WO2010010631A1 - ヒアルロン酸の製造方法 - Google Patents

ヒアルロン酸の製造方法 Download PDF

Info

Publication number
WO2010010631A1
WO2010010631A1 PCT/JP2008/063427 JP2008063427W WO2010010631A1 WO 2010010631 A1 WO2010010631 A1 WO 2010010631A1 JP 2008063427 W JP2008063427 W JP 2008063427W WO 2010010631 A1 WO2010010631 A1 WO 2010010631A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
arginine
culture
time
glutamine
Prior art date
Application number
PCT/JP2008/063427
Other languages
English (en)
French (fr)
Inventor
正道 橋本
晃明 架間
健治 藤井
昌久 池見
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2008/063427 priority Critical patent/WO2010010631A1/ja
Priority to CA2732092A priority patent/CA2732092C/en
Priority to US13/055,628 priority patent/US8927234B2/en
Priority to AU2008359822A priority patent/AU2008359822B2/en
Priority to KR1020117004261A priority patent/KR101443429B1/ko
Priority to JP2010521572A priority patent/JP5356388B2/ja
Priority to CN2008801304276A priority patent/CN102124120B/zh
Priority to EP08791671A priority patent/EP2311971B1/en
Publication of WO2010010631A1 publication Critical patent/WO2010010631A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to a method for producing hyaluronic acid using a microorganism.
  • Hyaluronic acid is used as a medicine in cosmetics, moisturizers, ophthalmology, orthopedics, dermatology and the like.
  • Hyaluronic acid can be produced from extracts from animal tissues such as chicken crowns, vitreous bodies of cattle eyes, etc., but chondroitin sulfate etc. are mixed as contaminants, hyaluronidase contained in the tissues, etc. Therefore, it is easy to reduce the molecular weight by culturing microorganisms having the ability to produce hyaluronic acid and producing hyaluronic acid from the culture solution (fermentation method) (Patent Document 1).
  • the hyaluronic acid produced by the fermentation method is produced with a certain raw material and with a certain method as compared with the extraction method, and therefore, the product quality is kept constant, and thus the industrial utility value is great.
  • Patent Documents 2 to 4 describe a fermentation method using a medium in which eight kinds of amino acids essential for growth are increased as an effective component for hyaluronic acid production.
  • Patent Document 3 describes a fermentation method using a medium in which arginine and / or glutamic acid is increased.
  • Patent Document 4 describes a fermentation method using a medium with an increased amount of arginine.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for easily producing hyaluronic acid in a high yield. Another object of the present invention is to provide a method for producing hyaluronic acid in a short time.
  • the inventors have improved hyaluronic acid production by adding arginine and glutamine to a culture solution in combination at a specific time of culture. As a result, the present invention has been completed.
  • a method for producing hyaluronic acid comprising a step of culturing a microorganism having hyaluronic acid-producing ability and a step of adding glutamine and arginine to the culture solution in the late logarithmic growth phase of the microorganism.
  • hyaluronic acid can be easily produced in a high yield and in a short time by combining glutamine and arginine and adding them to the culture solution at a specific stage of culture.
  • hyaluronic acid can be obtained in a high yield and in a short time by adding glutamine and arginine in combination to a culture solution at a specific time of cultivation of a microorganism capable of producing hyaluronic acid. It can be easily manufactured.
  • FIG. 1 is a graph of amino acid concentration in a culture solution when a hyaluronic acid-producing microorganism is cultured.
  • FIG. 2 is a graph of comparison between the case where arginine is added all at once and the case where it is added afterwards.
  • the left graph represents the time course of the bacterial cell concentration, and the right graph represents the time course of the viscosity (an index of the hyaluronic acid concentration).
  • the term “late logarithm phase” in the present specification refers to a state in which microorganisms are sufficiently grown, from the latter half of the logarithmic phase to the stationary phase (stationary phase).
  • the logarithmic growth phase refers to a time when the logarithm of the number of cells is linear with respect to time when the microorganism proliferates in half at regular intervals.
  • the late phase of the logarithmic growth phase can be determined using any index / method known to those skilled in the art. For simplicity, it is not limited to this, but turbidity or specific growth rate may be used as an index, for example.
  • Turbidity in the present specification is the most common simple and rapid measurement method for measuring the growth of microorganisms by the turbidity of the culture solution (the amount of cells in the culture solution). Light is applied to the culture medium to determine how much the transmitted light is blocked by scattering and absorption. Since microorganisms that produce hyaluronic acid are fine particles, the amount of microorganisms and the turbidity of the culture solution are in a proportional relationship. Turbidity is measured as follows, for example.
  • the intensity of incident light and transmitted light is defined as I 0 , I, the thickness of the transmissive layer is L, the absorbance is ⁇ , and the absorbance obtained by the following formula is defined as the turbidity (OD) of the culture solution.
  • I the intensity of incident light and transmitted light
  • L the thickness of the transmissive layer
  • the absorbance obtained by the following formula
  • OD the absorbance obtained by the following formula
  • the logarithmic growth period is preferably a period showing turbidity of 1.0 or more, more preferably a period showing turbidity of 2.0 or more, and further preferably a period showing turbidity of 3.0 or more.
  • the “specific growth rate” in the present specification is a value defined by the following formula.
  • the cell generation time is the time required for the microorganisms producing hyaluronic acid to double.
  • the growth rate decreases due to depletion of nutrients, accumulation of metabolites, and the like, and the specific growth rate also decreases.
  • a time when the specific growth rate is 0.5 h ⁇ 1 or less is used.
  • time showing a 0.4 h -1 or less specific growth rate more preferably time showing a 0.3h -1 following specific growth rate, 0.2 h -1 following ratio
  • a period showing a growth rate is more preferable, and a period showing a specific growth rate of 0.1 h ⁇ 1 or less is even more preferable.
  • the specific growth rate is greater than 0h- 1 .
  • Streptococcus bacterium includes, but is not limited to, any bacterium belonging to the genus Streptococcus capable of producing hyaluronic acid, and its mutant strains. Exhibition (Streptococcus equi), Streptococcus zooepidemicus (Streptococcus zooepidemicus), Streptococcus Ekishimirisu (Streptococcus equisimilis), Streptococcus dysgalactiae (Streptococcus dysgalactiae), and the like Streptococcus pyogenes (Streptococcus pyogenes) and their mutants
  • the definition of chemical substances such as “glutamine”, “arginine”, “hyaluronic acid” and the like is not limited to any salt that can be used within the range not impairing the object of the invention.
  • metal salts such as sodium salt and potassium salt, acid adducts such as hydrochloride, phosphate and citrate) and hydrates, and mixtures thereof are also included.
  • each numerical range in this specification includes an upper limit value and a lower limit value indicated by “ ⁇ ”.
  • An embodiment of the present invention is a method for producing hyaluronic acid, comprising a step of culturing a microorganism having hyaluronic acid-producing ability and a step of adding glutamine and arginine to the culture solution in the late logarithmic growth phase of the microorganism.
  • this production method by adding arginine together with glutamine at the later stage of culture, the growth inhibitory action of microorganisms at a high concentration of arginine can be suppressed, and hyaluronic acid can be produced in a high yield and in a short time.
  • the medium includes, for example, a carbon source composed of sugar components such as glucose, fructose, galactose, sucrose, monopotassium phosphate, dipotassium phosphate, magnesium nitrate, sodium sulfite, sodium thiosulfate, ammonium phosphate.
  • Inorganic salts such as polypeptone, casamino acid, yeast extract, corn steep liquor, soybean hydrolyzate, and various vitamins are suitably used.
  • the culture can be performed using a known method such as an aerobic culture method such as aeration stirring culture.
  • the culture temperature is preferably 30 to 35 ° C., but is not limited thereto. Since the pH of the culture solution decreases with the growth of the microorganism, a pH adjuster such as sodium hydroxide, potassium hydroxide, or ammonia may be added to control the pH to 7.0 to 9.0.
  • Glutamine and arginine may be added simultaneously or separately, and other components such as buffers and salts may be added together as long as the object of the present invention is not impaired. In consideration of the process and the like, it is preferable that the number of components that need to be purified is small.
  • the nutritional component or active component other than glutamine and arginine is 0.001% or less, 0.0005% or less, or is not included. preferable.
  • a further embodiment of the present invention is the above production method, wherein the late logarithmic growth phase is a time when the turbidity at 660 nm of the culture solution shows 0.5 or more.
  • glutamine and arginine are added when the turbidity is 2.0 or more.
  • glutamine and arginine are added when the turbidity is 3.0 or more. It is more preferable to add glutamine and arginine at a time when the turbidity is 3.0 or more, and it is possible to reliably improve the yield and shorten the time.
  • the turbidity of the culture solution can be used as it is, but the turbidity of a control medium such as a medium before culturing is so large that it cannot be ignored (not limited to this, for example, 0.01 or 0.05 or more), and the turbidity obtained by subtracting the turbidity of the control medium from the turbidity of the culture solution may be used as an index.
  • a control medium a medium before culture or a culture solution not inoculated with microorganisms may be used.
  • Yet another embodiment of the present invention is the above production method, wherein the late logarithmic growth phase is a time when the specific growth rate is 0.5 h ⁇ 1 or less.
  • the yield of hyaluronic acid is more reliably improved.
  • glutamine and arginine are added at a time when the specific growth rate is 0.4 h ⁇ 1 or less.
  • glutamine and arginine are added at a time when the above-mentioned specific growth rate is exhibited in a state where microorganisms are sufficiently grown, hyaluronic acid can be obtained with a higher yield. It is more preferable to add glutamine and arginine at a time when the turbidity is 0.3 h ⁇ 1 or less, and it is possible to reliably improve the yield and achieve a short time.
  • the definition of the addition time based on the above specific growth rate is a specific example of the time range by a certain index, and the step of measuring the specific growth rate under the above conditions is necessarily required. is not.
  • a further embodiment of the present invention is the above production method, wherein the microorganism having the ability to produce hyaluronic acid is a Streptococcus bacterium.
  • the microorganism having the ability to produce hyaluronic acid is a Streptococcus bacterium.
  • a Streptococcus bacterium that has hyaluronic acid production ability and is generally used, hyaluronic acid can be industrially produced easily and reliably.
  • the Streptococcus bacteria used here include Streptococcus bacteria isolated from nature and mutants thereof.
  • the Streptococcus bacterium in the above embodiment includes Streptococcus equi, Streptococcus equi mutant strain FM-100 (Microtechnical Research Institute No. 9027) or Streptococcus ex mutant strain FM-300 (Microtechnological Institute Research Institute No. 2319) can be preferably used.
  • Streptococcus equi Streptococcus equi mutant strain FM-100 (Microtechnical Research Institute No. 9027) or Streptococcus ex mutant strain FM-300 (Microtechnological Institute Research Institute No. 2319)
  • hyaluronic acid can be produced with a higher yield and stable productivity.
  • the amount of glutamine added in the above embodiment is not particularly limited as long as the object of the present invention is not impaired. However, when the amount is excessively added, the effect is reduced, so 0.01 to 0.3% is preferable. More preferably, they are 0.05% or more, 0.1% or more, and / or 0.2% or less. By using glutamine in this concentration range, the effects of yield improvement and production stabilization can be achieved more reliably. Further, by using glutamine below the above upper limit value, the burden on the subsequent separation / purification process can be reduced.
  • the amount of arginine added in the above embodiment is not particularly limited as long as the object of the present invention is not impaired. More preferably, they are 0.05% or more, 0.1% or more, and / or 0.1% or less. By using arginine within this concentration range, the effects of yield improvement and production stabilization can be more reliably achieved. Moreover, by using arginine below the above upper limit value, it is possible to reduce the burden of the subsequent separation / purification process, and it is possible to further prevent the growth inhibitory action by arginine.
  • the manufacturing method may include other steps, or further other steps / methods may be performed following the manufacturing method.
  • processes / methods include removal / purification of impurities such as endotoxin, protein, nucleic acid, metal, etc. by sterilization process by activated carbon or filtration, neutralization process, crystallization process, chromatography, centrifugation, etc. The process etc. are mentioned.
  • hyaluronic acid is “HA”
  • glutamine is “Gln”
  • arginine is “Arg”
  • adding a certain component to the medium from the beginning of the culture is “batch addition”
  • post-addition The addition of a component at a later stage (particularly at the later stage of the logarithmic growth phase) to the culture medium was referred to as “post-addition”.
  • post-addition hyaluronic acid production was evaluated using the viscosity correlated with the hyaluronic acid concentration as an index.
  • Example 1 One liter of medium consisting of 1.5% polypeptone and 0.5% yeast extract is heat-sterilized and then added to 6% glucose, 0.1% dipotassium hydrogen phosphate, and 0.06% glutamine as initial culture conditions. Inoculated with Streptococcus ex FM-100 (90th craftsmanship of fine work laboratory), aerated at 500 rpm with aeration of air at 1 vvm, temperature 33 ° C, pH 8.0 (25% sodium hydroxide auto The culture was started by dripping control). The culture solution was collected over time, and when the turbidity at 660 nm reached 3.6 and the specific growth rate reached 0.34 h ⁇ 1 , glutamine 0.1% and arginine 0.05% equivalent were added. .
  • the culture was continued until the increase in the viscosity of the culture broth due to the accumulation of hyaluronic acid stopped. After stopping the increase in viscosity of the culture solution, the culture solution was adjusted to pH 3 with nitric acid, the cells were removed by centrifugation, and the supernatant was collected.
  • the supernatant was sequentially diluted, and the concentration of hyaluronic acid contained in the medium was measured by size exclusion chromatography equipped with a differential refraction type detector.
  • a high yield of 6.2 g / L was obtained for the hyaluronic acid in the medium, and the time for the hyaluronic acid concentration to reach 4.0 g / L as the culture time was 17 hours, which was a short time.
  • Example 2 Culture was started in the same manner as in Example 1, and 0.1% glutamine and 0.1% arginine were added. A high yield of 6.0 g / L was obtained for the hyaluronic acid in the medium, and the time for the hyaluronic acid concentration to reach 4.0 g / L as the culture time was 17 hours, which was a short time.
  • Example 3 Culture was started in the same manner as in Example 1, and 0.04% less glutamine than in Example 1 and 0.05% equivalent to arginine were added. The addition was carried out at a bacterial cell concentration of OD5.3 and a specific growth rate of 0.16. Since the amount of added glutamine is small, hyaluronic acid in the medium is less than in Examples 1 and 2, but a high yield of 5.2 g / L was obtained, and the time for the hyaluronic acid concentration to reach 4.0 g / L as the culture time was It was as short as 18 hours.
  • Example 4 Culture was started in the same manner as in Example 3, and glutamine and arginine were added as in Example 3. The addition was performed at a bacterial cell concentration of OD 7.0 and a specific growth rate of 0.05. A high yield of 5.0 g / L of hyaluronic acid in the medium was obtained, and the time for the hyaluronic acid concentration to reach 4.0 g / L as a culture time was a short time of 18 hours.
  • Example 1 Culture was started in the same manner as in Example 1, and glutamine and arginine were not added.
  • the hyaluronic acid in the medium was a low yield of 4.1 g / L, and the time for the hyaluronic acid concentration to reach 4.0 g / L as a culture time was as long as 23 hours.
  • Example 2 Culture was started in the same manner as in Example 1, and 0.05% of arginine alone was added. As the culture time, the time when the hyaluronic acid concentration reached 4.0 g / L was 18 hours, but hyaluronic acid in the medium was a low yield of 4.3 g / L.
  • Example 3 Culture was started in the same manner as in Example 1, and only 0.1% glutamine was added. Hyaluronic acid in the medium was a low yield of 5.3 g / L. As the culture time, the time when the hyaluronic acid concentration reached 4.0 g / L was as long as 21 hours.
  • Example 4 Culture was started in the same manner as in Example 3, and glutamine and arginine were added as in Example 3. The addition was carried out at a bacterial cell concentration of OD0.0001 and a specific growth rate of 1.0. Hyaluronic acid in the medium was a low yield of 4.0 g / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】ヒアルロン酸を高収率で簡便に製造する方法を提供することを目的とする。また、ヒアルロン酸を短時間で製造する方法を提供することも目的とする。 【解決手段】本発明によると、ヒアルロン酸生産能を有する微生物を培養する工程と、該微生物の対数増殖期後期にグルタミン及びアルギニンを培養液に添加する工程とを含むヒアルロン酸の製造法が提供される。

Description

ヒアルロン酸の製造方法
 本発明は、微生物を用いたヒアルロン酸の製造方法に関する。
 ヒアルロン酸は、化粧品の保湿剤の他、眼科、整形外科、皮膚科等で医薬品として用いられている。ヒアルロン酸は、動物組織、例えば、鶏の鶏冠、牛の眼の硝子体等からの抽出物により製造することができるが、夾雑物としてコンドロイチン硫酸等が混入したり、組織内に含まれるヒアルロニダーゼ等によって低分子量化されやすいため、ヒアルロン酸生産能を有する微生物を培養し、培養液からヒアルロン酸を製造すること(発酵法)も行なわれている(特許文献1)。醗酵法によって製造されるヒアルロン酸は、抽出法と比べ、一定の原料で、一定の方法で製造されるため、製品の品質が一定に保たれることから、産業上の利用価値は大きい。
 さらに工業的なヒアルロン酸の生産を目的に、発酵法のための様々な培地成分の培地を用いた発酵法が開発されている(特許文献2~4)。特許文献2では、ヒアルロン酸生産に有効な成分として、生育に必須とされる8種類のアミノ酸を増量した培地を用いた発酵法が記載されている。また、特許文献3には、アルギニン及び/又はグルタミン酸を増量した培地を用いた発酵法が記載されている。また、特許文献4には、アルギニンを増量した培地を用いた発酵法が記載されている。
特公平4-12960号公報 特開平7-46992号公報 特開昭62-289198号公報 特開昭63-141594号公報
 しかしながら、培養法に好適とされる従来の培地の多くは、成分数が多く、培地調製も繁雑であったり、培地からのヒアルロン酸の分離・精製が複雑であったりするなどして、工業的な生産方法としては更なる改善が望まれていた。また、その他の従来技術の方法についても、工業的な生産方法としては更なる改善が望まれていた。
 本発明は上記事情に鑑みてなされたものであり、ヒアルロン酸を高収率で簡便に製造する方法を提供することを目的とする。また、ヒアルロン酸を短時間で製造する方法を提供することも目的とする。
 本発明者らは、上記目的を解決するために、鋭意研究に励んだ結果、培養の特定の時期に、アルギニンとグルタミンを組み合わせて培養液に添加することで、ヒアルロン酸の生産が改善されることを見出し、本発明を完成した。
 すなわち、本発明によれば、ヒアルロン酸生産能を有する微生物を培養する工程と、その微生物の対数増殖期後期にグルタミン及びアルギニンを培養液に添加する工程とを含むヒアルロン酸の製造法が提供される。この製造方法によると、培養の特定の時期にグルタミンとアルギニンとを組み合わせて培養液に添加することで、ヒアルロン酸を高収率、短時間で簡便に製造することができる。
 本発明のヒアルロン酸の製造方法によれば、ヒアルロン酸生産能を有する微生物の培養の特定の時期にグルタミンとアルギニンを組み合わせて培養液に添加することで、ヒアルロン酸を高収率、短時間で簡便に製造することができる。
図1は、ヒアルロン酸生産微生物を培養した際の、培養液中のアミノ酸濃度のグラフである。 図2は、アルギニンを一括添加した場合と、後添加した場合の比較のグラフである。左のグラフは、菌体濃度の時間経過を表し、右のグラフは、粘度(ヒアルロン酸濃度の指標)の時間経過を表す。
発明の実施の形態
〔用語の説明〕
 本明細書における「対数増殖期後期」とは、微生物が十分に増殖した状態であって、対数増殖期の後半~静止期(定常期)にかけてをいう。なお、対数増殖期とは、微生物の培養において、微生物が一定時間ごとに二分して増殖するとき、時間に対して細胞数の対数が直線となる時期のことをいう。対数増殖期の後期であることは、当業者に既知の、任意の指標・方法を用いて判断することができる。簡便には、これに限定されるものではないが、例えば濁度又は比増殖速度を指標として判断してもよい。
 本明細書における「濁度」は、微生物の増殖を培養液の濁り具合(培養液中の菌体量)で測定する、最も一般的な簡便で迅速な測定法である。光を培養液に当て、その透過光がどのくらい散乱および吸収によって阻まれるかを測定する。ヒアルロン酸を生産する微生物は微粒子であるため、微生物の量と培養液の濁度とは比例関係にある。濁度は、例えば、以下のようにして測定される。
 波長660nmの単波長の光を培養液に入射し、透過光を分光光度計により測定する。ここで入射光と透過光の強さを、それぞれI、I、透過層の厚みをL、吸光度をτとし、次式によって求めた吸光度を培養液の濁度(OD)と定義する。
Figure JPOXMLDOC01-appb-M000001
なお、培養前の培地自体が無視できないほどの濁度を有している場合、対照培地の濁度を培養液の濁度から減算してもよい。
 本明細書における対数増殖後期としては、培養液の660nmにおける濁度が0.5以上を示す時期が用いられる。なお、上記対数増殖期としては、1.0以上の濁度を示す時期が好ましく、2.0以上の濁度を示す時期がより好ましく、3.0以上の濁度を示す時期がさらに好ましい。
 本明細書における「比増殖速度」とは、その比増殖速度は以下の式で定義される値である。
Figure JPOXMLDOC01-appb-M000002
ここで、菌体の世代時間は、ヒアルロン酸を生産する微生物が二倍に増殖するのに要する時間である。ヒアルロン酸を生産する微生物は十分に増殖すると、栄養の枯渇、代謝産物の蓄積等により増殖速度が低下し、比増殖速度も低下することになる。
 本明細書における対数増殖後期としては、比増殖速度が0.5h-1以下を示す時期が用いられる。なお、上記対数増殖期としては、0.4h-1以下の比増殖速度を示す時期が好ましく、0.3h-1以下の比増殖速度を示す時期がより好ましく、0.2h-1以下の比増殖速度を示す時期がさらに好ましく、0.1h-1以下の比増殖速度を示す時期がさらにより好ましい。なお、当然のことではあるが、比増殖速度は0h-1より大きい。
 本明細書における「ストレプトコッカス属細菌」とは、ヒアルロン酸を生産することのできるストレプトコッカス(Streptococcus)属の任意の細菌・その変異株を含み、これに限定されるものではないが、例えば、ストレプトコッカス・エキ(Streptococcus equi)、ストレプトコッカス・ズーエピデミカス(Streptococcus zooepidemicus)、ストレプトコッカス・エキシミリス(Streptococcus equisimilis)、ストレプトコッカス・ディスガラクティエ(Streptococcus dysgalactiae)、ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)及びこれらの変異株などが挙げられる。
 本明細書における「グルタミン」「アルギニン」「ヒアルロン酸」等の化学物質の定義には、特記しない限り、発明の目的を損なわない範囲で使用可能な任意の塩(これに限定されるものではないが、例えば、ナトリウム塩、カリウム塩などの金属塩や、塩酸塩、リン酸塩、クエン酸塩などの酸付加物など)や水和物、それらの混合物も含まれる。
 また、本明細書におけるそれぞれの数値範囲については、「~」で示された上限値および下限値をそれぞれ含むものとする。
〔実施の形態〕
 以下、本発明の実施の形態について説明する。
 本発明のある実施形態は、ヒアルロン酸生産能を有する微生物を培養する工程と、その微生物の対数増殖期後期にグルタミン及びアルギニンを培養液に添加する工程とを含むヒアルロン酸の製造法である。この製造方法によると、培養後期にアルギニンをグルタミンと共に加えることで、アルギニンの有する高濃度での微生物の生育阻害作用を抑えることもでき、ヒアルロン酸を高収率、短時間で製造することができる。また、本実施形態においては、グルタミン及びアルギニンを培養開始後に添加することにより、特に繁雑な調製を必要とするような培地を用意する必要が無く、通常の培地を用いることができる。さらに、不必要な栄養成分を加えないことにより、ヒアルロン酸の分離・精製工程の負荷を軽減し、品質の維持・生産性の安定化をすることもできる。
 上記実施形態に用いられる培養方法としては、通常用いられる培養方法を用いることができる。すなわち、培地には、例えば、グルコース、フルクトース、ガラクトース、シュークロース等の糖成分からなる炭素源、リン酸第1カリウム、リン酸第2カリウム、硝酸マグネシウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、リン酸アンモニウム等の無機塩類、ポリペプトン、カザミノ酸、酵母エキス、コーンスティープリカー、大豆加水分解液等の有機栄養源、必要に応じて各種ビタミン類等が好適に用いられる。培養は、例えば、通気撹拌培養等の好気的な培養法など、既知の方法を用いて行うことができる。培養温度は30~35℃が好ましいが、これに限定されるものではない。培養液のpHは微生物の生育と共に低下するため、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア等のpH調整剤を添加しpH7.0~9.0にコントロールしてもよい。
 グルタミン及びアルギニンは、同時に添加されても、別々に添加されてもよく、本発明の目的を損なわない範囲でバッファーや塩などの他の成分も共に添加されてもよいが、その後の分離・精製工程等を考慮すると、精製を必要とする成分は少ない方が好ましく、例えば、グルタミン、アルギニン以外の栄養成分又は活性成分は、0.001%以下、0.0005%以下あるいは含まれないことがさらに好ましい。
 また、本発明の更なる実施形態は、上記対数増殖期後期が、培養液の660nmにおける濁度が0.5以上を示す時期である上記の製造方法である。濁度が0.5以上になる時期にグルタミン及びアルギニンを添加することにより、より確実にヒアルロン酸の収率が向上する。さらに好ましくは、上記濁度が2.0以上を示す時期にグルタミン及びアルギニンを添加する。微生物が十分に増殖した状態である上記濁度を示す時期にグルタミン及びアルギニンを添加することにより、さらに高い収率でヒアルロン酸を得ることができる。上記濁度が3.0以上を示す時期にグルタミン及びアルギニンを添加することがさらに好ましく、確実に収率の向上及び短時間を達成することができる。
 また、濁度については、培養液の濁度をそのまま用いることができるが、培養前の培地などの対照培地の濁度が無視できないほど大きな場合(これに限定されるものではないが、例えば、0.01又は0.05以上)、培養液の濁度から対照培地の濁度を減算した濁度を指標としてもよい。対照培地としては、培養前の培地を用いても、微生物を接種しない培養液を用いてもよい。
 なお、上記の濁度による添加時期の定義は、時期範囲をある一つの指標で具体的に例示したものであって、必ずしも、上記の条件で濁度を測定する工程を必須とするものではない。したがって、当然のことながら、仮に600nmにおける濁度を測定して判断した場合でも、660nmにおける濁度が上記実施形態の範囲に含まれる場合は、上記実施形態に含まれるものと解される。
 また、本発明の更なる他の実施形態は、上記対数増殖期後期が、比増殖速度が0.5h-1以下を示す時期である上記の製造方法である。比増殖速度が0.5h-1以下になる時期にグルタミン及びアルギニンを添加することにより、より確実にヒアルロン酸の収率が向上する。さらに好ましくは、上記比増殖速度が0.4h-1以下を示す時期にグルタミン及びアルギニンを添加する。微生物が十分に増殖した状態である上記比増殖速度を示す時期にグルタミン及びアルギニンを添加することにより、さらに高い収率でヒアルロン酸を得ることができる。上記濁度が0.3h-1以下を示す時期にグルタミン及びアルギニンを添加することがさらに好ましく、確実に収率の向上及び短時間を達成することができる。
 なお、上記の比増殖速度による添加時期の定義は、時期範囲をある一つの指標で具体的に例示したものであって、必ずしも、上記の条件で比増殖速度を測定する工程を必須とするものではない。
 また、本発明の更なる実施形態は、上記ヒアルロン酸生産能を有する微生物がストレプトコッカス属細菌である上記の製造法である。ヒアルロン酸生産能を有し、一般的に用いられているストレプトコッカス属細菌を用いることで、簡便かつ確実にヒアルロン酸を工業的に製造することができる。ここで用いられるストレプトコッカス属細菌には、自然界から分離されるストレプトコッカス属の細菌及びその変異株が含まれる。
 さらに、上記実施形態におけるストレプトコッカス属細菌としては、ストレプトコッカス・エキ、ストレプトコッカス・エキ変異株FM-100(微工研条寄第9027号)又はストレプトコッカス・エキ変異株FM-300(微工研条寄第2319号)を好適に使用することができる。これらのような高収率で安定にヒアルロン酸を生産する株を用いることで、より高収率で安定した生産性でヒアルロン酸を製造することができる。
 また、上記実施形態におけるグルタミンの添加量は、本発明の目的を損なわない範囲内で特に制限はないが、過量添加では効果の伸びが小さくなるため、0.01~0.3%が好ましく、更に好ましくは0.05%以上、0.1%以上、及び/又は0.2%以下である。この濃度範囲のグルタミンを用いることで、より確実に収量向上及び生産の安定化の効果を奏することができる。また、上記上限値以下のグルタミンを用いることで、その後の分離・精製工程の負担を軽減することができる。
 また、上記実施形態におけるアルギニンの添加量は、本発明の目的を損なわない範囲内で特に制限はないが、過量添加では効果の伸びが小さくなるため、0.01~0.2%が好ましく、更に好ましくは0.05%以上、0.1%以上、及び/又は0.1%以下である。この濃度範囲のアルギニンを用いることで、より確実に収量向上及び生産の安定化の効果をあげることができる。また、上記上限値以下のアルギニンを用いることで、その後の分離・精製工程の負担を軽減することができると共に、アルギニンによる生育阻害作用をさらに強く防ぐことができる。
 なお、上記実施形態により説明される製造方法等は、本発明を限定するものではなく、例示することを意図して開示されているものである。本発明の技術的範囲は、特許請求の範囲の記載により定められるものであり、当業者は、特許請求の範囲に記載された発明の技術的範囲において種々の設計的変更が可能である。
 例えば、上記製造方法は、更なる他の工程を含むか、あるいは、上記製造方法に引き続いて更なる他の工程・方法が実施されてもよい。そのような工程・方法としては、例えば、活性炭や濾過などによる除菌工程、中和工程や結晶化工程、クロマトグラフィーや遠心分離などによるエンドトキシン、蛋白質、核酸、金属等の不純物等の除去・精製工程などが挙げられる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 はじめに、本発明に関する予備実験の概要を以下に示す。これらの予備実験例は、後述する実施例1と類似の培養条件を用い、同一の予備実験内では、条件を揃えて検討した。また、それぞれの実験のグラフ等において、ヒアルロン酸を「HA」、グルタミンを「Gln」、アルギニンを「Arg」、培養開始時からある成分を培地に加えておくことを「一括添加」、培養開始後(特に対数増殖期後期)にある成分を培養液に添加することを「後添加」と表記した。また、一部実験例等においては、ヒアルロン酸生産量を、ヒアルロン酸濃度と相関関係のある粘度を指標として評価した。
〔予備実験1〕
 従来の標準的な条件でのヒアルロン酸生産微生物の培養における、各種アミノ酸の濃度変化を調べた。結果のグラフを図1に示す。各種アミノ酸は、培養時間経過に伴い、種類によって減少、一定、増加の何れかの挙動を示したが、特に、グルタミンおよびアルギニン量の大幅な減少が観察され、標準的な培養条件では、これらが枯渇することが観察された。
〔予備実験2〕
 予備実験1の結果に基づき、グルタミン及びアルギニンを添加することを念頭において、さらなる検討を行った。アルギニンは、その菌体内での機構は不明であるが、単体ではヒアルロン酸収量向上には寄与せず、生育阻害をもたらすことが報告されている。そこで、それらの点について、アルギニンの添加方法を改良することでさらに改善しようと考え、検討を行った。
 その結果、図2のグラフに示すように、アルギニンを培養時に一括添加せず、後添加することで、ヒアルロン酸の濃度(グラフ中、ヒアルロン酸濃度は粘度により評価される)が飛躍的に高まることが見出された。このアルギニンについての実験結果は、以下の表にまとめることができる。
Figure JPOXMLDOC01-appb-T000003
〔予備実験3〕
 以上の実験の結果から得られた知見を基に、標準条件に対し、グルタミン及びアルギニンを後添加してヒアルロン酸生産微生物を培養する実験を行った。この実験結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2に示されるように、グルタミンとアルギニンとを組み合わせて後添加することにより、ヒアルロン酸の生産量が大きく上昇することが観察された。
〔比較実験例1〕
 以下に示す実施例1~4及び比較例1~4の実験を、実施例1と同様の条件で行い、ヒアルロン酸の濃度及び、一定のヒアルロン酸の濃度(粘度で評価)に達するまでの時間を計測した。結果は、表3に示した。
Figure JPOXMLDOC01-appb-T000005
*表中のグルタミン量は、培養中に添加した量を示す。
〔実施例1〕
 ポリペプトン1.5%、酵母エキス0.5%からなる培地1リットルを加熱殺菌後、グルコース6%、リン酸水素二カリウム0.1%、グルタミン0.06%となるように加え培養初期条件とし、ストレプトコッカス・エキFM-100(微工研条寄第9027号)を接種し、空気を1vvmで通気しながら、撹拌500回転/分、温度33℃、pH8.0(25%水酸化ナトリウムの自動滴下によるコントロール)で培養を開始した。経時的に培養液を採取し、培養液の660nmにおける濁度が3.6、比増殖速度が0.34h-1に達した時点でグルタミン0.1%、アルギニン0.05%相当を添加した。ヒアルロン酸の蓄積による培養液の粘度上昇が停止するまで培養を継続した。培養液の粘度上昇の停止後、培養液を硝酸でpH3に調整し、遠心により菌体を除き、上清を回収した。
 培地中のヒアルロン酸を定量するため、この上清を順次希釈し培地中に含まれるヒアルロン酸の濃度を示差屈折型検出器を備えるサイズ排除クロマトグラフィーにより測定した。培地中のヒアルロン酸は6.2g/Lの高収量が得られ、培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は17時間と短時間であった。
〔実施例2〕
 実施例1と同様に培養を開始し、グルタミン0.1%、アルギニン0.1%相当を添加した。培地中のヒアルロン酸は6.0g/Lの高収量が得られ、培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は17時間と短時間であった。
〔実施例3〕
 実施例1と同様に培養を開始し、グルタミンは実施例1より少ない0.04%、アルギニンは0.05%相当を添加した。添加時期は菌体濃度がOD5.3、比増殖速度0.16で行った。添加グルタミン量が少ないため、培地中のヒアルロン酸は実施例1、2より少ないが5.2g/Lの高収量が得られ、培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は18時間と短時間であった。
〔実施例4〕
 実施例3と同様に培養を開始し、実施例3と同様にグルタミンとアルギニンを添加した。添加時期は菌体濃度がOD7.0、比増殖速度0.05で行った。培地中のヒアルロン酸は5.0g/Lの高収量が得られ、培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は18時間の短時間であった。
〔比較例1〕
 実施例1と同様に培養を開始し、グルタミンとアルギニンは添加しなかった。培地中のヒアルロン酸は4.1g/Lと低収量であり、培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は23時間と長時間であった。
〔比較例2〕
 実施例1と同様に培養を開始し、アルギニンのみを0.05%添加した。培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は18時間であったが、培地中のヒアルロン酸は4.3g/Lと低収量であった。
〔比較例3〕
 実施例1と同様に培養を開始し、グルタミンのみを0.1%添加した。培地中のヒアルロン酸は5.3g/Lと低収量だった。培養時間としてヒアルロン酸濃度が4.0g/Lに達した時間は21時間と長時間であった。
〔比較例4〕
 実施例3と同様に培養を開始し、実施例3と同様にグルタミンとアルギニンを添加した。添加時期は菌体濃度がOD0.0001、比増殖速度1.0で行った。培地中のヒアルロン酸は4.0g/Lと低収量であった。
〔比較実験例2〕
 上記実施例1~4及び比較例1~4と同様の方法(グルコース濃度は6%)で、さらなる比較実験を行った。結果を以下の表4に示す。この比較実験からも、ヒアルロン酸の生産量(表中HA濃度)がグルタミンとアルギニンとを対数増殖期後期に培養液に添加した場合において、ヒアルロン酸の生産量が増加することが確認された。
Figure JPOXMLDOC01-appb-T000006
〔まとめ〕
 以上の実験から、グルタミン及びアルギニンを対数増殖期後期に培養液に添加する方法では、従来技術に比べ、ヒアルロン酸を高収率かつ短時間で製造可能であることが確認された。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。

Claims (8)

  1.  ヒアルロン酸生産能を有する微生物を培養する工程と、該微生物の対数増殖期後期にグルタミン及びアルギニンを培養液に添加する工程とを含むヒアルロン酸の製造法。
  2.  前記対数増殖期後期が、培養液の660nmにおける濁度が0.5以上を示す時期である請求項1に記載の製造方法。
  3.  前記対数増殖期後期が、培養液の660nmにおける濁度が2.0以上を示す時期である請求項1に記載の製造方法。
  4.  前記対数増殖期後期が、比増殖速度が0.5h-1以下を示す時期である請求項1に記載の製造方法。
  5.  前記ヒアルロン酸生産能を有する微生物がストレプトコッカス属細菌である請求項1ないし4の何れか一項に記載のヒアルロン酸の製造法。
  6.  前記ストレプトコッカス属細菌が、ストレプトコッカス・エキ、ストレプトコッカス・エキ変異株FM-100(微工研条寄第9027号)又はストレプトコッカス・エキ変異株FM-300(微工研条寄第2319号)である請求項5に記載のヒアルロン酸の製造方法。
  7.  前記グルタミンの濃度が、0.01~0.3%である請求項1ないし6の何れか一項に記載のヒアルロン酸の製造法。
  8.  前記アルギニンの濃度が、0.01~0.2%である請求項1ないし7の何れか一項に記載のヒアルロン酸の製造法。
PCT/JP2008/063427 2008-07-25 2008-07-25 ヒアルロン酸の製造方法 WO2010010631A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2008/063427 WO2010010631A1 (ja) 2008-07-25 2008-07-25 ヒアルロン酸の製造方法
CA2732092A CA2732092C (en) 2008-07-25 2008-07-25 Method for producing hyaluronic acid
US13/055,628 US8927234B2 (en) 2008-07-25 2008-07-25 Method for producing hyaluronic acid
AU2008359822A AU2008359822B2 (en) 2008-07-25 2008-07-25 Method for producing hyaluronic acid
KR1020117004261A KR101443429B1 (ko) 2008-07-25 2008-07-25 히알루론산의 제조 방법
JP2010521572A JP5356388B2 (ja) 2008-07-25 2008-07-25 ヒアルロン酸の製造方法
CN2008801304276A CN102124120B (zh) 2008-07-25 2008-07-25 透明质酸的制备方法
EP08791671A EP2311971B1 (en) 2008-07-25 2008-07-25 Method for producing hyaluronic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063427 WO2010010631A1 (ja) 2008-07-25 2008-07-25 ヒアルロン酸の製造方法

Publications (1)

Publication Number Publication Date
WO2010010631A1 true WO2010010631A1 (ja) 2010-01-28

Family

ID=41570110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063427 WO2010010631A1 (ja) 2008-07-25 2008-07-25 ヒアルロン酸の製造方法

Country Status (8)

Country Link
US (1) US8927234B2 (ja)
EP (1) EP2311971B1 (ja)
JP (1) JP5356388B2 (ja)
KR (1) KR101443429B1 (ja)
CN (1) CN102124120B (ja)
AU (1) AU2008359822B2 (ja)
CA (1) CA2732092C (ja)
WO (1) WO2010010631A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197985A (ja) * 2013-03-29 2014-10-23 栃木県 オルニチンを富化した納豆の製造方法
JP2014528239A (ja) * 2011-09-30 2014-10-27 イルドン ファーム カンパニー リミテッド ストレプトコッカスディスガラクティエID9103菌株及びこれを利用したヒアルロン酸生産方法(StreptococcusdysgalactiaeID9103andmethodforproductionofhyaluronicacidusingthesame)
US9074000B2 (en) 2011-04-01 2015-07-07 Memorial Sloan Kettering Cancer Center T cell receptor-like antibodies specific for a WT1 peptide presented by HLA-A2

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121184A1 (it) * 2012-07-05 2014-01-06 Altergon Italia Srl Processo per la produzione industriale di ialuronato di sodio (hana) altamente purificato a peso molecolare controllato
KR101598329B1 (ko) * 2013-03-20 2016-02-29 일동제약주식회사 히알루론산의 제조방법 및 상기 제조방법으로 제조된 히알루론산을 포함하는 유착방지용 조성물
CN108611387B (zh) * 2018-05-07 2020-09-08 山东焦点生物科技股份有限公司 一种利用植物蛋白胨生产医药级透明质酸钠的方法
KR102249438B1 (ko) 2020-09-25 2021-05-07 주식회사 칸젠 히알루론산 생산 균주 및 이를 이용한 히알루론산의 생산방법
KR20230034047A (ko) 2021-09-02 2023-03-09 (주)아모레퍼시픽 해조류 추출물을 이용한 히알루론산의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289198A (ja) 1986-06-09 1987-12-16 Nippon Kayaku Co Ltd ヒアルロン酸の新規製造方法
JPS63141594A (ja) 1986-12-02 1988-06-14 Denki Kagaku Kogyo Kk ヒアルロン酸の製造方法
JPH0412960B2 (ja) 1981-09-26 1992-03-06 Shiseido Co Ltd
JPH0746992A (ja) 1993-08-06 1995-02-21 Denki Kagaku Kogyo Kk ヒアルロン酸の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316926A (en) * 1983-11-25 1994-05-31 Miles Inc. Method for the microbiological production of non-antigenic hyaluronic acid
EP1073460A4 (en) * 1998-04-02 2001-05-23 Univ Oklahoma NUCLEIC ACID CODING FOR HYALURONAN SYNTHASE AND METHODS FOR USE
CA2563173A1 (en) * 2004-03-31 2005-10-20 Novozymes Biopolymer A/S Methods for producing hyaluronic acid in a bacillus cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412960B2 (ja) 1981-09-26 1992-03-06 Shiseido Co Ltd
JPS62289198A (ja) 1986-06-09 1987-12-16 Nippon Kayaku Co Ltd ヒアルロン酸の新規製造方法
JPS63141594A (ja) 1986-12-02 1988-06-14 Denki Kagaku Kogyo Kk ヒアルロン酸の製造方法
JPH0746992A (ja) 1993-08-06 1995-02-21 Denki Kagaku Kogyo Kk ヒアルロン酸の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLANK L.M. ET AL.: "Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate", BIOTECHNOL. BIOENG., vol. 90, no. 6, 20 June 2005 (2005-06-20), pages 685 - 693, XP002464474 *
LOWTHER D.R. ET AL.: "The role of glutamine in the biosynthesis of hyaluronate by streptococcal suspencions", BIOCHEM. J., vol. 62, no. 2, 1956, pages 304 - 314, XP008141973 *
See also references of EP2311971A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074000B2 (en) 2011-04-01 2015-07-07 Memorial Sloan Kettering Cancer Center T cell receptor-like antibodies specific for a WT1 peptide presented by HLA-A2
US9540448B2 (en) 2011-04-01 2017-01-10 Memorial Sloan Kettering Cancer Center T cell receptor-like antibodies specific for a WTI peptide presented by HLA-A2
JP2014528239A (ja) * 2011-09-30 2014-10-27 イルドン ファーム カンパニー リミテッド ストレプトコッカスディスガラクティエID9103菌株及びこれを利用したヒアルロン酸生産方法(StreptococcusdysgalactiaeID9103andmethodforproductionofhyaluronicacidusingthesame)
JP2014197985A (ja) * 2013-03-29 2014-10-23 栃木県 オルニチンを富化した納豆の製造方法

Also Published As

Publication number Publication date
AU2008359822A1 (en) 2010-01-28
KR101443429B1 (ko) 2014-09-24
US8927234B2 (en) 2015-01-06
CA2732092C (en) 2015-02-24
US20110207178A1 (en) 2011-08-25
JP5356388B2 (ja) 2013-12-04
CN102124120A (zh) 2011-07-13
CA2732092A1 (en) 2010-01-28
EP2311971B1 (en) 2013-03-13
EP2311971A1 (en) 2011-04-20
KR20110036845A (ko) 2011-04-11
AU2008359822B2 (en) 2013-12-05
EP2311971A4 (en) 2012-06-27
JPWO2010010631A1 (ja) 2012-01-05
CN102124120B (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5356388B2 (ja) ヒアルロン酸の製造方法
EP3438271B1 (en) Decanedioic acid produced by microbial fermentation and preparation method thereof
JP2009011315A (ja) ヒアルロン酸の製造方法
JPS61202694A (ja) 発酵法によるl−グルタミンの製造法
EP1916308A1 (en) Use of vitamins in fermentation processes for the production of amino acids
Moosavi-Nasab et al. Effect of fermentation time on xanthan gum production from sugar beet molasses
Aroskar et al. Effect of various nutritional supplements on hyaluronic acid production
JPH02219582A (ja) 発酵法によるl―スレオニンの製造法
JP2007267720A (ja) β−1,3−1,6−D−グルカンの製造方法
Devi et al. Production of biopolymer levan by Bacillus subtilis using non-ionic surfactants
JP6778918B2 (ja) 耐熱性のBacillus(バチルス)細菌を用いた、発酵による乳酸またはその塩を製造するためのプロセス
JP2009284826A (ja) ヒアルロン酸の製造方法
JPH0746992A (ja) ヒアルロン酸の製造方法
JP2009028032A (ja) ヒアルロン酸の製造方法
JPH0838188A (ja) イノシトールの製造方法およびグルコース代謝拮抗物質耐性株の取得法
TW201734198A (zh) 生產l-組胺酸之麩胺酸棒狀桿菌變異株與使用其生產l-組胺酸之方法
JPS63141594A (ja) ヒアルロン酸の製造方法
JPH1042860A (ja) イノシトールの製造方法およびヘキサクロロシクロヘキサン耐性株の取得法
JP2833084B2 (ja) 発酵法によるl―プロリンの製造法
JPH1042882A (ja) イノシトールの製造法とセチルトリメチルアンモニウム塩に耐性を有する株の取得法
JPS63129991A (ja) ヒアルロン酸の製法
JP3289349B2 (ja) 発酵法によるd−アラニンの製造法
DE2616673A1 (de) Verfahren zur herstellung von l(+)-weinsaeure und deren salzen
JP2000078996A (ja) ピルビン酸の製造方法
JPS58897A (ja) イノシンおよびグアノシンの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130427.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521572

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2732092

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008359822

Country of ref document: AU

Ref document number: 626/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008791671

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117004261

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008359822

Country of ref document: AU

Date of ref document: 20080725

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13055628

Country of ref document: US