WO2018086418A1 - 制冷系统及具有其的制冷装置 - Google Patents

制冷系统及具有其的制冷装置 Download PDF

Info

Publication number
WO2018086418A1
WO2018086418A1 PCT/CN2017/103195 CN2017103195W WO2018086418A1 WO 2018086418 A1 WO2018086418 A1 WO 2018086418A1 CN 2017103195 W CN2017103195 W CN 2017103195W WO 2018086418 A1 WO2018086418 A1 WO 2018086418A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
refrigerant
outdoor
liquid storage
storage tank
Prior art date
Application number
PCT/CN2017/103195
Other languages
English (en)
French (fr)
Inventor
杨崇银
刘开胜
李超
刘冰
Original Assignee
重庆美的通用制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆美的通用制冷设备有限公司, 美的集团股份有限公司 filed Critical 重庆美的通用制冷设备有限公司
Publication of WO2018086418A1 publication Critical patent/WO2018086418A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels

Definitions

  • the present invention relates to the field of refrigeration technology, and in particular to a refrigeration system and a refrigeration apparatus having the same.
  • the amount of refrigerant required for system circulation is different. Therefore, the refrigerant in the operation of the refrigeration system under different working conditions is adjusted to ensure the refrigerant in the system. Matching the amount of circulation with the operating conditions is critical to improving the performance of the refrigeration system.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a refrigeration system that controls the storage of refrigerant by the liquid storage tank, regulates the circulation amount of the refrigerant in the system, and achieves an optimal match between the refrigerant circulation amount and the operating condition.
  • the present invention also proposes a refrigeration apparatus having the above refrigeration system.
  • a refrigeration system includes: a compressor having an intake port and an exhaust port; an outdoor heat exchanger including a first outdoor unit for allowing refrigerant to enter and exit a port and a second outdoor port; an indoor heat exchanger including a first indoor port and a second indoor port for refrigerant to enter and exit, the suction port being selectively connectable to the first outdoor port and One of the second indoor ports is conductive, the exhaust port being selectively conductive with the other of the first outdoor port and the second indoor port; a first throttling device, the first The throttle device includes a first throttle port and a second throttle port for refrigerant to enter and exit, the first throttle port is electrically connected to the second outdoor port, and the second throttle port is configured to be An indoor port is turned on; a control valve assembly, the control valve assembly includes a first connection port and a second connection port, the first connection port is electrically connected to the second outdoor port, and the second connection port is The first indoor port is turned on, and the second
  • the refrigerant circulation of the refrigeration system under different working conditions can be adjusted by connecting a liquid storage tank and a control valve assembly for controlling the storage condition of the liquid storage tank in parallel with the first throttle device.
  • the amount is ensured to ensure the optimal matching of the circulation amount of the refrigerant in the system and the operating condition of the refrigeration system, thereby greatly improving the working performance of the refrigeration system, and the refrigeration system of the present invention has a simple structure and a low cost.
  • refrigeration system may further have the following additional technical features:
  • a second throttling device is disposed between the liquid storage tank and the first indoor port.
  • the second throttling device is a capillary tube.
  • control valve assembly is a two-way valve to control the on and off of the refrigerant in the first direction and the second direction, wherein the first direction is that the refrigerant is oriented by the second outdoor port The direction in which the liquid storage tank flows, the second direction being a direction in which the refrigerant flows from the liquid storage tank toward the second outdoor port.
  • control valve assembly is a two-way solenoid valve or a two-way motor valve.
  • the control valve assembly includes a first on-off valve and a second on-off valve connected in series with each other, the first on-off valve controlling the on and off of the refrigerant in the first direction,
  • the second on-off valve controls the on and off of the refrigerant in the second direction,
  • the first on-off valve is normally open in the second direction, and the second on-off valve is often in the first direction Opening, wherein the first direction is a direction in which the refrigerant flows from the second outdoor port toward the liquid storage tank, and the second direction is a flow of refrigerant from the liquid storage tank toward the second outdoor port The direction.
  • the first on-off valve and the second on-off valve are one-way solenoid valves.
  • the control valve assembly includes a first on-off valve and a one-way valve connected in series with each other, the first on-off valve for controlling the on and off of the refrigerant in the first direction, Normally opening in the second direction, the one-way valve is only conductive in the first direction, wherein the first direction is a direction in which the refrigerant flows from the second outdoor port toward the liquid storage tank The second direction is a direction in which the refrigerant flows from the liquid storage tank toward the second outdoor port.
  • a refrigeration apparatus including a refrigeration system, which is a refrigeration system according to the above-described first aspect of the present invention, is described below.
  • the operational performance of the refrigerating apparatus can be improved.
  • FIG. 1 is a partial structural view of a refrigeration system according to a first embodiment of the present invention, wherein the refrigeration system is in a cooling mode;
  • FIG. 2 is a partial structural view of a refrigeration system according to a first embodiment of the present invention, wherein the refrigeration system is in a heating mode;
  • FIG. 3 is a partial structural schematic view of a refrigeration system according to a second embodiment of the present invention, wherein the refrigeration system is in a cooling mode;
  • FIG. 4 is a partial structural schematic view of a refrigeration system in accordance with a third embodiment of the present invention, wherein the refrigeration system is in a cooling mode.
  • Outdoor heat exchanger 1 first outdoor port 11; second outdoor port 12;
  • Indoor heat exchanger 2 first indoor port 21; second indoor port 22;
  • a first throttle device 3 a first throttle port 31; a second throttle port 32;
  • Control valve assembly 5 one-way solenoid valve 51; one-way valve 52; two-way electric valve 53;
  • the second throttle device 6 The second throttle device 6.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece; can be mechanical or electrical; can be directly connected or indirectly through an intermediary Connected, it can be the internal communication of two components or the interaction of two components.
  • Connected, or connected in one piece can be mechanical or electrical; can be directly connected or indirectly through an intermediary Connected, it can be the internal communication of two components or the interaction of two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the amount of refrigerant required for system circulation is different.
  • the amount of refrigerant required for the refrigeration system in the cooling mode is greater than the cooling system in the heating mode.
  • the amount of refrigerant required to be recirculated is usually charged in accordance with the amount of refrigerant required for the cooling mode when charging the refrigerant to the refrigeration system line.
  • the system is in the system.
  • the circulation amount of the refrigerant is larger than actually required, and the circulation amount of the refrigerant in the system does not match the operating condition of the refrigeration system, thereby seriously affecting the working performance of the refrigeration system.
  • a refrigeration system 100 in accordance with an embodiment of the first aspect of the present invention will now be described with reference to Figs.
  • a refrigeration system 100 includes: a compressor (not shown), an outdoor heat exchanger 1, an indoor heat exchanger 2, a first throttle device 3, and a liquid storage. Tank 4 and control valve assembly 5.
  • the compressor has an intake port and an exhaust port
  • the outdoor heat exchanger 1 includes a first outdoor port 11 and a second outdoor port 12 for refrigerant to enter and exit
  • the indoor heat exchanger 2 includes a first indoor port 21 for refrigerant to enter and exit.
  • the first throttle device 3 includes a first throttle port 31 and a second throttle port 32 for refrigerant to enter and exit, the first throttle port 31 is electrically connected to the second outdoor port 12, and the second throttle port 32 is first.
  • the indoor port 21 is electrically connected, and the control valve assembly 5 includes a first connecting port and a second connecting port.
  • the first connecting port is electrically connected to the second outdoor port 12, the second connecting port is electrically connected to the first indoor port 21, and the second
  • a liquid storage tank 4 for storing refrigerant is disposed between the connection port and the first indoor port 21, and the liquid storage tank 4 has an opening 41, and any two of the opening 41, the second connection port and the first indoor port 21 are electrically connected.
  • the control valve assembly 5 is configured to:
  • the exhaust port When the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is greater than a predetermined flow rate value, at least a portion of the refrigerant at the second outdoor port 12 is controlled to flow into the liquid storage tank 4 and stored in In the liquid storage tank 4, when the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is less than or equal to a predetermined flow rate value, the refrigerant at the second outdoor port 12 is controlled to flow all the way.
  • the throttling device 3 performs throttling, and when the exhaust port is electrically connected to the second indoor port 22, at least a portion of the refrigerant at the first indoor port 21 is controlled to flow into the liquid storage tank 4 until the liquid storage tank 4 is filled.
  • the “predetermined flow value” may be the best matching value of the refrigerant circulation amount required by the system of the refrigeration system 100 under the current working condition, which may be an exact flow rate.
  • the value can also be a refrigerant flow range.
  • the refrigeration system 100 when the exhaust port is electrically connected to the first outdoor port 11, the refrigeration system 100 is in the cooling operation mode, and the high-pressure gas cooling discharged from the compressor exhaust port is performed.
  • the agent enters the outdoor heat exchanger 1 to cool down and transform into a high-pressure liquid refrigerant, and then the high-pressure liquid refrigerant enters the first throttling device 3 to perform throttling and depressurization into a low-pressure refrigerant, and then the low-pressure refrigerant enters the indoor heat exchange.
  • the heat absorption in the device 2 is converted into a gaseous refrigerant, and then the gaseous refrigerant is discharged from the indoor heat exchanger 2 and re-entered into the compressor for compression, and the compressed refrigerant again enters the outdoor heat exchanger 1 to condense, so that the cycle is repeated.
  • the refrigeration system 100 is constantly operating to reduce the indoor ambient temperature.
  • the control valve assembly 5 controls the passage between the second outdoor port 12 and the liquid storage tank 4, and the opening 41 of the liquid storage tank 4 Connected to the high pressure subcooling side, at least a portion of the refrigerant at the second indoor port 22 flows into the liquid storage tank 4 and is stored in the liquid storage tank 4, thereby reducing the circulation amount of the refrigerant in the system, so that the circulation amount of the refrigerant The optimal matching with the operating condition; if the circulation amount of the refrigerant at the second outdoor port 12 is less than or equal to the predetermined flow value, the control valve assembly 5 controls the disconnection between the second outdoor port 12 and the liquid storage tank 4, The refrigerant at the outdoor port 12 is all throttled into the first throttle device 3, at which time the refrigerant in the system does not flow into the liquid storage tank 4, and the opening 41 of the liquid storage tank 4 is electrically connected to the first indoor port 21.
  • the first indoor port 21 is a low pressure side, and the pressure value at the opening 41 of the liquid storage tank 4 is greater than the pressure value on the first indoor port 21 side, and the refrigerant in the liquid storage tank 4 will flow out of the liquid storage tank 4 and enter the indoors. Participate in the system cycle in the heat exchanger 2, improve the system in the system The amount of the circulation, so that the circulation amount of the refrigerant and the operating conditions to achieve the best match.
  • the refrigeration system 100 when the exhaust port is electrically connected to the second indoor port 22, the refrigeration system 100 is in the heating mode, and the high-pressure gaseous refrigerant discharged from the exhaust port of the compressor enters the indoor heat exchanger 2.
  • the exothermic condensation is converted into a high-pressure liquid refrigerant, and then the high-pressure liquid refrigerant is discharged into the indoor heat exchanger 2, and enters the first throttling device 3 to be throttled into a low-pressure refrigerant, and then the low-pressure refrigerant flows out of the first throttling device 3
  • entering the outdoor heat exchanger 1 to evaporate heat into a low-pressure gas refrigerant, and then the low-pressure gas refrigerant again enters the compressor to compress, so that the cycle is reciprocating, the refrigeration system 100 continuously operates to increase the indoor ambient temperature.
  • the circulation amount of the refrigerant in the system is greater than the predetermined flow rate value, and at this time, the control valve assembly 5 controls the opening between the second outdoor port 12 and the liquid storage tank 4, and the opening 41 of the liquid storage tank 4 is
  • the first indoor port 21 is in communication, the first indoor port 21 is on the high pressure supercooling side, and a part of the refrigerant at the first indoor port 21 enters the liquid storage tank 4 until the liquid storage tank 4 is filled, thereby reducing the circulation of the refrigerant in the system.
  • the amount is such that the circulation amount of the refrigerant and the operating conditions are optimally matched.
  • the refrigeration system 100 can be adjusted in different working conditions by connecting a liquid storage tank 4 and a control valve assembly 5 for controlling the storage condition of the liquid storage tank 4 in parallel with the first throttle device 3.
  • a liquid storage tank 4 and a control valve assembly 5 for controlling the storage condition of the liquid storage tank 4 in parallel with the first throttle device 3.
  • the circulation amount of the refrigerant is ensured to ensure an optimal matching of the circulation amount of the refrigerant in the system and the operating condition of the refrigeration system 100, thereby greatly improving the working performance of the refrigeration system 100, and the refrigeration system 100 of the present invention has a simple structure and low cost. .
  • a second throttle device 6 is disposed between the liquid storage tank 4 and the first indoor port 21, and the refrigeration system 100 is in a cooling mode and the refrigeration system 100
  • the circulating amount of the refrigerant in the middle of the refrigerant is less than the predetermined flow rate value, and the refrigerant stored in the liquid storage tank 4 flows out of the liquid storage tank 4, then is throttled by the second throttling device 6, and then enters the indoor heat exchanger 2 for heat exchange.
  • the refrigerant flows out of the liquid storage tank 4, it is firstly throttled into a low-pressure refrigerant by the second throttling device 6, and the low-pressure refrigerant then enters the indoor heat exchanger 2 for heat exchange, and the heat exchange efficiency is higher, thereby The cooling efficiency of the refrigeration system 100 can be improved.
  • the second throttling device 6 is a capillary tube, and has a good throttling effect and low cost. It should be noted that the second throttling device 6 is a capillary tube only a preferred embodiment of the present invention, and the present invention is not limited thereto.
  • the second throttling device 6 may also be an orifice plate, an electronic expansion valve or the like.
  • control valve assembly 5 is a two-way valve to control the on and off of the refrigerant in the first direction and the second direction, wherein the first direction is the refrigerant from the second outdoor
  • the port 12 faces the direction in which the liquid storage tank 4 flows, and the second direction is a direction in which the refrigerant flows from the liquid storage tank 4 toward the second outdoor port 12.
  • the control valve assembly 5 controls the coolant to conduct in the first direction, the second outdoor port 12 A portion of the refrigerant enters the liquid storage tank 4 through the two-way valve, and the two-way valve control is performed when the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is less than or equal to a predetermined flow rate value.
  • the refrigerant is disconnected in the first direction, and the refrigerant at the second outdoor port 12 flows into the first throttle device 3 for throttling.
  • the two-way valve controls the cooling.
  • the agent is disconnected in the second direction, and at least a portion of the refrigerant at the first indoor port 21 flows into the liquid storage tank 4 until it fills the liquid storage tank 4.
  • the control valve assembly 5 is a two-way valve, and the control can be used to control the on and off of the refrigerant in two directions, thereby simplifying the structure of the system, and the overall structure of the refrigeration system 100 is simpler and convenient to connect.
  • control valve assembly 5 can be a two-way solenoid valve or a two-way motor valve 53 (as shown in FIG. 4), whereby the two-way solenoid valve or the two-way motor valve 53 can be connected to the electronic control system of the refrigeration system 100, thereby
  • the electronic control method can be used to automatically control the on and off of the refrigerant in the first direction and the second direction, and the refrigeration system 100 operates more intelligently.
  • the two-way valve may also be a two-way manual control valve.
  • the control valve assembly 5 includes a first on-off valve and a second on-off valve (not shown) connected in series with each other, the first on-off valve controlling the refrigerant in the first direction
  • the second on-off valve controls the on-off of the refrigerant in the second direction
  • the first on-off valve is normally open in the second direction
  • the second on-off valve is normally open in the first direction.
  • the first direction is a direction in which the refrigerant flows from the second outdoor port 12 toward the liquid storage tank 4
  • the second direction is a direction in which the refrigerant flows from the liquid storage tank 4 toward the second outdoor port 12.
  • the first on-off valve When the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is greater than a predetermined flow rate value, the first on-off valve is opened, the refrigerant is turned on in the first direction, and the second outdoor port is At least a portion of the refrigerant at 12 flows into the liquid storage tank 4 and is stored in the liquid storage tank 4, when the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is less than or equal to the predetermined flow rate.
  • the first on-off valve When the value is up, the first on-off valve is disconnected, the refrigerant is disconnected in the first direction, and the refrigerant at the second outdoor port 12 flows into the first throttling device 3 for throttling, when the exhaust port and the second
  • the second on-off valve When the indoor port 22 is turned on, the second on-off valve is closed, the refrigerant is disconnected in the second direction, and at least a portion of the refrigerant at the first indoor port 21 flows into the liquid storage tank 4 until the liquid storage tank 4 is filled.
  • the first on-off valve and the second on-off valve are used to control the storage of the refrigerant in the system, and the structure is simple and the production cost is low.
  • the first on-off valve and the second on-off valve are one-way solenoid valves, whereby the one-way solenoid valve can be connected to the electronic control system of the refrigeration system 100, so that the electronic control method can be used to automatically control the refrigerant In the first direction and the second direction, the refrigeration system 100 operates more intelligently.
  • the invention is not limited thereto, and the first on-off valve and the second on-off valve may also be one-way manual control valves.
  • the control valve assembly 5 includes a first on-off valve and a one-way valve 52 connected in series with each other, the first on-off valve being used to control the refrigerant at The on and off in the first direction, which is normally open in the second direction, the one-way valve 52 can only be turned on in the first direction, in other words, the check valve 52 is normally off in the second direction, wherein One direction is a direction in which the refrigerant flows from the second outdoor port 12 toward the liquid storage tank 4, and the second direction is a direction in which the refrigerant flows from the liquid storage tank 4 toward the second outdoor port 12.
  • the first on-off valve may be a one-way solenoid valve 51.
  • the first on-off valve When the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is greater than a predetermined flow rate value, the first on-off valve is opened, the refrigerant is turned on in the first direction, and the second outdoor port is At least a portion of the refrigerant at 12 flows into the liquid storage tank 4 and is stored in the liquid storage tank 4, when the exhaust port is electrically connected to the first outdoor port 11 and the refrigerant flow rate at the second outdoor port 12 is less than or equal to the predetermined flow rate.
  • the first on-off valve When the value is up, the first on-off valve is disconnected, the refrigerant is disconnected in the first direction, and the refrigerant at the second outdoor port 12 flows into the first throttling device 3 for throttling, when the exhaust port and the second
  • the check valve 52 since the check valve 52 can only be turned on in the first direction, at this time, no control of the control valve assembly 5 is required, and at least a part of the refrigerant at the first indoor port 21 flows into the liquid storage.
  • the tank 4 is filled until the liquid storage tank 4 is filled.
  • the first on-off valve and the one-way valve 52 are used to control the storage of the refrigerant in the system, the structure is simple, the production cost is low, and the system control is more convenient.
  • a refrigeration apparatus including a refrigeration system 100, which is a refrigeration system 100 according to an embodiment of the first aspect of the present invention, is described below.
  • the operational performance of the refrigerating apparatus can be improved.

Abstract

提供一种制冷系统(100)及制冷装置。制冷系统(100)包括:具有第一室外端口(11)和第二室外端口(12)的室外换热器(1);具有第一室内端口(21)和第二室内端口(22)的室内换热器(2);具有第一节流端口(31)和第二节流端口(32)的第一节流装置(3),第一节流端口(31)与第二室外端口(12)导通,第二节流端口(32)与第一室内端口(21)导通;具有第一连接口和第二连接口的控制阀组件(5),第一连接口与第二室外端口(12)导通,第二连接口与第一室内端口(21)导通,且第二连接口与第一室内端口(21)间设有储液罐(4)。

Description

制冷系统及具有其的制冷装置 技术领域
本发明涉及制冷技术领域,尤其是涉及一种制冷系统和具有该制冷系统的制冷装置。
背景技术
制冷系统处于制冷和制热两种不同模式下运行时,系统循环所需的制冷剂的量是不同的,因此对制冷系统处于不同工况下运行时的制冷剂进行调节,保证系统中制冷剂的循环量与运行工况匹配对提高制冷系统的工作性能至关重要。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种制冷系统,所述制冷系统通过控制储液罐对制冷剂的存储,调节系统中制冷剂的循环量,实现制冷剂循环量与运行工况的最优匹配。
本发明还提出一种具有上述制冷系统的制冷装置。
根据本发明第一方面实施例的制冷系统,包括:压缩机,所述压缩机具有吸气口和排气口;室外换热器,所述室外换热器包括供制冷剂进出的第一室外端口和第二室外端口;室内换热器,所述室内换热器包括供制冷剂进出的第一室内端口和第二室内端口,所述吸气口可选择地与所述第一室外端口和所述第二室内端口的其中一个导通,所述排气口可选择地与所述第一室外端口和所述第二室内端口中的另一个导通;第一节流装置,所述第一节流装置包括供制冷剂进出的第一节流端口和第二节流端口,所述第一节流端口与所述第二室外端口导通,所述第二节流端口与所述第一室内端口导通;控制阀组件,所述控制阀组件包括第一连接口和第二连接口,所述第一连接口与所述第二室外端口导通,所述第二连接口与所述第一室内端口导通,且所述第二连接口与所述第一室内端口间设有用于储存制冷剂的储液罐,所述储液罐具有开口,所述开口、所述第二连接口和所述第一室内端口中任意两个均导通,其中所述控制阀组件被构造成:当所述排气口与所述第一室外端口导通且所述第二室外端口处的制冷剂流量大于预定流量值时,控制所述第二室外端口处的制冷剂的至少一部分流入所述储液罐并储存在所述储液罐内,当所述排气口与所述第一室外端口导通且所述第二室外端口处的制冷剂流量小于或等于所述预定流量值时,控制所述第二室外端口处的制冷剂全部流入所述第一节流装置 内进行节流,当所述排气口与所述第二室内端口导通时,控制所述第一室内端口处的制冷剂的至少一部分流入所述储液罐内直至灌满所述储液罐。
根据本发明实施例的制冷系统,通过与第一节流装置并联连接一个储液罐和用于控制储液罐存储状况的控制阀组件,可以调节制冷系统在不同工况下的制冷剂的循环量,以保证系统中制冷剂的循环量和制冷系统的运行工况达到最优匹配,从而大大提高制冷系统的工作性能,并且本发明的制冷系统结构简单,成本低。
另外,根据本发明实施例的制冷系统还可以具有如下附加技术特征:
根据本发明的一些实施例,所述储液罐与所述第一室内端口间设有第二节流装置。
根据本发明的一些实施例,所述第二节流装置为毛细管。
根据本发明的一些实施例,所述控制阀组件为双向阀以控制制冷剂在第一方向和第二方向上的通断,其中所述第一方向为制冷剂由所述第二室外端口朝向所述储液罐流动的方向,所述第二方向为制冷剂由所述储液罐朝向所述第二室外端口流动的方向。
根据本发明的一些实施例,所述控制阀组件为双向电磁阀或双向电动阀。
根据本发明的一些实施例,所述控制阀组件包括相互串联连接的第一通断阀和第二通断阀,所述第一通断阀控制制冷剂在第一方向上的通断,所述第二通断阀控制制冷剂在第二方向上的通断,所述第一通断阀在所述第二方向上常开,所述第二通断阀在所述第一方向上常开,其中所述第一方向为制冷剂由所述第二室外端口朝向所述储液罐流动的方向,所述第二方向为制冷剂由所述储液罐朝向所述第二室外端口流动的方向。
根据本发明的一些实施例,所述第一通断阀和所述第二通断阀为单向电磁阀。
根据本发明的一些实施例,所述控制阀组件包括相互串联连接的第一通断阀和单向阀,所述第一通断阀用于控制制冷剂在第一方向上的通断,其在第二方向上常开,所述单向阀仅可在所述第一方向上导通,其中所述第一方向为制冷剂由所述第二室外端口朝向所述储液罐流动的方向,所述第二方向为制冷剂由所述储液罐朝向所述第二室外端口流动的方向。
下面描述根据本发明第二方面实施例的制冷装置,包括制冷系统,所述制冷系统为根据本发明上述第一方面实施例的制冷系统。
根据本发明实施例的制冷装置,通过设置根据本发明第一方面实施例的制冷系统,可以提高制冷装置的工作性能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明第一实施例的制冷系统的部分结构示意图,其中制冷系统处于制冷模式;
图2是根据本发明第一实施例的制冷系统的部分结构示意图,其中制冷系统处于制热模式;
图3是根据本发明第二实施例的制冷系统的部分结构示意图,其中制冷系统处于制冷模式;
图4是根据本发明第三实施例的制冷系统的部分结构示意图,其中制冷系统处于制冷模式。
附图标记:
制冷系统100;
室外换热器1;第一室外端口11;第二室外端口12;
室内换热器2;第一室内端口21;第二室内端口22;
第一节流装置3;第一节流端口31;第二节流端口32;
储液罐4;开口41;
控制阀组件5;单向电磁阀51;单向阀52;双向电动阀53;
第二节流装置6。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接 相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本申请基于发明人对以下事实和问题的发现和认识作出的:
制冷系统处于制冷和制热两种不同模式下运行时,系统循环所需的制冷剂的量是不同的,制冷系统在制冷模式时所需的循环的制冷剂的量大于制冷系统在制热模式时所需的制冷剂的循环量,在向制冷系统管路内充注制冷剂时通常是按照其制冷模式所需的制冷剂的量来充注的,当其运行制热模式时,系统中制冷剂的循环量是大于实际所需的,系统中制冷剂的循环量与制冷系统的运行工况不匹配,从而严重影响制冷系统的工作性能。
下面参考图1-图4描述根据本发明第一方面实施例的制冷系统100。
如图1-图4所示,根据本发明实施例的制冷系统100包括:压缩机(图未示出)、室外换热器1、室内换热器2、第一节流装置3、储液罐4和控制阀组件5。
压缩机具有吸气口和排气口,室外换热器1包括供制冷剂进出的第一室外端口11和第二室外端口12,室内换热器2包括供制冷剂进出的第一室内端口21和第二室内端口22,吸气口可选择地与第一室外端口11和第二室内端口22的其中一个导通,排气口可选择地与第一室外端口11和第二室内端口22中的另一个导通,当吸气口与第一室外端口11导通,排气口与第二室内端口22导通时,此时制冷系统100处于制热模式,当吸气口与第二室内端口22导通,排气口与第一室外端口11导通时,此时制冷系统100处于制冷模式。第一节流装置3包括供制冷剂进出的第一节流端口31和第二节流端口32,第一节流端口31与第二室外端口12导通,第二节流端口32与第一室内端口21导通,控制阀组件5包括第一连接口和第二连接口,第一连接口与第二室外端口12导通,第二连接口与第一室内端口21导通,且第二连接口与第一室内端口21间设有用于储存制冷剂的储液罐4,储液罐4具有开口41,开口41、第二连接口和第一室内端口21中任意两个均导通,其中控制阀组件5被构造成:
当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量大于预定流量值时,控制第二室外端口12处的制冷剂的至少一部分流入储液罐4并储存在储液罐4内,当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量小于或等于预定流量值时,控制第二室外端口12处的制冷剂全部流入第一节流装置3内进行节流,当排气口与第二室内端口22导通时,控制第一室内端口21处的制冷剂的至少一部分流入储液罐4内直至灌满储液罐4。这里需要说明的是,“预定流量值”可以为制冷系统100在当前工况下系统所需的制冷剂循环量的最佳匹配值,其可以为某个确切的流量 值,也可以为一个制冷剂流量范围。
具体而言,参见附图1、图3和图4,当排气口与第一室外端口11导通时,此时制冷系统100处于制冷工作模式,由压缩机排气口排出的高压气态制冷剂进入室外换热器1中冷却降温,转变成高压液态制冷剂,接着高压液态制冷剂进入第一节流装置3内进行节流降压转变成低压制冷剂,接着低压制冷剂进入室内换热器2内吸热蒸发转变成气态制冷剂,接着气态制冷剂由室内换热器2内排出并重新进入压缩机内压缩,压缩后的制冷剂再次进入室外换热器1冷凝,如此循环往复,制冷系统100不断地运行工作,降低室内环境温度。
在此制冷循环过程中,若第二室外端口12处的制冷剂流量大于预定流量值时,控制阀组件5控制第二室外端口12与储液罐4间为通路,储液罐4的开口41与高压过冷侧相连,第二室内端口22处的至少一部分的制冷剂流入储液罐4内并储存在储液罐4内,从而减少系统中制冷剂的循环量,使得制冷剂的循环量和运行工况达到最佳匹配;若第二室外端口12处的制冷剂的循环量小于或等于预定流量值时,控制阀组件5控制第二室外端口12与储液罐4间为断路,第二室外端口12处的制冷剂全部进入第一节流装置3节流,此时系统中的制冷剂不会再流入储液罐4,储液罐4的开口41与第一室内端口21导通,第一室内端口21为低压侧,储液罐4的开口41处的压力值大于第一室内端口21侧的压力值,储液罐4内的制冷剂将会流出储液罐4并进入室内换热器2内参与系统循环,提高系统中的制冷剂的循环量,使得制冷剂的循环量和运行工况达到最佳匹配。
参见附图2,当排气口与第二室内端口22导通时,此时制冷系统100处于制热工作模式,由压缩机的排气口排出的高压气态制冷剂进入室内换热器2内放热冷凝转变成高压液态制冷剂,接着高压液态制冷剂排出室内换热器2,并进入第一节流装置3内节流转变成低压制冷剂,接着低压制冷剂流出第一节流装置3并进入室外换热器1内蒸发吸热转变成低压气态制冷剂,接着低压气态制冷剂再次进入压缩机内压缩,如此循环往复,制冷系统100不断运转工作,提高室内环境温度。在制热过程中,系统中的制冷剂的循环量是大于预定流量值的,此时控制阀组件5控制第二室外端口12和储液罐4间为断路,储液罐4的开口41与第一室内端口21连通,第一室内端口21为高压过冷侧,第一室内端口21处的制冷剂的一部分进入储液罐4内直至灌满储液罐4,减少系统中制冷剂的循环量,使得制冷剂的循环量和运行工况达到最佳匹配。
根据本发明实施例的制冷系统100,通过与第一节流装置3并联连接一个储液罐4和用于控制储液罐4存储状况的控制阀组件5,可以调节制冷系统100在不同工况下的 制冷剂的循环量,以保证系统中制冷剂的循环量和制冷系统100的运行工况达到最优匹配,从而大大提高制冷系统100的工作性能,并且本发明的制冷系统100结构简单,成本低。
在本发明的一些实施例中,如图1-图4中所示,储液罐4与第一室内端口21间设有第二节流装置6,在制冷系统100处于制冷模式且制冷系统100中的制冷剂的循环量小于预定流量值,储存在储液罐4内的制冷剂流出储液罐4后先经过第二节流装置6节流后再进入室内换热器2中换热,制冷剂由储液罐4内流出后,首先经第二节流装置6节流转变成低压制冷剂,低压制冷剂接着再进入室内换热器2内进行换热,换热效率更高,从而可以提高制冷系统100的制冷效率。
优选地,第二节流装置6为毛细管,节流效果好、成本低。这里需要说明的是第二节流装置6为毛细管仅仅为本发明的一个优选的实施例,本发明并不限于此,第二节流装置6还可以为节流孔板、电子膨胀阀等。
在本发明的一些实施例中,如图4所示,控制阀组件5为双向阀以控制制冷剂在第一方向和第二方向上的通断,其中第一方向为制冷剂由第二室外端口12朝向储液罐4流动的方向,第二方向为制冷剂由储液罐4朝向第二室外端口12流动的方向。当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量大于预定流量值时,控制阀组件5控制冷剂在第一方向上导通,第二室外端口12处的制冷剂的一部分通过该双向阀进入储液罐4内,当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量小于或等于预定流量值时,双向阀控制制冷剂在第一方向上断开,第二室外端口12处的制冷剂全部流入第一节流装置3内进行节流,当排气口与第二室内端口22导通时,双向阀控制制冷剂在第二方向上断开,第一室内端口21处的制冷剂的至少一部分流入储液罐4内直至灌满储液罐4。控制阀组件5为双向阀,通过一个控制阀就可以控制制冷剂在两个方向上的通断,从而简化系统的结构,制冷系统100整体结构更加简单、连接方便。
优选地,控制阀组件5可以为双向电磁阀或双向电动阀53(如图4所示),由此可以将双向电磁阀或双向电动阀53接入到制冷系统100的电控系统中,从而可以利用电控方法自动控制制冷剂在第一方向和第二方向上的通断,制冷系统100运行更加智能化。当然本发明并不限于此,双向阀还可以为双向手动控制阀。
在本发明的一些实施例中,控制阀组件5包括相互串联连接的第一通断阀和第二通断阀(图未示出),第一通断阀控制制冷剂在第一方向上的通断,第二通断阀控制制冷剂在第二方向上的通断,第一通断阀在第二方向上常开,第二通断阀在第一方向上常开, 其中第一方向为制冷剂由第二室外端口12朝向储液罐4流动的方向,第二方向为制冷剂由储液罐4朝向第二室外端口12流动的方向。
当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量大于预定流量值时,第一通断阀打开,制冷剂在第一方向上导通,第二室外端口12处的制冷剂的至少一部分流入储液罐4并储存在储液罐4内,当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量小于或等于预定流量值时,第一通断阀断开,制冷剂在第一方向上断开,第二室外端口12处的制冷剂全部流入第一节流装置3内进行节流,当排气口与第二室内端口22导通时,第二通断阀关闭,制冷剂在第二方向上断开,第一室内端口21处的制冷剂的至少一部分流入储液罐4内直至灌满储液罐4。通过第一通断阀和第二通断阀来控制系统中制冷剂的存储,结构简单,生产成本低。
优选地,第一通断阀和第二通断阀为单向电磁阀,由此可以将单向电磁阀接入到制冷系统100的电控系统中,从而可以利用电控方法自动控制制冷剂在第一方向和第二方向上的通断,制冷系统100运行更加智能化。当然本发明并不限于此,第一通断阀和第二通断阀还可以为单向手动控制阀。
在本发明的一些实施例中,如图1-图3中所示,控制阀组件5包括相互串联连接的第一通断阀和单向阀52,第一通断阀用于控制制冷剂在第一方向上的通断,其在第二方向上常开,单向阀52仅可在第一方向上导通,换言之,单向阀52在第二方向上是常断开状态,其中第一方向为制冷剂由第二室外端口12朝向储液罐4流动的方向,第二方向为制冷剂由储液罐4朝向第二室外端口12流动的方向。可选地,如图1-图3中所示,第一通断阀可以为单向电磁阀51。
当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量大于预定流量值时,第一通断阀打开,制冷剂在第一方向上导通,第二室外端口12处的制冷剂的至少一部分流入储液罐4并储存在储液罐4内,当排气口与第一室外端口11导通且第二室外端口12处的制冷剂流量小于或等于预定流量值时,第一通断阀断开,制冷剂在第一方向上断开,第二室外端口12处的制冷剂全部流入第一节流装置3内进行节流,当排气口与第二室内端口22导通时,由于单向阀52仅可在第一方向上导通,此时不需要对控制阀组件5进行任何控制,第一室内端口21处的制冷剂的至少一部分流入储液罐4内直至灌满储液罐4。通过第一通断阀和单向阀52来控制系统中制冷剂的存储,结构简单,生产成本低,并且系统控制更加方便。
下面描述根据本发明第二方面实施例的制冷装置,包括制冷系统100,所述制冷系统100为根据本发明第一方面实施例的制冷系统100。
根据本发明实施例的制冷装置,通过设置根据本发明上述第一方面实施例的制冷系统100,可以提高制冷装置的工作性能。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

  1. 一种制冷系统,其特征在于,包括:
    压缩机,所述压缩机具有吸气口和排气口;
    室外换热器,所述室外换热器包括供制冷剂进出的第一室外端口和第二室外端口;
    室内换热器,所述室内换热器包括供制冷剂进出的第一室内端口和第二室内端口,所述吸气口可选择地与所述第一室外端口和所述第二室内端口的其中一个导通,所述排气口可选择地与所述第一室外端口和所述第二室内端口中的另一个导通;
    第一节流装置,所述第一节流装置包括供制冷剂进出的第一节流端口和第二节流端口,所述第一节流端口与所述第二室外端口导通,所述第二节流端口与所述第一室内端口导通;
    控制阀组件,所述控制阀组件包括第一连接口和第二连接口,所述第一连接口与所述第二室外端口导通,所述第二连接口与所述第一室内端口导通,且所述第二连接口与所述第一室内端口间设有用于储存制冷剂的储液罐,所述储液罐具有开口,所述开口、所述第二连接口和所述第一室内端口中任意两个均导通,其中所述控制阀组件被构造成:
    当所述排气口与所述第一室外端口导通且所述第二室外端口处的制冷剂流量大于预定流量值时,控制所述第二室外端口处的制冷剂的至少一部分流入所述储液罐并储存在所述储液罐内,当所述排气口与所述第一室外端口导通且所述第二室外端口处的制冷剂流量小于或等于所述预定流量值时,控制所述第二室外端口处的制冷剂全部流入所述第一节流装置内进行节流,当所述排气口与所述第二室内端口导通时,控制所述第一室内端口处的制冷剂的至少一部分流入所述储液罐内直至灌满所述储液罐。
  2. 根据权利要求1所述的制冷系统,其特征在于,所述储液罐与所述第一室内端口间设有第二节流装置。
  3. 根据权利要求2所述的制冷系统,其特征在于,所述第二节流装置为毛细管。
  4. 根据权利要求1-3中任一项所述的制冷系统,其特征在于,所述控制阀组件为双向阀以控制制冷剂在第一方向和第二方向上的通断,其中所述第一方向为制冷剂由所述第二室外端口朝向所述储液罐流动的方向,所述第二方向为制冷剂由所述储液罐朝向所述第二室外端口流动的方向。
  5. 根据权利要求4所述的制冷系统,其特征在于,所述控制阀组件为双向电磁阀或双向电动阀。
  6. 根据权利要求1-3中任一项所述的制冷系统,其特征在于,所述控制阀组件包括相互串联连接的第一通断阀和第二通断阀,所述第一通断阀控制制冷剂在第一方向上的通断,所述第二通断阀控制制冷剂在第二方向上的通断,所述第一通断阀在所述第二方向上常开,所述第二通断阀在所述第一方向上常开,其中所述第一方向为制冷剂由所述第二室外端口朝向所述储液罐流动的方向,所述第二方向为制冷剂由所述储液罐朝向所述第二室外端口流动的方向。
  7. 根据权利要求6所述的制冷系统,其特征在于,所述第一通断阀和所述第二通断阀为单向电磁阀。
  8. 根据权利要求1-3中任一项所述的制冷系统,其特征在于,所述控制阀组件包括相互串联连接的第一通断阀和单向阀,所述第一通断阀用于控制制冷剂在第一方向上的通断,其在第二方向上常开,所述单向阀仅可在所述第一方向上导通,其中所述第一方向为制冷剂由所述第二室外端口朝向所述储液罐流动的方向,所述第二方向为制冷剂由所述储液罐朝向所述第二室外端口流动的方向。
  9. 一种制冷装置,其特征在于,包括根据权利要求1-8中任一项所述的制冷系统。
PCT/CN2017/103195 2016-11-14 2017-09-25 制冷系统及具有其的制冷装置 WO2018086418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016110325352 2016-11-14
CN201611032535.2A CN106766324A (zh) 2016-11-14 2016-11-14 制冷系统及具有其的制冷装置

Publications (1)

Publication Number Publication Date
WO2018086418A1 true WO2018086418A1 (zh) 2018-05-17

Family

ID=58971064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103195 WO2018086418A1 (zh) 2016-11-14 2017-09-25 制冷系统及具有其的制冷装置

Country Status (2)

Country Link
CN (1) CN106766324A (zh)
WO (1) WO2018086418A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766324A (zh) * 2016-11-14 2017-05-31 重庆美的通用制冷设备有限公司 制冷系统及具有其的制冷装置
CN108613425B (zh) * 2018-03-26 2022-04-26 广东美的制冷设备有限公司 空调装置
CN113432348B (zh) * 2021-07-05 2024-03-19 珠海格力电器股份有限公司 一种冷媒循环量调节装置、方法及空调系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109643A (en) * 1976-03-12 1977-09-14 Hitachi Ltd Heat pump type air conditioning equipment
EP0134015A2 (en) * 1983-08-10 1985-03-13 Hitachi, Ltd. Space cooling and heating and hot water supplying apparatus
CN101078583A (zh) * 2006-05-25 2007-11-28 乐金电子(天津)电器有限公司 可调节冷媒流量的空调器及其调节方法
CN102087057A (zh) * 2009-12-08 2011-06-08 海信(山东)空调有限公司 可平衡冷媒量的空调系统
CN203163366U (zh) * 2013-02-05 2013-08-28 东莞市微电环保科技有限公司 一种空调冷媒调节装置
CN103868283A (zh) * 2014-04-03 2014-06-18 深圳麦克维尔空调有限公司 一种空调系统
WO2016059696A1 (ja) * 2014-10-16 2016-04-21 三菱電機株式会社 冷凍サイクル装置
CN105588376A (zh) * 2016-02-23 2016-05-18 珠海格力电器股份有限公司 制冷系统及其控制方法、冷藏运输车
CN106766324A (zh) * 2016-11-14 2017-05-31 重庆美的通用制冷设备有限公司 制冷系统及具有其的制冷装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313069A (ja) * 1995-05-19 1996-11-29 Fujitsu General Ltd 空気調和機
JPH11248266A (ja) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp 空気調和機及び凝縮器
JP2000266415A (ja) * 1999-03-15 2000-09-29 Bosch Automotive Systems Corp 冷凍サイクル
JP2004205116A (ja) * 2002-12-25 2004-07-22 Toshiba Kyaria Kk 冷温水発生装置およびその制御方法
CN1287121C (zh) * 2004-04-05 2006-11-29 广东科龙电器股份有限公司 可实现冷媒充灌量动态控制的空调器节流装置
JP4687710B2 (ja) * 2007-12-27 2011-05-25 三菱電機株式会社 冷凍装置
JP6087611B2 (ja) * 2012-12-14 2017-03-01 シャープ株式会社 冷凍サイクル及びこれを備えた空気調和機
US9506678B2 (en) * 2014-06-26 2016-11-29 Lennox Industries Inc. Active refrigerant charge compensation for refrigeration and air conditioning systems

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109643A (en) * 1976-03-12 1977-09-14 Hitachi Ltd Heat pump type air conditioning equipment
EP0134015A2 (en) * 1983-08-10 1985-03-13 Hitachi, Ltd. Space cooling and heating and hot water supplying apparatus
CN101078583A (zh) * 2006-05-25 2007-11-28 乐金电子(天津)电器有限公司 可调节冷媒流量的空调器及其调节方法
CN102087057A (zh) * 2009-12-08 2011-06-08 海信(山东)空调有限公司 可平衡冷媒量的空调系统
CN203163366U (zh) * 2013-02-05 2013-08-28 东莞市微电环保科技有限公司 一种空调冷媒调节装置
CN103868283A (zh) * 2014-04-03 2014-06-18 深圳麦克维尔空调有限公司 一种空调系统
WO2016059696A1 (ja) * 2014-10-16 2016-04-21 三菱電機株式会社 冷凍サイクル装置
CN105588376A (zh) * 2016-02-23 2016-05-18 珠海格力电器股份有限公司 制冷系统及其控制方法、冷藏运输车
CN106766324A (zh) * 2016-11-14 2017-05-31 重庆美的通用制冷设备有限公司 制冷系统及具有其的制冷装置

Also Published As

Publication number Publication date
CN106766324A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN204854066U (zh) 换热系统
WO2019200951A1 (zh) 空调热泵系统及控制方法
WO2015172612A1 (zh) 空调系统
CN203375761U (zh) 空调器
WO2018046026A1 (zh) 采用喷射器的空调热泵系统、空调器及空调器控制方法
WO2018086418A1 (zh) 制冷系统及具有其的制冷装置
CN108692478B (zh) 空调系统及空调系统的控制方法
CN106500390A (zh) 冷暖型空调器及其控制方法
CN104034100B (zh) 闪蒸器及具有该闪蒸器的空调系统
CN104976813A (zh) 空调器
CN106705473A (zh) 换热系统
US11828507B2 (en) Air conditioning system and control method therefor
CN106642790A (zh) 一种空调系统及控制方法
WO2021098552A1 (zh) 一种热泵式空调系统及其控制方法
CN205641257U (zh) 冷暖型空调器
WO2018018767A1 (zh) 冷暖型空调器及控制方法
CN203964476U (zh) 闪蒸器及具有该闪蒸器的空调系统
CN204254925U (zh) 换热系统及具有其的空调器
CN108087238B (zh) 压缩机及具有其的空调系统
CN107816816B (zh) 制冷装置
WO2022222587A1 (zh) 空调器的补气控制方法、空调器、存储介质及用于空调器的压缩机
CN104101133B (zh) 压缩机排气系统及其排气方法
CN205448393U (zh) 压缩机系统
CN211903092U (zh) 一种一体式空调机组
CN205641646U (zh) 冷暖型空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869160

Country of ref document: EP

Kind code of ref document: A1