WO2009157320A1 - 冷凍サイクル装置及び空気調和装置 - Google Patents

冷凍サイクル装置及び空気調和装置 Download PDF

Info

Publication number
WO2009157320A1
WO2009157320A1 PCT/JP2009/060726 JP2009060726W WO2009157320A1 WO 2009157320 A1 WO2009157320 A1 WO 2009157320A1 JP 2009060726 W JP2009060726 W JP 2009060726W WO 2009157320 A1 WO2009157320 A1 WO 2009157320A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
compressor
refrigeration cycle
cycle apparatus
Prior art date
Application number
PCT/JP2009/060726
Other languages
English (en)
French (fr)
Inventor
山下 浩司
重洋 藪
利秀 幸田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010517889A priority Critical patent/JPWO2009157320A1/ja
Priority to EP09770030.6A priority patent/EP2306122B1/en
Priority to US13/000,072 priority patent/US20110100042A1/en
Publication of WO2009157320A1 publication Critical patent/WO2009157320A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the present invention relates to an air conditioner such as a building multi air conditioner, a room air conditioner, and a packaged air conditioner, and a refrigeration cycle apparatus constituting a refrigeration cycle such as a refrigerator.
  • a refrigeration cycle apparatus using a refrigeration cycle such as an air conditioner, a refrigeration apparatus, or a hot water supply apparatus basically includes a compressor, a condenser (heat exchanger), an expansion valve, and an evaporator (heat exchange).
  • a refrigerant circuit for circulating the refrigerant is used. Then, when the refrigerant evaporates and condenses, the air exchange operation, cooling operation, heating operation, etc. are performed while changing the pressure in the pipe by utilizing the heat (radiation) and cooling (heat absorption) for the heat exchange target. Yes.
  • a single refrigerant such as HCFC-22 (CHClF 2 ) or HFC-134a (CF 3 CH 2 F), which is a chemically stable substance, HFC R-410A, which is a mixture of -32 (CH 2 F 2 ) and HFC-125 (CF 3 CHF 2 ), HFC-32 (CH 2 F 2 ), HFC-125 (CF 3 CHF 2 ) and HFC-134a (A mixed refrigerant such as R-407C, which is a mixture of CF 3 CH 2 F) was used (see, for example, Patent Document 1).
  • the global warming potential (GWP: the degree of causing global warming to a substance that is a greenhouse gas) is related to carbon dioxide.
  • GWP the degree of causing global warming to a substance that is a greenhouse gas
  • Refrigerants that are as small as possible that have a coefficient determined based on internationally recognized knowledge as a numerical value indicating the ratio to the degree.
  • the refrigerant is decomposed during use (hereinafter, the refrigerant is decomposed), so that it does not function as the refrigerant. There was no need to do.
  • the refrigerant having a double bond as described above is a chemically unstable refrigerant, there is a high possibility that the refrigerant is decomposed and deteriorated in a normal usage method. For example, even in the case of a mixed refrigerant, it may not function as the whole mixed refrigerant by being decomposed, degraded, or caused by another refrigerant, and as a result, the refrigeration cycle apparatus may not be used normally.
  • the present invention has been made to solve the above-described problems, and uses a refrigerant containing a chemically unstable substance, such as a refrigerant having a double bond, as a refrigerant circulating in the refrigeration circuit. Even in such a case, an object is to obtain a refrigeration cycle apparatus and the like that can prevent the decomposition of the refrigerant and maintain normal operation for a long period of time.
  • a refrigeration cycle apparatus includes a compressor for compressing a refrigerant containing a substance having a double bond, a condenser for condensing the refrigerant by heat exchange, an expansion means for depressurizing the condensed refrigerant, and a decompression
  • a refrigerant circuit for circulating the refrigerant by connecting a pipe to an evaporator that evaporates the generated refrigerant by heat exchange, and the pressure value of the refrigerant in the refrigerant circuit is less than the critical pressure of the substance having a double bond
  • a control means for controlling the operation of the refrigerant circuit is provided.
  • the control means when configuring a refrigerant circuit that circulates a refrigerant containing a substance having a double bond, has a pressure value of the refrigerant in the refrigerant circuit having a double bond. Since the operation of the refrigerant circuit is controlled so that it is less than the critical pressure of the substance, in a refrigerant containing a substance having a chemically unstable double bond, the substance having a double bond exceeds the critical pressure. The substance itself having a double bond decomposes as a result, or the other substance exceeds the critical pressure and attacks the substance having a double bond so that it does not function as a refrigerant. It can be effectively suppressed.
  • the performance of the refrigeration cycle apparatus can be maintained for a long time, and further reliability can be ensured.
  • a refrigeration cycle apparatus that can effectively use a refrigerant containing a substance having a double bond, which has a low global warming potential and is suitable for the environment.
  • FIG. 2 is a Ph diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating a configuration including a system according to control in the first embodiment.
  • FIG. The figure showing the structure of the air conditioning apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus has a compressor 21, a condenser 22, a condenser fan 31, an expansion means 23, an evaporator 24, an evaporator fan 32, and a pressure detection means 41.
  • the refrigerant circuit is comprised by connecting the compressor 21, the condenser 22, the expansion means 23, and the evaporator 24 with piping.
  • a mixed refrigerant in which at least one kind of refrigerant containing a substance having a double bond in an interatomic bond is mixed is sealed as a refrigerant that becomes a medium for transferring heat in the refrigerant circuit.
  • the refrigerant will be described later.
  • Compressor 21 sucks in refrigerant to circulate through the refrigerant circuit, compresses and boosts the pressure.
  • any of various types such as reciprocating, rotary, scroll, and screw may be used for the compressor 21.
  • the condenser 22 exchanges heat between a gas (gas) refrigerant discharged from the compressor 21 (hereinafter referred to as a gas refrigerant) and a heat exchange target (referred to as air in the present embodiment). The air is heated by releasing the amount of heat it has.
  • the condenser fan 31 sends air to the condenser 22 to efficiently exchange heat with the refrigerant.
  • the expansion means 23 is composed of, for example, an electronic expansion valve, a temperature expansion valve, a capillary tube, etc., and adjusts the flow rate of the refrigerant that passes therethrough to reduce (depressurize) the refrigerant pressure.
  • the evaporator 24 is a gas-liquid two-phase refrigerant (a refrigerant in which a gas refrigerant and a liquid refrigerant (hereinafter referred to as a liquid refrigerant) are mixed) whose pressure has been lowered by the expansion means 23 and a heat exchange target (also air here). Heat exchange is performed with the refrigerant, and the refrigerant absorbs the amount of heat and evaporates to gasify. The air is cooled.
  • the evaporator fan 32 is also provided in order to efficiently perform heat exchange between the air and the refrigerant in the evaporator 24.
  • the condenser fan 31 and the evaporator fan 32 are used to exchange heat with air.
  • the pressure detection means 41 which is a pressure sensor, is provided on the refrigerant outlet (discharge) side of the compressor 21, which is the highest pressure portion in the refrigerant circuit.
  • the base signal is transmitted to the control means or the like as will be described later.
  • the level of the pressure in the refrigerant circuit is not determined by the relationship with the reference pressure, but is expressed as a relative pressure that can be generated by the compression of the compressor 21, the refrigerant flow control of the expansion means 23, and the like. To do. The same applies to the temperature level.
  • FIG. 1 the case where there is one condenser 22 and one evaporator 24 is described as an example, but the number of connections of the condenser 22 and evaporator 24 in the refrigerant circuit is not limited to one. For example, a plurality of units can be connected in parallel. Moreover, although the case where there is only one compressor 21 has been described as an example, for example, a plurality of compressors 21 may be connected in series or in parallel.
  • FIG. 2 is a Ph diagram relating to a refrigerant circuit constituted by the refrigeration cycle apparatus of FIG.
  • the pressure and enthalpy at points a, b, c, and d shown in FIG. 2 represent the pressure and enthalpy at corresponding locations in the refrigeration cycle apparatus of FIG.
  • the high-temperature refrigerant compressed by the compressor 21 and having a pressure Pa on the outlet (discharge) side passes through the pipe and is sent to the condenser 22.
  • the refrigerant that has passed through the condenser 22 is condensed and liquefied by exchanging heat with the air sent by the condenser fan 31. At this time, the refrigerant dissipates heat, thereby heating the heat exchange target. Due to the pressure loss generated in this process, the pressure of the refrigerant is slightly lower than Pa and becomes Pb.
  • the liquefied refrigerant is sent to the expansion means 23.
  • the liquid refrigerant is depressurized by passing through the expansion means 23 and is sent to the evaporator 24 as a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has passed through the evaporator 24 is evaporated and gasified by exchanging heat with the air sent by the evaporator fan 32.
  • the gasified refrigerant is sucked into the compressor 21 again.
  • the flow path of the refrigerant from the compressor 21 to the expansion means 23 is a high-pressure side flow path, and a flow path having a relatively high pressure in the refrigerant circuit.
  • the pressure Pa of the refrigerant on the outlet side of the compressor 21 is the highest in the refrigerant circuit
  • the pressure Pb of the refrigerant on the inlet side of the expansion means 23 is due to pressure loss in the condenser 22 and the connection pipe.
  • the pressure is slightly lower than Pa.
  • control for suppressing the pressure of the refrigerant in the refrigerant circuit is performed by the constituent means of the refrigeration cycle apparatus, but the refrigerant pressure here is basically The refrigerant pressure Pa at the outlet side of the compressor 21 is assumed.
  • critical pressure which is the pressure Pcr in FIG. 2
  • the refrigerant In a state where the pressure is high, the refrigerant becomes a supercritical state which is neither liquid nor gas.
  • the refrigerant In a supercritical state, the refrigerant exhibits different properties from those in the gas state or the liquid state. In the supercritical state, even if the substance is stable in normal use, it has a property of decomposing and a property of dissolving various substances well. Due to this high solubility and reactivity, it is necessary to consider the material of the container and the seal in the compressor 21 and the like.
  • a mixed refrigerant configured as a mixture of a plurality of refrigerants is considered.
  • the mixed refrigerant that is often used includes R-410A, which is a mixture of HFC-32 and HFC-125, and R-407C, which is a mixture of HFC-32, HFC-125, and HFC-134a.
  • HFC-32 is CH 2 F 2
  • HFC-125 is CF 3 CHF 2
  • HFC-134a is CF 3 CH 2 F. Since these refrigerants are chemically stable and remain as a global warming gas for a long period of time, the global warming coefficient indicating the ratio contributing to global warming is a relatively large value.
  • a refrigerant made of a substance having a double bond may be mixed with another refrigerant.
  • a mixed refrigerant in which a plurality of refrigerants made of a substance having a double bond with a low global warming potential is mixed.
  • a single bond such as HFC-32, HFC-125, HFC-134a, etc. It can also be mixed with a refrigerant made of a substance bonded by (single bond) or other refrigerant.
  • a substance having a double bond has a chemically unstable property, and a refrigerant made of such a substance is easily decomposed by the influence of light, ozone, etc. in the atmosphere, for example. There is. Therefore, since it does not exist as a global warming gas for a long period of time, the influence on global warming is small, and these have a relatively small value of the global warming coefficient. Further, not only in the atmosphere but also in the refrigerant circuit, a single refrigerant of a refrigerant made of a substance having a double bond or a mixed refrigerant containing a refrigerant made of a substance having a double bond (a refrigerant having a double bond) is circulated in the refrigerant circuit. Even when encapsulated for use as a refrigerant (working fluid), the double bond is decomposed in the refrigerant circuit, and there is a risk that it will not function as a refrigerant.
  • FIG. 3 is a diagram illustrating an example of decomposition of CF 3 CF ⁇ CH 2 .
  • the decomposition of the double bond will be described by taking the decomposition of CF 3 CF ⁇ CH 2 as an example.
  • CF 3 CF ⁇ CH 2 causes a chemical change as shown in FIG.
  • CF 3 CF CH between molecules of 2 polymerized molecular weight of greater CF 3 CFCH 2 (CF 3 CFCH 2) may become a form of a polymer compound that nH.
  • This polymer compound becomes sludge in the refrigerant circuit and circulates together with the refrigerant, and causes, for example, valve clogging in an expansion means that narrows the flow path.
  • water when water is present in the refrigerant circuit, it becomes an alcohol showing acidity in the form of CF 3 CFCOHCH 3 , and may become sludge.
  • moisture content in a refrigerant circuit it is normally made to adsorb
  • it may become an acid in the form of CH 3 CFHC ⁇ OOH and its properties may be changed, so that it may not function as a refrigerant.
  • a refrigerant having a double bond when used as a refrigerant (working fluid) that circulates in the refrigerant circuit, it must be used in a state in which air, light, and other causes that promote the decomposition of the refrigerant are eliminated as much as possible. become.
  • the mixed refrigerant has different heat-related properties for each of the constituting refrigerants, has different refrigeration cycles (Ph diagrams), and has different critical points.
  • each refrigerant circulates in the refrigerant circuit by repeating condensation and evaporation.
  • the critical pressure of the refrigerant having the lowest critical point is referred to as the lowest critical pressure.
  • the critical pressure of the refrigerant is, for example, 5.78 MPa for HFC-32, 3.616 MPa for HFC-125, 4.048 MPa for HFC-134a, and about 3.3 MPa for CF 3 CF ⁇ CH 2 . Therefore, when the refrigerants of HFC-32, HFC-125 and CF 3 CF ⁇ CH 2 are mixed, the critical pressure of CF 3 CF ⁇ CH 2 is the smallest, and CF 3 CF ⁇ CH 2 itself exceeds the first. It becomes a critical state.
  • each refrigerant is not decomposed and the like in the refrigerant circuit for a long time. It can circulate and repeat condensation, evaporation, etc.
  • the refrigerant having a low critical pressure enters a supercritical state and circulates in the refrigerant circuit with other refrigerants in the supercritical state.
  • the refrigerant When the refrigerant enters a supercritical state, as described above, even if it is usually a stable substance, it has the property of decomposing other substances. For this reason, in the mixed refrigerant, if there is a refrigerant in a supercritical state exceeding the critical pressure, other refrigerants are attacked to try to decompose.
  • the refrigerant pressure on the high pressure side becomes higher than the lowest critical pressure, and some refrigerants are in a supercritical state. Even if it becomes, it does not decompose
  • a refrigerant composed of a substance having a double bond such as CF 3 CF ⁇ CH 2
  • a refrigerant other than the refrigerant composed of a substance having a double bond enters a supercritical state
  • the refrigerant in a supercritical state since it attacks a refrigerant made of a substance having a chemically unstable double bond, the refrigerant is decomposed and stable performance cannot be maintained. If all the refrigerant is decomposed, the mixed refrigerant does not function as a refrigerant at all.
  • the refrigerant pressure in all positions of the refrigerant circuit is always kept below the lowest critical pressure, and no refrigerant enters a supercritical state. It is essential to control to circulate.
  • the refrigerant in the supercritical state attacks itself. Therefore, the above is the same even when the critical pressure of another refrigerant is higher than that of a refrigerant made of a substance having a double bond, or when only a refrigerant made of a substance having a double bond is used as the refrigerant.
  • the flow path on the high pressure side in the refrigerant circuit is a flow path from the compressor 21 to the expansion means 23.
  • the compressor 21 compresses and boosts the pressure in the compressor 21. Therefore, in a general refrigeration cycle apparatus, the pressure on the outlet (discharge) side of the compressor 21 is the highest in the refrigerant circuit.
  • a pressure detection means 41 is installed on the outlet side of the compressor 21, and a refrigeration cycle apparatus that controls the pressure based on the signal from the pressure detection means 41 so as not to exceed the minimum critical pressure is obtained. .
  • FIG. 4 is a diagram illustrating a configuration of a refrigeration cycle apparatus including a system according to the control of the present embodiment.
  • the control means 53 performs the process for controlling the operation
  • the high pressure value the value of the refrigerant pressure at the highest pressure in the refrigerant circuit
  • processing is performed.
  • the pressure storage means 51 stores data of a plurality of high pressure values at regular intervals for a predetermined period in the past.
  • the critical pressure storage means 52 is a means for storing a pressure value set based on the above-mentioned minimum critical pressure in the mixed refrigerant. Here, it is assumed that two values of the first pressure value and the second pressure value are stored.
  • FIG. 5 is a view showing a flow chart of pressure control performed by the control means 53. Based on FIG.4 and FIG.5, operation
  • the control means 53 compares the high pressure value with the first pressure value stored in the critical pressure storage means 52 (ST2).
  • the first pressure value is, for example, a critical pressure having a double bond in consideration of a detection error of the pressure included in the high pressure value, the pressure of the refrigerant in the compressor 21, and the like.
  • a value obtained by subtracting a predetermined value ⁇ as a margin from the value of the lowest critical pressure is set as the first pressure value so as to be less than the value.
  • the first pressure value is lower than the lowest critical pressure.
  • the value of the predetermined value ⁇ can be arbitrarily determined, but here is set to 0.2 (Mpa), for example.
  • the control means 53 controls the compressor 21 to rapidly reduce the refrigerant pressure on the high pressure side of the refrigerant circuit (ST3). Prevent the refrigerant from being decomposed.
  • the compressor 21 for example, when the compressor 21 is a compressor having an inverter circuit, the compressor frequency is rapidly decreased.
  • the compressor 21 is a compressor having a fixed compressor frequency, the operation is temporarily stopped.
  • the control unit 53 may calculate the predicted value based on not only the three-point prediction method but also other methods.
  • the control means 53 compares the calculated predicted value with the second pressure value stored in the critical pressure storage means 52 (ST5).
  • a value obtained by subtracting a predetermined value ⁇ as a margin from the value of the lowest critical pressure is taken into consideration as a second pressure value in consideration of a detection error of the pressure included in the high pressure value.
  • the second pressure value is also lower than the lowest critical pressure.
  • the value of the predetermined value ⁇ can be arbitrarily determined, but here, for example, 0.5 (Mpa).
  • the first pressure value and the second pressure value are different, but they may be the same value. In some cases, it is also possible to perform only one of the comparison between the high pressure value and the first pressure value and the comparison between the predicted value and the second pressure value.
  • the control means 53 is one or more of the compressor 21, the condenser fan 31, the evaporator fan 32, and the expansion means 23 of the refrigeration cycle apparatus.
  • the operation of a plurality of means is controlled (ST5).
  • the pressure of the refrigerant on the high-pressure side of the refrigerant circuit is reduced so that the pressure does not exceed the lowest critical pressure and the refrigerant is not decomposed.
  • the control for reducing the refrigerant pressure performed by the control means 53 for example, when the compressor 21 is a compressor having an inverter circuit, the compressor frequency is lowered by a certain number (for example, 10 Hz). .
  • the number of heats of the refrigerant in the condenser 22 is released by increasing the rotational speed of the fan. Further, the opening degree of the expansion means 23 is increased, and the pressure on the high pressure side is decreased. And about the evaporator fan 32, the rotation speed of a fan is decreased and absorption of the heat amount by the refrigerant
  • the control means 53 repeats the above process, and controls each means of the refrigeration cycle apparatus so that even one kind of refrigerant constituting the mixed refrigerant circulating in the refrigerant circuit is not decomposed.
  • the case where the pressure detection means 41 is installed at the outlet portion of the compressor 21 has been described as an example, but the installation position is not limited to the outlet portion.
  • the pressure loss from the outlet of the compressor 21 to the condenser 22 or the expansion means 23 can be calculated from the pipe diameter, pipe length, refrigerant flow rate, and the like.
  • the pressure detection means 41 generally uses a pressure sensor that transmits a signal corresponding to the detected pressure, such as a semiconductor type or a strain gauge type.
  • the pressure detecting means 41 is not limited to such a pressure sensor.
  • a pressure switch that outputs an ON signal when a predetermined pressure is reached may be used. In this case, the control means 53 does not need to determine the high pressure value.
  • a value slightly lower than the lowest critical pressure is set in the pressure switch as a predetermined pressure, and the compressor is turned on by an ON signal output from the pressure switch at a predetermined pressure. Wiring can also be arranged so that the compression operation 21 stops.
  • the pressure storage means 51, the critical pressure storage means 52, and the control means 53 as the high pressure control means in the present embodiment are not necessary, an inexpensive control system can be configured.
  • the compressor 21 repeatedly starts and stops near the lowest critical pressure. For this reason, there is a possibility that the cooling capacity or the heating capacity cannot be fully exhibited, so it is desirable to use a pressure sensor.
  • a temperature detection unit such as a temperature sensor is installed near the center of the condenser 22 instead of the pressure detection unit 41 so as to detect the condensation temperature, and the refrigerant pressure on the high pressure side is set based on the condensation temperature. You may make it calculate.
  • the refrigerant in order to detect the condensation temperature, basically, the refrigerant needs to be in a gas-liquid two-phase state at the position where the temperature detection means is installed. The temperature detection accuracy can be improved, and the pressure detection accuracy can also be increased.
  • the control means 53 sets the pressure on the outlet side of the compressor 21, which is the highest pressure portion in the refrigerant circuit, based on the lowest critical pressure in the material constituting the refrigerant. If it is determined that the pressure value is greater than the first pressure value, for example, the compressor frequency of the compressor 21 is suddenly decreased or the compressor 21 is stopped so that the minimum critical pressure is not exceeded.
  • a refrigerant containing a substance having an unstable double bond is attacked by the decomposition of the substance having a double bond itself or the decomposition of the substance of another refrigerant in the mixed refrigerant, so that it does not function as a refrigerant. prevent Door can be. Therefore, the performance of the refrigeration cycle apparatus can be maintained for a long time, and further reliability can be ensured.
  • the pressure can be reduced by other means, but in order to reduce the pressure on the outlet side of the compressor 21, the compressor frequency of the compressor 21 is suddenly reduced or the compressor 21 is stopped. That is the most effective.
  • the HFO refrigerant such as tetrafluoropropylene used as the refrigerant at this time is preferable from the viewpoint of the environment because, for example, carbon dioxide, which is a natural refrigerant, has the same global warming potential.
  • the predicted value of the refrigerant pressure at the outlet side of the compressor 21 after a certain time is calculated by, for example, a three-point prediction method.
  • the pressure of the refrigerant is lowered by the control. Therefore, the tendency of the pressure of the refrigerant is judged, and a response corresponding to the judgment is made so that the pressure does not exceed the minimum critical pressure.
  • the pressure of the refrigerant can be prevented from being decomposed.
  • coolant in the exit side of the compressor 21 can be effectively reduced by controlling the fan 31 for condensers, the fan 32 for evaporators, etc. combining 1 or multiple.
  • FIG. FIG. 6 is a diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • an air conditioner such as a building multi-air conditioner will be described as a representative example of the refrigeration cycle apparatus in the first embodiment.
  • FIG. 6 means and the like denoted by the same reference numerals as those in FIG. 1 are means for performing basically the same operations as those described above.
  • the control means 53 in this Embodiment performs the process for controlling the operation
  • the air conditioner of FIG. 6 has one outdoor unit 60 and two indoor units 61a and 61b.
  • the outdoor unit 60 includes a compressor 21, an outdoor heat exchanger 25, a four-way valve 27, an accumulator 28, an outdoor heat exchanger fan 33, and pressure detection means 41.
  • the indoor units 61a and 61b have expansion means 23a and 23b, indoor heat exchangers 26a and 26b, and indoor heat exchanger fans 34a and 34b, respectively. Unless otherwise distinguished, the indoor units 61a and 61b and their constituent means will be described with the subscripts omitted (the same applies hereinafter).
  • the outdoor heat exchanger 25 functions as the condenser 22 in the first embodiment during the cooling operation in which the refrigerant discharged from the compressor 21 flows by switching the four-way valve 27, and as the evaporator 24 during the heating operation. It functions and exchanges heat between air and refrigerant.
  • the indoor heat exchangers 26a and 26b function as the evaporator 24 during the cooling operation, function as the condenser 22 during the heating operation, and Exchanges heat between indoor air and refrigerant.
  • the accumulator 28 is a means for storing surplus refrigerant.
  • a receiver may be attached to the outlet side of the heat exchanger serving as the condenser 22 to store the liquid refrigerant.
  • the outdoor heat exchanger fan 33 and the indoor heat exchanger fans 34a and 34b are provided to efficiently perform heat exchange between the air and the refrigerant.
  • the inside of a refrigerant circuit shall be circulated using the refrigerant
  • the arrows along the refrigerant circuit shown in FIG. 6 represent the refrigerant flow during the heating operation.
  • the high-temperature and high-pressure gas refrigerant pressurized and discharged by the compression of the compressor 21 passes through the four-way valve 27 and the piping and flows into the indoor unit 61.
  • the indoor unit 61 the refrigerant that has passed through the indoor heat exchanger 26 is condensed and liquefied.
  • the refrigerant radiates heat to the indoor air sent by the indoor heat exchanger fan 34, thereby heating the indoor air to be heat exchanged.
  • the heated room air is supplied to the room as warm air.
  • the liquefied refrigerant is decompressed by passing through the expansion means 23. Then, the decompressed refrigerant is evaporated and gasified by passing through the outdoor heat exchanger 25. The gasified refrigerant is sucked into the compressor 21 again.
  • the expansion means 23 of the indoor unit 61 controls the flow rate of the refrigerant passing through the indoor heat exchanger 26. For example, when the temperature of the air-conditioning target space where the indoor unit 61 is installed reaches the target temperature, the indoor unit 61 is in a thermo-off state, the indoor heat exchanger fan 34 is stopped, and the expansion means 23 is fully closed. .
  • fully closed means a minimum opening degree that does not allow the refrigerant to flow. Therefore, the refrigerant does not pass through the indoor heat exchanger 26 in the thermo-off state.
  • the indoor heat exchanger 26 functions as a condenser.
  • the expansion means 23 of the indoor unit 61 is used. Is fully closed, and the refrigerant does not pass through the indoor heat exchanger 26. For this reason, the number of condensers (heat exchangers on the high pressure side) decreases rapidly, and the pressure of the refrigerant on the high pressure side increases.
  • the indoor unit 61 is in a thermo-off state, and feedback control is performed so that the increased pressure of the refrigerant on the high-pressure side approaches the target pressure.
  • feedback control is performed so that the increased pressure of the refrigerant on the high-pressure side approaches the target pressure.
  • an overshoot of the refrigerant pressure must be prevented in order to prevent the refrigerant from being decomposed.
  • the expansion unit 23 is fully closed.
  • the operation of the means constituting the refrigeration cycle apparatus is controlled so that the refrigerant pressure on the high pressure side of the refrigerant circuit is reduced. This prevents the refrigerant pressure from exceeding the minimum critical pressure and prevents the refrigerant from being decomposed.
  • the compressor 21 is a compressor having an inverter circuit
  • controlling the operation of the compressor 21 is most effective and effective in reducing the pressure.
  • the compressor 21 and the outdoor heat exchanger fan 33 may be controlled in combination.
  • a plurality of indoor units 61 are connected in parallel, and for example, the indoor heat exchanger 26 included in the indoor unit 61 functions as a condenser as in a heating operation.
  • the indoor heat exchanger 26 included in the indoor unit 61 functions as a condenser as in a heating operation.
  • the control means 53 is connected to, for example, the compressor before or after the expansion means 23 is fully closed.
  • a refrigerant containing a substance having a chemically unstable double bond is In decomposition or mixed refrigerant substance itself having binding are decomposed under attack by the decomposition of substances other refrigerant can be prevented from not function as a refrigerant. Therefore, the performance of the refrigeration cycle apparatus can be maintained for a long time, and further reliability can be ensured.
  • FIG. 7 is a diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • An air conditioner will be described in the present embodiment.
  • means and the like denoted by the same reference numerals as those in FIGS. 1 and 6 are means for performing basically the same operation as the operation described above.
  • the side opposite to the indoor heat exchangers 26a and 26b with respect to the expansion means 23a and 23b (the side on which the liquid refrigerant or the gas-liquid two-phase refrigerant flows, the upstream side during the cooling operation)
  • the channel opening / closing means 29a and 29b are installed at the respective positions.
  • the flow path opening / closing means 29a and 29b are means for adjusting (controlling) the flow rate of the refrigerant in the same manner as the expansion means 23a and 23b. However, fine flow rate control cannot be performed unlike the expansion means 23a and 23b, and the refrigerant is allowed to pass if it is opened and not allowed to pass if it is closed. Further, pressure detection means 42a and 42b are installed between the expansion means 23a and 23b and the flow path opening / closing means 29a and 29b. It is assumed that the control means 53 also performs the control in the present embodiment.
  • the expansion means 23 of the indoor unit 61 controls the flow rate of the refrigerant flowing into the indoor heat exchanger 26 and passing therethrough.
  • the expansion unit 23 is controlled so as to gradually reduce the opening area.
  • the flow path opening / closing means 29 is closed so that the refrigerant does not flow into the indoor heat exchanger 26.
  • the expansion means 23 is throttled until the refrigerant flow rate becomes zero, it is considered that the expansion means 23 is fully closed.
  • the liquid refrigerant is confined in the pipe between the flow path opening / closing means 29 and the expansion means 23.
  • the encapsulated liquid refrigerant is gasified when heated from the surroundings, and its volume increases at a stretch. As the refrigerant gasifies (vaporizes), the pressure of the refrigerant rises at once. Thus, there is a possibility that the pressure rises in the portion where the refrigerant (especially liquid refrigerant) is sealed, so that the minimum critical pressure is exceeded and the refrigerant is decomposed.
  • the pressure detection means 42 is installed between the flow path opening / closing means 29 and the expansion means 23, and the refrigerant pressure detected by the pressure detection means 42 exceeds the minimum critical pressure. Before, the opening area of the expansion means 23 is increased to prevent the refrigerant from being placed in a sealed state, and the refrigerant is prevented from being decomposed due to an increase in pressure.
  • the space between the flow path opening / closing means 29 and the expansion means 23 is sealed, heat is applied from the outside, and no problem occurs unless the liquid in the sealed section evaporates and gasifies, and the refrigerant evaporates. Therefore, even if the space between the flow path opening / closing means 29 and the expansion means 23 is sealed, the refrigerant pressure does not increase immediately. Therefore, the piping between the expansion means 23 and the flow path opening / closing means 29 is sealed by the control means 53 without providing the pressure detection means 42 between the flow path opening / closing means 29 and the expansion means 23. If the control is performed so that the flow path opening / closing means 29 or the expansion means 23 is opened after a predetermined time has elapsed, it is possible to prevent an increase in pressure and obtain the same effect.
  • the refrigerant circuit has a structure capable of sealing the refrigerant in addition to between the expansion means 23 and the flow path opening / closing means 29 (for example, a plurality of expansion means are connected in series by piping).
  • a plurality of expansion means are connected in series by piping.
  • the refrigerant is sealed by controlling the refrigerant flow rate with a plurality of means, for example, between the expansion means 23 and the flow path opening / closing means 29.
  • the control means 53 is controlled to open at least one (here, the expansion means 23)
  • the sudden increase in the pressure of the refrigerant in the sealed state is prevented and the minimum critical pressure is not exceeded.
  • the control means 53 can make a more detailed judgment on the sealing of the refrigerant. For example, if the control means 53 determines the state in control of the expansion means 23 and the flow path opening / closing means 29 and determines that the space between the expansion means 23 and the flow path opening / closing means 29 is in a sealed state, for example, a certain period of time. Since control is performed so that at least one of them is opened and the sealed state is released later, it is not necessary to provide the pressure detecting means 42, which can contribute to cost reduction.
  • Embodiment 4 the mixed refrigerant has been described.
  • the present invention can also be applied to a case where the refrigerant is a single refrigerant made of a substance having a double bond, for example.
  • the lowest critical pressure is a critical pressure in a single refrigerant made of a substance having a double bond.
  • it is applicable not only to the substance having a double bond but also to the case of containing a refrigerant made of a chemically unstable substance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

二重結合を有する物質を含む冷媒を圧縮する圧縮機21と、熱交換により冷媒を凝縮させる凝縮器22と、凝縮された冷媒を減圧させるための膨張手段23と、減圧された冷媒を熱交換により蒸発させる蒸発器24とを配管接続して冷媒を循環させる冷媒回路を構成し、この冷媒回路内の前記冷媒の圧力が、二重結合を有する物質の臨界圧力未満となるように、前記冷媒回路の動作を制御する制御手段53を備える。

Description

冷凍サイクル装置及び空気調和装置
 この発明は、ビル用マルチエアコン、ルームエアコン、パッケージエアコンなどの空調機、冷凍機などの冷凍サイクルを構成する冷凍サイクル装置等に関するものである。
 例えば、空気調和装置、冷凍装置、給湯装置等の冷凍サイクル(ヒートポンプサイクル)を利用した冷凍サイクル装置は、基本的に、圧縮機、凝縮器(熱交換器)、膨張弁及び蒸発器(熱交換器)を配管接続し、冷媒を循環させる冷媒回路を構成している。そして、冷媒が、蒸発、凝縮時に、熱交換対象に対して加熱(放熱)、冷却(吸熱)することを利用し、管内の圧力を変化させながら空調動作、冷却動作、加熱動作等を行っている。
 ここで、従来の冷凍サイクル装置において冷媒回路内の冷媒として、化学的に安定な物質である、HCFC-22(CHClF)やHFC-134a(CF3CH2F)などの単一冷媒、HFC-32(CH22)とHFC-125(CF3CHF2)の混合物であるR-410AやHFC-32(CH22)とHFC-125(CF3CHF2)とHFC-134a(CF3CH2F)の混合物であるR-407Cなどの混合冷媒を用いていた(例えば特許文献1参照)。
特開2006-152839号公報(請求項2)
 ここで、冷媒回路を循環する冷媒として、地球温暖化を防止するという観点から、地球温暖化係数(GWP:温室効果ガスである物質に対して地球の温暖化をもたらす程度を、二酸化炭素に係る当該程度に対する比を示す数値として国際的に認められた知見に基づき定められた係数)ができる限り小さい冷媒が用いられつつある。このような冷媒として、例えばCF3CF=CH2、CF3CH=CH2、CF3CF=CF2などのように、原子間の結合において二重結合(多重結合)を有する物質を含む冷媒(以下、二重結合を有する冷媒という)などがある。
 従来の冷凍サイクル装置では、化学的に安定な物質を冷媒として使用していたため、使用中に冷媒中の物質が分解(以下、冷媒が分解という)等し、冷媒として機能しなくなることを気にする必要がなかった。しかし、上述したような二重結合を有する冷媒は、化学的には不安定な冷媒であるため、通常の使用方法では、冷媒が分解、劣化してしまう可能性が高い。例えば、混合冷媒の場合でも、他の冷媒に分解、劣化させられる又はさせるなどして混合冷媒全体として機能しなくなり、その結果、冷凍サイクル装置が正常に使用できなくなる可能性がある。
 この発明は、上記のような課題を解決するためになされたもので、二重結合を有する冷媒のように、化学的に不安定な物質を含む冷媒を冷凍回路内を循環させる冷媒として使用する場合でも、冷媒の分解を防ぎ、正常な運転を長期間維持することができる冷凍サイクル装置等を得ることを目的とする。
 この発明に係る冷凍サイクル装置は、二重結合を有する物質を含む冷媒を圧縮する圧縮機と、熱交換により冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させるための膨張手段と、減圧された冷媒を熱交換により蒸発させる蒸発器とを配管接続して冷媒を循環させる冷媒回路を構成し、冷媒回路内の冷媒の圧力の値が、二重結合を有する物質の臨界圧力未満となるように、冷媒回路の動作を制御する制御手段を備える。
 この発明の冷凍サイクル装置によれば、二重結合を有する物質を含む冷媒を循環させる冷媒回路を構成する場合に、制御手段が、冷媒回路内の冷媒の圧力の値が、二重結合を有する物質の臨界圧力未満となるように、冷媒回路の動作を制御するようにしたので、化学的に不安定な二重結合を有する物質を含む冷媒において、二重結合を有する物質が臨界圧力を越えてしまうことで二重結合を有する物質自身が分解したり、また、他の物質が臨界圧力を越えてしまうことで二重結合を有する物質を攻撃したりすることで冷媒として機能しなくなるのを効果的に抑制することができる。そのため、冷凍サイクル装置の性能を長期間維持することができ、さらに信頼性も確保することができる。これにより、例えば地球温暖化係数が低く、環境に好適な、二重結合を有する物質を含む冷媒を有効に用いることができる冷凍サイクル装置を得ることができる。
この発明の実施の形態1に係る冷凍サイクル装置の構成を示す図。 この発明の実施の形態1に係る冷凍サイクル装置のP-h線図。 二重結合を有する冷媒の化学変化を示す図。 実施の形態1の制御に係るシステムを含む構成を表す図。 実施の形態1に係る冷凍サイクル装置のフローチャートを表す図。 この発明の実施の形態2に係る空気調和装置の構成を表す図。 この発明の実施の形態3に係る空気調和装置の構成を表す図。
実施の形態1.
 図1は本発明の実施の形態1に係る冷凍サイクル装置の構成を示す図である。図1において、冷凍サイクル装置は、圧縮機21、凝縮器22、凝縮器用ファン31、膨張手段23、蒸発器24、蒸発器用ファン32及び圧力検出手段41を有している。そして、圧縮機21、凝縮器22、膨張手段23及び蒸発器24を配管で接続することにより冷媒回路を構成している。ここで本実施の形態では、冷媒回路内において熱を搬送する媒体となる冷媒として、原子間の結合において二重結合を有する物質を含む冷媒を少なくとも1種類混合した混合冷媒を封入する。冷媒については後述する。
 圧縮機21は、冷媒回路を循環させるために冷媒を吸入し、圧縮して昇圧する。ここで、圧縮機21には、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプのいずれを用いてもよい。また、例えば圧縮機周波数が固定の圧縮機であっても、圧縮機周波数を任意に変化させることにより容量(単位時間あたりの冷媒を送り出す量)を変化させることができるインバータ回路を備えた圧縮機であってもよい。凝縮器22は、圧縮機21が吐出したガス(気体)状の冷媒(以下、ガス冷媒という)と熱交換対象(本実施の形態では空気とする)との間で熱交換を行わせ、冷媒が有する熱量を放出させて空気を加熱する。凝縮器用ファン31は、凝縮器22に空気を送り込み、冷媒との熱交換を効率よく行わせる。膨張手段23は、例えば電子式膨張弁、温度式膨張弁、キャピラリチューブなどで構成され、通過する冷媒の流量を調整し、冷媒の圧力を低くする(減圧する)。
 蒸発器24は、膨張手段23により圧力が低くなった気液二相冷媒(ガス冷媒と液状の冷媒(以下、液冷媒という)とが混在した状態の冷媒)と熱交換対象(ここでも空気であるものとする)との間で熱交換を行わせ、冷媒に熱量を吸収させて蒸発させてガス化させる。空気は冷却される。蒸発器用ファン32についても、空気と冷媒との熱交換を蒸発器24において効率よく行わせるために設けている。ここでは、凝縮器用ファン31及び蒸発器用ファン32を用いて、空気との熱交換を行うようにしているが、凝縮器用ファン23の代わりにポンプ及び水を使う水冷機器、蒸発器用ファン26の代わりにポンプ及び水又はブラインを用いるチラーなどの機器を用いて水との熱交換を行うこともできる。
 また、圧力センサである圧力検出手段41は、本実施の形態では、冷媒回路において最も圧力が高い部分となる、圧縮機21の冷媒出口(吐出)側に設けられており、検出に係る圧力に基づく信号を、後述するように制御手段等に送信する。ここで、冷媒回路における圧力の高低については、基準となる圧力との関係により定まるものではなく、圧縮機21の圧縮、膨張手段23等の冷媒流量制御などによりできる相対的な圧力として表すものとする。また、温度の高低についても同様であるものとする。
 図1においては、凝縮器22が1台、蒸発器24が1台の場合を例に説明しているが、冷媒回路における凝縮器22、蒸発器24の接続数を1台に限定するものではなく、例えば複数台を並列に接続することができる。また、圧縮機21についても、1台である場合を例に説明しているが、例えば複数台の圧縮機21を直列又は並列に接続するようにしてもよい。
 図2は図1の冷凍サイクル装置により構成する冷媒回路に係るP-h線図である。図2に示すa点、b点、c点、d点における圧力及びエンタルピは、図1の冷凍サイクル装置において対応する箇所における圧力及びエンタルピを表している。
 次に、本実施の形態に係る冷凍サイクル装置の動作を冷媒の流れに基づいて説明する。圧縮機21により圧縮されて出口(吐出)側において圧力Paとなった高温の冷媒は、配管を通過して凝縮器22に送り込まれる。凝縮器22を通過した冷媒は、凝縮器用ファン31により送り込まれた空気との間で熱交換することにより、凝縮され、液化される。このとき冷媒は放熱し、これにより熱交換対象を加熱する。この過程で生じる圧力損失により、冷媒の圧力がPaよりも少し低下してPbになる。
 液化された冷媒は膨張手段23に送り込まれる。液冷媒は膨張手段23を通過することにより減圧され、気液二相冷媒となって蒸発器24に送り込まれる。蒸発器24を通過した気液二相冷媒は、蒸発器用ファン32により送り込まれた空気との間で熱交換することにより、蒸発され、ガス化される。ガス化された冷媒は、再び、圧縮機21に吸入される。
 この際、冷媒回路において、圧縮機21から膨張手段23に至る冷媒の流路は高圧側流路となり、冷媒回路中で相対的に圧力が高い流路となる。一般的に、圧縮機21の出口側における冷媒の圧力Paが冷媒回路内で最も圧力が高く、膨張手段23の入口側における冷媒の圧力Pbは、凝縮器22及び接続配管での圧力損失により、Paよりも少し低い圧力となる。本実施の形態を含めた各実施の形態においては、冷凍サイクル装置の構成手段により、冷媒回路における冷媒の圧力を低く抑えるための制御を行うが、ここでいう冷媒の圧力は、基本的には圧縮機21の出口側における冷媒の圧力Paであるものとする。
 図2に示すP-h線図において、飽和液線と飽和ガス線とが合わさる点を臨界点と呼び、臨界点における圧力(以下、臨界圧力という。図2では圧力Pcrとなる)よりも冷媒の圧力が高い状態では、冷媒は液でもガスでもない超臨界状態になる。冷媒が超臨界状態になると、ガス状態又は液状態にある場合とは異なる性質を示す。超臨界状態では、通常の利用では安定な物質でも、分解する性質、様々な物質をよく溶解させる性質などを有するようになる。この高い溶解性や反応性のため、圧縮機21等における容器やシールの材質にも配慮が必要となる。
 ここで、複数の冷媒の混合物として構成されている混合冷媒について考える。通常、よく使用される混合冷媒としては、HFC-32とHFC-125の混合物であるR-410A、HFC-32とHFC-125とHFC-134aの混合物であるR-407Cなどがある。
 それぞれの冷媒を構成する物質を化学式で表すと、HFC-32はCH22、HFC-125はCF3CHF2、HFC-134aはCF3CH2Fとなる。これらの冷媒は、化学的に安定しており、長期間、地球温暖化ガスとして残存するため、地球温暖化に寄与する割合を示す地球温暖化係数が比較的大きい値となる。
 一方、物質を構成する原子間の結合において、二重結合を有する物質からなる冷媒と他の冷媒とが混合している場合もある。二重結合を有する物質からなる冷媒については、例えばCF3CF=CH2(テトラフルオロプロペン:2,3,3,3-Tetrafluoropropene、HFO-1234yfに代表されるハイドロフルオロオレフィン(HFO)冷媒)、CF3CH=CH2、CF3CF=CF2などの物質(=は二重結合を表す)を含む冷媒がある。地球環境面からは、地球温暖化係数が小さい、二重結合を有する物質からなる冷媒を複数混合した混合冷媒とすることが望ましいが、HFC-32、HFC-125、HFC-134aなどの一重結合(単結合)で結合した物質からなる冷媒やその他の冷媒と混合することもできる。
 ここで、二重結合を有する物質は化学的に不安定な性質を有しており、このような物質からなる冷媒は、例えば大気中においては、光やオゾンなどの影響により、分解されやすい性質がある。そのため、地球温暖化ガスとして長期間存在することがないため、温暖化への影響も小さく、これらは地球温暖化係数が比較的小さい値となる。また、大気中だけでなく、二重結合を有する物質からなる冷媒の単一冷媒又は二重結合を有する物質からなる冷媒を含む混合冷媒(二重結合を有する冷媒)を冷媒回路内を循環させる冷媒(作動流体)として用いるために封入した場合でも、冷媒回路内で二重結合が分解され、冷媒として機能しなくなる危険性を含んでいる。
 図3はCF3CF=CH2の分解等の例を表す図である。ここで、二重結合の分解について、CF3CF=CH2の分解を例に説明する。例えばCF3CF=CH2は図3に示すような化学変化を起こす。CF3CF=CH2の分子同士が重合して分子量の大きいCF3CFCH2(CF3CFCH2)nHという形の高分子化合物となることがある。この高分子化合物は、冷媒回路内においてスラッジとなって冷媒と共に循環し、例えば流路が狭くなる膨張手段等において弁詰まりなどの原因となる。また、冷媒回路中に水が存在すると、CF3CFCOHCH3の形の酸性を示すアルコールとなり、スラッジとなる場合もある。冷媒回路中の水分については、通常、例えばドライヤ(図示せず)等で吸着させて除去する。さらに、CH3CFHC=OOH の形の酸となって性質が変わってしまい、冷媒としての機能を果たさなくなることもある。
 そのため、二重結合を有する冷媒を冷媒回路内を循環させる冷媒(作動流体)として用いる場合は、空気や光やその他、冷媒の分解を促進させる原因を極力排除した状態で使用しなければならないことになる。
 ここで、混合冷媒について説明する。混合冷媒は、構成している冷媒毎に熱に関する性質が異なっており、それぞれ異なる冷凍サイクル(P-h線図)となり、それぞれ臨界点も異なる。冷媒回路を循環する冷媒(作動流体)として混合冷媒を使用する冷凍サイクル装置においては、それぞれの冷媒が凝縮、蒸発を繰り返して冷媒回路内を循環している。ここでは、混合冷媒を構成する各冷媒のうち、臨界点の最も低い冷媒の臨界圧力を最低臨界圧と称するものとする。
 冷媒の臨界圧力は、例えば、HFC-32が5.78MPa、HFC-125が3.616MPa、HFC-134aが4.048MPa、CF3CF=CH2が約3.3MPaとなる。したがって、HFC-32、HFC-125及びCF3CF=CH2の各冷媒を混合させた場合は、CF3CF=CH2の臨界圧力が最も小さく、CF3CF=CH2自身が最初に超臨界状態となる。
 ここで、混合冷媒を循環させる冷媒回路において、冷媒の圧力(特に高圧側の圧力)が最低臨界圧よりも常に低ければ、それぞれの冷媒が分解等されることなく、長期間、冷媒回路内を循環し、凝縮、蒸発等を繰り返し行うことができる。しかし、例えば、冷媒の圧力が最低臨界圧よりも高くなると、臨界圧力の低い冷媒が超臨界状態となり、超臨界状態でその他の冷媒と冷媒回路内を循環する。
 冷媒が超臨界状態になると、先に述べたように、通常は安定な物質でも、他の物質を分解する性質等を有するようになる。そのため、混合冷媒において、臨界圧力を超えた超臨界状態の冷媒が存在すると、その他の冷媒を攻撃し、分解しようとする。
 例えば、R-410AやR-407Cなどの化学的に安定な冷媒のみで構成された混合冷媒においては、高圧側における冷媒の圧力が最低臨界圧よりも高くなり、一部の冷媒が超臨界状態になったとしても、混合冷媒全体が分解されることはなく、安定的に使用できる。
 CF3CF=CH2などの二重結合を有する物質からなる冷媒を混合冷媒に含む場合、例えば、二重結合を有する物質からなる冷媒以外の冷媒が超臨界状態となると、超臨界状態の冷媒が、化学的に不安定な二重結合を有する物質からなる冷媒を攻撃するため、冷媒が分解され、安定的な性能を維持できなくなる。また、すべての冷媒が分解等されてしまうと、混合冷媒は冷媒として全く機能しなくなる。
 そこで、二重結合を有する物質からなる冷媒を含む混合冷媒においては、冷媒回路のすべての位置における冷媒の圧力を、常に最低臨界圧以下にし、どの冷媒も超臨界状態にならないようにして混合冷媒を循環させるように制御することが必須となる。
 また、超臨界状態にある冷媒は自分自身に対しても攻撃する。そのため、以上のことは、他の冷媒の臨界圧力が、二重結合を有する物質からなる冷媒よりも高い場合、あるいは二重結合を有する物質からなる冷媒のみを冷媒として使用する場合でも同様であり、装置を動作させる際には、超臨界状態にならないようにしながら冷媒を循環させるように制御する必要がある。
 前述した通り、冷媒回路における高圧側となる流路は、圧縮機21から膨張手段23に至る流路である。この流路の中でも、圧縮機21において、冷媒を圧縮、昇圧するため、一般的な冷凍サイクル装置において、圧縮機21の出口(吐出)側の圧力が冷媒回路内で最も圧力が高い。
 そこで、本実施の形態では、圧縮機21の出口側に圧力検出手段41を設置し、圧力検出手段41からの信号に基づく圧力が最低臨界圧を越えないように、制御する冷凍サイクル装置を得る。
 図4は本実施の形態の制御に係るシステムを含む冷凍サイクル装置の構成を表す図である。図4において、制御手段53は、冷凍サイクル装置の各手段の動作を制御するための処理を行う。特に本実施の形態では、圧力検出手段41からの信号に基づいて、冷媒回路内において最も高圧となる部分の冷媒の圧力の値(以下、高圧圧力値という)を判断して、演算等の処理を行い、各手段を制御する高圧制御手段として機能する。圧力記憶手段51は、一定間隔毎の複数の高圧圧力値のデータを、過去の所定期間分記憶する。また、臨界圧記憶手段52は、混合冷媒における前述した最低臨界圧に基づいて設定した圧力の値を記憶する手段である。ここでは、第1圧力値及び第2圧力値の2つの値を記憶しているものとする。
 図5は制御手段53が行う圧力制御のフローチャートを示す図である。図4及び図5に基づいて、制御手段53が行う処理を中心に本実施の形態における冷凍サイクル装置の動作について説明する。圧縮機21の出口側に設置した圧力検出手段41から送信される信号に基づいて、制御手段53は高圧圧力値を判断し(ST1)、圧力記憶手段51に記憶させる。
 また、制御手段53は、高圧圧力値と臨界圧記憶手段52に記憶してある第1圧力値とを比較する(ST2)。ここで、本実施の形態において、第1圧力値については、高圧圧力値に含まれる圧力の検出誤差、圧縮機21内部での冷媒の圧力等を考慮して、例えば二重結合を有する臨界圧力未満となるように、最低臨界圧の値からマージンとなる所定値αを引いた値を第1圧力値とする。第1圧力値は最低臨界圧よりも低い値となる。所定値αの値は任意に定めることができるが、ここでは例えば0.2(Mpa)とする。
 比較の結果、高圧圧力値が第1圧力値よりも大きいと判断すると、制御手段53は、圧縮機21を制御して冷媒回路の高圧側における冷媒の圧力を急激に低下させて(ST3)、冷媒が分解されないようにする。圧縮機21の制御としては、例えば、圧縮機21がインバータ回路を有する圧縮機の場合には圧縮機周波数を急激に低下させるようにする。また、圧縮機21が圧縮機周波数が固定の圧縮機である場合には一時的に動作を停止させる。
 一方、比較の結果、高圧圧力値が第1圧力値以下であると判断すると、次に、圧力記憶手段51が記憶する過去一定時間分の複数の高圧圧力値のデータに基づいて、一定時間後の圧力の予測値を算出する(ST4)。予測値の算出については、例えば3点予測法等のような方法を用いて、複数の高圧圧力値から経時変化(トレンド)を導き出し、一定時間後における圧力値を予測値として算出する。ここで、予測値について、制御手段53は、3点予測法だけでなく、他の方法に基づいて算出するようにしてもよい。
 制御手段53は、算出した予測値と臨界圧記憶手段52に記憶してある第2圧力値とを比較する(ST5)。ここで、第2圧力値についても、高圧圧力値に含まれる圧力の検出誤差等を考慮して、最低臨界圧の値からマージンとなる所定値βを引いた値を第2圧力値とする。第2圧力値についても、最低臨界圧よりも低い値となる。所定値βの値は任意に定めることができるが、ここでは例えば0.5(Mpa)とする。ここでは、第1圧力値と第2圧力値とを異ならせているが、同じ値であってもよい。また、場合によっては高圧圧力値と第1圧力値との比較、予測値と第2圧力値との比較の一方だけを行うことも可能である。
 比較の結果、高圧圧力値が第2圧力値よりも大きいと判断すると、制御手段53は、冷凍サイクル装置の圧縮機21、凝縮器用ファン31、蒸発器用ファン32、膨張手段23のうち、1又は複数の手段の動作を制御する(ST5)。この制御により、冷媒回路の高圧側における冷媒の圧力を低下させるようにして、圧力が最低臨界圧を越えないようにし、冷媒が分解されないようにする。ここで、制御手段53が行う冷媒の圧力を低下させる制御については、例えば、圧縮機21がインバータ回路を有する圧縮機の場合には、圧縮機周波数を一定数(例えば10Hz)低下させるようにする。また、凝縮器用ファン31については、ファンの回転数を増加させて凝縮器22における冷媒の熱量を放出させるようにする。また、膨張手段23については開度を大きくし、高圧側の圧力を下げるようにする。そして、蒸発器用ファン32については、ファンの回転数を減少させ、蒸発器24における冷媒による熱量の吸収を抑えるようにする。制御手段53は、以上の処理を繰り返し行い、冷媒回路を循環する混合冷媒を構成する冷媒が1種類でも分解等されないように、冷凍サイクル装置の各手段を制御する。
 ここで、本実施の形態では、圧縮機21の出口部分に圧力検出手段41を設置した場合を例に説明を行ったが、設置位置は出口部分に限定するものではない。例えば、圧縮機21の出口から凝縮器22又は膨張手段23までの圧力損失は配管径と配管長と冷媒の流量などから計算できる。例えば凝縮器22の入口側あるいは膨張手段23の入口側などに圧力検出手段41を設置し、その位置での検出に係る冷媒の圧力値から圧縮機21の出口における圧力を推測演算することは容易にできる。そのため、圧力検出手段41は圧縮機出口から膨張手段の入口までのいずれかの位置に設置してあれば、圧縮機出口側圧力が最低臨界圧を越えないように制御することができる。
 また、圧力検出手段41は、半導体式やひずみゲージ式のような検出した圧力に応じた信号送信を行う圧力センサを用いる場合が一般的である。ただ、圧力検出手段41をこのような圧力センサのみに限定するものでなく、例えば、所定の圧力になるとON信号を出力する圧力スイッチを用いてもよい。この場合、制御手段53は高圧圧力値を判断する必要はない。
 また、圧力スイッチを用いる場合は、例えば、最低臨界圧よりも少し低めの値を所定の圧力として圧力スイッチに設定しておき、所定の圧力になって圧力スイッチが出力したON信号により、圧縮機21の圧縮動作が停止するように、配線をしておくこともできる。この場合、圧力記憶手段51、臨界圧記憶手段52及び本実施の形態における高圧制御手段としての制御手段53が不要になるため、安価な制御システムを構成することができる。ただ、基本的には、最低臨界圧の近くで圧縮機21が発停を繰り返すことになる。そのため、冷房能力又は暖房能力を十分に発揮することができなくなる可能性があるので、圧力センサを用いる方が望ましい。
 また、例えば、圧力検出手段41の代わりに凝縮器22の中央付近に温度センサ等の温度検出手段を設置して凝縮温度を検出するようにし、凝縮温度に基づいて、高圧側における冷媒の圧力を算出するようにしてもよい。ここで、凝縮温度を検出するには、基本的には、温度検出手段を設置した位置において冷媒が気液二相状態になっている必要があるため、複数箇所に設置するようにすると、凝縮温度の検知精度を向上させることができ、これにより圧力の検出精度についても高めることができる。
 以上のように、実施の形態1の冷凍サイクル装置によれば、例えばCF3CF=CH2、CF3CH=CH2、CF3CF=CF2等の二重結合を有する物質を含む冷媒を循環させる冷媒回路を構成する場合に、制御手段53が、冷媒回路中、最も高い圧力部分となる圧縮機21の出口側の圧力が、冷媒を構成する物質において最も低い最低臨界圧に基づいて設定した第1圧力値よりも大きいと判断すると、例えば、圧縮機21の圧縮機周波数を急激に低下又は圧縮機21を停止させるように制御して、最低臨界圧を越えないようにするので、化学的に不安定な二重結合を有する物質を含む冷媒が、二重結合を有する物質自身の分解又は混合冷媒において他の冷媒の物質の分解により攻撃されて分解されて冷媒として機能しなくなるのを防ぐことができる。そのため、冷凍サイクル装置の性能を長期間維持することができ、さらに信頼性も確保することができる。ここで、他の手段により圧力の低下を図ることができるが、圧縮機21の出口側における圧力を低下させるためには、圧縮機21の圧縮機周波数を急激に低下又は圧縮機21を停止させることは最も効果的である。また、冷媒の劣化を防ぎ、圧縮機21に負担をかけることなく、冷媒の役割である熱量搬送を維持させることができるため、省エネルギを図ることができる。そして、このときに冷媒として用いるテトラフルオロプロピレン等のHFO冷媒は、例えば自然冷媒である二酸化炭素と地球温暖化係数が同等であるため、環境の点からも好適である。
 また、圧力検出手段41の検出に係る過去一定時間分の高圧圧力値のデータに基づいて、例えば3点予測法等により、一定時間後の圧縮機21の出口側における冷媒の圧力の予測値を算出し、第2圧力値より大きいと判断すると制御により冷媒の圧力を下げるようにしたので、冷媒の圧力の傾向を判断し、判断に応じた対応を行って圧力が最低臨界圧を越えないようにし、冷媒が分解されないようにすることができる。また、凝縮器用ファン31、蒸発器用ファン32等を、1又は複数組み合わせて制御することで、圧縮機21の出口側における冷媒の圧力を効果的に下げることができる。
実施の形態2.
 図6は本発明の実施の形態2に係る空気調和装置の構成を表す図である。本実施の形態では、実施の形態1における冷凍サイクル装置の代表例としてビル用マルチエアコン等の空気調和装置について説明する。図6において、図1と同じ符号を付している手段等は、上述した説明の動作と基本的には同じ動作を行う手段である。ここで、本実施の形態における制御手段53は、室内機61a及び61bの運転状態に基づいて冷凍サイクル装置の各手段(特に室外機60側の手段)の動作を制御するための処理を行う。
 図6の空気調和装置は、1台の室外機60と2台の室内機61a及び61bとを有している。室外機60は、圧縮機21、室外熱交換器25、四方弁27、アキュムレータ28、室外熱交換器用ファン33、圧力検出手段41を有している。また、室内機61a、61bは、それぞれ膨張手段23a、23b、室内熱交換器26a、26b、室内熱交換器用ファン34a、34bを有している。特に区別しない場合には、室内機61a、61b及びその構成手段については、添え字を省略して説明する(以下、同じ)。
 室外熱交換器25は、四方弁27の切り換えにより、圧縮機21が吐出した冷媒が流入する冷房運転時においては実施の形態1における凝縮器22として機能し、暖房運転時においては蒸発器24として機能し、空気と冷媒との熱交換を行う。また、室内熱交換器26a、26bは、室外熱交換器25とは逆に、冷房運転時においては蒸発器24として機能し、暖房運転時においては凝縮器22として機能して、空調対象空間の室内空気と冷媒との熱交換を行う。
 また、アキュムレータ28は余剰冷媒を貯留する手段である。ここでは、圧縮機21の吸入側にアキュムレータを付けた場合を示したが、例えば凝縮器22となる熱交換器の出口側にレシーバを付けて液冷媒を貯留するようにしてもよい。室外熱交換器用ファン33、室内熱交換器用ファン34a、34bは、空気と冷媒との熱交換を効率よく行わせるために設けている。そして、本実施の形態の空気調和装置においても、実施の形態1と同様の冷媒を用いて冷媒回路内を循環させるものとする。
 次に、本実施の形態に係る暖房運転時における空気調和装置の動作を冷媒の流れに基づいて説明する。図6に示す冷媒回路に沿った矢印は、暖房運転時における冷媒の流れを表している。圧縮機21の圧縮により加圧され、吐出された高温、高圧のガス冷媒は四方弁27、配管を通過して室内機61に流入する。室内機61において、室内熱交換器26を通過した冷媒は凝縮され、液化される。このとき、冷媒は、室内熱交換器用ファン34により送り込まれた室内空気に対して放熱し、これにより熱交換対象となる室内空気を加熱する。加熱された室内空気は温風として室内に供給される。液化された冷媒は、膨張手段23を通過することにより減圧される。そして、減圧された冷媒は、室外熱交換器25を通過することにより蒸発され、ガス化される。ガス化された冷媒は、再び、圧縮機21に吸入される。
 ここで、室内機61の膨張手段23は、室内熱交換器26を通過する冷媒の流量を制御している。例えば、室内機61が設置されている空調対象空間の温度が目標温度に到達した場合、室内機61はサーモオフの状態となり、室内熱交換器用ファン34が停止し、膨張手段23は全閉となる。ここで、全閉とは本実施の形態においては、冷媒が流れない程度の最小開度を意味するものとする。そのため、サーモオフの状態では室内熱交換器26を冷媒が通過しない。
 空気調和装置が暖房運転を行っている場合、室内熱交換器26は凝縮器として機能するが、室内機61a、61bのどちらか1台がサーモオフの状態になると、その室内機61の膨張手段23は全閉し、室内熱交換器26に冷媒が通過しなくなる。そのため、凝縮器(高圧側における熱交換器)の数が急激に減少し、高圧側の冷媒の圧力が上昇する。
 従来では、室内機61がサーモオフの状態となり、上昇した高圧側の冷媒の圧力を目標圧力に近づけるようにフィードバック制御を行う。しかし、二重結合を有する冷媒を循環させている場合、冷媒の分解を防ぐために、冷媒の圧力のオーバーシュートは防がなければならない。
 そこで、制御手段53は、例えば室内機61に設けた温度検出手段(図示せず)により検出した空調対象空間の温度が目標温度に到達したものと判断すると、例えば膨張手段23を全閉させて室内熱交換器26への冷媒流入停止、室内熱交換器用ファン34の停止などにより、室内熱交換器26(凝縮器)への熱量の供給を停止を行う前又は熱量の供給を停止とほぼ同時に、冷凍サイクル装置を構成する手段の動作を制御し、冷媒回路の高圧側における冷媒の圧力を低下させるようにする。これにより、冷媒の圧力が最低臨界圧を越えないようにし、冷媒が分解されないようにする。
 ここで、制御手段53が行う冷媒の圧力を低下させる制御については、例えば、動作を続ける室内機61側の手段(膨張手段23、室内熱交換器用ファン34)による制御を行うことは現実的に難しい。そこで、例えば圧縮機21がインバータ回路を有する圧縮機の場合には圧縮機周波数を一定数低下させる、室外熱交換器用ファン33のファン回転数を減少させるように制御することが考えられる。基本的には圧縮機21の動作を制御するのが最も即効性があり、圧力低下に有効であるが、圧縮機21と室外熱交換器用ファン33とを組み合わせて制御するようにしてもよい。
 以上のように実施の形態2のように、複数台の室内機61を並列に接続し、例えば暖房運転のように室内機61が有する室内熱交換器26が凝縮器として機能する空気調和装置のような冷凍サイクル装置において、少なくとも1台の膨張手段23の全閉により、対応する室内熱交換器26における冷媒通過を突然停止する、室内熱交換器用ファン34が停止して冷媒の熱量を放出できないなどが生じることによって、高圧側の冷媒の圧力が急激に上昇して最低臨界圧を越えないようにするため、膨張手段23が全閉等する前又はほぼ同時に、制御手段53が、例えば圧縮機21の動作を制御して圧縮機21の出口側の冷媒の圧力を低下させて最低臨界圧を越えないようにするので、化学的に不安定な二重結合を有する物質を含む冷媒が、二重結合を有する物質自身の分解又は混合冷媒において他の冷媒の物質の分解により攻撃されて分解されて冷媒として機能しなくなるのを防ぐことができる。そのため、冷凍サイクル装置の性能を長期間維持することができ、さらに信頼性も確保することができる。
実施の形態3.
 図7は本発明の実施の形態3に係る空気調和装置の構成を表す図である。本実施の形態において空気調和装置について説明する。図7において、図1、図6と同じ符号を付している手段等は、上述した説明の動作と基本的には同じ動作を行う手段である。図7では、室内機61a及び61bにおいて、膨張手段23a、23bを中心として室内熱交換器26a、26bと反対側(液冷媒又は気液二相冷媒が流れる側、冷房運転時の上流側)となる位置に、それぞれ流路開閉手段29a、29bを設置している。流路開閉手段29a、29bは、膨張手段23a、23bと同じように、冷媒の流量を調整(制御)するための手段である。ただ、膨張手段23a、23bのように細かな流量制御を行うことができず、開けば冷媒を通過させ閉じれば通過させないようにするものである。また、膨張手段23a、23bと流路開閉手段29a、29bとの間に圧力検出手段42a、42bを設置する。本実施の形態における制御についても制御手段53が行うものとする。
 例えば、空気調和装置が冷房運転を行っている場合においても、室内機61の膨張手段23は、室内熱交換器26に流入し、通過させる冷媒の流量を制御している。例えば、室内機61が設置されている空調対象空間の温度が目標温度に近づいた場合、例えば、膨張手段23を徐々に開口面積を小さくする方向に絞っていくように制御する。そして、空調対象空間の温度が目標温度に到達した場合、流路開閉手段29を閉状態とし、室内熱交換器26に冷媒が流れないようにする。
 ここで、膨張手段23を冷媒流量がゼロとなるまで絞っていったとすると、膨張手段23は全閉となっていることが考えられる。この場合、流路開閉手段29と膨張手段23の間の配管に液冷媒が封じ込められることになる。封じ込められた液冷媒は周囲から加熱されるとガス化し、体積が一気に増加する。冷媒がガス化(気化)することにより冷媒の圧力が一気に上昇する。このように、冷媒(特に液冷媒)を密閉している部分において圧力が上昇することで最低臨界圧を越え、冷媒が分解されてしまう可能性がある。
 そこで、本実施の形態の空気調和装置では、流路開閉手段29と膨張手段23との間に圧力検出手段42を設置し、圧力検出手段42の検出に係る冷媒の圧力が最低臨界圧を越える前に、膨張手段23の開口面積を大きくして、密閉した状態の中に冷媒がおかれてしまうのを防ぎ、圧力上昇による冷媒の分解を防止する。
 また、流路開閉手段29と膨張手段23との間が密閉されても、ここに外部から熱が加わり、この密閉区間の液体が蒸発しガス化しない限りは問題は起きず、冷媒が蒸発するための潜熱量は大きいため、流路開閉手段29と膨張手段23との間が密閉されても即座に冷媒の圧力は上昇しない。そこで、流路開閉手段29と膨張手段23との間に圧力検出手段42を設けなくても、制御手段53により、膨張手段23と流路開閉手段29との間の配管が密閉されているものと判断した一定時間経過後に、流路開閉手段29または膨張手段23を開状態にするような制御を行えば、圧力の上昇を防ぐことができ、同様の効果を得ることができる。
 また、上述した膨張手段23と流路開閉手段29との間だけでなく、冷媒回路において冷媒を密閉し得る構造を有しているような場合(例えば複数の膨張手段が直列に配管接続されているような場合など)においても同様のことがいえる。その場合でも、例えば膨張手段23を全閉にしないようにするなど、冷媒を密閉させないようにすることにより、冷媒の圧力の上昇を防ぎ、冷媒の分解を防ぐことができる。
 以上のように、実施の形態3によれば、例えば膨張手段23と流路開閉手段29との間などのように、複数の手段で冷媒流量を制御することにより、冷媒が密閉されたものと判断すると、制御手段53は、少なくとも一方(ここでは膨張手段23)を開口させるように制御するようにしたので、密閉状態での冷媒の圧力の急激な上昇を防ぎ、最低臨界圧を越えないようにすることができる。そのため、化学的に不安定な二重結合を有する物質を含む冷媒が、二重結合を有する物質自身の分解又は混合冷媒において他の冷媒の物質の分解により攻撃されて分解されて冷媒として機能しなくなるのを防ぐことができる。そのため、冷凍サイクル装置の性能を長期間維持することができ、さらに信頼性も確保することができる。
 このとき、密閉状態となり得る箇所に圧力検出手段42を設置するようにしたので、制御手段53は、冷媒の密閉に関して、より詳細な判断等を行うことができる。また、制御手段53は、例えば膨張手段23、流路開閉手段29の制御における状態を判断し、膨張手段23と流路開閉手段29との間が密閉状態であると判断すれば、例えば一定時間後に少なくとも一方を開いて密閉状態を解くように制御するようにしたので、圧力検出手段42を設ける必要がなく、コスト削減に寄与することができる。
実施の形態4.
 上述の実施の形態においては、混合冷媒について述べたが、例えば二重結合を有する物質からなる冷媒の単一冷媒である場合にも適用することができる。この場合の最低臨界圧は、二重結合を有する物質からなる単一冷媒における臨界圧力となる。また、二重結合を有する物質に限らず、化学的に不安定な物質からなる冷媒を含む場合についても適用することができる。
 上述した実施の形態では、冷暖房運転が可能な空気調和装置への適用について説明したが、例えばヒートポンプ装置等、冷媒回路を構成する他の冷凍サイクル装置にも適用することができる。
 21 圧縮機、22 凝縮器、23、23a、23b 膨張手段、24 蒸発器、25 室外熱交換器、26a、26b 室内熱交換器、27 四方弁、28 アキュムレータ、29a、29b 流路開閉手段、31 凝縮器用ファン、32 蒸発器用ファン、33 室外熱交換器用ファン、34a、34b 室内熱交換器用ファン、41、42a、42b 圧力検出手段、51 圧力記憶手段、52 臨界圧記憶手段、53 制御手段。

Claims (11)

  1.  二重結合を有する物質を含む冷媒を圧縮する圧縮機と、
     熱交換により前記冷媒を凝縮させる凝縮器と、
     凝縮された冷媒を減圧させるための膨張手段と、
     減圧された前記冷媒を熱交換により蒸発させる蒸発器と
    を配管接続して前記冷媒を循環させる冷媒回路を構成し、
     この冷媒回路内の前記冷媒の圧力が、前記二重結合を有する物質の臨界圧力未満となるように、前記冷媒回路の動作を制御する制御手段を備えることを特徴とする冷凍サイクル装置。
  2.  二重結合を有する物質を含む冷媒を圧縮する圧縮機と、
     熱交換により前記冷媒を凝縮させる凝縮器と、
     凝縮された冷媒を減圧させるための膨張手段と、
     減圧された前記冷媒を熱交換により蒸発させる蒸発器と
    を配管接続して前記冷媒を循環させる冷媒回路を構成し、
     該冷媒回路内の前記冷媒の圧力の値が、前記冷媒を構成する物質において最も低い臨界圧力に基づいて設定した圧力値以下となるように、前記冷媒回路を構成する手段の動作を制御する制御手段を備えることを特徴とする冷凍サイクル装置。
  3.  前記圧縮機の出口側から前記膨張手段の入口に至る流路のいずれかの位置に設けられ、検出した圧力に基づく信号を送信する高圧側圧力検出手段をさらに備え、
     前記制御手段は、前記高圧側圧力検出手段の信号に基づく圧力値が、第1の圧力値より大きいと判断すると、前記圧縮機の圧縮機周波数を低下させる又は前記圧縮機を停止させることを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。
  4.  一定時間分の前記高圧側圧力検出手段の検出に係る複数の圧力の値を記憶する圧力記憶手段をさらに備え、
     前記制御手段は、前記複数の圧力の値に基づいて、一定時間後における圧力の値を予測値として算出し、前記予測値が、第2の圧力値より大きいと判断すると、前記冷媒回路を構成する手段の動作を制御することを特徴とする請求項1~3のいずれかに記載の冷凍サイクル装置。
  5.  前記凝縮器及び/又は前記蒸発器に、前記冷媒と熱交換を行わせる空気を送り込むための送風手段をさらに備え、
     前記制御手段は、前記送風手段の動作制御を行うことを特徴とする請求項1~4のいずれかに記載の冷凍サイクル装置。
  6.  複数台の前記凝縮器をそれぞれ並列に接続した冷凍サイクル装置において、
     前記制御手段は、少なくとも1台の前記凝縮器への冷媒供給を停止する前又は停止とほぼ同時に、前記冷媒回路における冷媒の圧力を低下させるために、前記冷媒回路を構成する手段の動作を制御することを特徴とする請求項1~5のいずれかに記載の冷凍サイクル装置。
  7.  前記制御手段は、前記圧縮機における圧縮機周波数を低下させて、前記冷媒回路における冷媒の圧力を低下させることを特徴とする請求項6記載の冷凍サイクル装置。
  8.  前記冷媒回路において前記冷媒の流量を調整するための、前記膨張手段を含む複数の流量制御手段を、前記冷媒回路に設けている冷凍サイクル装置において、
     前記制御手段は、少なくとも2つの流量制御手段の間が密閉状態にあるものと判断すると、少なくとも1つの流量制御手段を開かせる制御を行うことを特徴とする請求項1~7のいずれかに記載の冷凍サイクル装置。
  9.  検出した圧力に基づく信号を送信する圧力検出手段を、前記複数の流量制御手段の間に設け、
     前記制御手段は、前記流量制御手段間の圧力検出手段からの信号に基づいて、前記配管の密閉状態を判断することを特徴とする請求項8記載の冷凍サイクル装置。
  10.  前記制御手段は、前記密閉状態にあるものと判断した一定時間後に、少なくとも一方の前記流量制御手段を開かせる制御を行うことを特徴とする請求項8記載の冷凍サイクル装置。
  11.  請求項1~10のいずれかに記載の冷凍サイクル装置により、対象空間の冷暖房を行うことを特徴とする空気調和装置。
PCT/JP2009/060726 2008-06-24 2009-06-12 冷凍サイクル装置及び空気調和装置 WO2009157320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010517889A JPWO2009157320A1 (ja) 2008-06-24 2009-06-12 冷凍サイクル装置及び空気調和装置
EP09770030.6A EP2306122B1 (en) 2008-06-24 2009-06-12 Refrigerating cycle apparatus, and air conditioning apparatus
US13/000,072 US20110100042A1 (en) 2008-06-24 2009-06-12 Refrigerating cycle device and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008164454 2008-06-24
JP2008-164454 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009157320A1 true WO2009157320A1 (ja) 2009-12-30

Family

ID=41444389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060726 WO2009157320A1 (ja) 2008-06-24 2009-06-12 冷凍サイクル装置及び空気調和装置

Country Status (4)

Country Link
US (1) US20110100042A1 (ja)
EP (1) EP2306122B1 (ja)
JP (1) JPWO2009157320A1 (ja)
WO (1) WO2009157320A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135817A1 (ja) * 2010-04-28 2011-11-03 パナソニック株式会社 回転式圧縮機
JP2013525724A (ja) * 2010-04-01 2013-06-20 ハネウェル・インターナショナル・インコーポレーテッド Lgwp冷媒を用いる吸収冷凍サイクル
JP2014529661A (ja) * 2011-08-30 2014-11-13 アルケマ フランス テトラフルオロプロペンをベースにした超臨界熱伝達流体
JP2014219154A (ja) * 2013-05-08 2014-11-20 ダイキン工業株式会社 空気調和装置
WO2015136703A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
WO2015136980A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
WO2015136979A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
WO2015140882A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍装置
WO2015140871A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015140874A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 空気調和装置
WO2015140883A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 空気調和機
JP2015215129A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015215123A (ja) * 2014-05-09 2015-12-03 旭硝子株式会社 熱サイクルシステム
JP2015215130A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015232319A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015232317A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015232316A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015232318A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム
WO2016079829A1 (ja) * 2014-11-19 2016-05-26 三菱電機株式会社 ヒートポンプシステム
EP2634508A4 (en) * 2010-10-29 2016-11-16 Mitsubishi Electric Corp REFRIGERATION CYCLE DEVICE AND METHOD FOR CONTROLLING A REFRIGERATION CYCLE
CN106461279A (zh) * 2014-05-12 2017-02-22 松下知识产权经营株式会社 制冷循环装置
JPWO2015140873A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置、及び、冷凍装置の制御方法
CN107228520A (zh) * 2016-03-25 2017-10-03 松下知识产权经营株式会社 冷冻装置
US10215451B2 (en) 2014-05-12 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Compressor and refrigeration cycle device using same
WO2019172008A1 (ja) * 2018-03-05 2019-09-12 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP2020034250A (ja) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル 冷凍サイクル装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488575B2 (ja) * 2011-02-22 2014-05-14 株式会社デンソー 冷凍サイクル
CN103900251B (zh) * 2012-12-25 2016-03-30 福州斯狄渢电热水器有限公司 即热式热水器
DE102016005958A1 (de) * 2016-05-13 2017-11-16 Liebherr-Transportation Systems Gmbh & Co. Kg Kühlvorrichtung
CN109642754B (zh) * 2016-09-06 2020-11-24 三菱电机株式会社 制冷循环装置
WO2019169187A1 (en) * 2018-02-28 2019-09-06 Treau, Inc. Roll diaphragm compressor and low-pressure vapor compression cycles
US11585575B2 (en) 2020-07-08 2023-02-21 Rheem Manufacturing Company Dual-circuit heating, ventilation, air conditioning, and refrigeration systems and associated methods
US12092352B2 (en) 2020-08-06 2024-09-17 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a pressure sensor
US12013135B2 (en) 2020-08-06 2024-06-18 Rheem Manufacturing Company Systems and methods of detecting an obstructed furnace air filter using a flame sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123945A (ja) * 1986-11-13 1988-05-27 Mitsubishi Electric Corp 多室形空気調和機の暖房運転制御装置
JPH10300248A (ja) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JPH1163726A (ja) * 1997-08-08 1999-03-05 Daikin Ind Ltd ヒートポンプ給湯機
JP2001072965A (ja) * 1999-09-08 2001-03-21 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2001072966A (ja) * 1999-09-08 2001-03-21 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2006152839A (ja) 2004-11-26 2006-06-15 Hitachi Home & Life Solutions Inc ロータリ2段圧縮機及びその圧縮機を用いた空気調和機
JP2008055929A (ja) * 2006-08-29 2008-03-13 Honda Motor Co Ltd 車両用冷房装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718933Y2 (ja) * 1986-05-28 1995-05-01 株式会社東芝 空気調和機のレリ−ス制御装置
JPH0765827B2 (ja) * 1989-01-21 1995-07-19 大阪府 冷水及び蒸気同時取り出し可能な2元ヒートポンプ
US5360566A (en) * 1992-11-06 1994-11-01 Intermagnetics General Corporation Hydrocarbon refrigerant for closed cycle refrigerant systems
JPH11108468A (ja) * 1997-10-03 1999-04-23 Hitachi Ltd 空気調和機
JP4411758B2 (ja) * 2000-08-28 2010-02-10 ダイキン工業株式会社 空気調和装置
KR100557039B1 (ko) * 2003-10-16 2006-03-03 엘지전자 주식회사 에어컨 제어방법
JP2004338447A (ja) * 2003-05-13 2004-12-02 Denso Corp 空調装置
JP5118340B2 (ja) * 2006-12-01 2013-01-16 サンデン株式会社 冷凍回路の往復動型圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123945A (ja) * 1986-11-13 1988-05-27 Mitsubishi Electric Corp 多室形空気調和機の暖房運転制御装置
JPH10300248A (ja) * 1997-04-30 1998-11-13 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JPH1163726A (ja) * 1997-08-08 1999-03-05 Daikin Ind Ltd ヒートポンプ給湯機
JP2001072965A (ja) * 1999-09-08 2001-03-21 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2001072966A (ja) * 1999-09-08 2001-03-21 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2006152839A (ja) 2004-11-26 2006-06-15 Hitachi Home & Life Solutions Inc ロータリ2段圧縮機及びその圧縮機を用いた空気調和機
JP2008055929A (ja) * 2006-08-29 2008-03-13 Honda Motor Co Ltd 車両用冷房装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2306122A4 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525724A (ja) * 2010-04-01 2013-06-20 ハネウェル・インターナショナル・インコーポレーテッド Lgwp冷媒を用いる吸収冷凍サイクル
JP5849233B2 (ja) * 2010-04-28 2016-01-27 パナソニックIpマネジメント株式会社 回転式圧縮機
WO2011135817A1 (ja) * 2010-04-28 2011-11-03 パナソニック株式会社 回転式圧縮機
EP2634508A4 (en) * 2010-10-29 2016-11-16 Mitsubishi Electric Corp REFRIGERATION CYCLE DEVICE AND METHOD FOR CONTROLLING A REFRIGERATION CYCLE
JP2014529661A (ja) * 2011-08-30 2014-11-13 アルケマ フランス テトラフルオロプロペンをベースにした超臨界熱伝達流体
JP2018199815A (ja) * 2011-08-30 2018-12-20 アルケマ フランス テトラフルオロプロペンをベースにした超臨界熱伝達流体
US9920961B2 (en) 2011-08-30 2018-03-20 Arkema France Tetrafluoropropene-based supercritical heat-transfer fluids
JP2014219154A (ja) * 2013-05-08 2014-11-20 ダイキン工業株式会社 空気調和装置
CN106415156A (zh) * 2014-03-14 2017-02-15 三菱电机株式会社 制冷循环装置
WO2015136979A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
US10508848B2 (en) 2014-03-14 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN106415156B (zh) * 2014-03-14 2019-05-31 三菱电机株式会社 制冷循环装置
WO2015136703A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
JP2018112396A (ja) * 2014-03-14 2018-07-19 三菱電機株式会社 冷凍サイクル装置
WO2015136980A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
JPWO2015136703A1 (ja) * 2014-03-14 2017-04-06 三菱電機株式会社 冷凍サイクル装置
JPWO2015136979A1 (ja) * 2014-03-14 2017-04-06 三菱電機株式会社 冷凍サイクル装置
WO2015140871A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
JPWO2015140874A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 空気調和装置
WO2015140883A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 空気調和機
WO2015140874A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 空気調和装置
WO2015140882A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍装置
US10001309B2 (en) 2014-03-17 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2015140871A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍サイクル装置
JPWO2015140883A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 空気調和機
JPWO2015140873A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置、及び、冷凍装置の制御方法
JPWO2015140882A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置
JP2015215123A (ja) * 2014-05-09 2015-12-03 旭硝子株式会社 熱サイクルシステム
JP2015215129A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
CN106461279B (zh) * 2014-05-12 2019-01-18 松下知识产权经营株式会社 制冷循环装置
JP2015232316A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
US10215451B2 (en) 2014-05-12 2019-02-26 Panasonic Intellectual Property Management Co., Ltd. Compressor and refrigeration cycle device using same
JP2015232317A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015232319A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
CN106461279A (zh) * 2014-05-12 2017-02-22 松下知识产权经营株式会社 制冷循环装置
JP2015215130A (ja) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2015232318A (ja) * 2014-05-12 2015-12-24 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム
JPWO2016079829A1 (ja) * 2014-11-19 2017-05-25 三菱電機株式会社 ヒートポンプシステム
WO2016079829A1 (ja) * 2014-11-19 2016-05-26 三菱電機株式会社 ヒートポンプシステム
CN107228520A (zh) * 2016-03-25 2017-10-03 松下知识产权经营株式会社 冷冻装置
WO2019172008A1 (ja) * 2018-03-05 2019-09-12 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP2019152380A (ja) * 2018-03-05 2019-09-12 パナソニックIpマネジメント株式会社 冷凍サイクル装置
CN111771091A (zh) * 2018-03-05 2020-10-13 松下知识产权经营株式会社 制冷循环装置
CN111771091B (zh) * 2018-03-05 2021-12-17 松下知识产权经营株式会社 制冷循环装置
JP2020034250A (ja) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル 冷凍サイクル装置
JP7187898B2 (ja) 2018-08-31 2022-12-13 株式会社富士通ゼネラル 冷凍サイクル装置

Also Published As

Publication number Publication date
EP2306122B1 (en) 2017-07-26
EP2306122A1 (en) 2011-04-06
US20110100042A1 (en) 2011-05-05
EP2306122A4 (en) 2015-11-04
JPWO2009157320A1 (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2009157320A1 (ja) 冷凍サイクル装置及び空気調和装置
JP5774225B2 (ja) 空気調和装置
JP5762427B2 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
EP2103888B1 (en) Refrigerating apparatus
WO2016059696A1 (ja) 冷凍サイクル装置
JP2009300023A (ja) 冷凍サイクル装置
JP6192806B2 (ja) 冷凍装置
WO2015140887A1 (ja) 冷凍サイクル装置
WO2014049673A1 (ja) 空調給湯複合システム
JP5627416B2 (ja) 二元冷凍装置
US20170089616A1 (en) Refrigeration cycle apparatus
JP2006308207A (ja) 冷凍装置
JP6161787B2 (ja) 冷凍サイクル装置
JP6790966B2 (ja) 空気調和装置
JP2015215112A (ja) 冷凍サイクル装置
CN110268208A (zh) 冷冻装置
WO2019021464A1 (ja) 空気調和装置
JP2018059638A (ja) 熱交換器および冷凍サイクル装置
JP2008096072A (ja) 冷凍サイクル装置
WO2015140881A1 (ja) 冷凍サイクル装置
GB2543206A (en) Refrigeration cycle device
WO2023233654A1 (ja) 冷凍サイクル装置
JP7139850B2 (ja) 冷凍サイクル装置
CN117716185A (zh) 制冷循环装置和制冷循环装置的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770030

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517889

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009770030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009770030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13000072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE