WO2019172008A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019172008A1
WO2019172008A1 PCT/JP2019/007175 JP2019007175W WO2019172008A1 WO 2019172008 A1 WO2019172008 A1 WO 2019172008A1 JP 2019007175 W JP2019007175 W JP 2019007175W WO 2019172008 A1 WO2019172008 A1 WO 2019172008A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
current
current value
refrigeration cycle
value
Prior art date
Application number
PCT/JP2019/007175
Other languages
English (en)
French (fr)
Inventor
清水 努
健 苅野
宏治 室園
佐藤 成広
伊藤 歌奈女
任彦 橋元
鶸田 晃
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980015304.6A priority Critical patent/CN111771091B/zh
Priority to EP19764649.0A priority patent/EP3764027A4/en
Publication of WO2019172008A1 publication Critical patent/WO2019172008A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus using a working medium containing an ethylene-based fluorinated hydrocarbon having a double bond.
  • a compressor, a radiator or condenser, a decompressor such as a capillary tube or an expansion valve, and an evaporator are connected by piping to constitute a refrigeration cycle circuit.
  • a four-way valve is used as necessary. Then, a cooling or heating action is performed by circulating a refrigeration cycle working medium (refrigerant or heat medium) in the refrigeration cycle circuit.
  • chlorofluorocarbons As the working medium for the refrigeration cycle in the refrigeration cycle apparatus, chlorofluorocarbons (the chlorofluorocarbons are described as RXX or RXX in accordance with the US ASHRAE 34 standard. In the following, halogenated hydrocarbons derived from methane or ethane, known as RXX or RXX), are known.
  • R410A is often used as the working medium for the refrigeration cycle as described above.
  • GWP global warming potential
  • HFO1123 (1,1,2-trifluoroethylene) and HFO1132 (1,2-difluoroethylene) are attracting attention as small GWP refrigerants (for example, (See Patent Document 1 or Patent Document 2).
  • HFO1123 (1,1,2-trifluoroethylene) and HFO1132 (1,2-difluoroethylene) are less stable than conventional refrigerants such as R410A. Due to the low stability, a self-decomposition reaction and a polymerization reaction (hereinafter referred to as a disproportionation reaction) that occurs after the self-decomposition reaction are likely to occur.
  • the disproportionation reaction refers only to a self-decomposition reaction in a narrow sense, and refers to a self-decomposition reaction and a polymerization reaction following the self-decomposition reaction in a broad sense.
  • the present disclosure prevents high energy from being added to the refrigerant in the compressor, or prevents excessive collision between refrigerant molecules and electrons in the discharge space, thereby suppressing the occurrence of the disproportionation reaction.
  • a highly reliable refrigeration cycle apparatus using a working medium containing an ethylene-based fluorinated hydrocarbon having a double bond is provided.
  • a refrigeration cycle apparatus of the present disclosure includes a compressor having an electric motor, a condenser, a decompressor, and an evaporator, and a refrigeration cycle circuit configured to be annularly connected, and enclosed in the refrigeration cycle circuit. And a working medium containing an ethylene-based fluorinated hydrocarbon having a heavy bond.
  • the compressor motor when the current value of the input current of the compressor motor exceeds a first predetermined value set to three times or more of the maximum current value during normal operation other than when the compressor is started, the compressor motor When the current value of the input current exceeds the second predetermined value set to be twice or more the current value at the start of the compressor, and the amount of change in the current value of the input current of the motor of the compressor When the number of discharge electrons in the discharge space calculated based on the above exceeds a third predetermined value set to 1.0 ⁇ 10 19 pieces / second or more, at least in any case, to the compressor A protective device that performs at least one of stopping the power supply and reducing the rotational speed of the compressor.
  • Such a configuration can suppress a rapid increase in the concentration of the generated radicals, and can effectively suppress the occurrence of a disproportionation reaction.
  • FIG. 1 is a diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic configuration of the protection device for the air conditioner according to the first embodiment and the third embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a current waveform of the electric motor when the disproportionation reaction occurs in the refrigeration cycle apparatus according to the first embodiment and the third embodiment.
  • FIG. 4 is a diagram illustrating a relationship between the maximum current value during normal operation and the occurrence of a disproportionation reaction in the air conditioner according to Embodiment 1 of the present disclosure.
  • FIG. 5 is a diagram illustrating a schematic configuration of the protective device for an air conditioner according to the second embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating a relationship between the starting current and the occurrence of a disproportionation reaction in the air conditioner according to Embodiment 1 and Embodiment 2 of the present disclosure.
  • FIG. 7 is a diagram illustrating a relationship between the number of discharge electrons in the discharge space and the occurrence of a disproportionation reaction in the air conditioner according to Embodiment 3 of the present disclosure.
  • a refrigeration cycle apparatus includes a compressor having an electric motor, a condenser, a decompressor, and an evaporator connected in a ring shape, and a refrigeration cycle circuit. And a working medium containing an ethylene-based fluorohydrocarbon having a double bond.
  • the compressor when the current value of the current input to the motor of the compressor exceeds a first predetermined value set to three times or more of the maximum current value during normal operation other than when the compressor is started, the compressor When the current value of the input current of the motor exceeds the second predetermined value set to at least twice the current value at the start of the compressor, and the change in the current value of the input current of the motor of the compressor When the number of discharge electrons in the discharge space calculated based on the amount exceeds a third predetermined value set to 1.0 ⁇ 10 19 pieces / second or more, compression is performed in at least one of the cases A protective device for at least one of stopping the power supply to the machine and lowering the rotational speed of the compressor.
  • the protective device includes a current sensor and a cutoff device. Then, power supply to the compressor is stopped in less than 1 second from the time when the current value of the input current of the compressor motor detected by the current sensor exceeds the first predetermined value or the second predetermined value. And / or a reduction in the rotational speed of the compressor.
  • Such a configuration can suppress a rapid increase in the concentration of radicals generated by discharge, and thus can more reliably prevent the occurrence of a disproportionation reaction.
  • the protection device disconnects in less than 1 second from the time when the current value of the input current of the compressor exceeds the first predetermined value or the second predetermined value. You may have a fuse.
  • the power supply to the compressor can be stopped by the current fuse, it can be applied to a compressor having no electronic control circuit such as an inverter. And since the electric power supply to a compressor can be stopped in less than 1 second from the time of an electric current value exceeding predetermined value, the rapid increase of the density
  • the above-described current sensor may be configured by a current transformer.
  • the above-described compressor may be a fixed capacity type.
  • Such a configuration can prevent the occurrence of a disproportionation reaction even in a refrigeration cycle apparatus that does not have a function of electronically stopping power supply to the compressor.
  • FIG. 1 is a diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 1 of the present disclosure.
  • an air conditioner 100 will be described as an example of a refrigeration cycle apparatus.
  • the air conditioner 100 includes an outdoor unit 101 and an indoor unit 102.
  • the outdoor unit 101 and the indoor unit 102 are connected by a connection pipe 110.
  • the outdoor unit 101 includes a compressor 103, an outdoor heat exchanger 104 (condenser or evaporator), and an expander 105.
  • the indoor unit 102 includes an indoor heat exchanger 106 (evaporator or condenser).
  • the outdoor heat exchanger 104 of the outdoor unit 101 and the indoor heat exchanger 106 of the indoor unit 102 are annularly connected by a connection pipe 110.
  • the refrigeration cycle circuit is configured.
  • the compressor 103, the indoor heat exchanger 106 of the indoor unit 102, the expander 105 as a pressure reducer, and the outdoor heat exchanger 104 of the outdoor unit 101 are connected in a ring shape in this order by the connection pipe 110.
  • a refrigeration cycle circuit is configured.
  • connection pipe 110 connecting the compressor 103, the outdoor heat exchanger 104, and the indoor heat exchanger 106 is provided with a four-way valve 109 for switching between air conditioning and heating.
  • the outdoor unit 101 includes a blower 114, an accumulator (not shown), a temperature sensor, and the like.
  • the indoor unit 102 includes a blower fan 113, a temperature sensor (not shown), an operation unit, and the like.
  • the indoor heat exchanger 106 of the indoor unit 102 is between the indoor air sucked into the indoor unit 102 by the blower fan 113 and the refrigerant (working medium for the refrigeration cycle) that flows inside the indoor heat exchanger 106. Perform heat exchange.
  • the indoor unit 102 blows air warmed by heat exchange in the indoor heat exchanger 106 into the room during heating. Further, the indoor unit 102 blows air cooled by heat exchange in the indoor heat exchanger 106 into the room during cooling.
  • the outdoor heat exchanger 104 included in the outdoor unit 101 exchanges heat between the outside air sucked into the outdoor unit 101 by the blower 114 and the refrigerant flowing inside the outdoor heat exchanger 104.
  • a working medium (refrigerant) containing an ethylene-based fluorohydrocarbon having a double bond is enclosed.
  • a working medium containing HFO1123 (1,1,2-trifluoroethylene) is enclosed.
  • the compressor 103 compresses this working medium (refrigerant) and circulates the refrigerant in the refrigeration cycle circuit.
  • the compressor 103 is a so-called hermetic compressor, and lubricating oil is sealed inside the compressor 103.
  • the working medium may cause a disproportionation reaction.
  • the air conditioner 100 may include a temperature sensor, an operation unit, an accumulator, other valve devices, a strainer, and the like (not shown). In that case, the specific configuration thereof is not particularly limited, and is publicly known. The configuration can be suitably used.
  • a protective device 200 is provided in the air conditioner 100 in order to prevent the occurrence of a layer short.
  • the protection device 200 has a configuration as shown in FIG. 2 to be described below. When the current for driving the motor 204 exceeds a predetermined value, the energization to the motor 204 is cut off.
  • FIG. 2 is a diagram illustrating a schematic configuration of a protection device for an air conditioner according to Embodiment 1 and Embodiment 3 of the present disclosure.
  • the protective device 200 includes a current transformer 201 as a current sensor for detecting a current value, and a breaker 202 such as a relay or an electronic circuit.
  • a current transformer is used as an example of the current sensor.
  • the current sensor may be any sensor that can directly or indirectly detect the current value of the current input to the motor of the compressor 103, such as a hall sensor.
  • the shutoff device 202 is connected between the power source 205 and the electric motor 204 of the compressor 103.
  • the electric motor 204 is configured to be controlled by an electronic control circuit such as an inverter circuit (not shown).
  • the refrigerant flow 112 indicates the direction of the refrigerant during the heating operation.
  • the gas refrigerant compressed and discharged by the compressor 103 is sent to the indoor heat exchanger 106 of the indoor unit 102 via the four-way valve 109.
  • the indoor heat exchanger 106 heat exchange is performed between the gas refrigerant and the room air, whereby the gas refrigerant is condensed and liquefied.
  • the liquefied liquid refrigerant is decompressed by the expander 105 to become a gas-liquid two-phase refrigerant, and is sent to the outdoor heat exchanger 104 of the outdoor unit 101.
  • the outdoor heat exchanger 104 heat exchange is performed between the outside air and the gas-liquid two-phase refrigerant, whereby the gas-liquid two-phase refrigerant evaporates to become a gas refrigerant and returns to the compressor 103.
  • the compressor 103 compresses the gas refrigerant, and the refrigerant discharged from the compressor 103 is sent again to the indoor heat exchanger 106 of the indoor unit 102 via the four-way valve 109.
  • the gas refrigerant compressed and discharged by the compressor 103 of the outdoor unit 101 is sent to the outdoor heat exchanger 104 of the outdoor unit 101 via the four-way valve 109.
  • the outdoor heat exchanger 104 heat exchange is performed between the outside air and the gas refrigerant, whereby the gas refrigerant is condensed and liquefied.
  • the liquefied liquid refrigerant is decompressed by the expander 105 and sent to the indoor heat exchanger 106 of the indoor unit 102.
  • the indoor heat exchanger 106 the heat exchange is performed between the indoor air and the liquid refrigerant, whereby the liquid refrigerant evaporates to become a gas refrigerant.
  • This gas refrigerant returns to the compressor 103 of the outdoor unit 101 via the four-way valve 109 and the suction pipe 111.
  • the compressor 103 compresses the gas refrigerant, and the refrigerant discharged from the compressor 103 is sent to the outdoor heat exchanger 104 again through the four-way valve 109.
  • the operating condition is not normal, that is, as described above, the blower fan 113 on the condenser side is stopped or the refrigeration cycle apparatus is blocked. Then, the pressure on the high pressure side in the refrigeration cycle circuit increases excessively. Along with this, the temperature inside the compressor 103 also rises greatly. As a result, the refrigerant becomes disproportionated easily. That is, if the temperature and pressure, which are the dominant factors of the disproportionation reaction, increase, the motor 204 generates heat abnormally, and electric power continues to be supplied to the motor 204 as it is, a phenomenon called a layer short is caused.
  • the layer short is a phenomenon in which the conductors of the stator windings constituting the stator of the electric motor 204 are short-circuited due to deterioration of the winding insulating material.
  • the layer short which is a high energy source, causes an increase in radical concentration due to the radical reaction of the refrigerant, which easily induces a disproportionation reaction of the refrigerant.
  • the protective device 200 moves to the compressor 103. Stop power supply.
  • the predetermined current value is a current value before the refrigerant disproportionation reaction is induced. Thereby, generation
  • FIG. 3 is a diagram showing a current waveform of the electric motor when the disproportionation reaction occurs in the refrigeration cycle apparatus according to the first embodiment and the third embodiment.
  • the predetermined current value (first predetermined value) is set to a current value before the time when the current input to the compressor 103 becomes the current value at which the layer short-circuit occurs.
  • the layer short in this case refers to a layer short that causes a disproportionation reaction in a refrigerant under high temperature and high pressure conditions in which a disproportionation reaction easily occurs.
  • FIG. 4 is a diagram illustrating a relationship between the maximum current value during normal operation and the occurrence of a disproportionation reaction in the air conditioner according to Embodiment 1 of the present disclosure.
  • FIG. 4 shows the state of disproportionation reaction occurring at the upper limit temperature 130 ° C. and the upper limit pressure 8 MPa at which the refrigerant disproportionation reaction that occurs in the actual air conditioner 100 occurs.
  • the horizontal axis in FIG. 4 indicates the capacity (horsepower) of the compressor 103.
  • the vertical axis in FIG. 4 indicates the ratio of the current value when the disproportionation reaction occurs to the maximum current value of the compressor 103 during normal operation other than during startup.
  • the current value of the current input to the compressor 103 is set to a predetermined value set to three times or more of the maximum current value during normal operation other than when the compressor 103 is started.
  • a predetermined current value (first predetermined value) is set.
  • the protective device 200 causes the electric motor to move in less than 1 second, preferably less than 0.5 seconds, more preferably less than 0.1 seconds from the time when the current value exceeds the first predetermined value.
  • the power supply to 204 is stopped. If the current value exceeds the first predetermined value for 1 second or longer, a layer short circuit may occur during that time. Then, the energy resulting from the layer short (the amount of electrons emitted by the layer short) exceeds a threshold that can suppress the disproportionation reaction, thereby inducing the disproportionation reaction.
  • the induction of the disproportionation reaction can be prevented more reliably. . That is, if the power supply to the electric motor 204 is stopped in less than 1 second, the effect of suppressing the disproportionation reaction can be ensured.
  • the protective device 200 can use either a reversible operation type that returns to its original state after stopping the power supply to the electric motor 204, that is, a configuration that restarts the power supply, or an irreversible operation type. is there.
  • a reversible operation type that returns to its original state after stopping the power supply to the electric motor 204 that is, a configuration that restarts the power supply
  • an irreversible operation type that does not return to the original state once it is operated and continues to stop power supply is used.
  • the current value when stopping the power supply is set to two levels (a first current value and a second current value lower than the first current value). ) Is preferable.
  • first current value if the current value subsequently decreases, power can be supplied to the compressor 103 again.
  • second current value when the value of the current input to the compressor 103 becomes the higher current value (second current value), even if the current value subsequently decreases, the power is supplied without supplying power again. It is preferable to perform an irreversible operation to be stopped.
  • an overcurrent for example, a current that is about 1.5 times the maximum current value during normal operation other than when the compressor 103 starts
  • an overcurrent flows through the electric motor 204 of the compressor 103.
  • a safety device that detects this and stops the operation of the compressor 103 is provided.
  • the protective device 200 disclosed in the present embodiment is provided separately from such a safety device. Therefore, in the case where such a conventional safety device is provided, even if the safety device fails, it is possible to prevent the occurrence of a refrigerant disproportionation reaction by operating the protective device 200. Is possible.
  • the protection device 200 when the current supplied to the electric motor 204 exceeds a predetermined current value (first predetermined value) before the disproportionation reaction is induced, the protection device 200 supplies the compressor 103. Stop power supply.
  • the protective device 200 can avoid the generation of a disproportionation reaction of the refrigerant by reducing the rotation speed of the compressor 103 by an electronic control circuit such as an inverter circuit that controls the rotation speed of the compressor 103. . That is, the protective device 200 can avoid the occurrence of a disproportionation reaction of the refrigerant by stopping power supply to the compressor 103 and / or reducing the rotational speed of the compressor 103. I can do it.
  • FIG. 5 is a diagram illustrating a schematic configuration of the protection device for the air conditioner according to the second embodiment.
  • the protective device 200 includes a current fuse 203. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the current fuse 203 stops power supply to the electric motor 204 for less than 1 second, preferably less than 0.5 seconds, more preferably 0.1 seconds from the time when the current value exceeds the first predetermined value. Configured to do in less than.
  • the protective device 200 is suitable for a compressor having no electronic control circuit having a current detection function, that is, a fixed-capacity compressor such as a constant speed compressor.
  • the current fuse 203 is configured to stop the power supply in less than one second from the time when the current value exceeds the first predetermined value. Therefore, it is possible to reliably prevent the disproportionation reaction from occurring.
  • the current fuse blows (breaks) and cuts off the current when the state where the current value exceeds the threshold value continues for a predetermined time (for example, about several tens of seconds to several minutes). For this reason, a layer short occurs until the current is cut off, and if the state in which the layer short occurs continues, sufficient energy is released to generate a disproportionation reaction. There is a high possibility that the occurrence of the chemical reaction cannot be prevented.
  • the current fuse 203 is configured to blow in less than 1 second, a layer short circuit is prevented from occurring before the current fuse is blown, Generation of disproportionation reaction can be prevented more reliably.
  • the protective device 200 has a predetermined current value (first predetermined value) in which the current value is set to be three times or more the maximum current value during normal operation of the compressor 103. If it exceeds (value), the power supply to the compressor 103 is stopped.
  • first predetermined value the current value is set to be three times or more the maximum current value during normal operation of the compressor 103. If it exceeds (value), the power supply to the compressor 103 is stopped.
  • the power supply to the compressor 103 is stopped. May be.
  • FIG. 6 is a diagram illustrating a relationship between the starting current and the occurrence of a disproportionation reaction in the air conditioner according to Embodiment 1 and Embodiment 2 of the present disclosure.
  • FIG. 6 is a view in which the disproportionation reaction is confirmed under the same conditions as in FIG. 4 with respect to the starting current of the compressor 103.
  • the disproportionation reaction occurs when the current value becomes larger than twice the starting current value of the compressor 103. For this reason, even when a predetermined current value (second predetermined value) that is twice or more the starting current value of the compressor 103 is set as the current value for stopping the power supply to the compressor 103, the refrigerant is not used. Generation of the leveling reaction can be prevented.
  • the protection device 200 has a predetermined current value (the current value input to the compressor 103 is set to be three times or more the maximum current value during normal operation other than when the compressor 103 is started). Power to the compressor 103 when exceeding at least one of a first predetermined value) and a predetermined current value (second predetermined value) set to be twice or more the starting current value of the compressor 103 What is necessary is just to be comprised so that supply may be stopped.
  • the protective device 200 may be configured to combine the current fuse 203 described in the present embodiment and the current transformer 201 and the circuit breaker 202 described in the first embodiment together. Good. At this time, instead of the current transformer 201, other current detection means may be used.
  • the disproportionation reaction is realized by a double current supply stop configuration of reduction or stop of current supply to the compressor 103 by electronic control and stop of current supply to the compressor 103 due to disconnection of the current fuse 203. Can be more reliably avoided.
  • a working medium containing an ethylene-based fluorocarbon having a double bond is enclosed in the refrigeration cycle circuit.
  • refrigerant is a working medium containing HFO1123 (1,1,2-trifluoroethylene).
  • the protection device 200 includes a current transformer 201 that detects a current value and a breaker device 202 such as a relay or an electronic circuit.
  • the protective device 200 detects a current value (instantaneous value) input to the compressor 103 by an electronic control circuit (not shown), and is calculated based on a change amount of the current value (instantaneous value).
  • the number of discharge electrons exceeds 1.0 ⁇ 10 19 / sec, the power supply to the compressor 103 is stopped.
  • the number of discharge electrons corresponds to the amount of energy that causes a layer short. Thereby, generation
  • the layer short is a phenomenon in which the conductors of the stator windings constituting the stator of the electric motor 204 are short-circuited due to deterioration of the winding insulating material.
  • the layer short causes excessive collision between the refrigerant molecules and the electrons. Thereby, the radical concentration by the radical reaction of a refrigerant
  • the current value (instantaneous value) input to the electric motor 204 when the operating condition is not normal as described above is detected by an electronic control circuit such as an inverter circuit (not shown).
  • an electronic control circuit such as an inverter circuit (not shown).
  • power supply to the compressor is stopped. .
  • coolant can be avoided.
  • the protective device 200 has a discharge electron number in the discharge space calculated from the amount of change in the current value (instantaneous value) input to the compressor 103 at 1.0 ⁇ 10 19 / sec.
  • a predetermined amount of change in the current value (instantaneous value) is detected, power supply to the electric motor 204 is stopped.
  • the predetermined amount of change in the current value (instantaneous value) described above is a discharge that causes a layer short circuit that causes a disproportionation reaction in the refrigerant under high temperature and high pressure conditions where the disproportionation reaction of the refrigerant is likely to occur. This corresponds to the number of discharge electrons before the time when the number of electrons is reached.
  • FIG. 7 is a diagram illustrating a relationship between the number of discharge electrons in the discharge space and the occurrence of a disproportionation reaction in the air conditioner according to Embodiment 3 of the present disclosure.
  • FIG. 7 shows the state of disproportionation reaction occurring when the upper limit temperature of 130 ° C. and the upper limit pressure of 8 MPa at which the refrigerant disproportionation reaction that occurs in the actual air conditioner 100 occurs.
  • the horizontal axis in FIG. 7 indicates the test number, and the vertical axis in FIG. 7 indicates the number of discharge electrons (number) in the discharge space when disproportionation occurs.
  • the disproportionation reaction occurs when the number of discharge electrons in the discharge space exceeds 1.0 ⁇ 10 19 / sec.
  • the amount of change in the current value (instantaneous value) due to the layer short is as follows. ) Difference.
  • the amount of discharge electrons (number per second) in the discharge space is obtained by dividing the change amount (ampere) of the current value (instantaneous value) due to the layer short by the elementary electric amount (1.6 ⁇ 10 19 -coulomb). Become. Therefore, the amount of change in the current value (instantaneous value) corresponding to 1.0 ⁇ 10 19 discharge electrons in the discharge space is 1.6 A.
  • the disproportionation reaction is the number of discharge electrons in the discharge space calculated from the amount of change in the current value (instantaneous value) input to the compressor 103. Has been found to occur at greater than 1.0 ⁇ 10 19 per second.
  • the protection device 200 is greater than the discharge number of electrons in the discharge space, a third predetermined value which is set to more than 1.0 ⁇ 10 19 pieces / sec (e.g., 1.0 ⁇ 10 19 pieces / sec) If this happens, the power supply to the compressor 103 is stopped. That is, the protective device 200 detects the change amount of the current value (instantaneous value) corresponding to the case where the number of discharge electrons in the discharge space is 1.0 ⁇ 10 19 / sec. Stop power supply to
  • the protective device 200 stops supplying power to the compressor 103.
  • the generation of the refrigerant disproportionation reaction can also be avoided by reducing the rotational speed of the compressor 103 by an electronic control circuit such as an inverter circuit for controlling the compressor 103. That is, the protective device 200 can avoid the occurrence of a disproportionation reaction of the refrigerant by stopping power supply to the compressor 103 and / or reducing the rotational speed of the compressor 103. I can do it.
  • a disproportionation inhibitor that suppresses the disproportionation reaction is added to the working medium of the compressor 103 so that the occurrence of the disproportionation reaction can be prevented more reliably.
  • active radicals that induce the disproportionation reaction of 1,1,2-trifluoroethylene used as the working medium of the air conditioner 100 are mainly fluorine radicals (F radicals). And trifluoromethyl radical (CF 3 radical) and difluoromethylene radical (CF 2 radical).
  • a substance (disproportionation inhibitor) capable of efficiently capturing F radicals, CF 3 radicals, CF 2 radicals, and the like is added to the working medium.
  • the disproportionation inhibitor is haloethane having a structure represented by the following formula (1) (except when X is only F).
  • X in the formula (1) is a halogen atom selected from the group consisting of F, Cl, Br, and I.
  • m is 0 or an integer of 1 or more, and n is an integer of 1 or more. Furthermore, the sum of m and n is 6.
  • n is 2 or more, X is the same or different kind of halogen atom.
  • the haloethane represented by the formula (1) is converted into a chain of disproportionation reaction. It captures radicals such as fluorine radicals, fluoromethyl radicals, and fluoromethylene radicals that cause a branching reaction.
  • the protective device 200 and the disproportionation inhibitor are multiple safety. Therefore, since the occurrence of the disproportionation reaction can be prevented more reliably, the safety can be improved and the reliability of the air conditioner 100 can be improved.
  • examples of the disproportionation inhibitor that suppresses the disproportionation reaction include the following.
  • saturated hydrocarbons and haloalkanes favor radicals such as fluorine radicals, fluoromethyl radicals, and fluoromethylene radicals generated by disproportionation reactions of 1,1,2-trifluoroethylene.
  • production of the disproportionation reaction of 1,1,2- trifluoroethylene can be suppressed effectively, or the rapid progress of disproportionation reaction can be relieved.
  • a disproportionation inhibitor when a saturated hydrocarbon is used alone, or when an addition amount is smaller than when a haloalkane is used alone, the occurrence of a disproportionation reaction is suppressed, or the progress of the disproportionation reaction proceeds Can be achieved. Therefore, the reliability of the air conditioner 100 (refrigeration cycle apparatus) using the working medium can be improved efficiently.
  • the compressor 103 is, for example, a positive displacement compressor such as a rotary compressor, a scroll compressor, and a reciprocating compressor. Any compressor such as a compressor or a centrifugal compressor may be used.
  • the compressor used may be either a fixed capacity type or a variable capacity type.
  • the working medium containing HFO1123 was demonstrated as an example as a working medium, a working medium is not restricted to this. That is, the working refrigerant may be any as long as it contains an ethylene-based fluorohydrocarbon containing a double bond, and the same effect as that obtained when HFO1123 is used can be obtained.
  • the ethylene-based fluorinated hydrocarbon containing a double bond include HFO 1132 and the like in addition to HFO 1123.
  • the air conditioner 100 has been described as an example of the refrigeration cycle apparatus.
  • the refrigeration cycle apparatus of the present disclosure is not limited to this, and may be any refrigeration cycle apparatus in which components such as a compressor, a condenser, a decompressor, and an evaporator are connected by piping.
  • Other examples of the refrigeration cycle apparatus include, for example, a refrigerator (for home use or business use), a dehumidifier, a showcase, an ice maker, a heat pump hot water heater, a heat pump washer / dryer, and a vending machine. Good.
  • This disclosure can improve the reliability of a refrigeration cycle apparatus using a working medium including HFO 1123 and the like. Therefore, the present invention can be widely applied to various refrigeration cycle apparatuses such as various air conditioners for residential use or business use, car air conditioners, water heaters, refrigerators, refrigerators, showcases, and dehumidifiers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

冷凍サイクル装置としての空気調和機(100)は、圧縮機(103)の電動機の入力電流の電流値が、圧縮機(103)の始動時以外の通常運転時における最大電流値の3倍以上に設定された第1の所定値を超えた場合、圧縮機(103)の電動機の入力電流の電流値が、圧縮機(103)の始動時における電流値の2倍以上に設定された第2の所定値を超えた場合、及び、圧縮機(103)の電動機の入力電流の電流値の変化量に基づいて算出された、放電空間での放電電子数が、1.0×1019個/秒以上に設定された第3の所定値を超えた場合、の少なくともいずれかの場合に、圧縮機(103)への電力供給の停止、及び、圧縮機(103)の回転数の低下、の少なくともいずれかを行う防護装置(200)を有する。

Description

冷凍サイクル装置
 本開示は、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を用いた冷凍サイクル装置に関する。
 一般に、冷凍サイクル装置においては、圧縮機、放熱器若しくは凝縮器、キャピラリーチューブ若しくは膨張弁等の減圧器、及び蒸発器等が配管によって接続されて、冷凍サイクル回路が構成される。また、必要に応じて四方弁が用いられる。そして、冷凍サイクル回路内に、冷凍サイクル用作動媒体(冷媒又は熱媒体)を循環させることにより、冷却又は加熱作用が行われる。
 冷凍サイクル装置における冷凍サイクル用作動媒体としては、フロン類(フロン類は、R○○又はR○○○と記すことが、米国ASHRAE34規格により規定されている。ここで、○○及び○○○は番号である。以下、R○○又はR○○○と示す)と呼ばれる、メタン又はエタンから誘導された、ハロゲン化炭化水素が知られている。
 上記のような冷凍サイクル用作動媒体としては、R410Aがよく用いられている。しかしながら、R410A冷媒の地球温暖化係数(GWP)は2090と大きいため、地球温暖化防止の観点からは好ましいとは言えない。
 そこで、地球温暖化防止の観点から、GWPの小さな冷媒として、例えば、HFO1123(1,1,2-トリフルオロエチレン)、及び、HFO1132(1,2-ジフルオロエチレン)が注目されている(例えば、特許文献1又は特許文献2参照)。
 しかしながら、HFO1123(1,1,2-トリフルオロエチレン)、及び、HFO1132(1,2-ジフルオロエチレン)は、R410A等の従来の冷媒に比べて安定性が低い。そして、安定性の低さに起因して、自己分解反応、及び、自己分解反応に続いて発生する重合反応(以下、不均化反応と記載する。)が生じやすい。不均化反応とは、狭義では自己分解反応のみを指し、広義では、自己分解反応及び、自己分解反応に続く重合反応を指す。
 不均化反応が発生すると、大きな熱放出を伴って冷媒の圧力が上昇する。このため、圧縮機又は冷凍サイクル装置の信頼性を低下させる虞がある。このため、HFO1123又はHFO1132を、圧縮機又は冷凍サイクル装置の作動冷媒として用いる場合には、不均化反応を抑制する必要がある。
 不均化反応は、冷媒が過度に高温高圧となった雰囲気の下で(特に、圧縮機内において)、冷媒に高エネルギが付加され、又は、レイヤーショート等での放電により冷媒分子と電子との過剰な衝突が発生すると、これらが起点となって発生する。
 例えば、一例を挙げると、運転条件が正常ではない状態、すなわち、凝縮器側の送風ファンが停止し、又は、冷凍サイクルの閉塞等が生じると、吐出圧力(冷凍サイクルの高圧側)が過度に上昇する。
 このような状態下で、圧縮機のロック異常が生じ、且つ、ロック異常下においても、圧縮機へ電力供給が続けられると、圧縮機の電動機へ電力が過剰に供給されて、電動機が異常に発熱する。その結果、電動機の固定子を構成する固定子巻線の導線同士で、レイヤーショートと呼ばれる放電現象が惹き起こされる。そして、このレイヤーショートが高エネルギ源となって、冷媒成分の一部がラジカル化し、ラジカルの濃度が急激に増加することで不均化反応が誘起される。あるいは、レイヤーショート(放電現象)による、放電空間での冷媒分子と電子の過剰な衝突により、冷媒成分の一部がラジカル化し、ラジカルの濃度が急激に増加することで不均化反応が誘起される。
 そして、不均化反応が発生すると、圧縮機内の圧力が異常に上昇し、圧縮機又は冷凍サイクル装置の信頼性を低下させる虞がある。
 本開示は、圧縮機内の冷媒に高エネルギが付加されることを防止し、又は、放電空間での冷媒分子と電子との過剰な衝突を防止して、不均化反応の発生を抑制する。これにより、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を用いた、信頼性の高い冷凍サイクル装置を提供する。
日本国特許第6192806号公報 国際公開第2012/157765号
 本開示の冷凍サイクル装置は、電動機を有する圧縮機と、凝縮器と、減圧器と、蒸発器と、が環状に接続されて構成された冷凍サイクル回路と、冷凍サイクル回路内に封入され、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体と、を有する。また、圧縮機の電動機の入力電流の電流値が、圧縮機の始動時以外の通常運転時における最大電流値の3倍以上に設定された第1の所定値を超えた場合、圧縮機の電動機の入力電流の電流値が、圧縮機の始動時における電流値の2倍以上に設定された第2の所定値を超えた場合、及び、圧縮機の電動機の入力電流の電流値の変化量に基づいて算出された、放電空間での放電電子数が、1.0×1019個/秒以上に設定された第3の所定値を超えた場合、の少なくともいずれかの場合に、圧縮機への電力供給の停止、及び、圧縮機の回転数の低下、の少なくともいずれかを行う防護装置を有する。
 このような構成により、発生するラジカルの濃度の急上昇を抑制し、不均化反応の発生を効果的に抑制することができる。
図1は、本開示の実施の形態1に係る空気調和機の概略構成を示す図である。 図2は、本開示の実施の形態1及び実施の形態3に係る空気調和機の防護装置の概略構成を示す図である。 図3は、同実施の形態1及び実施の形態3に係る冷凍サイクル装置の、不均化反応発生の際の電動機の電流波形を示す図である。 図4は、本開示の実施の形態1に係る空気調和機の、通常運転時の最大電流値と不均化反応の発生との関係を示す図である。 図5は、本開示の実施の形態2に係る空気調和機の防護装置の概略構成を示す図である。 図6は、本開示の実施の形態1及び実施の形態2に係る空気調和機の、始動電流と不均化反応の発生との関係を示す図である。 図7は、本開示の実施の形態3に係る空気調和機の、放電空間での放電電子数と不均化反応の発生との関係を示す図である。
 本開示の一態様に係る冷凍サイクル装置は、電動機を有する圧縮機と、凝縮器と、減圧器と、蒸発器と、が環状に接続されて構成された冷凍サイクル回路と、冷凍サイクル回路中に封入され、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体と、を有する。また、圧縮機の電動機に入力される電流の電流値が、圧縮機の始動時以外の通常運転時における最大電流値の3倍以上に設定された第1の所定値を超えた場合、圧縮機の電動機の入力電流の電流値が、圧縮機の始動時における電流値の2倍以上に設定された第2の所定値を超えた場合、及び、圧縮機の電動機の入力電流の電流値の変化量に基づいて算出された、放電空間での放電電子数が、1.0×1019個/秒以上に設定された第3の所定値を超えた場合、の少なくともいずれかの場合に、圧縮機への電力供給の停止、及び、圧縮機の回転数の低下、の少なくともいずれかを行う防護装置を有する。
 このような構成により、放電により発生するラジカルの濃度の急上昇を抑制し、不均化反応の発生を効果的に抑制することができる。
 本開示の他の一態様に係る冷凍サイクル装置は、防護装置が、電流センサと、遮断装置と、を含む。そして、電流センサにより検出された、圧縮機の電動機の入力電流の電流値が、第1の所定値又は第2の所定値を超えた時点から1秒未満に、圧縮機への電力供給を停止、及び、圧縮機の回転数の低下、の少なくともいずれかを行うように構成されてもよい。
 このような構成により、放電で発生するラジカルの濃度の急上昇を抑制することができるため、不均化反応の発生をより確実に防止することができる。
 本開示の他の一態様に係る冷凍サイクル装置は、防護装置が、圧縮機の入力電流の電流値が第1の所定値又は第2の所定値超えた時点から1秒未満に断線する、電流ヒューズを有してもよい。
 このような構成により、電流ヒューズにより圧縮機への電力供給を停止することができるため、インバータ等の電子制御回路を持たない圧縮機にも適用できる。そして、電流値が所定値を超えた時点から1秒未満に圧縮機への電力供給を停止することができるため、放電で発生するラジカルの濃度の急上昇を抑制することができる。
 これにより、電力供給の停止までの間にラジカル濃度が高くなって不均化反応が発生してしまうのを防止できるため、不均化反応の発生をより確実に防止することができる。
 本開示の他の一態様に係る冷凍サイクル装置においては、上述の電流センサが変流器により構成されてもよい。
 これにより、防護装置を簡易な構成とすることができる。
 本開示の他の一態様に係る冷凍サイクル装置は、上述の圧縮機を能力固定型としてもよい。
 このような構成により、圧縮機への電力供給を電子制御的に停止する機能を持たない冷凍サイクル装置であっても、不均化反応の発生を防止することができる。
 以下、本開示の実施の形態について、空気調和機に適用した場合を例にして、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。
 (実施の形態1)
 [1-1.全体構成]
 図1は、本開示の実施の形態1に係る空気調和機の概略構成を示す図である。
 本実施の形態においては、冷凍サイクル装置の一例として、空気調和機100について説明する。
 図1に示すように、空気調和機100は、室外機101及び室内機102を有する。室外機101及び室内機102は、接続配管110により接続されている。
 室外機101は、圧縮機103、室外熱交換器104(凝縮器又は蒸発器)及び膨張器105を有する。室内機102は、室内熱交換器106(蒸発器又は凝縮器)を有する。
 室外機101の室外熱交換器104と室内機102の室内熱交換器106とは、接続配管110で環状に接続されている。これにより、冷凍サイクル回路が構成されている。具体的には、圧縮機103、室内機102の室内熱交換器106、減圧器としての膨張器105、及び、室外機101の室外熱交換器104が、この順に、接続配管110により環状に接続されており、これにより冷凍サイクル回路が構成されている。
 また、圧縮機103、室外熱交換器104及び室内熱交換器106を接続する接続配管110には、冷暖房の切換用の四方弁109が設けられている。なお、室外機101は、送風機114、図示しないアキュームレータ、及び温度センサ等を有する。また、室内機102は、送風ファン113、及び、図示しない温度センサ、操作部等を有する。
 室内機102の室内熱交換器106は、送風ファン113により室内機102の内部に吸い込まれた室内空気と、室内熱交換器106の内部を流れる冷媒(冷凍サイクル用の作動媒体)との間で熱交換を行う。
 室内機102は、暖房時には、室内熱交換器106での熱交換により暖められた空気を室内に送風する。また、室内機102は、冷房時には、室内熱交換器106での熱交換により冷却された空気を室内に送風する。
 室外機101が備える室外熱交換器104は、送風機114により室外機101の内部に吸い込まれた外気と、室外熱交換器104の内部を流れる冷媒との間で熱交換を行う。
 冷凍サイクル回路中には、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体(冷媒)が封入されている。本実施の形態では、一例として、HFO1123(1,1,2-トリフルオロエチレン)を含む作動媒体が封入されている。圧縮機103は、この作動媒体(冷媒)を圧縮して、冷凍サイクル回路中に冷媒を循環させている。この圧縮機103は、本実施の形態において、いわゆる密閉型圧縮機であり、圧縮機103の内部に潤滑油が封入されている。
 上記作動媒体は、既述したように、高温高圧の条件下においてレイヤーショートが発生して外部エネルギが供給されると、不均化反応が発生する虞がある。
 なお、上述した、室内機102、室外機101、室内熱交換器106、室外熱交換器104、圧縮機103、膨張器105、四方弁109、送風ファン113、送風機114の具体的な構成は特に限定されず、公知の構成を好適に用いることができる。また、空気調和機100は、図示しない温度センサ、操作部、アキュームレータ、その他の弁装置、ストレーナ等を有していてもよく、その場合に、これらの具体的な構成は特に限定されず、公知の構成を好適に用いることができる。
 [1-2.防護装置]
 本実施の形態では、レイヤーショートの発生を未然に防ぐため、空気調和機100に防護装置200が設けられている。防護装置200は、以下説明する図2に示すような構成を有し、電動機204の駆動用の電流が所定値以上になると、電動機204への通電を遮断する。
 図2は、本開示の実施の形態1及び実施の形態3に係る空気調和機の防護装置の概略構成を示す図である。
 図2に示すように、防護装置200は、電流値を検出する電流センサとしての変流器201と、リレー又は電子回路等の遮断装置202と、で構成されている。本実施の形態では、電流センサの一例として、変流器が用いられる。電流センサは、ホールセンサ等、圧縮機103の電動機に入力される電流の電流値を、直接的又は間接的に検出できるものであればよい。
 遮断装置202は、電源205と圧縮機103の電動機204との間に接続されている。電動機204は、図示しないインバータ回路等の電子制御回路によって制御されるように構成されている。
 変流器201による電流検出値が所定の電流値を超える場合には、圧縮機への電力供給が停止される。これにより、不均化反応を回避する構成である。
 [1-3.動作]
 次に上記のように構成された空気調和機100の動作について、以下説明する。
 まず、空気調和機の基本的な動作について、簡単に説明する。
 図1における、冷媒の流れ112は、暖房運転時の冷媒の向きを示している。
 暖房運転時においては、圧縮機103で圧縮されて吐出されたガス冷媒は、四方弁109を介して室内機102の室内熱交換器106に送られる。室内熱交換器106においてガス冷媒と室内空気との間で熱交換が行われることにより、ガス冷媒が凝縮して液化する。液化した液冷媒は、膨張器105により減圧されて気液二相冷媒となり、室外機101の室外熱交換器104に送られる。室外熱交換器104では、外気と気液二相冷媒との間で熱交換が行われることにより、気液二相冷媒は蒸発してガス冷媒となり、圧縮機103に戻る。圧縮機103はガス冷媒を圧縮し、圧縮機103から吐出された冷媒は、四方弁109を介して再び室内機102の室内熱交換器106に送られる。
 冷房運転時又は除湿運転時においては、室外機101の圧縮機103で圧縮されて吐出されたガス冷媒は、四方弁109を介して室外機101の室外熱交換器104に送られる。室外熱交換器104では、外気とガス冷媒との間で熱交換が行われることにより、ガス冷媒が凝縮して液化する。液化した液冷媒は、膨張器105により減圧され、室内機102の室内熱交換器106に送られる。室内熱交換器106では、室内空気と液冷媒との間で熱交換が行われることにより、液冷媒が蒸発してガス冷媒となる。このガス冷媒は、四方弁109及び吸入配管111を介して室外機101の圧縮機103に戻る。圧縮機103はガス冷媒を圧縮し、圧縮機103から吐出された冷媒は、四方弁109を介して再び室外熱交換器104に送られる。
 次に、防護装置200の動作について説明する。
 上述のような空気調和機100の運転中において、運転条件が正常でない状態、すなわち、既述したように、凝縮器側の送風ファン113の停止、又は、冷凍サイクル装置の閉塞等が生じた状態となると、冷凍サイクル回路における高圧側の圧力が過度に上昇する。これに伴い、圧縮機103の内部の温度も大きく上昇する。その結果、冷媒の不均化反応が生じやすい状態となる。すなわち、不均化反応の支配因子である、温度及び圧力が上昇して電動機204が異常に発熱し、そのまま電動機204へ電力が供給され続けると、レイヤーショートと呼ばれる現象が惹き起こされる。レイヤーショートは、電動機204の固定子を構成する固定子巻線の導線同士が、巻線絶縁材の劣化によってショートする現象である。そして、高エネルギ源であるレイヤーショートが、冷媒のラジカル反応によるラジカル濃度の上昇を招き、これによって冷媒の不均化反応が誘起されやすくなる。
 ここで、本実施の形態では、上述のような、運転条件が正常でない状態において、電動機204に供給される電流の電流値が、所定の電流値を超えると、防護装置200が圧縮機103への電力供給を停止する。なお、所定の電流値とは、冷媒の不均化反応が誘起される前の電流値である。これにより、冷媒の不均化反応の発生を回避することが出来る。
 次に、上述の所定の電流値について、具体的に説明する。
 図3は、実施の形態1及び実施の形態3に係る冷凍サイクル装置の、不均化反応発生の際の電動機の電流波形を示す図である。
 上記所定の電流値(第1の所定値)は、圧縮機103に入力される電流について、レイヤーショートが発生する電流値となる時点より前における電流値に設定される。なお、この場合のレイヤーショートは、不均化反応が発生しやすい高温高圧条件下において、冷媒に不均化反応を発生させるようなレイヤーショートのことを指す。
 図4は、本開示の実施の形態1に係る空気調和機の、通常運転時の最大電流値と不均化反応の発生との関係を示す図である。
 図4では、実際の空気調和機100において生じる冷媒の不均化反応が発生する限界の上限温度130℃、上限圧力8MPa時の不均化反応発生状況を示している。図4の横軸は、圧縮機103の能力(馬力)を示している。図4の縦軸は、圧縮機103の、始動時以外の通常運転時における最大電流値に対する、不均化反応発生時の電流値の比を示している。
 図4に示すように、本発明者らが実験したところ、不均化反応は、始動時以外の通常運転時の最大電流値の3倍より大きい電流値で発生することが明らかになった。
 従って、本実施の形態においては、圧縮機103に入力される電流の電流値について、圧縮機103の始動時以外の通常運転時における最大電流値の3倍以上に設定された所定の値を、所定の電流値(第1の所定値)としている。
 なお、本実施の形態では、防護装置200は、電流値が第1の所定の値を超えた時点から、1秒未満、好ましくは0.5秒未満、より好ましくは0.1秒未満に電動機204への電力供給を停止するように構成されている。電流値が第1の所定値を超えた時点から1秒以上になると、その間にレイヤーショートが発生する可能性がある。そして、レイヤーショートに起因したエネルギ(レイヤーショートで放出される電子量)が、不均化反応を抑制可能な閾値を超えてしまい、不均化反応を誘起してしまう。しかし、本実施の形態のように、電流値が第1の所定値を超えた時点から1秒未満で電力供給を停止することで、不均化反応の誘起をより確実に防止することができる。つまり、電動機204への電力供給の停止を1秒未満に行う構成にしておけば、不均化反応の抑制効果を確実なものとすることができる。
 防護装置200は、電動機204への電力供給を停止させた後に元の状態に復帰する、可逆動作タイプ、すなわち電力供給を再開する構成のもの、又は、不可逆動作タイプのいずれを用いることも可能である。なお、好ましくは、一旦作動すると元の状態には復帰せず電力供給を停止させ続ける不可逆動作タイプのものが用いられる。
 また、可逆動作タイプのものが用いられる場合は、電力供給の停止を行うときの電流値を、高低の二段階(第1の電流値、及び、第1の電流値より低い第2の電流値)に設定することが好ましい。そして、圧縮機103に入力される電流の値が、低い方の電流値(第1の電流値)となった場合は、その後に電流値が低下すれば再び圧縮機103に電力供給可能とする。そして、圧縮機103に入力される電流の値が、高い方の電流値(第2の電流値)となった場合は、その後電流値が低下したとしても、再び電力供給することなく電力供給を停止させる、不可逆動作を行わせるのが好ましい。
 このような構成によって、何らかの原因で瞬間的に電流値が上昇するようなことがあったとしても、当該瞬間的な電流値の検出により電力供給を停止させて、その後電流値が元の状態に戻るようであれば電力供給を再開しそのまま圧縮機の運転を継続させることができる。従って、より使い勝手の良い冷凍サイクル装置を実現することができる。
 なお、通常この種の冷凍サイクル装置には、圧縮機103の電動機204に過電流(例えば、圧縮機103の始動時以外の通常運転時における最大電流値の1.5倍程度の電流)が流れると、これを検出して圧縮機103の運転を停止する安全装置が設けてある。本実施の形態で開示した防護装置200は、このような安全装置とは別に設けられるものである。従って、このような従来の安全装置が設けられていている場合において、仮に当該安全装置が故障したとしても、防護装置200が作動することにより、冷媒の不均化反応の発生を防止することが可能である。
 また、本実施の形態では、電動機204に供給される電流が、不均化反応が誘起される前の所定の電流値(第1の所定値)を超えると、防護装置200が圧縮機103への電力供給を停止する。しかしながら、防護装置200は、圧縮機103の回転数を制御するインバータ回路等の電子制御回路によって、圧縮機103の回転数を下げることでも、冷媒の不均化反応の発生を回避することが出来る。すなわち、防護装置200は、圧縮機103への電力供給の停止、及び、圧縮機103の回転数の低下、の少なくともいずれかを行うことにより、冷媒の不均化反応の発生を回避することが出来る。
 (実施の形態2)
 図5は、実施の形態2に係る空気調和機の防護装置の概略構成を示す図である。
 図5に示すように、本実施の形態では、防護装置200は、電流ヒューズ203で構成されている。その他の構成については、実施の形態1と同様であるため、説明を省略する。
 電流ヒューズ203は、電流検出値が、圧縮機103の始動時以外の通常運転時における最大電流値の3倍以上に設定された所定の電流値(第1の所定値)を超えると、圧縮機103への電力供給を停止するように構成されている。
 また、上記電流ヒューズ203は、電動機204への電力供給の停止を、電流値が第1の所定値を超えた時点から1秒未満、好ましくは0.5秒未満、より好ましくは0.1秒未満で行うように構成されている。
 本実施の形態によれば、防護装置200に安価な電流ヒューズ203を用いて、実施の形態1と同様に、冷媒の不均化反応の発生を確実に防止できる。従って、本実施の形態の防護装置200は、電流検出機能を有する電子制御回路を持たない圧縮機、すなわち一定速圧縮機等の能力固定型圧縮機に好適である。
 また、上記電流ヒューズ203は、電流値が第1の所定値を超えた時点から1秒未満で電力供給を停止する構成である。従って、確実に不均化反応の発生を防止することができる。
 一般的に、電流ヒューズは、電流値が閾値を超えた状態が所定時間(例えば、数十秒から数分程度)続くと溶断(断線)して電流を遮断する。このため、電流が遮断されるまでの間にレイヤーショートが発生し、レイヤーショートが発生した状態が継続すると、不均化反応を発生させるのに十分なエネルギが放出されることになり、不均化反応の発生を防止できない可能性が高い。
 しかしながら、本実施の形態では、上述のように、電流ヒューズ203が1秒未満で溶断するように構成されているため、電流ヒューズが溶断するまでの間にレイヤーショートが発生することを防止し、不均化反応の発生をより確実に防止することができる。
 なお、実施の形態1及び実施の形態2において、防護装置200は、電流値が、圧縮機103の通常運転時における最大電流値の3倍以上に設定された所定の電流値(第1の所定値)を超えると、圧縮機103への電力供給を停止する構成である。
 しかしながら、電流値が、圧縮機103の始動電流値の2倍以上に設定された所定値(第2の所定値)を超えた場合に、圧縮機103への電力供給を停止するように構成されてもよい。
 図6は、本開示の実施の形態1及び実施の形態2に係る空気調和機の、始動電流と不均化反応の発生との関係を示す図である。図6は、圧縮機103の始動電流を対象に不均化反応の発生状況を図4の場合と同じ条件で確認したものである。
 図6に示すように、不均化反応は、電流値が、圧縮機103の始動電流値の2倍より大きくなった場合に発生している。このため、圧縮機103への電力供給を停止する電流値として、圧縮機103の始動電流値の2倍以上の所定の電流値(第2の所定値)が設定された場合も、冷媒の不均化反応の発生を防止することができる。
 以上より、本開示の防護装置200は、圧縮機103に入力される電流値が、圧縮機103の始動時以外の通常運転時における最大電流値の3倍以上に設定された所定の電流値(第1の所定値)、及び、圧縮機103の始動電流値の2倍以上に設定された所定の電流値(第2の所定値)の少なくともいずれかを超える場合に、圧縮機103への電力供給を停止するように構成されていればよい。
 また、防護装置200は、本実施の形態で説明した電流ヒューズ203、並びに、実施の形態1で説明した、変流器201及び遮断装置202を、組み合わせて、これらをともに備える構成であってもよい。なお、このとき変流器201に代えて、その他の電流検出手段が用いられてもよい。
 これにより、電子制御による、圧縮機103への電流供給の低減又は停止と、電流ヒューズ203の断線による圧縮機103への電流供給停止との、二重の電流供給停止構成により、不均化反応の発生をより確実に回避することができる。
 (実施の形態3)
 本実施の形態では、防護装置200によって、圧縮機103への電力供給の停止、及び、圧縮機103の回転数の低下、の少なくともいずれかが行われる条件についての、他の例を示す。その他の構成については、実施の形態1及び実施の形態2と同様であるため、説明を一部省略する。
 本実施の形態では、実施の形態1と同様に、冷凍サイクル回路中には二重結合を有するエチレン系フッ化炭化水素を含む作動媒体(冷媒)が封入されている。冷媒の一例として、HFO1123(1,1,2-トリフルオロエチレン)を含む作動媒体が挙げられる。前述したように、高温高圧の条件下において、レイヤーショートが発生して冷媒分子と放電電子との過剰な衝突が発生すると、作動媒体の不均化反応が発生する。
 防護装置200は、例えば、図2に示すように、電流値を検出する変流器201と、リレー又は電子回路等の遮断装置202と、で構成されている。防護装置200は、圧縮機103に入力される電流値(瞬時値)を、図示しない電子制御回路により検出し、当該電流値(瞬時値)の変化量に基づいて算出された、放電空間での放電電子数が、1.0×1019個/秒を超える場合に、圧縮機103への電力供給を停止する。当該放電電子数は、レイヤーショートを発生させるエネルギ量に該当する。これにより、レイヤーショートの発生を防止し、不均化反応の発生を回避することができる。
 空気調和機100の運転中において、運転条件が正常ではない状態、すなわち、既述したように、凝縮器側の送風ファン113の停止、又は、冷凍サイクル装置の閉塞等が生じた状態となると、冷凍サイクル回路における高圧側の圧力が過度に上昇する。これに伴い、圧縮機103の内部の温度も大きく上昇する。その結果、冷媒の不均化反応が生じやすい状態となる。すなわち、不均化反応の支配因子である、温度及び圧力が上昇して電動機204が異常に発熱し、そのまま電動機204へ電力が供給され続けると、レイヤーショートと呼ばれる現象が引き起こされる。レイヤーショートは、電動機204の固定子を構成する固定子巻線の導線同士が、巻線絶縁材の劣化によってショートする現象である。そして、レイヤーショートによって、冷媒分子と電子との過剰な衝突が起こる。これにより、冷媒のラジカル反応によるラジカル濃度が上昇し、冷媒の不均化反応が誘起されやすくなる。
 しかしながら、本実施の形態では、上述のような、運転条件が正常でない状態において電動機204に入力される電流値(瞬時値)を、図示しないインバータ回路等の電子制御回路により検出する。そして、当該電流値(瞬時値)の変化量から算出された放電空間での放電電子数が、所定の値(第3の所定値)を超える場合には、圧縮機への電力供給を停止する。これにより、冷媒の不均化反応を回避することが出来る。
 本実施の形態において、防護装置200は、圧縮機103に入力される電流値(瞬時値)の変化量から算出される、放電空間での放電電子数が、1.0×1019個/秒以上となる電流値(瞬時値)の所定の変化量が検出された場合に、電動機204への電力供給を停止する。上述した、電流値(瞬時値)の所定の変化量は、冷媒の不均化反応が発生しやすい高温高圧条件下において、冷媒に不均化反応を発生させるほどのレイヤーショートが生じるような放電電子数となる時点より前の放電電子数に相当する。
 図7は、本開示の実施の形態3に係る空気調和機の、放電空間での放電電子数と不均化反応の発生との関係を示す図である。図7では、実際の空気調和機100において生じる冷媒の不均化反応が発生する限界の上限温度130℃、上限圧力8MPa時の不均化反応発生状況を示している。図7の横軸は試験番号を示しており、図7の縦軸は不均化発生時の放電空間での放電電子数(個)を示している。
 図7から明らかなように、不均化反応は、放電空間での放電電子数が1.0×1019個/秒を超えると発生している。なお、レイヤーショートによる電流値(瞬時値)の変化量は、図3に示す通り、レイヤーショートが発生しなかった場合の電流値(瞬時値)とレイヤーショートが発生した場合の電流値(瞬時値)の差である。また、レイヤーショートによる電流値(瞬時値)の変化量(アンペア)を電気素量(1.6×1019-クーロン)で除したものが、放電空間での放電電子数(個/秒)となる。従って、放電空間での放電電子数1.0×1019個/秒に相当する電流値(瞬時値)の変化量は、1.6Aとなる。
 図7に示すように、本発明者らが実験したところ、不均化反応は、圧縮機103に入力される電流値(瞬時値)の変化量から算出された、放電空間での放電電子数が、1.0×1019個/秒より多い場合に発生することが明らかになった。
 従って、防護装置200は、放電空間での放電電子数が、1.0×1019個/秒以上に設定された第3の所定値(例えば、1.0×1019個/秒)を超えた場合に、圧縮機103への電力供給を停止する。すなわち、防護装置200は、放電空間での放電電子数が1.0×1019個/秒である場合に相当する、電流値(瞬時値)の変化量が検知された場合に、圧縮機103への電力供給を停止する。
 なお、本実施の形態では、電動機204に供給される電流が、不均化反応が誘起される前の所定の電流値を超えると、防護装置200が圧縮機103への電力供給を停止する。しかしながら、圧縮機103を制御するインバータ回路等の電子制御回路によって、圧縮機103の回転数を下げることでも、冷媒の不均化反応の発生を回避することが出来る。すなわち、防護装置200は、圧縮機103への電力供給の停止、及び、圧縮機103の回転数の低下、の少なくともいずれかを行うことにより、冷媒の不均化反応の発生を回避することが出来る。
 (実施の形態4)
 本実施の形態においては、圧縮機103の作動媒体に、不均化反応を抑制する不均化抑制剤を添加して、不均化反応の発生を更に確実に防止できるようにしている。
 その他の構成については、実施の形態1~3と同様であり、説明を省略する。
 本発明者らが、鋭意検討したところ、空気調和機100の作動媒体として用いた1,1,2-トリフルオロエチレンの不均化反応を誘発する活性ラジカルは、主として、フッ素ラジカル(Fラジカル)、トリフルオロメチルラジカル(CF ラジカル)、及びジフルオロメチレンラジカル(CF ラジカル)等のラジカルであることが明らかとなった。
 そこで、本実施の形態では、Fラジカル、CF ラジカル、CFラジカル等を効率よく捕捉することが可能な物質(不均化抑制剤)を作動媒体に添加している。
 例えば、上記不均化抑制剤は、次式(1)に示す構造を有するハロエタン(XがFのみの場合を除く)である。
  C ・・・ (1)
 なお、式(1)におけるXは、F,Cl,Br,及びIからなる群より選択されるハロゲン原子である。mは0又は1以上の整数であり、nは1以上の整数である。さらに、m及びnの和は6である。nが2以上のとき、Xは、同一又は異なる種類のハロゲン原子である。
 本実施の形態では、1,1,2-トリフルオロエチレンを含有する冷媒成分に、上述の不均化抑制剤を添加することにより、式(1)に示すハロエタンが、不均化反応の連鎖分岐反応を引き起こすフッ素ラジカル、フルオロメチルラジカル、及びフルオロメチレンラジカル等のラジカルを良好に捕捉する。
 このため、1,1,2-トリフルオロエチレンの不均化反応の発生を有効に抑制したり、不均化反応の急激な進行を緩和したりすることができる。従って、当該作動媒体を用いた空気調和機100(冷凍サイクル装置)の信頼性をより向上させることができる。
 つまり、防護装置200及び不均化抑制剤によって、多重安全性を確保している。従って、不均化反応の発生をより確実に防止できるため、安全性を高めて空気調和機100の信頼性を向上させることができる。
 また、不均化反応を抑制する不均化抑制剤としては、更に次のようなものも挙げられる。
 すなわち、炭素数2~5の飽和炭化水素と、炭素数が1又は2であってハロゲン原子が全てフッ素の場合を除くハロアルカンと、からなるものである。
 この不均化抑制剤によれば、飽和炭化水素及びハロアルカンが、1,1,2-トリフルオロエチレンの不均化反応で生じる、フッ素ラジカル、フルオロメチルラジカル、及びフルオロメチレンラジカル等のラジカルを良好に捕捉する。このため、1,1,2-トリフルオロエチレンの不均化反応の発生を有効に抑制したり、不均化反応の急激な進行を緩和したりすることができる。しかも、不均化抑制剤として、飽和炭化水素を単独で用いる場合、又は、ハロアルカンを単独で用いる場合よりも少ない添加量で、不均化反応の発生の抑制、又は、不均化反応の進行の緩和を実現することが可能である。従って、当該作動媒体を用いた空気調和機100(冷凍サイクル装置)の信頼性を効率的に向上させることができる。
 なお、上記各実施の形態では、圧縮機103の具体的な形式を示していないが、圧縮機103は、例えば、ロータリ式圧縮機、スクロール式圧縮機、及びレシプロ式圧縮機等の容積式圧縮機、又は、遠心式圧縮機等のいずれの圧縮機であってもよい。また、使用される圧縮機は、能力固定型及び能力可変型のいずれであっても良い。
 更に、本実施の形態では、作動媒体としてHFO1123を含む作動媒体を例として説明したが、作動媒体はこれに限られない。すなわち、作動冷媒は、二重結合を含むエチレン系フッ化炭化水素を含むものであればどのようなものであってもよく、HFO1123を用いた場合と同様の効果が得られる。二重結合を含むエチレン系フッ化炭化水素の例としては、HFO1123の他に、HFO1132等が存在する。
 また、本実施の形態においては、冷凍サイクル装置の一例として、空気調和機100について説明した。しかし、本開示の冷凍サイクル装置はこれに限られず、圧縮機、凝縮器、減圧器、及び蒸発器等の構成要素が配管によって接続された冷凍サイクル装置であればよい。冷凍サイクル装置の他の例としては、例えば、冷蔵庫(家庭用又は業務用)、除湿器、ショーケース、製氷機、ヒートポンプ式給湯機、ヒートポンプ式洗濯乾燥機、及び自動販売機等であってもよい。
 本開示は、HFO1123等を含む作動媒体を用いた冷凍サイクル装置の信頼性を向上させることができる。従って、住居用又は業務用の各種エアコン、カーエアコン、給湯器、冷凍冷蔵庫、ショーケース、及び除湿機等の種々の冷凍サイクル装置について、幅広く適用することができる。
 100 空気調和機
 101 室外機
 102 室内機
 103 圧縮機
 104 室外熱交換器
 105 膨張器(減圧器)
 106 室内熱交換器
 109 四方弁
 110 接続配管
 111 吸入配管
 112 冷媒の流れ
 113 送風ファン
 114 送風機
 200 防護装置
 201 変流器(電流センサ)
 202 遮断装置
 203 電流ヒューズ
 204 電動機
 205 電源

Claims (5)

  1.  電動機を有する圧縮機と、凝縮器と、減圧器と、蒸発器と、が環状に接続されて構成された冷凍サイクル回路と、
     前記冷凍サイクル回路内に封入され、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体と、
      前記圧縮機の前記電動機の入力電流の電流値が、前記圧縮機の始動時以外の通常運転時における最大電流値の3倍以上に設定された第1の所定値を超えた場合、
      前記圧縮機の前記電動機の入力電流の電流値が、前記圧縮機の始動時における電流値の2倍以上に設定された第2の所定値を超えた場合、及び、
      前記圧縮機の前記電動機の入力電流の電流値の変化量に基づいて算出された、放電空間での放電電子数が、1.0×1019個/秒以上に設定された第3の所定値を超えた場合、の少なくともいずれかの場合に、
     前記圧縮機への電力供給の停止、及び、前記圧縮機の回転数の低下、の少なくともいずれかを行う防護装置と、
    を備えた冷凍サイクル装置。
  2. 前記防護装置は、
     電流センサと、遮断装置と、を有し、
     前記電流センサにより検出された、前記圧縮機の前記電動機の入力電流の電流値が、前記第1の所定値又は前記第2の所定値を超えた時点から1秒未満に、前記圧縮機への電力供給を停止、及び、前記圧縮機の回転数の低下、の少なくともいずれかを行う、
    請求項1に記載の冷凍サイクル装置。
  3. 前記防護装置は、前記圧縮機の入力電流の電流値が前記第1の所定値又は前記第2の所定値を超えた時点から1秒未満に断線する、電流ヒューズを有する、
    請求項1又は2に記載の冷凍サイクル装置。
  4. 前記電流センサは、変流器により構成された、
    請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5. 前記圧縮機は、能力固定型である、
    請求項1~4のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2019/007175 2018-03-05 2019-02-26 冷凍サイクル装置 WO2019172008A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980015304.6A CN111771091B (zh) 2018-03-05 2019-02-26 制冷循环装置
EP19764649.0A EP3764027A4 (en) 2018-03-05 2019-02-26 REFRIGERATION CIRCUIT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-038300 2018-03-05
JP2018038300A JP6857813B2 (ja) 2018-03-05 2018-03-05 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019172008A1 true WO2019172008A1 (ja) 2019-09-12

Family

ID=67845553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007175 WO2019172008A1 (ja) 2018-03-05 2019-02-26 冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3764027A4 (ja)
JP (1) JP6857813B2 (ja)
CN (1) CN111771091B (ja)
WO (1) WO2019172008A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256134A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷凍サイクル用作動媒体及び冷凍サイクルシステム
CN114322240A (zh) * 2022-01-04 2022-04-12 广东美的制冷设备有限公司 空调器控制方法、装置以及空调器
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11827833B2 (en) 2019-02-06 2023-11-28 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11834602B2 (en) 2019-02-05 2023-12-05 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265374A (ja) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd 空気調和機
WO2009157320A1 (ja) * 2008-06-24 2009-12-30 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
WO2012157765A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム
JP2017003197A (ja) * 2015-06-11 2017-01-05 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6192806B2 (ja) 2014-03-17 2017-09-06 三菱電機株式会社 冷凍装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547859A (en) * 1967-05-12 1970-12-15 Daikin Ind Ltd Vinyl fluoride copolymer
US6925823B2 (en) * 2003-10-28 2005-08-09 Carrier Corporation Refrigerant cycle with operating range extension
KR100826374B1 (ko) * 2004-04-13 2008-05-02 다이킨 고교 가부시키가이샤 클로로트리플루오로에틸렌 공중합체
JP5325375B2 (ja) * 2006-05-31 2013-10-23 日立アプライアンス株式会社 冷凍装置
KR20070119272A (ko) * 2006-06-14 2007-12-20 삼성전자주식회사 공기조화기 및 그 제어방법
JP5039369B2 (ja) * 2006-12-06 2012-10-03 日立アプライアンス株式会社 冷凍装置及び冷凍装置に用いられるインバータ装置
JP2011058445A (ja) * 2009-09-11 2011-03-24 Daikin Industries Ltd 圧縮機の運転方法および圧縮機の駆動装置
JP5791716B2 (ja) * 2011-07-07 2015-10-07 三菱電機株式会社 冷凍空調装置及び冷凍空調装置の制御方法
JP6061819B2 (ja) * 2013-08-29 2017-01-18 三菱電機株式会社 空気調和機
US10508848B2 (en) * 2014-03-14 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2015140883A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 空気調和機
US10101069B2 (en) * 2014-03-17 2018-10-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6289611B2 (ja) * 2014-03-17 2018-03-07 三菱電機株式会社 冷凍サイクル装置
CN106982016B (zh) * 2016-01-15 2021-11-26 松下知识产权经营株式会社 涡轮压缩机装置
CN107144061B (zh) * 2017-06-20 2019-07-26 广东美的暖通设备有限公司 压缩机冷却方法、系统及空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265374A (ja) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd 空気調和機
WO2009157320A1 (ja) * 2008-06-24 2009-12-30 三菱電機株式会社 冷凍サイクル装置及び空気調和装置
WO2012157765A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP6192806B2 (ja) 2014-03-17 2017-09-06 三菱電機株式会社 冷凍装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム
JP2017003197A (ja) * 2015-06-11 2017-01-05 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764027A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
US11920077B2 (en) 2018-07-17 2024-03-05 Daikin Industries, Ltd. Refrigeration cycle device for vehicle
US11939515B2 (en) 2018-07-17 2024-03-26 Daikin Industries, Ltd. Refrigerant-containing composition, heat transfer medium, and heat cycle system
US11525076B2 (en) 2019-01-30 2022-12-13 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11834601B2 (en) 2019-01-30 2023-12-05 Daikin Industries, Ltd. Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device
US11840658B2 (en) 2019-01-30 2023-12-12 Daikin Industries, Ltd. Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
US11834602B2 (en) 2019-02-05 2023-12-05 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
US11827833B2 (en) 2019-02-06 2023-11-28 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition
WO2020256134A1 (ja) * 2019-06-19 2020-12-24 ダイキン工業株式会社 冷凍サイクル用作動媒体及び冷凍サイクルシステム
JP2021001323A (ja) * 2019-06-19 2021-01-07 ダイキン工業株式会社 冷凍サイクル用作動媒体及び冷凍サイクルシステム
CN114322240A (zh) * 2022-01-04 2022-04-12 广东美的制冷设备有限公司 空调器控制方法、装置以及空调器

Also Published As

Publication number Publication date
JP6857813B2 (ja) 2021-04-14
CN111771091A (zh) 2020-10-13
EP3764027A4 (en) 2021-05-19
JP2019152380A (ja) 2019-09-12
CN111771091B (zh) 2021-12-17
EP3764027A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2019172008A1 (ja) 冷凍サイクル装置
JP6413100B2 (ja) 冷凍サイクル装置
US10590934B2 (en) Refrigeration cycle device with motor speed estimator
EP3058291B1 (en) Motor and drive arrangement for refrigeration system
JP6847299B2 (ja) 冷凍サイクル装置
JP6979563B2 (ja) 冷凍サイクル装置
JP6857815B2 (ja) 冷凍サイクル装置
JP6979565B2 (ja) 冷凍サイクル装置
JP6979564B2 (ja) 冷凍サイクル装置
JP2015218909A (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP2018177967A (ja) 冷凍サイクル装置
JP2018179404A (ja) 冷凍サイクル装置
JP2000234811A (ja) 冷凍サイクル装置
WO2016079834A1 (ja) 空気調和装置
WO2015140882A1 (ja) 冷凍装置
JP2018025372A (ja) 冷凍サイクル装置
WO2015140880A1 (ja) 圧縮機及び冷凍サイクル装置
WO2015140881A1 (ja) 冷凍サイクル装置
JP6596667B2 (ja) 圧縮機及びそれを用いた冷凍サイクル装置
KR20140103262A (ko) 공기 조화기
JP2019032108A (ja) 冷凍サイクル装置
JP2019027655A (ja) 冷凍サイクル装置
JP5776620B2 (ja) 空気調和機
JP2020034250A (ja) 冷凍サイクル装置
JP2020169782A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019764649

Country of ref document: EP

Effective date: 20201005