WO2009150995A1 - 電力半導体回路装置およびその製造方法 - Google Patents
電力半導体回路装置およびその製造方法 Download PDFInfo
- Publication number
- WO2009150995A1 WO2009150995A1 PCT/JP2009/060264 JP2009060264W WO2009150995A1 WO 2009150995 A1 WO2009150995 A1 WO 2009150995A1 JP 2009060264 W JP2009060264 W JP 2009060264W WO 2009150995 A1 WO2009150995 A1 WO 2009150995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power semiconductor
- base plate
- semiconductor element
- circuit device
- groove
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4334—Auxiliary members in encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49568—Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49575—Assemblies of semiconductor devices on lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1532—Connection portion the connection portion being formed on the die mounting surface of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a power semiconductor circuit device provided with a power semiconductor element and a manufacturing method thereof, and more particularly to a power semiconductor circuit device in which heat radiation fins are formed on a base plate of the power semiconductor circuit device and a manufacturing method thereof.
- the base plate of the power semiconductor circuit device is integrated with the base plate of the heat sink and the base plate of the power semiconductor circuit device without using the grease that is an obstacle to realizing high heat dissipation of the power semiconductor circuit device.
- the power semiconductor circuit is formed by heat-bonding the heat sink fins of the heat sink with a high thermal conductivity insulating resin sheet or by integrally forming them and mounting electronic components such as power semiconductor elements and wiring members on the base plate of the power semiconductor circuit device.
- the device is designed to increase heat dissipation. (For example, see Patent Document 1)
- a power semiconductor element, a wiring member or the like is formed on a base plate formed by thermocompression bonding with a high thermal conductivity insulating resin sheet in advance or integrally formed.
- the electronic parts are mounted, and then the case is attached with mold resin.
- heat sink fins are attached to the base plate of the power semiconductor circuit device before mounting electronic components such as power semiconductor elements and wiring members, the heat capacity of the base plate of the power semiconductor circuit device becomes large and soldering is difficult.
- a conventional jig cannot be used even in the wire bonding process, and a special jig must be made for each shape of the base plate and the radiating fin.
- the base plate of the power semiconductor circuit device is preliminarily formed as a thin base plate, and electronic components such as power semiconductor elements and wiring members are mounted on the base plate, and finally, a radiation fin is provided. It can be solved by attaching.
- a thermal attachment method such as soldering or welding to attach the radiating fins to the base plate results in poor productivity due to the large heat capacity of the power semiconductor device.
- the present invention has been made to solve the above-described problems, and can simplify the manufacturing process, reduce the stress applied to the power semiconductor circuit device when forming the heat radiating fin, and the power semiconductor circuit device. It is an object of the present invention to provide a power semiconductor circuit device that achieves both high heat dissipation and high productivity and a method for manufacturing the same.
- the power semiconductor circuit device is a power semiconductor circuit device including a power semiconductor element, wherein at least the base plate on which the power semiconductor element is mounted, the base plate, and the power semiconductor element are connected to the base plate.
- a resin that molds in a state in which a part of the surface of the base plate including the surface opposite to the surface on which the power semiconductor element is mounted is exposed; and a heat dissipating fin that is bonded to the base plate by a pressing force.
- a groove is machined in the radiating fin joint of the base plate, and the radiating fin is fixed to the groove by caulking.
- the method for manufacturing a power semiconductor circuit device includes mounting at least a power semiconductor element on one surface of a base plate, forming a bonding groove on a surface opposite to the base plate, The power semiconductor element is molded with a resin in a state where a part of the surface of the base plate including the surface of the base plate opposite to the surface on which the power semiconductor element is mounted is exposed, and then the base The heat dissipating fins are fixed to the grooves of the plate by caulking.
- the heat radiation fin can be formed without damaging the power semiconductor circuit device in the manufacturing process, and the manufacturing process can be simplified.
- the heat sink fins can be formed with good productivity without changing the equipment such as jig replacement for each product.
- FIG. 1 is a schematic cross-sectional view showing a power semiconductor circuit device according to Embodiment 1 of the present invention. It is the figure which showed the reduction effect of the stress which generate
- a power semiconductor circuit device hereinafter also referred to as a power module
- a manufacturing method thereof according to the present invention will be described below with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
- FIG. 1 is a schematic sectional view showing a power semiconductor circuit device according to Embodiment 1 of the present invention.
- a power semiconductor element 10 such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Field Effect Transistor) and a wiring member 11 on which the power semiconductor element 10 is mounted are a base plate 12 made of aluminum. They are bonded together by solder or adhesive 13.
- the base plate 12 is manufactured by extrusion, casting, or die casting, and is the surface opposite to the surface on which the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted, that is, the back surface of the base plate 12.
- the groove 14 is processed in advance.
- the power semiconductor element 10, the wiring member 11 on which the power semiconductor element 10 is mounted, and the base plate 12 are provided on the back surface of the base plate 12 and the side surface of the base plate 12. Transfer-molded with an epoxy-based mold resin 15 so that a part of the surface is exposed.
- heat radiating fins 16 are mounted in the groove 14 processed on the back surface of the base plate 12.
- the heat radiating fins 16 are formed by corrugating a single pure aluminum plate member.
- the radiating fin 16 includes the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted, and the base plate 12 covering the back surface of the base plate 12 and a part of the side surface of the base plate 12. After being transfer-molded with an epoxy mold resin 15 so as to be exposed, it is caulked and joined to the groove 14 of the base plate 12 as indicated by the arrow in FIG.
- the power semiconductor circuit device is configured as described above, there may be a plurality of power semiconductor elements 10, and the power semiconductor elements 10 may be formed on the base plate without the wiring member 11. It may be mounted by directly bonding to 12 with solder or an adhesive 13. Further, the power semiconductor element 10 and the wiring member 11 are bonded to the base plate 12 via an insulating member such as a ceramic substrate with solder or an adhesive 13 for insulation from the base plate 12, and the insulating member is attached to the base plate. 12 may be adhered.
- the heat radiating fins 16 attached to the grooves 14 processed on the back surface of the base plate 12 by caulking are not formed by corrugating one plate, but may be formed independently one by one.
- the mounting of the radiating fins 16 to the base plate 12 may be performed by deforming and crimping the base plate 12, as long as the joining is performed by a pressing force between the two.
- the radiating fins 16 may be heated at 100 to 150 ° C., and the radiating fins 16 may be softened to perform caulking joining.
- the caulking pressure is about 70%, which is the same as when caulking at room temperature. It has been confirmed that it is tight.
- FIG. 2B shows the relationship between the caulking pressure during caulking in the sealed hollow structure and the stress generated in the power semiconductor element 10.
- 2B shows the caulking pressure (MPa)
- the vertical axis shows the stress (MPa) generated in the power semiconductor element 10.
- the caulking pressure is determined by the caulking blades of the radiation fins 16 at the base plate during caulking. 12 is a pressure for pressing 12.
- the transfer mold structure according to the present embodiment has a support structure at the time of caulking joining as shown in FIG. 2C as compared with the hollow structure shown in FIG. In the case of both ends of the upper surface, the stress on the power semiconductor element 10 can be reduced to about 1 ⁇ 2. Further, when the entire upper surface of the mold resin 15 is supported as shown in FIG. 2D, the stress on the power semiconductor element 10 can be reduced to 1/10 or more. Therefore, according to the transfer mold structure of the present embodiment, the heat radiation fin 16 can be caulked and joined to the base plate 12 with very little stress and without fear of damage to the power semiconductor element 10.
- the mold resin 15 enters the gap between the power semiconductor elements 10 to prevent the stress concentration in the power semiconductor elements 10, the breakdown tolerance of the power semiconductor elements 10 is increased, and the power is increased even with a large caulking pressure. Damage to the semiconductor element 10 is unlikely to occur.
- the epoxy material is hard as the molding material, it is preferable from the viewpoint of avoiding damage to the power semiconductor element 10, and a structure in which the periphery of the power semiconductor element 10 is molded with an epoxy resin by a method such as potting, transfer molding, or casting method. Further, it is preferable that the upper surface has a flat structure as much as possible so that caulking pressure can be applied to the entire surface of the mold.
- the manufacturing process includes a step of mounting the power semiconductor element 10 on the wiring member 11, a step of mounting the wiring member 11 on the base plate 12, and setting the wiring member 11 and the base plate 12 in a mold (not shown).
- the process of molding the power semiconductor element 10 and the process of mounting the radiating fins 16 to the base plate 12 are performed, the soldering process and the wires that have been a problem in the past due to the radiating fins 16 from the beginning of the process. Problems such as difficulty in the bonding process and deterioration in productivity due to an increase in the size of the circuit device can be solved.
- the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted are collectively soldered to or bonded to the base plate 12 on which the heat radiation fins 16 can be directly formed.
- the grease portion used for joining the fins 16 can be eliminated, and the heat radiation of the power semiconductor circuit device can be increased.
- the height and width of the heat radiating fins 16 can be changed according to the heat radiating specifications of the power semiconductor circuit device without changing the equipment. It becomes easy.
- the heat radiating fins 16 are caulked and joined to the back surface of the base plate 12, it is preferable to use fins formed by processing a soft pure aluminum plate member into a wave shape and connecting a plurality of fins.
- adjacent radiating fins 16 are attracted to each other and generate a force to press against the groove 14 formed in the base plate 12, so that the base plate 12 does not have to be greatly deformed. Large strength and low thermal resistance are obtained. Therefore, it is possible to realize the excellent bonding of the radiating fin 16 to the base plate 12 without causing further damage to the power semiconductor circuit device including the power semiconductor element 10.
- the pitch between the fins of the radiating fins 16 slightly smaller than the pitch of the grooves 14 formed in the base plate 12
- the pressing force of the radiating fins 16 on the side surfaces of the grooves 14 formed in the base plate 12 is increased. It can be further increased.
- a pressure that presses the periphery of the base plate 12 when the resin flows into the periphery where the base plate 12 of the mold mold (not shown) is arranged.
- Means are provided.
- FIG. 3A a power semiconductor circuit device and a manufacturing method thereof according to Embodiment 2 of the present invention will be described with reference to FIG.
- the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted are collectively soldered to the base plate 30 made of aluminum. Or it is adhered.
- the power semiconductor element 10, the wiring member 11 on which the power semiconductor element 10 is mounted, and the base plate 30 are part of the back surface of the base plate 30 and the side surface of the base plate 30.
- the resin is transfer molded with an epoxy mold resin 15 so as to expose.
- the surface of the base plate 30 opposite to the surface on which the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted, that is, the back surface of the base plate 30 is processed into a flat surface.
- Radiation fins 31 are formed on the back surface of the base plate 30 processed into a flat surface. As shown in FIG. 3B, the heat radiating fins 31 are formed by bringing a pressing jig 32 into contact with the surface of the mold resin 15 and cutting the back surface of the base plate 30 with a tool 33 or the like. Note that the heat radiating fins 31 may be formed on the side surface portion of the base plate 30 exposed from the mold resin 15.
- the stress generated in the power semiconductor element 10 can be reduced by supporting the upper surface of the mold resin 15 with a pressing jig 32 or the like.
- the radiating fins 31 later, it becomes difficult to perform the soldering process and the wire bonding process, which has been a problem in the past due to the presence of the radiating fins 31 earlier, or the productivity is deteriorated due to being bulky. The problem can be solved.
- the radiation fins 31 can be formed at room temperature, and a fin pitch that is narrower than that when the radiation fins 31 are formed by caulking is possible. There is no need to process the plate 30 in advance. Further, even if there is a burr at the time of molding on the surface on which the heat radiation fin 31 is formed, the burr is peeled off by the tool together with the cutting and raising process, so that the burr does not deteriorate the thermal resistance.
- the thermal resistance between the radiating fins 31 and the base plate 30 is smaller than that of caulking, and the pitch and height of the radiating fins 31 can be changed according to the radiating specifications of the power semiconductor circuit device without changing the equipment. Therefore, it is possible to reduce the thermal resistance and improve the productivity by forming the radiating fins 31 later.
- the power semiconductor circuit device according to the third embodiment has a power semiconductor element 10 and a wiring member 11 on which the power semiconductor element 10 is mounted, as shown in FIG.
- the base plate 40 is transfer-molded with an epoxy-based mold resin 15 so that a part of the surface of the back surface of the base plate 40 and the side surface of the base plate 40 is exposed.
- the mounting surface on which the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted is formed in a rectangular shape, and stepped portions 40a are formed by machining in four directions on the side surface. And as shown in FIG.4 (b), it molds so that a lower surface of the step part 40a can be sealed by pressing with the molding die 41.
- FIG. 4 (b) it is the same as that of Embodiment 1, the same code
- the wiring member 11 is positioned and molded using a pilot hole or the like of the wiring member.
- the wiring member 11 is joined to the base plate 40. 11 and the base plate 40 are not misaligned. Even in such a case, positioning the base plate 40 with the stepped portion 40a formed on the base plate 40 facilitates alignment of the heat dissipating fins 16 when retrofitting.
- the staircase portion 40a can prevent the mold resin 15 from flowing into the caulking joint portion, and the mold resin 15 can be prevented from flowing into the caulking joint portion. Therefore, the formation of the heat radiation fins 16 is facilitated.
- the power semiconductor circuit device according to the fourth embodiment includes a power semiconductor element 10 and a wiring member 11 on which the power semiconductor element 10 is mounted as shown in FIG. 50.
- the power semiconductor element 10 of the base plate 50 and the surface opposite to the mounting surface of the wiring member 11 on which the power semiconductor element 10 is mounted, that is, the back surface 50b of the base plate 50 mounts the power semiconductor element 10 and the power semiconductor element 10.
- An inclined portion 50 c is provided on the side surface of the base plate 50 so as to be smaller than the mounting surface of the wiring member 11, that is, the surface 50 a of the base plate 50.
- the mold 51 is provided with an inclined portion 51a that serves as a means for pressing and sealing the inclined portion 50c of the base plate 50 during molding.
- the inclination part 50c is good also as the step part demonstrated in FIG.4 (b) of Embodiment 3.
- FIG. Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description thereof is omitted.
- the heat radiation fin 16 side is smaller than the mounting surface side of the wiring member 11 on which the power semiconductor element 10 and the power semiconductor element 10 are mounted.
- the inclined portion 50c is provided, and the inclined portion 50c is pressed against the inclined portion 51a of the mold 51 by the pressure applied in the molding process. Can be eliminated.
- the power semiconductor circuit device according to the fifth embodiment includes the surface of the base plate 60, that is, the power semiconductor element 10 and the wiring member 11 on which the power semiconductor element 10 is mounted.
- a convex portion 60a is formed on the mounting surface perpendicular to the surface.
- the convex portion 60a is provided at a position slightly inside from the end of each side surface of the base plate 60, and is molded with the molding resin 15 so as to include the convex portion 60a, as shown in FIG.
- the area of the surface of the base plate 60 is larger than the projected area of the mold part by the mold resin 15, and the side surface of the mold resin 15 is on the outer side from the extreme end position of the radiation fin 16.
- the convex portion 60a formed on the base plate 60 may be a concave portion.
- Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description thereof is omitted.
- the power semiconductor circuit device it is possible to eliminate the burrs of the mold resin 15 in the portions where the radiation fins 16 of the power semiconductor circuit device are formed.
- the mold resin 15 is easily peeled off due to poor adhesiveness with the aluminum.
- the mold resin 15 can be prevented from being peeled off due to stress at the time of forming the radiation fins 16.
- FIG. FIG. 7 is a front longitudinal sectional view showing a power module which is a power semiconductor circuit device according to Embodiment 6 of the present invention
- FIG. 8 is an exploded perspective view of the power module of Embodiment 6
- FIG. 10 is a longitudinal sectional view showing the shape of the metal base groove and the sheet metal radiating fin
- FIG. 11 is a view showing the caulking portion of the sheet metal radiating fin in the groove of the metal base.
- FIG. 12 is a longitudinal sectional view showing a joined state
- FIG. 12 is a longitudinal sectional view showing a state in which a gap between a metal base groove and a sheet metal radiating fin is filled with a high thermal conductive adhesive.
- the power module 91 includes a power semiconductor element 111 that generates heat, a metal frame 112 on which the power semiconductor element 111 is mounted, and an electrode terminal 112a, and a metal on one surface 113a.
- the mold resin 115 covering 113c and the caulking portion 116a formed to be bent in a substantially V shape are caulked and joined in the groove 114 so that the portion 116b protruding from the groove 114 of the caulking portion 116a is the bottom surface of the groove 114.
- Sheet metal radiating fin 116 plastically deformed so as to be lower than 114a. It is equipped with a.
- Examples of the power semiconductor element 111 include a diode in a converter unit that converts input AC power into DC, a bipolar transistor in an inverter unit that converts DC into AC, an IGBT, a MOSFET, a GTO, and the like.
- the power semiconductor elements 111 and the power semiconductor elements 111 and the electrode terminals 112a are electrically connected by metal wires 117.
- the metal base 113 is made of aluminum, copper or the like having high thermal conductivity.
- the power semiconductor element 111 and the metal frame 112, and the metal frame 112 and the metal base 113 are joined by soldering, and the sheet metal radiating fins 116 have a potential. Since solder with high thermal conductivity is used for joining from the power semiconductor element 111 to the metal base 113, heat dissipation is high even with a small joining area, and the power semiconductor element 111 can be downsized.
- a corrugated radiation fin formed by bending a plurality of thin strip metal plates such as aluminum into a wave shape (rectangular wave shape) is used.
- the corrugated heat dissipating fins 116 are suitable for caulking and joining to the metal base 113 in one caulking process.
- one belt-shaped metal plate is formed once in a substantially V shape.
- a bent sheet metal radiating fin 116 may be used.
- thermosetting resin such as an epoxy resin
- a thermoplastic resin such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate) may be used.
- a projection 115b is provided on the edge of the fin-side surface 115a of the mold resin 115 to facilitate positioning of the corrugated heat dissipating fin 116 during caulking and joining to the metal base 113, and the side flange 116d of the corrugated heat dissipating fin 116 is provided.
- a protrusion 115b is fitted into and fixed to a hole 116e provided in the. The protrusion 115b also contributes to suppression of misalignment of the sheet metal radiating fin 116 after caulking and joining to the groove 114.
- the sheet metal radiating fin 116 and the metal base 113 are caulked and joined first, and the power semiconductor element 111, the metal wire 117, and the metal frame 112 are formed on one surface 113 a of the metal base 113 in a later process. Is mounted and coated with the mold resin 115, but the sheet metal radiating fins 116 attached to the metal base 113 have different lengths, which eliminates the need for setup change in the soldering process and the resin molding process.
- the metal base 113 and the sheet metal radiating fins 116 are caulked. It is desirable to perform bonding.
- the power module 91 includes a step of mounting the power semiconductor element 111 on the metal frame 112 and the metal frame 112 on one surface 113a of the metal base 113 in which a plurality of parallel grooves 114 are formed on the other surface 113b.
- the caulking portion 116a formed by bending is caulked and joined in the groove 114 so as to be crushed, and the portion 116b protruding from the groove 114 of the caulking portion 116a is plastically deformed so as to be lower than the bottom surface 114a of the groove 114. It is desirable to manufacture by this process.
- the sheet metal radiating fin 116 and the metal base 113 are joined by fixing a flat portion ( ⁇ display portion in FIG. 8) of the outer surface of the mold resin 115 on the base, A load such as a press is applied to the caulking portion 116a, and the caulking portion 116a is plastically deformed and fixed by caulking.
- the lateral width of the sheet metal radiating fin 116 is formed to be larger than the lateral width of the metal base 113, and both side edges of the sheet metal radiating fin 116 protrude from the groove 114.
- a portion that protrudes from the groove 114 of the caulking portion 116a when the caulking portion 116a of the sheet metal radiating fin 116 bent in a substantially V shape is plastically deformed so as to be crushed and caulked and joined into the groove 114 of the metal base 113. Since 116b is not crushed, it is displaced to a position lower than the bottom surface 114a of the groove 114. As a result, the portion 116b protruding from the groove 114 is caught at both ends of the groove 114, and even if vibration or the like is applied to the sheet metal radiating fin 116, the sheet metal radiating fin 116 slides along the groove 114. There is no slippage.
- the caulking portion 116 a of the sheet metal radiating fin 116 is bent into a substantially V shape.
- the groove 114 of the metal base 113 is formed with a tapered surface 114c that widens toward the opening and an inverse tapered surface 114b that widens toward the bottom.
- the width A1 of the opening of the groove 114 and the width A2 of the bottom surface 114a are substantially the same.
- the taper angle of the caulking portion 116a of the sheet metal radiating fin 116 and the taper angle of the taper surface 114c of the groove 114 are substantially the same.
- the thermal expansion amounts of the width A1 of the opening and the width A2 of the bottom surface 14a are substantially the same, the thermal stresses of the tapered surface 114c and the reverse tapered surface 114b are substantially the same, and the thermal reliability is high.
- the caulking portion 116a is caulked and joined in the groove 114 by the press blade 118 so as to crush the caulking portion 116a formed to be bent in a substantially V shape.
- the metal base 113 warps so that the other surface 113b becomes a convex surface due to the heat shrinkage of the resin after molding, and the pitch of the grooves 114 increases.
- the displacement of the grooves 114 at both ends is large, and the insertion of the sheet metal radiating fins 116 interferes with the grooves 114 and is difficult to insert, but the caulking portion 116a is substantially V-shaped, and the opening of the groove 114 Is a tapered surface 114c, so that the caulking portion 116a can be easily inserted.
- the substantially V-shaped caulking portion 116a has a high deformability and can be sufficiently caulked even if the metal base 113 is warped.
- the substantially V-shaped caulking portion 116 a is crushed by the press blade 118 and is pushed into the corner of the reverse tapered surface 114 b at the bottom of the groove 114 to be caulked and joined. After caulking and joining, a gap 114d is generated at the corner of the groove 114.
- the reverse taper surface 114b at the bottom of the groove 114 makes it easy to enter the caulking portion 116a and can perform caulking joining with a weak press load.
- the sheet metal radiating fins 116 are heated at the time of caulking, the bending elasticity of the sheet metal radiating fins 116 is reduced, and strong caulking can be performed without applying stress to the power semiconductor element 111. .
- a high thermal conductive adhesive 119 may be filled in a gap 114d between the groove 114 of the metal base 113 and the sheet metal radiating fin 116 caulked and joined in the groove 114.
- a soft silicon resin with a filler added to a high thermal conductivity is used as the high thermal conductive adhesive 119.
- the heat dissipation of the power module 91 is improved. Further, by bonding the sheet metal heat radiation fin 116 and the metal base 113 with the high thermal conductive adhesive 119, the sheet metal heat radiation fin 116 is not displaced even under severe vibration conditions.
- the cross-sectional shape of the groove 114 of the metal base 113 has been described in detail. However, the groove 114 may have a simple rectangular shape without the tapered surface 114c and the reverse tapered surface 114b. The gap 114d may not be filled with the high thermal conductive adhesive 119.
- the power module 91 performs metal bonding with high thermal conductivity from the power semiconductor element 111 that is a heating element to the heat radiation fins 116 made of sheet metal, to increase heat dissipation,
- the expensive power semiconductor element 111 is downsized to reduce the cost.
- the sheet metal radiating fins 116 are caulked and joined to the metal base 113, so that power modules having different fin lengths can be easily manufactured, improving workability and reducing manufacturing costs. be able to.
- the portion 116b protruding from the groove 114 of the caulking portion 116a is displaced to a position lower than the bottom surface 114a of the groove 114, the portion 116b is caught at both ends of the groove 114, and the sheet metal radiating fin 116 is vibrated. Is added, the sheet metal heat dissipating fin 116 does not slide and shift along the groove 114.
- FIG. FIG. 13 is a front longitudinal cross-sectional view of the power module of Embodiment 7 which concerns on this invention.
- the power module 92 of the seventh embodiment is different from the power module 91 of the sixth embodiment in that the metal frame 112 and the metal base 113 of the sixth embodiment are replaced with a metal substrate 123.
- the power module 92 of the seventh embodiment includes the power semiconductor element 111 that generates heat, the power semiconductor element 111 mounted on one surface 123a, and a plurality of parallel grooves 114 formed on the other surface 123b.
- the caulking portion 116a bent in a substantially V shape is caulked and joined in the groove 114 so as to crush, and the portion 116b protruding from the groove 114 of the caulking portion 116a is positioned lower than the bottom surface 114a of the groove 114. And a sheet metal heat dissipating fin 116 plastically deformed.
- the power module 92 of the seventh embodiment includes the power semiconductor element 111 on the one surface 123a of the metal substrate 123 in which the insulating layer 123e is formed between the other surface 123b in which a plurality of parallel grooves 114 are formed and the one surface 123a.
- the power semiconductor elements 111 and the power semiconductor elements 111 and the electrode terminals 112 a held by the mold resin 115 are electrically connected by metal wires 117.
- the metal substrate 123 is made of aluminum, copper, or the like with high thermal conductivity.
- the metal substrate 123 includes the resin insulating layer 123e, the metal substrate 123 has a lower thermal conductivity than that of solder bonding, but since the metal substrate 123 is insulated by the resin insulating layer 123e, a plurality of power semiconductor elements 111 can be mounted side by side.
- the power module 91 of the sixth embodiment When used as an inverter, the power module 91 of the sixth embodiment is non-insulated, and thus it is necessary to arrange a plurality of power modules 91 for each circuit while keeping a space insulation distance. Since the power module 92 is insulated for each circuit, it is not necessary to take a space insulation distance and can be miniaturized.
- the insulating layer 123e is made of a resin material and has a low elastic modulus, the stress generated in the power semiconductor element 111 is small, and the power due to the warp of the metal substrate 123 at the time of caulking the sheet metal radiating fin 116 and the metal substrate 123 is performed. Damage to the semiconductor element 111 can be prevented.
- the power semiconductor circuit device (power module) according to the present invention is useful for a power conversion device such as an inverter or a converter.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
なお、この実施の形態によりこの発明が限定されるものではない。
図1は、この発明の実施の形態1に係る電力半導体回路装置を示す断面模式図である。図1において、例えばIGBT(Insulated Gate Bipolar Transistor)、もしくはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)のような電力半導体素子10および電力半導体素子10を搭載した配線部材11は、 アルミニウムからなるベース板12に一括してはんだあるいは接着剤13により接着されている。ベース板12は、押出し加工、又は鋳造、あるいはダイキャストにより製作され、電力半導体素子10および電力半導体素子10を搭載した配線部材11を搭載した面と反対側の面、即ち、ベース板12の裏面には予め溝14が加工されている。
次に、この発明の実施の形態2に係る電力半導体回路装置およびその製造方法について図3により説明する。
実施の形態2に係る電力半導体回路装置は、実施の形態1と同様に、電力半導体素子10、電力半導体素子10を搭載した配線部材11は、アルミニウムからなるベース板30に一括してはんだ付け、あるいは接着されている。また、図3(a)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11と、ベース板30は、ベース板30の裏面とベース板30の側面における一部の表面を露出するように、エポキシ系のモールド樹脂15でトランスファモールドされている。
次に、この発明の実施の形態3に係る電力半導体回路装置およびその製造方法について図4により説明する。
実施の形態3に係る電力半導体回路装置は、実施の形態1あるいは実施の形態2と同様に、図4(a)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11と、ベース板40が、ベース板40の裏面とベース板40の側面における一部の表面を露出するように、エポキシ系のモールド樹脂15でトランスファモールドされている。
次に、この発明の実施の形態4に係る電力半導体回路装置およびその製造方法について説明する。
実施の形態4に係る電力半導体回路装置は、上記各実施の形態と同様に、図5(a)に示すように、電力半導体素子10および電力半導体素子10を搭載した配線部材11が、ベース板50に搭載されている。ベース板50の電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面と反対側の面、即ち、ベース板50の裏面50bが、電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面、即ち、ベース板50の表面50aよりも小さくなるようにベース板50の側面に傾斜部50cを設けている。そして、モールド金型51には、モールド時にベース板50の傾斜部50cを押付けシールする手段となる傾斜部51aが形成されている。傾斜部50cは、実施の形態3の図4(b)において説明した階段部としてもよい。なお、その他の構成については実施の形態1と同様であり、同一符号を付してその説明を省略する。
次に、この発明の実施の形態5に係る電力半導体回路装置およびその製造方法について説明する。
実施の形態5に係る電力半導体回路装置は、図6(a)、(b)に示すように、ベース板60の表面、即ち、電力半導体素子10および電力半導体素子10を搭載した配線部材11の搭載面に、その面と垂直に凸部60aが形成されている。この凸部60aは、ベース板60の各側面の端部から少し内側の位置に設けられ、図6(a)に示すように、凸部60aを含むようにモールド樹脂15でモールドされている。また、ベース板60の表面の面積は、モールド樹脂15によるモールド部の投影面積に比べて大きく、かつ放熱フィン16の最端位置よりモールド樹脂15の側面が外側にある。ベース板60に形成した凸部60aは凹部でもかまわない。なお、その他の構成については実施の形態1と同様であり、同一符号を付してその説明を省略する。
また、ベース板60にアルミニウムを用いたとき、モールド樹脂15はアルミニウムとの接着性が良好でないため剥がれ易いが、凸部60aを形成することにより、ベース板60に対してモールド樹脂15の接着力が増し、放熱フィン16を形成する際のストレスにより、モールド樹脂15が剥がれること防ぐことができる。
図7は、本発明の実施の形態6における電力半導体回路装置であるパワーモジュールを示す正面縦断面図、図8は、実施の形態6のパワーモジュールの分解斜視図、図9は、実施の形態6のパワーモジュールの側面縦断面図、図10は、金属ベースの溝及び板金製放熱フィンの形状を示す縦断面図、図11は、金属ベースの溝内に板金製放熱フィンのかしめ部がかしめ接合された状態を示す縦断面図であり、図12は、金属ベースの溝と板金製放熱フィンとの間の隙間に高熱伝導性接着剤が充填された状態を示す縦断面図である。
PPS(polyphenylene sulfide)やPBT(polybutylene terephthalate)等の熱可塑性樹脂を用いてもよい。金属ベース113とのかしめ接合時に、コルゲート型放熱フィン116の位置決めをし易いように、モールド樹脂115のフィン側の面115aの縁部に突起115bを設け、コルゲート型放熱フィン116の側部フランジ116dに設けられた孔116eに突起115bを嵌め込んで固定している。突起115bは、溝114にかしめ接合後の板金製放熱フィン116の位置ずれの抑制にも寄与している。
プレス刃118により、板金製放熱フィン116のかしめ部116aと金属ベース113の溝114とのかしめ接合を行なうとき、金属ベース113に実装されたパワー半導体素子111は、金属ベース113の変形による応力の発生により破損する可能性があり、パワー半導体素子111が破損しない程度の弱いプレス荷重でかしめ接合を行なう必要がある。
溝114の開口部の幅A1と底面114aの幅A2は、略同一となっている。また、板金製放熱フィン116のかしめ部116aのテーパ角度と溝114のテーパ面114cのテーパ角度とは、略同一となっている。
プレス刃118により、略V字形に折り曲げ形成されたかしめ部116aを押し潰すようにして、かしめ部116aを溝114内にかしめ接合する。
以上、金属ベース113の溝114の断面形状について詳細に説明したが、溝114は、テーパ面114c及び逆テーパ面114bを設けない単純矩形形状であってもよい。
また、隙間114dに、高熱伝導性接着剤119を充填しなくてもよい。
図13は、本発明に係る実施の形態7のパワーモジュールの正面縦断面図である。
実施の形態7のパワーモジュール92が、実施の形態6のパワーモジュール91と異なるところは、実施の形態6の金属フレーム112及び金属ベース113を、金属基板123に替えたことである。
金属基板123は、熱伝導率の高いアルミニウムや銅等により形成されている。
Claims (16)
- 電力半導体素子を備えた電力半導体回路装置において、
少なくとも上記電力半導体素子を搭載したベース板と、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態でモールドする樹脂と、上記ベース板と押圧力により接合する放熱フィンとを備え、上記ベース板の上記放熱フィン接合部に溝を加工し、上記溝に上記放熱フィンをかしめによって固着したことを特徴とする電力半導体回路装置。 - 電力半導体素子を備えた電力半導体回路装置において、
少なくとも上記電力半導体素子を搭載したベース板と、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態でモールドする樹脂と、上記ベース板の上記露出した表面に、上記表面を切り起こして形成した放熱フィンとを備えたことを特徴とする電力半導体回路装置。 - 上記放熱フィンは、一枚の板を波状に形成したものであることを特徴とする請求項1に記載の電力半導体回路装置。
- 上記ベース板に形成された溝には、開口部に向かって拡幅するテーパ面と、底部に向かって拡幅する逆テーパ面が形成されていることを特徴とする請求項1に記載の電力半導体回路装置。
- 上記ベース板の溝と該溝内にかしめによって固着された放熱フィンとの間の隙間に、高熱伝導性接着剤が充填されていることを特徴とする請求項1に記載の電力半導体回路装置。
- 上記ベース板の少なくとも対向する二つの面に、階段状の段部を形成したことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
- 上記ベース板の電力半導体素子を搭載する面から該電力半導体素子を搭載する面の反対側の面にかけて形成された傾斜部を備えたことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
- 上記ベース板の電力半導体素子の搭載面の面積を、上記樹脂によるモールド部の投影面積に比べて大きくしたことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
- 上記ベース板の電力半導体素子の搭載面に、垂直方向の凸部または凹部を形成したことを特徴とする請求項1または請求項2に記載の電力半導体回路装置。
- 電力半導体素子を備えた電力半導体回路装置の製造方法において、
ベース板の一面に少なくとも上記電力半導体素子を搭載すると共に、上記ベース板の反対側の面に接合用の溝を形成し、上記ベース板と上記電力半導体素子とを、上記ベース板の上記電力半導体素子を搭載する面の反対側の面を含む上記ベース板の一部の表面を露出させた状態で樹脂によりモールドし、その後、上記ベース板の上記溝に上記放熱フィンをかしめによって固着することを特徴とする電力半導体回路装置の製造方法。 - 上記樹脂によるモールドは、上記ベース板の周辺を押圧する手段を有する金型によりモールドすることを特徴とする請求項10に記載の電力半導体回路装置の製造方法。
- 上記ベース板の周辺に段部もしくはテーパ部を形成することを特徴とする請求項11に記載の電力半導体回路装置の製造方法。
- 上記放熱フィンを上記ベース板に加熱しながらかしめによって固着して形成することを特徴とする請求項10~請求項12のいずれか一項に記載の電力半導体回路装置の製造方法。
- 上記放熱フィンは、V字形に折り曲げ形成されたかしめ部を有し、このかしめ部を押し潰すように上記溝内にかしめによって固着され、且つ前記かしめ部の前記溝から食み出た部分が該溝の底面より低い位置になるように塑性変形されたことを特徴とする請求項1に記載の電力半導体回路装置。
- 発熱するパワー半導体素子と、
一面に上記パワー半導体素子が実装され、他面に複数の平行な溝が形成され、前記一面と他面との間に絶縁層が形成された金属基板と、
上記パワー半導体素子を被覆するとともに上記金属基板の上記一面及び該一面側の外周部を覆うモールド樹脂と、
V字形に折り曲げ形成されたかしめ部を有し、このかしめ部を押し潰すように上記溝内にかしめによって固着され、上記かしめ部の上記溝から食み出た部分が該溝の底面より低い位置になるように塑性変形された放熱フィンと、を備えることを特徴とする電力半導体回路装置。 - パワー半導体素子を金属フレームに実装する工程と、
他面に複数の平行な溝が形成された金属ベースの一面に前記金属フレームを設置する工程と、
モールド樹脂により前記パワー半導体素子及び金属フレームを被覆するとともに前記金属ベースの前記一面及び該一面側の外周部を覆う工程と、
板金製放熱フィンのV字形に折り曲げ形成されたかしめ部を、押し潰すように前記溝内にかしめによって固着し、前記かしめ部の前記溝から食み出た部分を該溝の底面より低い位置になるように塑性変形する工程と、を含むことを特徴とする電力半導体回路装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020107025840A KR101186781B1 (ko) | 2008-06-12 | 2009-06-04 | 전력 반도체 회로 장치 및 그 제조 방법 |
JP2010516826A JP5566289B2 (ja) | 2008-06-12 | 2009-06-04 | 電力半導体回路装置およびその製造方法 |
US12/988,035 US8659147B2 (en) | 2008-06-12 | 2009-06-04 | Power semiconductor circuit device and method for manufacturing the same |
EP09762425.8A EP2293328B1 (en) | 2008-06-12 | 2009-06-04 | Method for manufacturing a power semiconductor circuit device |
CN2009801190034A CN102047414B (zh) | 2008-06-12 | 2009-06-04 | 电力半导体电路装置及其制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-153935 | 2008-06-12 | ||
JP2008153935 | 2008-06-12 | ||
JP2008240318 | 2008-09-19 | ||
JP2008-240318 | 2008-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009150995A1 true WO2009150995A1 (ja) | 2009-12-17 |
Family
ID=41416702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/060264 WO2009150995A1 (ja) | 2008-06-12 | 2009-06-04 | 電力半導体回路装置およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8659147B2 (ja) |
EP (1) | EP2293328B1 (ja) |
JP (1) | JP5566289B2 (ja) |
KR (1) | KR101186781B1 (ja) |
CN (1) | CN102047414B (ja) |
TW (1) | TWI404177B (ja) |
WO (1) | WO2009150995A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011222606A (ja) * | 2010-04-06 | 2011-11-04 | Mitsubishi Electric Corp | ヒートシンク及びヒートシンク一体型パワーモジュール |
JP2012049167A (ja) * | 2010-08-24 | 2012-03-08 | Mitsubishi Electric Corp | 電力半導体装置 |
JP2013055304A (ja) * | 2011-09-06 | 2013-03-21 | Nippon Tanshi Kk | 端子ボックス用端子部材 |
US8426962B2 (en) | 2010-10-13 | 2013-04-23 | Mitsubishi Electric Corporation | Semiconductor device |
WO2013065474A1 (ja) * | 2011-10-31 | 2013-05-10 | ローム株式会社 | 半導体装置 |
JP2014056982A (ja) * | 2012-09-13 | 2014-03-27 | Mitsubishi Electric Corp | パワー半導体装置およびその製造方法 |
WO2016016985A1 (ja) * | 2014-07-31 | 2016-02-04 | 三菱電機株式会社 | 半導体装置 |
JP2017537354A (ja) * | 2014-11-28 | 2017-12-14 | ヴァレオ、コンフォート、アンド、ドライビング、アシスタンスValeo Comfort And Driving Assistance | バックライト装置、とりわけヘッドアップディスプレイ用のバックライト装置及び自動車用ヘッドアップディスプレイ |
JP7515616B2 (ja) | 2020-11-17 | 2024-07-12 | 三菱電機株式会社 | パワー半導体モジュール及びその製造方法並びに電力変換装置 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112012005791B4 (de) | 2012-01-31 | 2022-05-12 | Mitsubishi Electric Corporation | Halbleiterbauteil und Verfahren zu dessen Herstellung |
DE112013001113T5 (de) * | 2012-02-24 | 2014-11-06 | Mitsubishi Electric Corporation | Halbleitervorrichtung und deren Herstellungsverfahren |
KR101581610B1 (ko) * | 2012-03-22 | 2016-01-11 | 미쓰비시덴키 가부시키가이샤 | 반도체 장치 및 그 제조 방법 |
DE102012105110A1 (de) * | 2012-06-13 | 2013-12-19 | Osram Opto Semiconductors Gmbh | Montageträger und Verfahren zur Montage eines Montageträgers auf einem Anschlussträger |
EP2854169B1 (en) * | 2012-07-31 | 2017-09-06 | Mitsubishi Electric Corporation | Electric power semiconductor device |
US9230878B2 (en) * | 2013-04-12 | 2016-01-05 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Integrated circuit package for heat dissipation |
WO2015045648A1 (ja) * | 2013-09-30 | 2015-04-02 | 富士電機株式会社 | 半導体装置、半導体装置の組み立て方法、半導体装置用部品及び単位モジュール |
JP5996126B2 (ja) * | 2013-12-05 | 2016-09-21 | 三菱電機株式会社 | 電力半導体装置 |
WO2015111242A1 (ja) | 2014-01-21 | 2015-07-30 | 富士通株式会社 | 放熱部品、放熱部品の製造方法、電子装置、電子装置の製造方法、一体型モジュール、情報処理システム |
JP6093455B2 (ja) * | 2014-01-27 | 2017-03-08 | 株式会社日立製作所 | 半導体モジュール |
CN106575642B (zh) * | 2014-07-10 | 2019-06-18 | 富士通株式会社 | 散热部件、散热部件的制造方法、电子装置、电子装置的制造方法、一体型模块、信息处理系统 |
JP6341822B2 (ja) * | 2014-09-26 | 2018-06-13 | 三菱電機株式会社 | 半導体装置 |
JPWO2016147226A1 (ja) * | 2015-03-19 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 筐体、蛍光体ホイール装置、投影装置 |
US10615155B2 (en) | 2015-03-23 | 2020-04-07 | Gd Midea Airconditioning Equipment Co., Ltd. | Intelligent power module and manufacturing method thereof |
CN106876348A (zh) * | 2017-03-07 | 2017-06-20 | 中航华东光电有限公司 | 芯片封装结构及其制造方法 |
US10986756B2 (en) * | 2017-12-28 | 2021-04-20 | Hughes Network Systems Llc | Cooling apparatus for an electrical component |
US10833241B1 (en) * | 2019-06-20 | 2020-11-10 | International Business Machines Corporation | Thermalization structure for cryogenic temperature devices |
JP7316968B2 (ja) * | 2020-03-27 | 2023-07-28 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
CN114374067B (zh) * | 2022-01-04 | 2023-06-30 | 中信科移动通信技术股份有限公司 | 合路器 |
US12038618B2 (en) * | 2022-07-19 | 2024-07-16 | Hewlett Packard Enterprise Development Lp | Corrugated thermal interface device with lateral spring fingers |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03140755A (ja) * | 1989-10-17 | 1991-06-14 | Copeland Corp | 冷凍装置 |
JPH11204700A (ja) | 1998-01-19 | 1999-07-30 | Hitachi Ltd | 放熱フィン一体型パワーモジュール |
JP2000151163A (ja) * | 1998-11-18 | 2000-05-30 | Showa Alum Corp | ヒートシンクの製造法 |
JP2001053212A (ja) * | 1999-08-10 | 2001-02-23 | Motorola Inc | Icパッケージおよびその製造方法 |
JP2001352020A (ja) * | 2000-06-06 | 2001-12-21 | Ricchisutoon:Kk | 放熱素子の製造方法 |
JP2002299864A (ja) * | 2001-03-29 | 2002-10-11 | Ryosan Co Ltd | コルゲートフィン型ヒートシンク |
JP2003158226A (ja) * | 2001-11-20 | 2003-05-30 | Sony Corp | 半導体装置 |
JP2007173272A (ja) * | 2005-12-19 | 2007-07-05 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3814145C2 (de) * | 1988-04-27 | 1998-07-23 | Hess Joachim | Vorrichtung zum Zuführen oder Abführen von Wärme |
JPH02238653A (ja) | 1989-03-13 | 1990-09-20 | Hitachi Ltd | 半導体装置 |
JP2602380B2 (ja) * | 1991-10-23 | 1997-04-23 | 富士通株式会社 | 半導体装置及びその製造方法 |
US5247734A (en) * | 1992-11-09 | 1993-09-28 | Motorola, Inc. | Method and apparatus of an improved heat sink |
US5444909A (en) * | 1993-12-29 | 1995-08-29 | Intel Corporation | Method of making a drop-in heat sink |
US5533257A (en) * | 1994-05-24 | 1996-07-09 | Motorola, Inc. | Method for forming a heat dissipation apparatus |
US6208513B1 (en) * | 1995-01-17 | 2001-03-27 | Compaq Computer Corporation | Independently mounted cooling fins for a low-stress semiconductor package |
US5771966A (en) * | 1995-12-15 | 1998-06-30 | Jacoby; John | Folded conducting member heatsinks and method of making same |
DE29715585U1 (de) * | 1997-08-28 | 1998-12-24 | Hoogovens Aluminium Profiltechnik Bonn GmbH, 53117 Bonn | Kühlvorrichtung für elektrische bzw. elektronische Bauelemente |
JP3862861B2 (ja) * | 1998-06-19 | 2006-12-27 | 稔之 新井 | 電装部品用ヒートシンクの製造方法 |
TW376171U (en) * | 1998-11-24 | 1999-12-01 | Foxconn Prec Components Co Ltd | Radiating device |
JP4601610B2 (ja) * | 2004-03-31 | 2010-12-22 | 株式会社事業創造研究所 | ヒートシンクの製造方法 |
JP2006041363A (ja) * | 2004-07-29 | 2006-02-09 | Hitachi Ltd | 樹脂封止型半導体装置 |
JP3140755U (ja) | 2008-01-21 | 2008-04-10 | 水谷電機工業株式会社 | コルゲートフィン型放熱器 |
-
2009
- 2009-06-04 JP JP2010516826A patent/JP5566289B2/ja not_active Expired - Fee Related
- 2009-06-04 CN CN2009801190034A patent/CN102047414B/zh not_active Expired - Fee Related
- 2009-06-04 TW TW98118508A patent/TWI404177B/zh not_active IP Right Cessation
- 2009-06-04 WO PCT/JP2009/060264 patent/WO2009150995A1/ja active Application Filing
- 2009-06-04 EP EP09762425.8A patent/EP2293328B1/en active Active
- 2009-06-04 US US12/988,035 patent/US8659147B2/en active Active
- 2009-06-04 KR KR1020107025840A patent/KR101186781B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03140755A (ja) * | 1989-10-17 | 1991-06-14 | Copeland Corp | 冷凍装置 |
JPH11204700A (ja) | 1998-01-19 | 1999-07-30 | Hitachi Ltd | 放熱フィン一体型パワーモジュール |
JP2000151163A (ja) * | 1998-11-18 | 2000-05-30 | Showa Alum Corp | ヒートシンクの製造法 |
JP2001053212A (ja) * | 1999-08-10 | 2001-02-23 | Motorola Inc | Icパッケージおよびその製造方法 |
JP2001352020A (ja) * | 2000-06-06 | 2001-12-21 | Ricchisutoon:Kk | 放熱素子の製造方法 |
JP2002299864A (ja) * | 2001-03-29 | 2002-10-11 | Ryosan Co Ltd | コルゲートフィン型ヒートシンク |
JP2003158226A (ja) * | 2001-11-20 | 2003-05-30 | Sony Corp | 半導体装置 |
JP2007173272A (ja) * | 2005-12-19 | 2007-07-05 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2293328A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011222606A (ja) * | 2010-04-06 | 2011-11-04 | Mitsubishi Electric Corp | ヒートシンク及びヒートシンク一体型パワーモジュール |
JP2012049167A (ja) * | 2010-08-24 | 2012-03-08 | Mitsubishi Electric Corp | 電力半導体装置 |
US8426962B2 (en) | 2010-10-13 | 2013-04-23 | Mitsubishi Electric Corporation | Semiconductor device |
DE102011081514B4 (de) | 2010-10-13 | 2018-06-14 | Mitsubishi Electric Corp. | Halbleitervorrichtung |
JP2013055304A (ja) * | 2011-09-06 | 2013-03-21 | Nippon Tanshi Kk | 端子ボックス用端子部材 |
US9905499B2 (en) | 2011-10-30 | 2018-02-27 | Rohm Co., Ltd. | Semiconductor device |
US9070659B2 (en) | 2011-10-31 | 2015-06-30 | Rohm Co., Ltd. | Semiconductor device |
US9613883B2 (en) | 2011-10-31 | 2017-04-04 | Rohm Co., Ltd. | Semiconductor device |
WO2013065474A1 (ja) * | 2011-10-31 | 2013-05-10 | ローム株式会社 | 半導体装置 |
US10504822B2 (en) | 2011-10-31 | 2019-12-10 | Rohm Co., Ltd. | Semiconductor device |
JP2014056982A (ja) * | 2012-09-13 | 2014-03-27 | Mitsubishi Electric Corp | パワー半導体装置およびその製造方法 |
WO2016016985A1 (ja) * | 2014-07-31 | 2016-02-04 | 三菱電機株式会社 | 半導体装置 |
JPWO2016016985A1 (ja) * | 2014-07-31 | 2017-04-27 | 三菱電機株式会社 | 半導体装置 |
JP2017537354A (ja) * | 2014-11-28 | 2017-12-14 | ヴァレオ、コンフォート、アンド、ドライビング、アシスタンスValeo Comfort And Driving Assistance | バックライト装置、とりわけヘッドアップディスプレイ用のバックライト装置及び自動車用ヘッドアップディスプレイ |
JP7515616B2 (ja) | 2020-11-17 | 2024-07-12 | 三菱電機株式会社 | パワー半導体モジュール及びその製造方法並びに電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2293328A4 (en) | 2014-06-11 |
KR101186781B1 (ko) | 2012-09-27 |
KR20100134766A (ko) | 2010-12-23 |
US8659147B2 (en) | 2014-02-25 |
CN102047414B (zh) | 2013-05-29 |
EP2293328B1 (en) | 2019-11-20 |
JPWO2009150995A1 (ja) | 2011-11-17 |
CN102047414A (zh) | 2011-05-04 |
US20110031612A1 (en) | 2011-02-10 |
TW201003862A (en) | 2010-01-16 |
EP2293328A1 (en) | 2011-03-09 |
TWI404177B (zh) | 2013-08-01 |
JP5566289B2 (ja) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5566289B2 (ja) | 電力半導体回路装置およびその製造方法 | |
JP5279632B2 (ja) | 半導体モジュール | |
EP2674973B1 (en) | Power semiconductor module | |
JP5432085B2 (ja) | 電力半導体装置 | |
US10461012B2 (en) | Semiconductor module with reinforcing board | |
US20120307541A1 (en) | Power converter, semiconductor device, and method for manufacturing power converter | |
JP5213884B2 (ja) | 半導体装置モジュール | |
US20130026616A1 (en) | Power device package module and manufacturing method thereof | |
US10582607B2 (en) | Circuit assembly having a heat transfer member | |
JP7555257B2 (ja) | 電気回路体、電力変換装置、および電気回路体の製造方法 | |
JP2006186170A (ja) | 半導体装置 | |
KR102228945B1 (ko) | 반도체 패키지 및 이의 제조방법 | |
CN115702491A (zh) | 具有至少一个功率半导体元件的功率半导体模块 | |
JP5213919B2 (ja) | 半導体装置 | |
JP6644196B1 (ja) | 半導体装置およびその製造方法ならびに電力変換装置 | |
JP2009164240A (ja) | 半導体装置 | |
JP4883684B2 (ja) | 絶縁型大電力用半導体装置の製造方法 | |
JP4715283B2 (ja) | 電力変換装置及びその製造方法 | |
JP2018073923A (ja) | 電力用半導体装置、電力用半導体装置の製造方法および電力変換装置 | |
JP2017028131A (ja) | パッケージ実装体 | |
JP2010141034A (ja) | 半導体装置及びその製造方法 | |
JP7171516B2 (ja) | パワー半導体モジュール、電力変換装置およびパワー半導体モジュールの製造方法 | |
JP6698879B2 (ja) | 半導体装置、および半導体装置の製造方法 | |
JP5465313B2 (ja) | 半導体装置モジュール | |
JP2012114141A (ja) | 半導体装置及び半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980119003.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09762425 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010516826 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12988035 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107025840 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009762425 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |