WO2015140874A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015140874A1
WO2015140874A1 PCT/JP2014/057032 JP2014057032W WO2015140874A1 WO 2015140874 A1 WO2015140874 A1 WO 2015140874A1 JP 2014057032 W JP2014057032 W JP 2014057032W WO 2015140874 A1 WO2015140874 A1 WO 2015140874A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
pressure
temperature
valve
Prior art date
Application number
PCT/JP2014/057032
Other languages
English (en)
French (fr)
Inventor
航祐 田中
牧野 浩招
Original Assignee
三菱電機株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 旭硝子株式会社 filed Critical 三菱電機株式会社
Priority to JP2016508334A priority Critical patent/JP6266089B2/ja
Priority to PCT/JP2014/057032 priority patent/WO2015140874A1/ja
Priority to US15/125,607 priority patent/US10001309B2/en
Priority to EP14886091.9A priority patent/EP3121533B1/en
Priority to CN201480077044.2A priority patent/CN106164604B/zh
Publication of WO2015140874A1 publication Critical patent/WO2015140874A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an air conditioner including a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping and the refrigerant circulates.
  • Patent Document 1 describes a thermal cycle system using a thermal cycle working medium containing 1,1,2-trifluoroethylene (HFO1123).
  • the HFO1123 refrigerant or the mixed refrigerant containing HFO1123 When the HFO1123 refrigerant or the mixed refrigerant containing HFO1123 is applied as the refrigerant to be filled in the refrigerant circuit as in the technique described in Patent Document 1, the HFO1123 generates a disproportionation reaction (self-decomposition reaction) under high pressure and high temperature conditions. However, a rapid increase in pressure occurs due to the chain reaction. For this reason, it is desired to operate in the range of an appropriate pressure and temperature so that the disproportionation reaction does not occur.
  • the present invention has been made against the background of the above problems, and in the case of applying HFO1123 refrigerant or a mixed refrigerant containing HFO1123, air conditioning that can suppress the occurrence of disproportionation reaction (self-decomposition reaction).
  • the object is to obtain a device.
  • An air conditioner is an air conditioner including a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping, and the refrigerant circulates, wherein the refrigerant Is an HFO1123 refrigerant, or a mixed refrigerant containing HFO1123, so that the temperature and pressure of the refrigerant discharged from the compressor do not exceed a threshold, the operating frequency of the compressor, the opening of the expansion valve, And the control apparatus which controls at least 1 of the air volume of the air blower ventilated to the said heat source side heat exchanger is provided.
  • the present invention can suppress the occurrence of disproportionation reaction (self-decomposition reaction) in the case of applying HFO1123 refrigerant or a mixed refrigerant containing HFO1123.
  • FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus 100 according to Embodiment 1.
  • FIG. It is a figure which shows the relationship between the disproportionation reaction of HFO1123 refrigerant
  • 3 is a flowchart showing the operation of the control device 40 of the air-conditioning apparatus 100 according to Embodiment 1.
  • 6 is a flowchart showing the operation of the control device 40 of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 1.
  • the air conditioner 100 includes an outdoor unit 1 and an indoor unit 2, and the outdoor unit 1 and the indoor unit 2 are connected by a liquid pipe 8 and a gas pipe 5.
  • the outdoor unit 1 includes the compressor 3, the four-way valve 4, the heat source side heat exchanger 9, the expansion valve 7, the heat source side blower 91 that blows air to the heat source side heat exchanger 9, and the operation of each part constituting the air conditioner 100.
  • the control apparatus 40 which controls is provided.
  • the indoor unit 2 includes a use side heat exchanger 6 and a use side blower 61 that blows air to the use side heat exchanger 6.
  • the compressor 3, the four-way valve 4, the heat source side heat exchanger 9, the expansion valve 7, and the use side heat exchanger 6 are sequentially connected by a pipe to form a refrigerant circuit in which the refrigerant circulates.
  • the outdoor unit 1 further includes a bypass circuit 20 that branches a pipe between the expansion valve 7 and the first on-off valve 11 and connects to a pipe on the suction side of the compressor 3.
  • the bypass circuit 20 is provided with a first bypass opening / closing valve 21, a second bypass opening / closing valve 22, and a container 30 for storing refrigerant.
  • the compressor 3 is a type in which the number of revolutions is controlled by an inverter, for example, and the capacity is controlled.
  • the expansion valve 7 is an electronic expansion valve whose opening degree is variably controlled, for example.
  • the heat source side heat exchanger 9 exchanges heat with the outside air blown by the heat source side blower 91.
  • the use side heat exchanger 6 exchanges heat with room air blown by the use side blower 61.
  • the first bypass on-off valve 21 is provided on the refrigerant inflow side of the bypass circuit 20 (the pipe side between the expansion valve 7 and the first on-off valve 11).
  • the second bypass on-off valve 22 is provided on the refrigerant outflow side of the bypass circuit 20 (the piping side on the suction side of the compressor 3).
  • the first bypass on-off valve 21 and the second bypass on-off valve 22 are on-off valves that open and close the refrigerant flow path of the bypass circuit 20.
  • the container 30 is a container that stores a refrigerant.
  • the gas pipe 5 and the liquid pipe 8 are connection pipes that connect the outdoor unit 1 and the indoor unit 2.
  • the first on-off valve 11 and the second on-off valve 12 are connected to the liquid pipe 8 and the gas pipe 5, respectively.
  • the liquid pipe 8 connects between the use side heat exchanger 6 of the indoor unit 2 and the first on-off valve 11 of the outdoor unit 1.
  • the gas pipe 5 connects between the use side heat exchanger 6 of the indoor unit 2 and the second on-off valve 12 of the outdoor unit 1.
  • the first on-off valve 11, the second on-off valve 12, the first bypass on-off valve 21, and the second bypass on-off valve 22 may be manual valves that are manually opened and closed, and the open / close state is controlled by the control device 40. It may be a solenoid valve.
  • the outdoor unit 1 further includes a discharge temperature sensor 41, a discharge pressure sensor 51, and a suction pressure sensor 52.
  • the discharge temperature sensor 41 detects the temperature of the refrigerant discharged from the compressor 3.
  • the discharge pressure sensor 51 detects the pressure of the refrigerant discharged from the compressor 3.
  • the suction pressure sensor 52 detects the pressure of the refrigerant sucked into the compressor 3. Note that the pressure of the refrigerant circulating in the refrigerant circuit is lowest on the suction side of the compressor 3 and highest on the discharge side of the compressor 3. Therefore, in the following description, the pressure on the suction side of the compressor 3 is referred to as a low pressure, and the pressure on the discharge side of the compressor 3 is referred to as a high pressure.
  • a substance causing a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO1123) or a nature causing a disproportionation reaction.
  • a mixed refrigerant in which another substance is mixed with this substance is used.
  • a substance mixed with a substance having a disproportionation reaction includes, for example, tetrafluoropropene (HFO1234yf, which is 2,3,3,3-tetrafluoropropene, 1,3,3).
  • 3-tetrafluoro-1-propene such as HFO1234ze), difluoromethane (HFC32), etc., but is not limited thereto, HC290 (propane), etc.
  • HC290 propane
  • Any material may be used as long as it is a substance having thermal performance that can be used as the refrigerant of (), and any mixing ratio may be used.
  • the air conditioner 100 configured in this manner can be cooled or heated by switching the four-way valve 4.
  • the air conditioner 100 can perform a pump-down operation for collecting the refrigerant in the indoor unit 2 in the outdoor unit 1.
  • the solid line indicates the flow during cooling
  • the dotted line indicates the flow during heating
  • the low-pressure two-phase refrigerant that has flowed out of the expansion valve 7 passes through the liquid pipe 8 and flows into the indoor unit 2, evaporates by exchanging heat with indoor air in the use-side heat exchanger 6, and flows out as low-pressure gas refrigerant. To do.
  • the low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 6 passes through the gas pipe 5, flows into the outdoor unit 1, and returns to the compressor 3 through the four-way valve 4.
  • the first bypass opening / closing valve 21 is in a closed state, so that no refrigerant flows into the bypass circuit 20.
  • the liquid sealing of the container 30 can be prevented by opening the second bypass on-off valve 22.
  • the heating operation in the normal operation will be described.
  • the four-way valve 4 is switched to the heating side (state indicated by a dotted line).
  • the 1st on-off valve 11, the 2nd on-off valve 12, and the 2nd bypass on-off valve 22 are an open state.
  • the first bypass on-off valve 21 is in a closed state.
  • the high-pressure and high-temperature gas refrigerant flows into the use side heat exchanger 6 of the indoor unit 2 through the four-way valve 4 and the gas pipe 5. Dissipates heat by exchanging heat with room air and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 6 passes through the liquid pipe 8 and flows into the expansion valve 7 to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant that has flowed out of the expansion valve 7 flows into the heat source side heat exchanger 9 and evaporates by heat exchange with outdoor air, and flows out as low-pressure gas refrigerant.
  • the low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 9 returns to the compressor 3 via the four-way valve 4.
  • the first bypass opening / closing valve 21 is in the closed state, so that no refrigerant flows into the bypass circuit 20.
  • the liquid sealing of the container 30 can be prevented by opening the second bypass on-off valve 22.
  • the low-pressure gas refrigerant is compressed by the compressor 3 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 3 flows into the heat source side heat exchanger 9 through the four-way valve 4 and radiates heat by exchanging heat with outdoor air, and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 9 passes through the expansion valve 7 and flows into the bypass circuit 20.
  • the high-pressure liquid refrigerant flowing into the bypass circuit 20 passes through the first bypass opening / closing valve 21 and flows into the container 30.
  • the second bypass opening / closing valve 22 Since the second bypass opening / closing valve 22 is in the closed state, the high-pressure liquid refrigerant that has flowed into the bypass circuit 20 is stored in the container 30.
  • the refrigerant in the use side heat exchanger 6, the liquid pipe 8, and the gas pipe 5 is sucked by the operation of the compressor 3, discharged from the compressor 3, and then stored in the container 30 by the above operation.
  • the refrigerant in the indoor unit 2 is recovered to the outdoor unit 1 side.
  • the second on-off valve 12 is closed and, for example, the indoor unit 2 is removed.
  • the air conditioner 100 uses an HFO1123 refrigerant alone or a mixed refrigerant obtained by mixing HFO1123 and another refrigerant (for example, R32, HFO1234yf, etc.) as the refrigerant used in the refrigeration cycle (refrigerant circuit).
  • HFO1123 refrigerant a disproportionation reaction (self-decomposition reaction) occurs under high pressure and high temperature conditions, and a rapid pressure increase or the like occurs due to a chain reaction. That is, in order to prevent the occurrence of the disproportionation reaction, it is necessary to operate so that the temperature of the refrigerant falls within an appropriate pressure and temperature range.
  • FIG. 2 is a diagram showing the relationship between the disproportionation reaction of HFO1123 refrigerant, pressure and temperature.
  • the refrigerant having the highest temperature and pressure is the refrigerant discharged from the compressor 3.
  • the amount of refrigerant circulating in the refrigerant circuit is reduced, and thus the temperature and pressure of the refrigerant discharged from the compressor 3 are likely to increase. Therefore, as shown in FIG. 2, the temperature of the refrigerant discharged from the compressor 3 is prevented from exceeding the temperature threshold value Tdmax, and the pressure of the refrigerant discharged from the compressor 3 is not exceeded the pressure threshold value Pdmax.
  • FIG. 3 is a flowchart showing the operation of the control device 40 of the air-conditioning apparatus 100 according to Embodiment 1. Hereinafter, based on each step of FIG. 3, the control operation for preventing the occurrence of the disproportionation reaction will be described.
  • the control device 40 stores in advance information on a temperature threshold Tdmax and a pressure threshold Pdmax that are lower than the temperature and pressure in the disproportionation reaction region.
  • the control device 40 acquires the detection results of the discharge temperature sensor 41 and the discharge pressure sensor 51, determines whether or not the temperature of the refrigerant discharged from the compressor 3 (hereinafter referred to as discharge temperature Td) exceeds a temperature threshold Tdmax, and Then, it is determined whether or not the pressure of the refrigerant discharged from the compressor 3 (hereinafter, discharge pressure Pd) exceeds the pressure threshold value Pdmax. If the discharge temperature Td exceeds the temperature threshold Tdmax and the discharge pressure Pd exceeds the pressure threshold Pdmax, the process proceeds to step S11.
  • step S11 when the discharge temperature Td does not exceed the temperature threshold value Tdmax or the discharge pressure Pd does not exceed the pressure threshold value Pdmax, the operation of step S11 is not performed, and the current control state is maintained and the process proceeds to step S10. Return.
  • the control device 40 decelerates (decreases) the operating frequency of the compressor 3. This deceleration amount may be set according to the discharge temperature Td and the discharge pressure Pd, or may be a preset value. After step S11, the control device 40 returns to step S10 and repeats the above operation. That is, the above operation is repeated until the discharge temperature Td and the discharge pressure Pd are lower than the temperature threshold value Tdmax and the pressure threshold value Pdmax.
  • the control in step S11 is not limited to the deceleration of the operating frequency of the compressor 3, and the opening degree of the expansion valve 7 may be increased. Moreover, you may increase the air volume of the air blower sent to the heat source side heat exchanger 9. That is, the control device 40 controls the operation frequency of the compressor 3, the opening degree of the expansion valve 7, and the heat source side heat exchanger 9 so that the discharge temperature Td and the discharge pressure Pd do not exceed the temperature threshold value Tdmax and the pressure threshold value Pdmax. What is necessary is just to control at least one of the air volume of the air blower which ventilates.
  • control operation for preventing the above-described disproportionation reaction may be performed in any of the cooling operation, the heating operation, and the pump-down operation.
  • the control device 40 performs control so that the discharge temperature Td and the discharge pressure Pd do not exceed the temperature threshold Tdmax and the pressure threshold Pdmax. For this reason, when applying the HFO1123 refrigerant
  • Embodiment 2 the difference from the first embodiment will be mainly described, and the same components as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the discharge temperature sensor 41 is used to detect the discharge temperature Td discharged from the compressor 3. However, since there is a response delay in temperature detection by the discharge temperature sensor 41, there may be a difference between the actual temperature and the detected temperature.
  • the discharge temperature Td is calculated from the detection values of the discharge pressure sensor 51 and the suction pressure sensor 52.
  • FIG. 4 is a flowchart showing the operation of the control device 40 of the air-conditioning apparatus 100 according to Embodiment 2.
  • differences from the first embodiment will be described based on the steps in FIG.
  • the same operations as those in the first embodiment are denoted by the same step numbers, and description thereof is omitted.
  • the control device 40 calculates the discharge temperature Td from the detection values of the discharge pressure sensor 51 and the suction pressure sensor 52.
  • the discharge temperature Td [K] is the temperature of the refrigerant sucked into the compressor 3 (hereinafter referred to as the suction temperature Ts) [K]
  • the discharge pressure Pd [MPa] Using the pressure of the refrigerant sucked into the compressor 3 (hereinafter referred to as the suction pressure Ps) [MPa] and the polytropic index k [ ⁇ ], the relationship of Expression (1) is established.
  • the detection value of the discharge pressure sensor 51 is used as the discharge pressure Pd.
  • a detection value of the suction pressure sensor 52 is used as the suction pressure Ps.
  • the suction temperature Ts is calculated and obtained as the saturated gas temperature of the suction pressure Ps.
  • the polytropic index k a fixed value determined from the characteristics of the compressor 3 is used.
  • the control device 40 calculates the discharge temperature Td from the detection values of the discharge pressure sensor 51 and the suction pressure sensor 52. For this reason, in addition to the effect of the said Embodiment 1, there exist the following effects. That is, since the discharge temperature Td is calculated using the detection values of the discharge pressure sensor 51 and the suction pressure sensor 52 that do not cause a response delay due to the heat capacity as in the temperature sensor, an error between the actual discharge temperature Td and the detection value. Can be reduced. Therefore, the temperature rise of the discharge temperature Td can be detected more quickly. Therefore, generation of disproportionation reaction (self-decomposition reaction) can be suppressed with higher accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 HFO1123冷媒又はHFO1123を含む混合冷媒を適用する場合において、不均化反応(自己分解反応)の発生を抑制することができる空気調和装置を得る。 本発明の空気調和装置は、圧縮機3から吐出された冷媒の温度及び圧力が、閾値を超えないように、圧縮機3の運転周波数、膨張弁7の開度、及び熱源側熱交換器9に送風する送風機の風量の少なくとも1つを制御する制御装置40を、備えた。

Description

空気調和装置
 本発明は、圧縮機、熱源側熱交換器、膨張弁、及び利用側熱交換器が配管で接続され、冷媒が循環する冷媒回路を備えた空気調和装置に関する。
 特許文献1には、1,1,2-トリフルオロエチレン(HFO1123)を含む熱サイクル用作動媒体を用いた熱サイクルシステムが記載されている。
国際公開第2012/157764号
 特許文献1に記載の技術のように、冷媒回路へ充填する冷媒として、HFO1123冷媒又はHFO1123を含む混合冷媒を適用する場合、HFO1123は、高圧高温条件では不均化反応(自己分解反応)が発生し、連鎖反応により、急激な圧力上昇等が発生する。このため、不均化反応が発生しないように、適正な圧力及び温度の範囲で運転を行うことが望まれている。
 本発明は、上記のような課題を背景になされたもので、HFO1123冷媒又はHFO1123を含む混合冷媒を適用する場合において、不均化反応(自己分解反応)の発生を抑制することができる空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は圧縮機、熱源側熱交換器、膨張弁、及び利用側熱交換器が配管で接続され、冷媒が循環する冷媒回路を備えた空気調和装置であって、前記冷媒は、HFO1123冷媒、又はHFO1123を含む混合冷媒であり、前記圧縮機から吐出された前記冷媒の温度及び圧力が、閾値を超えないように、前記圧縮機の運転周波数、前記膨張弁の開度、及び前記熱源側熱交換器に送風する送風機の風量の少なくとも1つを制御する制御装置を、備えたものである。
 本発明は、HFO1123冷媒又はHFO1123を含む混合冷媒を適用する場合において、不均化反応(自己分解反応)の発生を抑制することができる。
実施の形態1に係る空気調和装置100の冷媒回路図である。 HFO1123冷媒の不均化反応と圧力と温度との関係を示す図である。 実施の形態1に係る空気調和装置100の制御装置40の動作を示すフローチャートである。 実施の形態2に係る空気調和装置100の制御装置40の動作を示すフローチャートである。
実施の形態1.
 図1は、実施の形態1に係る空気調和装置100の冷媒回路図である。
 図1に示すように、空気調和装置100は、室外機1と室内機2とを備え、室外機1と室内機2とが液配管8及びガス配管5で接続されている。
 室外機1は、圧縮機3、四方弁4、熱源側熱交換器9、膨張弁7、熱源側熱交換器9に空気を送風する熱源側送風機91、空気調和装置100を構成する各部の動作を制御する制御装置40を備えている。
 室内機2は、利用側熱交換器6、及び利用側熱交換器6に空気を送風する利用側送風機61を備えている。
 空気調和装置100は、圧縮機3、四方弁4、熱源側熱交換器9、膨張弁7、利用側熱交換器6が、順次配管で接続されて冷媒が循環する冷媒回路を形成する。
 室外機1は更に、膨張弁7と第1開閉弁11との間の配管を分岐し、圧縮機3の吸入側の配管に接続するバイパス回路20を備えている。バイパス回路20には、第1バイパス開閉弁21、第2バイパス開閉弁22、冷媒を貯留する容器30が設けられている。
 圧縮機3は、例えばインバータにより回転数が制御され容量制御されるタイプである。
 膨張弁7は、例えば開度が可変に制御される電子膨張弁である。
 熱源側熱交換器9は、熱源側送風機91によって送風される外気と熱交換する。
 利用側熱交換器6は、利用側送風機61によって送風される室内空気と熱交換する。
 第1バイパス開閉弁21は、バイパス回路20の冷媒の流入側(膨張弁7と第1開閉弁11との間の配管側)に設けられている。
 第2バイパス開閉弁22は、バイパス回路20の冷媒の流出側(圧縮機3の吸入側の配管側)に設けられている。
 第1バイパス開閉弁21及び第2バイパス開閉弁22は、バイパス回路20の冷媒の流路を開閉する開閉弁である。
 容器30は、冷媒を貯留する容器である。
 ガス配管5及び液配管8は、室外機1と室内機2とを接続する接続配管である。第1開閉弁11及び第2開閉弁12は、それぞれ、液配管8及びガス配管5に接続されている。液配管8は、室内機2の利用側熱交換器6と室外機1の第1開閉弁11との間を接続している。ガス配管5は、室内機2の利用側熱交換器6と室外機1の第2開閉弁12との間を接続している。
 なお、第1開閉弁11、第2開閉弁12、第1バイパス開閉弁21、及び第2バイパス開閉弁22は、手動で開け閉めする手動弁でも良いし、制御装置40によって開閉の状態が制御される電磁弁でも良い。
 室外機1は更に、吐出温度センサー41と、吐出圧力センサー51と、吸入圧力センサー52とを備えている。
 吐出温度センサー41は、圧縮機3から吐出された冷媒の温度を検出する。
 吐出圧力センサー51は、圧縮機3から吐出された冷媒の圧力を検出する。
 吸入圧力センサー52は、圧縮機3へ吸入される冷媒の圧力を検出する。
 なお、冷媒回路を循環する冷媒の圧力は、圧縮機3の吸入側が最も低く、圧縮機3の吐出側が最も高い。よって、以下の説明では、圧縮機3の吸入側の圧力を低圧、圧縮機3の吐出側の圧力を高圧と言う。
 空気調和装置100の冷凍サイクル(冷媒回路)に使用する冷媒として、1,1,2-トリフルオロエチレン(HFO1123)等の不均化反応を起こす性質の物質、又は、不均化反応を起こす性質の物質に別の物質を混合させた混合冷媒を用いるものとする。
 混合冷媒を生成させるために、不均化反応を起こす性質の物質に混合させる物質としては、例えば、テトラフルオロプロペン(2,3,3,3-テトラフルオロプロペンであるHFO1234yf、1,3,3,3-テトラフルオロ-1-プロペンであるHFO1234ze等)、ジフルオロメタン(HFC32)等が用いられるが、これらに限るものではなく、HC290(プロパン)等を混合させてもよく、冷凍サイクル(冷媒回路)の冷媒として使用できる熱性能を有する物質であれば、どのようなものを用いてもよく、どのような混合比としてもよい。
 このように構成された空気調和装置100は、四方弁4の切り換えにより冷房運転又は暖房運転が可能となっている。また、空気調和装置100は、室内機2内の冷媒を室外機1に回収するポンプダウン運転を行うことが可能である。
 次に、空気調和装置100の冷凍サイクルの運転動作について図1を参照して説明する。図1において、実線が冷房時の流れを示し、点線が暖房時の流れを示している。
(冷房運転)
 まず、通常運転における冷房運転について説明する。
 冷房運転時において、四方弁4は冷房側(実線で示す状態)に切り換えられる。また、第1開閉弁11、第2開閉弁12、第2バイパス開閉弁22は、開状態である。第1バイパス開閉弁21は閉状態である。
 この状態で圧縮機3から高圧高温のガス冷媒が吐出されると、その高圧高温のガス冷媒は、四方弁4を介して熱源側熱交換器9に流入し、室外空気との熱交換により放熱することで高圧液冷媒となり流出する。熱源側熱交換器9から流出した高圧液冷媒は、膨張弁7に流入し、低圧の二相冷媒となる。
 膨張弁7を流出した低圧二相冷媒は、液配管8を通過して室内機2へ流入し、利用側熱交換器6で室内空気と熱交換して蒸発し、低圧ガス冷媒となって流出する。利用側熱交換器6を流出した低圧ガス冷媒は、ガス配管5を通過して室外機1へ流入し、四方弁4を介して、圧縮機3へ戻る。
 なお、冷房運転時、第1バイパス開閉弁21は閉状態のため、バイパス回路20に冷媒が流入することはない。また、第2バイパス開閉弁22を開状態にすることで、容器30の液封を防止できる。
(暖房運転)
 次に、通常運転における暖房運転について説明する。
 暖房運転時において、四方弁4は暖房側(点線で示す状態)に切り換えられる。また、第1開閉弁11、第2開閉弁12、第2バイパス開閉弁22は、開状態である。第1バイパス開閉弁21は閉状態である。
 この状態で圧縮機3から高圧高温のガス冷媒が吐出されると、その高圧高温のガス冷媒は、四方弁4及びガス配管5を介して室内機2の利用側熱交換器6に流入し、室内空気との熱交換により放熱することで高圧液冷媒となり流出する。利用側熱交換器6から流出した高圧液冷媒は、液配管8を通過して膨張弁7に流入し、低圧の二相冷媒となる。
 膨張弁7を流出した低圧二相冷媒は、熱源側熱交換器9に流入し、室外空気との熱交換により蒸発することで低圧ガス冷媒となって流出する。熱源側熱交換器9を流出した低圧ガス冷媒は、四方弁4を介して、圧縮機3へ戻る。
 なお、暖房運転時、第1バイパス開閉弁21は閉状態のため、バイパス回路20に冷媒が流入することはない。また、第2バイパス開閉弁22を開状態にすることで、容器30の液封を防止できる。
(ポンプダウン運転)
 次に、ポンプダウン運転について説明する。
 ポンプダウン運転時において、四方弁4は冷房側(実線で示す状態)に切り換えられる。また、第2開閉弁12、第1バイパス開閉弁21は開状態である。第1開閉弁11、第2バイパス開閉弁22は、閉状態である。更に、制御装置40は、膨張弁7の開度を全開にする。また、制御装置40は、熱源側送風機91及び利用側送風機61を運転させる。
 この状態で圧縮機3が起動されると、低圧のガス冷媒が圧縮機3で圧縮され高温高圧のガス冷媒となって吐出される。圧縮機3から吐出された高圧高温のガス冷媒は、四方弁4を介して熱源側熱交換器9に流入し、室外空気との熱交換により放熱することで高圧液冷媒となり流出する。熱源側熱交換器9から流出した高圧液冷媒は、膨張弁7を通過して、バイパス回路20へ流入する。
 バイパス回路20へ流入した高圧液冷媒は、第1バイパス開閉弁21を通過して、容器30へ流入する。第2バイパス開閉弁22は閉状態であるので、バイパス回路20に流入した高圧液冷媒は、容器30内に貯留される。
 利用側熱交換器6、液配管8、及びガス配管5内の冷媒は、圧縮機3の運転によって吸引され、圧縮機3から吐出されたあと、上記動作によって、容器30内に貯留される。
 このようなポンプダウン運転により、室内機2内の冷媒が室外機1側に回収される。ポンプダウン運転のあと、第2開閉弁12が閉じられ、例えば室内機2の取り外しなどが行われる。
 次に、不均化反応の発生を防止する制御動作について説明する。
 本実施の形態1における空気調和装置100は、冷凍サイクル(冷媒回路)に使用する冷媒として、HFO1123冷媒単体、又はHFO1123と他の冷媒(例えば、R32、HFO1234yf等)とを混合した混合冷媒を用いる。
 HFO1123冷媒は、高圧高温条件では不均化反応(自己分解反応)が発生し、連鎖反応により、急激な圧力上昇等が発生する。
 即ち、不均化反応の発生を防止するには、冷媒の温度が適正な圧力及び温度の範囲となるように運転する必要がある。
 なお、不均化反応の化学式は、以下の通りである。
 CF2=CHF(gas)→1/2CF4(gas)+3/2C(amorphous)+HF+44.7kcal/mol
 図2は、HFO1123冷媒の不均化反応と圧力と温度との関係を示す図である。
 空気調和装置100の冷媒回路において、冷媒の温度及び圧力が最も高くなるのは、圧縮機3から吐出された冷媒である。特に、ポンプダウン運転を行う場合には、冷媒回路を循環する冷媒量が減少するため、圧縮機3から吐出される冷媒の温度及び圧力が上昇しやすい事情がある。
 このため、図2に示すように、圧縮機3から吐出された冷媒の温度が温度閾値Tdmaxを超えないようにし、且つ、圧縮機3から吐出された冷媒の圧力が圧力閾値Pdmax超えないように制御することで、冷媒の温度及び圧力が不均化反応領域とならず、不均化反応の発生を防止できる。
 図3は、実施の形態1に係る空気調和装置100の制御装置40の動作を示すフローチャートである。
 以下、図3の各ステップに基づき、不均化反応の発生を防止する制御動作を説明する。
(S10)
 制御装置40には、予め、不均化反応領域の温度及び圧力よりも低い、温度閾値Tdmax及び圧力閾値Pdmaxの情報が記憶されている。
 制御装置40は、吐出温度センサー41及び吐出圧力センサー51の検出結果を取得し、圧縮機3から吐出された冷媒の温度(以下、吐出温度Td)が温度閾値Tdmaxを超えているか否か、及び、圧縮機3から吐出された冷媒の圧力(以下、吐出圧力Pd)が圧力閾値Pdmaxを超えているか否かを判断する。
 吐出温度Tdが温度閾値Tdmaxを超え、且つ、吐出圧力Pdが圧力閾値Pdmaxを超えている場合、ステップS11へ進む。
 一方、吐出温度Tdが温度閾値Tdmaxを超えていない、又は、吐出圧力Pdが圧力閾値Pdmaxを超えていない場合には、ステップS11の動作を行わず、現在の制御状態を維持してステップS10に戻る。
(S11)
 制御装置40は、圧縮機3の運転周波数を減速(低下)させる。この減速量は、吐出温度Tdと吐出圧力Pdとに応じて設定しても良いし、予め設定した値でも良い。
 制御装置40は、ステップS11のあと、ステップS10へ戻り、上記の動作を繰り返す。つまり、吐出温度Td及び吐出圧力Pdが、温度閾値Tdmax及び圧力閾値Pdmaxを下回るまで上記の動作が繰り返される。
 なお、ステップS11における制御は、圧縮機3の運転周波数の減速に限らず、膨張弁7の開度を大きくしても良い。また、熱源側熱交換器9に送風する送風機の風量を増加させても良い。即ち、制御装置40は、吐出温度Td及び吐出圧力Pdが、温度閾値Tdmax及び圧力閾値Pdmaxを超えないように、圧縮機3の運転周波数、膨張弁7の開度、及び熱源側熱交換器9に送風する送風機の風量の少なくとも1つを制御すればよい。
 なお、上述した不均化反応の発生を防止する制御動作は、冷房運転時、暖房運転時、ポンプダウン運転時の何れの場合においても行うようにしても良い。
 以上のように本実施の形態1においては、制御装置40は、吐出温度Td及び吐出圧力Pdが、温度閾値Tdmax及び圧力閾値Pdmaxを超えないように制御を行う。
 このため、HFO1123冷媒又はHFO1123を含む混合冷媒を適用する場合において、不均化反応(自己分解反応)の発生を抑制することができる。
実施の形態2.
 本実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一の構成には同一の符号を付して説明を省略する。
 上記実施の形態1では、吐出温度センサー41を用いて、圧縮機3から吐出された吐出温度Tdを検出した。しかし、吐出温度センサー41による温度検出には応答遅れがあるため、実際の温度と、検出された温度とに差が生じる場合がある。
 本実施の形態2においては、吐出温度Tdを、吐出圧力センサー51及び吸入圧力センサー52の検出値から算出して求める。
 図4は、実施の形態2に係る空気調和装置100の制御装置40の動作を示すフローチャートである。
 以下、図11の各ステップに基づき、上記実施の形態1との相違点について説明する。なお、上記実施の形態1と同じ動作には同じステップ番号を付し、説明は省略する。
(S20)
 制御装置40は、吐出温度Tdを、吐出圧力センサー51及び吸入圧力センサー52の検出値から算出する。
 圧縮機3の圧縮過程がポリトロープ変化と考えると、吐出温度Td[K]は、圧縮機3への吸入される冷媒の温度(以下、吸入温度Ts)[K]、吐出圧力Pd[MPa]、圧縮機3への吸入される冷媒の圧力(以下、吸入圧力Ps)[MPa]、ポリトロープ指数k[-]を用いて、式(1)の関係となる。
Figure JPOXMLDOC01-appb-M000001
 吐出圧力Pdは、吐出圧力センサー51の検出値を用いる。
 吸入圧力Psは、吸入圧力センサー52の検出値を用いる。
 吸入温度Tsは、吸入圧力Psの飽和ガス温度として算出して求める。
 ポリトロープ指数kは、圧縮機3の特性から定まる固定値を用いる。
 以降の動作は、上記実施の形態1と同様である。
 以上のように本実施の形態2においては、制御装置40は、吐出温度Tdを、吐出圧力センサー51及び吸入圧力センサー52の検出値から算出する。
 このため、上記実施の形態1の効果に加えて以下の効果がある。即ち、温度センサーのような熱容量による応答遅れが発生しない、吐出圧力センサー51及び吸入圧力センサー52の検出値を用いて、吐出温度Tdを算出するので、実際の吐出温度Tdと検出値との誤差を少なくすることができる。よって、より速く吐出温度Tdの温度上昇を検知できる。したがって、より精度良く、不均化反応(自己分解反応)の発生を抑制することができる。
 1 室外機、2 室内機、3 圧縮機、4 四方弁、5 ガス配管、6 利用側熱交換器、7 膨張弁、8 液配管、9 熱源側熱交換器、11 第1開閉弁、12 第2開閉弁、20 バイパス回路、21 第1バイパス開閉弁、22 第2バイパス開閉弁、30 容器、40 制御装置、41 吐出温度センサー、51 吐出圧力センサー、52 吸入圧力センサー、61 利用側送風機、91 熱源側送風機、100 空気調和装置。

Claims (2)

  1.  圧縮機、熱源側熱交換器、膨張弁、及び利用側熱交換器が配管で接続され、冷媒が循環する冷媒回路を備えた空気調和装置であって、
     前記冷媒は、HFO1123冷媒、又はHFO1123を含む混合冷媒であり、
     前記圧縮機から吐出された前記冷媒の温度及び圧力が、閾値を超えないように、
     前記圧縮機の運転周波数、前記膨張弁の開度、及び前記熱源側熱交換器に送風する送風機の風量の少なくとも1つを制御する制御装置を、備えた
     空気調和装置。
  2.  前記圧縮機から吐出された前記冷媒の圧力を検出する吐出圧力センサーと、
     前記圧縮機へ吸入される前記冷媒の圧力を検出する吸入圧力センサーと、
    を更に備え、
     前記制御装置は、
     前記圧縮機から吐出された前記冷媒の温度を、前記吐出圧力センサー及び前記吸入圧力センサーの検出値から算出する
     請求項1に記載の空気調和装置。
PCT/JP2014/057032 2014-03-17 2014-03-17 空気調和装置 WO2015140874A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016508334A JP6266089B2 (ja) 2014-03-17 2014-03-17 空気調和装置
PCT/JP2014/057032 WO2015140874A1 (ja) 2014-03-17 2014-03-17 空気調和装置
US15/125,607 US10001309B2 (en) 2014-03-17 2014-03-17 Air-conditioning apparatus
EP14886091.9A EP3121533B1 (en) 2014-03-17 2014-03-17 Air conditioning device
CN201480077044.2A CN106164604B (zh) 2014-03-17 2014-03-17 空气调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057032 WO2015140874A1 (ja) 2014-03-17 2014-03-17 空気調和装置

Publications (1)

Publication Number Publication Date
WO2015140874A1 true WO2015140874A1 (ja) 2015-09-24

Family

ID=54143900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057032 WO2015140874A1 (ja) 2014-03-17 2014-03-17 空気調和装置

Country Status (5)

Country Link
US (1) US10001309B2 (ja)
EP (1) EP3121533B1 (ja)
JP (1) JP6266089B2 (ja)
CN (1) CN106164604B (ja)
WO (1) WO2015140874A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059409A (ja) * 2016-09-30 2018-04-12 株式会社富士通ゼネラル 圧縮機および冷凍サイクル装置
WO2018181065A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 空気調和装置
JP2018169052A (ja) * 2017-03-29 2018-11-01 株式会社富士通ゼネラル 空気調和装置
JPWO2018003096A1 (ja) * 2016-06-30 2019-02-14 三菱電機株式会社 空気調和装置
KR20190035057A (ko) * 2017-09-26 2019-04-03 엘지전자 주식회사 공기조화기 및 그의 제어방법
EP3421903A4 (en) * 2016-02-22 2019-08-28 Agc Inc. EXCHANGER UNIT
WO2020003494A1 (ja) * 2018-06-29 2020-01-02 三菱電機株式会社 冷凍サイクル装置
WO2020039707A1 (ja) * 2018-08-22 2020-02-27 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置および冷凍サイクル装置の冷媒温度管理方法
JP2022009578A (ja) * 2018-06-29 2022-01-14 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118542B1 (en) * 2014-03-14 2021-05-19 Mitsubishi Electric Corporation Refrigerating cycle device
JP6897119B2 (ja) 2017-01-30 2021-06-30 ダイキン工業株式会社 冷凍装置
JP7001346B2 (ja) * 2017-01-30 2022-01-19 ダイキン工業株式会社 冷凍装置
JP6787482B2 (ja) * 2017-03-31 2020-11-18 ダイキン工業株式会社 空気調和装置
JP7005172B2 (ja) * 2017-05-26 2022-01-21 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN111511874A (zh) * 2017-12-18 2020-08-07 大金工业株式会社 制冷循环装置
CN113776176A (zh) * 2021-09-06 2021-12-10 美的集团股份有限公司 防凝露控制方法、厨房空调器及存储介质
CN116412116A (zh) * 2021-12-29 2023-07-11 广东美的白色家电技术创新中心有限公司 压缩机排气温度的控制方法、装置、设备及介质
CN114370689B (zh) * 2022-01-27 2023-06-02 宁波奥克斯电气股份有限公司 制冷剂充注量判定方法、控制方法、空调器以及存储介质
CN114739061B (zh) * 2022-04-26 2023-03-21 珠海格力电器股份有限公司 一种灌注量自动匹配装置、方法、控制装置和制冷设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892135A (en) * 1996-08-23 1999-04-06 E. I. Du Pont De Nemours And Company Process for the production of trifluoroethylene
JP2007198230A (ja) * 2006-01-25 2007-08-09 Sanden Corp 電動圧縮機
JP2009138973A (ja) * 2007-12-04 2009-06-25 Kobe Steel Ltd ヒートポンプ及びその運転方法
WO2009157320A1 (ja) * 2008-06-24 2009-12-30 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
JP2010156524A (ja) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp 冷凍サイクル装置
JP2012132578A (ja) * 2010-12-20 2012-07-12 Panasonic Corp 冷凍サイクル装置
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287018B2 (ja) * 1992-07-16 2002-05-27 ダイキン工業株式会社 空気調和装置及びそのヒータの交換方法
JPH11142003A (ja) * 1997-11-14 1999-05-28 Daikin Ind Ltd 冷凍装置
JP3584862B2 (ja) * 2000-07-13 2004-11-04 ダイキン工業株式会社 空気調和機の冷媒回路
JP2008128493A (ja) * 2006-11-16 2008-06-05 Sanden Corp 冷凍回路及び該冷凍回路を用いた車両用空調装置
JP4770976B2 (ja) 2009-11-25 2011-09-14 ダイキン工業株式会社 コンテナ用冷凍装置
JP2012007775A (ja) * 2010-06-23 2012-01-12 Panasonic Corp 空気調和機
DK2737265T3 (en) 2011-07-26 2018-03-19 Carrier Corp COOLING TEMPERATURE CONTROL LOGIC
JP5212537B1 (ja) 2011-12-13 2013-06-19 ダイキン工業株式会社 冷凍装置
US9140475B2 (en) * 2012-12-07 2015-09-22 Liebert Corporation Receiver tank purge in vapor compression cooling system with pumped refrigerant economization
EP3115714B1 (en) * 2014-03-07 2018-11-28 Mitsubishi Electric Corporation Air conditioning device
WO2015140879A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
CN107003081A (zh) * 2015-01-09 2017-08-01 三菱电机株式会社 热交换器以及具有该热交换器的制冷循环装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892135A (en) * 1996-08-23 1999-04-06 E. I. Du Pont De Nemours And Company Process for the production of trifluoroethylene
JP2007198230A (ja) * 2006-01-25 2007-08-09 Sanden Corp 電動圧縮機
JP2009138973A (ja) * 2007-12-04 2009-06-25 Kobe Steel Ltd ヒートポンプ及びその運転方法
WO2009157320A1 (ja) * 2008-06-24 2009-12-30 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
JP2010156524A (ja) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp 冷凍サイクル装置
JP2012132578A (ja) * 2010-12-20 2012-07-12 Panasonic Corp 冷凍サイクル装置
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3121533A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421903A4 (en) * 2016-02-22 2019-08-28 Agc Inc. EXCHANGER UNIT
JPWO2018003096A1 (ja) * 2016-06-30 2019-02-14 三菱電機株式会社 空気調和装置
JP2018059409A (ja) * 2016-09-30 2018-04-12 株式会社富士通ゼネラル 圧縮機および冷凍サイクル装置
JP2018169052A (ja) * 2017-03-29 2018-11-01 株式会社富士通ゼネラル 空気調和装置
EP3604971A4 (en) * 2017-03-31 2020-12-02 Daikin Industries, Ltd. AIR CONDITIONING DEVICE
WO2018181065A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 空気調和装置
JP2018173196A (ja) * 2017-03-31 2018-11-08 ダイキン工業株式会社 空気調和装置
US11112154B2 (en) 2017-03-31 2021-09-07 Daikin Industries, Ltd. Air conditioner
KR20190035057A (ko) * 2017-09-26 2019-04-03 엘지전자 주식회사 공기조화기 및 그의 제어방법
KR102368987B1 (ko) * 2017-09-26 2022-03-02 엘지전자 주식회사 공기조화기 및 그의 제어방법
JPWO2020003494A1 (ja) * 2018-06-29 2021-04-01 三菱電機株式会社 冷凍サイクル装置
CN112292572A (zh) * 2018-06-29 2021-01-29 三菱电机株式会社 制冷循环装置
JP2022009578A (ja) * 2018-06-29 2022-01-14 三菱電機株式会社 冷凍サイクル装置
WO2020003494A1 (ja) * 2018-06-29 2020-01-02 三菱電機株式会社 冷凍サイクル装置
JP7159313B2 (ja) 2018-06-29 2022-10-24 三菱電機株式会社 冷凍サイクル装置
JP7258106B2 (ja) 2018-06-29 2023-04-14 三菱電機株式会社 冷凍サイクル装置
JPWO2020039707A1 (ja) * 2018-08-22 2020-08-27 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置および冷凍サイクル装置の冷媒温度管理方法
WO2020039707A1 (ja) * 2018-08-22 2020-02-27 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置および冷凍サイクル装置の冷媒温度管理方法

Also Published As

Publication number Publication date
EP3121533B1 (en) 2021-09-01
US10001309B2 (en) 2018-06-19
US20170003060A1 (en) 2017-01-05
CN106164604B (zh) 2019-01-22
CN106164604A (zh) 2016-11-23
EP3121533A4 (en) 2017-11-29
JPWO2015140874A1 (ja) 2017-04-06
EP3121533A1 (en) 2017-01-25
JP6266089B2 (ja) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6266089B2 (ja) 空気調和装置
KR101810809B1 (ko) 공기 조화 장치
JP6223546B2 (ja) 冷凍サイクル装置
WO2016017643A1 (ja) 空気調和装置
JP5182358B2 (ja) 冷凍装置
US10126026B2 (en) Refrigeration cycle apparatus
JP5908183B1 (ja) 空気調和装置
WO2007108319A1 (ja) 冷凍装置
JP6188916B2 (ja) 冷凍サイクル装置
WO2014129361A1 (ja) 空気調和装置
WO2015140887A1 (ja) 冷凍サイクル装置
EP2921801B1 (en) Method of part replacement for refrigeration cycle apparatus
US10852007B2 (en) Heat pump device
JP2018173196A5 (ja)
JP6537629B2 (ja) 空気調和装置
WO2015140950A1 (ja) 空気調和装置
EP3217118B1 (en) Heat pump apparatus
WO2020100228A1 (ja) 空気調和機
JP2020159673A (ja) 空気調和装置
JP2020148389A (ja) 空気調和装置
JP2013194929A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508334

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014886091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014886091

Country of ref document: EP