WO2016059696A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016059696A1
WO2016059696A1 PCT/JP2014/077520 JP2014077520W WO2016059696A1 WO 2016059696 A1 WO2016059696 A1 WO 2016059696A1 JP 2014077520 W JP2014077520 W JP 2014077520W WO 2016059696 A1 WO2016059696 A1 WO 2016059696A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
hfo
cycle apparatus
heat exchanger
Prior art date
Application number
PCT/JP2014/077520
Other languages
English (en)
French (fr)
Inventor
裕樹 宇賀神
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/077520 priority Critical patent/WO2016059696A1/ja
Priority to JP2016553922A priority patent/JPWO2016059696A1/ja
Priority to US15/505,637 priority patent/US10126026B2/en
Priority to GB1703722.7A priority patent/GB2545827B/en
Publication of WO2016059696A1 publication Critical patent/WO2016059696A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a refrigeration cycle apparatus including a refrigerant circuit.
  • R410A ozone layer depletion coefficient
  • ODP ozone layer depletion coefficient
  • GWP global warming potential
  • HFC refrigerant As a candidate for a low GWP refrigerant, there is an HFC refrigerant that does not have a carbon double bond in its composition.
  • HFC refrigerants include, for example, R32 (CH 2 F 2 ; difluoromethane) having a lower GWP than R410A.
  • a halogenated hydrocarbon having a carbon double bond in the composition, which is a kind of HFC refrigerant like R32.
  • halogenated hydrocarbons for example, HFO-1234yf (CF 3 CF ⁇ CH 2 ; tetrafluoropropene), HFO-1234ze (CF 3 —CH ⁇ CHF) and the like are known.
  • HFC refrigerant having a carbon double bond in order to distinguish the HFC refrigerant having a carbon double bond from the HFC refrigerant having no carbon double bond in the composition such as R32, an olefin (unsaturated carbon having a carbon double bond) is used.
  • olefin unsaturated carbon having a carbon double bond
  • HFO refrigerant “HFO refrigerant”.
  • HFO-1123 (CF 2 ⁇ CHF; 1, 1, 2 trifluoroethene (ethylene)
  • HFO-1234yf 1, 1, 2 trifluoroethene (ethylene)
  • HFO-1123 which is a low GWP refrigerant, may cause self-decomposition. Therefore, in order to suppress self-decomposition, there is a case where an HFC refrigerant is mixed with HFO-1123 and used (for example, see Patent Document 1).
  • the content of HFO-1123 is preferably 60% or more, more preferably 70% or more in the working fluid (100 mass percent (%)). 80% is more preferable, and 100% is particularly preferable.
  • Patent Document 1 since the technology shown in Patent Document 1 has a content of HFO-1123 of 60% or more, the risk of self-decomposition of HFO-1123 under high temperature and high pressure when used in an air conditioner Can not be removed. This can leave problems in performance and quality.
  • the present invention has been made to solve the above problems, and provides a refrigeration cycle apparatus in which the refrigerant composition in the refrigerant circuit does not change even when a refrigerant having the property of causing self-decomposition is used. For the purpose.
  • a refrigeration cycle apparatus includes a compressor that compresses and discharges a sucked refrigerant, a condenser that radiates heat to the refrigerant and condenses the refrigerant, a decompression device that depressurizes the condensed refrigerant, and causes the refrigerant to absorb heat.
  • a refrigerant circuit is configured by connecting an evaporator for evaporating the refrigerant to form a refrigerant circuit.
  • the refrigerant is a mixed refrigerant obtained by mixing R32 and HFO-1123, and the mixed refrigerant has a mass percentage of R32> the mass of HFO-1123. Percent.
  • the mass% ratio of R32 and HFO-1123 satisfies R32> HFO-1123, thereby preventing self-decomposition of HFO-1123 and changing the refrigerant composition in the refrigerant circuit. Therefore, sufficient performance and quality can be secured.
  • FIG. 1 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to Embodiment 1 of the present invention.
  • refrigeration cycle apparatus 100A a refrigeration cycle apparatus
  • the refrigeration cycle apparatus 100A has an outdoor unit 1 and an indoor unit 2. And the outdoor unit 1 and the indoor unit 2 are connected via the liquid pipe 7 and the gas pipe 9, and the refrigerant
  • coolant comprises the refrigerant circuit.
  • the refrigerant flowing through the refrigerant circuit in the refrigeration cycle apparatus 100A is assumed to use a refrigerant having a property of causing self-decomposition as a main component.
  • one outdoor unit 1 and one indoor unit 2 are connected to each other by pipes to form a refrigerant circuit.
  • the number of units is not limited to one, and any one or a plurality of each may be connected.
  • the outdoor unit (heat source unit) 1 conveys heat (hot or cold) to the indoor unit 2.
  • the outdoor unit 1 includes a compressor 3, a four-way valve 4, an outdoor heat exchanger (first heat exchanger) 5, an outdoor fan 5a, and an electronic expansion valve 6.
  • the indoor unit (use side unit) 2 supplies heat to a supply target, for example, and heats or cools the supply target.
  • the indoor unit 2 has an indoor heat exchanger (second heat exchanger) 8 and an indoor blower 8a.
  • Compressor 3 compresses and discharges the refrigerant.
  • the compressor 3 for example, a positive displacement compressor in which the number of revolutions is controlled by an inverter circuit and the capacity is controlled may be used.
  • the positive displacement compressor include a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor.
  • the compressor 3 has an electric motor.
  • the four-way valve 4 that is a refrigerant circuit switching device switches the refrigerant flow path in accordance with a cold supply mode (for example, cooling operation mode) and a warm supply mode (for example, heating operation mode).
  • a cold supply mode for example, cooling operation mode
  • a warm supply mode for example, heating operation mode
  • the four-way valve 4 is described as an example of the refrigerant circuit switching device.
  • the configuration is not limited to the four-way valve 4 as long as it can be configured by a device that can selectively switch the refrigerant flow path.
  • the refrigerant circuit switching device can be configured by combining two two-way valves or three-way valves.
  • the refrigeration cycle apparatus 100A of the present embodiment has the refrigerant circuit switching device. However, when the refrigerant flow path need not be switched, the refrigeration cycle apparatus 100A may not be provided with the refrigerant circuit switching device. .
  • the outdoor heat exchanger 5 that is the first heat exchanger functions as a condenser or an evaporator.
  • the outdoor heat exchanger 5 can be composed of, for example, a cross fin type fin-and-tube heat exchanger having a heat transfer tube and a large number of fins.
  • the outdoor heat exchanger 5 is demonstrated as what heat-exchanges the refrigerant
  • the outdoor heat exchanger 5 may not be a fin-and-tube heat exchanger depending on the heat medium to be heat-exchanged.
  • a microchannel heat exchanger for example, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double tube heat exchanger, a plate heat exchanger, or the like may be used.
  • the 1st heat exchanger is the outdoor heat exchanger 5 which exists in the outdoor
  • the installation position of a 1st heat exchanger is not limited to outdoor.
  • the first heat exchanger may be a heat exchanger on the heat source side.
  • the outdoor blower 5a supplies air to the outdoor heat exchanger 5.
  • the outdoor blower 5a can change the flow rate of the air supplied to the outdoor heat exchanger 5.
  • a centrifugal fan driven by a motor such as a DC fan motor, a multiblade fan, or the like can be used.
  • the outdoor heat exchanger 5 performs heat exchange between the refrigerant and a heat medium other than air
  • the heat medium is supplied to the outdoor heat exchanger 5 by a transfer device such as a pump instead of the outdoor fan 5a. It may be.
  • the electronic expansion valve 6 that is a flow rate adjusting device is a device that adjusts the throttle opening based on an instruction from the control device 20 to adjust the refrigerant flow rate, depressurize the refrigerant, and the like.
  • the electronic expansion valve 6 having a structure capable of adjusting the throttle opening is described as an example, but the present invention is not limited to this.
  • a mechanical expansion valve using a diaphragm for the pressure receiving portion, a capillary tube, or the like may be used as the flow rate adjusting device.
  • the indoor heat exchanger 8 functions as an evaporator or a condenser.
  • the indoor heat exchanger 8 can be constituted by, for example, a cross fin type fin-and-tube heat exchanger having a heat transfer tube and a large number of fins.
  • the indoor heat exchanger 8 is demonstrated as what heat-exchanges the refrigerant
  • the indoor heat exchanger 8 may not be a fin-and-tube heat exchanger depending on the heat medium to be heat-exchanged.
  • a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double tube heat exchanger, a plate heat exchanger, or the like may be used.
  • the installation position of a 2nd heat exchanger is not limited indoors.
  • the 2nd heat exchanger should just be a heat exchanger in use side, such as a space for air conditioning.
  • the indoor blower 8a supplies air to the indoor heat exchanger 8.
  • the indoor blower 8a can change the flow rate of the air supplied to the indoor heat exchanger 8.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the indoor blower 8a.
  • the heat medium may be supplied to the indoor heat exchanger 8 by a transfer device such as a pump instead of the indoor fan 8a.
  • the refrigeration cycle apparatus 100A includes a control device 20 that performs overall control of the operation of the refrigeration cycle apparatus 100A and the like with a focus on equipment included in the outdoor unit 1.
  • the control device 20 includes various actuators (compressor 3, four-way valve) of the refrigeration cycle apparatus 100A based on values (detection values) related to detection by various detectors (sensors) (not shown) attached to the refrigerant circuit or the like. 4.
  • the control device 20 is composed of, for example, a microcomputer, a digital signal processor, and the like. For example, it has a control processing unit such as a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • control device 20 has a memory
  • the control device 20 is installed in the outdoor unit 1, but the installation location is not limited as long as the device can be controlled.
  • the inside of the four-way valve 4 is a flow path indicated by a solid line.
  • the heat supply mode for example, heating operation
  • the four-way valve 4 has a flow path indicated by a dotted line. Accordingly, in the cold supply mode, the refrigerant circulates in the order of the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the electronic expansion valve 6, the indoor heat exchanger 8, and the compressor 3. Further, in the heat supply mode, the refrigerant circulates in the order of the compressor 3, the four-way valve 4, the indoor heat exchanger 8, the electronic expansion valve 6, the outdoor heat exchanger 5, and the compressor 3.
  • the outdoor heat exchanger 5 functions as a condenser
  • the indoor heat exchanger 8 functions as an evaporator.
  • the outdoor heat exchanger 5 functions as an evaporator
  • the indoor heat exchanger 8 functions as a condenser.
  • refrigerant used for the refrigeration cycle apparatus 100A in the present embodiment will be described.
  • refrigerants used in the refrigeration cycle apparatus 100A 1,2 trifluoroethylene (HFO-1123) having low GWP and high operating pressure among HFO refrigerants, and low GWP and operating pressure among HFC refrigerants.
  • R32 CH 2 F 2 ; difluoromethane is used.
  • HFO-1123 When HFO-1123 is used as a refrigerant in a refrigeration cycle apparatus, HFO-1123 tends to undergo a self-decomposition reaction under high temperature and high pressure conditions. Therefore, in the present embodiment, by circulating a mixed refrigerant in which HFO-1123 and R32 are mixed, the stability of HFO-1123 is increased and self-decomposition can be suppressed.
  • FIG. 2 is a diagram showing the relationship between the mixed refrigerant of R32 and HFO-1123, temperature, and pressure according to Embodiment 1 of the present invention.
  • FIG. 2 it can be seen that the temperature and pressure at which HFO-1123 undergoes self-decomposition differs in the refrigerant circuit depending on the mixing ratio of R32 and HFO-1123. From this, the performance of the refrigeration cycle apparatus 100A is obtained by mixing R32 and HFO-1123 so that the HFO-1123 does not self-decompose at a temperature and pressure that are equal to or higher than the compressor operating point of the refrigeration cycle apparatus 100A. You can drive without sacrificing.
  • FIG. 2 it can be seen that the temperature and pressure at which HFO-1123 undergoes self-decomposition differs in the refrigerant circuit depending on the mixing ratio of R32 and HFO-1123. From this, the performance of the refrigeration cycle apparatus 100A is obtained by mixing R32 and HFO-1123 so that the HFO-1123 does not self-decompose at
  • FIG. 3 is a diagram showing the relationship between the mixing ratio of HFO-1234yf and the GWP in the mixed refrigerant according to Embodiment 1 of the present invention. As shown in FIG. 3, by adding HFO-1234yf, which is a low GWP refrigerant, to R32 and HFO-1123, the GWP can be lowered without causing HFO-1123 to self-decompose.
  • HFO-1234yf which is a low GWP refrigerant
  • FIG. 4 is a diagram showing the relationship between the mixing ratio of HFO-1234yf in the mixed refrigerant according to Embodiment 1 of the present invention and the performance of the refrigeration cycle in the refrigeration cycle apparatus 100A.
  • HFO-1234yf is a low-pressure refrigerant.
  • the mixing ratio of R32, HFO-1234yf and HFO1234yf is preferably R32> HFO-1123> HFO-1234yf in mass%.
  • FIG. FIG. 5 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100B) according to Embodiment 2 of the present invention.
  • refrigeration cycle apparatus 100B of the second embodiment devices that perform the same operation as the refrigeration cycle apparatus 100A described in the first embodiment are denoted by the same reference numerals.
  • the basic configuration of the refrigeration cycle apparatus 100B is the same as that of the refrigeration cycle apparatus 100A according to Embodiment 1.
  • the gas-liquid separator 10 is provided on the downstream side of the electronic expansion valve 6 with respect to the refrigerant flow in the cold supply mode in which the outdoor heat exchanger 5 functions as a condenser. Yes.
  • the gas-liquid separator 10 is connected to a pipe for flowing the refrigerant to the indoor heat exchanger 8 and a pipe (bypass pipe) for bypassing the indoor heat exchanger 8 and flowing the refrigerant to the compressor 3.
  • a liquid-phase refrigerant (liquid refrigerant) mainly flows through the piping flowing through the indoor heat exchanger 8.
  • a gas phase refrigerant (gas refrigerant) mainly flows through the bypass pipe.
  • the bypass pipe has a bypass electronic expansion valve 11 serving as a bypass flow rate adjusting device.
  • the refrigerant used for refrigeration cycle apparatus 100B is the same mixed refrigerant as the refrigerant used in refrigeration cycle apparatus 100A according to Embodiment 1.
  • the gas-liquid separator 10 shown in FIG. 5 is a device that separates a gas refrigerant and a liquid refrigerant. This is particularly effective during cooling operation.
  • the liquid refrigerant flows to the indoor heat exchanger 8, and the gas refrigerant bypasses the indoor heat exchanger 8 and flows to the compressor 3.
  • the refrigerant pressure loss in the indoor heat exchanger 8 can be reduced. For this reason, the performance of the refrigeration cycle apparatus 100B can be improved.
  • the bypass electronic expansion valve 11 can adjust the amount of gas refrigerant that bypasses the indoor heat exchanger 8. It is a device that adjusts the throttle opening based on an instruction from the control device 20, adjusts the refrigerant flow rate, depressurizes the refrigerant, and the like.
  • the bypass electronic expansion valve 11 having a structure capable of adjusting the throttle opening is described as an example, but the present invention is not limited to this.
  • a mechanical expansion valve, a capillary tube, or the like that employs a diaphragm for the pressure receiving unit may be used as the bypass flow rate adjusting device.
  • FIG. 6 is a diagram showing the relationship between the mixing ratio of HFO-1234yf in the refrigerant mixture according to Embodiment 2 of the present invention and the performance of the refrigeration cycle in the refrigeration cycle apparatus 100B.
  • the HFO-1123 is self-decomposed while maintaining the performance of the refrigeration cycle. Since the mixing ratio of HFO-1234yf that does not cause the increase can be increased, the GWP of the refrigerant can be lowered.
  • FIG. 7 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100C) according to Embodiment 3 of the present invention.
  • refrigeration cycle apparatus 100C according to the third embodiment, devices that perform the same operations as those of the refrigeration cycle apparatus 100A or the refrigeration cycle apparatus 100B described in the first embodiment or the second embodiment are denoted by the same reference numerals.
  • the basic configuration of the refrigeration cycle apparatus 100C is the same as that of the refrigeration cycle apparatus 100A or the refrigeration cycle apparatus 100B according to the first embodiment or the second embodiment.
  • the refrigeration cycle apparatus 100B of the second embodiment includes the gas-liquid separator 10 on the downstream side of the refrigerant of the electronic expansion valve 6 in the cold supply mode.
  • the rectifier circuit is provided so that the gas-liquid separator 10 is located on the downstream side of the refrigerant of the electronic expansion valve 6 even in the warm heat supply mode in which the indoor heat exchanger 8 functions as a condenser.
  • the refrigerant used for refrigeration cycle apparatus 100C is the same mixed refrigerant as the refrigerant used in refrigeration cycle apparatus 100A and refrigeration cycle apparatus 100B according to Embodiment 1 and Embodiment 2.
  • FIG. 8 is an enlarged configuration diagram of the rectifier circuit portion in the refrigeration cycle apparatus 100C according to Embodiment 3 of the present invention.
  • the check valves 12A to 12D are valves that make the flow of refrigerant in one direction.
  • the check valve 12A to the check valve 12D constitute a rectifier.
  • the refrigerant flow in the rectifier circuit will be described.
  • the refrigerant flowing out of the outdoor heat exchanger 5 flows into the rectifier circuit from the point a, passes through the check valve 12A, and flows into the electronic expansion valve 6 from the point b.
  • the refrigerant that has passed through the electronic expansion valve 6 flows into the gas-liquid separator 10.
  • the liquid refrigerant flowing out of the gas-liquid separator 10 passes through the point c and the check valve 12D.
  • the refrigerant flowing out from the check valve 12D passes through the point d and flows out to the indoor heat exchanger 8.
  • the gas refrigerant flowing out from the gas-liquid separator 10 passes through the point e and flows out to the bypass pipe.
  • the refrigerant flowing out of the indoor heat exchanger 8 flows into the rectifier circuit from the point d, passes through the check valve 12C, and flows into the electronic expansion valve 6 from the point b.
  • the refrigerant that has passed through the electronic expansion valve 6 flows into the gas-liquid separator 10.
  • the liquid refrigerant flowing out from the gas-liquid separator 10 passes through the point c and the check valve 12B.
  • the refrigerant flowing out from the check valve 12B passes through the point a and flows out to the outdoor heat exchanger 5.
  • the gas refrigerant flowing out from the gas-liquid separator 10 passes through the point e and flows out to the bypass pipe.
  • the refrigeration cycle apparatus 100C switches the circulation path and cools the load in the cold supply mode using the indoor heat exchanger 8 as an evaporator and the room heat for heating the load.
  • the gas-liquid separator 10 can be made to function in either operation state of the heat supply mode in which the exchanger 8 is a condenser. For this reason, the performance of the refrigeration cycle apparatus 100C can be improved.
  • FIG. 9 is a diagram showing the relationship between the mixing ratio of HFO-1234yf in the mixed refrigerant according to Embodiment 3 of the present invention and the performance of the refrigeration cycle in the refrigeration cycle apparatus 100C.
  • the gas-liquid separator 10 can be operated regardless of the mode, while maintaining the performance of the refrigeration cycle. Since the mixing ratio of HFO-1234yf in which HFO-1123 does not cause self-decomposition can be increased, the GWP of the refrigerant can be lowered.
  • FIG. 10 is a schematic configuration diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100D) according to Embodiment 4 of the present invention.
  • refrigeration cycle apparatus 100D equipment that performs the same operation as the refrigeration cycle apparatus 100A, the refrigeration cycle apparatus 100B, or the refrigeration cycle apparatus 100C described in the first, second, or third embodiment. are given the same reference numerals.
  • the basic configuration of the refrigeration cycle apparatus 100D is the same as that of the refrigeration cycle apparatus 100A, the refrigeration cycle apparatus 100B, or the refrigeration cycle apparatus 100C according to the first embodiment, the second embodiment, or the third embodiment.
  • the refrigeration cycle apparatus 100 ⁇ / b> D of Embodiment 4 includes an internal heat exchanger (inter-refrigerant heat exchanger) 13.
  • a pipe through which the refrigerant flowing into the electronic expansion valve 6 passes and a bypass pipe are connected to the internal heat exchanger 13.
  • the refrigerant used for refrigeration cycle apparatus 100D is the same as the refrigerant used in refrigeration cycle apparatus 100A, refrigeration cycle apparatus 100B, and refrigeration cycle apparatus 100C according to Embodiment 1, Embodiment 2, and Embodiment 3. It is a mixed refrigerant.
  • the internal heat exchanger 13 exchanges heat between the refrigerant before flowing into the electronic expansion valve 6 and the refrigerant flowing out of the gas-liquid separator 10 and passing through the bypass pipe.
  • the refrigerant before flowing into the electronic expansion valve 6 is hotter than the refrigerant passing through the bypass pipe.
  • the internal heat exchanger 13 performs heat exchange, the refrigerant before flowing into the electronic expansion valve 6 can be supercooled. By supercooling the refrigerant, the performance of the refrigeration cycle apparatus 100D can be improved.
  • the internal heat exchanger 13 performs heat exchange, whereby the refrigerant passing through the bypass pipe can be heated and the degree of superheat can be ensured.
  • the degree of superheat of the refrigerant By ensuring the degree of superheat of the refrigerant, the risk of liquid refrigerant flowing into the compressor 3 can be reduced. For this reason, the reliability of refrigeration cycle apparatus 100D can be improved.
  • the liquid compression which arises when a liquid refrigerant flows in into the compressor 3 can be prevented, and the performance of refrigeration cycle apparatus 100D can be maintained.
  • FIG. 11 is a diagram showing the relationship between the mixing ratio of HFO-1234yf in the mixed refrigerant according to Embodiment 4 of the present invention and the performance of the refrigeration cycle in the refrigeration cycle apparatus 100D.
  • the internal heat exchanger 13 is provided, and the refrigerant before flowing into the electronic expansion valve 6 is supercooled. Therefore, the performance of the refrigeration cycle apparatus 100D can be improved.
  • coolant which passes bypass piping is ensured, the reliability of refrigeration cycle apparatus 100D can be improved.
  • liquid compression can be prevented and the performance of refrigeration cycle apparatus 100D can be improved.
  • the mixing ratio of HFO-1234yf in which HFO-1123 does not cause self-decomposition can be increased while maintaining the performance of the refrigeration cycle, the GWP of the refrigerant can be lowered.
  • FIG. FIG. 12 is a diagram showing a heat transfer tube 30 of the heat exchanger according to Embodiment 5 of the present invention.
  • the heat transfer tube 30 used for at least one of the outdoor heat exchanger 5 and the indoor heat exchanger 8 is A circular heat transfer tube.
  • the diameter r of the heat exchanger tube 30 shall be 7.0 mm or less.
  • each refrigerant is slightly flammable. Is preferably smaller.
  • the outdoor heat exchanger 5 Even if the diameter r of the heat transfer tube 30 is 7.0 mm or less, it is difficult to be affected by the pressure loss of the refrigerant piping. Further, the amount of refrigerant can be reduced, and a high-performance refrigeration cycle apparatus can be obtained.
  • an inner surface groove can be formed on the inner surface side of the heat transfer tube 30 used for at least one of the outdoor heat exchanger 5 and the indoor heat exchanger 8.
  • the inner surface groove By forming the inner surface groove, the surface area inside the heat transfer tube 30 can be increased, and the flow of the refrigerant can be turbulent, so that the heat transfer performance of the heat transfer tube 30 can be improved.
  • FIG. 13 is a diagram showing a heat transfer tube 31 of a heat exchanger according to Embodiment 6 of the present invention.
  • a heat transfer tube 31 used for at least one of the outdoor heat exchanger 5 and the indoor heat exchanger 8 is provided.
  • a flat tube (flat tube) is used.
  • the refrigeration cycle apparatus described in each embodiment constitutes a refrigerant circuit that uses the refrigeration cycle, such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings, etc.), a heat pump water heater, and the like. It can be applied to a device that performs.
  • an air conditioner for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings, etc.
  • a heat pump water heater and the like. It can be applied to a device that performs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 本発明に係る冷凍サイクル装置100Aは、吸入した冷媒を圧縮して吐出する圧縮機3と、冷媒に放熱させて冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させる電子膨張弁6と、冷媒に吸熱させて冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成し、冷媒はR32とHFO-1123とを混合した混合冷媒であり、混合冷媒は、R32の質量パーセント>HFO-1123の質量パーセントである。

Description

冷凍サイクル装置
 本発明は、冷媒回路を備える冷凍サイクル装置に関するものである。
 従来から、不燃性であるR410Aのような「HFC冷媒」を使用して冷凍サイクルを実行する冷凍サイクル装置が存在している。このR410Aは、たとえばR22のような「HCFC冷媒」と異なり、オゾン層破壊係数(以下「ODP」と称す)が0であって、オゾン層を破壊することはない。しかし、地球温暖化係数(以下「GWP」と称す)が高いという性質を有している。そのため、地球の温暖化防止の一環として、R410AのようなGWPが高いHFC冷媒から、GWPが低い冷媒(以下「低GWP冷媒」と称す)への変更の検討が進められている。
 低GWP冷媒の候補として、組成中に炭素の二重結合を持たないHFC冷媒が存在している。HFC冷媒には、たとえばR410AよりもGWPが低いR32(CH;ジフルオロメタン)がある。また、同じような候補冷媒として、R32と同様にHFC冷媒の一種であって、組成中に炭素の二重結合を有するハロゲン化炭化水素が存在している。このようなハロゲン化炭化水素としては、たとえばHFO-1234yf(CFCF=CH;テトラフルオロプロペン)、HFO-1234ze(CF-CH=CHF)などが知られている。ここで、炭素の二重結合を持つHFC冷媒については、R32のように組成中に炭素の二重結合を持たないHFC冷媒と区別するために、オレフィン(炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれる)の「O」を使って、「HFO冷媒」と表現することが多い。
 さらに、同じような候補冷媒として、HFO-1234yf、HFO-1234zeなどと同様に、HFO冷媒の一種であるHFO-1123(CF=CHF;1、1、2トリフルオロエテン(エチレン))が知られている。
 しかし、低GWP冷媒であるHFO-1123は自己分解を起こす可能性がある。そこで、自己分解を抑制するために、HFO-1123にHFC冷媒を混合して用いる場合がある(たとえば、特許文献1参照)。特許文献1によると、HFO-1123と他の冷媒とを混合させる際、HFO-1123の含有率は、作動流体(100質量パーセント(%))中、60%以上が好ましく、70%以上がより好ましく、80%がさらに好ましく、100%が特に好ましいとされている。
特開2014-098166号公報
 しかしながら、特許文献1に示されている技術は、HFO-1123の含有率を60%以上としているので、空気調和装置で使用するにあたり、高温、高圧のもとではHFO-1123の自己分解のリスクを除去しきれない。このため、性能および品質に問題が残る可能性がある。
 本発明は、上記のような課題を解決するためになされたもので、自己分解を起こす性質を有する冷媒を使用しても、冷媒回路内の冷媒組成が変化しないような冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、吸入した冷媒を圧縮して吐出する圧縮機と、冷媒に放熱させて冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させる減圧装置と、冷媒に吸熱させて冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成し、冷媒は、R32とHFO-1123とを混合した混合冷媒であり、混合冷媒は、R32の質量パーセント>HFO-1123の質量パーセントである。
 本発明に係る冷凍サイクル装置によれば、R32とHFO-1123の質量%比をR32>HFO-1123とすることで、HFO-1123の自己分解を防ぎ、冷媒回路内における冷媒組成を変化させることなく、性能、および品質を十分確保することができる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態1に係るR32とHFO-1123との混合冷媒と温度および圧力との関係を示す図である。 本発明の実施の形態1に係る混合冷媒におけるHFO-1234yfの混合比率とGWPとの関係を示す図である。 本発明の実施の形態1に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Aにおける冷凍サイクルの性能との関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態2に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Bにおける冷凍サイクルの性能との関係を示す図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態3に係る冷凍サイクル装置100Cにおける整流回路部分を拡大した構成図である。 本発明の実施の形態3に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Cにおける冷凍サイクルの性能との関係を示す図である。 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態4に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Dにおける冷凍サイクルの性能との関係を示す図である。 本発明の実施の形態5に係る熱交換器の伝熱管を示す図である。 本発明の実施の形態6に係る熱交換器の伝熱管を示す図である。
 以下、本発明の実施の形態に係る空気調和装置について図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力などの高低については、特に絶対的な値との関係で高低などが定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100Aと称する)の冷媒回路構成の一例を示す概略構成図である。図1に基づいて、冷凍サイクル装置100Aについて説明する。
 冷凍サイクル装置100Aは、室外機1と、室内機2とを有している。そして、室外機1と室内機2とを液管7およびガス管9を介して接続し、冷媒が冷媒回路を構成している。冷凍サイクル装置100Aにおける冷媒回路を流れる冷媒は、自己分解を起こす性質を有する冷媒を主成分として使用することを想定したものである。ここで、図1では、室外機1と室内機2とをそれぞれ1台ずつ配管接続して冷媒回路を構成している。ただし、台数はそれぞれ1台に限定するものではなく、いずれかまたはそれぞれを複数台接続するようにしてもよい。
 本実施の形態の室外機(熱源機)1は、室内機2に熱(温熱または冷熱)を搬送する。室外機1は、圧縮機3、四方弁4、室外熱交換器(第1熱交換器)5、室外送風機5aおよび電子膨張弁6を有している。また、室内機(利用側機)2は、たとえば供給対象に熱を供給して、供給対象を加熱または冷却する。室内機2は、室内熱交換器(第2熱交換器)8および室内送風機8aを有している。
 圧縮機3は冷媒を圧縮して吐出する。圧縮機3としては、たとえばインバータ回路により回転数が制御され容量制御されるタイプの容積式圧縮機を用いるとよい。容積式圧縮機には、たとえば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機などがある。また、圧縮機3は電動機を有している。
 冷媒回路切替装置である四方弁4は、冷熱供給モード(たとえば、冷房運転モード)、温熱供給モード(たとえば、暖房運転モード)に応じて、冷媒の流路を切り替える。ここでは、冷媒回路切替装置の一例として四方弁4を挙げて説明しているが、冷媒の流路を選択的に切り替えられる装置で構成できれば、四方弁4に限るものではない。たとえば2つの二方弁または三方弁を組み合わせて冷媒回路切替装置を構成することができる。また、本実施の形態の冷凍サイクル装置100Aは冷媒回路切替装置を有しているが、冷媒の流路を切り替えなくてもよい場合には、冷媒回路切替装置を設けない冷凍サイクル装置としてもよい。
 第1熱交換器である室外熱交換器5は、凝縮器または蒸発器として機能する。室外熱交換器5は、たとえば伝熱管と多数のフィンとを有するクロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。ここでは、室外熱交換器5は、伝熱管内を通過する冷媒と空気とを熱交換するものとして説明する。ただし、冷媒と空気以外の熱媒体(たとえば水、ブラインなど)とで熱交換する熱交換器としてもよい。また、熱交換する熱媒体に応じて、室外熱交換器5は、フィン・アンド・チューブ型熱交換器でなくてもよい。たとえば、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、プレート熱交換器などとしてもよい。また、第1熱交換器が室外にある室外熱交換器5である場合を例に説明するが、第1熱交換器の設置位置を室外に限定するものではない。第1熱交換器が熱源側にある熱交換器であればよい。
 室外送風機5aは、室外熱交換器5に空気を供給する。室外送風機5aは、室外熱交換器5に供給する空気の流量を変化させることができる。たとえば、室外送風機5aとして、DCファンモータなどのモータによって駆動される遠心ファン、多翼ファンなどを使用することができる。ここで、室外熱交換器5が冷媒と空気以外の熱媒体とで熱交換する場合には、室外送風機5aではなく、ポンプなどの搬送装置で、室外熱交換器5に熱媒体を供給するようにしてもよい。
 流量調整装置である電子膨張弁6は、制御装置20からの指示に基づいて絞り開度を調整し、冷媒流量の調整、冷媒の減圧などを行う装置である。ここでは、絞り開度を調整可能な構造である電子膨張弁6を例に挙げて説明しているが、これに限定するものではない。たとえば、受圧部にダイアフラムを採用した機械式膨張弁、キャピラリーチューブなどを流量調整装置としてもよい。
 室内熱交換器8は、蒸発器または凝縮器として機能する。室内熱交換器8は、たとえば伝熱管と多数のフィンとを有するクロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。ここでは、室内熱交換器8は、伝熱管内を通過する冷媒とたとえば、熱供給対象である室内(空調対象空間)の空気とを熱交換するものとして説明する。ただし、冷媒と空気以外の熱媒体(たとえば水、ブラインなど)とで熱交換する熱交換器としてもよい。また、熱交換する熱媒体に応じて、室内熱交換器8は、フィン・アンド・チューブ型熱交換器でなくてもよい。たとえば、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、プレート熱交換器などとしてもよい。また、第2熱交換器が室内にある室内熱交換器8である場合を例に説明するが、第2熱交換器の設置位置を室内に限定するものではない。第2熱交換器が、空調対象空間などの利用側にある熱交換器であればよい。
 室内送風機8aは、室内熱交換器8に空気を供給する。室内送風機8aは、室内熱交換器8に供給する空気の流量を変化させることができる。たとえば、室内送風機8aとして、DCファンモータなどのモータによって駆動される遠心ファン、多翼ファンなどを使用することができる。ここで、が冷媒と空気以外の熱媒体とで熱交換する場合には、室内送風機8aではなく、ポンプなどの搬送装置で、室内熱交換器8に熱媒体を供給するようにしてもよい。
 また、冷凍サイクル装置100Aは、室外機1が有する機器を中心に、冷凍サイクル装置100Aの動作などを統括制御する制御装置20を備えている。制御装置20は、冷媒回路などに取り付けられた各種検出器(センサ)(図示せず)の検出に係る値(検出値)に基づき、冷凍サイクル装置100Aが有する各種アクチュエータ(圧縮機3、四方弁4、室外送風機5a、電子膨張弁6、室内送風機8aなどの駆動部品)の制御を行う。制御装置20は、たとえばマイクロコンピュータ、デジタルシグナルプロセッサなどで構成されている。たとえばCPU(Central Processing Unit)などの制御演算処理装置を有する。また、記憶装置(図示せず)を有しており、制御などに係る処理手順をプログラムとしたデータを有している。そして、制御演算処理装置がプログラムのデータに基づく処理を実行して機器などの制御を実現する。ここでは、室外機1内に制御装置20を設置しているが、機器などの制御を行うことができれば、設置場所は問わない。
 図1において、室内熱交換器8から冷熱を供給する冷熱供給モード(たとえば、冷房運転)では、四方弁4内は実線で示す流路となる。室内熱交換器8から温熱を供給する温熱供給モード(たとえば、暖房運転)では、四方弁4内は点線で示す流路となる。したがって、冷熱供給モードでは、圧縮機3、四方弁4、室外熱交換器5、電子膨張弁6、室内熱交換器8、圧縮機3の順序で冷媒が循環する。また、温熱供給モードでは、圧縮機3、四方弁4、室内熱交換器8、電子膨張弁6、室外熱交換器5、圧縮機3の順序で冷媒が循環する。そのため、冷熱供給モードでは、室外熱交換器5が凝縮器として機能し、室内熱交換器8が蒸発器として機能する。また、温熱供給モードでは、室外熱交換器5が蒸発器として機能し、室内熱交換器8が凝縮器として機能する。
 次に、本実施の形態における冷凍サイクル装置100Aに使用する冷媒について説明する。冷凍サイクル装置100Aに使用する冷媒として、HFO系冷媒の中で低GWPかつ動作圧力が高い1、1、2トリフルオロエチレン(HFO-1123)と、HFC系冷媒の中で低GWPかつ動作圧力がR32(CH;ジフルオロメタン)を用いる。
<実施の形態1の効果>
 HFO-1123を冷媒として冷凍サイクル装置に使用する際、HFO-1123は、高温、高圧の条件では自己分解反応が起こりやすい。そのため、本実施の形態では、HFO-1123とR32とを混合した混合冷媒を循環させることで、HFO-1123の安定性が高まり、自己分解を抑制することができる。
 図2は、本発明の実施の形態1に係るR32とHFO-1123との混合冷媒と温度および圧力との関係を示す図である。図2において、R32とHFO-1123との混合比率によって、冷媒回路内においてHFO-1123が自己分解を起こす温度と圧力とが異なることがわかる。このことから、冷凍サイクル装置100Aの圧縮機動作点以上となる温度と圧力とにおいて、HFO-1123が自己分解を起こさないようにR32とHFO-1123を混合することによって、冷凍サイクル装置100Aの性能を損なうことなく運転することができる。ここで、図2に示すように、R32とHFO-1123との混合比率は質量パーセント(質量%。以下、同じ)で、R32>HFO-1123とするのがよい。特に、R32:HFO-1123=60:40の比となることが好ましい。
 図3は、本発明の実施の形態1に係る混合冷媒におけるHFO-1234yfの混合比率とGWPとの関係を示す図である。図3に示すように、R32とHFO-1123とに、低GWP冷媒であるHFO-1234yfを加えることによって、HFO-1123が自己分解を起こすことなく、GWPを低くすることができる。
 図4は、本発明の実施の形態1に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Aにおける冷凍サイクルの性能との関係を示す図である。たとえば、図4において、HFO-1234yfは低圧冷媒である。このため、HFO-1234yfの混合比率を高くすると、冷凍サイクルの性能が低下してしまう(特に冷房定格において顕著になる)。そのため、低GWPと冷凍サイクルの性能を満たすためには、R32、HFO-1234yfおよびHFO1234yfの混合比率を、質量%でR32>HFO-1123>HFO-1234yfとするのがよい。特に、R32:HFO-1123=60:40の比を維持しつつ、HFO-1234yfの割合を混合冷媒全体の26%以上とするのが好ましい。
実施の形態2.
 図5は、本発明の実施の形態2に係る冷凍サイクル装置(以下、冷凍サイクル装置100Bと称する)の冷媒回路構成の一例を示す概略構成図である。実施の形態2の冷凍サイクル装置100Bにおいて、実施の形態1で説明した冷凍サイクル装置100Aと同様の動作を行う機器などについては同一符号を付している。
 冷凍サイクル装置100Bの基本的な構成は、実施の形態1に係る冷凍サイクル装置100Aと同じである。実施の形態2の冷凍サイクル装置100Bでは、室外熱交換器5が凝縮器として機能する冷熱供給モード時における冷媒の流れに対して、電子膨張弁6の下流側に気液分離器10を備えている。気液分離器10には、室内熱交換器8に冷媒を流す配管と、室内熱交換器8をバイパスして圧縮機3に冷媒を流す配管(バイパス配管)とがそれぞれ接続されている。室内熱交換器8に流れる配管には主として液相の冷媒(液冷媒)が流れる。また、バイパス配管には、主として気相の冷媒(ガス冷媒)が流れる。バイパス配管は、バイパス流量調整装置となるバイパス電子膨張弁11を有している。冷凍サイクル装置100Bに使用する冷媒は、実施の形態1に係る冷凍サイクル装置100Aにおいて使用した冷媒と同様の混合冷媒である。
 図5に示す気液分離器10は、ガス冷媒と液冷媒を分離する機器である。特に冷房運転時に効果がある。液冷媒は室内熱交換器8へ流れ、ガス冷媒は室内熱交換器8をバイパスして圧縮機3へ流れる。室内熱交換器8に流入するガス冷媒の量を減少させることで、室内熱交換器8における冷媒圧損を低減することができる。このため、冷凍サイクル装置100Bの性能を向上させることができる。
 バイパス電子膨張弁11は、室内熱交換器8をバイパスさせるガス冷媒お量を調整することができる。制御装置20からの指示に基づいて絞り開度を調整し、冷媒流量の調整、冷媒の減圧などを行う装置である。ここでは、絞り開度を調整可能な構造であるバイパス電子膨張弁11を例に挙げて説明しているが、これに限定するものではない。たとえば、受圧部にダイアフラムを採用した機械式膨張弁、キャピラリーチューブなどをバイパス流量調整装置としてもよい。
<実施の形態2の効果>
 図6は、本発明の実施の形態2に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Bにおける冷凍サイクルの性能との関係を示す図である。図6に示すように、本発明の実施の形態2に係る冷凍サイクル装置100Bによれば、気液分離器10を作動させることによって、冷凍サイクルの性能を維持しつつ、HFO-1123が自己分解を起こさないHFO-1234yfの混合比率を増加させることができるので、冷媒のGWPを低くすることができる。
実施の形態3.
 図7は、本発明の実施の形態3に係る冷凍サイクル装置(以下、冷凍サイクル装置100Cと称する)の冷媒回路構成の一例を示す概略構成図である。実施の形態3の冷凍サイクル装置100Cにおいて、実施の形態1または実施の形態2で説明した冷凍サイクル装置100Aまたは冷凍サイクル装置100Bと同様の動作を行う機器などについては同一符号を付している。
 冷凍サイクル装置100Cの基本的な構成は、実施の形態1または実施の形態2に係る冷凍サイクル装置100Aまたは冷凍サイクル装置100Bと同じである。実施の形態2の冷凍サイクル装置100Bは、冷熱供給モード時における電子膨張弁6の冷媒の下流側に気液分離器10を備えるものであった。本実施の形態では、室内熱交換器8が凝縮器として機能する温熱供給モード時においても、気液分離器10が電子膨張弁6の冷媒の下流側に位置するように、整流回路を備える。ここで、冷凍サイクル装置100Cに使用する冷媒は、実施の形態1および実施の形態2に係る冷凍サイクル装置100Aおよび冷凍サイクル装置100Bにおいて使用した冷媒と同様の混合冷媒である。
 図8は、本発明の実施の形態3に係る冷凍サイクル装置100Cにおける整流回路部分を拡大した構成図である。図8に示すように、逆止弁12A~逆止弁12Dは冷媒の流れを一方向にする弁である。本実施の形態では、逆止弁12A~逆止弁12Dにより整流装置を構成する。
 次に整流回路における冷媒の流れについて説明する。冷熱供給モード時において、室外熱交換器5から流出した冷媒は、点aから整流回路に流入し、逆止弁12Aを通過して点bから電子膨張弁6へ流入する。電子膨張弁6を通過した冷媒は、気液分離器10へ流入する。気液分離器10から流出した液冷媒は点cおよび逆止弁12Dを通過する。逆止弁12Dから流出した冷媒は、点dを通過して、室内熱交換器8へ流出する。また、気液分離器10から流出したガス冷媒は、点eを通過して、バイパス配管へ流出する。
 温熱供給モード時において、室内熱交換器8から流出した冷媒は、点dから整流回路に流入し、逆止弁12Cを通過して点bから電子膨張弁6へ流入する。電子膨張弁6を通過した冷媒は、気液分離器10へ流入する。気液分離器10から流出した液冷媒は点cおよび逆止弁12Bを通過する。逆止弁12Bから流出した冷媒は、点aを通過して、室外熱交換器5へ流出する。また、気液分離器10から流出したガス冷媒は、点eを通過して、バイパス配管へ流出する。
 以上のように、本実施の形態における冷凍サイクル装置100Cは、循環経路を切り替え、負荷を冷却するために室内熱交換器8を蒸発器とする冷熱供給モード時および負荷を加熱するために室内熱交換器8を凝縮器とする温熱供給モードのどちらの運転状態でも、気液分離器10を機能させことができる。このため、冷凍サイクル装置100Cの性能を向上させることができる。
<実施の形態3の効果.>
 図9は、本発明の実施の形態3に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Cにおける冷凍サイクルの性能との関係を示す図である。図9に示すように、本発明の実施の形態3に係る冷凍サイクル装置100Cによれば、モードに関係なく気液分離器10を作動させることができることで、冷凍サイクルの性能を維持しつつ、HFO-1123が自己分解を起こさないHFO-1234yfの混合比率を増加させることができるので、冷媒のGWPを低くすることができる。
実施の形態4.
 図10は、本発明の実施の形態4に係る冷凍サイクル装置(以下、冷凍サイクル装置100Dと称する)の冷媒回路構成の一例を示す概略構成図である。実施の形態4の冷凍サイクル装置100Dにおいて、実施の形態1、実施の形態2または実施の形態3で説明した冷凍サイクル装置100A、冷凍サイクル装置100Bまたは冷凍サイクル装置100Cと同様の動作を行う機器などについては同一符号を付している。
 冷凍サイクル装置100Dの基本的な構成は、実施の形態1、実施の形態2または実施の形態3に係る冷凍サイクル装置100A、冷凍サイクル装置100Bまたは冷凍サイクル装置100Cと同じである。実施の形態4の冷凍サイクル装置100Dは、内部熱交換器(冷媒間熱交換器)13を備えている。内部熱交換器13には、電子膨張弁6に流入する冷媒が通過する配管とバイパス配管とが接続されている。ここで、冷凍サイクル装置100Dに使用する冷媒は、実施の形態1、実施の形態2および実施の形態3に係る冷凍サイクル装置100A、冷凍サイクル装置100Bおよび冷凍サイクル装置100Cにおいて使用した冷媒と同様の混合冷媒である。
 内部熱交換器13は、電子膨張弁6に流入する前の冷媒と、気液分離器10から流出してバイパス配管を通過する冷媒とを熱交換させる。ここで、電子膨張弁6に流入する前の冷媒の方がバイパス配管を通過する冷媒よりも高温である。内部熱交換器13が熱交換を行うことで、電子膨張弁6に流入する前の冷媒を過冷却することができる。冷媒を過冷却することで、冷凍サイクル装置100Dの性能を向上させることができる。
 また、内部熱交換器13が熱交換を行うことで、バイパス配管を通過する冷媒を加熱し、過熱度を確保することができる。冷媒の過熱度を確保することで、圧縮機3に液冷媒が流入するリスクを低減できる。このため、冷凍サイクル装置100Dの信頼性を高めることができる。また、圧縮機3に液冷媒が流入することで生じる液圧縮を防ぎ、冷凍サイクル装置100Dの性能を維持することができる。
<実施の形態4の効果.>
 図11は、本発明の実施の形態4に係る混合冷媒におけるHFO-1234yfの混合比率と冷凍サイクル装置100Dにおける冷凍サイクルの性能との関係を示す図である。図11に示すように、本発明の実施の形態4に係る冷凍サイクル装置100Dによれば、内部熱交換器13を有し、電子膨張弁6に流入する前の冷媒を過冷却するようにしたので、冷凍サイクル装置100Dの性能を向上させることができる。また、バイパス配管を通過する冷媒の過熱度を確保するようにしたので、冷凍サイクル装置100Dの信頼性を高めることができる。また、液圧縮を防ぎ、冷凍サイクル装置100Dの性能を向上させることができる。以上より、冷凍サイクルの性能を維持しつつ、HFO-1123が自己分解を起こさないHFO-1234yfの混合比率を増加させることができるので、冷媒のGWPを低くすることができる。
実施の形態5.
 図12は、本発明の実施の形態5に係る熱交換器の伝熱管30を示す図である。上述した実施の形態1~実施の形態4における冷凍サイクル装置100A~冷凍サイクル装置100Dに関し、図12に示すように、室外熱交換器5および室内熱交換器8の少なくとも一方に用いる伝熱管30は、円形状の伝熱管とする。そして、伝熱管30の径rを7.0mm以下とする。
 たとえば、R32およびHFO-1123の混合冷媒またはR32、HFO-1123およびHFO-1234yfの混合冷媒を冷媒回路に使用する場合、各冷媒は微燃性なので、可燃に係るリスクを考慮すると、冷媒配管径は小さい方が好ましい。
 このため、R32およびHFO-1123の混合冷媒またはR32、HFO-1123およびHFO-1234yfの混合冷媒(ただし混合比はHFO-1123≧HFO-1234yfとする)を用いる場合には、室外熱交換器5における伝熱管30の径rが7.0mm以下であっても、冷媒配管の圧損の影響を受け難い。また、冷媒の量を削減することができ、高性能な冷凍サイクル装置を得ることができる。
 ここで、特に限定するものではないが、室外熱交換器5および室内熱交換器8の少なくとも一方に用いる伝熱管30の内面側に内面溝を形成することができる。内面溝を形成することで、伝熱管30の内側の表面積を増加させることができるとともに、冷媒の流れを乱流にすることができるので、伝熱管30の伝熱性能を向上させることができる。
 実施の形態6.
 図13は、本発明の実施の形態6に係る熱交換器の伝熱管31を示す図である。上述した実施の形態1~実施の形態4における冷凍サイクル装置100A~冷凍サイクル装置100Dに関し、図13に示すように、室外熱交換器5および室内熱交換器8の少なくとも一方に用いる伝熱管31を扁平形状の管(扁平管)とする。伝熱管31を扁平形状にすることで、配管容積を減らすことができ、冷媒の量を削減し、高性能な冷凍サイクル装置を得ることができる。
 なお、各実施の形態で説明した冷凍サイクル装置は、空気調和装置(たとえば、冷凍装置、ルームエアコン、パッケージエアコン、ビル用マルチエアコンなど)、ヒートポンプ給湯機など、冷凍サイクルを利用する冷媒回路を構成する装置に適用することができる。
 1 室外機、2 室内機、3 圧縮機、4 四方弁、5 室外熱交換器、5a 室外送風機、6 電子膨張弁、7 液管、8 室内熱交換器、8a 室内送風機、9 ガス管、10 気液分離器、11 バイパス電子膨張弁、12A,12B,12C,12D 逆止弁、13 内部熱交換器、20 制御装置、30,31 伝熱管、100A,100B,100C,100D 冷凍サイクル装置。

Claims (11)

  1.  吸入した冷媒を圧縮して吐出する圧縮機と、
     前記冷媒に放熱させて前記冷媒を凝縮させる凝縮器と、
     凝縮された前記冷媒を減圧させる減圧装置と、
     前記冷媒に吸熱させて前記冷媒を蒸発させる蒸発器と
    を配管接続して冷媒回路を構成し、
     前記冷媒は、R32とHFO-1123とを混合した混合冷媒であり、該混合冷媒は、R32の質量パーセント>HFO-1123の質量パーセントである冷凍サイクル装置。
  2.  前記混合冷媒は、前記R32の質量パーセント:前記HFO-1123の質量パーセント=60:40である請求項1に記載の冷凍サイクル装置。
  3.  さらにHFO-1234yfを混合した前記混合冷媒とする請求項1または請求項2に記載の冷凍サイクル装置。
  4.  前記混合冷媒において、R32の質量パーセント>HFO-1123の質量パーセント>HFO-1234yfの質量パーセントである請求項3に記載の冷凍サイクル装置。
  5.  前記R32の質量パーセント:前記HFO-1123の質量パーセント=60:40であり、さらに、前記HFO-1234yfの質量パーセントの比率が前記混合冷媒全体の26パーセント以上である請求項3に記載の冷凍サイクル装置。
  6.  前記減圧装置と前記蒸発器との間に設置され、気体状の冷媒と液体状の冷媒とを分離する気液分離器と、
     該気液分離器と前記圧縮機の吸入側とを配管接続するバイパス配管と、
     該バイパス配管を通過する冷媒量を調整する冷媒調整装置と
    をさらに備える請求項1~請求項5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記冷媒の循環経路を切り替える流路切替装置と、
     前記冷媒の循環経路が前記減圧装置、前記気液分離器および前記蒸発器の順となるように調整する整流装置と
    をさらに備える請求項6に記載の冷凍サイクル装置。
  8.  前記凝縮器から前記減圧装置に向けて流れる前記冷媒と前記バイパス配管を通過する前記冷媒とを熱交換する内部熱交換器をさらに備える請求項7に記載の冷凍サイクル装置。
  9.  前記R32の質量パーセント:前記HFO-1123の質量パーセント=60:40であり、前記冷媒の質量パーセント比を、R32>HFO-1123≧HFO-1234yfとする請求項6~請求項8のいずれか一項に記載の冷凍サイクル装置。
  10.  前記凝縮器および前記蒸発器の少なくとも一方は、円管状の伝熱管を有する熱交換器であり、前記伝熱管の径が7.0mmより小さい径である請求項1~請求項9のいずれか一項に記載の冷凍サイクル装置。
  11.  前記凝縮器および前記蒸発器の少なくとも一方は、扁平形状の伝熱管を有する熱交換器である請求項1~請求項9のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2014/077520 2014-10-16 2014-10-16 冷凍サイクル装置 WO2016059696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/077520 WO2016059696A1 (ja) 2014-10-16 2014-10-16 冷凍サイクル装置
JP2016553922A JPWO2016059696A1 (ja) 2014-10-16 2014-10-16 冷凍サイクル装置
US15/505,637 US10126026B2 (en) 2014-10-16 2014-10-16 Refrigeration cycle apparatus
GB1703722.7A GB2545827B (en) 2014-10-16 2014-10-16 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077520 WO2016059696A1 (ja) 2014-10-16 2014-10-16 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016059696A1 true WO2016059696A1 (ja) 2016-04-21

Family

ID=55746266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077520 WO2016059696A1 (ja) 2014-10-16 2014-10-16 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US10126026B2 (ja)
JP (1) JPWO2016059696A1 (ja)
GB (1) GB2545827B (ja)
WO (1) WO2016059696A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059638A (ja) * 2016-09-30 2018-04-12 株式会社富士通ゼネラル 熱交換器および冷凍サイクル装置
WO2018086418A1 (zh) * 2016-11-14 2018-05-17 重庆美的通用制冷设备有限公司 制冷系统及具有其的制冷装置
JP2018123981A (ja) * 2017-01-30 2018-08-09 株式会社富士通ゼネラル 熱交換器及び冷凍サイクル装置
JP2021509945A (ja) * 2017-12-29 2021-04-08 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. 空調機システム
JPWO2020066001A1 (ja) * 2018-09-28 2021-08-30 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
JP6418284B1 (ja) * 2017-06-12 2018-11-07 ダイキン工業株式会社 冷媒を含有する組成物、その使用、それを用いた冷凍方法、及びそれを含む冷凍機
JP6852642B2 (ja) * 2017-10-16 2021-03-31 株式会社デンソー ヒートポンプサイクル
CN115183507A (zh) * 2018-06-29 2022-10-14 三菱电机株式会社 制冷循环装置
IT201800005095U1 (it) * 2018-12-20 2020-06-20 Ali Group Srl Carpigiani Macchina per la realizzazione di prodotti alimentari liquidi o semiliquidi.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304783A (ja) * 2000-04-14 2001-10-31 Daikin Ind Ltd 室外熱交換器、室内熱交換器、及び空気調和装置
JP2011127831A (ja) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp 熱交換器及びこれを備えた冷凍サイクル装置
JP2013257072A (ja) * 2012-06-12 2013-12-26 Panasonic Corp 冷凍サイクル装置
JP2014098166A (ja) * 2011-05-19 2014-05-29 Asahi Glass Co Ltd 作動媒体および熱サイクルシステム
WO2014123120A1 (ja) * 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079528C (zh) * 1993-10-28 2002-02-20 株式会社日立制作所 制冷循环及其控制方法
JP3943672B2 (ja) 1997-09-20 2007-07-11 パロマ工業株式会社 吸収式冷凍機
JPH1194369A (ja) * 1997-09-22 1999-04-09 Matsushita Electric Ind Co Ltd インジェクション機能を有する冷凍サイクルの圧縮機保護方法
DE69825178T2 (de) * 1997-11-17 2005-07-21 Daikin Industries, Ltd. Kältegerät
JP2002061992A (ja) 2000-08-21 2002-02-28 Mitsubishi Electric Corp 空気調和装置
JP2008096095A (ja) * 2006-09-13 2008-04-24 Daikin Ind Ltd 冷凍装置
JP2007085730A (ja) 2006-12-18 2007-04-05 Mitsubishi Electric Corp 空気調和機、空気調和機の運転方法
JP5239824B2 (ja) 2008-02-29 2013-07-17 ダイキン工業株式会社 冷凍装置
KR101935116B1 (ko) * 2014-03-17 2019-01-03 미쓰비시덴키 가부시키가이샤 냉동 사이클 장치
JP6305536B2 (ja) * 2014-07-01 2018-04-04 三菱電機株式会社 流体圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304783A (ja) * 2000-04-14 2001-10-31 Daikin Ind Ltd 室外熱交換器、室内熱交換器、及び空気調和装置
JP2011127831A (ja) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp 熱交換器及びこれを備えた冷凍サイクル装置
JP2014098166A (ja) * 2011-05-19 2014-05-29 Asahi Glass Co Ltd 作動媒体および熱サイクルシステム
JP2013257072A (ja) * 2012-06-12 2013-12-26 Panasonic Corp 冷凍サイクル装置
WO2014123120A1 (ja) * 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059638A (ja) * 2016-09-30 2018-04-12 株式会社富士通ゼネラル 熱交換器および冷凍サイクル装置
WO2018086418A1 (zh) * 2016-11-14 2018-05-17 重庆美的通用制冷设备有限公司 制冷系统及具有其的制冷装置
JP2018123981A (ja) * 2017-01-30 2018-08-09 株式会社富士通ゼネラル 熱交換器及び冷凍サイクル装置
JP2021509945A (ja) * 2017-12-29 2021-04-08 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. 空調機システム
JP7175985B2 (ja) 2017-12-29 2022-11-21 青島海尓空調器有限総公司 空調機システム
JPWO2020066001A1 (ja) * 2018-09-28 2021-08-30 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
GB2545827A (en) 2017-06-28
GB201703722D0 (en) 2017-04-19
JPWO2016059696A1 (ja) 2017-05-25
GB2545827B (en) 2020-06-24
US20170284712A1 (en) 2017-10-05
US10126026B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2016059696A1 (ja) 冷凍サイクル装置
JP5709978B2 (ja) 空気調和装置
JP5762427B2 (ja) 空気調和装置
WO2009157320A1 (ja) 冷凍サイクル装置及び空気調和装置
WO2014016865A1 (ja) 空気調和装置
JP5409715B2 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
WO2015140886A1 (ja) 冷凍サイクル装置
US9970693B2 (en) Refrigeration cycle apparatus
WO2016071955A1 (ja) 空気調和装置
WO2014049673A1 (ja) 空調給湯複合システム
WO2015140887A1 (ja) 冷凍サイクル装置
WO2015140885A1 (ja) 冷凍サイクル装置
JP6188916B2 (ja) 冷凍サイクル装置
JP6576603B1 (ja) 空気調和装置
WO2018181057A1 (ja) 冷凍装置
WO2018139589A1 (ja) 冷凍装置
WO2015140878A1 (ja) アキュムレータ及び冷凍サイクル装置
WO2016038659A1 (ja) 冷凍サイクル装置
JP5245510B2 (ja) 空調システム及び空調システムの室外ユニット
JP2010101588A (ja) 空気調和装置
WO2016016999A1 (ja) 冷凍サイクル装置
WO2015140877A1 (ja) 絞り装置及び冷凍サイクル装置
WO2019026276A1 (ja) 冷凍サイクル装置
JP2020148389A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553922

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505637

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201703722

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141016

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904014

Country of ref document: EP

Kind code of ref document: A1