熱性、耐荷重性能などクラック発生を抑制する高い性能を有し、光学特性においても透過率低下を抑えた優れた光学部品が製造される。
なお、本発明は前記実施形態に限定されることなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
例えば、前記実施形態では反射防止膜を、高屈折率無機材料と低屈折率無機材料とを連続させた状態で交互に積層し、形成したが、これら高屈折率無機材料と低屈折率無機材料との間に、機能性薄膜を備えていてもよい。具体的には、反射防止膜の一部として、高屈折率無機材料からなる層と低屈折率無機材料からなる層との間に、ITOなどからなる透明導電膜や誘電体膜を配設し、静電防止膜として機能させてもよい。ただし、その場合には、反射防止膜の反射特性を損なわないよう、この機能性薄膜(静電防止膜)の厚さを20nm以下にする必要がある。
また、本発明の光学部品は、眼鏡レンズ用以外にも、例えばカメラレンズ用などとして用いることもできる。
また、反射防止膜における各層の積層時においては、イオンビームアシストを施しながら成膜を行うのが好ましい。その場合に、不活性ガスとしては、酸素ガスや不活性ガス及び酸素ガスの混合ガスとのうちから選ばれる少なくとも一種のガスを用いることができるが、中でも不活性ガスを用いるのが好ましく、特にアルゴン(Ar)を用いるのが好ましい。
1…光学部品、2…基材、3…反射防止膜、4…機能性薄膜、5…プライマー層(機能性薄膜)、6…ハードコート層(機能性薄膜)、7…高屈折率層、8…低屈折率層、9…第1層、10…第2層、11…第3層、12…撥水撥油膜
Claims (15)
- プラスチック製の基材と、
前記基材上に配設された反射防止膜と、を備え、
前記反射防止膜は、前記基材側に配され、高屈折率無機材料と低屈折率無機材料とが交互に複数積層された高屈折率層と、前記高屈折率層上に配され、前記高屈折率層より低い屈折率の低屈折率無機材料からなる低屈折率層とを有し、
前記反射防止膜の全膜厚が170nm以上200nm以下であり、かつ、前記全膜厚に対する前記反射防止膜中の前記低屈折率無機材料からなる層の厚さの割合が、70%以上80%以下であることを特徴とする光学部品。 - 前記高屈折率層は、前記基材側に設けられた高屈折率無機材料よりなる第1層と、前記第1層上に設けられた低屈折率無機材料よりなる第2層と、前記第2層上に設けられた高屈折率無機材料よりなる第3層と、を含むことを特徴とする請求項1記載の光学部品。
- 前記基材から最も遠い前記反射防止膜の最外層の上に、フッ素置換アルキル基含有有機ケイ素化合物を含む撥水撥油膜をさらに備えることを特徴とする請求項1又は2に記載の光学部品。
- 前記フッ素置換アルキル基含有有機ケイ素化合物は、下記一般式(1):
及び下記一般式(2)~(5):
及び下記一般式(6):
の中から選択される1種類以上のフッ素置換アルキル基含有有機ケイ素化合物であることを特徴とする請求項3記載の光学部品。 - 前記基材と前記反射防止膜との間に、機能性薄膜をさらに備えたことを特徴とする請求項1~4のいずれか一項に記載の光学部品。
- 前記反射防止膜における前記高屈折率無機材料と低屈折率無機材料との間に、厚さ20nm以下の機能性薄膜をさらに備えたことを特徴とする請求項1~5のいずれか一項に記載の光学部品。
- 前記高屈折率無機材料は、二酸化ジルコニウムを含み、前記低屈折率無機材料は、二酸化珪素を含むことを特徴とする請求項1~6のいずれか一項に記載の光学部品。
- 眼鏡レンズ用である請求項1~7のいずれかの一項に記載の光学部品。
- 光学部品の製造方法であって、
プラスチック製の基材を加熱する工程と、
前記加熱によって前記基材を所定温度に調整した後、前記基材上に反射防止膜を形成する工程と、を備え、
前記反射防止膜を形成する工程は、高屈折率無機材料と低屈折率無機材料とを交互に複数積層した高屈折率層を形成する処理と、前記高屈折率層上に、前記高屈折率層より低い屈折率の低屈折率無機材料からなる低屈折率層を形成する処理と、を有するとともに、前記反射防止膜の全膜厚が170nm以上200nm以下であり、かつ、前記全膜厚に対する前記反射防止膜中の前記低屈折率無機材料からなる層の厚さの割合が、70%以上80%以下であることを特徴とする光学部品の製造方法。 - 前記高屈折率層の形成は、前記基材側に高屈折率無機材料からなる第1層を設けることと、前記第1層上に低屈折率無機材料からなる第2層を設けることと、前記第2層上に高屈折率無機材料からなる第3層を設けることとを含むことを特徴とする請求項9記載の光学部品の製造方法。
- 前記反射防止膜を形成する工程に、真空蒸着法を用いることを特徴とする請求項9又は10に記載の光学部品の製造方法。
- 前記高屈折率無機材料は、酸化ジルコニウムを含み、前記低屈折率無機材料は、二酸化珪素を含むことを特徴とする請求項9~11のいずれか一項に記載の光学部品の製造方法。
- 前記反射防止膜を形成する工程は、前記反射防止膜を構成する層のうちの少なくとも一層を、イオンビームアシストを施しながら成膜を行うことを含むことを特徴とする請求項9~12のいずれか一項に記載の光学部品の製造方法。
- 前記イオンビームアシストは、不活性ガスと、酸素ガス、不活性ガス及び酸素ガスの混合ガスとのうちから選ばれる少なくとも一種のガスを用いて行うことを特徴とする請求項13記載の光学部品の製造方法。
- 前記不活性ガスはアルゴンであることを特徴とする請求項14記載の光学部品の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010523759A JPWO2010016242A1 (ja) | 2008-08-04 | 2009-08-04 | 光学部品及び光学部品の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008200737 | 2008-08-04 | ||
JP2008-200737 | 2008-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016242A1 true WO2010016242A1 (ja) | 2010-02-11 |
Family
ID=41663471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003721 WO2010016242A1 (ja) | 2008-08-04 | 2009-08-04 | 光学部品及び光学部品の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010016242A1 (ja) |
WO (1) | WO2010016242A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012093689A (ja) * | 2010-09-29 | 2012-05-17 | Nikon-Essilor Co Ltd | 光学部品およびその製造方法 |
JP2013008052A (ja) * | 2010-09-29 | 2013-01-10 | Nikon-Essilor Co Ltd | 光学部品およびその製造方法 |
US20140347625A1 (en) * | 2012-02-17 | 2014-11-27 | Nikon-Essilor Co., Ltd. | Optical Component, Spectacle Lens, and Method of Manufacturing the Same |
US20150198821A1 (en) * | 2012-09-28 | 2015-07-16 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
US20150234209A1 (en) * | 2012-11-05 | 2015-08-20 | Nikon-Essilor Co., Ltd. | Optical component, method of manufacturing optical component, and method of quantifying ghost light |
WO2019009127A1 (ja) * | 2017-07-03 | 2019-01-10 | 東海光学株式会社 | プラスチック光学製品並びにプラスチック眼鏡レンズ及び眼鏡 |
US11529230B2 (en) | 2019-04-05 | 2022-12-20 | Amo Groningen B.V. | Systems and methods for correcting power of an intraocular lens using refractive index writing |
US11564839B2 (en) | 2019-04-05 | 2023-01-31 | Amo Groningen B.V. | Systems and methods for vergence matching of an intraocular lens with refractive index writing |
US11583389B2 (en) | 2019-04-05 | 2023-02-21 | Amo Groningen B.V. | Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing |
US11583388B2 (en) | 2019-04-05 | 2023-02-21 | Amo Groningen B.V. | Systems and methods for spectacle independence using refractive index writing with an intraocular lens |
US11678975B2 (en) | 2019-04-05 | 2023-06-20 | Amo Groningen B.V. | Systems and methods for treating ocular disease with an intraocular lens and refractive index writing |
US11944574B2 (en) | 2019-04-05 | 2024-04-02 | Amo Groningen B.V. | Systems and methods for multiple layer intraocular lens and using refractive index writing |
WO2024203501A1 (ja) * | 2023-03-31 | 2024-10-03 | ニデック株式会社 | 光学素子、レンズユニットおよびカメラモジュール |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10268107A (ja) * | 1997-03-26 | 1998-10-09 | Seiko Epson Corp | 反射防止膜付合成樹脂レンズ |
JP2003238893A (ja) * | 2002-02-15 | 2003-08-27 | Seiko Epson Corp | コーティング用組成物および積層体 |
JP2005070616A (ja) * | 2003-08-27 | 2005-03-17 | Toray Ind Inc | 光学物品 |
JP2006048026A (ja) * | 2004-07-06 | 2006-02-16 | Nof Corp | 転写用反射防止フィルム並びにそれを用いた転写方法及び表示装置 |
JP2006161014A (ja) * | 2004-03-22 | 2006-06-22 | Jsr Corp | 積層体の製造方法 |
JP2007078780A (ja) * | 2005-09-12 | 2007-03-29 | Seiko Epson Corp | 光学物品およびその製造方法 |
JP2008051851A (ja) * | 2006-08-22 | 2008-03-06 | Seiko Epson Corp | 光学物品および光学物品の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07244204A (ja) * | 1994-03-04 | 1995-09-19 | Nikon Corp | 2波長反射防止膜 |
JP2002277608A (ja) * | 2001-03-22 | 2002-09-25 | Sony Corp | 反射防止膜及びこれを用いた画像表示装置 |
JP4228058B2 (ja) * | 2003-11-21 | 2009-02-25 | 彰 ▲さい▼藤 | 発色体とその製造方法 |
JP2005274938A (ja) * | 2004-03-24 | 2005-10-06 | Seiko Epson Corp | プラスチックレンズ |
JP2006348376A (ja) * | 2005-06-20 | 2006-12-28 | Seiko Epson Corp | 真空蒸着方法および真空蒸着装置 |
JP2008096737A (ja) * | 2006-10-12 | 2008-04-24 | Seiko Epson Corp | プラスチック製光学物品とその製造方法 |
JP4910619B2 (ja) * | 2006-10-13 | 2012-04-04 | セイコーエプソン株式会社 | メガネレンズの製造方法 |
JP2008153308A (ja) * | 2006-12-14 | 2008-07-03 | Matsushita Electric Ind Co Ltd | 固体撮像装置及びカメラ |
JP5245251B2 (ja) * | 2006-12-27 | 2013-07-24 | ソニー株式会社 | 光学的素子及び光学装置、並びに光学的素子の製造方法 |
JP2008033341A (ja) * | 2007-08-21 | 2008-02-14 | Seiko Epson Corp | 多層膜カットフィルターの製造方法 |
JP2008156648A (ja) * | 2007-12-26 | 2008-07-10 | Dainippon Printing Co Ltd | 透明ハードコート層、透明ハードコート材、およびディスプレイ装置 |
-
2009
- 2009-08-04 JP JP2010523759A patent/JPWO2010016242A1/ja active Pending
- 2009-08-04 WO PCT/JP2009/003721 patent/WO2010016242A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10268107A (ja) * | 1997-03-26 | 1998-10-09 | Seiko Epson Corp | 反射防止膜付合成樹脂レンズ |
JP2003238893A (ja) * | 2002-02-15 | 2003-08-27 | Seiko Epson Corp | コーティング用組成物および積層体 |
JP2005070616A (ja) * | 2003-08-27 | 2005-03-17 | Toray Ind Inc | 光学物品 |
JP2006161014A (ja) * | 2004-03-22 | 2006-06-22 | Jsr Corp | 積層体の製造方法 |
JP2006048026A (ja) * | 2004-07-06 | 2006-02-16 | Nof Corp | 転写用反射防止フィルム並びにそれを用いた転写方法及び表示装置 |
JP2007078780A (ja) * | 2005-09-12 | 2007-03-29 | Seiko Epson Corp | 光学物品およびその製造方法 |
JP2008051851A (ja) * | 2006-08-22 | 2008-03-06 | Seiko Epson Corp | 光学物品および光学物品の製造方法 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10371867B2 (en) | 2010-09-29 | 2019-08-06 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
JP2013008052A (ja) * | 2010-09-29 | 2013-01-10 | Nikon-Essilor Co Ltd | 光学部品およびその製造方法 |
JP2013084017A (ja) * | 2010-09-29 | 2013-05-09 | Nikon-Essilor Co Ltd | 光学部品およびその製造方法 |
CN103282823A (zh) * | 2010-09-29 | 2013-09-04 | 株式会社尼康依视路 | 光学部件和其制造方法 |
JP2012093689A (ja) * | 2010-09-29 | 2012-05-17 | Nikon-Essilor Co Ltd | 光学部品およびその製造方法 |
US20140347625A1 (en) * | 2012-02-17 | 2014-11-27 | Nikon-Essilor Co., Ltd. | Optical Component, Spectacle Lens, and Method of Manufacturing the Same |
US20150198821A1 (en) * | 2012-09-28 | 2015-07-16 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
AU2013321051B2 (en) * | 2012-09-28 | 2016-11-10 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
AU2013321051B9 (en) * | 2012-09-28 | 2017-03-30 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
AU2017200497B2 (en) * | 2012-09-28 | 2018-01-18 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
US20150234209A1 (en) * | 2012-11-05 | 2015-08-20 | Nikon-Essilor Co., Ltd. | Optical component, method of manufacturing optical component, and method of quantifying ghost light |
WO2019009127A1 (ja) * | 2017-07-03 | 2019-01-10 | 東海光学株式会社 | プラスチック光学製品並びにプラスチック眼鏡レンズ及び眼鏡 |
JP2019015764A (ja) * | 2017-07-03 | 2019-01-31 | 東海光学株式会社 | プラスチック光学製品並びにプラスチック眼鏡レンズ及び眼鏡 |
KR20200019668A (ko) | 2017-07-03 | 2020-02-24 | 토카이 옵티칼 주식회사 | 플라스틱 광학 제품 및 플라스틱 안경 렌즈 및 안경 |
US11709292B2 (en) | 2017-07-03 | 2023-07-25 | Tokai Optical Co., Ltd. | Optical plastic product, and plastic spectacle lens and spectacles |
US11529230B2 (en) | 2019-04-05 | 2022-12-20 | Amo Groningen B.V. | Systems and methods for correcting power of an intraocular lens using refractive index writing |
US11564839B2 (en) | 2019-04-05 | 2023-01-31 | Amo Groningen B.V. | Systems and methods for vergence matching of an intraocular lens with refractive index writing |
US11583389B2 (en) | 2019-04-05 | 2023-02-21 | Amo Groningen B.V. | Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing |
US11583388B2 (en) | 2019-04-05 | 2023-02-21 | Amo Groningen B.V. | Systems and methods for spectacle independence using refractive index writing with an intraocular lens |
US11678975B2 (en) | 2019-04-05 | 2023-06-20 | Amo Groningen B.V. | Systems and methods for treating ocular disease with an intraocular lens and refractive index writing |
US11931296B2 (en) | 2019-04-05 | 2024-03-19 | Amo Groningen B.V. | Systems and methods for vergence matching of an intraocular lens with refractive index writing |
US11944574B2 (en) | 2019-04-05 | 2024-04-02 | Amo Groningen B.V. | Systems and methods for multiple layer intraocular lens and using refractive index writing |
WO2024203501A1 (ja) * | 2023-03-31 | 2024-10-03 | ニデック株式会社 | 光学素子、レンズユニットおよびカメラモジュール |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010016242A1 (ja) | 2012-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010016242A1 (ja) | 光学部品及び光学部品の製造方法 | |
JP5248516B2 (ja) | 光学部品、及び光学部品の製造方法 | |
JP6073355B2 (ja) | 眼鏡レンズ、及び眼鏡レンズの製造方法 | |
JP5966011B2 (ja) | 眼鏡レンズおよびその製造方法 | |
KR101477940B1 (ko) | 광학 부품 및 그의 제조방법 | |
JP5173076B2 (ja) | 光学部品およびその製造方法 | |
JP5795675B2 (ja) | 眼鏡レンズ用光学部品、眼鏡レンズ用光学部品の製造方法 | |
WO2014208412A1 (ja) | 光学部品 | |
JP2010102157A (ja) | 光学物品およびその製造方法 | |
JP2015148643A (ja) | 光学製品並びに眼鏡レンズ及び眼鏡 | |
JP2007078780A (ja) | 光学物品およびその製造方法 | |
JP2011107359A (ja) | 光学物品 | |
JP2012247741A (ja) | 光学部品の製造方法 | |
WO2017125999A1 (ja) | 光学部品 | |
WO2013084997A1 (ja) | 光学部品の製造方法 | |
JP2006215081A (ja) | 光学物品及び製造方法 | |
WO2021220513A1 (ja) | 光学部材 | |
JPH0915402A (ja) | 反射防止膜を有する光学物品およびその製造方法 | |
JP2008076598A (ja) | プラスチックレンズ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09804729 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010523759 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09804729 Country of ref document: EP Kind code of ref document: A1 |