WO2010005029A1 - 太陽電池用バックシート - Google Patents

太陽電池用バックシート Download PDF

Info

Publication number
WO2010005029A1
WO2010005029A1 PCT/JP2009/062455 JP2009062455W WO2010005029A1 WO 2010005029 A1 WO2010005029 A1 WO 2010005029A1 JP 2009062455 W JP2009062455 W JP 2009062455W WO 2010005029 A1 WO2010005029 A1 WO 2010005029A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
film
solar cell
weather
Prior art date
Application number
PCT/JP2009/062455
Other languages
English (en)
French (fr)
Inventor
大川原 千春
吉田 重信
善啓 山崎
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to EP09794473A priority Critical patent/EP2315259A1/en
Priority to JP2010519802A priority patent/JPWO2010005029A1/ja
Priority to US13/003,110 priority patent/US20110223419A1/en
Priority to CN2009801354354A priority patent/CN102150279A/zh
Publication of WO2010005029A1 publication Critical patent/WO2010005029A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6212Polymers of alkenylalcohols; Acetals thereof; Oxyalkylation products thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31565Next to polyester [polyethylene terephthalate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a solar cell backsheet that constitutes a solar cell module, and more particularly to a solar cell backsheet that retains excellent gas barrier properties and is excellent in weather resistance and light shielding properties.
  • the solar cell module has a configuration in which a transparent front substrate, a filler, a solar cell element, a filler, and a back sheet are laminated in this order from the light receiving surface side.
  • the term filler includes “sealant” used as a synonym, but in the present application, hereinafter, it is described as “filler”.
  • the solar cell backsheet needs durability in terms of weather resistance, hydrolysis resistance, gas barrier property, mechanical strength, adhesion, and the like in order to protect the solar cell element in outdoor long-term installation.
  • crystalline solar cells, polycrystalline silicon, amorphous silicon, etc. are used for solar cell elements.
  • Patent Document 1 describes a laminate of a fluorine film and a gas barrier film as a weather resistant film, and the fluorine film has low mechanical strength, is expensive, There was a problem that the supply amount was small.
  • Patent Documents 2 and 3 disclose a laminate of a white resin film, a gas barrier film, and a hydrolysis-resistant resin film.
  • the gas barrier film is a film obtained by simply depositing a metal oxide on the base film.
  • the gas barrier film has a gas barrier layer.
  • a surface treatment layer may be formed on the base film for improving the adhesion, but this is the same as the known form of the gas barrier film for general packaging, and the constituent material of the solar cell module As a result, the weather resistance and durability of the backsheet were not obtained.
  • Patent Document 4 discloses a coat of a cross-linked reaction product of polyester and isocyanate, but in the coat of a cross-linked reaction product of polyester and isocyanate, the ester group is hydrolyzed under high temperature and high humidity where the solar cell module is installed. Decomposition causes a marked decrease in adhesion, and pulling is insufficient because the gas barrier property decreases.
  • Patent Document 5 Although an acrylic urethane resin is disclosed in Patent Document 5 as an anchor coat layer for a moisture-proof film of a back cover material for a solar cell, this also deteriorates under high temperature and high humidity and cannot maintain adhesion as in the case of polyester. There was a problem.
  • JP 2000-174296 A Japanese Patent Laid-Open No. 2002-100788 JP 2007-150084 A Japanese Patent Publication No. 6-22976 JP 2002-26343 A
  • the present invention provides a solar cell backsheet that retains excellent gas barrier properties and is excellent in weather resistance and light shielding properties.
  • the present invention is a solar cell backsheet having a light-shielding colored layer and a weather-resistant polyester resin layer, and having a gas-barrier layer including a weather-resistant coat layer and an inorganic thin film layer between these layers. And (b) a crosslinked product of polycaprolactone polyol and / or polycarbonate polyol, (b) a crosslinked product of modified polyvinyl alcohol, and (c) an ultraviolet-stable group, an ultraviolet-absorbing group, and cyclohexane.
  • the present invention relates to a solar cell backsheet comprising at least one selected from an acrylic copolymer having at least one group selected from the group consisting of alkyl groups.
  • a solar cell backsheet having excellent gas barrier properties and excellent weather resistance and light shielding properties can be obtained.
  • ⁇ Light-shielding colored layer> [Base material of light-shielding colored layer]
  • resin constituting the base material of the light-shielding colored layer for example, polyethylene resin, polypropylene resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene are usually used.
  • ABS resin Polyvinyl chloride resin, fluorine resin, poly (meth) acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, polyaryl phthalate Resin, silicone resin, polysulfone resin, polyphenylene sulfide resin, polyethersulfone resin, polyurethane resin, acetal resin, cellulose resin and the like.
  • polyester resins and fluorine resins having high heat resistance, strength, weather resistance, durability, gas barrier properties against water vapor and the like are preferable.
  • a film made of a polyester-based resin can be easily used as a base material for a light-shielding colored layer because it is easy to add a function of increasing the reflectance by silver deposition.
  • the polyester resin include polyethylene terephthalate and polyethylene naphthalate.
  • polyethylene terephthalate having a good balance between various functions such as heat resistance and weather resistance and a price is particularly preferably used.
  • what gave the film surface treatment in order to prevent yellowing of polyester is also used preferably.
  • fluororesin examples include polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA) made of a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, and a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy resin
  • FEP hexafluoropropylene
  • the light-shielding colored layer reflects the sunlight that has passed through the solar cells to increase the power generation efficiency, and prevents ultraviolet degradation of the solar cell backsheet component by reflecting or absorbing ultraviolet rays.
  • various properties such as weather resistance, durability, heat resistance, thermal dimensional stability, and strength
  • it is used as a constituent material on the side in contact with the back side filler of the solar cell backsheet.
  • whitening is effective in terms of reflecting sunlight and improving power generation efficiency.
  • the design and decorativeness of the solar cell module can be improved by various colorings including blackening.
  • the “light reflection” in the “light-shielding colored layer” includes light scattering as well as light reflection.
  • a coloring method of the light-shielding colored layer a method of dispersing and adding a pigment as a colorant and / or a method of adding an incompatible polymer or fine particles to a substrate and forming voids and bubbles at the blend interface during film stretching.
  • Preferred examples of the pigment used for coloring the substrate include white pigments and black pigments.
  • white pigment For example, calcium carbonate, anatase type titanium oxide, rutile type titanium oxide, zinc oxide, lead carbonate, barium sulfate, basic lead carbonate, basic lead sulfate, basic silica Lead acid, zinc white, zinc sulfide, lithopone, antimony trioxide and the like can be used.
  • the rutile type is more preferable than the anatase type because it causes less yellowing after irradiating the polyester film with light for a longer time and is suitable for suppressing the change in color difference.
  • at least one inorganic fine particle selected from the group consisting of rutile type titanium oxide, barium sulfate, calcium carbonate and silicon dioxide is preferable from the viewpoint of stability and non-heavy metal compound, and barium sulfate and rutile type oxidation are preferable. Titanium is more preferable, and barium sulfate is more preferable.
  • Barium sulfate is a good white material that is physically and chemically stable and exhibits a reflectivity of 99% or more over almost the entire visible light region, and is a substance used as a white standard. Moreover, it is a material with high coloring property and concealment property, is efficiently whitened, and has a high light reflectivity effect as a solar cell backsheet.
  • a sodium sulfate solution is added to a solution of barium sulfate (barite powder) produced by pulverizing barite, which is a raw material of barium sulfate, and barium sulfide obtained by reduction bi-firing of barite, Precipitated barium sulfate produced by precipitation can be used.
  • Precipitated barium sulfate is preferable in that the particle diameter can be controlled by controlling reaction conditions in the production process, and a fine particle diameter can be achieved.
  • barite powder When barite powder is used, fine barite powder obtained by beneficiating barite with high barium sulfate purity, finely pulverizing and classifying, adjusting the particle size and removing coarse particles can be used.
  • barium sulfate it is desirable to use a high-purity product that does not contain impurities such as iron, manganese, strontium, and calcium as much as possible.
  • black pigment used as the colorant examples include carbon black and black iron oxide.
  • the colorant examples include organic dyes and pigments such as azo, anthraquinone, phthalocyanine, thioindigo, quinacridone, and dioxazine.
  • Inorganic pigments such as ultramarine, bitumen, chrome vermilion, bengara, cadmium red, molybdenum orange, and metallic powder pigments for metallic luster, etc. Carbon black and inorganic pigments from the viewpoint of long-term color stability Is preferred.
  • the colorant used by this invention may be only one type, and may be used in combination of 2 or more types.
  • the average particle size of the pigment as the colorant is preferably 5 nm to 30 ⁇ m, more preferably 10 nm to 3 ⁇ m, and even more preferably 50 nm to 1 ⁇ m.
  • the average particle diameter of the pigment is within the above range, there is no deterioration of dispersibility in the film resin due to aggregation or the like, and no coarse protrusion is generated on the film.
  • the degree of coloring of the film can be easily controlled.
  • the amount of the colorant added in the light-shielding colored layer is not particularly limited as long as the desired light-shielding property or light diffusibility can be imparted to the light-shielding colored layer.
  • the film is preferably in the range of 1 to 40% by mass, preferably in the range of 5 to 30% by mass, and more preferably in the range of 10 to 20% by mass.
  • the addition amount is within the above range, the film is excellent in durability, heat resistance and strength, and the dispersibility of the pigment in the resin layer is good.
  • various methods can be used as a method of incorporating the pigment into the light-shielding colored layer.
  • (a) a method of adding at the time of resin synthesis, (b) a method of adding to the resin, and melt-kneading (C) A method of producing master pellets in which a large amount of pigment is added in the above method (a) or (b), and kneading these with a resin not containing an additive to obtain a desired concentration;
  • the master batch method of (c) is preferable in terms of concentration controllability.
  • the incompatible polymer when using a polyester resin for the base material, a method of adding incompatible polymers and fine particles to the base material to form voids and bubbles at the blend interface during film stretching
  • the incompatible polymer include polyethylene, polypropylene, polybutene, polymethylpentene and the like.
  • the polymer may be a homopolymer or a copolymer. Among them, polyolefin having a small critical surface tension is preferable, and polypropylene, polymethylpentene, and the like are more preferable in terms of density reduction, heat resistance, and dielectric constant reduction.
  • a compatibilizing agent may be added to the light-shielding colored layer in order to control the particle size of the incompatible polymer in the substrate.
  • a compatibilizing agent for example, polyalkylene glycol or a copolymer thereof can be used, and specifically, polyethylene glycol, polypropylene glycol or the like is preferably used.
  • a surfactant or the like can be added to such an incompatible polymer to make it finer, but it can be added within a range that does not affect the electrical characteristics, heat resistance, hydrolysis resistance, and the like.
  • Specific examples of the fine particles added to the substrate include organic particles and inorganic particles.
  • organic particles examples include silicon particles, polyimide particles, crosslinked styrene-divinylbenzene copolymer particles, crosslinked polyester particles, Examples thereof include fluorine-based particles.
  • inorganic particles include calcium carbonate, silicon dioxide, barium sulfate and the like.
  • the method of adding such an incompatible polymer or fine particles is not particularly limited, but in the case of an incompatible polymer, a method of supplying each to an extruder and dispersing using the shearing force of the extruder Is advantageous in terms of cost.
  • a method of adding at the polymerization stage is preferable. Specifically, a method of adding to ethylene glycol is preferable.
  • a method of adding to ethylene glycol is preferable.
  • calcium carbonate particles it is preferable to add a phosphorus compound during addition to prevent yellowing and foaming.
  • coloring by adding a pigment is an ultraviolet ray in terms of preventing ultraviolet deterioration of a gas barrier film and a weather-resistant film located below the colored film when viewed from the sunlight receiving side. It is preferable because transmission can be suppressed.
  • the light-shielding colored layer Various additives and the like can be blended in the light-shielding colored layer for the purpose of improving and modifying processability, heat resistance, weather resistance, mechanical properties, dimensional stability, and the like.
  • the additive include a lubricant, a crosslinking agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing fiber, a reinforcing agent, an antistatic agent, a flame retardant, a flame retardant, a foaming agent, and an antifungal agent.
  • the light-shielding colored layer preferably constitutes a back sheet as the light-shielding colored film.
  • the light-shielding colored film may be any film of non-stretching, uniaxial stretching, and biaxial stretching.
  • the forming method is not particularly limited.
  • a film is formed by a known method such as an extrusion method, a cast forming method, a T-die method, a cutting method, an inflation method, and then, if necessary, a tenter method, a tubular method, or the like.
  • uniaxial stretching, simultaneous or sequential biaxial stretching may be performed.
  • the light-shielding colored film can be formed by a single layer extrusion method or a multilayer coextrusion method.
  • each layer may be colored, or the middle layer may be colored and the outer layer may be transparent.
  • the outer layer transparent, it is possible to reduce the amount of colorant used by concentrating the colored layer in the middle layer as compared with a condition having light reflectivity equivalent to the case of coloring the single layer or the outer layer. it can.
  • the outer layer is made transparent, since the colorant and voids are not included, the bonding force between the resins in the outer layer does not weaken, so the outer layer on the side in contact with the filler is filled with the outer layer. Adhesion with the material or adhesion between the outer layer and the easy adhesion layer is improved, and the adhesion is maintained even under high temperature and high humidity.
  • the light-shielding colored layer is a biaxially stretched polyester film to which a white pigment is added
  • the polyester of the colored layer As the hydrolysis of the resin progresses, in the peeling test with the filler, cohesive peeling of the colored polyester film filler surface layer is likely to occur, but if the pigment addition is the middle layer by coextrusion molding, the outer layer is no pigment added.
  • the thickness of the light-shielding colored layer can be appropriately selected according to the use of the solar cell backsheet and the specifications of the solar battery cell and module, but is sufficient when the light-shielding colored layer is provided with a sunlight reflecting function. In order to obtain good chromaticity and reflection intensity and maintain basic film strength, it is preferably 20 ⁇ m to 250 ⁇ m, more preferably 50 to 150 ⁇ m.
  • “reflectivity” when the light-shielding colored layer has reflectivity means that the transmittance of light having a wavelength of 350 nm is 1.0% or less. From the viewpoint of weather resistance, 0.8 % Or less, and more preferably 0.5% or less.
  • the whiteness is measured by the Hunter method, JIS L1015, and the value is preferably 75% or more in view of increasing the power generation efficiency of the solar cell, and more preferably 80%.
  • the above is preferable.
  • the heat shrinkage rate of the colored film is preferably 2% or less in heating at 150 ° C. for 30 minutes (JIS C2151) from the viewpoint of preventing the productivity from being reduced due to the shrinkage of the film in the thermocompression bonding step of manufacturing the solar cell module. Is preferably 1% or less, 0.2 to 0.5%, or 0.005 to 0.5%.
  • the light-shielding colored layer has good adhesion to ethylene-vinyl acetate copolymer (EVA), polyvinyl butyral resin, modified polyolefin resin, etc. that are frequently used as a filler constituting solar cell modules. It is preferable to further provide an easy adhesion layer on the outer surface of the light-shielding colored layer constituting the back sheet, that is, the side in contact with the back-side filler of the light-shielding colored layer.
  • the easy-adhesion layer can be provided by various methods, but usually the molded easy-adhesion film is bonded to the colored layer with an adhesive or the like, when the easy-adhesion film is extruded by an extruder.
  • extrusion laminating method in which the colored layer is simultaneously bonded, and a coating method in which it is dissolved in a solvent, water or the like and applied to the colored layer surface.
  • a polyolefin resin is suitable as the resin to be used.
  • Polyolefin resins are highly heat-sealable due to their resin properties, and can maintain strong adhesion to the filler under high temperature and high humidity tests.
  • the adhesive used between the layers of the backsheet can be similarly applied.
  • polyolefin-based resin examples include polyethylene-based resins, polypropylene-based resins, and mixtures thereof, and can be appropriately selected according to the thermocompression bonding conditions with the filler and the backsheet laminating conditions.
  • polyethylene resins include ethylene homopolymers, low density polyethylene, linear low density polyethylene, high density polyethylene, metallocene polyethylene, and mixtures thereof.
  • polypropylene resin examples include a propylene homopolymer, a propylene copolymer, and a mixture thereof.
  • the thickness of the easy-adhesion layer is about 10 to 200 ⁇ m, preferably 30 to 150 ⁇ m, more preferably 50 to 120 ⁇ m. If it is thin, the stress relaxation between the filler and the back sheet becomes insufficient in the peeling test, and peeling occurs. It tends to be easy. If it is thick, the rigidity as the back sheet tends to be insufficient or the curl tends to increase. In these respects, the ratio of the thickness of the easy-adhesion layer to the thickness from the light-shielding colored layer to the weather-resistant polyester resin layer of the back sheet is 10 to 100%, preferably 15 to 75%, more preferably 20 to 50. % Is good.
  • the relationship between the tensile modulus ratio and the thickness ratio of the layer from the light-shielding colored layer of the back sheet to the weather-resistant polyester-based resin layer to the easily adhesive layer is preferably 0.5 to 10 times, preferably 1 to 8 A relationship of double, and further 2 to 5 times is good. Further, the thickness unevenness is preferably within ⁇ 10% in terms of moldability at the time of vacuum lamination for producing a solar cell module. In addition, it is desirable from the viewpoint of improving adhesion that the surface of the polyolefin resin layer is subjected to surface modification treatment such as corona discharge treatment, ozone treatment, plasma treatment and the like.
  • the resin used is not particularly limited, and examples thereof include acrylic resins, epoxy resins, phenol resins, polyester resins, urethane resins, styrene resins, and modified products thereof. Moreover, you may use these in mixture of 2 or more types. Either oily or aqueous can be used.
  • acrylic resin for example, a polymer containing an alkyl (meth) acrylate monomer as a main component is used, and an amide group-containing acrylate monomer, a hydroxyl group-containing acrylate monomer, a glycidyl group-containing acrylate monomer, or the like is copolymerized. Can be used.
  • epoxy resins include bisphenol A type epoxy resins and phenol novolac type epoxy resins, but various polyfunctional epoxy compounds such as glycidyl group-containing acrylic resins, glycols, polyhydric alcohols, and dicarboxylic acids.
  • An epoxy compound obtained by reacting chlorohydrin and epichlorohydrin can also be used.
  • the curing agent compounds having various carboxylic acid groups, amino groups, and oxazoline groups can be used.
  • polyester resin examples include various resins obtained by using two or more polybasic acids or ester-forming derivatives thereof and one or two or more polyols or ester-forming derivatives thereof.
  • Polyurethane resins such as polyester, acrylic and ether polyols, chain isocyanate extenders, diisocyanates and their hydrogenated products, or polyisocyanates such as adducts, burettes and isocyanurates
  • the polyurethane obtained by making it be mentioned is mentioned.
  • ethyleneimine or a derivative thereof, or a carboxylic acid group, a sulfonic acid group, an amino group, or a salt thereof can be used in combination as a functional group that acts on the polyisocyanate described above.
  • styrene resins include styrene-maleic acid copolymers, styrene-vinyl acetate copolymers, and styrene- (meth) acrylic copolymers.
  • acrylics the (meth) acrylic monomers described above are used. Can be used.
  • polyester resin excellent in hydrolysis resistance and heat resistance
  • polyester resin polyethylene terephthalate, polyethylene naphthalate, polyethylene-2,6-naphthalenedicarboxylate is preferably used, and polyethylene terephthalate and polyethylene naphthalate are more preferably used from the viewpoint of industrial productivity.
  • a film made of polyethylene terephthalate is excellent in terms of high transparency, productivity, and versatility, and a film made of polyethylene naphthalate has high hydrolysis resistance, heat resistance, toughness, low oligomerity, and low water vapor permeability. Excellent in terms of sex.
  • Polyethylene naphthalate is a polyester resin having ethylene naphthalate as the main repeating unit, and is synthesized with naphthalenedicarboxylic acid as the main dicarboxylic acid component and ethylene glycol as the main glycol component.
  • the polyethylene naphthalate used in the weather resistant polyester resin layer is preferably such that the ethylene naphthalate unit is 80 mol% or more of the total repeating units of the polyester, from the viewpoint of excellent hydrolysis resistance, strength, and barrier properties. .
  • naphthalenedicarboxylic acid examples include 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, and the like. From this aspect, 2,6-naphthalenedicarboxylic acid is preferred.
  • the polyethylene naphthalate resin preferably contains an aromatic polyester.
  • an aromatic polyester in polyethylene naphthalate, knot strength, peel resistance, mechanical strength, and the like can be improved while maintaining the hydrolysis resistance of the polyethylene naphthalate film.
  • the content of the aromatic polyester is preferably 1 to 10% by mass in the polyethylene naphthalate film. By making content of aromatic polyester into the said range, knot strength, peeling resistance, mechanical strength, etc. can be improved effectively.
  • the aromatic polyester is preferably a polyester obtained by copolymerizing a terephthalic acid component and 4,4′-diphenyldicarboxylic acid as a main dicarboxylic acid component and ethylene glycol as a main glycol component.
  • the polyester-based resin can be produced by directly esterifying an acid component and a diol component, or by using a dialkyl ester as an acid component and performing a transesterification reaction with a diol component.
  • the reaction product is heated under reduced pressure to remove excess diol component and melt polymerized while removing the second stage reaction, and the second stage reaction product is further solid-phase polymerized.
  • Examples include a method of producing by a third stage reaction.
  • the polyester resin may contain a polyether compound in order to adjust the viscosity of the polyester resin.
  • the polyether compound is not particularly limited, and for example, a polyether compound containing polyethylene oxide or diol as a main constituent can be used.
  • polyether compound preferably used in this embodiment examples include a polyether compound containing at least one of polyethylene oxide, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and a copolymer of these polyether compounds. Can be mentioned.
  • an end-capped polyether compound may be used as the polyether compound. This is because the end-capped polyether compound has an advantage that hydrolysis of the polyester resin can be suppressed.
  • the end-capped polyether compound include a polyether compound obtained by end-capping the hydroxyl group of the polyether end with alkyl etherification, that is, methoxy group, ethoxy group or the like.
  • the average molecular weight of the polyether compound is not particularly limited, but is preferably a number average of 500 to 10,000, more preferably 700 to 5,000, in terms of compatibility with the polyester resin. is there.
  • the content of the polyether compound used in this embodiment is not particularly limited, but usually it is preferably in the range of 0.1 to 10% by mass in the polyester-based resin, and in particular 0.2 to 7% by mass. % Is preferable, and in the range of 0.2 to 5% by mass is particularly preferable.
  • the strength retention after 3000 hours at 85 ° C. and 85% relative humidity of the weather resistant polyester resin layer of the solar cell backsheet is preferably 50% or more, and more preferably 60% or more.
  • the strength retention was determined by cutting the weather-resistant polyester resin layer into a 15 mm width, measuring the tensile strength at break using a tensile tester before and after the 85 ° C. relative humidity 85% 3000 hour environmental test, and after the test before the environmental test. This represents the breaking strength ratio (%).
  • the weather resistance of the weather resistant polyester resin layer is greatly influenced by the molecular weight of the main raw material resin, the amount of terminal carboxyl groups, the amount of oligomer, and the like, and the effect of adding a hydrolysis resistance, antioxidant, etc. is strongly influenced.
  • the molecular weight of the polyester-based resin is preferably a number average molecular weight in the range of 18,000 to 42,000 in terms of weather resistance, particularly hydrolysis resistance, and in particular, 19,000 to 40,000. It is preferable to be within the range.
  • the number average molecular weight can be measured by the GPC (gel permeation chromatography) method under the following conditions.
  • Apparatus Gel permeation chromatograph GCP-244 (manufactured by WATERS)
  • Column Two Shodex HFIP 80M (made by Showa Denko KK)
  • Solvent Hexafluoropropanol (0.005N-sodium trifluoroacetate)
  • Flow rate 0.5 ml / min
  • Temperature 23 ° C
  • Sample concentration 0.06% (complete dissolution, filtration: Myshori disk W-13-5)
  • Injection amount 0.300 ml
  • Detector R-401 type differential refractometer (manufactured by WATERS)
  • Fair molecular weight PET-DMT (standard product)
  • the amount of the terminal carboxyl group of the polyester resin is preferably 5 to 40 eq / ton from the viewpoints of hydrolyzability of the polyester resin in a high temperature and high humidity atmosphere, durability of the back sheet for solar cell, productivity, and the like. 15 eq / ton is preferred.
  • the amount of the oligomer which is a low polymer having a repeating number (degree of polymerization) of about 2 to 20 in the polyester resin is preferably from 0.1 to 0.8% by mass, more preferably from the viewpoint of hydrolyzability. 0.5 mass% or less, More preferably, it is 0.3 mass% or less.
  • the polyethylene naphthalate resin has a characteristic that the amount of oligomer is small.
  • the oligomer content is measured by, for example, 100 mg of a polyester resin with phenol / 1,2-dichlorobenzene (mass ratio: 50/50), phenol / 1,1,2,2-tetrachloroethane (mass ratio: 50/50).
  • O-chlorophenol, dichloroacetic acid or the like can be dissolved in 2 mL of a solvent, and the solution can be measured by liquid chromatography and analyzed by mass% based on the polyester resin.
  • the weather-resistant polyester resin layer preferably contains a carbodiimide compound.
  • a carbodiimide compound By containing a carbodiimide compound, the terminal carboxyl group in a polyester-type resin layer and the carboxyl group produced
  • the content of the carbodiimide compound is preferably 0.1 to 10% by mass, and more preferably 0.5 to 3% by mass.
  • carbodiimide compound examples include N, N′-diphenylcarbodiimide, N, N′-diisopropylphenylcarbodiimide, N, N′-dicyclohexylcarbodiimide, 1,3-diisopropylcarbodiimide, and 1- (3-dimethylaminopropyl) -3.
  • -Monocarbodiimides such as ethylcarbodiimide
  • polycarbodiimide compounds such as poly (1,3,5-triisopropylphenylene-2,4-carbodiimide).
  • N, N′-diphenylcarbodiimide and N, N′-diisopropylphenylcarbodiimide can be preferably used from the viewpoint of versatility.
  • the molecular weight of the carbodiimide compound is generally in the range of 200 to 1,000, particularly in the range of 200 to 600, from the viewpoint of the dispersibility and scattering properties of the compound.
  • the polyester resin layer preferably contains an antioxidant in addition to the carbodiimide compound.
  • an antioxidant in addition to the carbodiimide compound.
  • the hydrolysis resistance is further improved, and the decomposition of the carbodiimide compound can be suppressed.
  • Specific examples of the antioxidant include hindered phenol compounds and thioether compounds, and hindered phenol compounds are preferred from the viewpoint of antioxidant properties.
  • the content of the antioxidant is preferably 0.05 to 1% by mass, preferably 0.1 to 0%, from the viewpoint of maintaining the carbodiimide decomposition-suppressing function and hydrolysis resistance and maintaining the color tone of the resin layer. More preferably, 5% by mass.
  • the mass ratio of the antioxidant content to the carbodiimide compound content is preferably 0.1 to 1.0, more preferably 0.15 to 0.8, from the viewpoint that the effect of suppressing hydrolysis is sufficient.
  • the method for adding the carbodiimide compound and the antioxidant may be a method of kneading the polyester resin or a method of adding it during the polycondensation reaction of the resin.
  • the thickness of the weather-resistant polyester resin layer is preferably 10 to 500 ⁇ m, more preferably 25 to 200 ⁇ m, from the viewpoint of weather resistance and durability. If the thickness is too thin, the strength drop after the 85 ° C. relative humidity 85% test is large, and if it is too thick, the cost increases.
  • the weather-resistant polyester-based resin layer can be produced by a conventionally known method. For example, when forming as a polyester-based resin film, the raw material resin is melted by an extruder and extruded by an annular die or a T-die, By rapidly cooling, an unstretched film which is substantially amorphous and not oriented can be produced. Further, by using a multilayer die, it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, and a multilayer film made of various kinds of resins.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and the film flow (vertical axis) direction or the film flow direction.
  • a film stretched in at least a uniaxial direction can be produced by stretching in a direction perpendicular to the direction (horizontal axis) and heat-setting.
  • the draw ratio and heat setting temperature can be arbitrarily set, but the heat shrinkage rate at 150 ° C. for 30 minutes is preferably 1.0% or less, more preferably 0.1 to 0.5%, still more preferably 0. It is a condition that satisfies 0.005 to 0.5%.
  • the polyester resin film is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, polyethylene terephthalate and / or a coextruded biaxially stretched film of polyethylene naphthalate and other plastics.
  • a thermoplastic polymer is preferable, and any resin that can be used for ordinary packaging materials can be used without any particular limitation.
  • polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene, amorphous polyolefins such as cyclic polyolefins, polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalate, nylon 6, nylon 66, polyamide such as nylon 12, copolymer nylon, ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, polyvinyl butyral, Examples include polyarylate, fluororesin, and acrylate resin.
  • polyester, polyamide, and polyolefin are preferable from the viewpoint of film properties.
  • polyethylene terephthalate and polyethylene naphthalate are more preferable from the viewpoint of film strength.
  • polyethylene naphthalate is preferable in terms of weather resistance and hydrolysis resistance.
  • the base material of the gas barrier layer the above-described base material of the light-shielding colored layer or the base material of the weather-resistant polyester resin layer can be used. Functions and weather resistance can be combined.
  • the base material include an antistatic agent, a light blocking agent, an ultraviolet absorber, a hydrolysis resistance improver, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, and an antiblocking agent.
  • it can contain known additives such as antioxidants.
  • the substrate is preferably used in the form of a substrate film.
  • the thermoplastic polymer film as the base film is formed by using the above-mentioned raw materials, and when used as the base film, it may be unstretched or stretched. . Moreover, you may laminate
  • Such a base film can be produced by a conventionally known method. For example, the raw material resin is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be oriented substantially amorphously. No unstretched film can be produced. Further, by using a multilayer die, it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, and a multilayer film made of various kinds of resins.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and the film flow (vertical axis) direction or the film flow direction.
  • a film stretched in at least a uniaxial direction can be produced by stretching in a direction perpendicular to it (horizontal axis).
  • the draw ratio can be arbitrarily set, but the heat shrinkage rate of the film at 150 ° C. for 30 minutes is 0.01 to 3%, more preferably 0.01 to 1%, and still more preferably 0.005 to 0.5%. .
  • a biaxially stretched polyethylene terephthalate film a biaxially stretched polyethylene naphthalate film, and a polyethylene terephthalate and / or a coextruded biaxially stretched film of polyethylene naphthalate and other plastics are preferable.
  • biaxially stretched polyethylene naphthalate films biaxially stretched films of polyethylene naphthalate and polyethylene terephthalate, etc. A film is preferred.
  • the thickness of the base film is usually in the range of 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, depending on its use from the viewpoint of mechanical strength, flexibility, etc. as the base material of the solar cell backsheet of the present invention. Also included are sheets that are selected and have a large thickness.
  • the film is subjected to normal chemical treatment, discharge treatment, etc. before application of the weather-resistant coating agent. A surface treatment may be applied.
  • the gas barrier layer has long-term weather resistance in terms of use in a solar cell backsheet and must maintain gas barrier properties. For this reason, in the present invention, a weather-resistant coating layer is formed in order to impart the bleeding resistance of the base film and the adhesion to the inorganic thin film from the viewpoint of long-term weather resistance of the gas barrier layer.
  • the weather-resistant coating layer comprises: And an acrylic copolymer having at least one group selected from the group consisting of cycloalkyl groups.
  • (I) Cross-linked product of polycaprolactone polyol and / or polycarbonate polyol Conventionally, polyester polyols and polyether polyols are frequently used as anchor coating agents, but polyester polyols are easily hydrolyzed. Polycaprolactone polyol is superior in water resistance compared to adipate polyester polyol, and is superior in weather resistance and heat resistance compared to polyether polyol. Moreover, polycarbonate polyol is excellent in heat resistance, moisture resistance, and weather resistance compared with polyester polyol and polyether polyol. From the above viewpoint, in the present invention, a crosslinked product of polycaprolactone polyol and / or polycarbonate polyol is used as a weather-resistant coating agent.
  • Polycaprolactone polyol and polycarbonate polyol are used to adjust the surface treatment degree such as corona treatment of the base film.
  • Interlayer adhesion can be improved compared to polyester polyol by means such as increasing the compounding ratio of the crosslinkable compound in the coating material, thereby further improving the weather resistance of the coating layer.
  • Polycaprolactone polyol Polycaprolactone polyol is produced by ring-opening polymerization of ⁇ -caprolactone in the presence of a catalyst having the following polyhydric alcohol as an initiator according to a known method.
  • polyhydric alcohols that are polymerization initiators for ⁇ -caprolactone include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexane.
  • Examples include diol, neopentyl glycol, trimethylol propane, glycerin, pentaerythritol, polytetramethylene ether glycol, and polymerization products obtained by ring-opening polymerization of ethylene oxide, propylene oxide, and butylene oxide using these polyhydric alcohols as initiators.
  • polyhydric alcohols such as copolymerized products; cyclohexanedimethanol, cyclohexanediol, hydrogenated bisphenol A and their glycols as initiators, ethylene oxide, propylene oxide, butyrate Polyhydric alcohols containing a cyclohexyl group, such as polymerization products or copolymerization products obtained by ring-opening polymerization of bisphenol; bisphenol A, hydroquinone bis (2-hydroxyethyl ether), p-xylylene glycol, bis ( ⁇ - Hydroxyethyl) terephthalate and polyhydric alcohols containing aromatic groups such as polymerization products or copolymerization products obtained by adding ethylene oxide, propylene oxide, butylene oxide using these glycols as initiators; and dimethylolpropionic acid, Polyhydric alcohols having various functional groups such as glycols having a carboxyl group such as diphenolic acid and glycols having a tertiary
  • Polycarbonate polyol can be produced by a known method.
  • the polycarbonate diol include aliphatic diols having 2 to 12 carbon atoms such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, and 1,10-decanediol.
  • a polycarbonate diol obtained by polycondensation by allowing diphenyl carbonate or phosgene to act on these mixtures is preferably used.
  • Repeated structural unit — [(CH 2 ) 3 —OC (O) O] — or — [(CH 2 ) 2 C (CH 3 ) (CH 2 ) 2 —OC (O Ether-modified polycarbonate polyols having O) — are preferred.
  • the number average molecular weight is a polystyrene conversion value of the gel permeation chromatography analysis described above.
  • the polycarbonate polyol performs the crosslinking reaction between the polycarbonate polyol and the crosslinking agent homogeneously, that is, does not partially increase the molecular weight, and controls the molecular weight distribution of the product and the hydrolysis resistance after crosslinking.
  • the terminal hydroxyl index is preferably 92.5 to 98.5, more preferably 95.0 to 97.5.
  • the terminal hydroxyl group index is a percentage of the peak area ratio of the polyol with respect to the sum of the peak areas of the monoalcohol and the polyol analyzed by gas chromatography. In the gas chromatography, the temperature was raised from 40 ° C. to 220 ° C. at 10 ° C./min, held for 15 minutes, and analyzed using a flame ionization detector (FID).
  • FID flame ionization detector
  • crosslinking agent for obtaining a crosslinked product of a crosslinking agent polycaprolactone polyol and / or polycarbonate polyol
  • a compound containing two or more functional groups per molecule that undergoes crosslinking and curing reaction with the hydroxyl groups of the polycaprolactone polyol and / or polycarbonate polyol can be selected suitably, and can be used.
  • a crosslinking agent a compound or polymer having a phenol group, an epoxy group, a melamine group, an isocyanate group, or a dialdehyde group is exemplified.
  • a compound or polymer containing an epoxy group, a melamine group or an isocyanate group is preferable from the viewpoint of crosslinking reactivity and pot life, and an isocyanate compound and / or an epoxy compound are more preferable from the viewpoint of pot life control.
  • an isocyanate compound is desirable as a two-component reactive coating agent in terms of component reactivity, weather resistance derived therefrom, and hardness and flexibility of the coating layer.
  • the hydroxyl group of polyvinyl alcohol is silanol group, silyl group, amino group, ammonium group, alkyl group, isocyanate group, oxazoline group, methylol group, nitrile group, acetoacetyl group, cation group, carboxyl group, carbonyl group.
  • modification by acetoacetalization or butyralization is preferable from the viewpoint of water resistance under high temperature and high humidity. Further, since the modified polyvinyl alcohol has a hydroxyl group, the water resistance can be further improved by crosslinking the hydroxyl group.
  • Polyvinyl butyral which is a modified product of the above butyral, can be produced by a known method. However, it has good weather resistance, increases solvent solubility, and gives a uniform coating layer. Polyvinyl butyral having a degree of conversion of preferably 50 to 80 mol%, more preferably 60 to 75 mol%, and an isotactic triad type residual hydroxyl group content of preferably 1 mol% or less, more preferably 0.5 mol% or less. Is desirable.
  • the weather resistance and solvent solubility of polyvinyl butyral depends on the degree of butyralization, and it is desirable that the degree of butyralization is high. Is not industrially efficient. Moreover, solvent compatibility changes with the kind of residual hydroxyl group, and when there are many isotactic triad type hydroxyl groups, the solubility of an organic solvent will be inferior.
  • Polyvinyl acetoacetal which is a modified product by acetoacetalization, can be prepared by a known method, but it is desirable that the degree of acetalization is high in terms of heat resistance, and preferably the degree of acetalization is 50.
  • an aldehyde having 3 or more carbon atoms is used in order to obtain a polyvinyl acetoacetal resin having a narrow particle size distribution in order to increase the solvent solubility and form a uniform coating layer. It is desirable to mix an appropriate amount and maintain at an appropriate temperature after precipitation of the acetalized product.
  • the cross-linking agent for obtaining a cross-linked product of the cross- linking agent- modified polyvinyl alcohol is not particularly limited as long as it is a compound or polymer containing two or more functional groups that undergo cross-linking curing reaction per molecule.
  • One type or two or more types can be appropriately selected and used according to the type of group.
  • examples of the crosslinkable compound include compounds having a phenol group, an epoxy group, a melamine group, an isocyanate group, and a dialdehyde group, or a polymer.
  • a compound or polymer containing an epoxy group, a melamine group or an isocyanate group is preferred from the viewpoint of crosslinking reactivity and pot life, and an isocyanate group is particularly preferred from the viewpoint of pot life control.
  • a method for imparting weather resistance to the polymer there is generally a method containing a UV stabilizer and a UV absorber, but those that are relatively low molecular weight products bleed out from the main material in long-term use, Weather resistance is difficult to maintain.
  • weather resistance can be exhibited for a long time without bleeding out by copolymerizing an ultraviolet-stable group and an ultraviolet-absorbing group with a water-resistant cycloacryl group.
  • the UV-stable group has an action of trapping and inactivating the generated radical, and specifically, a hindered amine group is preferably mentioned from the above points. That is, the stable nitroxy radical generated in the hindered amine group is combined with the active polymer radical and returns to the original stable nitroxy radical, and this is repeated.
  • the ultraviolet absorbing group is a group that suppresses generation of radicals by absorbing irradiated ultraviolet rays. From this point, specific examples include a benzotriazole group and / or a benzophenone group.
  • the cycloalkyl group has a function of imparting water resistance and water vapor permeability resistance to a resin such as an acrylic copolymer constituting the weather resistant coating layer.
  • the gas-barrier film has a gas barrier deterioration. Can be prevented.
  • a synergistic effect can be acquired in the point of a weather resistance by combining an ultraviolet-ray stable group, an ultraviolet-ray absorption group, and a cycloalkyl group.
  • the acrylic copolymer is obtained by copolymerizing at least one selected from the group consisting of a polymerizable UV-stable monomer, a polymerizable UV-absorbing monomer, and a cycloalkyl (meth) acrylate. Can do.
  • the polymerizable UV-stable monomer preferably has a hindered amine group, and more preferably has at least one hindered amine group and a polymerizable unsaturated group in the molecule.
  • a polymerizable ultraviolet-stable monomer Preferably it is a compound represented by following formula (1) or (2).
  • R 1 represents a hydrogen atom or a cyano group
  • R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbon group having 1 or 2 carbon atoms
  • R 4 represents a hydrogen atom or a carbon atom having 1 to 2 carbon atoms
  • 18 represents a hydrocarbon group
  • X represents an oxygen atom or an imino group.
  • R 1 represents a hydrogen atom or a cyano group
  • R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbon group having 1 or 2 carbon atoms
  • X represents an oxygen atom or an imino group.
  • specific examples of the hydrocarbon group having 1 to 18 carbon atoms represented by R 4 include a methyl group, an ethyl group, and a propyl group.
  • R 4 is preferably a hydrogen atom or a methyl group from the viewpoint of light stabilization reactivity.
  • the hydrocarbon group having 1 or 2 carbon atoms represented by each of R 2 and R 3 include a methyl group and an ethyl group, and a methyl group is preferable.
  • UV-stable monomer represented by the general formula (1) examples include 4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloylamino. -2,2,6,6-tetramethylpiperidine, 4- (meth) acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4- (meth) acryloylamino-1,2,2,6 , 6-Pentamethylpiperidine, 4-cyano-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 4 -Crotonoylamino-2,2,6,6-tetramethylpiperidine and the like.
  • 4- (meth) acryloyl is used from the viewpoint of light stabilization reactivity.
  • Oxy-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloyloxy-1,2,2,6 6-pentamethylpiperidine, 4- (meth) acryloylamino-1,2,2,6,6-pentamethylpiperidine are preferred, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine, 4-methacryloyl Oxy-1,2,2,6,6-pentamethylpiperidine is more preferred.
  • These may be used alone or in a suitable mixture of two or more.
  • the ultraviolet-stable monomer of General formula (1) is not limited to these compounds.
  • UV-stable monomer represented by the general formula (2) examples include 1- (meth) acryloyl-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine.
  • 1- (meth) acryloyl-4-cyano-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 1-crotonoyl-4-crotoyloxy-2,2,6,6- Tetramethylpiperidine and the like are mentioned.
  • 1-acryloyl-4-acryloylamino-2,2,6,6-tetramethylpiperidine, 1-methacryloyl-4 is used from the viewpoint of versatility of raw materials.
  • the polymerizable UV-stable monomer is preferably contained in an amount of 0.1 to 50% by mass in the total polymerizable monomer component for obtaining the acrylic copolymer from the viewpoint of light stabilization performance. More preferably, it is contained in the range of 0.2 to 10% by mass, and still more preferably 0.5 to 5% by mass. When the content is within the above range, the weather resistance is sufficiently exhibited.
  • Polymerizable UV Absorbing Monomer Preferred examples of the polymerizable UV absorbing monomer used in the present invention include polymerizable benzotriazoles and / or polymerizable benzophenones.
  • the polymerizable benzotriazoles are preferably compounds represented by the following formulas (3) and (4).
  • R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R 6 represents a lower alkylene group
  • R 7 represents a hydrogen atom or a methyl group
  • Y represents a hydrogen atom, a halogen atom
  • R 8 represents an alkylene group having 2 or 3 carbon atoms
  • R 9 represents a hydrogen atom or a methyl group.
  • the hydrocarbon group having 1 to 8 carbon atoms represented by R 5 is specifically a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group.
  • Chain hydrocarbon groups such as hexyl group, heptyl group, octyl group; alicyclic hydrocarbon groups such as cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group; phenyl group, tolyl group, xylyl And aromatic hydrocarbon groups such as benzyl group and phenethyl group.
  • R 5 is preferably a hydrogen atom or a methyl group.
  • the lower alkylene group represented by R 6 is preferably an alkylene group having 1 to 6 carbon atoms.
  • a straight chain such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group or a hexylene group is used.
  • Examples include a chain alkylene group and a branched alkylene group such as an isopropylene group, isobutylene group, s-butylene, t-butylene group, isopentylene group and neopentylene group, preferably a methylene group, an ethylene group and a propylene group.
  • Examples of the substituent represented by Y include hydrogen; halogen such as fluorine, chlorine, sulfur, iodine, etc .; hydrocarbon group having 1 to 8 carbon atoms represented by R 5 ; methoxy group, ethoxy group, propoxy group, butoxy Groups, pentoxy groups, heptoxy groups and the like, lower alkoxy groups having 1 to 8 carbon atoms; cyano groups; nitro groups. From the viewpoint of reactivity, hydrogen atoms, chlorine atoms, methoxy groups, t-butyl groups, cyano groups are preferred. Group, a nitro group.
  • ultraviolet absorbing monomer represented by the general formula (3) examples include 2- [2 ′ -hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [ 2 '-hydroxy-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2 '-hydroxy-3' -t-butyl-5 '-(methacryloyloxyethyl) phenyl] -2H-benzo Triazole, 2- [2 ′ -hydroxy-5 ′ -t-butyl-3 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl ] -5-chloro-2H-benzotriazole, 2- [2 '-hydroxy-5'-(methacryloyloxyethyl)
  • the alkylene group having 2 or 3 carbon atoms represented by R 8 is specifically an ethylene group, trimethylene group, Propylene group and the like.
  • Examples of the ultraviolet absorbing monomer represented by the general formula (4) include 2- [2 ′ hydroxy-5 ′-( ⁇ -methacryloyloxyethoxy) -3′-t-butylphenyl] -4- t-butyl-2H-benzotriazole, 2- [2 ′ hydroxy-5 ′-( ⁇ -acryloyloxyethoxy) -3′-t-butylphenyl] -4-t-butyl-2H-benzotriazole, 2- [ 2 ′ hydroxy-5 ′-( ⁇ -methacryloyloxy n-propoxy) -3′-t-butylphenyl] -4-tert-butyl-2H-benzotriazole, 2- [2 ′ hydroxy-5 ′-( ⁇ - Methacryloyloxy
  • Polymerizable benzophenones used as the polymerizable UV-absorbing monomer include, for example, 2,4-dihydroxybenzophenone, 2,2 ′, 4-trihydroxybenzophenone and glycidyl acrylate, or glycidyl.
  • the polymerizable ultraviolet absorbing monomer is used to further improve the weather resistance of the coat layer containing the resulting acrylic copolymer, and the content ratio in the total polymerizable monomer component is as follows. is there.
  • polymerizable benzotriazoles preferably from 0.1 to 50% by mass, more preferably from 0.5 to 40% by mass, and still more preferably from 1 to 30 from the viewpoint of sufficient ultraviolet absorption performance and prevention of coloring due to ultraviolet irradiation.
  • % By mass In the case of polymerizable benzophenones, the amount is preferably 0.1 to 10% by mass, more preferably 0.2 to 5.0% by mass, from the viewpoint of sufficient ultraviolet absorption performance and compatibility.
  • Cycloalkyl (meth) acrylate used in the present invention is the coating film hardness, elasticity, solvent resistance, resistance, especially when the resulting acrylic copolymer is used for two-component urethane resin coatings. It is a component used to improve gasoline and weather resistance.
  • Preferred examples of the cycloalkyl (meth) acrylate include cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and cyclododecyl (meth) acrylate. These can be used alone or in combination of two or more.
  • the cycloalkyl (meth) acrylate is preferably used in the polymerizable monomer component in the range of 5 to 80% by mass, more preferably 10 to 70% by mass, and further preferably 15 to 50% by mass.
  • amount used is within the above range, performance such as hardness and weather resistance of the coating film is sufficiently exhibited, and it is preferable that both drying property and leveling property are obtained.
  • the acrylic copolymer preferably has a crosslinkable functional group and is formed by crosslinking with a crosslinking agent.
  • a crosslinking agent e.g., ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, poly(ethylene glycol) graft copolymer, or a dimethacrylate, ethylene glycol, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate,
  • Examples of the polymerizable unsaturated monomer containing a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, caprolactone-modified hydroxy (meth) acrylate, and polyester diol obtained from phthalic acid and propylene glycol.
  • Examples thereof include (meth) acrylic monomers having a hydroxyl group such as mono (meth) acrylate, preferably hydroxypropyl acrylate and hydroxyethyl methacrylate. These can be used alone or in combination of two or more.
  • the polymerizable monomer containing a crosslinkable functional group is crosslinked when the resulting acrylic copolymer is blended with other crosslinkable compounds including polyisocyanate to form a resin composition for thermosetting paints. It is a component necessary for the reaction with the functional compound, and is used in the range of 2 to 35% by mass, preferably 3.5 to 23% by mass in the total polymerizable monomer component. If the amount is within the above range, the amount of the crosslinkable functional group in the obtained acrylic copolymer is appropriate, the reactivity between the acrylic copolymer and the crosslinkable compound is maintained, and the crosslinking density is sufficient. Thus, the desired coating film performance is obtained. Also, the storage stability after blending the crosslinkable compound is good.
  • polymerizable unsaturated monomers in the present invention, other polymerizable unsaturated monomers for forming an acrylic copolymer can be used.
  • Other polymerizable unsaturated monomers used in the present invention include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (Meth) acrylate, tertiary butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, (meth) acrylic acid alkyl ester such as stearyl (meth) acrylate; epoxy such as glycidyl (meth) acrylate Group-containing unsaturated monomers; nitrogen-containing unsaturated monomers such as (meth) acrylamide, N, N′-dimethylaminoe
  • a polymerizable unsaturated monomer containing an acidic functional group can also be used.
  • (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid and Carboxyl group-containing unsaturated monomers such as maleic anhydride
  • sulfonic acid group-containing unsaturated monomers such as vinyl sulfonic acid, styrene sulfonic acid and sulfoethyl (meth) acrylate
  • 2- (meth) acryloyloxyethyl acid Acidic phosphate ester unsaturated monomers such as phosphate, 2- (meth) acryloyloxypropyl acid phosphate, 2- (meth) acryloyloxy-2-chloropropyl acid phosphate, 2-methacryloyloxyethylphenyl phosphate, etc.
  • One or two or more selected from these groups The top can be used.
  • the above other polymerizable monomers can be used as necessary within a range that does not impair the action of the acrylic copolymer in the method of the present invention. It can be 92.9 mass%.
  • the polymerizable monomer containing an acidic functional group serves as an internal catalyst when the acrylic copolymer undergoes a crosslinking reaction with a crosslinking agent. May be 0 to 5% by mass, preferably 0.1 to 3% by mass in the polymerizable monomer component.
  • a method for obtaining an acrylic copolymer using the above monomer is not particularly limited, and a conventionally known polymerization method can be used.
  • usable solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as ethyl acetate, butyl acetate, cellosolve acetate, and propylene glycol monomethyl ether acetate.
  • Solvents such as methyl ethyl ketone and methyl sobutyl ketone; aliphatic alcohols such as isopropanol, n-butanol and isobutanol; alkylene glycol monoalkyl such as propylene glycol monomethyl ether, propylene glycol monoethyl ether and diethylene glycol monoethyl ether Ethers etc. can be mentioned, These 1 type, or 2 or more types of mixtures can be used.
  • Polymerization initiators include 2,2'-azobis- (2-methylbutyronitrile), t-butylperoxy-2-ethylhexanoate, 2,2'-azobisisobutyronitrile, benzoyl Usable radical polymerization initiators such as peroxide and di-t-butyl peroxide can be listed. These may be used alone or in combination of two or more. The amount used is not particularly limited and can be appropriately set depending on the desired properties of the acrylic resin. Reaction conditions such as reaction temperature and reaction time are not particularly limited. For example, the reaction temperature is in the range of room temperature to 200 ° C., preferably in the range of 40 to 140 ° C. The reaction time can be appropriately set so that the polymerization reaction is completed according to the composition of the monomer component and the type of the polymerization initiator.
  • the crosslinking agent is not particularly limited as long as it is a compound or polymer containing two or more functional groups that crosslink and cure with the crosslinkable functional group described above, and the functional group possessed by the acrylic copolymer. Depending on the kind, one kind or two or more kinds can be appropriately selected and used.
  • the crosslinkable group possessed by the acrylic copolymer is a hydroxyl group
  • examples of the crosslinking agent include a compound or polymer having a phenol group, an epoxy group, a melamine group, an isocyanate group, or a dialdehyde group.
  • a compound or polymer containing an epoxy group, a melamine group or an isocyanate group is preferred from the viewpoint of crosslinking reactivity and pot life, and an isocyanate group is particularly preferred from the viewpoint of pot life control.
  • crosslinkable functional group of the acrylic copolymer is a carboxyl group or an anhydride thereof
  • examples include crosslinkable compounds such as polyisocyanate compounds or modified products thereof, aminoplast resins, and epoxy resins.
  • group is an epoxy group
  • examples include a crosslinking agent containing a compound such as an amine, carboxylic acid, amide, N-methylol alkyl ether, and when the crosslinkable functional group is a hydroxyl group or an amino group, polyisocyanate.
  • examples thereof include a crosslinking agent such as a compound or a modified product thereof, an epoxy resin, and an aminoplast resin.
  • a polyisocyanate compound and / or an epoxy resin in combination with a group having active hydrogen, a polyisocyanate compound and / or an epoxy resin is preferable.
  • the combination in which the crosslinkable functional group is a hydroxyl group and the crosslinker is an isocyanate compound is a two-component reactive coating agent, the reactivity of the components, and the weather resistance derived therefrom, Desirable in terms of hardness and flexibility.
  • an isocyanate compound is preferably used as a crosslinking agent in the weatherproof coat of the gas barrier layer, and polyisocyanate is preferably used as the isocyanate compound.
  • the polyisocyanate may be a diisocyanate, a dimer thereof (uretdione), a trimer thereof (isocyanurate, a triol adduct, a burette), or a mixture of two or more thereof.
  • the diisocyanate component includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, m-phenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy.
  • xylene diisocyanate (XDI) type, isophorone diisocyanate (IPDI) type, hexamethylene diisocyanate (HDI) type and the like are preferred from the viewpoint of non-yellowing.
  • the isocyanurate body and burette body of hexamethylene diisocyanate are good in terms of fastness, gas barrier properties, and weather resistance.
  • the epoxy compound is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, for example, sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, Examples thereof include triglycidyl, tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, and bisphenol type epoxy resin.
  • the amount of the crosslinking agent used is not particularly limited and can be appropriately determined depending on the type of the crosslinking agent, but the crosslinkability of the polycaprolactone polyol, the polycarbonate polyol, the modified polyvinyl alcohol, and the acrylic copolymer.
  • a crosslinking group ratio in the above range is advantageous in terms of adhesion, high temperature and high humidity resistance, gas barrier properties, blocking resistance, and the like.
  • the crosslinking agent may be added with one or more crosslinking catalysts such as salts, inorganic substances, organic substances, acid substances, and alkali substances in order to promote the crosslinking reaction.
  • one or more known catalysts such as dibutyltin dilaurate and tertiary amine are added.
  • the weather-resistant coating layer can be formed by appropriately adopting a known coating method.
  • a known coating method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a spray or a coating method using a brush can be used.
  • the solvent can be evaporated using a known drying method such as hot air drying or hot roll drying at a temperature of about 80 to 200 ° C. or infrared drying.
  • a known drying method such as hot air drying or hot roll drying at a temperature of about 80 to 200 ° C. or infrared drying.
  • the crosslinking process by electron beam irradiation can also be performed.
  • the thickness of the weather resistant coating layer is preferably about 0.005 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m. If the thickness is 5 ⁇ m or less, the slipping property is good, and there is almost no peeling from the base film due to the internal stress of the weather resistant coating layer itself, and if the thickness is 0.005 ⁇ m or more, it is uniform. It is preferable that a sufficient thickness can be maintained. Further, since the surface of the base film is flattened by the weather-resistant coating layer, the particles forming the inorganic thin film layer are densely deposited and can be easily formed to have a uniform thickness, so that a high gas barrier property can be obtained.
  • Examples of the inorganic substance constituting the inorganic thin film layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, hydrogenated carbon, and the like, or oxides, carbides, nitrides, or a mixture thereof. Is a diamond-like carbon mainly composed of silicon oxide, aluminum oxide and hydrogenated carbon. In particular, silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide are preferable in that high gas barrier properties can be stably maintained.
  • the material gas that can be used for chemical vapor deposition is preferably composed of at least one kind of gas.
  • a rare gas such as ammonia, nitrogen, oxygen, hydrogen or argon.
  • the first source gas containing silicon includes monosilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane.
  • the source gas may be liquid or gas at room temperature, and the liquid source can be vaporized by a source vaporizer and supplied into the apparatus. In the catalytic chemical vapor deposition method, monosilane gas is preferable from the viewpoint of deterioration of the heated catalyst body, reactivity, and reaction rate.
  • any of a vapor deposition method and a coating method can be used, but the vapor deposition method is preferable in that a uniform thin film having a high gas barrier property can be obtained.
  • This vapor deposition method includes methods such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). Examples of physical vapor deposition include vacuum deposition, ion plating, and sputtering, and chemical vapor deposition includes plasma CVD using plasma and a catalyst that thermally decomposes a material gas using a heated catalyst body. Examples include chemical vapor deposition (Cat-CVD).
  • the inorganic thin film layer is multi-layered in that a high gas barrier property can be stably maintained and secured for a long time in a severe environment.
  • Examples include a thin film configuration.
  • the multilayer of the vacuum deposition film / plasma CVD film is preferable in terms of good gas barrier properties, adhesion, and productivity.
  • each inorganic thin film layer is generally about 0.1 to 500 nm, preferably 0.5 to 100 nm, more preferably 1 to 50 nm. If it is in the said range, sufficient gas barrier property will be acquired, and it is excellent also in productivity, without generating a crack and peeling in an inorganic thin film layer.
  • the gas barrier layer may have a protective layer in order to protect the inorganic thin film layer.
  • the resin for forming the protective layer both solvent-based and water-based resins can be used. Specifically, polyester resins, urethane resins, acrylic resins, polyvinyl alcohol resins, ethylene vinyl Alcohol-based resin, vinyl-modified resin, nitrocellulose-based resin, silicon-based resin, isocyanate-based resin, epoxy-based resin, oxazoline group-containing resin, modified styrene-based resin, modified silicon-based resin, alkyl titanate, etc. alone or in combination Can be used in combination.
  • one or more kinds of inorganic particles selected from silica sol, alumina sol, particulate inorganic filler and layered inorganic filler are mixed with the one or more kinds of resins in order to improve barrier properties, wear properties and slipperiness.
  • a layer made of an inorganic particle-containing resin formed by polymerizing the resin raw material in the presence of the inorganic particles are mixed with the one or more kinds of resins in order to improve barrier properties, wear properties and slipperiness.
  • the aqueous resin is preferable from the viewpoint of improving the gas barrier property of the inorganic thin film layer. Furthermore, vinyl alcohol resin or ethylene vinyl alcohol resin is preferable as the aqueous resin. Further, as the protective layer, a resin layer formed by applying an aqueous liquid containing polyvinyl alcohol and an ethylene / unsaturated carboxylic acid copolymer can be used.
  • the thickness of the protective layer is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m, from the viewpoint of printability and workability.
  • a known coating method is appropriately adopted as the formation method. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a spray or a coating method using a brush can be used. Moreover, you may immerse a vapor deposition film in the resin liquid for protective layers. After the application, moisture can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying. Moreover, in order to improve water resistance and durability, the crosslinking process by electron beam irradiation can also be performed.
  • the gas barrier layer is preferably used in the form of a gas barrier film.
  • a gas barrier film obtained by providing a base film with a weather-resistant coating layer, an inorganic thin film layer, and a protective layer as necessary is more preferable.
  • the structure of each gas barrier layer used for lamination may be the same or different, and can be used in appropriate combination according to specifications such as gas barrier performance and thickness of the backsheet.
  • the gas barrier layer can be subjected to heat treatment at 60 ° C.
  • the total thickness of the gas barrier layer is preferably 5 to 150 ⁇ m, more preferably 10 to 100 ⁇ m, from the viewpoint of gas barrier properties and its long-term stability.
  • the solar cell backsheet of the present invention it is desirable to satisfy the dielectric breakdown voltage of 1 kV or more as a withstand voltage characteristic.
  • the total thickness of the backsheet needs to be approximately 200 ⁇ m to 250 ⁇ m. If any of the light-shielding colored layer, gas barrier layer, weather-resistant polyester-based resin layer, or each of the thicknesses is thin, it can withstand a dielectric breakdown voltage of 1 kV as a back sheet, sufficient mechanical strength, flame retardancy, etc. It is possible to laminate another plastic film between each layer in order to provide the above.
  • Examples of such other layers include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer or saponified product thereof, Ionomer resin, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid or methacrylic acid copolymer, polymethylpentene resin, polyester resin, polybutene resin, polyvinyl chloride resin, polyvinyl acetate resin, Polyvinylidene chloride resin, vinyl chloride-vinylidene chloride copolymer, poly (meth) acrylic resin, polyacrylonitrile resin, polystyrene resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene Copolymer (ABS Resins), polyester resins, polyamide resins, polycarbonate resins, polyvinyl alcohol resins or sapon
  • any film or sheet can be selected and used.
  • a film or sheet comprising a polyester resin, a fluorine resin, a polypropylene resin, or a cyclic polyolefin resin is preferable from the viewpoint of heat resistance, strength, weather resistance, gas barrier properties, and the like.
  • a back sheet obtained by sequentially laminating a light-shielding colored layer, a gas barrier layer, and a weather-resistant polyester resin layer having the above-described contents, and further polyester-based between the light-shielding colored layer and the other layers. The structure which interposed the resin film is illustrated.
  • the solar cell backsheet of the present invention is formed by laminating the above-described light-shielding colored layer, gas barrier layer, weather-resistant polyester resin layer, and, if necessary, an easy-adhesion layer and other films, respectively, by a method such as dry lamination.
  • the type of adhesive used is, for example, a polyvinyl acetate adhesive, a homopolymer such as ethyl, butyl or 2-ethylhexyl acrylate, or , Polyacrylate adhesives composed of copolymers of the above esters with methyl methacrylate, acrylonitrile, styrene, etc., cyanoacrylate adhesives, ethylene and vinyl acetate, ethyl acrylate, acrylic acid, methacrylic acid Ethylene copolymer adhesives, such as copolymers with monomers such as Polyolefin resin, cellulose adhesive, polyester adhesive, polyether adhesive, polyamide adhesive, polyimide adhesive, urea resin, melamine resin, etc.
  • a polyvinyl acetate adhesive a homopolymer such as ethyl, butyl or 2-ethylhexyl acrylate
  • Polyacrylate adhesives composed of copolymers of the above esters with methyl meth
  • Adhesives made of polyolefin resin or polypropylene resin Adhesives, phenolic resin adhesives, epoxy adhesives, polyurethane adhesives, reactive (meth) acrylic adhesives, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, styrene-isoprene rubber, etc. Adhesives, silicone adhesives, and the like can be used.
  • any one or a mixture of polyester urethane polyols or polyester urethane polyols that have undergone chain extension with a bifunctional or higher isocyanate compound, and / or chain extension with a polycarbonate polyol or bifunctional or higher isocyanate compound At least one of a carbodiimide compound, an oxazoline compound, and an epoxy compound with respect to 100 parts by mass of any one or a mixture of polycarbonate urethane polyols subjected to the above and / or a composition in which a crosslinking agent is blended with an acrylic polyol having a hydroxyl group introduced into a side chain.
  • An adhesive composition containing 1 to 50 parts by mass of one or more selected compounds is preferred.
  • polyester polyol examples include aliphatic systems such as succinic acid, glutaric acid, adipic acid, pimelic acid, spellic acid, azelaic acid, sebacic acid and brassic acid, and aromatic systems such as isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid.
  • One or more dibasic acids, and aliphatics such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, cyclohexanediol, It can be obtained by using one or more alicyclic diols such as hydrogenated xylylene glycol and aromatic diols such as xylylene glycol.
  • the hydroxyl groups at both ends of this polyester polyol are, for example, 2,4- or 2,6-tolylene diisocyanate, xylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, methylene diisocyanate, isopropylene diisocyanate, lysine diisocyanate, 2 , 2,4-- or 2,4,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isopropylidene dicyclohexyl-4,4 ' -Isocyanate compound selected from diisocyanates, etc., or the above isocyanate compound selected from at least one or more Adducts made, biuret body, such as a polyester urethane polyol chain extension with is
  • carbodiimide compounds to be blended in order to block carboxyl groups generated when various polyols are hydrolyzed in an accelerated environment under high temperature and high humidity include N, N′-di-o-toluylcarbodiimide, N, N '-Diphenylcarbodiimide, N, N'-di-2,6-dimethylphenylcarbodiimide, N, N'-bis (2,6-diisopropylphenyl) carbodiimide, N, N'-dioctyldecylcarbodiimide, N-triyl-N '-Cyclohexylcarbodiimide, N, N'-di-2,2-di-tert.
  • oxazoline compounds having the same action include 2-oxazoline, 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline, 2,5-dimethyl-2-oxazoline, and 2,4-diphenyl-2-oxazoline.
  • Monooxazoline compounds such as 2,2 ′-(1,3-phenylene) -bis (2-oxazoline), 2,2 ′-(1,2-ethylene) -bis (2-oxazoline), 2,2 ′
  • dioxazoline compounds such as-(1,4-butylene) -bis (2-oxazoline) and 2,2 '-(1,4-phenylene) -bis (2-oxazoline).
  • epoxy compounds include diglycidyl ethers of aliphatic diols such as 1,6-hexanediol, neopentyl glycol, polyalkylene glycol, sorbitol, sorbitan, polyglycerol, pentaerythritol, diglycerol, glycerol, trimethylol.
  • Polyglycidyl ether of aliphatic polyol such as propane, polyglycidyl ether of alicyclic polyol such as cyclohexanedimethanol, aliphatic, aromatic such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, trimellitic acid, adipic acid, sebacic acid Diglycidyl ester or polyglycidyl ester, resorcinol, bis- (p-hydroxyphenyl) methane, 2,2-bis- (p-hydroxyphenyl) ) Diglycidyl ether or polyglycidyl ether of polyphenols such as propane, tris- (p-hydroxyphenyl) methane, 1,1,2,2-tetrakis (p-hydroxyphenyl) ethane, N, N-diglycidylaniline N, N-diglycidyl toluidine, N, N, N ′, N′-tetraglycidyl-
  • the carbodiimide compound, oxazoline compound, and epoxy compound blended in the adhesive are based on 100 parts by mass of the composition in which a crosslinking agent is blended with various polyols from the viewpoint of hydrolysis resistance of the adhesive layer, adhesion, and coating workability. It is preferable to add 1 to 50 parts by mass.
  • a compound that forms a crosslinking reaction starting from a hydroxyl group generated by hydrolysis may be blended.
  • examples of such compounds include phosphorus compounds such as tris (2,4-di-t-butylphenyl) phosphite and tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene phosphor.
  • the carbodiimide compound, the oxazoline compound, and the epoxy compound are preferable, and the most preferable compound is a carbodiimide compound.
  • the polycarbonate polyol can be obtained, for example, by reacting a carbonate compound with a diol.
  • a carbonate compound dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like can be used.
  • Diols include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, and other aliphatic diols, cyclohexanediol, hydrogenated xylylene It is possible to use a polycarbonate polyol in which a mixture of one or more aromatic diols such as an alicyclic diol such as a reel, an xylylene glycol or the like, or a polycarbonate
  • a hydroxyl group-containing monomer such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate is essential, and (meth) acrylic acid, alkyl group as methyl group, ethyl group, n-propyl
  • (meth) acrylic acid, alkyl group as methyl group, ethyl group, n-propyl A polymer based on an alkyl (meth) acrylate monomer that is a group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, (Meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i -
  • vinyl isocyanate allyl isocyanate, styrene, ⁇ -methylstyrene, vinyl methyl ether, vinyl ethyl ether, maleic acid, alkyl maleic acid monoester, fumaric acid, alkyl fumaric acid monoester, itaconic acid, alkyl itaconic acid monoester, It is possible to use a product obtained by copolymerizing monomers such as (meth) acrylonitrile, vinylidene chloride, ethylene, propylene, vinyl chloride, vinyl acetate and butadiene.
  • Additives such as ultraviolet absorbers, light stabilizers, inorganic fillers, and colorants can be added to the adhesive within a range that does not affect the adhesive strength.
  • the said adhesive agent can form an adhesive bond layer by coating with a roll coating, a gravure coat, a kiss coat, and other well-known coating methods, for example.
  • the coating amount, 0.1g / m 2 ⁇ 15g / m 2 is preferred dry film thickness.
  • the solar cell backsheet of the present invention has a light-shielding colored layer, a weather-resistant polyester-based resin layer, and a gas barrier layer provided between these layers as essential components. It is preferable to adopt a simple configuration.
  • A Film containing light-shielding colored layer / weather-resistant coating layer and film containing gas barrier layer containing inorganic thin film layer / film containing weather-resistant polyester resin layer
  • B Light-shielding colored layer and weather-resistant coating layer And a gas barrier layer including an inorganic thin film layer / a film including a weather resistant polyester-based resin layer
  • C a film including a light-shielding colored layer / a weather resistant coat layer and a gas barrier layer including an inorganic thin film layer and a weather resistance Film including polyester resin layer
  • the base material of the gas barrier layer also serves as the light-shielding colored layer. Needs to be provided on the film side including the weather-resistant polyester resin layer.
  • the thickness of the film is preferably 20 to 300 ⁇ m, and more preferably 50 to 250 ⁇ m.
  • the base material of the gas barrier layer also serves as the weather resistant polyester resin layer.
  • the protective layer needs to be provided on the film side including the light-shielding colored layer.
  • the thickness of the film is preferably 10 to 300 ⁇ m, and more preferably 20 to 200 ⁇ m.
  • each film can be laminated by a method such as dry lamination.
  • a back sheet in which the above-mentioned easy adhesion layer is further provided on the outer surface of the light-shielding colored layer, that is, the side in contact with the back-side filler of the light-shielding colored layer can be used.
  • the back sheet for a solar cell of the present invention has a thickness of 50 to 750 ⁇ m, preferably 100 to 500 ⁇ m, more preferably 200 to 400 ⁇ m, from the viewpoint of strength, durability, withstand voltage, and cost.
  • the whiteness of the backsheet is measured by the Hunter method, JIS L1015, and the value is preferably 75% or more, and more preferably 80% or more in terms of increasing the power generation efficiency of the solar cell. Is preferred.
  • the water vapor transmission rate after storage at 85 ° C. and 85 RH% for 3000 hours is preferably 2.0 g / m 2 / day or less, more preferably 1.0 g / m 2 / day or less. preferable.
  • the shrinkage ratio of the solar cell backsheet when heated at 150 ° C. for 30 minutes is preferably 3% or less, more preferably 1% or less, and further preferably 0.5% or less. When the shrinkage rate is high, a stacking failure occurs at the time of thermocompression bonding in the stacking process of manufacturing the solar cell module.
  • the present invention also relates to a solar cell module having the back sheet of the present invention.
  • the solar cell module of the present invention is formed by laminating a transparent substrate, a filler, a solar cell element, a filler, and the solar cell backsheet in order from the sunlight receiving side.
  • a glass or plastic sheet and / or film is used as the transparent substrate.
  • an inorganic thin film is formed in the same manner as the gas barrier film constituting the solar cell backsheet, or heat resistance, weather resistance, mechanical strength, chargeability,
  • crosslinking agents, antioxidants, light stabilizers, ultraviolet absorbers, antistatic agents, reinforcing fibers, flame retardants, preservatives, etc. are added, and various sheets and A film can be laminated.
  • the thickness of the transparent substrate can be appropriately set in terms of strength, gas barrier properties, durability, and the like.
  • various resins having translucency, shock absorption, adhesiveness with a transparent substrate, a solar cell element, and a solar cell backsheet are used.
  • examples thereof include fluorine resins, ethylene-vinyl acetate copolymers, ionomer resins, unsaturated carboxylic acid-modified polyolefin resins, polyvinyl butyral resins, silicone resins, epoxy resins, acrylic resins, and the like.
  • a crosslinking agent, an antioxidant, a light stabilizer, an ultraviolet absorber and the like can be added to the filler layer.
  • the thickness can be appropriately set according to the required physical properties.
  • the solar cell element is arranged and wired between the fillers. Examples thereof include a single crystal silicon type, a polycrystalline silicon type, an amorphous silicon type, various compound semiconductor types, a dye sensitized type, and an organic thin film type.
  • the solar cell module has excellent weather resistance and durability due to the excellent weather resistance and long-term gas barrier properties of the solar cell backsheet, and is low cost and low weight. It can be suitably used for various applications.
  • a glass plate and an ethylene-vinyl acetate copolymer (EVA) sheet ("Solar EVA SC4" manufactured by Mitsui Chemicals Fabro Co., Ltd.) and the produced back sheet for solar cells are stacked, and the central part is located between the EVA sheet and the back sheet.
  • EVA ethylene-vinyl acetate copolymer
  • vacuum pressure bonding was performed at 150 ° C. for 15 minutes for integration, and the glass plate / EVA sheet / back sheet for solar cell was further heated at 150 ° C. for 30 minutes.
  • the back sheet of the peeled film area is cut out, further cut out on a strip with a width of 15 mm, and at a speed of 100 mm / min using a peel tester (“EZ-TEST” manufactured by Shimadzu Corporation) at room temperature. T-type peeling was performed, and the peeling state was evaluated according to the following criteria. ⁇ : Not peelable. X: Peeling in the gas barrier film.
  • the back sheet of the peeled film area was cut out, air-dried at room temperature for 2 days, and measured using a water vapor permeability apparatus (Model 7002 manufactured by Illinois) at 40 ° C. and 90 RH%.
  • ⁇ EVA adhesion> A glass plate, an ethylene-vinyl acetate copolymer (EVA) sheet, “Solar Eva SC4” manufactured by Mitsui Chemicals Fabro Co., Ltd., and the back sheet for solar cell produced were stacked and integrated by vacuum pressing at 150 ° C. for 15 minutes. . Further, a glass sheet / EVA sheet / back sheet for solar cell heated at 150 ° C. for 30 minutes, stored at 85 ° C. and 85 RH% for 1000 hours and 3000 hours, then cut out to a width of 15 mm, and EVA sheet in 90 degree peeling by autograph The adhesion state was evaluated according to the following criteria.
  • the whiteness was measured by the Hunter method according to JIS L1015 for the produced solar cell backsheet with the white film facing the light receiving side.
  • Example 1 First, a light-shielding colored film (white film), a gas barrier film, and a weather-resistant film were respectively prepared by the method described below, and then laminated to prepare a solar cell backsheet.
  • ⁇ Preparation of easy adhesion layer> The surface of the light-shielding colored film was subjected to corona treatment, and one surface thereof was coated with “Ulyano U302” manufactured by Arakawa Chemical Industries, Ltd. at a thickness of 3 ⁇ m, and an easy-adhesion layer was produced on one surface of the light-shielding colored (white) film. .
  • a biaxially stretched polyethylene terephthalate film (“H100C12” manufactured by Mitsubishi Plastics, Inc.) having a thickness of 12 ⁇ m is used as a base film, and one side thereof is subjected to corona treatment, and then a polycaprolactone diol is applied thereto as Daicel Chemical Industries, Ltd.
  • a coating solution mixed so that the equivalent ratio of epoxy groups to hydroxyl groups is 1: 2 is applied by a gravure coating method. It dried and formed the 0.1-micrometer-thick weather-resistant coat layer.
  • ⁇ Weather-resistant polyester resin film> A polyethylene naphthalate film (“Q65F” manufactured by Teijin DuPont Films Ltd.) having a thickness of 50 ⁇ m was used, and one side was subjected to corona treatment.
  • Example 2 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • the coating liquid for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • the coating liquid polycaprolactone diol As the coating liquid polycaprolactone diol
  • “Sumidule N-3200” manufactured by Sumitomo Bayer Urethane Co., Ltd. as the isocyanate resin
  • the resulting mixture was mixed to make a coating solution.
  • Example 3 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • “Nipporan 982R” manufactured by Nippon Polyurethane Co., Ltd. is used as the coating liquid polycarbonate diol
  • “Coronate L” manufactured by Nippon Polyurethane Co., Ltd. is used as the isocyanate resin, so that the equivalent ratio of isocyanate groups to hydroxyl groups is 1: 1. And used as a coating solution.
  • Example 4 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • “Placcel CD CD210” manufactured by Daicel Chemical Industries, Ltd. is used as the coating liquid polycarbonate diol
  • “Takenate D-170HN” manufactured by Mitsui Chemicals Polyurethane Co., Ltd. is used as the isocyanate resin
  • the equivalent ratio of isocyanate groups to hydroxyl groups is 1: 1.
  • Example 5 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • the coating liquid polyvinyl butyral resin “ESREC BL-1” (butyralization degree 63 ⁇ 3 mol%) manufactured by Sekisui Chemical Co., Ltd. was used, and an epoxy resin (“Denacol EX252” manufactured by Nagase ChemteX Corporation) was used as the crosslinking agent. Mixing was performed so that the equivalent of the epoxy group to the hydroxyl group was 1: 1, to obtain a coating solution.
  • Example 6 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • a solution obtained by adding 250 g of polyvinyl alcohol resin of “Poval PVA-117” (saponification degree: 98.0 to 99.0 mol%, polymerization degree: 1700) manufactured by Kuraray Co., Ltd. to 2400 g of ion-exchanged water and dissolving by heating 35 18% of hydrochloric acid was added, and 140 g of butyraldehyde was added dropwise with stirring at 15 ° C. to precipitate resin particles.
  • an isocyanate resin “Sumidule N-3200” manufactured by Sumitomo Bayer Urethane Co., Ltd., is used as a crosslinking agent, and the polyvinyl butyl butyral resin solution and the isocyanate resin are mixed so that the equivalent of the isocyanate group to the hydroxyl group is 1: 1. A coating solution was obtained.
  • Example 7 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • Coating solution “GOHSENOL” manufactured by Nippon Gosei Co., Ltd. (saponification degree 97.0 to 98.8 mol%, polymerization degree 2400) polyvinyl alcohol resin 220 g was added to ion-exchanged water 2810 g and dissolved in an aqueous solution at 20 ° C. While stirring, 645 g of 35% hydrochloric acid was added.
  • Example 8 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • 100 parts by mass of ethyl acetate was charged in a nitrogen gas stream, and the temperature was raised to 80 ° C.
  • a mixture of the raw material consisting of the polymerizable monomer component and 1 part by mass of benzoyl peroxide is added dropwise over 2 hours, and further kept at 80 ° C. for 4 hours to obtain a 50% by mass solution of the acrylic copolymer. It was.
  • an epoxy copolymer “Deconal EX622” manufactured by Nagase ChemteX Corporation, was mixed with this acrylic resin solution so that the equivalent ratio of the epoxy group to the carboxyl group was 1: 1 to prepare a coating solution.
  • Example 8 an acrylic copolymer solution was prepared using raw materials composed of the polymerizable monomer components shown in Table 1, and then an isocyanate resin (Sumitomo Bayer Urethane Co., Ltd.) was added to the acrylic copolymer solution.
  • a gas barrier film was obtained in the same manner except that (Sumidule N-3200)) was mixed so that the equivalent ratio of isocyanate group to hydroxyl group was 1: 1, and a solar cell backsheet was prepared.
  • Example 19 In Example 8, a gas barrier film was obtained in the same manner except that an acrylic copolymer solution was prepared and used using raw materials composed of the polymerizable monomer components shown in Table 1, and a solar cell backsheet was obtained. Produced.
  • the monomer used in the said Example is as follows.
  • a solar cell backsheet was prepared in the same manner as in Example 10 except that three inorganic thin films obtained by forming a vacuum deposited film by the same method as in Example 1 were used.
  • Example 21 A back sheet for a solar cell was prepared in the same manner as in Example 10, except that three gas barrier films were laminated by laminating the inorganic thin film side and the plastic film side, and then laminated with the polyethylene naphthalate film of Example 1. did.
  • Example 22 In Example 6, a biaxially stretched polyethylene naphthalate film having a thickness of 12 ⁇ m (“Q51C12” manufactured by Teijin DuPont Films Ltd.) was used as a base film of the gas barrier film, and a weather resistant coating layer was formed on the corona surface. Except for the above, a gas barrier film was obtained in the same manner, and a solar cell backsheet was produced.
  • Q51C12 manufactured by Teijin DuPont Films Ltd.
  • Example 23 In Example 10, a coextrusion biaxially stretched film of polyethylene naphthalate resin and polyethylene terephthalate resin obtained by the following method was used as the base film of the gas barrier film, except that a weather resistant coating layer was formed on the corona-treated surface. Obtained a gas barrier film in the same manner to produce a back sheet for solar cells. Take 100 parts of dimethyl naphthalene-2,6-dicarboxylate, 60 parts of ethylene glycol and 0.1 part of magnesium acetate tetrahydrate in a reactor, raise the reaction temperature from 180 ° C. to 230 ° C. over 4 hours, and perform transesterification.
  • Example 24 In Example 10, a biaxially stretched polyethylene naphthalate film having a thickness of 12 ⁇ m (“Q51C12” manufactured by Teijin DuPont Films Ltd.) was used as a base film for the gas barrier film, and a weather-resistant coating layer was formed on the corona surface. A gas barrier film is obtained, and a biaxially stretched film having a heat shrinkage ratio of 0.9% at 150 ° C. for 30 minutes is formed of a polyethylene terephthalate resin having a number average molecular weight of 25,000 as a weather-resistant polyester resin layer having a thickness of 50 ⁇ m. A solar cell backsheet was produced in the same manner except that was used.
  • Q51C12 manufactured by Teijin DuPont Films Ltd.
  • Example 25 In Example 10, a back sheet for solar cell was similarly used except that a biaxially stretched polyethylene naphthalate film having a thickness of 12 ⁇ m (“Q51C12” manufactured by Teijin DuPont Films Ltd.) was used as the base film of the gas barrier film. Was made.
  • a biaxially stretched polyethylene naphthalate film having a thickness of 12 ⁇ m (“Q51C12” manufactured by Teijin DuPont Films Ltd.) was used as the base film of the gas barrier film.
  • Example 26 In Example 25, each film was laminated without applying an easy-adhesion coat to the light-shielding colored (white) film, and then a 50 ⁇ m thick A back sheet for a solar cell was produced in the same manner except that a chain-like low density polyethylene film (“TUX HC” manufactured by Tosero) was bonded.
  • TUX HC chain-like low density polyethylene film
  • Example 27 As the base film of the gas barrier film, the light-shielding colored (white) film of Example 1 was used. Thus, a film including a light-shielding colored layer and a gas barrier layer including a weather-resistant coating layer and an inorganic thin film layer was produced. Next, the polyethylene naphthalate film of Example 1 having a corona surface coated with 10 g / m 2 of adhesive is laminated and laminated on the inorganic thin film surface side of the gas barrier film to produce a solar cell backsheet. did.
  • Example 28 As a base film for the gas barrier film, a biaxially stretched polyethylene naphthalate film (“Q65F100” manufactured by Teijin DuPont Films Co., Ltd.) having a thickness of 100 ⁇ m was subjected to corona treatment, and the corona surface was weather-resistant coated layer And a gas barrier film was obtained in the same manner as in Example 6 to prepare a film including a gas barrier layer including a weather resistant coat layer and an inorganic thin film layer, and a weather resistant polyester resin layer.
  • Q65F100 manufactured by Teijin DuPont Films Co., Ltd.
  • Example 1 the light-shielding colored (white) film of Example 1 coated with 10 g / m 2 of adhesive on the opposite side of the easy-adhesive layer was laminated to the inorganic thin film surface of the gas barrier film, and the solar cell was laminated.
  • a back sheet was prepared.
  • Example 29 A back plate for a solar cell was obtained in the same manner as in Example 6 except that a white film was obtained using precipitated calcium carbonate (“Vigot-10” manufactured by Shiroishi Kogyo Co., Ltd.) as a white pigment for the light-shielding colored (white) film. A sheet was produced.
  • precipitated calcium carbonate (“Vigot-10” manufactured by Shiroishi Kogyo Co., Ltd.)
  • Example 30 In the light-shielding colored (white) film of Example 1, carbon black ("# 650B" manufactured by Mitsubishi Chemical Corporation) is used instead of the white pigment, and the light-shielding colored (black) film containing 5% by mass of carbon black.
  • a solar cell backsheet was produced in the same manner as in Example 21 except that.
  • Example 31 A film containing a gas barrier layer and a weather resistant polyester resin layer was prepared in the same manner as in Example 28 except that the coating solution of Example 10 was used as the weather resistant coat layer. Next, the light-shielding colored (black) film of Example 30 in which an adhesive 10 g / m 2 was applied to the opposite side of the easy-adhesion layer was laminated to the inorganic thin film surface of the gas barrier film, and the solar cell was laminated. A back sheet was prepared.
  • Example 32 In Example 31, each film was laminated without applying an easy-adhesion coat to the light-shielding colored (black) film.
  • a solar cell backsheet was produced in the same manner except that the film (“Pyrene Film-CT” manufactured by Toyobo Co., Ltd.) was bonded.
  • Comparative Example 1 A gas barrier film was obtained in the same manner as in Example 1 except that the weather-resistant coating layer was not formed on the gas barrier film, and a solar cell backsheet was prepared.
  • Comparative Example 2 A gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • a coating liquid saturated polyester (“Byron 300” manufactured by Toyobo Co., Ltd.) and an isocyanate compound (“Coronate L” manufactured by Nippon Polyurethane Co., Ltd.) were mixed at a 1: 1 mass ratio to obtain a coating liquid.
  • a gas barrier film was obtained in the same manner as in Example 1 except that the coating solution for the gas barrier film was changed to the following, and a solar cell backsheet was prepared.
  • a coating liquid acrylic copolymer ("Takelac UA-902" manufactured by Mitsui Chemicals Polyurethane Co., Ltd.), aromatic isocyanate (tolylene diisocyanate (TDI), "Cosmonate 80” manufactured by Mitsui Chemicals Polyurethane Co., Ltd.), The coating solution was prepared by mixing so that the equivalent of the hydroxyl value and the isocyanate value was 1: 1.
  • the solar cell backsheet of the present invention is excellent in gas barrier properties, weather resistance, and light-shielding properties even for long-term use, it is crystalline silicon-based, amorphous silicon-based, thin-film crystal-based, compound semiconductor-based, organic thin-film It can be suitably used as a back sheet corresponding to various solar cell modules of a dye sensitizing system such as a system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】優れたガスバリア性を保持し、且つ耐候性及び遮光性に優れた太陽電池用バックシートを提供する。 【解決手段】遮光性着色層及び耐候性ポリエステル系樹脂層を有し、かつこれらの層の間に、耐候性コート層及び無機薄膜層を含むガスバリア性層を有する太陽電池用バックッシートであって、上記耐候性コート層が、(イ)ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物、(ロ)変性ポリビニルアルコールの架橋物、及び(ハ)紫外線安定性基、紫外線吸収性基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体、から選ばれる少なくとも一種からなる太陽電池用バックシート。

Description

太陽電池用バックシート
 本発明は、太陽電池モジュールを構成する太陽電池用バックシートに関し、特に、優れたガスバリア性を保持し、且つ耐候性、遮光性に優れた太陽電池用バックシートに関する。
 一般に、太陽電池モジュールは、受光面側から、透明前面基板、充填材、太陽電池素子、充填材、バックシートの順に積層された構成を有している。ここで、用語である充填材には、同意語として使用される「封止材」があるが、本願では、以下、全て「充填材」で記載する。
 太陽電池用バックシートには、屋外長期設置において太陽電池素子を保護するために、耐候性、耐加水分解性、ガスバリア性、機械強度、密着性などの点で耐久性が必要である。
 一方、太陽電池素子には、結晶シリコン系、多結晶シリコン系、非晶質シリコン系等が用いられている中、現在、薄膜結晶系、非晶質シリコン系、化合物半導体系、有機薄膜系、色素増感系などが次世代太陽電池として研究開発されており、それらについてもバックシートに対しては、上述の各種物性について更に高度な要求がなされるものである。中でも、耐候性、耐加水分解性、ガスバリア性は特に重要な項目として挙げられる。
 従来、太陽電池用バックシートとして、特許文献1には、耐候性フィルムとしてフッ素フィルムとガスバリア性フィルムを積層したものが記載されており、これについては、フッ素フィルムは機械強度が低く、また高価かつ供給量が少ないという問題点があった。
 また、特許文献2、特許文献3には、白色樹脂フィルムとガスバリア性フィルムと耐加水分解性樹脂フィルムとの積層体が開示されている。しかしながら、特許文献2記載の積層体においては、ガスバリア性フィルムは基材フィルムに金属酸化物を被着させただけのものであり、また、特許文献3においては、ガスバリア性フィルムにおいてガスバリア層との密着性向上のために基材フィルムに表面処理層を形成してもよいとの記載はあるが、これは一般包装用ガスバリアフィルムの公知の形態と同様のものであり、太陽電池モジュールの構成材としてバックシートの耐候性、耐久性を得るものではなかった。
 一方で、ガスバリア性フィルムには、無機薄膜の基材フィルムからの剥離、欠損により生ずるガスバリア性の低下を抑止するため、基材フィルムへのコート処理による無機薄膜の密着性向上の検討がなされ、例えば特許文献4においてはポリエステルとイソシアネートの架橋反応物のコートが開示されているが、ポリエステルとイソシアネートの架橋反応物のコートでは、太陽電池モジュールが設置される高温高湿下においてはエステル基が加水分解して密着性が著しく低下し、引いてはガスバリア性が低下するため不十分であった。
 さらに、太陽電池用バックカバー材の防湿フィルムのアンカーコート層として、特許文献5にはアクリルウレタン樹脂が開示されているが、これもポリエステルと同様、高温高湿下において劣化し密着性が保持できないという問題があった。
特開2000-174296号公報 特開2002-100788号公報 特開2007-150084号公報 特公平6-22976号公報 特開2002-26343号公報
 本発明は、上記課題に鑑み、優れたガスバリア性を保持し、且つ耐候性及び遮光性に優れた太陽電池用バックシートを提供するものである。
 すなわち、本発明は、遮光性着色層及び耐候性ポリエステル系樹脂層を有し、かつこれらの層の間に、耐候性コート層及び無機薄膜層を含むガスバリア性層を有する太陽電池用バックッシートであって、上記耐候性コート層が、(イ)ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物、(ロ)変性ポリビニルアルコールの架橋物、及び(ハ)紫外線安定性基、紫外線吸収性基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体、から選ばれる少なくとも一種からなる太陽電池用バックシート、に関する。
 本発明により、優れたガスバリア性を保持し、且つ耐候性及び遮光性に優れた太陽電池用バックシートが得られる。
以下、本発明を詳細に説明する。
<遮光性着色層>
[遮光性着色層の基材]
遮光性着色層の基材を構成する樹脂としては、通常、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられる。
 上記樹脂の中でも、高い耐熱性、強度、耐候性、耐久性、水蒸気等に対するガスバリア性を有するポリエステル系樹脂、フッ素系樹脂が好ましい。特にポリエステル系樹脂からなるフィルムは、銀蒸着などが容易で反射率を高める機能を付加し易く、遮光性着色層の基材として好適に使用できる。ポリエステル系樹脂としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。これらのポリエステル系樹脂の中でも、耐熱性、耐候性等の諸機能面及び価格面のバランスが良好なポリエチレンテレフタレートが特に好ましく用いられる。また、ポリエステルの黄変を防ぐためにフィルム表面処理を施したものも好ましく用いられる。
  上記フッ素系樹脂としては、例えばポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとの共重合体からなるペルフルオロアルコキシ樹脂(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー(FEP)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとヘキサフルオロプロピレンとのコポリマー(EPE)、テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、エチレンとクロロトリフルオロエチレンとのコポリマー(ECTFE)、フッ化ビニリデン系樹脂(PVDF)、フッ化ビニル系樹脂(PVF)等が挙げられる。これらのフッ素系樹脂の中でも、強度、耐熱性、耐候性等に優れるポリフッ化ビニル系樹脂(PVF)やテトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)が好ましい。
[遮光性着色層の着色]
 遮光性着色層は、太陽電池セルを透過した太陽光線を反射させ、発電効率を高める目的と、紫外線を反射或いは吸収させることにより当該太陽電池用バックシート構成材の紫外線劣化を防ぎ、バックシートの耐候性、耐久性、耐熱性、熱的寸法安定性、強度などの諸特性を向上させる目的で、太陽電池用バックシートの裏面側充填材に接する側の構成材として用いられるものである。特に、太陽光を反射し、発電効率を向上させる点においては、白色化が有効である。
 また更に、黒色化を始めとする各種着色により太陽電池モジュールの意匠性、装飾性を向上することができる。
 なお、本発明において、「遮光性着色層」における「光反射」には、光反射とともに光散乱も包含する。
 遮光性着色層の着色方法としては、着色剤として顔料を分散添加する方法及び/又は基材に非相溶なポリマーや微粒子を添加し、フィルム延伸時にブレンド界面で空隙、気泡を形成させる方法を用いることができる。
 基材の着色に用いる顔料としては、白色顔料、黒色顔料等が好ましく挙げられる。白色顔料としては、特に限定されるものではないが、例えば炭酸カルシウム、アナターゼ型酸化チタン、ルチル型酸化チタン、酸化亜鉛、炭酸鉛、硫酸バリウム、塩基性炭酸鉛、塩基性硫酸鉛、塩基性けい酸鉛、亜鉛華、硫化亜鉛、リトポン、三酸化アンチモンなどを使用することができる。酸化チタンとしては、ルチル型の方がアナターゼ型よりも光線を長時間ポリエステルフィルムに照射した後の黄変が少なく、色差の変化を抑制するのに適していることから好ましい。
 上記白色顔料の中でも、安定性、非重金属化合物の点から、ルチル型酸化チタン、硫酸バリウム、炭酸カルシウムおよび二酸化珪素からなる群から選ばれる少なくとも1種類の無機微粒子が好ましく、硫酸バリウム、ルチル型酸化チタンがより好ましく、硫酸バリウムが更に好ましい。
 硫酸バリウムは、物理的にも化学的にも安定であり、可視光線のほぼ全領域にわたって99%以上の反射率を示す良好な白色素材であり、白色の基準として用いられる物質である。また、着色性、隠蔽性の高い材質であり、効率的に白色化が行われ、太陽電池用バックシートとして光線反射性効果が高い。
 材料としては、硫酸バリウムの原料である重晶石を粉砕して製造する簸性硫酸バリウム(バライト粉)と、重晶石の還元バイ焼により得た硫化バリウムの溶液に硫酸ナトリウム溶液を加え、沈殿させて製造する沈降性硫酸バリウムを用いることができる。
 沈降性硫酸バリウムは、その生成工程における反応条件制御により粒子径を制御でき、且つ微小粒子径を達成できる点で好ましい。
 バライト粉を用いる場合は、硫酸バリウムの純度が高い重晶石を選鉱し、粉砕・分級を高精度で行い、粒径調整、粗大粒子除去を行った微細なバライト粉を用いることができる。
尚、硫酸バリウムとしては、鉄、マンガン、ストロンチウム、カルシウムなどの不純物ができるだけ含有されない高純度品を用いることが望ましい。
 着色剤として用いられる黒色顔料としては、例えばカーボンブラック、黒色酸化鉄など、彩色化剤としては、例えばアゾ系、アントラキノン系、フタロシアニン系、チオインジゴ系、キナクリドン系、ジオキサジン系等の有機系染料、顔料や、ウルトラマリン、紺青、クロムバーミリオン、ベンガラ、カドミウムレッド、モリブデンオレンジ等の無機系顔料や、メタリック光沢用の金属粉顔料などが挙げられ長期着色安定性の点から、カーボンブラックや無機系顔料が好ましい。
 なお、本発明で用いられる着色剤は1種類のみであっても良く、また、2種類以上を組み合わせて用いても良い。
  上記着色剤である顔料の平均粒子径は、5nm以上30μm以下が好ましく、10nm以上3μm以下、更には50nm以上1μm以下がより好ましい。顔料の平均粒子径が上記範囲内であれば、凝集等によるフィルム樹脂中への分散性劣化がなく、フィルムに粗大突起が発生することもない。またフィルムの着色度制御が容易になる。
 上記遮光性着色層中の着色剤の添加量としては、該遮光性着色層に所望の遮光性または光拡散性を付与できる範囲内であれば特に限定されないが、通常、遮光性着色層中、1~40質量%の範囲内であることが好ましく、5~30質量%、更に10~20質量%の範囲内であることが好ましい。該添加量が上記範囲内であれば、フィルムの耐久性、耐熱性、強度に優れ、また樹脂層中での顔料の分散性が良好である。
  また、顔料を遮光性着色層に含有させる方法としては各種の方法を用いることができ、具体的には、(ア)樹脂合成時に添加する方法、(イ)樹脂に添加し、溶融混練する方法、(ウ)上記(ア)または(イ)の方法において顔料を多量添加したマスターペレットを製造し、これらと添加剤を含有しない樹脂とを混練して所望濃度とする方法、(エ)上記(ウ)のマスターペレットをそのまま使用する方法、等が挙げられ、中でも(ウ)のマスターバッチ法が濃度制御性の点で好ましい。
 基材の着色、特に白色化において、基材に非相溶なポリマーや微粒子を添加し、フィルム延伸時にブレンド界面で空隙、気泡を形成させる方法としては、例えば基材にポリエステル系樹脂を用いる場合は、これと非相溶なポリマーの具体例としてポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンなどが挙げられる。該ポリマーはホモポリマーでも共重合ポリマーでもよい。中でも、臨界表面張力の小さいポリオレフィンが好ましく、ポリプロピレンやポリメチルペンテンなどが密度の低減、耐熱性、誘電率低減の上でより好ましい。
 遮光性着色層には、基材中における非相溶ポリマーの粒径制御のために相溶化剤を添加してもよい。かかる相溶化剤としては、例えばポリアルキレングリコールまたはその共重合体などを使用することができ、具体的にはポリエチレングリコールやポリピロピレングリコールなどが好ましく使用される。また、かかる非相溶なポリマーに、界面活性剤等を加えて、微細化することができるが、電気特性や耐熱性、耐加水分解性等に影響を与えない範囲で添加することができる。
 また、基材に添加する微粒子の具体例としては、有機粒子や無機粒子が挙げられ、有機粒子の例としては、シリコン粒子、ポリイミド粒子、架橋スチレン-ジビニルベンゼン共重合体粒子、架橋ポリエステル粒子、フッ素系粒子などが挙げられる。また、無機粒子としては、炭酸カルシウム、二酸化珪素、硫酸バリウムなどが挙げられる。
 かかる非相溶なポリマーや微粒子の添加方法は、特に制限されるものではないが、非相溶ポリマーの場合は、押出機にそれぞれ供給し、該押出機のせん断力を利用して分散させる方法がコスト面で有利である。また、微粒子の場合は、重合段階で添加する方法が好ましい。具体的にはエチレングリコールに添加しておく方法などが好ましい。また、炭酸カルシウム粒子を使用する場合は添加時にリン化合物を添加し、黄化や発泡を防ぐのが好ましい。
 遮光性着色層の着色方法としては、中でも、太陽光受光側から見て着色フィルムの下側に位置するガスバリア性フィルムや耐候性フィルムの紫外線劣化を防ぐ点において、顔料添加による着色化が、紫外線透過を抑制することができることから好ましい。
[遮光性着色層の形成及び性状]
  遮光性着色層には、加工性、耐熱性、耐候性、機械的性質、寸法安定性等を改良、改質する目的で、種々の添加剤等を配合することができる。この添加剤としては、例えば滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定化剤、充填剤、強化繊維、補強剤、帯電防止剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料等が挙げられる。
 本発明においては、遮光性着色層は、遮光性着色フィルムとしてバックシートを構成することが好ましい。遮光性着色フィルムは、無延伸、一軸延伸、二軸延伸の何れのフィルムでも良い。成形方法としては、特に限定されず、例えば押出し法、キャスト成形法、Tダイ法、切削法、インフレーション法等の公知の方法で製膜し、次いで必要に応じて、テンター法やチューブラー法等により、一軸延伸、同時又は逐次二軸延伸しても良い。
 さらに、遮光性着色フィルムは、単層押出成形法でも多層の共押出成形法でも形成することが可能である。共押出多層フィルムの場合は、各層をそれぞれ着色してもよいし、中層を着色し外層を透明としてもよい。外層を透明にする場合は、単層や外層を着色させる場合と同等の光反射性を有する条件で比較して、着色層を中層に集約することにより、着色剤の使用量を低減することができる。
また、外層を透明にする場合は、着色剤や空隙部が含まれないことにより、外層中の樹脂間の結合力が弱まることがないため、充填材と接する側の外層においては、外層と充填材との密着性、或いは外層と易接着層との密着性が良好となり、高温高湿下でも密着性が保持される。例えば、遮光性着色層を白色顔料を添加した二軸延伸ポリエステルフィルムとする場合、バックシートの耐候性層の耐候性能や、ガスバリア性層のガスバリア性能が低下するような場合は、着色層のポリエステル樹脂の加水分解が進み、充填材との剥離試験において、着色ポリエステルフィルムの充填材側表層の凝集剥離が起き易いが、顔料添加を共押出成形法での中層とし、外層は顔料無添加とすると、上記凝集剥離は発生し難いという利点がある。
 遮光性着色層の厚さは、太陽電池用バックシートの用途や太陽電池セル及びモジュールの仕様に応じて適宜選択できるが、当該遮光性着色層に太陽光反射機能を付与させる場合には、十分な色度、反射強度を得、基本的なフィルム強度を保持する上で、20μmから250μmが望ましく、更には50~150μmが好ましい。
 本発明において、遮光性着色層が反射性を有する場合の「反射性」とは、波長350nmの光の透過率が1.0%以下であることをいい、耐候性の点から、0.8%以下であることが好ましく、0.5%以下であることがより好ましい。
 本発明においては、遮光性着色層が白色フィルムの場合、その白色度は、ハンター法、JIS L1015により測定され、その値は太陽電池の発電効率を高める点で75%以上が好ましく、更に80%以上が好ましい。
 また、着色フィルムの熱収縮率は、太陽電池モジュール製造の加熱圧着工程におけるフィルムの収縮による生産性の低下を防止する点から、150℃30分加熱(JIS C2151)において2%以下が好ましく、更には1%以下、0.2~0.5%、0.005~0.5%であることが好ましい。
[易接着層]
 遮光性着色層は、太陽電池モジュールを構成する充填材として多用されているエチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール樹脂、変性ポリオレフィン樹脂等への密着性を良好なものとするために、バックシートを構成する遮光性着色層の外側面、つまり遮光性着色層の裏面側充填材に接する側にさらに易接着層を設けることが好ましい。
  易接着層としては、各種方法により設けることが可能であるが、通常、成形した易接着フィルムを接着剤等により着色層に接合する、いわゆるドライラミネート法、押出機により易接着フィルムを押出成形すると同時に着色層に接合する、いわゆる押出ラミネート法、さらに溶剤、水等に溶解させて着色層表面に塗布するコート法がある。
ここで、ドライラミネート法、押出ラミネート法において、使用する樹脂としては、ポリオレフィン系樹脂が好適である。ポリオレフィン系樹脂はその樹脂特性から熱融着性が高く、高温高湿試験下において充填材と強固な密着を保持できる。ドライラミネート法の場合は、バックシートの各層間で使用する接着剤を同様に適用できる。
ポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、及びこれらの混合物等が挙げられ、充填材との加熱圧着条件やバックシートのラミネート加工条件に合わせ適宜選択できる。ポリエチレン系樹脂の例としては、エチレンの単独重合体、低密度ポリエチレン、直線状低密度ポリエチレン、高密度ポリエチレン、メタロセン系ポリエチレン、及びこれらの混合物が挙げられる。ポリプロピレン系樹脂としては、プロピレンの単独重合体、プロピレンの共重合体、及びこれらの混合物が挙げられる。また、光安定化剤、紫外線吸収剤、滑剤、耐ブロッキング剤等を必要に応じ、高温高湿下での充填材との密着性を保持する範囲内で含有してもよい。
易接着層の厚みは、10~200μm程度、好ましくは30~150μm、更に好ましくは50~120μmであり、薄い場合は、剥離試験において充填材とバックシートとの応力緩和が不十分になり剥離しやすい傾向になる。厚い場合は、バックシートとしての剛性が不十分となったりカールが大きくなったりする傾向にある。それらの点において、バックシートの遮光性着色層から耐候性ポリエステル系樹脂層までの厚みに対する易接着層の厚みの比率は、10~100%、好ましくは15~75%、更に好ましくは20~50%が良い。または、易接着層に対するバックシートの遮光性着色層から耐候性ポリエステル系樹脂層まで合わせた層の引張弾性率比と厚み比とが、0.5~10倍の関係が好ましくは、1~8倍、更には2~5倍の関係がよい。また、厚みむらは、太陽電池モジュールを作製する真空ラミネート時の成型性の点で、±10%以内であることが望ましい。また、ポリオレフィン樹脂層の表面をコロナ放電処理、オゾン処理、プラズマ処理などの表面改質処理を施すことが密着性向上の点で望ましい。
上述したコート法の場合、使用する樹脂としては、特に限定されないが、アクリル系、エポキシ系、フェノール系、ポリエステル系、ウレタン系、スチレン系の各樹脂あるいはこれらの変性物が挙げられる。また、これらは、二種以上混合して用いても構わない。また、油性、水性の何れを用いることも可能である。
 アクリル系樹脂としては、例えば、アルキル(メタ)アクリレート系モノマーを主成分とするポリマーが用いられ、さらに、アミド基含有アクリレートモノマー、水酸基含有アクリレートモノマー、グリシジル基含有アクリレートモノマーなどを共重合させたものを用いることができる。さらには、適宜他の各種重合性不飽和単量体を共重合させることが出来る。
  エポキシ系樹脂としては、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などが代表的であるが、各種多官能エポキシ化合物、例えばグリシジル基含有アクリル系樹脂や、グリコール類、多価アルコール類、ジカルボン酸とエピクロルヒドリンとをそれぞれ作用させたエポキシ化合物なども用いることができる。硬化剤としては、各種カルボン酸基、アミノ基、オキサゾリン基を有する化合物を用いることができる。
  ポリエステル系樹脂としては、多塩基酸またはそのエステル形成誘導体を2種以上と、ポリオールまたはそのエステル形成誘導体を1種あるいは2種以上用いて得られた各種樹脂を挙げられる。
  ウレタン系樹脂としては、ポリエステル系、アクリル系、エーテル系のポリオールに、鎖長伸長剤として、ジイソシアネート類やその水素添加物、あるいはアダクト体、ビューレット体、イソシアヌレート体などのポリイソシアネート類を作用させることによって得られたポリウレタンが挙げられる。また、上述したポリイソシアネートと作用させる官能基としてエチレンイミンやその誘導体、あるいはそのカルボン酸基やスルホン酸基やアミノ基あるいはこれらの塩も併用することも可能である。
  スチレン系樹脂としては、大きくスチレン-マレイン酸共重合体、スチレン-酢酸ビニル共重合体、スチレン-(メタ)アクリル系共重合体が挙げられ、アクリル系については上述した(メタ)アクリル系モノマーを用いることができる。
<耐候性ポリエステル系樹脂層>
[ポリエステル系樹脂]
  耐候性ポリエステル系樹脂層には、耐加水分解性及び耐熱性に優れるポリエステル系樹脂を用いる。
 ポリエステル樹脂としては、工業生産性の点から、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレートを用いることが好ましく、ポリエチレンテレフタレート、ポリエチレンナフタレートを用いることがより好ましい。
 ポリエチレンテレフタレートからなるフィルムは、高透明、生産性、汎用性の点で優れており、ポリエチレンナフタレートからなるフィルムは、高耐加水分解性、耐熱性、強靭性、低オリゴマー性、低水蒸気透過率性の点で優れている。
  ポリエチレンナフタレートは、エチレンナフタレートを主たる繰り返し単位とするポリエステル樹脂であり、ナフタレンジカルボン酸を主たるジカルボン酸成分とし、エチレングリコールを主たるグリコール成分として合成される。
  当該耐候性ポリエステル系樹脂層に用いるポリエチレンナフタレートは、耐加水分解性、強度、バリア性が優れている点から、エチレンナフタレート単位がポリエステルの全繰り返し単位の80モル%以上であることが好ましい。
  上記ナフタレンジカルボン酸としては、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸などが挙げられ、中でも、耐加水分解性等の面から2,6-ナフタレンジカルボン酸が好ましい。
  また当該ポリエチレンナフタレート樹脂は、芳香族ポリエステルを含有することが好ましい。ポリエチレンナフタレート中に芳香族ポリエステルを含有することで、該ポリエチレンナフタレートフィルムの耐加水分解性を保持しつつ結節強度、耐剥離性、機械的強度等を向上することができる。この芳香族ポリエステルの含有量としては、ポリエチレンナフタレートフィルム中、1~10質量%が好ましい。芳香族ポリエステルの含有量を上記範囲とすることで、結節強度、耐剥離性、機械的強度等を効果的に向上することができる。この芳香族ポリエステルとしては、具体的にはテレフタル酸成分及び4,4'-ジフェニルジカルボン酸を主たるジカルボン酸成分とし、エチレングリコールを主たるグリコール成分として共重合してなるポリエステルが好ましい。
 当該ポリエステル系樹脂の製造方法としては例えば、酸成分とジオール成分とを直接エステル化させるか、または酸成分として、ジアルキルエステルを用いて、ジオール成分とエステル交換反応をさせる第一段階の反応の後、この反応の生成物を減圧下で加熱して余剰のジオール成分を除去しつつ溶融重合させる第二段階の反応とで製造する方法や、さらに第二段階の反応の生成物を固相重合させる第三段階の反応により製造する方法等が挙げられる。カルボキシ末端基量の少ないポリエステル系樹脂を得るには、固相重合を用いることが好ましい。
  また、当該ポリエステル系樹脂は、ポリエステル系樹脂の粘度を調製するために、ポリエーテル化合物を含んでも良い。該ポリエーテル化合物としては、特に限定されるものではなく、例えば、ポリエチレンオキサイド、あるいはジオールを主たる構成成分とするポリエーテル化合物を用いることができる。
  本態様に好ましく用いられるポリエーテル化合物としては、例えば、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、これらのポリエーテル化合物の共重合体のうち少なくとも一種を含有してなるポリエーテル化合物を挙げることができる。
  なお、上記ポリエーテル化合物としては、末端封鎖したポリエーテル化合物を用いてもよい。上記末端封鎖したポリエーテル化合物は、ポリエステル系樹脂の加水分解を抑制することができる利点を有するからである。末端封鎖されたポリエーテル化合物としては、例えばポリエーテル末端の水酸基をアルキルエーテル化つまりメトキシ基、エトキシ基等で末端封鎖したポリエーテル化合物を挙げることができる。
  上記ポリエーテル化合物の平均分子量としては、特に限定されないが、ポリエステル系樹脂との相溶性の点で、数平均で500~10,000であることが好ましく、より好ましくは、700~5,000である。
  本態様に用いられるポリエーテル化合物の含有量としては、特に限定されないが、通常、ポリエステル系樹脂中、0.1~10質量%の範囲内であることが好ましく、なかでも0.2~7質量%の範囲内が好ましく、特に0.2~5質量%の範囲内が好ましい。
[耐候性ポリエステル系樹脂層]
 太陽電池モジュールの保証期間は10年から20年、30年と長期化しており、それを満足させる上で太陽電池用バックシートの耐候性、耐久性向上が必要である。その点において、当該太陽電池用バックシートの耐候性ポリエステル系樹脂層の85℃相対湿度85%で3000時間後における強度保持率は50%以上が好ましく、更には60%以上が好ましい。
 強度保持率は、耐候性ポリエステル系樹脂層を15mm幅に切り出し、85℃相対湿度85%3000時間環境試験前後において、それぞれ引張試験機を用いて引張り破断強度を測定し、環境試験前に対する試験後の破断強度比(%)を表したものである。
 当該耐候性ポリエステル系樹脂層の耐候性は、主原料樹脂の分子量、末端カルボキシル基量、オリゴマー量などが大きく関与し、また、耐加水分解剤、酸化防止剤などの添加効果が強く影響する。
  ポリエステル系樹脂の分子量は、耐候性、特に耐加水分解性の点で、数平均分子量が、18,000~42,000の範囲内であることが好ましく、なかでも19,000~40,000の範囲内であることが好ましい。
  数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により、以下の条件で測定することができる。
(a)装置  :  ゲル浸透クロマトグラフ GCP-244(WATERS社製)
(b)カラム  :  Shodex HFIP 80M 2本(昭和電工(株)製)
(c)溶媒  :  ヘキサフルオロプロパノール(0.005N-トリフルオロ酢酸ソーダ)
(d)流速  :  0.5ml/min
(e)温度  :  23℃
(f)試料濃度:0.06%(完全溶解 、ろ過:マイショリディスク W-13-5)
(g)注入量  :  0.300ml
(h)検出器  :  R-401型示差屈折率器(WATERS製)
(i)分子量公正  :  PET-DMT(標準品)
  ポリエステル系樹脂の末端カルボキシル基量は、高温高湿雰囲気下におけるポリエステル系樹脂の加水分解性、太陽電池用バックシートの耐久性、生産性等の点から、5~40eq/tonが好ましく、5~15eq/tonが好ましい。
 ポリエステル系樹脂中の、繰り返し数(重合度)が2~20程度の低重合体であるオリゴマーの量は、加水分解性の点から、0.1~0.8質量%が好ましく、より好ましくは0.5質量%以下、更に好ましくは0.3質量%以下である。一般に、ポリエチレンナフタレート樹脂は、オリゴマー量が少ない特性を持つことが好ましい。
 オリゴマー含有量の測定は、例えば、ポリエステル樹脂100mgをフェノール/1,2-ジクロロベンゼン(質量比:50/50)、フェノール/1,1,2,2-テトラクロロエタン(質量比:50/50)、o-クロロフェノール、ジクロロ酢酸などの何れかの溶媒2mL中に溶解し、その溶液を液体クロマトグラフィーで測定し、ポリエステル樹脂に対する質量%で分析することができる。
 耐候性ポリエステル系樹脂層は、カルボジイミド化合物を含有することが好ましい。カルボジイミド化合物を含有することで、ポリエステル系樹脂層中の末端カルボキシル基や、加水分解により生じたカルボキシル基がカルボジイミド化合物と反応し、耐加水分解性が向上する。このカルボジイミド化合物の含有量としては、0.1~10質量%が好ましく、0.5~3質量%がより好ましい。
  上記カルボジイミド化合物としては、例えばN,N'-ジフェニルカルボジイミド、N,N'-ジイソプロピルフェニルカルボジイミド、N、N'-ジシクロヘキシルカルボジイミド、1,3-ジイソプロピルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド等のモノカルボジイミド、及びポリ(1,3,5-トリイソプロピルフェニレン-2,4-カルボジイミド)等のポリカルボジイミド化合物が挙げられる。これらの中でも、汎用性の点でN,N'-ジフェニルカルボジイミド及びN,N'-ジイソプロピルフェニルカルボジイミドが好ましく使用できる。また、カルボジイミド化合物の分子量としては、化合物の分散性や飛散性の点から、一般に200~1000の範囲、特に200~600の範囲であることが好ましい。
  またポリエステル系樹脂層には、上記カルボジイミド化合物に加えて酸化防止剤を含有することが好ましい。カルボジイミド化合物と酸化防止剤を共に含有することで、上記耐加水分解性が更に向上し、カルボジイミド化合物の分解も抑制することができる。上記酸化防止剤としては、具体的にはヒンダードフェノール系化合物及びチオエーテル系化合物が挙げられ、ヒンダードフェノール系化合物が酸化防止性の点で好ましい。
 この酸化防止剤の含有量としては、カルボジイミドの分解抑制機能及び耐加水分解性の向上効果、及び樹脂層の色調を維持する点から、0.05~1質量%が好ましく、0.1~0.5質量%がより好ましい。カルボジイミド化合物の含有量に対する酸化防止剤の含有量の質量比としては、加水分解を抑制する効果が十分である点から、0.1~1.0が好ましく、0.15~0.8がより好ましい。なお、カルボジイミド化合物及び酸化防止剤の添加方法は、ポリエステル系樹脂に混練りする方法でも、樹脂の重縮合反応時に添加する方法でもよい。
 耐候性ポリエステル系樹脂層の厚みは、耐候性、耐久性の点から、10~500μmであることが好ましく、より好ましくは25~200μmである。厚みが薄過ぎると、85℃相対湿度85%試験後の強度低下が大きく、厚過ぎるとコスト高となる。
[耐候性ポリエステル系樹脂層の形成]
 当該耐候性ポリエステル系樹脂層は、従来公知の方法により製造することができ、例えば、ポリエステル系樹脂フィルムとして形成する場合は、原料樹脂を押出機により溶融し、環状ダイやTダイにより押出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。また、多層ダイを用いることにより、1種の樹脂からなる単層フィルム、1種の樹脂からなる多層フィルム、多種の樹脂からなる多層フィルムを製造することができる。
 この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸し、熱固定することにより、少なくとも一軸方向に延伸したフィルムを製造することができる。延伸倍率、熱固定温度は任意に設定できるが、150℃30分での熱収縮率が1.0%以下であることが好ましく、より好ましくは0.1~0.5%、更に好ましくは0.005~0.5%を満たす条件である。
 フィルム物性の点から、ポリエステル系樹脂フィルムとしては、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートと他のプラスチックの共押出二軸延伸フィルムが好ましい。
<ガスバリア性層>
[ガスバリア性層の基材]
 ガスバリア性層の基材としては、熱可塑性高分子が好ましく、通常の包装材料に使用しうる樹脂であれば特に制限なく用いることができる。具体的には、エチレン、プロピレン、ブテン等の単独重合体または共重合体などのポリオレフィン、環状ポリオレフィン等の非晶質ポリオレフィン、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル、ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド、エチレン-酢酸ビニル共重合体部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリレート樹脂などが挙げられる。これらの中では、フィルム物性の点から、ポリエステル、ポリアミド、ポリオレフィンが好ましい。中でも、フィルム強度の点から、ポリエチレンテレフタレート、ポリエチレンナフタレートがより好ましい。更には、耐候性、耐加水分解性の点で、ポリエチレンナフタレートが好ましい。
 尚、ガスバリア性層の基材として、前述の遮光性着色層の基材、又は耐候性ポリエステル系樹脂層の基材を用いることができ、それにより遮光性着色機能とガスバリア性機能、又はガスバリア性機能と耐候性機能を兼ねることができる。
 また、上記基材には、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、耐加水分解向上剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等の公知の添加剤を含有することができる。特に耐加水分解向上剤としてカルボジイミド0.1~10質量%含有することがフィルムの耐候性向上の点で好ましい。
 上記基材は基材フィルムの形で用いることが好ましい。基材フィルムとしての熱可塑性高分子フィルムは、上記の原料を用いて成形してなるものであり、基材フィルムとして用いる際は、未延伸であってもよいし延伸したものであってもよい。また、他のプラスチック基材と積層されていてもよい。
 かかる基材フィルムは、従来公知の方法により製造することができ、例えば、原料樹脂を押出機により溶融し、環状ダイやTダイにより押出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。また、多層ダイを用いることにより、1種の樹脂からなる単層フィルム、1種の樹脂からなる多層フィルム、多種の樹脂からなる多層フィルムを製造することができる。
 この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、少なくとも一軸方向に延伸したフィルムを製造することができる。延伸倍率は任意に設定できるが、フィルムの150℃30分熱収縮率は、0.01~3%、より好ましくは0.01~1%、更に好ましくは0.005~0.5%である。
 中でもフィルム物性の点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムや、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートと他のプラスチックの共押出二軸延伸フィルムが好ましい。更には、耐候性、耐加水分解性の点で、二軸延伸ポリエチレンナフタレートフィルム、ポリエチレンナフタレートとポリエチレンテレフタレート等のプラスチックとの共押出二軸延伸フィルム等、ポリエチレンナフタレートが含まれる二軸延伸フィルムが好ましい。
 基材フィルムの厚さは、本発明の太陽電池用バックシートの基材としての機械強度、可撓性等の点から、その用途に応じ、通常5~500μm、好ましくは10~200μmの範囲で選択され、厚さが大きいシート状のものも含む。
 また、耐候性コート層を形成するための耐候性コート剤の基材フィルムへの塗布性、接着性を改良するため、耐候性コート剤の塗布前にフィルムに通常の化学処理、放電処理などの表面処理を施してもよい。
[耐候性コート層]
 ガスバリア性層は、太陽電池用バックシートに用いる点で長期耐候性を有し、ガスバリア性を維持しなければならない。その為、本発明においては、ガスバリア性層の長期耐候性の観点における基材フィルムのブリードアウト抑止性、無機薄膜との密着性を付与する為に、耐候性コート層を形成する。
 本発明においては、耐候性コート層は、(イ)ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物、(ロ)変性ポリビニルアルコールの架橋物、及び(ハ)紫外線安定性基、紫外線吸収性基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体、から選ばれる少なくとも一種からなる。
((イ)ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物)
 従来、アンカーコート剤としては、ポリエステルポリオールやポリエーテルポリオールが多用されるが、ポリエステルポリオールは加水分解しやすい。ポリカプロラクトンポリオールは、アジーペートポリエステルポリオールに比べ耐水性が優れ、またポリエーテルポリオールに比べ耐候性、耐熱性に優れている。また、ポリカーボネートポリオールは、ポリエステルポリオールやポリエーテルポリオールに比べて、耐熱性、耐湿性、耐候性に優れる。上記観点から、本発明においては、耐候性コート剤として、ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物が用いられる。
 ポリカプロラクトンポリオールとポリカーボネートポリオールは、基材フィルムのコロナ処理などの表面処理度を調整する、架橋剤などの密着成分のみやシラン系カップリング剤、チタン系カップリング剤を極薄く先にコーティングする、コート材料において架橋性化合物の配合比を増加する、等の手段によりポリエステルポリオールに比べ層間密着性を改善することができ、それによりコート層の耐候性をより改善できる。
ポリカプロラクトンポリオール
 ポリカプロラクトンポリオールは公知の方法に従い下記の多価アルコールを開始剤とした触媒の存在下、ε-カプロラクトンを開環重合することにより製造される。
 ε-カプロラクトンの重合開始剤である多価アルコールとしては、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリテトラメチレンエーテルグリコールが挙げられ、更にこれらの多価アルコールを開始剤として酸化エチレン、酸化プロピレン、酸化ブチレンを開環重合した重合生成物もしくは共重合生成物等の脂肪族多価アルコール類;シクロヘキサンジメタノール、シクロヘキサンジオール、水素添加ビスフエノールAおよびこれらのグリコールを開始剤として酸化エチレン、酸化プロピレン、酸化ブチレンを開環重合した重合生成物もしくは共重合生成物等のシクロヘキシル基を含有する多価アルコール類;ビスフエノールA、ハイドロキノンビス(2-ヒドロキシエチルエーテル)、p-キシリレングリコール、ビス(β-ヒドロキシエチル)テレフタレートおよびこれらのグリコールを開始剤として酸化エチレン、酸化プロピレン、酸化ブチレンを付加した重合生成物もしくは共重合生成物等の芳香族基を含有する多価アルコール類;及びジメチロールプロピオン酸、ジフエノール酸等のカルボキシル基を有するグリコール、N-メチルジエタノールアミン等の第3級アミンを有するグリコール等種々の官能基を有する多価アルコールも使用することができる。
ポリカーボネートポリオール
 ポリカーボネートポリオールは、公知の方法で作製できる。ポリカーボネートジオールとしては1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオールなどの炭素数2~12の脂肪族ジオール又はこれらの混合物に炭酸ジフェニルもしくはホスゲンを作用させて縮重合して得られるポリカーボネートジオールが好ましく使用される。
 有機溶剤や架橋剤との相溶性の点からは、数平均分子量が10,000以下、好ましくは500~5,000のポリアルキレンカーボネートポリオールと、数平均分子量が5,000以下のポリエチレングリコールモノアルキルエーテルとを反応させて得られる、繰り返し構造単位-[(CH23-OC(O)O]-、又は-[(CH2)2C(CH3)(CH22-OC(O)O]-を有するエーテル変性ポリカーボネートポリオールが好ましい。尚、数平均分子量は、前述のゲルパーミエーションクロマトグラフィ分析のポリスチレン換算値である。
 また、ポリカーボネートポリオールは、これと架橋剤との架橋反応を均質的に行う、即ち部分的に高分子量化したりしないように、また生成物の分子量分布や架橋後の耐加水分解性を制御する点では、末端水酸基指数が92.5~98.5であることが好ましく、より好ましくは95.0~97.5である。尚、末端水酸基指数は、ガスクロマトグラフィーにより分析した、モノアルコールとポリオールのピーク面積総和に対するポリオールのピーク面積比率を%表記したものである。ガスクロマトグラフィーは、40℃から220℃まで10℃/minで昇温して15分間保持し、水素炎イオン化検出器(FID)を用いて分析した。
架橋剤
 ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物を得るための架橋剤としては、上記ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールが有する水酸基と架橋硬化反応する官能基を1分子当たり2個以上含む化合物又は重合体であれば特に限定されず、1種又は2種以上を適宜選択して使用することができる。
 例えば架橋剤として、フェノール基、エポキシ基、メラミン基、イソシアネート基、ジアルデヒド基を持つ化合物又は重合体が例示される。架橋反応性、ポットライフの点で、エポキシ基、メラミン基、イソシアネート基を含有する化合物又は重合体が好ましく、ポットライフ制御の点からイソシアネート化合物及び/又はエポキシ化合物が更に好ましい。特に、イソシアネート化合物が、二液反応性コート剤として、成分の反応性、及びそれに由来する耐候性、コート層の硬度・柔軟性の点で望ましい。
((ロ)変性ポリビニルアルコールの架橋物)
 変性ポリビニルアルコールとしては、ポリビニルアルコールの水酸基を、シラノール基、シリル基、アミノ基、アンモニウム基、アルキル基、イソシアネート基、オキサゾリン基、メチロール基、ニトリル基、アセトアセチル基、カチオン基、カルボキシル基、カルボニル基、スルホン基、燐酸基、アセタール基、ケタール基、炭酸エステル基、シアノエチル基等に変性した樹脂が挙げられる。中でもアセトアセタール化、ブチラール化による変性が、高温高湿下の耐水性の点で好ましい。
 また、変性ポリビニルアルコールは、水酸基が残存するので、その水酸基を架橋させることにより、更に耐水性を向上させることが出来る。
ポリビニルブチラール
 上記のブチラール化による変性体であるポリビニルブチラールは、公知の方法で作製することができるが、良好な耐候性を持つと共に、溶剤溶解性を上げ、均一なコート層を得る点において、ブチラール化度50~80mol%が好ましく、更に好ましくは60~75mol%であり、且つアイソタクティックトライアド型残存水酸基量が好ましくは1mol%以下、更に好ましくは0.5mol%以下であるポリビニルブチラールであることが望ましい。
 ポリビニルブチラールの耐候性及び溶剤溶解性は、ブチラール化度に依存し、ブチラール化度が高いことが望ましいが、ポリビニルアルコールを100mol%ブチラール化することは出来ず、またブチラール化度を極限まで高めることは工業生産的に効率的でない。また、残存水酸基の種類によって、溶媒相溶性が変わり、アイソタクティックトライアド型水酸基が多いと、有機溶剤の溶解性が劣る。
ポリビニルアセトアセタール
 また、上記アセトアセタール化による変性体であるポリビニルアセトアセタールは、公知の方法で作製することが出来るが、耐熱性の点においてアセタール化度が高いことが望ましく、好ましくはアセタール化度50~80mol%、更に好ましくは65~80mol%であり、溶剤溶解性を上げ均一なコート層を成膜するために粒径分布の狭いポリビニルアセトアセタール樹脂を得る点において、炭素数3以上のアルデヒドを適量混合し、アセタール化物析出後に適温で保持することが望ましい。
架橋剤
 変性ポリビニルアルコールの架橋物を得るための架橋剤としては、架橋硬化反応する官能基を1分子当たり2個以上含む化合物又は重合体であれば特に限定されず、上記変性ポリビニルアルコールが有する官能基の種類に応じて1種又は2種以上を適宜選択して使用することができる。
 例えば、変性ポリビニルアルコールの水酸基と架橋させる場合、架橋性化合物として例えば、フェノール基、エポキシ基、メラミン基、イソシアネート基、ジアルデヒド基を持つ化合物又は重合体が例示される。架橋反応性、ポットライフの点で、エポキシ基、メラミン基、イソシアネート基を含有する化合物又は重合体が好ましく、ポットライフ制御の点から特にイソシアネート基が好ましい。
((ハ)紫外線安定性基、紫外線吸収性基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体)
 ポリマーに耐候性を付与する方法として、一般に紫外線安定剤、紫外線吸収剤を含有する方法があるが、比較的低分子量物であるそれらは、長期間使用においては主材質からブリードアウトしてしまい、耐候性が維持され難い。当該耐候性コートにおいては、紫外線安定性基、紫外線吸収性基を耐水性のあるシクロアクリル基と共重合することで、ブリードアウトせずに長期間耐候性を示すことができる。
 本発明において、紫外線安定性基とは、発生したラジカルを捕捉し、不活性化する作用を有するものであり、上記の点から、具体的にはヒンダードアミン基が好ましく挙げられる。即ち、ヒンダードアミン基に発生した安定なニトロキシラジカルが、活性なポリマーラジカルと結合して、自身は元の安定なニトロキシラジカルに戻り、これを繰り返す。
 また、紫外線吸収性基とは、照射される紫外線を吸収することにより、ラジカルの発生を抑制するものであり、この点から、具体的にはベンゾトリアゾール基及び/又はベンゾフェノン基が好ましく挙げられる。
 シクロアルキル基は、耐候性コート層を構成するアクリル系共重合体等の樹脂に耐水性及び耐水蒸気透過性を付与する作用を有するものである。
 従って、紫外線安定性基、紫外線吸収基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体等の樹脂をコート層に使用することによりガスバリア性フィルムのガスバリア劣化を防止することができる。本発明においては、紫外線安定性基、紫外線吸収基、及びシクロアルキル基を兼ね備えることによって、耐候性の点において相乗効果を得ることができる。
 上記アクリル系共重合体は、少なくとも、重合性紫外線安定性単量体、重合性紫外線吸収性単量体、及びシクロアルキル(メタ)アクリレートからなる群から選ばれる少なくとも一種を共重合させて得ることができる。
重合性紫外線安定性単量体
 重合性紫外線安定性単量体は、ヒンダードアミン基を有するものが好ましく、より好ましくは、ヒンダードアミン基と重合性不飽和基をそれぞれ分子内に少なくとも1個有するものである。
 重合性紫外線安定性単量体として、好ましくは下記式(1)又は(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
(式中、R1は水素原子またはシアノ基を表し、R2及びR3はそれぞれ独立して水素原子または炭素数1又は2の炭化水素基を表し、Rは水素原子または炭素数1~18の炭化水素基を表し、Xは酸素原子またはイミノ基を表す。)
Figure JPOXMLDOC01-appb-C000002
(式中、R1 は水素原子またはシアノ基を表し、R2及びR3はそれぞれ独立して水素原子または炭素数1又は2の炭化水素基を表し、Xは酸素原子またはイミノ基を表す。)
 一般式(1)又は(2)で表される紫外線安定性単量体において、R4で示される炭素数1~18の炭化水素基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等の鎖式炭化水素基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の脂環式炭化水素基;フェニル基、トリル基、キシリル基、ベンジル基、フェネチル基等の芳香族炭化水素基などが挙げられる。これらのうち、本発明において、R4としては光安定化反応性の点から、水素原子やメチル基が好ましい。
 R2及びR3の各々で表される炭素数1又は2の炭化水素基としては、例えば、メチル基、エチル基等が挙げられ、好ましくはメチル基である。
 前記一般式(1)で表される紫外線安定性単量体としては、具体的には4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、4-(メタ)アクリロイルアミノ-1,2,2,6,6-ペンタメチルピペリジン、4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルアミノ-2,2,6,6-テトラメチルピペリジンなどが挙げられ、これらのうち、本発明においては、光安定化反応性の点から、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、4-(メタ)アクリロイルアミノ-1,2,2,6,6-ペンタメチルピペリジンが好ましく、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メタクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジンがより好ましい。これらは一種のみで用いてもよく、また二種以上を適宜混合して用いてもよい。もちろん一般式(1)の紫外線安定性単量体はこれら化合物に限定されるものではない。
 前記一般式(2)で表される紫外線安定性単量体としては、具体的には、1-(メタ)アクリロイル-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-クロトノイル-4-クロトイルオキシ-2,2,6,6-テトラメチルピペリジンなどが挙げられ、これらのうち、本発明においては、原料汎用性の点から、1-アクリロイル-4-アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-メタクリロイル-4-メタクリロイルアミノ-2,2,6,6-テトラメチルピペリジンが好ましく、1-メタクリロイル-4-メタクリロイルアミノ-2,2,6,6-テトラメチルピペリジンがより好ましい。これらは一種のみで用いてもよく、また二種以上を適宜混合して用いてもよい。なお一般式(2)の紫外線安定性単量体はこれらに限定されるものではない。
 上記重合性紫外線安定性単量体は、アクリル系共重合体を得るための全重合性単量体成分中に光安定化性能の点から、0.1~50質量%含有されることが好ましく、より好ましくは0.2~10質量%、更に好ましくは0.5~5質量%の範囲内で含有される。含有量が上記範囲内であれば、耐候性が十分に発揮される。
重合性紫外線吸収性単量体
 本発明に用いられる重合性紫外線吸収性単量体としては、重合性ベンゾトリアゾール類及び/又は重合性ベンゾフェノン類が好ましく挙げられる。
(a)重合性ベンゾトリアゾール類
 本発明において、重合性ベンゾトリアゾール類としては、具体的には、下記式(3)、式(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R5は水素原子または炭素数1~8の炭化水素基を表し、R6は低級アルキレン基を表し、R7は水素原子またはメチル基を表し、Yは水素原子、ハロゲン原子、炭素数1~8の炭化水素基、低級アルコキシ基、シアノ基またはニトロ基を表す。)
Figure JPOXMLDOC01-appb-C000004
(式中、R8は炭素数2又は3のアルキレン基を表し、R9は水素原子またはメチル基を表す。)
 上記式中、R5で表される炭素数1~8の炭化水素基は、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの鎖式炭化水素基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などの脂環式炭化水素基;フェニル基、トリル基、キシリル基、ベンジル基、フェネチル基などの芳香族炭化水素基が上げられる。R5としては、好ましくは水素原子又はメチル基である。
 R6 で表される低級アルキレン基としては、炭素数1~6のアルキレン基であることが好ましく、具体的にはメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基などの直鎖状アルキレン基及びイソプロピレン基、イソブチレン基、s-ブチレン、t-ブチレン基、イソペンチレン基、ネオペンチレン基などの分枝鎖状アルキレン基が挙げられ、好ましくはメチレン基、エチレン基、プロピレン基である。
 Yで表される置換基としては、水素;フッ素、塩素、シュウ素、ヨウ素などのハロゲン;R5で表される炭素数1~8の炭化水素基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘプトキシ基など炭素数1~8の低級アルコキシ基;シアノ基;ニトロ基が挙げられ、反応性の点で、好ましくは水素原子、塩素原子、メトキシ基、t-ブチル基、シアノ基、ニトロ基である。
 前記一般式(3)で表される紫外線吸収性単量体としては、具体的には2-[2' -ヒドロキシ-5' -(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[ 2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル] -2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-3' -t-ブチル-5' -(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -t-ブチル-3' -(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2'-ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-t-ブチル-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-5-ニトロ-2H-ベンゾトリアゾールなどが挙げられ、紫外線吸収性の点から、好ましくは2-[2' -ヒドロキシ-5' -(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[ 2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル] -2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-3' -t-ブチル-5' -(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-t-ブチル-2H-ベンゾトリアゾールであり、より好ましくは2-[2’-ヒドロキシ-5’-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾールである。一般式(3)で表されるこれら紫外線吸収性単量体は一種類のみを用いてもよく、また二種類以上を適宜混合して用いてもよい。
 また前記一般式(4)で表される紫外線吸収性単量体においては、式中、R8 で表される炭素数2または3のアルキレン基としては、具体的にはエチレン基、トリメチレン基、プロピレン基などである。
 前記一般式(4)で表される紫外線吸収性単量体としては、たとえば、2-〔2' ヒドロキシ-5' -(β-メタクリロイルオキシエトキシ)-3' -t-ブチルフェニル〕-4-t-ブチル-2H-ベンゾトリアゾール、2-〔2' ヒドロキシ-5' -(β-アクリロイルオキシエトキシ)-3' -t-ブチルフェニル〕-4-t-ブチル-2H-ベンゾトリアゾール、2-〔2' ヒドロキシ-5' -(β-メタクリロイルオキシn-プロポキシ)-3' -t-ブチルフェニル〕-4-t-ブチル-2H-ベンゾトリアゾール、2-〔2' ヒドロキシ-5' -(β-メタクリロイルオキシi-プロポキシ)-3' -t-ブチルフェニル〕-4-t-ブチル-2H-ベンゾトリアゾールが挙げられ、紫外線吸収性の点から、好ましくは2-[2’-ヒドロキシ-5’-(β-メタクリロイルオキシエトキシ)-3’-t-ブチルフェニル]-4-t-ブチル-2H-ベンゾトリアゾールである。一般式(4)で表されるこれら紫外線吸収性単量体は一種類のみを用いてもよく、また二種類以上を適宜混合してもよい
(b)重合性ベンゾフェノン類
 重合性紫外線吸収性単量体として用いられる重合性ベンゾフェノン類としては、例えば2,4-ジヒドロキシベンゾフェノン又は、2,2’,4-トリヒドロキシベンゾフェノンとグリシジルアクリレート又は、グリシジルメタクリレートを反応して得られる2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシ-プロポキシ)ベンゾフェノン、2-ヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシ-プロポキシ)ベンゾフェノン、2,2’-ジヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2’-ジヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン等のモノマーが挙げられる。原料汎用性の点で、好ましくは2-ヒドロキシー4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノンである。
 重合性紫外線吸収性単量体は、得られるアクリル共重合体を含むコート層の耐候性を更に向上させるために用いるものであり、全重合性単量体成分中における含有割合は次の通りである。重合性ベンゾトリアゾール類の場合、十分な紫外線吸収性能及び紫外線照射による着色防止の点から、好ましくは0.1~50質量%、より好ましくは0.5~40質量%、更に好ましくは1~30質量%である。重合性ベンゾフェノン類の場合、十分な紫外線吸収性能及び相溶性が良好である点から、好ましくは0.1~10質量%、より好ましくは0.2~5.0質量%である。
シクロアルキル(メタ)アクリレート
 本発明に用いられるシクロアルキル(メタ)アクリレートは、得られるアクリル共重合体を特に二液ウレタン樹脂塗料用として使用する場合、塗膜の硬度、弾性、耐溶剤性、耐ガソリン性、耐候性の向上のために用いられる成分である。シクロアルキル(メタ)アクリレートとしては、例えば、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレートなどを好ましく挙げることができる。これらは1種で又は2種以上を組み合わせて使用することができる。該シクロアルキル(メタ)アクリレートは重合性単量体成分中、好ましくは5~80質量%、より好ましくは10~70質量%、更に好ましくは15~50質量%の範囲で使用する。使用量が上記範囲内であれば、塗膜の硬度、耐候性等の性能が充分に発揮され、乾燥性及びレベリング性が両立して得られ好ましい。
架橋性官能基
 上記耐候性コート層では、アクリル系共重合体が架橋性官能基を有し、架橋剤と架橋することにより形成されることが好ましい。これにより、上記アクリル系共重合体は架橋構造を有することになるため、コート層の物性や耐候性が向上し、その結果、優れた耐候性能が長期に渡って維持されることになる。
 上記アクリル系共重合体が有する架橋性官能基としては、例えば、水酸基、アミノ基、カルボキシル基又はその無水物、エポキシ基、アミド基等が挙げられる。これらの架橋性官能基は、アクリル系共重合体中に1種存在してもよく、2種以上存在してもよい。本発明においては、これらの架橋性官能基の中でも、水酸基、アミノ基、カルボキシル基等の活性水素を有する基が、安定性の点で好ましい。
 水酸基を含有する重合性不飽和単量体としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート、フタル酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレートなど水酸基を有する(メタ)アクリルモノマー等を挙げることができ、好ましくはヒドロキシプロピルアクリレート、ヒドロキシエチルメタクリレートである。これらは1種で又は2種以上を組み合わせて使用することができる。
 架橋性官能基を含有する重合性単量体は、得られるアクリル系共重合体にポリイソシアネートをはじめその他の架橋性化合物を配合して熱硬化型塗料用樹脂組成物とする場合に、それら架橋性化合物との反応に必要な成分であり、全重合性単量体成分中2~35質量%、好ましくは3.5~23質量%の範囲で使用する。上記使用量範囲であれば、得られるアクリル系共重合体中の架橋性官能基の量が適性であり、該アクリル系共重合体と架橋性化合物との反応性が維持され、架橋密度が十分となり、目的とする塗膜性能が得られる。また、架橋性化合物を配合した後の保存安定性も良好である。
その他の重合性不飽和単量体
 本発明においては、アクリル系共重合体を形成するためのその他の重合性不飽和単量体を用いることができる。
 本発明に用いられるその他の重合性不飽和単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステル;グリシジル(メタ)アクリレートなどのエポキシ基含有不飽和単量体;(メタ)アクリルアミド、N,N’-ジメチルアミノエチル(メタ)アクリレート、ビニルピリジン、ビニルイミダゾールなどの窒素含有不飽和単量体;塩化ビニル、塩化ビニリデンなどのハロゲン含有不飽和単量体;スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族不飽和単量体;酢酸ビニルなどのビニルエステル;ビニルエーテル;(メタ)アクリロニトリルなどの不飽和シアン化合物などを挙げることができ、これらの群から選ばれた1種又は2種以上を使用することができる。
 また、架橋反応時の内部触媒作用の点から、酸性官能基を含有する重合性不飽和単量体も使用することができ、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸及び無水マレイン酸などの如きカルボキシル基含有不飽和単量体;ビニルスルホン酸、スチレンスルホン酸及びスルホエチル(メタ)アクリレートなどの如きスルホン酸基含有不飽和単量体;2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシ-2-クロロプロピルアシッドホスフェート、2-メタクリロイルオキシエチルフェニルリン酸などの酸性リン酸エステル系不飽和単量体などを挙げることができ、これらの群から選ばれる1種又は2種以上を使用することができる。
 上記その他の重合性単量体は、必要に応じて本発明法におけるアクリル系共重合体の作用を損わない範囲で使用することができ、その使用量は重合性単量体成分中0~92.9質量%とすることができる。又、その他の重合性単量体のうちの酸性官能基を含有する重合性単量体は、アクリル系共重合体が架橋剤と架橋反応する際の内部触媒として作用するものであり、その量は重合性単量体成分中0~5質量%、好ましくは0.1~3質量%とすることができる。
アクリル系共重合体の重合方法
 上記単量体を用いてアクリル系共重合体を得る方法は、特に限定されず従来公知の重合法を用いることができる。
 例えば、溶液重合法を採用する場合、使用できる溶剤としては、例えば、トルエン、キシレンやその他の高沸点の芳香族系溶剤;酢酸エチル,酢酸ブチルやセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテートなどのエステル系溶剤;メチルエチルケトン、メチルソブチルケトンなどのケトン系溶剤;イソプロパノール、n-ブタノール、イソブタノールなどの脂肪族アルコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル類などを挙げることができ、これらの1種又は2種以上の混合物を使用することができる。
 また、重合開始剤としては、2,2’-アゾビス-(2-メチルブチロニトリル)、t-ブチルパーオキシ-2-エチルヘキサノエート、2,2’-アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイドなど通常のラジカル重合開始剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用しても良い。使用量は、特に限定されず、所望するアクリル樹脂の特性により適宜設定できる。
 反応温度や反応時間などの反応条件としては、特に限定されず、例えば反応温度は室温から200℃の範囲、好ましくは40~140℃の範囲である。反応時間は、単量体成分の組成や重合開始剤の種類に応じて、重合反応が完結するように適宜設定できる。
架橋剤
 架橋剤としては、上述した架橋性官能基と架橋硬化反応する官能基を1分子当たり2個以上含む化合物又は重合体であれば特に限定されず、上記アクリル系共重合体が有する官能基の種類に応じて1種又は2種以上を適宜選択して使用することができる。
 例えば、アクリル系共重合体が有する架橋性基が水酸基であれば、架橋剤として例えば、フェノール基、エポキシ基、メラミン基、イソシアネート基、ジアルデヒド基を持つ化合物又は重合体が例示される。架橋反応性、ポットライフの点で、エポキシ基、メラミン基、イソシアネート基を含有する化合物又は重合体が好ましく、ポットライフ制御の点から特にイソシアネート基が好ましい。
 アクリル系共重合体が有する架橋性官能基がカルボキシル基又はその無水物である場合には、ポリイソシアネート化合物又はその変性物、アミノプラスト樹脂、エポキシ樹脂等の架橋性化合物が挙げられ、架橋性官能基がエポキシ基である場合には、アミンやカルボン酸、アミド、N-メチロールアルキルエーテル等の化合物を含む架橋剤が挙げられ、架橋性官能基が水酸基やアミノ基である場合には、ポリイソシアネート化合物又はその変性物、エポキシ樹脂、アミノプラスト樹脂等の架橋剤が挙げられる。これらの中でも、活性水素を有する基との組み合わせにおいて、ポリイソシアネート化合物及び/又はエポキシ樹脂であることが好ましい。
 上記アクリル系共重合体においては、架橋性官能基が水酸基であり、架橋剤がイソシアネート化合物である組み合わせが二液反応性コート剤として、成分の反応性、及びそれに由来する耐候性、コート層の硬度・柔軟性の点で望ましい。
(耐候性コート層における架橋剤)
 前述のように、ガスバリア性層の耐候性コートには、架橋剤としてイソシアネート化合物を用いることが好ましく、イソシアネート化合物としては、ポリイソシアネートが好ましく用いられる。ポリイソシアネートは、ジイソシアネート、その二量体(ウレトジオン)、その三量体(イソシアヌレート、トリオール付加物、ビューレット)等の一種、またはそれら二種以上の混合物であってもよい。例えば、ジイソシアネート成分としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3,3'-ジメトキシ-4,4'-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、2,6-ナフタレンジイソシアネート、4,4'-ジイソシアネートジフェニルエーテル、1,5-キシリレンジイソシアネート、1,3-ジイソシアネートメチルシクロヘキサン、1,4-ジイソシアネ-トメチルシクロヘキサン、4,4'-ジイソシアネートシクロヘキサン、4,4'-ジイソシアネートシクロヘキシルメタン、イソホロンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等が挙げられる。また、無黄変性の点で、キシレンジイソシアネート(XDI)系、イソホロンジイソシアネート(IPDI)系、ヘキサメチレンジイソシアネート(HDI)系などが好まれる。また、堅牢性、ガスバリア性、耐候性の点で、ヘキサメチレンジイソシアネートのイソシアヌレート体、ビュレット体が良い。
 エポキシ化合物としては、1分子中に2個以上のエポキシ基を有する化合物であれば特に限定されず、例えば、ソルビトールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリグリシジル、トリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ビスフェノールタイプのエポキシ樹脂等が挙げられる。
 上記架橋剤の使用量としては特に限定されず、架橋剤の種類等によって適宜決定することができるが、上記ポリカプロラクトンポリオール、上記ポリカーボネートポリオール、上記変性ポリビニルアルコール、上記アクリル系共重合体の架橋性基(例えば水酸基)と架橋性化合物の架橋基との反応基比率は、水酸基:架橋基=1:1~1:20が層内凝集力、層間密着性の点で望ましく、更に、1:1~1:10が好ましい。架橋基比率が上記範囲であれば密着性、高温高湿耐性、ガスバリア性、耐ブロッキング性等の点で有利である。
 また、上記架橋剤は、架橋反応を促進させるために、塩類や無機物質、有機物質、酸物質、アルカリ物質等の架橋触媒を1種又は2種以上添加してもよい。例えば、架橋剤としてポリイソシアネート化合物を用いる場合、ジブチル錫ジラウレート、第3級アミン等の公知の触媒を1種又は2種以上添加が例示される。
 また、シラン系カップリング剤、チタン系カップリング剤、光線遮断剤、紫外線吸収剤、安定剤、潤滑剤、ブロッキング防止剤、酸化防止剤等を含有したり、それらを上記樹脂と共重合させたものを使用することができる。
(耐候性コート層の形成方法)
 耐候性コート層は、公知のコーティング方法を適宜採択して形成することができる。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーター、スプレイあるいは刷毛を用いたコーティング方法等の方法がいずれも使用できる。塗布後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥などの加熱乾燥や、赤外線乾燥などの公知の乾燥方法を用いて溶媒を蒸発させることができる。また、耐水性、耐久性を高めるために、電子線照射による架橋処理を行うこともできる。
 耐候性コート層の厚さは0.005~5μm程度、更に0.01~1μmであることが好ましい。上記5μm以下の厚さであれば、滑り性が良好であり、耐候性コート層自体の内部応力による基材フィルムからの剥離もほとんどなく、また、0.005μm以上の厚さであれば、均一な厚さを保つことができ好ましい。
 また、耐候性コート層による基材フィルム表面の平坦化により、無機薄膜層を形成する粒子が緻密に堆積し、且つ均一な厚さに形成しやすいことから、高いガスバリア性を得ることができる。
[無機薄膜層]
 無機薄膜層を構成する無機物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン、水素化炭素等、あるいはこれらの酸化物、炭化物、窒化物またはそれらの混合物が挙げられるが、好ましくは酸化珪素、酸化アルミニウム、水素化炭素を主体としたダイアモンドライクカーボンである。特に、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウムは、高いガスバリア性が安定に維持できる点で好ましい。
 化学気相蒸着に使用し得る材料ガスは、少なくとも1種以上のガスからなることが好ましく、例えば珪素化合物薄膜の形成においては、珪素を含む第一原料ガスに対して、第二原料ガスとして、アンモニア、窒素、酸素、水素やアルゴンなどの希ガスを使用することが好ましい。珪素を含む第一原料ガスとしては、モノシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン等を単独、或いは2種組み合わせて使用することができる。また、原料ガスは、室温において液体でも気体でもよく、液体原料は、原料気化機により気化して装置内へ供給することができる。触媒化学気相成長法においては、加熱触媒体の劣化や反応性・反応速度の点から、モノシランガスが好ましい。
 ガスバリア性フィルムの無機薄膜層の形成方法としては、蒸着法、コーティング法などの方法がいずれも使用できるが、ガスバリア性の高い均一な薄膜が得られるという点で蒸着法が好ましい。この蒸着法には、物理気相蒸着(PVD)、あるいは化学気相蒸着(CVD)などの方法が含まれる。物理気相蒸着法には、真空蒸着、イオンプレーティング、スパッタリングなどが挙げられ、化学気相蒸着法には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。
 更には、上記無機薄膜層は多層化することが、高いガスバリア性を厳しい環境下で長期間安定に維持、確保できる点で好ましい。その際には、公知の各種成膜方法を組み合わせても良い。例えば、耐候性コート層の上に、順に、真空蒸着膜/真空蒸着膜、真空蒸着膜/プラズマCVD膜、真空蒸着膜/プラズマ処理/真空蒸着膜、真空蒸着膜/プラズマCVD膜/真空蒸着膜、真空蒸着膜/Cat-CVD膜/真空蒸着膜、真空蒸着膜/耐候性コート/真空蒸着膜、プラズマCVD膜/真空蒸着膜、プラズマCVD膜/真空蒸着膜/プラズマCVD膜、等の多層無機薄膜構成が挙げられる。中でも、真空蒸着膜/プラズマCVD膜の多層化は、ガスバリア性の良さ、密着性、生産性の点で好ましい。
 各無機薄膜層の厚さは、一般に0.1~500nm程度であるが、好ましくは0.5~100nm、更に好ましくは1~50nmである。上記範囲内であれば、十分なガスバリア性が得られ、また、無機薄膜層に亀裂や剥離を発生させることなく、生産性にも優れている。
[ガスバリア性層の保護層]
 ガスバリア性層には、上記無機薄膜層を保護するために、保護層を有してもよい。該保護層を形成する樹脂としては、溶剤性及び水性の樹脂をいずれも使用することができ、具体的には、ポリエステル系樹脂、ウレタン系樹脂系、アクリル系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、ビニル変性樹脂、ニトロセルロース系樹脂、シリコン系樹脂、イソシアネート系樹脂、エポキシ系樹脂、オキサゾリン基含有樹脂、変性スチレン系樹脂、変性シリコン系樹脂、アルキルチタネート等を単独であるいは2種以上組み併せて使用することができる。また、保護層としては、バリア性、摩耗性、滑り性向上のためシリカゾル、アルミナゾル、粒子状無機フィラー及び層状無機フィラーから選ばれる1種以上の無機粒子を前記1種以上の樹脂に混合してなる層、又は該無機粒子存在下で前記樹脂の原料を重合させて形成される無機粒子含有樹脂からなる層を用いることが出来る。
 保護層を形成する樹脂としては、無機薄膜層のガスバリア性向上の点から上記水性樹脂が好ましい。さらに水性樹脂として、ビニルアルコール樹脂またはエチレンビニルアルコール樹脂が好ましい。
 また、保護層として、ポリビニルアルコール及びエチレン・不飽和カルボン酸共重合体を含有する水性液を塗布してなる樹脂層を用いることができる。
 保護層の厚さは、印刷性、加工性の点から、好ましくは0.05~10μm,更に好ましくは0.1~3μmである。その形成方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーター、スプレイあるいは刷毛を用いたコーティング方法等の方法がいずれも使用できる。また、蒸着フィルムを保護層用樹脂液に浸漬して行ってもよい。塗布後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥などの加熱乾燥や、赤外線乾燥などの公知の乾燥方法を用いて水分を蒸発させることができる。また、耐水性、耐久性を高めるために、電子線照射による架橋処理を行う事もできる。
[ガスバリア性層]
 ガスバリア性層は、ガスバリア性フィルムの形で用いることが好ましく、例えば、基材フィルムに耐候性コート層、無機薄膜層、必要に応じ保護層を設けてなるガスバリア性フィルムがより好ましい。
 本発明においては、太陽電池用バックシートのガスバリア性を高め、厳しい環境下で長期間維持する上で、該ガスバリア性層を2~8層積層することが好ましく、更には2層~4層積層することが好ましい。積層に用いる各々のガスバリア性層の構成は同一でも異なっていても良く、バックシートのガスバリア性能や厚み等の仕様に合わせ適宜組み合わせて用いることが出来る。
 また、ガスバリア性層は、無機薄膜層形成後、及び/又は保護層形成後、及び/又は複数のガスバリア性フィルムの積層後に、60℃以上24時間以上の加熱処理を行うことができる。当該加熱処理により、ガスバリア性を高め安定させることが出来る。
 ガスバリア性層全体の厚みは、ガスバリア性及びその長期安定性の点から、5~150μmであることが好ましく、より好ましくは10~100μmである。
<その他のフィルム>
 本発明の太陽電池用バックシートでは、耐電圧特性として、絶縁破壊電圧1kV以上を満たすことが望ましい。その場合、バックシートの総厚みがおよそ200μm厚以上乃至250μm厚以上が必要である。
遮光性着色層、ガスバリア性層、耐候性ポリエステル系樹脂層の何れか、又は各々の厚みが薄い場合は、バックシートとして絶縁破壊電圧1kVに耐え得ることや、十分な機械強度、難燃性等を付与するために、各層間に他のプラスチックフィルムを積層させることが可能である。
このような他の層としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体あるいはそのケン化物、アイオノマ-樹脂、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸またはメタクリル酸共重合体、ポリメチルペンテン系樹脂、ポリエステル系樹脂、ポリブテン系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩化ビニル-塩化ビニリデン共重合体、ポリ(メタ)アクリル系樹脂、ポリアクリルニトリル系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS系樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS系樹脂)、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリビニルアルコ-ル系樹脂あるいはそのケン化物、フッ素系樹脂、ジエン系樹脂、ポリアセタール系樹脂、ポリウレタン系樹脂、ニトロセルロ-ス等の公知の樹脂のフィルムないしシ-トから任意に選択して使用することができる。本発明においては、耐熱性、強度、耐候性、ガスバリア性等の観点からポリエステル系樹脂、フッ素系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂からなるフィルムないしシ-トが好ましい。
上記層構成の一例として、上述した内容の遮光性着色層、ガスバリア性層及び耐候性ポリエステル系樹脂層を順次積層してなるバックシートで、遮光性着色層と他層の間に、更にポリエステル系樹脂フィルムを介在させた構成が例示される。
<接着剤>
 本発明の太陽電池用バックシートは、上述の遮光性着色層、ガスバリア性層、耐候性ポリエステル系樹脂層、必要に応じ、易接着層、その他のフィルムをそれぞれドライラミネート等の方法で積層することができるが、積層の際、接着剤を用いる場合は、用いる接着剤の種類としては、例えば、ポリ酢酸ビニル系接着剤、アクリル酸のエチル、ブチル、もしくは2-エチルヘキシルエステルなどのホモポリマー、あるいは、前記のエステルとメタクリル酸メチル、アクリルニトリル、スチレンなどとの共重合体などからなるポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレンと酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸などの単量体との共重合体などからなるエチレン共重合体系接着剤、ポリエチレン系樹脂あるいはポリプロピレン系樹脂などからなるポリオレフィン系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリエーテル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、尿素樹脂またはメラミン樹脂などからなるアミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤、クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム、スチレン-イソプレンゴムなどからなるゴム系接着剤、シリコーン系接着剤などを使用することができる。
 中でも、耐加水分解性の点で、ポリエステルポリオールあるいは2官能以上のイソシアネート化合物により鎖伸長を施したポリエステルウレタンポリオールのいずれか単体または混合物、及び/又はポリカーボネートポリオールあるいは2官能以上のイソシアネート化合物により鎖伸長を施したポリカーボネートウレタンポリオールのいずれか単体または混合物、及び/又は側鎖に水酸基を導入したアクリルポリオールに架橋剤を配合した組成物の100質量部に対し、カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物の少なくとも1種以上選択される化合物を1~50質量部配合した接着剤組成物が好ましい。
  上記ポリエステルポリオールとしては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ブラシル酸などの脂肪族系、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などの芳香族系の二塩基酸の一種以上、そしてエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオールなど脂肪族系、シクロヘキサンジオール、水添キシリレングリーコルなどの脂環式系、キシリレングリコールなどの芳香族系のジオールの一種以上を用いて得ることが可能である。
 また、さらにこのポリエステルポリオールの両末端の水酸基を、例えば2,4-もしくは2,6-トリレンジイソシアネート、キシリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、メチレンジイソシアネート、イソプロピレンジイソシアネート、リジンジイソシアネート、2,2,4--もしくは2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4'-ジイソシアネートなどから選ばれるイソシアネート化合物の単体、あるいは少なくとも一種以上から選択される上記イソシアネート化合物からなるアダクト体、ビューレット体、イソシアヌレート体を用いて鎖伸長したポリエステルウレタンポリオールなどが挙げられる。
  ポリエステルポリオールを架橋させる架橋剤としては、上記イソシアネート化合物を用いることが可能であり、これらに限られるものではなく、活性水素基と反応性を有する架橋剤であれば種類は問わない。
  また各種ポリオールが高温多湿下における促進環境下で加水分解が起きた際に生成するカルボキシル基を封鎖するために配合するカルボジイミド化合物としては、N,N'-ジ-o-トルイルカルボジイミド、N,N'-ジフェニルカルボジイミド、N,N'-ジ-2,6-ジメチルフェニルカルボジイミド、N,N'-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、N,N'-ジオクチルデシルカルボジイミド、N-トリイル-N'-シクロヘキシルカルボジイミド、N,N'-ジ-2,2-ジ-tert.-ブチルフェニルカルボジイミド、N-トリイル-N'-フェニルカルボジイミド、N,N'-ジ-p-ニトロフェニルカルボジイミド、N,N'-ジ-p-アミノフェニルカルボジイミド、N,N'-ジ-p-ヒドロキシフェニルカルボジイミド、N,N'-ジ-シクロヘキシルカルボジイミド、およびN,N'-ジ-p-トルイルカルボジイミドなどが挙げられる。
  また同様な作用を施すオキサゾリン化合物としては、2-オキサゾリン、2-メチル-2-オキサゾリン、2-フェニル-2-オキサゾリン、2,5-ジメチル-2-オキサゾリン、2,4-ジフェニル-2-オキサゾリンなどのモノオキサゾリン化合物、2,2'-(1,3-フェニレン)-ビス(2-オキサゾリン)、2,2'-(1,2-エチレン)-ビス(2-オキサゾリン)、2,2'-(1,4-ブチレン)-ビス(2-オキサゾリン)、2,2'-(1,4-フェニレン)-ビス(2-オキサゾリン)などのジオキサゾリン化合物が挙げられる。
  同様にエポキシ化合物としては、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリアルキレングリコールのような脂肪族のジオールのジグリシジルエーテル、ソルビトール、ソルビタン、ポリグリセロール、ペンタエリスリトール、ジグリセロール、グリセロール、トリメチロールプロパンなどの脂肪族ポリオールのポリグリシジルエーテル、シクロヘキサンジメタノールなどの脂環式ポリオールのポリグリシジルエーテル、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、トリメリット酸、アジピン酸、セバシン酸などの脂肪族、芳香族の多価カルボン酸のジグリシジルエステルまたはポリグリシジルエステル、レゾルシノール、ビス-(p-ヒドロキシフェニル)メタン、2,2-ビス-(p-ヒドロキシフェニル)プロパン、トリス-(p-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(p-ヒドロキシフェニル)エタンなどの多価フェノールのジグリシジルエーテルもしくはポリグリシジルエーテル、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、N,N,N',N'-テトラグリシジル-ビス-(p-アミノフェニル)メタンのようにアミンのN-グリシジル誘導体、アミノフェールのトリグリシジル誘導体、トリグリシジルトリス(2--ヒドロキシエチル)イソシアヌレート、トリグリシジルイソシアヌレート、オルソクレゾール型エポキシ、フェノールノボラック型エポキシが挙げられる。
 接着剤に配合するカルボジイミド化合物、オキサゾリン化合物、エポキシ化合物は、接着剤層の耐加水分解性、接着性や塗布作業性の点から、各種ポリオールに架橋剤を配合した組成物の100質量部に対し1~50質量部配合することが好ましい。
  また、加水分解により生じた水酸基を起点にして架橋反応を形成するような化合物を配合しても構わない。このような化合物としてはリン系化合物が挙げられ、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4'-ビフェニレンホスフォナイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、4,4'-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチル-フェニル)ブタン、トリス(ミックスドモノおよびジ-ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4'-イソプロピリデンビス(フェニル-ジアルキルホスファイト)などを用いることが可能である。しかしながら、ポリエステル化合物の加水分解を抑制させるという点では、一度加水分解により生じた水酸基をさらにリン化合物で架橋させるというよりは、加水分解の酸触媒として作用するカルボキシル基を封鎖することが必須であることから、上記カルボジイミド化合物、オキサゾリン化合物、エポキシ化合物が好ましく、もっとも好ましい化合物としてはカルボジイミド化合物が挙げられる。
  ポリカーボネートポリオールとしては、例えばカーボネート化合物とジオールとを反応させて得る事ができる。カーボネート化合物としてはジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネートなどを用いることができる。ジオールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオールなどの脂肪族ジオール、シクロヘキサンジオール、水添キシリレングリール、などの脂環式ジオール、キシリレングリール、などの芳香族ジオールなどの1種以上の混合物が用いられたポリカーボネートポリオール、あるいは上述したイソシアネート化合物により鎖伸長を施したポリカーボネートウレタンポリオールを用いることが可能であり、特に接着剤としての性能を考慮すると脂肪族ポリカーボネート系を用いた方が好ましい。
  アクリルポリオールとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有モノマーを必須成とし、(メタ)アクリル酸、アルキル基としてメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基であるアルキル(メタ)アクリレート系モノマーを主成分とするポリマーが用いられ、さらに、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミドなどのアミド基含有モノマー、グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有モノマーなどを共重合させたものを用いることが可能である。さらにはビニルイソシアネート、アリルイソシアネート、スチレン、α-メチルスチレン、ビニルメチルエーテル、ビニルエチルエーテル、マレイン酸、アルキルマレイン酸モノエステル、フマル酸、アルキルフマル酸モノエステル、イタコン酸、アルキルイタコン酸モノエステル、(メタ)アクリロニトリル、塩化ビニリデン、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ブタジエン等のモノマーを共重合した物を用いることが可能である。
  接着剤中には、接着力に影響が無い範囲内で、紫外線吸収剤、光安定剤、無機フィラー、着色剤などの添加剤を加えることが出来る。
  また、上記接着剤は、例えば、ロールコート、グラビアコート、キスコート、その他公知のコーティング方法によってコーティングすることにより、接着剤層を形成することができる。
  コーティング量としては、乾燥膜厚で0.1g/m2~15g/m2が好ましい。
<太陽電池用バックシート>
 本発明の太陽電池用バックシートは、遮光性着色層、耐候性ポリエステル系樹脂層、及びこれらの層の間に設けられるガスバリア性層を必須の構成とするが、具体的には、以下のような構成を採ることが好ましい。
(A)遮光性着色層を含むフィルム/耐候性コート層及び無機薄膜層を含むガスバリア性層を含むフィルム/耐候性ポリエステル系樹脂層を含むフィルム
(B)遮光性着色層と、耐候性コート層及び無機薄膜層を含むガスバリア性層とを含むフィルム/耐候性ポリエステル系樹脂層を含むフィルム
(C)遮光性着色層を含むフィルム/耐候性コート層及び無機薄膜層を含むガスバリア性層と耐候性ポリエステル系樹脂層とを含むフィルム
 上記構成(B)において、遮光性着色層と、耐候性コート層及び無機薄膜層を含むガスバリア性層とを含むフィルムにおいては、ガスバリア性層の基材が遮光性着色層を兼ね、ガスバリア性層は耐候性ポリエステル系樹脂層を含むフィルム側に設けられることが必要である。この場合、このフィルムの厚みは、20~300μmであることが好ましく、また、50~250μmであることがより好ましい。
 上記構成(C)において、耐候性コート層及び無機薄膜層を含むガスバリア性層と耐候性ポリエステル系樹脂層を含むフィルムにおいては、ガスバリア性層の基材が耐候性ポリエステル系樹脂層を兼ね、ガスバリア性層は遮光性着色層を含むフィルム側に設けられることが必要でる。この場合、このフィルムの厚みは、10~300μmであることが好ましく、また、20~200μmであることがより好ましい。 なお、上記(A)~(C)の構成において、各フィルムの積層はドライラミネート等の方法により行うことができる。
 上記(A)~(C)の構成で必要によっては遮光性着色層の外側面、つまり遮光性着色層の裏面側充填材に接する側にさらに前述した易接着層を設けたバックシートが使用できる。
 本発明の太陽電池用バックシートは、その厚みが、強度、耐久性、耐電圧、コストの点から、50~750μm、好ましくは100~500μm、更に好ましくは200~400μmである。
 また、遮光性着色層が白色フィルムの場合、バックシートの白色度は、ハンター法、JIS L1015により測定され、その値は太陽電池の発電効率を高める点で75%以上が好ましく、更に80%以上が好ましい。
 太陽電池用バックシートの、85℃85RH%で1000時間保管した後の水蒸気透過率としては、1.0g/m2/day以下であることが好ましく、より好ましくは0.8g/m2/day以下である。また、85℃85RH%で3000時間保管した後の水蒸気透過率は、2.0g/m2/day以下であることが好ましく、より好ましくは1.0g/m2/day以下であることがより好ましい。
 太陽電池用バックシートの150℃30分加熱における収縮率は、3%以下が好ましく、より好ましくは1%以下、更には0.5%以下が好ましい。収縮率が高いと、太陽電池モジュール作製の積層工程における加熱圧着時に、積層不良が発生する。
<太陽電池モジュール>
 本発明は、また、上記本発明のバックシートを有する太陽電池モジュールに関する。
 本発明の太陽電池モジュールは、太陽光受光側から順に、透明基板、充填材、太陽電池素子、充填材、当該太陽電池用バックシートとが積層されてなる。
 透明基板としては、ガラス又はプラスチックのシート及び/又はフィルムが使用される。プラスチックの場合は、ガスバリア性を付与する目的で、これに当該太陽電池用バックシートを構成するガスバリア性フィルムと同様にして無機薄膜を形成したり、耐熱性、耐候性、機械強度、帯電性、寸法安定性等を改良する目的で、架橋剤、酸化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、強化繊維、難燃剤、防腐剤等を添加したり、また、これに各種シート及び/又はフィルムを積層することができる。透明基板の厚みは、強度、ガスバリア性、耐久性等の点から適宜設定できる。
 充填材には、透光性、衝撃吸収性や、透明基板、太陽電池素子、太陽電池用バックシートとの接着性を兼ね備える各種樹脂が使用される。例えば、フッ素系樹脂、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、不飽和カルボン酸変性ポリオレフィン系樹脂、ポリビニルブチラール系樹脂、シリコーン系樹脂、エポキシ系樹脂、アクリル系樹脂等が挙げられる。また、充填材層には、架橋剤、酸化防止剤、光安定剤、紫外線吸収剤等を添加することが出来る。その厚みは必要物性に合わせ適宜設定できる。
 太陽電池素子は、充填材間に配置され配線される。例えば、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、各種化合物半導体型、色素増感型、有機薄膜型などが挙げられる。
 太陽電池モジュールの製造方法としては、特に限定されないが、一般的に、透明基板、充填材、太陽電池素子、充填材、太陽電池用バックシートの順に積層する工程と、それらを真空吸引し加熱圧着する工程を有する。
 太陽電池モジュールは、当該太陽電池用バックシートの優れた耐候性、長期ガスバリア性により、耐候性、耐久性に優れるとともに、低費用、低重量であることから、小型、大型や屋内、屋外に関わらず各種用途に好適に使用できる。
 次に、実施例により本発明を更に具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各例で得られた太陽電池用バックシートの性能評価は、以下のように行った。
<無機薄膜の組成比>
 得られたガスバリア性フィルムの無機薄膜について、島津製作所製ESCA-3400を用い元素組成を分析した。
<無機薄膜の厚み>
 得られたガスバリア性フィルムを樹脂に包埋し、その断面方向に超薄切片を作製し、透過型電子顕微鏡で観測した。
<構成層密着性(剥離試験)>
 ガラス板とエチレン-酢酸ビニル共重合体(EVA)シート(三井化学ファブロ(株)製「ソーラーエバSC4」と作製した太陽電池用バックシートを重ね、EVAシートとバックシートの間にはその中央部に剥離フィルムを挟んだ形態で、真空圧着を150℃15分行い一体化し、更に、ガラス板/EVAシート/太陽電池用バックシートを150℃30分加熱した。それらを85℃85RH%で1000時間、3000時間保管した後に、剥離フィルム面積部分のバックシートを切り出し、更に幅15mmの短冊上に切り出し、室温下で剥離試験機(島津製作所製「EZ-TEST」)を用い、100mm/分の速度でT型剥離を行い、剥離状態を下記基準で評価した。
○; 剥離不可。
×; ガスバリア性フィルム内で剥離。
<水蒸気透過率(WTR)(g/m2/day)>
 ガラス板とエチレン-酢酸ビニル共重合体(EVA)シート(三井化学ファブロ(株)製「ソーラーエバSC4」と作製した太陽電池用バックシートを重ね、EVAシートとバックシートの間にはその中央部に剥離フィルムを挟んだ形態で、真空圧着を150℃15分行い一体化し、更に、ガラス板/EVAシート/太陽電池用バックシートを150℃30分加熱した。それらを85℃85RH%で1000時間、3000時間保管した後に、剥離フィルム面積部分のバックシートを切り出し、2日間室温下で風乾し、水蒸気透過率装置(イリノイ社製Model7002を用いて40℃90RH%条件で測定した。
<EVA密着性>
 ガラス板とエチレン-酢酸ビニル共重合体(EVA)シート、三井化学ファブロ(株)製「ソーラーエバSC4」と作製した太陽電池用バックシートを重ね、真空圧着を150℃15分行い、一体化した。更に、ガラス板/EVAシート/太陽電池用バックシートを150℃30分加熱したものを85℃85RH%で1000時間、3000時間保管した後に、15mm幅に切り出し、オートグラフによる90度剥離においてEVAシートとの接着状態を下記基準で評価した。
◎; 剥離強度2000g/15mm以上
〇; 剥離強度300g/15mm以上、2000g/15mm未満
×; 剥離強度300g/15mm未満
<白色度>
 作製した太陽電池用バックシートを、白色フィルムを受光側に向け、JIS L1015に準じハンター法で白色度を測定した。
実施例1
 下記に示す方法で、先ずそれぞれ遮光性着色フィルム(白色フィルム)、ガスバリア性フィルム、耐候性フィルムを作製し、次いでそれらを積層して太陽電池用バックシートを作製した。
<遮光性着色フィルムの作製>
 原料として、オリゴマー量0.5質量%のポリエチレンテレフタレート樹脂(三菱化学(株)製、ノバペックス)と、白色顔料として沈降性硫酸バリウム(東缶マテリアル・テクノロジー(株)製、D50=約0.60μm)を用い、マスターバッチ法で押出機内で十分均一に溶融混合し、硫酸バリウム15質量%含有の未延伸シートをキャストロール上に押し出し、次いで長手方向に95℃で3.5倍比で延伸し、その後横方向に135℃で4.0倍比で延伸して、150μm厚の二軸延伸白色ポリエチレンテレフタレートフィルム(白色フィルム)を作製した。
<易接着層の作製>
 上記遮光性着色フィルムの面にコロナ処理を施し、その片面に荒川化学工業(株)製「ユリアーノU302」を3μm厚でコートし、遮光性着色(白色)フィルムの片面に易接着層を作製した。
<ガスバリア性フィルムの作製>
 基材フィルムとして、厚さ12μmの二軸延伸ポリエチレンテレフタレートフィルム(三菱樹脂(株)製「H100C12」)を用い、その片面にコロナ処理を施し、その上にポリカプロラクトンジオールとしてダイセル化学工業(株)製「プラクセル205」、エポキシ樹脂としてナガセケムテックス(株)製「デナコールEX252」を用い、水酸基に対するエポキシ基の当量比率が1:2になるように混合したコート液をグラビアコート法で塗布して乾燥し厚さ0.1μmの耐候性コート層を形成した。
 次いで、真空蒸着装置を使用して1×10-5Torrの真空下でSiOを高周波加熱方式で蒸発させ、コート層上に厚さ20nmのSiOx(x=1.7)薄膜を有するガスバリア性フィルムを得た。
<耐候性ポリエステル系樹脂フィルム>
 ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製「Q65F」)50μm厚を用い、片面にコロナ処理を施した。
<各フィルムの積層>
 上記のポリエチレンナフタレートフィルムのコロナ面側にグラビアコート法により接着剤10g/m3を塗工し、ガスバリア性フィルムの無機薄膜側の面と貼り合わせて巻き取った。次いで、遮光性着色(白色)フィルムの易接着層を設けていない面に同様にして接着剤10g/m2を塗工し、ポリエチレンナフタレートフィルムと貼り合わせたガスバリア性フィルムのポリエチレンテレフタレートフィルム面側と貼り合わせた。
 接着剤としては、いずれも東洋モートン(株)製「AD-76P1」と「CAT-10L」との混合物を用いた。
実施例2
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 ポリカプロラクトンジオールとしてダイセル化学工業(株)製「プラクセル220」を用い、イソシアネート樹脂として住友バイエルウレタン(株)製「スミジュールN-3200」を用い、水酸基に対するイソシアネート基の当量比率が1:1になるように混合し、コート液とした。
実施例3
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 ポリカーボネートジオールとして日本ポリウレタン(株)製「ニッポラン982R」を用い、イソシアネート樹脂として日本ポリウレタン(株)製「コロネートL」を用い、水酸基に対するイソシアネート基の当量比率が1:1になるように混合し、コート液とした。
実施例4
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 ポリカーボネートジオールとしてダイセル化学工業(株)製「プラクセルCD CD210」を用い、イソシアネート樹脂として三井化学ポリウレタン(株)製「タケネートD-170HN」を用い、水酸基に対するイソシアネート基の当量比率が1:1になるように混合し、コート液とした。
実施例5
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 ポリビニルブチラール樹脂として積水化学工業(株)製「エスレックBL-1」(ブチラール化度63±3mol%)を用い、架橋剤としてエポキシ樹脂(ナガセケムテックス(株)製「デナコールEX252」)を水酸基に対するエポキシ基の当量が1:1になるように混合し、コート液とした。
実施例6
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 (株)クラレ製「ポバールPVA-117」(ケン化度98.0~99.0mol%、重合度1700)のポリビニルアルコール樹脂250gをイオン交換水2400gに加え加温溶解した水溶液に、35%塩酸18gを加え、15℃で攪拌しながらブチルアルデヒド140gを滴下し、樹脂粒子を析出させた。次いで、攪拌しながら35%塩酸150gを滴下しながら50℃まで加温し、2時間保持した。その後、液を冷却し、炭酸水素ナトリウムで中和し、水洗、乾燥し、ポリビニルブチラール樹脂粉末(ブチラール化度70mol%、アイソタクティックトライアド型残存水酸基量0.1mol%)を得、エタノール:トルエン=4:6混合溶媒で溶解し、樹脂溶液を作製した。また、架橋剤としてイソシアネート樹脂、住友バイエルウレタン(株)製「スミジュールN-3200」を用い、水酸基に対するイソシアネート基の当量が1:1になるようにポリニビルブチラール樹脂溶液とイソシアネート樹脂を混合し、コート液とした。
実施例7
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 日本合成(株)製「ゴーセノール」(ケン化度97.0~98.8mol%、重合度2400)のポリビニルアルコール樹脂220gをイオン交換水2810gに加え加温溶解した水溶液に、20℃で攪拌しながら35%塩酸645gを加えた。次いで、10℃でブチルアルデヒド3.6gを攪拌しながら添加し、5分後に、アセトアルデヒド143gを攪拌しながら滴下し、樹脂粒子を析出させた。次いで、60℃で2時間保持した後、液を冷却し、炭酸水素ナトリウムで中和し、水洗、乾燥し、ポリビニルアセトアセタール樹脂粉末(アセタール化度75mol%)を得、エタノール:トルエン=4:6混合溶媒で溶解し、樹脂溶液を作製した。そして、架橋剤としてイソシアネート樹脂、住友バイエルウレタン(株)製「スミジュールN-3200」を用い、水酸基に対するイソシアネート基の当量が1:1になるように、ポリビニルアセトアセタール樹脂溶液とイソシアネート樹脂を混合し、コート液とした。
実施例8
ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 攪拌機、温度計、冷却器、窒素ガス導入管のついた四つ口フラスコに窒素ガス気流下、酢酸エチル100質量部を仕込み、80℃に昇温した中に、配合表(表1)に示す重合性単量体成分からなる原料とベンゾイルパーオキサイド1質量部の混合物を2時間かけて滴下し、更に80℃で4時間保持して、アクリル系共重合体の50質量%溶液を得た。
 次いで、このアクリル樹脂溶液に、エポキシ系共重合体、ナガセケムテックス(株)製「デコナールEX622」をカルボキシル基に対するエポキシ基の当量比が1:1になるように混合し、コート液とした。
実施例9~18
 実施例8において、表1に示す重合性単量体成分からなる原料を用いてアクリル系共重合体溶液を作製し、次いで、該アクリル系共重合体溶液に、イソシアネート樹脂(住友バイエルウレタン(株)製「スミジュールN-3200」)を水酸基に対するイソシアネート基の当量比が1:1になるように混合した以外は同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
実施例19
 実施例8において、表1に示す重合性単量体成分からなる原料を用いてアクリル系共重合体溶液を作製して用いた以外は同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
Figure JPOXMLDOC01-appb-T000005
 なお、上記実施例において用いた単量体は以下の通りである。
(重合性紫外線安定性単量体)
a-1:4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン
a-2:4-メタクリロイルオキシ-2,2,6,6-ペンタメチルピペリジン
a-3:1-メタクリロイル-4-メタクリロイルアミノ-2,2,6,6-テトラメチルピペリジン
(重合性紫外線吸収性単量体)
b-1:2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン
b-2:2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール
b-3:2-[2’-ヒドロキシ-5’-(Β-メタクリロイルオキシエトキシ)-3’-t-ブチルフェニル]-4-t-ブチル-2H-ベンゾトリアゾール
(シクロアルキル(メタ)アクリレート)
c-1:シクロヘキシルメタクリレート
c-2:t-ブチルシクロヘキシルメタクリレート
(水酸基を有する重合体不飽和単量体)
d-1:ヒドロキシプロピルアクリレート
d-2:ヒドロキシエチルメタクリレート
(その他の重合体不飽和単量体)
e-1:n-ブチルメタクリレート
e-2:n-ブチルアクリレート
e-3:2-エチルヘキシルアクリレート
e-4:メチルメタクリレート
e-5:エチルアクリレート
e-6:メタクリル酸
e-7:イタコン酸
e-8:p-トルエンスルホン酸
実施例20
 実施例10のガスバリア性フィルムにおいて、無機薄膜面の上に、プラズマCVD装置を使用して、原料としてテトラエトキシシラン、反応ガスとして酸素、窒素、アルゴンを用い、8x10-2Torrの真空下において、13.56MHz高周波放電プラズマ源で1kW印加し、薄膜厚さ20nmのSiOxNy(x=1.6、y=0.2)からなるプラズマCVD膜を成膜し、更に、このプラズマCVD膜面上に、実施例1と同様の方法で真空蒸着膜を成膜して得られた無機薄膜3層を用いた以外は実施例10と同様にして太陽電池用バックシートを作製した。
実施例21
 実施例10において、ガスバリア性フィルム3枚を無機薄膜側とプラスチックフィルム側をそれぞれ貼り合わせ積層し、次いで実施例1のポリエチレンナフタレートフィルムと積層した以外は、同様にして太陽電池用バックシートを作製した。
実施例22
 実施例6において、ガスバリア性フィルムの基材フィルムとして、厚さ12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製「Q51C12」)を用い、コロナ面に耐候性コート層を形成した以外は同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
実施例23
 実施例10において、ガスバリア性フィルムの基材フィルムとして、下記の方法で得たポリエチレンナフタレート樹脂とポリエチレンテレフタレート樹脂の共押出二軸延伸フィルムを用い、コロナ処理面に耐候性コート層を形成した以外は同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
 ナフタレン-2,6-ジカルボン酸ジメチル100部、エチレングリコール60部および酢酸マグネシウム四水塩0.1部を反応器にとり、反応開始温度180℃から4時間かけて230℃まで昇温し、エステル交換反応させ、それへ平均粒径 2.5μmの非晶質シリカ0.2部をエチレングルコールのスラリーにして添加し、次いで、リン酸0.04部、および、三酸化アンチモン0.04部を添加した後、常法により重縮合反応を行った。こうして固有粘度0.58のポリエチレンナフタレートを得た。 このものをチップ化し、235℃にて減圧として固相重合を行い、固有粘度0.68のポリエチレンナフタレート樹脂を得た。
 次いで、上記ポリエチレンナフタレート樹脂とポリエチレンテレフタレート樹脂(三菱化学(株)製、ノバペックス)を共押出法でキャストロール上に押し出して無定形シートを得、続いて長手方向に3.0倍比で延伸し、その後横方向に3.5倍比で延伸、熱固定して、厚み比ポリエチレンナフタレート:ポリエチレンテレフタレート=1:3の総厚12μmの共押出二軸延伸フィルムを作製し、ポリエチレンナフタレート面側にコロナ処理を施した。
実施例24
 実施例10において、ガスバリア性フィルムの基材フィルムとして厚さ12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製「Q51C12」)を用い、コロナ面に耐候性コート層を形成してガスバリア性フィルムを得、また耐候性ポリエステル系樹脂層として、数平均分子量25,000のポリエチレンテレフタレート樹脂からなり150℃30分の条件で熱収縮率が0.9%である二軸延伸フィルム50μm厚を用いた他は、同様にして太陽電池用バックシートを作製した。
実施例25
実施例10において、ガスバリア性フィルムの基材フィルムとして厚さ12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製「Q51C12」)を用いた他は、同様にして太陽電池用バックシートを作製した。
実施例26
実施例25において、遮光性着色(白色)フィルムに易接着コートは施さずに、各フィルムの積層を行い、その後、遮光性着色(白色)フィルムのコロナ面に易接着層として、50μm厚の直鎖状低密度ポリエチレンフィルム(東セロ製「T.U.X HC」)を貼り合わせた他は、同様にして太陽電池用バックシートを作製した。
実施例27
 ガスバリア性フィルムの基材フィルムとして、実施例1の遮光性着色(白色)フィルムを用い、易接着層の反対面側に、実施例10と同様にして耐候性コートと薄膜を設けてガスバリア性フィルムを得ることにより、遮光性着色層と、耐候性コート層及び無機薄膜層を含むガスバリア性層とを含むフィルムを作製した。次いで、該ガスバリア性フィルムの無機薄膜面側に対し、コロナ面に接着剤10g/m2を塗工した実施例1のポリエチレンナフタレートフィルムとを貼り合わせて積層し、太陽電池用バックシートを作製した。
実施例28
 ガスバリア性フィルムの基材フィルムとして、厚さ100μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポンフィルム(株)製「Q65F100」)を用い、これにコロナ処理を施し、該コロナ面に耐候性コート層を形成し、実施例6と同様にしてガスバリア性フィルムを得ることにより、耐候性コート層及び無機薄膜層を含むガスバリア性層と、耐候性ポリエステル系樹脂層とを含むフィルムを作製した。次いで、該ガスバリア性フィルムの無機薄膜面に対し、易接着層の反対側面に接着剤10g/m2を塗工した実施例1の遮光性着色(白色)フィルムを貼り合わせて積層し、太陽電池用バックシートを作製した。
実施例29
 遮光性着色(白色)フィルムの白色顔料として沈降性炭酸カルシウム(白石工業(株)製「Vigot-10」)を用いて白色フィルムを得た他は、実施例6と同様にして太陽電池用バックシートを作製した。
実施例30
 実施例1の遮光性着色(白色)フィルムにおいて、白色顔料の代わりにカーボンブラック(三菱化学(株)製「#650B」)を用いて、カーボンブラック5質量%含有の遮光性着色(黒色)フィルムを作製した他は、実施例21と同様にして太陽電池用バックシートを作製した。
実施例31
実施例28において、耐候性コート層を実施例10のコート液を用いた他は同様にしてガスバリア性層と耐候性ポリエステル系樹脂層とを含むフィルムを作製した。次いで、該ガスバリア性フィルムの無機薄膜面に対し、易接着層の反対側面に接着剤10g/m2を塗工した実施例30の遮光性着色(黒色)フィルムを貼り合わせて積層し、太陽電池用バックシートを作製した。
実施例32
実施例31において、遮光性着色(黒色)フィルムに易接着コートは施さずに、各フィルムの積層を行い、その後、遮光性着色(黒色)フィルムのコロナ面に、易接着層として100μm厚のポリプロピレンフィルム(東洋紡績(株)製「パイレンフィルム-CT」)を貼り合わせた他は、同様にして太陽電池用バックシートを作製した。
比較例1
 ガスバリア性フィルムに耐候性コート層を形成しなかった他は実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
比較例2
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 飽和ポリエステル(東洋紡績(株)製「バイロン300」)とイソシアネート化合物(日本ポリウレタン(株)工業製「コロネートL」)とを1:1質量比で混合してコート液とした。
比較例3
 ガスバリア性フィルムのコート液を下記に代えた他は、実施例1と同様にしてガスバリア性フィルムを得、太陽電池用バックシートを作製した。
コート液
 アクリル系共重合体(三井化学ポリウレタン(株)製「タケラックUA-902」)、芳香族イソシアネート(トリレンジイソシアネート(TDI)、三井化学ポリウレタン(株)製「コスモネート80」)とを、水酸基価とイソシアネート基価の当量が1:1になるように混合してコート液とした。
 以上の実施例及び比較例で得られたバックシートの各々について、白色度及び85℃、85%RHで1000時間、3000時間保持した後の構成層密着性(剥離試験)、水蒸気透過率(WTR)、EVA密着性を評価した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本発明の太陽電池用バックシートは、長期間の使用においてもガスバリア性,耐候性、遮光性に優れていることから、結晶シリコン系、非結晶シリコン系、薄膜結晶系、化合物半導体系、有機薄膜系等、色素増感系の各種の太陽電池用モジュールに対応するバックシートとして好適に使用できる。

Claims (19)

  1. 遮光性着色層及び耐候性ポリエステル系樹脂層を有し、かつこれらの層の間に、耐候性コート層及び無機薄膜層を含むガスバリア性層を有する太陽電池用バックシートであって、上記耐候性コート層が、(イ)ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物、(ロ)変性ポリビニルアルコールの架橋物、及び(ハ)紫外線安定性基、紫外線吸収性基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体、から選ばれる少なくとも一種からなる太陽電池用バックシート。
  2. 遮光性着色層がポリエステル系樹脂からなる請求項1記載の太陽電池用バックシート。
  3.  (イ)のポリカプロラクトンポリオール及び/又はポリカーボネートポリオールの架橋物が、ポリカプロラクトンポリオール及び/又はポリカーボネートポリオールを、イソシアネート化合物及び/又はエポキシ化合物を用いて架橋させてなるものである、請求項1又は2記載の太陽電池用バックシート。
  4.  (ロ)の変性ポリビニルアルコールが、ポリビニルブチラール及び/又はポリビニルアセタールである、請求項1~3のいずれかに記載の太陽電池用バックシート。
  5.  (ハ)の紫外線安定性基、紫外線吸収性基、及びシクロアルキル基からなる群から選ばれる少なくとも一種の基を有するアクリル系共重合体が、ヒンダードアミン基、ベンゾトリアゾール基及び/又はベンゾフェノン基、並びにシクロアルキル基からなる群から選ばれる少なくとも一種の基と、水酸基とを有するアクリル系共重合体をイソシアネート化合物及び/又はエポキシ化合物と反応させてなるものである、請求項1~4のいずれかに記載の太陽電池用バックシート。
  6.  耐候性コート層及び無機薄膜層を含むガスバリア性層を2層以上有する、請求項1~5のいずれかに記載の太陽電池用バックシート。
  7. 遮光性着色層が、白色フィルム又は黒色フィルムからなる、請求項1~6のいずれかに記載の太陽電池用バックシート。
  8.  遮光性着色層が硫酸バリウムを含有する、請求項7記載の太陽電池用バックシート。
  9.  遮光性着色層の外側面に易接着層を有する、請求項1~8のいずれかに記載の太陽電池用バックシート。
  10.  易接着層がポリオレフィン系樹脂からなる、請求項9に記載の太陽電池用バックシート。
  11. 遮光性着色層が、波長350nmにおける光透過率が1.0%以下である、請求項1~10のいずれかに記載の太陽電池用バックシート。
  12.  ガスバリア性層がポリエステル系樹脂を含む、請求項1~11のいずれかに記載の太陽電池用バックシート。
  13.  ガスバリア性層がポリエチレンナフタレート樹脂を含む、請求項1~12の何れかに記載の太陽電池バックシート。
  14.  耐候性ポリエステル系樹脂層が、85℃85RH%3000時間後の強度保持率が50%以上である、請求項1~13のいずれかに記載の太陽電池用バックシート。
  15. 遮光性着色層、ガスバリア性層及び耐候性ポリエステル系樹脂層のいずれかの層間に、更に他のフィルムを設けてなる、請求項1~14のいずれかに記載の太陽電池用バックシート。
  16.  遮光性着色層を含むフィルム及び耐候性ポリエステル系樹脂層を含むフィルムを有し、かつこれらのフィルムの間に、耐候性コート層及び無機薄膜層を含むガスバリア性層からなるフィルムを有する、請求項1~15のいずれかに記載の太陽電池用バックシート。
  17.  (1)遮光性着色層と、耐候性コート層及び無機薄膜層を含むガスバリア性層とを含むフィルム、及び(2)耐候性ポリエステル系樹脂層を含むフィルム、を有する、請求項1~15のいずれかに記載の太陽電池用バックシート。
  18.  (1)遮光性着色層を含むフィルム、及び(2)耐候性コート層及び無機薄膜層を含むガスバリア性層と、耐候性ポリエステル系樹脂層とを含むフィルム、を有する、請求項1~15のいずれかに記載の太陽電池用バックシート。
  19.  請求項1~18のいずれかに記載のバックシートを有する太陽電池モジュール。
PCT/JP2009/062455 2008-07-11 2009-07-08 太陽電池用バックシート WO2010005029A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09794473A EP2315259A1 (en) 2008-07-11 2009-07-08 Solar cell backsheet
JP2010519802A JPWO2010005029A1 (ja) 2008-07-11 2009-07-08 太陽電池用バックシート
US13/003,110 US20110223419A1 (en) 2008-07-11 2009-07-08 Solar cell backsheet
CN2009801354354A CN102150279A (zh) 2008-07-11 2009-07-08 太阳能电池背板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-181232 2008-07-11
JP2008181232 2008-07-11

Publications (1)

Publication Number Publication Date
WO2010005029A1 true WO2010005029A1 (ja) 2010-01-14

Family

ID=41507142

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/062456 WO2010005030A1 (ja) 2008-07-11 2009-07-08 太陽電池用バックシート
PCT/JP2009/062455 WO2010005029A1 (ja) 2008-07-11 2009-07-08 太陽電池用バックシート

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062456 WO2010005030A1 (ja) 2008-07-11 2009-07-08 太陽電池用バックシート

Country Status (7)

Country Link
US (2) US20110223419A1 (ja)
EP (2) EP2315260A1 (ja)
JP (2) JPWO2010005029A1 (ja)
KR (2) KR20110034665A (ja)
CN (2) CN102150279A (ja)
TW (2) TW201010096A (ja)
WO (2) WO2010005030A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013341A1 (ja) * 2009-07-30 2011-02-03 三菱樹脂株式会社 太陽電池モジュール
JP2011228382A (ja) * 2010-04-16 2011-11-10 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
JP2011228381A (ja) * 2010-04-16 2011-11-10 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
JP2011249756A (ja) * 2010-04-29 2011-12-08 Mitsubishi Plastics Inc 太陽電池裏面保護材用積層ポリエステルフィルム
WO2012091122A1 (ja) * 2010-12-28 2012-07-05 三菱樹脂株式会社 積層防湿フィルム
CN102555370A (zh) * 2010-12-31 2012-07-11 苏州中来光伏新材股份有限公司 一种非氟高耐候高粘结性太阳电池背膜及加工工艺
US20120295101A1 (en) * 2010-01-18 2012-11-22 Shinji Tanaka Solar cell back sheet film and method for producing the same
US20120291842A1 (en) * 2010-01-18 2012-11-22 Akira Hatakeyama Back sheet for solar cell, method for producing the same, and solar cell module
WO2013008945A1 (ja) * 2011-07-14 2013-01-17 富士フイルム株式会社 太陽電池用ポリマーシート及び太陽電池モジュール
WO2013018720A1 (ja) * 2011-08-04 2013-02-07 三菱樹脂株式会社 ガスバリア性積層体
JP2013035279A (ja) * 2011-07-14 2013-02-21 Fujifilm Corp 太陽電池用保護シートとその製造方法、太陽電池用バックシート、太陽電池モジュール
WO2013051649A1 (ja) * 2011-10-07 2013-04-11 富士フイルム株式会社 太陽電池モジュール用ポリマーシート及びバックシート並びに太陽電池モジュール
JP2013074170A (ja) * 2011-09-28 2013-04-22 Dainippon Printing Co Ltd 易接着層組成物、及びそれを用いた易接着性裏面保護シート
JP2013080736A (ja) * 2011-09-30 2013-05-02 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート
US20130130003A1 (en) * 2010-04-23 2013-05-23 Kolon Industries, Inc. Back sheet for solar cell module and manufacturing method thereof
JP2013161817A (ja) * 2012-02-01 2013-08-19 Fujifilm Corp 太陽電池モジュール用ポリマーシート及びバックシート並びに太陽電池モジュール
WO2013141329A1 (en) 2012-03-19 2013-09-26 Henkel Ag & Co. Kgaa Adhesive for solar battery back sheets
WO2013147093A1 (ja) * 2012-03-30 2013-10-03 リンテック株式会社 ガスバリアフィルム積層体、電子デバイス用部材、及び電子デバイス
JP2013214778A (ja) * 2013-07-20 2013-10-17 Mitsubishi Plastics Inc 太陽電池裏面保護材用ポリエステルフィルム
JP2014013937A (ja) * 2010-04-29 2014-01-23 Mitsubishi Plastics Inc 太陽電池裏面保護材用積層ポリエステルフィルム
JP2016111334A (ja) * 2014-12-08 2016-06-20 エルエス産電株式会社Lsis Co., Ltd. 太陽電池モジュール
KR20170083030A (ko) 2014-11-10 2017-07-17 사까이가가꾸고오교가부시끼가이샤 황산바륨 분체의 제조 방법 및 황산바륨 분체
CN107031162A (zh) * 2017-02-28 2017-08-11 合肥乐凯科技产业有限公司 一种光伏背板用聚酯膜
CN112242454A (zh) * 2020-10-14 2021-01-19 晶科能源科技(海宁)有限公司 封装材料和光伏组件
CN115536995A (zh) * 2022-10-11 2022-12-30 苏州易昇光学材料股份有限公司 一种光伏背板用pet膜及其制备方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197340B2 (ja) * 2008-12-12 2013-05-15 株式会社日本触媒 太陽電池バックシート
DE102009021712A1 (de) * 2009-05-18 2010-11-25 Mitsubishi Polyester Film Gmbh Coextrudierte, biaxial orientierte Polyesterfolien mit verbesserten Hafteigenschaften, Rückseitenlaminate für Solarmodule und Solarmodule
WO2011037233A1 (ja) * 2009-09-28 2011-03-31 積水フィルム株式会社 太陽電池用接着シート及びその製造方法並びに太陽電池モジュール
EP2308679A1 (de) * 2009-10-06 2011-04-13 Bayer MaterialScience AG Solarmodule mit Polycarbonatblend-Folie als Rückseitenfolie
JP2011222947A (ja) * 2010-03-25 2011-11-04 Toppan Printing Co Ltd 太陽電池用裏面保護シート及びこれを用いた太陽電池
US20130209816A1 (en) * 2010-05-20 2013-08-15 Toray Advanced Film Co., Ltd. Backside protective sheet for solar cell module
JP5368635B2 (ja) * 2010-06-25 2013-12-18 リケンテクノス株式会社 太陽電池バックシート用塗料組成物および太陽電池バックシート
JP5619499B2 (ja) * 2010-07-09 2014-11-05 ユニチカ株式会社 遮光性に優れたガスバリア性二軸延伸ポリアミド樹脂フィルム
JP5570367B2 (ja) * 2010-09-27 2014-08-13 旭化成イーマテリアルズ株式会社 積層物
JP2012089631A (ja) * 2010-10-18 2012-05-10 Lintec Corp 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP2012109294A (ja) * 2010-11-15 2012-06-07 Toppan Printing Co Ltd 太陽電池用裏面保護シート及びこれを用いた太陽電池
WO2012133668A1 (ja) * 2011-03-29 2012-10-04 株式会社クラレ ポリビニルアセタール系樹脂フィルムおよびそれを用いた多層構造体
JP5623325B2 (ja) * 2011-03-30 2014-11-12 リンテック株式会社 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
WO2012169506A1 (ja) * 2011-06-08 2012-12-13 大日精化工業株式会社 高電気絶縁性アゾ系黒色顔料、製造方法、着色組成物、着色方法及び着色物品類
IN2014DN00155A (ja) * 2011-06-28 2015-05-22 Kuraray Co
JP6046620B2 (ja) * 2011-07-11 2016-12-21 東洋アルミニウム株式会社 太陽電池裏面保護シート及び太陽電池モジュール
CN103687907B (zh) * 2011-07-13 2017-02-15 电化株式会社 偏氟乙烯系树脂组合物、树脂薄膜、太阳能电池用背板以及太阳能电池组件
JP6032981B2 (ja) * 2011-07-14 2016-11-30 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
US20150027533A1 (en) * 2011-08-04 2015-01-29 3M Innovative Properties Company Edge protected barrier assemblies
EP2742537A4 (en) 2011-08-04 2015-05-20 3M Innovative Properties Co BARRIER ASSEMBLIES ON PROTECTED
CN103765609B (zh) * 2011-08-31 2016-08-17 富士胶片株式会社 太阳电池用背板及太阳电池模组
CN102315285B (zh) * 2011-09-06 2013-06-19 新高电子材料(中山)有限公司 一种耐候性涂层及使用该涂层的太阳能背板
JP5722174B2 (ja) * 2011-09-14 2015-05-20 富士フイルム株式会社 太陽電池用バックシート、及び、太陽電池モジュール
KR20140074376A (ko) * 2011-10-05 2014-06-17 도레이 필름 카코우 가부시키가이샤 태양전지 모듈용 이면 보호 시트 및 그것을 사용한 태양전지 모듈
CN104159740A (zh) * 2011-10-14 2014-11-19 三菱聚酯薄膜有限公司 包含涂布的聚酯膜的层压材料
JP5974294B2 (ja) * 2011-10-31 2016-08-23 東洋インキScホールディングス株式会社 太陽電池裏面保護シート用易接着剤、及び太陽電池裏面保護シート、ならびに太陽電池モジュール
CN103906816B (zh) * 2011-11-04 2017-04-12 大金工业株式会社 涂料、涂膜、太阳能电池组件背板以及太阳能电池组件
WO2013069414A1 (ja) * 2011-11-08 2013-05-16 株式会社クレハ 難燃性樹脂積層体フィルム、該樹脂積層体フィルムの製造方法、及び、太陽電池モジュール用シート
JP5889611B2 (ja) * 2011-11-25 2016-03-22 ヘンケルジャパン株式会社 太陽電池バックシート用接着剤
EP2803483A4 (en) * 2012-01-13 2015-09-09 Keiwa Inc SOLAR CELL MODULE REAR PANEL, METHOD FOR PRODUCING SOLAR CELL MODULE FRONT PANEL AND SOLAR CELL MODULE
JP5927943B2 (ja) * 2012-01-31 2016-06-01 大日本印刷株式会社 ガスバリア性フィルム及びその製造方法並びにガスバリア性フィルムを用いた装置
US10896987B2 (en) * 2012-03-14 2021-01-19 Toyobo Co., Ltd. Sealing sheet for back surface of solar cell, and solar cell module
EP2792701A4 (en) * 2012-03-26 2015-09-02 Mitsubishi Plastics Inc COATING FILM
CN104220258B (zh) * 2012-03-26 2016-06-08 富士胶片株式会社 聚酯膜及其制造方法、太阳能电池用背板以及太阳能电池模块
JP5982150B2 (ja) * 2012-03-29 2016-08-31 株式会社クラレ 太陽電池用バックシート
JP2013237183A (ja) * 2012-05-15 2013-11-28 Suzhou Quanlin Electronics Technology Co Ltd 反射シート、及びこれを用いた太陽電池用バックシート
CN104321885A (zh) * 2012-05-16 2015-01-28 三井化学东赛璐株式会社 太阳能电池模块
JP6163720B2 (ja) * 2012-08-31 2017-07-19 大日本印刷株式会社 太陽電池モジュール用一体化シートの製造方法
WO2014038472A1 (ja) * 2012-09-04 2014-03-13 株式会社 きもと 積層板および表面保護板
JP5852626B2 (ja) 2012-11-06 2016-02-03 富士フイルム株式会社 ケテンイミン化合物、ポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュール
JP6194190B2 (ja) * 2013-05-16 2017-09-06 ヘンケルジャパン株式会社 太陽電池保護シート用接着剤
JP5800053B2 (ja) * 2014-04-28 2015-10-28 日本ポリエチレン株式会社 太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュール
JP5800054B2 (ja) * 2014-04-28 2015-10-28 日本ポリエチレン株式会社 太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュール
TWI653143B (zh) * 2014-07-24 2019-03-11 日商凸版印刷股份有限公司 積層薄膜及積層體、以及波長轉換薄片、背光單元及電致發光發光單元
WO2016025168A1 (en) * 2014-08-12 2016-02-18 Dow Global Technologies Llc Polyethylene-based composite films, and articles made therefrom
US10882284B2 (en) 2014-08-14 2021-01-05 Mitsubishi Polyester Film, Inc. Laminate containing coated polyester film
KR101719873B1 (ko) 2014-08-28 2017-03-24 주식회사 엘지화학 백시트
KR101747495B1 (ko) 2014-08-28 2017-06-14 주식회사 엘지화학 백시트
CN107399114A (zh) * 2016-05-20 2017-11-28 住友化学株式会社 气体阻隔性膜、光学膜以及柔性显示器
CN106159015A (zh) * 2016-07-25 2016-11-23 无锡中洁能源技术有限公司 一种具有高阻燃性的太阳能电池背板
CN106159016A (zh) * 2016-08-27 2016-11-23 无锡中洁能源技术有限公司 一种高效太阳能背板的生产工艺
US10125206B1 (en) * 2017-08-10 2018-11-13 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer impact modifiers
US10316165B2 (en) 2017-09-21 2019-06-11 International Business Machines Corporation Non-halogenated flame retardant hindered amine light stabilizer cross-linkers
KR20200026516A (ko) * 2018-09-03 2020-03-11 현대자동차주식회사 조명용 빛몰림 저감 광섬유 및 그 제조방법
WO2020250795A1 (ja) 2019-06-10 2020-12-17 株式会社ライジングテクノロジーズ 電子回路装置
KR20220063766A (ko) * 2019-09-24 2022-05-17 미쯔비시 케미컬 주식회사 폴리에스테르 필름
CN113548312B (zh) * 2020-04-23 2022-07-29 内蒙古伊利实业集团股份有限公司 一种高阻光高阻隔热缩性聚酯膜及其制备方法与应用
CN115995499A (zh) * 2021-11-10 2023-04-21 天合光能股份有限公司 一种黑色光伏背板及其制备方法和应用
CN114141896A (zh) * 2021-11-24 2022-03-04 西安隆基绿能建筑科技有限公司 用于光伏组件前板或背板的复合材料及其制备方法与应用
CN114701223B (zh) * 2022-01-27 2023-11-17 浙江中聚材料有限公司 一种太阳能电池背板复合膜及其制备方法
JP7444309B2 (ja) * 2022-04-26 2024-03-06 大日本印刷株式会社 自発光型表示体
CN114883742B (zh) * 2022-05-17 2023-02-28 东华大学 一种锂离子电池用多孔低收缩聚丙烯隔膜的制备方法
WO2024192553A1 (en) * 2023-03-17 2024-09-26 Eastman Chemical (China) Co., Ltd. Conductive paste compositions

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622976A (ja) 1990-10-20 1994-02-01 Dornier Medizintechnik Gmbh 砕石装置用照準装置
JP2000174296A (ja) 1998-12-07 2000-06-23 Bridgestone Corp 太陽電池用カバー材、封止膜及び太陽電池
JP2001111073A (ja) * 1999-10-12 2001-04-20 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2002026343A (ja) 2000-07-03 2002-01-25 Bridgestone Corp 太陽電池用バックカバー材及び太陽電池
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2002134771A (ja) * 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2006319250A (ja) * 2005-05-16 2006-11-24 Keiwa Inc 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール
JP2007150084A (ja) 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2007253463A (ja) * 2006-03-23 2007-10-04 Toray Advanced Film Co Ltd 太陽電池モジュール用表面保護シート
JP2008004691A (ja) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2008085294A (ja) * 2006-08-31 2008-04-10 Keiwa Inc 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012053A1 (en) * 1996-09-23 1998-03-26 Media Solutions, Inc. Direct thermal printable film and laminate
AU755942B2 (en) * 1998-08-21 2003-01-02 Toppan Printing Co. Ltd. Vapor deposition film and packaging material
ES2391842T3 (es) * 2000-07-03 2012-11-30 Bridgestone Corporation Material de revestimiento de la cara posterior de un módulo de célula solar y su uso
EP1873841B1 (en) * 2005-03-31 2010-10-20 Toppan Printing Co., Ltd. Back-protective sheet for solar cell and solar cell module employing the same
JP4792859B2 (ja) * 2005-07-27 2011-10-12 三菱樹脂株式会社 熱水処理用ガスバリア性積層体
ATE518255T1 (de) * 2006-08-30 2011-08-15 Keiwa Inc Benutzung einer rückplatte für photovoltaikmodule und photovoltaikmodule damit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622976A (ja) 1990-10-20 1994-02-01 Dornier Medizintechnik Gmbh 砕石装置用照準装置
JP2000174296A (ja) 1998-12-07 2000-06-23 Bridgestone Corp 太陽電池用カバー材、封止膜及び太陽電池
JP2001111073A (ja) * 1999-10-12 2001-04-20 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP2002026343A (ja) 2000-07-03 2002-01-25 Bridgestone Corp 太陽電池用バックカバー材及び太陽電池
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2002134771A (ja) * 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2006319250A (ja) * 2005-05-16 2006-11-24 Keiwa Inc 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール
JP2007150084A (ja) 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2007253463A (ja) * 2006-03-23 2007-10-04 Toray Advanced Film Co Ltd 太陽電池モジュール用表面保護シート
JP2008004691A (ja) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2008085294A (ja) * 2006-08-31 2008-04-10 Keiwa Inc 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011013341A1 (ja) * 2009-07-30 2013-01-07 三菱樹脂株式会社 太陽電池モジュール
WO2011013341A1 (ja) * 2009-07-30 2011-02-03 三菱樹脂株式会社 太陽電池モジュール
US10138339B2 (en) * 2010-01-18 2018-11-27 Fujifilm Corporation Solar cell back sheet film and method for producing the same
US20120295101A1 (en) * 2010-01-18 2012-11-22 Shinji Tanaka Solar cell back sheet film and method for producing the same
US20120291842A1 (en) * 2010-01-18 2012-11-22 Akira Hatakeyama Back sheet for solar cell, method for producing the same, and solar cell module
KR101622992B1 (ko) * 2010-01-18 2016-05-20 후지필름 가부시키가이샤 태양전지 백 시트용 필름 및 그 제조 방법
JP2011228382A (ja) * 2010-04-16 2011-11-10 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
JP2011228381A (ja) * 2010-04-16 2011-11-10 Toyo Ink Sc Holdings Co Ltd 太陽電池裏面保護シートならびに太陽電池モジュール
JP2013526033A (ja) * 2010-04-23 2013-06-20 コーロン インダストリーズ インク 太陽光モジュール用バックシート及びその製造方法
US20130130003A1 (en) * 2010-04-23 2013-05-23 Kolon Industries, Inc. Back sheet for solar cell module and manufacturing method thereof
JP2015046614A (ja) * 2010-04-23 2015-03-12 コーロン インダストリーズ インク 太陽光モジュール用バックシート及びその製造方法
KR101765483B1 (ko) * 2010-04-29 2017-08-08 미쯔비시 케미컬 주식회사 태양전지 이면보호재용 적층 폴리에스테르 필름
CN102859716A (zh) * 2010-04-29 2013-01-02 三菱树脂株式会社 太阳能电池背面保护材料用叠层聚酯膜
JP2014013937A (ja) * 2010-04-29 2014-01-23 Mitsubishi Plastics Inc 太陽電池裏面保護材用積層ポリエステルフィルム
JP2011249756A (ja) * 2010-04-29 2011-12-08 Mitsubishi Plastics Inc 太陽電池裏面保護材用積層ポリエステルフィルム
CN103298610A (zh) * 2010-12-28 2013-09-11 三菱树脂株式会社 叠层防湿膜
WO2012091122A1 (ja) * 2010-12-28 2012-07-05 三菱樹脂株式会社 積層防湿フィルム
CN102555370B (zh) * 2010-12-31 2015-04-22 苏州中来光伏新材股份有限公司 一种非氟高耐候高粘结性太阳电池背膜及加工工艺
CN102555370A (zh) * 2010-12-31 2012-07-11 苏州中来光伏新材股份有限公司 一种非氟高耐候高粘结性太阳电池背膜及加工工艺
WO2013008945A1 (ja) * 2011-07-14 2013-01-17 富士フイルム株式会社 太陽電池用ポリマーシート及び太陽電池モジュール
JP2013035279A (ja) * 2011-07-14 2013-02-21 Fujifilm Corp 太陽電池用保護シートとその製造方法、太陽電池用バックシート、太陽電池モジュール
WO2013018720A1 (ja) * 2011-08-04 2013-02-07 三菱樹脂株式会社 ガスバリア性積層体
US9199436B2 (en) 2011-08-04 2015-12-01 Mitsubishi Plastics, Inc. Gas-barrier laminate
JP2013074170A (ja) * 2011-09-28 2013-04-22 Dainippon Printing Co Ltd 易接着層組成物、及びそれを用いた易接着性裏面保護シート
JP2013080736A (ja) * 2011-09-30 2013-05-02 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート
WO2013051649A1 (ja) * 2011-10-07 2013-04-11 富士フイルム株式会社 太陽電池モジュール用ポリマーシート及びバックシート並びに太陽電池モジュール
JP2013093569A (ja) * 2011-10-07 2013-05-16 Fujifilm Corp 太陽電池モジュール用ポリマーシート及びバックシート並びに太陽電池モジュール
JP2013161817A (ja) * 2012-02-01 2013-08-19 Fujifilm Corp 太陽電池モジュール用ポリマーシート及びバックシート並びに太陽電池モジュール
WO2013141329A1 (en) 2012-03-19 2013-09-26 Henkel Ag & Co. Kgaa Adhesive for solar battery back sheets
US9401445B2 (en) 2012-03-19 2016-07-26 Henkel Ag & Co. Kgaa Adhesive for solar battery back sheets
CN104220254A (zh) * 2012-03-30 2014-12-17 琳得科株式会社 阻气膜层叠体、电子装置用构件、及电子装置
JPWO2013147093A1 (ja) * 2012-03-30 2015-12-14 リンテック株式会社 ガスバリアフィルム積層体、電子デバイス用部材、及び電子デバイス
KR20140144690A (ko) * 2012-03-30 2014-12-19 린텍 가부시키가이샤 가스 배리어 필름 적층체, 전자 디바이스용 부재, 및 전자 디바이스
WO2013147093A1 (ja) * 2012-03-30 2013-10-03 リンテック株式会社 ガスバリアフィルム積層体、電子デバイス用部材、及び電子デバイス
KR102055111B1 (ko) * 2012-03-30 2020-01-22 린텍 가부시키가이샤 가스 배리어 필름 적층체, 전자 디바이스용 부재, 및 전자 디바이스
JP2013214778A (ja) * 2013-07-20 2013-10-17 Mitsubishi Plastics Inc 太陽電池裏面保護材用ポリエステルフィルム
KR20170083030A (ko) 2014-11-10 2017-07-17 사까이가가꾸고오교가부시끼가이샤 황산바륨 분체의 제조 방법 및 황산바륨 분체
US10227239B2 (en) 2014-11-10 2019-03-12 Sakai Chemical Industry Co., Ltd. Method for producing barium sulfate powder and barium sulfate powder
JP2016111334A (ja) * 2014-12-08 2016-06-20 エルエス産電株式会社Lsis Co., Ltd. 太陽電池モジュール
CN107031162A (zh) * 2017-02-28 2017-08-11 合肥乐凯科技产业有限公司 一种光伏背板用聚酯膜
CN112242454A (zh) * 2020-10-14 2021-01-19 晶科能源科技(海宁)有限公司 封装材料和光伏组件
CN112242454B (zh) * 2020-10-14 2024-05-28 晶科能源(海宁)有限公司 封装材料和光伏组件
CN115536995A (zh) * 2022-10-11 2022-12-30 苏州易昇光学材料股份有限公司 一种光伏背板用pet膜及其制备方法

Also Published As

Publication number Publication date
CN102150280A (zh) 2011-08-10
CN102150279A (zh) 2011-08-10
WO2010005030A1 (ja) 2010-01-14
KR20110034665A (ko) 2011-04-05
TW201010089A (en) 2010-03-01
US20110220169A1 (en) 2011-09-15
US20110223419A1 (en) 2011-09-15
TW201010096A (en) 2010-03-01
JPWO2010005029A1 (ja) 2012-01-05
EP2315260A1 (en) 2011-04-27
EP2315259A1 (en) 2011-04-27
JPWO2010005030A1 (ja) 2012-01-05
KR20110031375A (ko) 2011-03-25

Similar Documents

Publication Publication Date Title
WO2010005029A1 (ja) 太陽電池用バックシート
WO2010126088A1 (ja) 太陽電池用シート及び太陽電池モジュール
EP2239134B1 (en) Gas barrier film having excellent weather resistance
JP2008004839A (ja) 太陽電池裏面保護シート用フィルム、およびこれを用いた太陽電池モジュール用裏面保護シート
EP2743081A1 (en) Laminated sheet and method for producing same
JP5522362B2 (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
JP2007150084A (ja) 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2011073311A (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
KR20120098786A (ko) 태양전지용 이접착성 폴리에스테르 필름
JP2011071387A (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
JP2009200398A (ja) 太陽電池用裏面封止用シートおよびそれを用いた太陽電池モジュール
JP5215891B2 (ja) 耐候性に優れたガスバリア性フィルム
JP5382336B2 (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
JP2011077320A (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
JP2019062209A (ja) 太陽電池モジュール用のバックシート
JP6186804B2 (ja) 太陽電池モジュール用裏面保護シート
JP2011044690A (ja) 太陽電池用シート及び太陽電池モジュール
JP5594082B2 (ja) 太陽電池用易接着性白色ポリエステルフィルムおよびそれを用いたバックシート
JP2011139036A (ja) 太陽電池用易接着性白色ポリエステルフィルムおよびそれを用いたバックシート
WO2012057292A1 (ja) ポリフェニレンエーテル系積層フィルム、太陽電池用シート及び太陽電池モジュール
JP5370668B2 (ja) 太陽電池モジュール用裏面保護シート、及び太陽電池モジュール
JP2012064926A (ja) 太陽電池用易接着性黒色ポリエステルフィルムおよびそれを用いたバックシート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135435.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519802

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003092

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009794473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13003110

Country of ref document: US