WO2009148168A1 - パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 - Google Patents

パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 Download PDF

Info

Publication number
WO2009148168A1
WO2009148168A1 PCT/JP2009/060392 JP2009060392W WO2009148168A1 WO 2009148168 A1 WO2009148168 A1 WO 2009148168A1 JP 2009060392 W JP2009060392 W JP 2009060392W WO 2009148168 A1 WO2009148168 A1 WO 2009148168A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
ceramic substrate
power module
substrate
layer
Prior art date
Application number
PCT/JP2009/060392
Other languages
English (en)
French (fr)
Inventor
黒光 祥郎
長友 義幸
丈嗣 北原
宏史 殿村
和裕 秋山
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009065033A external-priority patent/JP5423076B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN200980120627.8A priority Critical patent/CN102047413B/zh
Priority to US12/737,042 priority patent/US8564118B2/en
Priority to EP09758435.3A priority patent/EP2296177B1/en
Publication of WO2009148168A1 publication Critical patent/WO2009148168A1/ja
Priority to US14/027,601 priority patent/US8921996B2/en
Priority to US14/511,610 priority patent/US20150022977A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the present invention relates to a power module substrate used in a semiconductor device for controlling a large current and a high voltage, a power module including the power module substrate, and a method for manufacturing the power module substrate.
  • This application includes Japanese Patent Application No. 2008-149902 filed on June 6, 2008, Japanese Patent Application No. 2009-065033 filed on March 17, 2009, and Japanese Patent Application No. 2009 filed on March 26, 2009. -Claims priority based on Japanese Patent Application No. 2009-086247 filed on March 31, 2009, and Japanese Patent Application No. 2009-086248 filed on March 31, 2009, the contents of which are hereby Incorporated into.
  • a power module is used for power supply among semiconductor elements.
  • the amount of heat generated by the power module is relatively high. Therefore, as a substrate on which this power module is mounted, for example, Al (aluminum) is formed on a ceramic substrate made of AlN (aluminum nitride), Si 3 N 4 (silicon nitride), or Al 2 O 3 (aluminum oxide).
  • a power module substrate in which a metal plate is bonded via an Al—Si brazing material is used. The metal plate is formed as a circuit layer, and a semiconductor chip as a power element is mounted on the metal plate via a solder material.
  • a metal layer was formed by bonding a metal plate such as Al to the lower surface of the ceramic substrate, and the entire power module substrate was bonded on the heat dissipation plate via this metal layer.
  • a structure has been proposed.
  • Patent Document 1 in order to obtain a good bonding strength between the circuit layer and the metal plate functioning as the metal layer and the ceramic substrate, the surface roughness of the ceramic substrate is reduced.
  • a technique for making the thickness less than 0.5 ⁇ m is known.
  • the present invention has been made in view of the above-described circumstances, and a metal plate and a ceramic substrate are securely bonded to each other, and a power module substrate having high thermal cycle reliability, a power module including the power module substrate, and this It aims at providing the manufacturing method of the board
  • a power module substrate includes a ceramic substrate having a surface and an aluminum bonded to the surface of the ceramic substrate. And a metal plate containing Cu at the bonding interface with the ceramic substrate, and the Cu concentration at the bonding interface is set within a range of 0.05 to 5 wt%.
  • Cu is diffused in the metal plate, and the Cu concentration at the bonding interface is set in the range of 0.05 to 5 wt%. Strengthened. Therefore, when a thermal cycle or the like is loaded, cracks are prevented from occurring and progress in the metal plate, and the joining reliability can be improved.
  • the end portion in the width direction of the metal plate is composed of an aluminum phase containing Cu in aluminum and a binary eutectic structure of Al and Cu. It is preferable that a eutectic phase is formed.
  • a eutectic phase composed of a binary eutectic structure of Al and Cu is formed at the end in the width direction of the metal plate, it is possible to further strengthen the end in the width direction of the metal plate. Become. Thereby, generation
  • precipitated particles made of a compound containing Cu are precipitated in the eutectic phase.
  • precipitated particles made of a compound containing Cu are precipitated, so that the end portion in the width direction of the metal plate can be further strengthened by precipitation. It becomes possible. Thereby, generation
  • the metal plate has a concentration gradient in which the Cu concentration gradually decreases as the metal plate and the ceramic substrate are stacked in the direction in which the metal plate is separated from the bonding interface.
  • a soft layer formed on the opposite side of the concentration gradient portion from the ceramic substrate and having a hardness lower than that in the vicinity of the bonding interface.
  • the vicinity of the bonding interface in the metal plate is set to have a high Cu concentration and is hardened by solid solution strengthening.
  • the soft layer the Cu concentration is set low, the hardness is low, and the deformation resistance is small. Therefore, this soft layer can absorb the thermal strain (thermal stress) caused by the difference in thermal expansion coefficient between the metal plate and the ceramic substrate, and the thermal cycle reliability can be greatly improved.
  • a power module according to a second aspect of the present invention includes the power module substrate according to the first aspect described above, and an electronic component mounted on the power module substrate. According to the power module of this configuration, since the bonding strength between the ceramic substrate and the metal plate is configured to be high, even when the usage environment is severe, for example, when used so that thermal stress repeatedly occurs Even so, the reliability can be dramatically improved.
  • a method for manufacturing a power module substrate comprising: preparing a ceramic substrate, a metal plate made of aluminum, and a Cu layer having a thickness of 0.15 ⁇ m to 3 ⁇ m; Are laminated through the Cu layer (lamination process), the laminated ceramic substrate, the Cu layer, and the metal plate are pressed and heated in the lamination direction, and the ceramic substrate and the metal plate are Forming a molten metal layer at the interface (melting step), solidifying the molten metal layer by cooling the molten metal layer (solidification step), and in the melting step and the solidification step, the ceramic substrate in the metal plate and the Cu is contained in the vicinity of the bonding interface with the metal plate so that the Cu concentration is in the range of 0.05 to 5 wt%.
  • a ceramic substrate and a metal plate are stacked via a Cu layer, and the stacked ceramic substrate and the metal plate are pressed and heated in the stacking direction.
  • the eutectic reaction between Cu in the Cu layer and Al in the metal plate lowers the melting point in the vicinity of the bonding interface, and a molten metal layer can be formed at the interface between the ceramic substrate and the metal plate even at a relatively low temperature.
  • the ceramic substrate and the metal plate can be joined. That is, the ceramic substrate and the metal plate can be joined without using a brazing material made of an Al—Si alloy or the like.
  • a brazing material does not ooze out to the circuit layer surface, but a Ni plating layer can be favorably formed on the circuit layer surface.
  • the thickness of the Cu layer is less than 0.15 ⁇ m, the molten metal layer may not be sufficiently formed at the interface between the ceramic substrate and the metal plate. If the thickness of the Cu layer exceeds 3 ⁇ m, a reaction product of Cu and Al is excessively generated at the bonding interface, the vicinity of the bonding interface of the metal plate is strengthened more than necessary, and the ceramic substrate is cracked during thermal cycle loading. May occur. For this reason, it is preferable that the thickness of Cu layer is 0.15 micrometer or more and 3 micrometers or less. In order to surely obtain the above-described effects, the thickness of the Cu layer is preferably 0.5 ⁇ m or more and 2.5 ⁇ m or less.
  • a Cu layer is formed on at least one of the ceramic substrate and the metal plate. Is preferably fixed.
  • the Cu substrate is securely bonded to the ceramic substrate and the metal plate. The ceramic substrate and the metal plate can be reliably bonded.
  • a vapor deposition method, a sputtering method, a plating method, or a Cu paste is used.
  • Cu is fixed to at least one of the ceramic substrate and the metal plate by a method selected from any of the above coating methods.
  • the Cu layer can be reliably formed by a method selected from the vapor deposition method, the sputtering method, the plating method, or the Cu paste coating method, and the ceramic substrate and the metal plate can be joined.
  • a copper foil is interposed between the ceramic substrate and the metal plate.
  • the Cu layer is disposed.
  • the Cu layer can be formed on the surface (joint surface) of the metal plate facing the ceramic substrate or the surface (joint surface) of the ceramic substrate facing the metal plate. Therefore, the ceramic substrate and the metal plate can be firmly bonded.
  • a power module substrate is made of AlN or Si 3 N 4 and has a ceramic substrate having a surface, a metal plate bonded to the surface of the ceramic substrate and made of pure aluminum, and the metal plate And a Cu high concentration portion having a Cu concentration that is formed at a bonding interface between the metal plate and the ceramic substrate and has a Cu concentration that is twice or more the Cu concentration in the metal plate.
  • a Cu concentration that is at least twice the Cu concentration in the metal plate at the bonding interface between the ceramic substrate made of AlN or Si 3 N 4 and the metal plate made of pure aluminum Since the Cu high-concentration part having is formed, the bonding strength between the ceramic substrate and the metal plate can be improved by Cu atoms existing in the vicinity of the interface.
  • the Cu concentration in the metal plate is the Cu concentration in a portion of the metal plate that is away from the bonding interface by a certain distance (for example, 50 nm or more).
  • the oxygen concentration in the Cu high concentration portion is higher than the oxygen concentration in the metal plate and the ceramic substrate.
  • oxygen present at a high concentration at the bonding interface is considered to be oxygen present on the surface of the ceramic substrate and oxygen taken from an oxide film formed on the surface of the metal plate.
  • the presence of a high concentration of oxygen at the bonding interface means that the oxide film and the like are sufficiently heated so as to be removed reliably. Therefore, the ceramic substrate and the metal plate can be firmly bonded.
  • the ceramic substrate is made of AlN, and when the bonding interface including the Cu high concentration portion is analyzed by energy dispersive X-ray analysis, Al,
  • the ceramic substrate according to the fourth aspect of the present invention when the ceramic substrate is made of Si 3 N 4 and the bonding interface including the Cu high concentration portion is analyzed by an energy dispersive X-ray analysis method.
  • the mass ratio of Cu atoms present at the bonding interface exceeds 10 wt%, a reaction product of Al and Cu is excessively generated, and this reaction product may inhibit bonding. Moreover, the vicinity of the bonding interface of the metal plate is unnecessarily strengthened by the reaction product, and stress may act on the ceramic substrate during thermal cycle loading, which may cause the ceramic substrate to break.
  • the mass ratio of Cu atoms at the bonding interface is preferably in the range of 1 to 10 wt%.
  • the oxygen concentration is preferably 2 to 20 wt%.
  • the spot diameter at the time of performing the analysis by the energy dispersive X-ray analysis method is extremely small, a plurality of points (for example, 10 to 100 points) on the bonding interface are measured, and the average value is calculated. Moreover, when measuring, only the junction interface between a crystal grain and a ceramic substrate is measured, without measuring the junction interface between the crystal grain boundary of a metal plate, and a ceramic substrate.
  • the analytical value by the energy dispersive X-ray analysis method in the present specification is the energy dispersive X-ray fluorescence element analyzer NORAN manufactured by Thermo Fisher Scientific Co., Ltd. mounted on the electron microscope JEM-2010F manufactured by JEOL. It is obtained using System 7 under the condition of an acceleration voltage of 200 kV.
  • a power module according to a fifth aspect of the present invention includes the power module substrate according to the fourth aspect described above and an electronic component mounted on the power module substrate. According to the power module of this configuration, even when the bonding strength between the ceramic substrate and the metal plate is high and the usage environment is severe, for example, when the thermal stress is repeatedly generated, The reliability can be improved dramatically.
  • a method for manufacturing a power module substrate comprising: preparing a ceramic substrate made of AlN, a metal plate made of pure aluminum, and a Cu layer having a thickness of 0.15 ⁇ m to 3 ⁇ m; And the metal plate through the Cu layer (lamination step), pressurizing and heating the laminated ceramic substrate, the Cu layer, and the metal plate in the lamination direction, and the ceramic substrate and Forming a molten aluminum layer at the interface of the metal plate (melting step), solidifying the molten aluminum layer by cooling the molten aluminum layer (solidifying step), and in the melting step and the solidifying step, the ceramic substrate and the A Cu high-concentration portion having a Cu concentration that is at least twice the Cu concentration in the metal plate at the bonding interface with the metal plate.
  • a ceramic substrate and a metal plate are stacked via a Cu layer, and the stacked ceramic substrate and the metal plate are pressed and heated in the stacking direction.
  • the eutectic reaction between Cu in the Cu layer and Al in the metal plate lowers the melting point in the vicinity of the bonding interface, and a molten aluminum layer can be formed at the interface between the ceramic substrate and the metal plate even at a relatively low temperature.
  • the ceramic substrate and the metal plate can be joined. That is, the ceramic substrate and the metal plate can be joined without using a brazing material made of an Al—Si alloy or the like.
  • the thickness of the Cu layer is less than 0.15 ⁇ m, there is a possibility that the molten aluminum layer cannot be sufficiently formed at the interface between the ceramic substrate and the metal plate. Further, when the thickness of the Cu layer exceeds 3 ⁇ m, a reaction product of Cu and Al is excessively generated at the bonding interface, the vicinity of the bonding interface of the metal plate is strengthened more than necessary, and the ceramic made of AlN at the time of thermal cycle load There is a risk of cracking the substrate. For this reason, in the case of a ceramic substrate made of AlN, the thickness of the Cu layer is preferably 0.15 ⁇ m or more and 3 ⁇ m or less.
  • a power module substrate manufacturing method comprising: preparing a ceramic substrate made of Si 3 N 4 , a metal plate made of pure aluminum, and a Cu layer having a thickness of 0.15 ⁇ m to 3 ⁇ m; Laminating the ceramic substrate and the metal plate through the Cu layer (lamination step), pressurizing and heating the laminated ceramic substrate, the Cu layer, and the metal plate in the laminating direction, Forming a molten aluminum layer at the interface between the ceramic substrate and the metal plate (melting step), solidifying the molten aluminum layer by cooling the molten aluminum layer (solidifying step), and in the melting step and solidifying step, the ceramics Cu high concentration having a Cu concentration that is at least twice the Cu concentration in the metal plate at the bonding interface between the substrate and the metal plate Forming part.
  • a ceramic substrate and a metal plate are stacked via a Cu layer, and the stacked ceramic substrate and the metal plate are pressed and heated in the stacking direction.
  • the eutectic reaction between Cu in the Cu layer and Al in the metal plate lowers the melting point in the vicinity of the bonding interface, and a molten aluminum layer can be formed at the interface between the ceramic substrate and the metal plate even at a relatively low temperature.
  • the ceramic substrate and the metal plate can be joined. That is, the ceramic substrate and the metal plate can be joined without using a brazing material made of an Al—Si alloy or the like.
  • the thickness of the Cu layer is less than 0.15 ⁇ m, there is a possibility that the molten aluminum layer cannot be sufficiently formed at the interface between the ceramic substrate and the metal plate.
  • the thickness of the Cu layer exceeds 3 ⁇ m, a reaction product of Cu and Al is excessively generated at the bonding interface, which may hinder the bonding.
  • the thickness of the Cu layer is preferably 0.15 ⁇ m or more and 3 ⁇ m or less.
  • the method for manufacturing a power module substrate according to the sixth aspect or the seventh aspect of the present invention when the ceramic substrate and the metal plate are laminated via the Cu layer, copper is interposed between the ceramic substrate and the metal plate. It is preferable that the Cu layer is disposed by interposing a foil. In the method for manufacturing a power module substrate according to the sixth aspect or the seventh aspect of the present invention, before the ceramic substrate, the Cu layer, and the metal plate are laminated, at least one of the ceramic substrate and the metal plate. Further, it is preferable to fix the Cu layer.
  • a vapor deposition method, a sputtering method, a plating method is used. It is preferable that Cu be fixed to at least one of the ceramic substrate and the metal plate by a method selected from either a Cu paste coating method or a Cu paste coating method. According to these methods, a Cu layer having a desired thickness can be formed between the ceramic substrate and the metal plate, and the ceramic substrate and the metal plate can be reliably bonded.
  • the power module substrate of the eighth aspect of the present invention is made of Al 2 O 3 and has a ceramic substrate having a surface, a metal plate joined to the surface of the ceramic substrate and made of pure aluminum, the metal plate, And a Cu high concentration portion formed at a bonding interface with the ceramic substrate and having a Cu concentration that is twice or more the Cu concentration in the metal plate.
  • the bonding interface between the ceramic substrate made of Al 2 O 3 and the metal plate made of pure aluminum has a Cu concentration that is at least twice the Cu concentration in the metal plate. Since the Cu high concentration portion is formed, it is possible to improve the bonding strength between the ceramic substrate and the metal plate by Cu atoms existing in the vicinity of the interface.
  • the Cu concentration in the metal plate is the Cu concentration in a portion of the metal plate that is away from the bonding interface by a certain distance (for example, 50 nm or more).
  • the mass ratio of Cu atoms present at the bonding interface exceeds 10 wt%, a reaction product of Al and Cu is excessively generated, and this reaction product may inhibit bonding.
  • the mass ratio of Cu atoms at the bonding interface is preferably in the range of 1 to 10 wt%.
  • the spot diameter at the time of performing the analysis by the energy dispersive X-ray analysis method is extremely small, measurement is performed at a plurality of points (for example, 10 to 100 points) on the bonding interface, and the average value is calculated. Moreover, when measuring, only the junction interface between a crystal grain and a ceramic substrate is measured, without measuring the junction interface between the crystal grain boundary of a metal plate, and a ceramic substrate.
  • a power module according to a ninth aspect of the present invention includes the power module substrate according to the eighth aspect described above, and an electronic component mounted on the power module substrate. According to the power module of this configuration, even when the bonding strength between the ceramic substrate and the metal plate is high and the usage environment is severe, for example, when the thermal stress is repeatedly generated, The reliability can be improved dramatically.
  • a method for manufacturing a power module substrate comprises preparing a ceramic substrate made of Al 2 O 3 , a metal plate made of pure aluminum, and a Cu layer having a thickness of 0.15 ⁇ m to 3 ⁇ m. Laminating the ceramic substrate and the metal plate through the Cu layer (lamination step), pressurizing and heating the laminated ceramic substrate, the Cu layer, and the metal plate in the laminating direction, A molten aluminum layer is formed at the interface between the ceramic substrate and the metal plate (melting step), and the molten aluminum layer is solidified by cooling the molten aluminum layer (solidification step).
  • Cu high concentration having a Cu concentration that is at least twice the Cu concentration in the metal plate at the bonding interface between the substrate and the metal plate Form the degree part.
  • a ceramic substrate and a metal plate are stacked via a Cu layer, and the stacked ceramic substrate and the metal plate are pressed and heated in the stacking direction.
  • the eutectic reaction between Cu in the Cu layer and Al in the metal plate lowers the melting point in the vicinity of the bonding interface, and a molten aluminum layer can be formed at the interface between the ceramic substrate and the metal plate even at a relatively low temperature.
  • the ceramic substrate and the metal plate can be joined. That is, the ceramic substrate and the metal plate can be joined without using a brazing material made of an Al—Si alloy or the like.
  • the thickness of the Cu layer is less than 0.15 ⁇ m, there is a possibility that the molten aluminum layer cannot be sufficiently formed at the interface between the ceramic substrate and the metal plate.
  • the thickness of the Cu layer exceeds 3 ⁇ m, a reaction product of Cu and Al is excessively generated at the bonding interface, the vicinity of the bonding interface of the metal plate is strengthened more than necessary, and Al 2 O 3 is subjected to a heat cycle load. There is a risk of cracks occurring in the ceramic substrate.
  • the thickness of the Cu layer is preferably 0.15 ⁇ m or more and 3 ⁇ m or less.
  • a copper foil is interposed between the ceramic substrate and the metal plate when the ceramic substrate and the metal plate are stacked via the Cu layer. By doing so, it is preferable that the Cu layer is disposed.
  • a Cu layer is formed on at least one of the ceramic substrate and the metal plate. Is preferably fixed.
  • a vapor deposition method, a sputtering method, a plating method, or a Cu paste is used.
  • Cu is fixed to at least one of the ceramic substrate and the metal plate by a method selected from any of the above coating methods. According to these methods, a Cu layer having a desired thickness can be formed between the ceramic substrate and the metal plate, and the ceramic substrate and the metal plate can be reliably bonded.
  • a power module substrate includes a ceramic substrate having a surface, a metal plate made of aluminum bonded to the surface of the ceramic substrate via a brazing material containing Si, the ceramic substrate, Cu added to the bonding interface with the metal plate, the metal plate contains Si and Cu, and the Si concentration in the portion of the metal plate close to the bonding interface is 0.
  • the Cu concentration is set in the range of 05 to 0.5 wt%, and the Cu concentration is set in the range of 0.05 to 1.0 wt%.
  • the ceramic substrate and the metal plate made of aluminum are bonded using a brazing material containing Si, and Cu is added to the bonding interface between the metal plate and the ceramic substrate.
  • Cu is a highly reactive element with respect to Al
  • the presence of Cu at the bonding interface activates the surface of the metal plate made of aluminum. Therefore, it is possible to firmly bond the ceramic substrate and the metal plate using a general Al—Si based brazing material even when bonded under relatively low temperature and short time bonding conditions.
  • Cu may be fixed to the surface of the ceramic substrate and the brazing material by vapor deposition, sputtering, plating, or the like, or in the Al—Si brazing material. Cu may be included.
  • Cu diffuses in the metal plate, and the Cu concentration near the bonding interface is set in the range of 0.05 to 1.0 wt%. Solid solution strengthened. Thereby, the fracture
  • the width of the ceramic substrate is wider than the width of the metal plate, and Si and Cu are contained in aluminum at the end in the width direction of the metal plate. It is preferable that an aluminum phase, a Si phase having a Si content of 98 wt% or more, and a eutectic phase composed of a ternary eutectic structure of Al, Cu, and Si are formed.
  • the Si phase having a Si content of 98 wt% or more, and the ternary of Al, Cu and Si Since the eutectic phase composed of the eutectic structure is formed, it is possible to strengthen the end portion in the width direction of the metal plate.
  • the precipitated particles made of a compound containing Cu are precipitated in the eutectic phase.
  • the precipitated particles made of a compound containing Cu are precipitated in the eutectic phase formed at the end portion in the width direction of the metal plate, the end portion in the width direction of the metal plate can be strengthened by precipitation. It becomes. Thereby, the fracture
  • the ceramic substrate may include AlN or Al 2 O 3 including a concentration part.
  • a Si high concentration portion having a Si concentration that is 5 times or more the Si concentration in the metal plate is formed at the bonding interface between the metal plate and the ceramic substrate, it exists at the bonding interface.
  • the bonding strength between the ceramic substrate made of AlN or Al 2 O 3 and the metal plate made of aluminum is improved by the Si atoms.
  • the Si concentration in the metal plate is the Si concentration in a portion of the metal plate that is away from the bonding interface by a certain distance (for example, 50 nm or more).
  • Si present at a high concentration at the bonding interface is considered to be mainly Si contained in the brazing material.
  • Si diffuses into the aluminum (metal plate) and decreases in amount at the bonding interface, but the interface between the ceramic and aluminum (metal plate) serves as a site for heterogeneous nucleation to form Si atoms. Remains in the interface portion, and a high Si concentration portion having a Si concentration that is 5 times or more the Si concentration in the metal plate is formed.
  • the power module substrate is formed at a bonding interface between the metal plate and the ceramic substrate, and has an oxygen concentration higher than that in the metal plate and the ceramic substrate.
  • the ceramic substrate may include AlN or Si 3 N 4 including a high oxygen concentration portion having a thickness of 4 nm or less.
  • a high oxygen concentration portion having an oxygen concentration higher than the oxygen concentration in the metal plate and the ceramic substrate at the bonding interface between the ceramic substrate made of AlN or Si 3 N 4 and the metal plate made of aluminum.
  • the bonding strength between the ceramic substrate made of AlN or Si 3 N 4 and the metal plate made of aluminum is improved by oxygen present at the bonding interface.
  • the thickness of the high oxygen concentration portion is 4 nm or less, the occurrence of cracks in the high oxygen concentration portion due to stress when a thermal cycle is loaded is suppressed.
  • the oxygen concentration in the metal plate and the ceramic substrate is an oxygen concentration in a portion of the metal plate and the ceramic substrate that is away from the bonding interface by a certain distance (for example, 50 nm or more).
  • oxygen present at a high concentration at the bonding interface is considered to be oxygen present on the surface of the ceramic substrate and oxygen taken from an oxide film formed on the surface of the brazing material.
  • the presence of a high concentration of oxygen at the bonding interface means that the oxide film and the like are sufficiently heated so as to be removed reliably. Therefore, the ceramic substrate and the metal plate can be firmly bonded.
  • a power module according to a twelfth aspect of the present invention includes the power module substrate according to the eleventh aspect described above and an electronic component mounted on the power module substrate. According to the power module of this configuration, even when the bonding strength between the ceramic substrate and the metal plate is high and the usage environment is severe, for example, when the thermal stress is repeatedly generated, The reliability can be improved dramatically.
  • a power module substrate manufacturing method includes a ceramic substrate having a bonding surface, a metal plate made of aluminum, and a brazing material containing Si, and the ceramic substrate and the metal plate Is laminated with the brazing material interposed (lamination step), the laminated ceramic substrate, the brazing material, and the metal plate are heated in a pressurized state, and the brazing material is melted to be a ceramic substrate. And forming a molten aluminum layer at the interface of the metal plate (melting step), solidifying the molten aluminum layer (solidifying step), and laminating the ceramic substrate and the metal plate with the brazing material interposed therebetween. Then, Cu is fixed to at least one of the bonding surface of the ceramic substrate and the surface of the brazing material facing the ceramic substrate (adhering step).
  • the bonding surface of the ceramic substrate and the bonding surface of the ceramic substrate before the laminating step of interposing and laminating a brazing material containing Si between the ceramic substrate and the metal plate A Cu fixing step of fixing Cu to at least one of the surfaces of the brazing material facing the ceramic substrate is provided.
  • Cu is surely added to the bonding interface between the ceramic substrate and the metal plate, and the surface of the metal plate is activated by this Cu, and a comparison is made using a general Al—Si brazing material. Even if bonding is performed under a low temperature and short time bonding condition, the ceramic substrate and the metal plate can be firmly bonded.
  • the bonding surface of the ceramic substrate and the surface of the brazing material facing the ceramic substrate by vapor deposition or sputtering it is preferable to fix Cu to at least one of them.
  • Cu is securely fixed to at least one of the bonding surface of the ceramic substrate and the surface of the brazing material by vapor deposition or sputtering, and Cu is surely present at the bonding interface between the ceramic substrate and the metal plate. It becomes possible to make it. Thereby, the surface of the metal plate is activated by Cu, and the ceramic substrate and the metal plate can be firmly bonded.
  • a power module substrate having a high thermal cycle reliability in which a metal plate and a ceramic substrate are reliably bonded, a power module including the power module substrate, and a method for manufacturing the power module substrate. It becomes possible.
  • FIG. It is a figure which shows the evaluation result of the joining reliability in Example 1.
  • FIG. It is a figure which shows the evaluation result of the joining reliability in Example 1.
  • FIG. It is a schematic sectional drawing of the power module using the board
  • FIG. 14 It is a schematic sectional drawing of the power module using the board
  • FIG. 22 It is a figure which shows the evaluation result of the crack of the ceramic substrate in Example 3.
  • FIG. It is a schematic sectional drawing of the power module using the board
  • Example 4 It is a figure which shows the evaluation result of the crack of the ceramic substrate in Example 4. It is a figure which shows the evaluation result of the joining reliability in Example 4. It is a schematic sectional drawing of the power module using the board
  • FIG. 1 shows a power module substrate and a power module according to a first embodiment of the present invention.
  • the power module 1 includes a power module substrate 10 on which a circuit layer 12 is disposed, a semiconductor chip 3 bonded to the surface of the circuit layer 12 via a solder layer 2, and a heat sink 4.
  • the solder layer 2 is, for example, a Sn—Ag, Sn—In, or Sn—Ag—Cu solder material.
  • a Ni plating layer (not shown) is provided between the circuit layer 12 and the solder layer 2.
  • the power module substrate 10 has a ceramic substrate 11, a circuit layer 12 disposed on the first surface (upper surface in FIG. 1) of the ceramic substrate 11, and a second surface (lower surface in FIG. 1) of the ceramic substrate 11. And a disposed metal layer 13.
  • the ceramic substrate 11 is a substrate that prevents electrical connection between the circuit layer 12 and the metal layer 13, and is made of AlN (aluminum nitride) having high insulating properties.
  • the thickness of the ceramic substrate 11 is set in the range of 0.2 to 1.5 mm, and in the first embodiment, it is set to 0.635 mm. In the first embodiment, as shown in FIG. 1, the width of the ceramic substrate 11 is set wider than the width of the circuit layer 12 and the metal layer 13.
  • the circuit layer 12 is formed by bonding a conductive metal plate 22 to the first surface of the ceramic substrate 11.
  • the circuit layer 12 is formed by joining a metal plate 22 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 11.
  • the metal layer 13 is formed by bonding a metal plate 23 to the second surface of the ceramic substrate 11.
  • the metal layer 13 is formed by bonding a metal plate 23 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 11. It is formed with.
  • the heat sink 4 is a member for cooling the power module substrate 10 described above, and a top plate portion 5 joined to the power module substrate 10 and a flow path 6 for circulating a cooling medium (for example, cooling water). And.
  • the heat sink 4 (top plate portion 5) is preferably made of a material having good thermal conductivity, and is made of A6063 (aluminum alloy) in the first embodiment.
  • a buffer layer 15 made of aluminum, an aluminum alloy, or a composite material containing aluminum (for example, AlSiC) is provided between the top plate portion 5 of the heat sink 4 and the metal layer 13. Yes.
  • the Cu diffuses in the circuit layer 12 (metal plate 22) and the metal layer 13 (metal plate 23) in the center portion (A portion in FIG. 1) in the width direction of the bonding interface 30 between A concentration gradient layer 33 (concentration gradient portion) in which the concentration of Cu gradually decreases as the distance from the interface 30 in the stacking direction is formed.
  • the “stacking direction” means a direction in which ceramics, the substrate 11, the circuit layer 12, and the metal layer 13 are stacked.
  • the Cu concentration of the portion near the bonding interface 30 of the concentration gradient layer 33 is set within a range of 0.05 to 5 wt%.
  • the Cu concentration near the bonding interface 30 of the concentration gradient layer 33 is an average value obtained by measuring five points in the range from the bonding interface 30 to 50 ⁇ m by EPMA analysis (spot diameter of 30 ⁇ m).
  • a soft layer 34 having a lower Cu concentration and lower hardness than the vicinity of the bonding interface 30 is formed on the side opposite to the ceramic substrate 11 of the concentration gradient layer 33 (lower side in FIG. 2).
  • an aluminum phase 41 diffused so that Cu is in a solid solution state in aluminum, and a binary eutectic structure of Al and Cu.
  • Eutectic phase 42 is formed.
  • precipitate particles made of a compound containing Cu for example, CuAl 2
  • Such a power module substrate 10 is manufactured as follows. First, as shown in FIGS. 4A and 5A, a ceramic substrate 11 made of AlN, a metal plate 22 (rolled plate of 4N aluminum) to be a circuit layer 12, and a metal plate to be a metal layer 13. 23 (rolled plate of 4N aluminum). Thereafter, Cu is fixed to both surfaces of the ceramic substrate 11 by sputtering, and Cu layers 24 and 25 having a thickness of 0.15 ⁇ m to 3 ⁇ m are formed (Cu fixing step). As a result, the ceramic substrate 11, the metal plates 22, 23, and the Cu layers 24, 25 are prepared. Next, as shown in FIG. 4B, the metal plate 22 is laminated on the first surface of the ceramic substrate 11, and the metal plate 23 is laminated on the second surface of the ceramic substrate 11 (lamination process). Thereby, the laminated body 20 is formed.
  • the laminated body 20 thus formed is charged in a vacuum furnace in a state of being pressurized in the lamination direction (pressure 1 to 5 kgf / cm 2 ) and heated.
  • the degree of vacuum in the vacuum furnace is 10 ⁇ 3 Pa to 10 ⁇ 5 Pa
  • the heating temperature is 610 ° C. to 650 ° C. 5B
  • the surface layers of the metal plates 22 and 23 that become the circuit layer 12 and the metal layer 13 and the Cu layers 24 and 25 are melted, so that the surface of the ceramic substrate 11 is obtained.
  • the molten metal layers 26 and 27 are formed on the substrate (melting step).
  • the laminated body 20 is cooled to solidify the molten metal layers 26 and 27 (solidification step).
  • solidification step in the vicinity of the bonding interface between the metal plate 22 to be the circuit layer 12 and the ceramic substrate 11 or in the vicinity of the bonding interface between the metal plate 23 to be the metal layer 13 and the ceramic substrate 11, Cu is diffused so that the Cu concentration is in the range of 0.05 to 5 wt%. In this way, the metal plates 22 and 23 to be the circuit layer 12 and the metal layer 13 and the ceramic substrate 11 are joined, and the power module substrate 10 according to the first embodiment is manufactured.
  • Cu diffuses in a solid solution state in the circuit layer 12 (metal plate 22) and the metal layer 13 (metal plate 23). Yes. Further, since the Cu concentration at the bonding interface 30 between the circuit layer 12 and the ceramic substrate 11 or at the bonding interface 30 between the metal layer 13 and the ceramic substrate 11 is set within a range of 0.05 to 5 wt%, the circuit layer The joining interface 30 of 12 (metal plate 22) and the metal layer 13 (metal plate 23) is solid solution strengthened. Therefore, when a thermal cycle or the like is applied, cracks are prevented from developing in the circuit layer 12 (metal plate 22) and metal layer 13 (metal plate 23) portions, and the power module substrate 10 and the power module 1 Reliability can be greatly improved.
  • the circuit layer 12 (metal plate 22) and the metal layer 13 (metal) since precipitate particles made of a compound containing Cu (for example, CuAl 2 ) are precipitated in the eutectic phase 42, the circuit layer 12 (metal plate 22) and the metal layer 13 (metal) It becomes possible to strengthen precipitation by strengthening the end portion in the width direction of the plate 23), and reliably prevent the development of cracks from the end portions in the width direction of the circuit layer 12 (metal plate 22) and metal layer 13 (metal plate 23). can do.
  • a compound containing Cu for example, CuAl 2
  • Cu diffuses in a solid solution state in the circuit layer 12 (metal plate 22) and the metal layer 13 (metal plate 23), and from the bonding interface 30 in the stacking direction.
  • a concentration gradient layer 33 in which the concentration of Cu gradually decreases as they are separated from each other is formed. Further, on the opposite side (lower side in FIG. 2) of the concentration gradient layer 33 from the vicinity of the bonding interface 30.
  • a soft layer 34 having a low Cu concentration, a low hardness, and a low deformation resistance is formed.
  • the soft layer 34 causes a difference in thermal expansion coefficient between the circuit layer 12 (metal plate 22) and the ceramic substrate 11 and a difference in thermal expansion coefficient between the metal layer 13 (metal plate 23) and the ceramic substrate 11.
  • the generated thermal strain (thermal stress) can be absorbed, and the thermal cycle reliability of the power module substrate 10 can be greatly improved.
  • the ceramic substrate 11, the metal plate 22 to be the circuit layer 12, and the metal plate 23 to be the metal layer 13 are laminated via the Cu layers 24 and 25. Since the laminated ceramic substrate 11 and the metal plates 22 and 23 are pressed and heated in the laminating direction, the Cu of the Cu layers 24 and 25 and the Al of the metal plates 22 and 23 undergo a eutectic reaction, thereby causing the bonding interface 30. The melting point in the vicinity is lowered, and it becomes possible to form the molten metal layers 26 and 27 at the interface between the ceramic substrate 11 and the metal plates 22 and 23 even at a relatively low temperature, and the ceramic substrate 11 and the metal plates 22 and 23 are joined. be able to.
  • the ceramic substrate 11 and the metal plates 22 and 23 can be joined without using a brazing material made of an Al—Si alloy or the like.
  • peeling of Ni plating formed on the surface of the circuit layer 12 can be prevented.
  • the solder layer 2 can be satisfactorily formed on the circuit layer 12 through Ni plating.
  • the thickness of the Cu layers 24 and 25 is set to 0.15 ⁇ m or more and 3 ⁇ m or less, the molten metal layers 26 and 27 are surely formed at the interface between the ceramic substrate 11 and the metal plates 22 and 23, and the ceramic substrate. 11 and the metal plates 22 and 23 can be joined. Moreover, it can prevent that the reaction material of Cu and Al generate
  • the Cu layers 24 and 25 are formed by a Cu fixing process in which Cu is fixed to the first surface and the second surface of the ceramic substrate 11 (bonding surfaces, surfaces facing the metal plates 22 and 23) by sputtering.
  • the ceramic substrate 11 and the metal plates 22 and 23 can be reliably stacked via the Cu layers 24 and 25, and the ceramic substrate 11 and the metal plates 22 and 23 are securely bonded to each other in the first embodiment.
  • a certain power module substrate 10 can be manufactured.
  • the manufacturing method which has Cu fixation process which adheres Cu to the surface of a ceramic substrate was demonstrated, it is not limited to this, The surface facing the ceramic substrate 11 of a metal plate Cu (bonding surface) may be fixed. Further, in the laminating step, the Cu layer may be formed by interposing a copper foil between the ceramic substrate and the metal plate. Moreover, although the method of forming the Cu layer by the sputtering method has been described, the present invention is not limited to this, and Cu may be fixed by a vapor deposition method, a plating method, a paste coating method, or the like.
  • FIG. 8 shows a power module substrate 60 and a power module 51 according to the second embodiment of the present invention.
  • the power module 51 includes a power module substrate 60 on which a circuit layer 62 is disposed, a semiconductor chip 3 bonded to the surface of the circuit layer 62 via a solder layer 2, and a heat sink 4.
  • the power module substrate 60 includes a ceramic substrate 61, a circuit layer 62 disposed on the first surface (upper surface in FIG. 8) of the ceramic substrate 61, and a second surface (lower surface in FIG. 8) of the ceramic substrate 61. And a disposed metal layer 63.
  • the ceramic substrate 61 is a substrate that prevents electrical connection between the circuit layer 62 and the metal layer 63, and is made of highly insulating AlN (aluminum nitride).
  • the thickness of the ceramic substrate 61 is set in the range of 0.2 to 1.5 mm, and in the second embodiment, it is set to 0.635 mm.
  • the circuit layer 62 is formed by bonding a conductive metal plate 72 to the first surface of the ceramic substrate 61.
  • the circuit layer 62 is formed by bonding a metal plate 72 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 61.
  • the metal layer 63 is formed by bonding a metal plate 73 to the second surface of the ceramic substrate 61.
  • the metal layer 63 is formed by joining a metal plate 73 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 61. It is formed with.
  • a Cu high concentration portion 82 in which Cu is concentrated is formed at the bonding interface 80.
  • the Cu concentration in the Cu high concentration portion 82 is higher than the Cu concentration in the circuit layer 62 (metal plate 72) and the metal layer 63 (metal plate 73).
  • the Cu concentration at the bonding interface 80 is twice or more the Cu concentration in the circuit layer 62 and the metal layer 63.
  • the thickness H of the Cu high concentration portion 82 is 4 nm or less.
  • the oxygen concentration is set higher than the oxygen concentration in the circuit layer 62 and the metal layer 63.
  • a reference plane S is defined as the center between the lattice image 61 and the interface side end.
  • the Cu concentration and the oxygen concentration in the circuit layer 62 (metal plate 72) and the metal layer 63 (metal plate 73) are the junction interface of the circuit layer 62 (metal plate 72) and the metal layer 63 (metal plate 73). These are the Cu concentration and the oxygen concentration at a portion away from 80 by a certain distance (50 nm or more in the second embodiment).
  • the spot diameter at the time of analysis by EDS is 1 to 4 nm, and a plurality of points (for example, 100 points in the second embodiment) at the bonding interface 80 are measured, and the average value is calculated.
  • the bonding interface 80 between the crystal grain boundaries of the metal plates 72 and 73 constituting the circuit layer 62 and the metal layer 63 and the ceramic substrate 61 is not measured, and the metal plate 72 constituting the circuit layer 62 and the metal layer 63 is measured. , 73 and the bonding interface 80 between the crystal grains and the ceramic substrate 61 are measured.
  • Such a power module substrate 60 is manufactured as follows. 10 (a) and 11 (a), a ceramic substrate 61 made of AlN, a metal plate 72 (4N aluminum rolled plate) to be the circuit layer 62, and a thickness of 0.15 ⁇ m to 3 ⁇ m (
  • the copper foil 74 has a thickness of 0.15 ⁇ m to 3 ⁇ m (3 ⁇ m in the second embodiment).
  • the copper foil 74 has a thickness of 0.15 ⁇ m to 3 ⁇ m.
  • a metal plate 72 is laminated on the first surface of the ceramic substrate 61 via a copper foil 74, and the metal plate is formed on the second surface of the ceramic substrate 61.
  • 73 are laminated via a copper foil 75. Thereby, the laminated body 70 is formed.
  • the laminate 70 is charged in the stacking direction (pressure 1 to 5 kgf / cm 2 ) and charged in a vacuum furnace and heated (pressurization / heating step).
  • the degree of vacuum in the vacuum furnace is 10 ⁇ 3 Pa to 10 ⁇ 5 Pa
  • the heating temperature is 610 ° C. to 650 ° C. 11B
  • Molten aluminum layers 76 and 77 are formed on the first surface and the second surface.
  • the laminated body 70 is cooled to solidify the molten aluminum layers 76 and 77 (solidification step).
  • the bonding interface 80 has a Cu concentration and an oxygen concentration higher than the Cu concentration and the oxygen concentration in the metal plates 72 and 73 constituting the circuit layer 62 and the metal layer 63.
  • a high concentration part 82 is generated. In this way, the power module substrate 60 according to the second embodiment is manufactured.
  • the circuit layer 62 and the metal layer are formed at the bonding interface 80 between the circuit layer 62 and the metal layer 63 and the ceramic substrate 61.
  • a Cu high concentration portion 82 having a Cu concentration that is twice or more the Cu concentration in 63 is formed, and the oxygen concentration in the Cu high concentration portion 82 is higher than the oxygen concentration in the circuit layer 62 and the metal layer 63. high.
  • oxygen atoms and Cu atoms are present at the bonding interface 80, and the bonding strength between the ceramic substrate 61 made of AlN and the circuit layer 62 and the bonding strength between the ceramic substrate 61 and the metal layer 63 are improved. Can be made.
  • a ceramic plate 61 is laminated on a first surface of a ceramic substrate 61 made of AlN via a metal plate 72 to be a circuit layer 62 and a copper foil 74 having a thickness of 0.15 ⁇ m to 3 ⁇ m (3 ⁇ m in the second embodiment).
  • a metal plate 73 (4N aluminum rolled plate) to be the metal layer 63 is laminated on the second surface of the substrate 61 via a copper foil 75 having a thickness of 0.15 ⁇ m to 3 ⁇ m (3 ⁇ m in the second embodiment). The laminate is pressurized and heated.
  • the Cu of the copper foils 74 and 75 and the Al of the metal plates 72 and 73 undergo a eutectic reaction, and the melting points of the surface layer portions of the copper foils 74 and 75 and the metal plates 72 and 73 are lowered. Therefore, the molten aluminum layers 76 and 77 can be formed at the interface between the ceramic substrate 61 and the metal plates 72 and 73 even at a relatively low temperature (610 ° C. to 650 ° C.). Can be joined.
  • FIG. 12 shows a power module substrate 110 and a power module 101 according to the third embodiment of the present invention.
  • the same members as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the power module substrate 110 includes a ceramic substrate 111, a circuit layer 112 disposed on the first surface (upper surface in FIG. 12) of the ceramic substrate 111, and a second surface (lower surface in FIG. 12) of the ceramic substrate 111. And a disposed metal layer 113.
  • the ceramic substrate 111 is a substrate that prevents electrical connection between the circuit layer 112 and the metal layer 113, and is made of Si 3 N 4 (silicon nitride) having high insulating properties.
  • the thickness of the ceramic substrate 111 is set within a range of 0.2 to 1.5 mm, and in the third embodiment, it is set to 0.32 mm.
  • the circuit layer 112 is formed by bonding a conductive metal plate 122 to the first surface of the ceramic substrate 111.
  • the circuit layer 112 is formed by bonding a metal plate 22 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 111.
  • the metal layer 113 is formed by bonding a metal plate 123 to the second surface of the ceramic substrate 111.
  • the metal layer 113 is formed by joining a metal plate 123 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 111. It is formed with.
  • a Cu high concentration portion 132 enriched with Cu is formed at the bonding interface 130.
  • the Cu concentration in the Cu high concentration portion 132 is higher than the Cu concentration in the circuit layer 112 (metal plate 122) and the metal layer 113 (metal plate 123).
  • the Cu concentration at the bonding interface 130 is twice or more the Cu concentration in the circuit layer 112 and the metal layer 113.
  • the thickness H of the Cu high concentration portion 132 is 4 nm or less.
  • the oxygen concentration is set higher than the oxygen concentration in the circuit layer 112 and the metal layer 113.
  • the spot diameter at the time of analysis by EDS is 1 to 4 nm, and a plurality of points (for example, 100 points in the third embodiment) at the bonding interface 130 are measured, and the average value is calculated.
  • the bonding interface 130 between the crystal grain boundaries of the metal plates 122 and 123 constituting the circuit layer 112 and the metal layer 113 and the ceramic substrate 111 is not measured, and the metal plate 122 constituting the circuit layer 112 and the metal layer 113 is measured. , 123 only, and the bonding interface 130 between the crystal grains and the ceramic substrate 111 is measured.
  • Such a power module substrate 110 is manufactured as follows. First, as shown in FIG. 14A, Cu is fixed to both surfaces of a ceramic substrate 111 made of Si 3 N 4 by a vacuum deposition method to form Cu fixing layers 124 and 125 having a thickness of 0.15 to 3 ⁇ m. (Cu fixing step). Next, as shown in FIGS. 14B and 14C and FIGS. 15A and 15B, the circuit layer 112 is formed on the first surface of the ceramic substrate 111 on which the Cu fixing layers 124 and 125 are formed. A metal plate 122 (4N aluminum rolled plate) is laminated, and a metal plate 123 (4N aluminum rolled plate) to be the metal layer 113 is laminated on the second surface of the ceramic substrate 111 (lamination step).
  • the laminated body 120 formed in this manner is charged in the lamination direction (pressure 1 to 5 kgf / cm 2 ) and heated in a vacuum furnace (pressure / heating process).
  • the degree of vacuum in the vacuum furnace is 10 ⁇ 3 Pa to 10 ⁇ 5 Pa
  • the heating temperature is 610 ° C. to 650 ° C.
  • the surface layers of the metal plates 122 and 123 that become the circuit layer 112 and the metal layer 113 and the Cu fixing layers 124 and 125 are melted by the pressurizing / heating process, and molten aluminum is formed on the surface of the ceramic substrate 111.
  • Layers 126, 127 are formed.
  • the laminated body 120 is cooled to solidify the molten aluminum layers 126 and 127 (solidification step).
  • solidification step Cu bonding and oxygen concentration higher than the Cu concentration and oxygen concentration in the metal plates 122 and 123 constituting the circuit layer 112 and the metal layer 113 are formed on the bonding interface 130.
  • a density unit 132 is generated. In this way, the power module substrate 110 according to the third embodiment is manufactured.
  • the Cu concentration in the circuit layer 112 and the metal layer 113 is present at the bonding interface 130 between the circuit layer 112 and the metal layer 113 and the ceramic substrate 111.
  • a Cu high concentration portion 132 having a Cu concentration that is twice or more of the above is formed.
  • the oxygen concentration in the Cu high concentration portion 132 is set to be higher than the oxygen concentration in the circuit layer 112 and the metal layer 113. As a result, oxygen atoms and Cu atoms are present at the bonding interface 130, and the bonding strength between the ceramic substrate 111 made of Si 3 N 4 , the circuit layer 112, and the metal layer 113 can be improved.
  • EDS energy dispersive X-ray analysis
  • Cu is fixed to both surfaces of the ceramic substrate 111 made of Si 3 N 4 by a vacuum deposition method, and the metal plate 122 that becomes the circuit layer 112 on the first surface of the ceramic substrate 111 on which the Cu fixing layers 124 and 125 are formed.
  • (4N aluminum rolled plate) is laminated, and a metal plate 123 (4N aluminum rolled plate) to be the metal layer 113 is laminated on the second surface of the ceramic substrate 111, and this laminated body is pressed and heated.
  • the Cu of the Cu fixing layers 124 and 125 and the Al of the metal plates 122 and 123 undergo a eutectic reaction, so that the melting point of the surface layer portion of the metal plates 122 and 123 is lowered, and a relatively low temperature (610 ° C. to 650 ° C.).
  • a relatively low temperature 610 ° C. to 650 ° C.
  • the present invention is not limited to this and can be appropriately changed without departing from the technical idea of the present invention.
  • the method of fixing Cu to both surfaces of the ceramic substrate has been described.
  • the present invention is not limited to this, and Cu is fixed to the surface (bonding surface) facing the ceramic substrate 11 of the metal plate.
  • Cu may be fixed to both the metal plate and the ceramic substrate.
  • the method of fixing Cu by a vacuum deposition method has been described, the present invention is not limited to this, and Cu may be fixed by a method such as a sputtering method, a plating method, or a copper paste coating method.
  • FIG. 20 shows a power module substrate 160 and a power module 151 according to the fourth embodiment of the present invention.
  • the power module 151 includes a power module substrate 160 on which a circuit layer 162 is disposed, a semiconductor chip 3 bonded to the surface of the circuit layer 162 via a solder layer 2, and a heat sink 4.
  • the power module substrate 160 includes a ceramic substrate 161, a circuit layer 162 disposed on the first surface (upper surface in FIG. 20) of the ceramic substrate 161, and a second surface (lower surface in FIG. 20) of the ceramic substrate 161. And a disposed metal layer 163.
  • the ceramic substrate 161 is a substrate that prevents electrical connection between the circuit layer 162 and the metal layer 163, and is made of Al 2 O 3 (alumina) having high insulation.
  • the thickness of the ceramic substrate 161 is set within a range of 0.2 to 1.5 mm, and in the fourth embodiment, it is set to 0.635 mm.
  • the circuit layer 162 is formed by bonding a conductive metal plate 172 to the first surface of the ceramic substrate 161.
  • the circuit layer 162 is formed by joining a metal plate 172 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to a ceramic substrate 161.
  • the metal layer 163 is formed by bonding a metal plate 173 to the second surface of the ceramic substrate 161.
  • the metal layer 163 is formed by bonding a metal plate 173 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 161. It is formed with.
  • a Cu high concentration portion 182 enriched with Cu is formed at the bonding interface 180.
  • the Cu concentration in the Cu high concentration portion 182 is higher than the Cu concentration in the circuit layer 162 (metal plate 172) and the metal layer 163 (metal plate 173).
  • the Cu concentration at the bonding interface 180 is twice or more the Cu concentration in the circuit layer 162 and the metal layer 163.
  • the thickness H of the Cu high concentration portion 182 is 4 nm or less.
  • the interface side end of the lattice image of the circuit layer 162 (metal plate 172) and the metal layer 163 (metal plate 173) The center between the lattice image of the ceramic substrate 161 and the interface side end is defined as a reference plane S.
  • the Cu concentration in the circuit layer 162 (metal plate 172) and the metal layer 163 (metal plate 173) is constant from the bonding interface 180 of the circuit layer 162 (metal plate 172) and the metal layer 163 (metal plate 173). This is the Cu concentration in a portion separated by a distance (in the fourth embodiment, 50 nm or more).
  • the spot diameter at the time of analysis by EDS is 1 to 4 nm, and a plurality of points (for example, 100 points in the fourth embodiment) at the bonding interface 180 are measured, and an average value thereof is calculated.
  • the bonding interface 180 between the crystal grain boundary of the metal plates 172 and 173 constituting the circuit layer 162 and the metal layer 163 and the ceramic substrate 161 is not measured, and the metal plate 172 constituting the circuit layer 162 and the metal layer 163 is measured. , 173, the bonding interface 180 between the crystal grains and the ceramic substrate 161 is measured.
  • Such a power module substrate 160 is manufactured as follows. As shown in FIGS. 22A and 23A, a ceramic substrate 161 made of Al 2 O 3 , a metal plate 172 (4N aluminum rolled plate) to be a circuit layer 162, and a thickness of 0.15 ⁇ m or more. A copper foil 174 of 3 ⁇ m or less (3 ⁇ m in the second embodiment), a metal plate 173 (4N aluminum rolled plate) to be the metal layer 163, and a thickness of 0.15 ⁇ m to 3 ⁇ m (3 ⁇ m in the second embodiment) A copper foil 175 is prepared. Next, as shown in FIGS.
  • a metal plate 172 is laminated on the first surface of the ceramic substrate 161 via the copper foil 174, and the metal plate is formed on the second surface of the ceramic substrate 161. 173 is laminated via the copper foil 175. Thereby, the laminated body 170 is formed.
  • the laminate 170 is charged in the stacking direction (pressure 1 to 5 kgf / cm 2 ) and charged in a vacuum furnace and heated (pressurization / heating step).
  • the degree of vacuum in the vacuum furnace is 10 ⁇ 3 Pa to 10 ⁇ 5 Pa
  • the heating temperature is 610 ° C. to 650 ° C.
  • the pressurizing / heating process melts the surface layers of the metal plates 172 and 173 to become the circuit layer 162 and the metal layer 163 and the copper foils 174 and 175, and the surface of the ceramic substrate 161 is made of molten aluminum. Layers 176, 177 are formed.
  • the laminated body 170 is cooled to solidify the molten aluminum layers 176 and 177 (solidification step).
  • solidification step By this pressurization / heating process and solidification process, a Cu high concentration portion 182 having a Cu concentration higher than the Cu concentration in the metal plates 172 and 173 constituting the circuit layer 162 and the metal layer 163 is generated at the bonding interface 180. Is done. In this way, the power module substrate 160 according to the fourth embodiment is manufactured.
  • the circuit layer 162 and the metal layer are formed on the bonding interface 180 between the circuit layer 162 and the metal layer 163 and the ceramic substrate 161.
  • a Cu high concentration portion 182 having a Cu concentration that is twice or more the Cu concentration in 163 is formed.
  • Cu atoms are present at the bonding interface 180 and the bonding strength between the ceramic substrate 161 made of Al 2 O 3 and the circuit layer 162 and the bonding strength between the ceramic substrate 161 and the metal layer 163 are improved. Can be made.
  • a metal plate 172 to be a circuit layer 162 is laminated on a first surface of a ceramic substrate 161 made of Al 2 O 3 and a copper foil 174 having a thickness of 0.15 ⁇ m to 3 ⁇ m (3 ⁇ m in the fourth embodiment).
  • a metal plate 173 (4N aluminum rolled plate) serving as the metal layer 163 is laminated on the second surface of the ceramic substrate 161 via a copper foil 175 having a thickness of 0.15 ⁇ m to 3 ⁇ m (3 ⁇ m in the fourth embodiment). The laminate is pressed and heated.
  • the Cu of the copper foils 174 and 175 and the Al of the metal plates 172 and 173 undergo a eutectic reaction, and the melting points of the surface layer portions of the copper foils 174 and 175 and the metal plates 172 and 173 are lowered. Accordingly, it is possible to form the molten aluminum layers 176 and 177 at the interface between the ceramic substrate 161 and the metal plates 172 and 173 even at a relatively low temperature (610 ° C. to 650 ° C.), and the ceramic substrate 161 and the metal plates 172 and 173 are formed. Can be joined.
  • the fourth embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • the method of interposing the copper foil between the ceramic substrate and the metal plate in the laminating step has been described, but the present invention is not limited to this, and before the laminating step.
  • the Cu layer may be formed by a Cu fixing step in which Cu is fixed to at least one of a surface of the metal plate facing the ceramic substrate (joint surface) and a surface of the ceramic substrate facing the metal plate (joint surface).
  • Examples of the method for fixing Cu include a vacuum deposition method, a sputtering method, a plating method, and a copper paste coating method.
  • FIG. 26 shows a power module substrate and a power module according to the fifth embodiment of the present invention.
  • the power module 201 includes a power module substrate 210 on which a circuit layer 212 is disposed, a semiconductor chip 3 bonded to the surface of the circuit layer 212 via a solder layer 2, and a heat sink 4.
  • the power module substrate 210 includes a ceramic substrate 211, a circuit layer 212 disposed on the first surface (upper surface in FIG. 26) of the ceramic substrate 211, and a second surface (lower surface in FIG. 26) of the ceramic substrate 211. And a disposed metal layer 213.
  • the ceramic substrate 211 is a substrate that prevents electrical connection between the circuit layer 212 and the metal layer 213, and is made of highly insulating AlN (aluminum nitride).
  • the thickness of the ceramic substrate 211 is set in the range of 0.2 to 1.5 mm, and in the fifth embodiment, it is set to 0.635 mm. In the fifth embodiment, as shown in FIG. 26, the width of the ceramic substrate 211 is set wider than the width of the circuit layer 212 and the metal layer 213.
  • the circuit layer 212 is formed by bonding a conductive metal plate 222 to the first surface of the ceramic substrate 211.
  • the circuit layer 212 is formed by joining a metal plate 222 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to a ceramic substrate 211.
  • a metal plate 222 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to a ceramic substrate 211.
  • 4N aluminum a rolled plate of aluminum
  • an Al—Si brazing material containing Si as a melting point lowering element is used for bonding the ceramic substrate 211 and the metal plate 222.
  • the metal layer 213 is formed by bonding a metal plate 223 to the second surface of the ceramic substrate 211.
  • the metal layer 213 is formed by joining a metal plate 223 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 211. It is formed with.
  • 4N aluminum a rolled plate of aluminum
  • an Al—Si brazing material containing Si as a melting point lowering element is used for bonding the ceramic substrate 211 and the metal plate 223, an Al—Si brazing material containing Si as a melting point lowering element is used.
  • the center part of the width direction of the joining interface 230 between the ceramic substrate 211 and the circuit layer 212 (metal plate 222), and the ceramic substrate 211 and the metal layer 213 (metal plate 223) In the central portion (A portion in FIG. 26) of the bonding interface 230 between them, Si and Cu are diffused in the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223).
  • a concentration gradient layer 233 is formed in which the concentration of Si and Cu gradually decreases as the distance from the layer 230 increases in the stacking direction.
  • the Si concentration is set in the range of 0.05 to 0.5 wt%
  • the Cu concentration is in the range of 0.05 to 1.0 wt%.
  • the Si concentration and the Cu concentration in the portion near the bonding interface 230 of the concentration gradient layer 233 are average values obtained by measuring five points in the range from the bonding interface 230 to 50 ⁇ m by EPMA analysis (spot diameter of 30 ⁇ m).
  • a certain Si phase 242 and a eutectic phase 243 composed of a ternary eutectic structure of Al, Cu, and Si are formed.
  • the eutectic phase 243 precipitate particles made of a compound containing Cu (for example, CuAl 2 ) are precipitated.
  • the bonding interface 230 between the ceramic substrate 211 and the circuit layer 212 (metal plate 222) and the bonding interface 230 between the ceramic substrate 211 and the metal layer 213 (metal plate 223) are observed with a transmission electron microscope.
  • a Si high concentration portion 232 in which Si is concentrated is formed at the bonding interface 230.
  • the Si concentration in the Si high concentration portion 232 is five times or more higher than the Si concentration in the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223).
  • the thickness H of this Si high concentration part 232 is 4 nm or less.
  • Such a power module substrate 210 is manufactured as follows. First, Cu is fixed to both surfaces of the ceramic substrate 211 made of AlN by a sputtering method (Cu fixing step). Next, as shown in FIG. 30A and FIG. 31A, a ceramic substrate 211 made of AlN to which Cu is fixed, a metal plate 222 (4N aluminum rolled plate) to be a circuit layer 212, and a thickness A brazing material foil 224 having a thickness of 10 to 30 ⁇ m (20 ⁇ m in the fifth embodiment), a metal plate 223 (4N aluminum rolled plate) serving as the metal layer 213, and a thickness of 10 to 30 ⁇ m (20 ⁇ m in the fifth embodiment). A brazing foil 225 is prepared. Next, as shown in FIGS.
  • a metal plate 222 is laminated on the first surface of the ceramic substrate 211 via a brazing filler metal foil 224, and a metal is formed on the second surface of the ceramic substrate 211.
  • the plate 223 is laminated via the brazing material foil 225 (lamination process). Thereby, the laminated body 220 is formed.
  • the laminated body 220 is charged in the laminating direction (pressure 1 to 5 kgf / cm 2 ) in a vacuum furnace and heated to melt the brazing material foils 224 and 225 (melting step).
  • the degree of vacuum in the vacuum furnace is 10 ⁇ 3 Pa to 10 ⁇ 5 Pa.
  • this melting step as shown in FIG. 31 (b), part of the metal plates 222 and 223 that become the circuit layer 212 and the metal layer 213 and the brazing material foils 224 and 225 are melted, and the surface of the ceramic substrate 211 is formed. Molten aluminum layers 226, 227 are formed.
  • the laminated body 220 is cooled to solidify the molten aluminum layers 226 and 227 (solidification step).
  • the metal plates 222 and 223 to be the circuit layer 212 and the metal layer 213 are bonded to the ceramic substrate 211, and the power module substrate 210 according to the fifth embodiment is manufactured.
  • the ceramic substrate 211, the circuit layer 212 (metal plate 222), and the metal layer 213 (metal plate 223) are made of Al—Si. Bonding is performed using a brazing filler metal, and Cu is added to the bonding interface 230 between the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223) and the ceramic substrate 211.
  • the ceramic substrate 211, the circuit layer 212 (metal plate 222), and the metal layer 213 ( The metal plate 223) can be strongly bonded, and the bonding reliability can be greatly improved.
  • Si and Cu are diffused in the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223), and are separated from the bonding interface 230 in the stacking direction. Accordingly, a concentration gradient layer 233 in which the concentration of Si and Cu gradually decreases is formed.
  • the Cu concentration of the portion near the bonding interface 230 of the concentration gradient layer 233 is set within the range of 0.05 to 1.0 wt%, the circuit layer 212 (metal plate 222) and the metal layer 213 (metal) The portion of the plate 223) close to the bonding interface 230 is solid solution strengthened, and the occurrence of breakage in the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223) can be prevented.
  • the Si concentration of the portion near the bonding interface 230 of the concentration gradient layer 233 is set within a range of 0.05 to 0.5 wt%, Si is sufficiently contained in the circuit layer 212 (metal plate 222) and the metal. It diffuses into the layer 213 (metal plate 223). Accordingly, the ceramic substrate 211 and the circuit layer 212 (metal plate 222) and the ceramic substrate 211 and the metal layer 213 (metal plate 223) are firmly joined by reliably melting and solidifying the brazing material. be able to.
  • the width of the ceramic substrate 211 is set wider than the width of the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223), and the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223).
  • an aluminum phase 241 in which Si and Cu are diffused in aluminum an Si phase 242 in which the Si content is 98 wt% or more, and a ternary eutectic structure of Al, Cu, and Si And a eutectic phase 243 made of.
  • the strength of the end portion 235 in the width direction of the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223) is improved.
  • the eutectic phase 243 precipitate particles made of a compound containing Cu (for example, CuAl 2 ) are precipitated, so that the end portion 235 in the width direction can be strengthened by precipitation.
  • produces from the edge part 235 of the width direction of the circuit layer 212 (metal plate 222) and the metal layer 213 (metal plate 223) can be prevented.
  • the ceramic substrate 211 is made of AlN, and the circuit layer 212 (metal plate 222) and the metal layer 213 (on the bonding interface 230 between the metal plates 222 and 223 and the ceramic substrate 211 are formed.
  • a Si high concentration portion 232 having an Si concentration of 5 times or more of the Si concentration in the metal plate 223) is formed. Thereby, the bonding strength between the ceramic substrate 211 and the metal plates 222 and 223 can be improved by Si present at the bonding interface 230.
  • FIG. 32 the same members as those in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the power module substrate 260 according to the sixth embodiment is different from the fifth embodiment in that the ceramic substrate 261 is made of Si 3 N 4 .
  • the bonding interface 280 between the ceramic substrate 261 and the circuit layer 262 (metal plate 272) and the bonding interface 280 between the ceramic substrate 261 and the metal layer 263 (metal plate 273) were observed with a transmission electron microscope.
  • the oxygen high concentration portion 282 in which oxygen is concentrated is formed at the bonding interface 280.
  • the oxygen concentration is higher than the oxygen concentration in the circuit layer 262 (metal plate 272) and the metal layer 263 (metal plate 273).
  • the thickness H of the oxygen high concentration portion 282 is 4 nm or less.
  • the interface side end of the lattice image of the circuit layer 262 (metal plate 272) and the metal layer 263 (metal plate 273) and the ceramic substrate A reference plane S is defined as the center between the lattice image of H.261 and the junction interface side end.
  • the oxygen concentration is present in the circuit interface 262 and the bonding interface 280 between the metal plates 272 and 273 serving as the metal layer 263 and the ceramic substrate 261. Since the oxygen high concentration part 282 made higher than the oxygen concentration in the metal plates 272 and 273 constituting the layer 262 and the metal layer 263 is generated, this oxygen causes a gap between the ceramic substrate 261 and the metal plates 272 and 273. The joint strength can be improved. Further, since the thickness of the high oxygen concentration portion 282 is 4 nm or less, the occurrence of cracks in the high oxygen concentration portion 282 due to stress when a thermal cycle is loaded is suppressed.
  • the first to sixth embodiments of the present invention have been described above.
  • the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • a metal plate constituting the circuit layer and the metal layer is a rolled plate made of pure aluminum having a purity of 99.99%
  • the present invention is not limited to this, and aluminum having a purity of 99% (2N aluminum) ) May be used.
  • the buffer layer which consists of aluminum, the aluminum alloy, or the composite material containing aluminum was provided between the top plate part of the heat sink and the metal layer, this buffer layer is not provided. Also good. Furthermore, although the structure in which the heat sink is formed of aluminum has been described, a structure in which the heat sink is formed of an aluminum alloy, a composite material containing aluminum, copper, a copper alloy, or the like may be employed. Furthermore, although the structure having the flow path of the cooling medium as the heat sink has been described, the structure of the heat sink is not particularly limited.
  • the fifth embodiment has described the case of using a ceramic substrate made of AlN, it is not limited thereto, it may be another ceramic such as Al 2 O 3.
  • the manufacturing method which has Cu adhering process which adheres Cu to the surface of a ceramic substrate was demonstrated, it is not limited to this, You may adhere Cu to the surface of a brazing material foil. Further, Cu may be fixed not by sputtering but by vapor deposition or plating. Furthermore, Cu may be added to the Al—Si brazing material.
  • Example 1 the results of a confirmation experiment performed to confirm the effectiveness of the power module substrate (power module) of the first to sixth embodiments will be described.
  • Example 1 the results of a confirmation experiment performed to confirm the effectiveness of the power module substrate of the first embodiment will be described with reference to FIGS. 6 and 7.
  • a power module substrate used in the experiment a power module substrate was manufactured by the following manufacturing method. Specifically, a ceramic substrate made of AlN having a thickness of 40 mm and a thickness of 0.635 mm and two metal plates made of 4N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to both surfaces of the ceramic substrate by vacuum deposition, and metal plates were laminated on both surfaces of the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured.
  • a ceramic substrate made of AlN having a thickness of 40 mm and a thickness of 0.635 mm and two metal plates made of 4N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to one surface of each metal plate by vacuum deposition, and this metal plate was laminated on both surfaces of the ceramic substrate so that the vapor deposition surface of the metal plate faced the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured. As described above, in Example 1, two types of power module substrates were used.
  • the amount of Cu adhered (Cu thickness) by vacuum deposition was varied according to five parameters (5 levels) of 0.1 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, and 3.0 ⁇ m.
  • the heating temperature was varied according to three parameters (three levels) of 610 ° C., 630 ° C., and 650 ° C.
  • a total of 30 types of power module substrates were prepared.
  • the metal layer of the power module substrate thus formed is made of AlSiC, and is a 50 mm ⁇ 60 mm, 5 mm thick aluminum plate corresponding to the top plate of the heat sink through a 0.9 mm thick buffer layer ( A6063) was joined. Thereby, a total of 30 types of test pieces were prepared. Next, before the thermal cycle test was performed on the total 30 types of test pieces, the bonding area ratio (bonding ratio) at the bonding interface between the ceramic substrate and the metal plate was determined. Specifically, an image of the bonding interface between the ceramic substrate and the metal plate is imaged using an ultrasonic imaging device (probe frequency of 15 MHz), and the data obtained by the imaging is binarized to occupy the entire bonding interface.
  • an ultrasonic imaging device probe frequency of 15 MHz
  • the joining ratio was calculated by obtaining the area of the joining part.
  • the joining ratio of the ceramic substrate and the metal plate was 100%.
  • a load was applied to the 30 test pieces in total by performing a thermal cycle of ⁇ 40 ° C. to 105 ° C. 3000 times.
  • the bonding ratio between the ceramic substrate and the metal plate that is, the bonding ratio after 3000 thermal cycles were obtained by the same method as described above using an ultrasonic imaging apparatus.
  • FIG. 6 shows the evaluation results of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • FIG. 6 and 7 the evaluation result of the board
  • a power module substrate having a joining ratio after being performed 70 times or more and less than 85% is indicated by a symbol “ ⁇ ”, and the joining ratio after performing 3000 thermal cycles as a load is less than 70%.
  • the power module substrate is indicated by a symbol “x”.
  • FIGS. 6 and 7 it was recognized that the higher the heating temperature, the higher the bonding reliability.
  • the Cu layer thickness is about 1.0 ⁇ m to 2.0 ⁇ m, it has been confirmed that the bonding reliability is improved even when the heating temperature is low.
  • FIGS. 6 and 7 show the same tendency, and no difference was observed between the case where Cu was deposited on the ceramic substrate and the case where Cu was deposited on the metal plate.
  • Example 2 In Example 2 described below, with reference to FIGS. 16A and 16B and FIGS. 17A and 17B, in order to confirm the effectiveness of the power module substrate of the second embodiment.
  • the results of the confirmation experiment conducted are described.
  • a power module substrate used in the experiment a power module substrate was manufactured by the following manufacturing method. Specifically, a ceramic substrate made of AlN having a thickness of 40 mm and a thickness of 0.635 mm and two metal plates made of 4N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to both surfaces of the ceramic substrate by vacuum deposition, and metal plates were laminated on both surfaces of the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured.
  • a ceramic substrate made of AlN having a thickness of 40 mm and a thickness of 0.635 mm and two metal plates made of 4N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to one surface of each metal plate by vacuum deposition, and this metal plate was laminated on both surfaces of the ceramic substrate so that the vapor deposition surface of the metal plate faced the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured. As described above, in Example 2, two types of power module substrates were used. Here, the amount of Cu adhered (Cu thickness) by vacuum deposition was varied according to five parameters (5 levels) of 0.1 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, and 3.0 ⁇ m. The heating temperature was varied depending on three parameters (three levels) of 610 ° C., 630 ° C., and 650 ° C. As a result, a total of 30 types of power module substrates were formed.
  • the metal layer of the power module substrate thus formed is made of 4N aluminum, and is a 50 mm ⁇ 60 mm, 5 mm thick aluminum plate corresponding to the top plate of the heat sink through a 0.9 mm thick buffer layer. (A6063) was joined. Thereby, a total of 30 types of test pieces were prepared. Next, before the thermal cycle test was performed on the total 30 types of test pieces, the bonding area ratio (bonding ratio) at the bonding interface between the ceramic substrate and the metal plate was determined. As a calculation method of the bonding ratio, as described in the first embodiment, a method of calculating the bonding ratio using an ultrasonic imaging apparatus (probe frequency 15 MHz) is adopted.
  • FIG. 16A shows the evaluation result of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • FIG.16 (b) shows the evaluation result of the board
  • the power module substrate that did not crack the ceramic substrate in both of the two test pieces is indicated by the symbol “ ⁇ ”, and the ceramic substrate cracked in one of the two test pieces.
  • the power module substrate is indicated by the symbol “ ⁇ ”, and the power module substrate in which the crack of the ceramic substrate has occurred in both of the two test pieces is indicated by the symbol “x”.
  • the joining ratio was calculated
  • the bonding ratio between the ceramic substrate and the metal plate that is, the bonding ratio after 3000 thermal cycles were obtained by the same method as described above using an ultrasonic imaging apparatus.
  • FIG. 17A shows the evaluation result of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • substrate for power modules obtained by vapor-depositing Cu on a metal plate is shown in FIG.17 (b).
  • a power module substrate having a bonding ratio of 85% or more after 3000 thermal cycles as a load is indicated by a symbol “ ⁇ ”, and the load is
  • a power module substrate having a joining ratio of 70% or more and less than 85% after 3000 thermal cycles is indicated by the symbol “ ⁇ ”, and the joining ratio after performing 3000 thermal cycles as a load is 70.
  • Power module substrates that are less than% are indicated by the symbol “x”.
  • Example 3 In Example 3 described below, with reference to FIGS. 18A and 18B and FIGS. 19A and 19B, in order to confirm the effectiveness of the power module substrate of the third embodiment.
  • the results of the confirmation experiment conducted are described.
  • a power module substrate used in the experiment a power module substrate was manufactured by the following manufacturing method. Specifically, a 40 mm square and 0.32 mm thick ceramic substrate made of Si 3 N 4 and two metal plates made of 4 N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to both surfaces of the ceramic substrate by vacuum deposition, and metal plates were laminated on both surfaces of the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured.
  • a ceramic substrate made of Si 3 N 4 with a thickness of 40 mm square and a thickness of 0.32 mm and two metal plates made of 4N aluminum with a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to one surface of each metal plate by vacuum deposition, and this metal plate was laminated on both surfaces of the ceramic substrate so that the vapor deposition surface of the metal plate faced the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured. As described above, in Example 3, two types of power module substrates were used.
  • the amount of Cu adhered (Cu thickness) by vacuum deposition was varied according to five parameters (5 levels) of 0.1 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, and 3.0 ⁇ m.
  • the heating temperature was varied depending on three parameters (three levels) of 610 ° C., 630 ° C., and 650 ° C. As a result, a total of 30 types of power module substrates were formed.
  • the metal layer of the power module substrate thus formed is made of 4N aluminum, and is a 50 mm ⁇ 60 mm, 5 mm thick aluminum plate corresponding to the top plate of the heat sink through a 0.9 mm thick buffer layer. (A6063) was joined. Thereby, a total of 30 types of test pieces were prepared. Next, before the thermal cycle test was performed on the total 30 types of test pieces, the bonding area ratio (bonding ratio) at the bonding interface between the ceramic substrate and the metal plate was determined. As a calculation method of the bonding ratio, as described in the first embodiment, a method of calculating the bonding ratio using an ultrasonic imaging apparatus (probe frequency 15 MHz) is adopted.
  • FIG. 18A shows the evaluation result of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • FIG.18 (b) shows the evaluation result of the board
  • the power module substrate that did not crack the ceramic substrate in both of the two test pieces is indicated by the symbol “ ⁇ ”, and the ceramic substrate cracked in one of the two test pieces.
  • the power module substrate is indicated by the symbol “ ⁇ ”, and the power module substrate in which the crack of the ceramic substrate has occurred in both of the two test pieces is indicated by the symbol “x”.
  • the joining ratio was calculated
  • the bonding ratio between the ceramic substrate and the metal plate that is, the bonding ratio after 3000 thermal cycles were obtained by the same method as described above using an ultrasonic imaging apparatus.
  • FIG. 19A shows the evaluation result of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • substrate for power modules obtained by vapor-depositing Cu on a metal plate is shown in FIG.19 (b).
  • a power module substrate having a joining ratio of 85% or more after 3000 thermal cycles as a load is indicated by a symbol “ ⁇ ”.
  • a power module substrate having a joining ratio of 70% or more and less than 85% after 3000 thermal cycles is indicated by the symbol “ ⁇ ”, and the joining ratio after performing 3000 thermal cycles as a load is 70.
  • Power module substrates that are less than% are indicated by the symbol “x”.
  • Example 4 In Example 4 to be described below, with reference to FIGS. 24A and 24B and FIGS. 25A and 25B, the effectiveness of the power module substrate of the fourth embodiment is confirmed.
  • the results of the confirmation experiment conducted are described.
  • a power module substrate used in the experiment a power module substrate was manufactured by the following manufacturing method. Specifically, a ceramic substrate made of Al 2 O 3 having a thickness of 40 mm and a thickness of 0.635 mm and two metal plates made of 4N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to both surfaces of the ceramic substrate by vacuum deposition, and metal plates were laminated on both surfaces of the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured.
  • a ceramic substrate made of Al 2 O 3 having a thickness of 40 mm and a thickness of 0.635 mm, and two metal plates made of 4N aluminum having a thickness of 0.6 mm were prepared. Thereafter, Cu was fixed to one surface of each metal plate by vacuum deposition, and this metal plate was laminated on both surfaces of the ceramic substrate so that the vapor deposition surface of the metal plate faced the ceramic substrate to form a laminate.
  • the laminate is heated in a vacuum furnace (vacuum degree: 10 ⁇ 3 Pa to 10 ⁇ 5 Pa) with a pressure of 1 to 5 kgf / cm 2 in the stacking direction, and the ceramic substrate, the circuit layer, and the metal layer are bonded together.
  • the power module substrate provided was manufactured. As described above, in Example 4, two types of power module substrates were used.
  • the amount of Cu adhered (Cu thickness) by vacuum deposition was varied according to five parameters (5 levels) of 0.1 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, 2.0 ⁇ m, and 3.0 ⁇ m.
  • the heating temperature was varied according to three parameters (three levels) of 610 ° C, 630 ° C, and 650 ° C. As a result, a total of 30 types of power module substrates were formed.
  • the metal layer of the power module substrate thus formed is made of 4N aluminum, and is a 50 mm ⁇ 60 mm, 5 mm thick aluminum plate corresponding to the top plate of the heat sink through a 0.9 mm thick buffer layer. (A6063) was joined. Thereby, a total of 30 types of test pieces were prepared. Next, before the thermal cycle test was performed on the total 30 types of test pieces, the bonding area ratio (bonding ratio) at the bonding interface between the ceramic substrate and the metal plate was determined. As a calculation method of the bonding ratio, as described in the first embodiment, a method of calculating the bonding ratio using an ultrasonic imaging apparatus (probe frequency 15 MHz) is adopted.
  • FIG. 24A shows the evaluation result of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • the power module substrate that did not crack the ceramic substrate in both of the two test pieces is indicated by the symbol “ ⁇ ”, and the ceramic substrate cracked in one of the two test pieces.
  • the power module substrate is indicated by the symbol “ ⁇ ”, and the power module substrate in which the crack of the ceramic substrate has occurred in both of the two test pieces is indicated by the symbol “x”.
  • the joining ratio was calculated
  • the bonding ratio between the ceramic substrate and the metal plate that is, the bonding ratio after 3000 thermal cycles were obtained by the same method as described above using an ultrasonic imaging apparatus.
  • an evaluation result of the power module substrate was obtained.
  • FIG. 25A shows the evaluation result of the power module substrate obtained by depositing Cu on the ceramic substrate.
  • substrate for power modules obtained by vapor-depositing Cu on a metal plate is shown in FIG.25 (b).
  • a power module substrate having a joining ratio of 85% or more after 3000 thermal cycles as a load is indicated by a symbol “ ⁇ ”.
  • a power module substrate having a joining ratio of 70% or more and less than 85% after 3000 thermal cycles is indicated by the symbol “ ⁇ ”, and the joining ratio after performing 3000 thermal cycles as a load is 70.
  • the substrate for the power module that is less than% is indicated by the symbol “x”.
  • Example 5 In Examples 5 and 6 described below, referring to FIG. 34 and Table 1, the results of a confirmation experiment performed to confirm the effectiveness of the power module substrates of the fifth and sixth embodiments will be described.
  • a metal layer 213 made of 4N aluminum having a thickness of 0.6 mm As a common power module substrate, a ceramic substrate 211 made of AlN having a thickness of 0.635 mm and a circuit layer made of 4N aluminum having a thickness of 0.6 mm. 212, a metal layer 213 made of 4N aluminum having a thickness of 0.6 mm, a top plate portion 5 made of an aluminum alloy (A6063) having a thickness of 5 mm, and a buffer layer 15 made of 4N aluminum having a thickness of 1.0 mm.
  • a confirmation experiment was performed using the power module substrate.
  • Example 5 after Cu was fixed to the surface of the ceramic substrate 211 by sputtering, the metal plate to be the circuit layer 212 and the metal layer 213 was joined to the ceramic substrate 211 using an Al—Si brazing material.
  • the metal plate that becomes the circuit layer 212 and the metal layer 213 is made of an Al—Si based brazing material. 211.
  • the test piece of Example 5 and the test piece of a comparative example were prepared. Next, before performing a thermal cycle test on these test pieces, a bonding area ratio (bonding ratio) at a bonding interface between the ceramic substrate and the metal plate was obtained.
  • the bonding ratio between the ceramic substrate and the metal plate in the test piece of Example 5 is 100%, and the bonding ratio between the ceramic substrate and the metal plate in the test piece of the comparative example is 99.99. It was 8%. Subsequently, the bonding reliability was evaluated using these test pieces. As an evaluation of the bonding reliability, the comparative example and the example 5 were compared with respect to the bonding ratio after repeating the thermal cycle ( ⁇ 45 ° C. to 125 ° C.).
  • the bonding ratio between the ceramic substrate and the metal plate in the comparative example and Example 5 was obtained by the same method as described above using an ultrasonic imaging apparatus. Furthermore, each joining ratio after performing 1000 times, 2000 times, and 3000 times of heat cycles was calculated
  • the bonding ratio was nearly 100% (99.8%) when the thermal cycle was performed 1000 times. Met. However, when the heat cycle was performed 2000 times, a decrease in the bonding ratio was observed (94.2%), and when the heat cycle was performed 3000 times, the bonding ratio decreased to 91.5%. On the other hand, in Example 5 in which Cu was added to the bonding interface, the bonding ratio did not decrease even when the thermal cycle was performed 2000 times. The joining ratio after 3000 thermal cycles was 99.2%. This confirmation experiment confirmed that the thermal cycle reliability was improved by adding Cu to the bonding interface.
  • Example 6 Next, the component analysis result of the metal layer in the power module substrate of the fifth and sixth embodiments is shown.
  • a circuit layer 212 made of 4N aluminum having a thickness of 0.6 mm and a metal layer 213 made of 4N aluminum having a thickness of 0.6 mm are joined to a ceramic substrate 211 made of AlN having a thickness of 0.635 mm.
  • a substrate was produced.
  • a 1.5 ⁇ m thick Cu layer was formed on the surface of the Al-7.5 wt% Si brazing material, and this Al-7.5 wt% Si brazing material was used to make ceramics.
  • a circuit layer 212 and a metal layer 213 are bonded to the substrate 211.
  • the bonding temperature was varied according to three parameters (three levels) of 610 ° C., 630 ° C., and 650 ° C.
  • a Cu layer having a thickness of 1.5 ⁇ m is formed on the surface of the ceramic substrate 211, and an Al-7.5 wt% Si brazing material is used to form the circuit layer 212 and the metal layer 213 on the ceramic substrate 211. And are joined.
  • the bonding temperature was varied according to three parameters (three levels) of 610 ° C., 630 ° C., and 650 ° C.
  • Power module 2 Semiconductor chip (electronic component) 10, 60, 110, 160, 210, 260 Power module substrate 11, 61, 111, 161, 211, 261 Ceramic substrate 12, 62, 112, 162, 212, 262 Circuit layer 13, 63, 113, 163, 213 , 263 Metal layers 22, 23, 72, 73, 122, 123, 172, 173, 222, 223, 272, 273 Metal plates 24, 25 Cu layers 26, 27 Molten metal layers 30, 80, 130, 180, 230, 280 Bonding interface 33, 233 Concentration gradient layer (concentration gradient portion) 34 Soft layer 41,241 Aluminum phase 42,243 Eutectic phase 74, 75, 174, 175 Copper foil (Cu layer) 76, 77, 126, 127, 176, 177, 226, 227 Molten aluminum layer 82, 132, 182 Cu high concentration portion 124, 125 Cu fixed layer (Cu layer) 224, 225 Brazing material foil (brazing material) 232 Si

Abstract

 このパワーモジュール用基板(10)は、表面を有するセラミックス基板(11)と、前記セラミックス基板(11)の前記表面に接合されアルミニウムからなり前記セラミックス基板(11)との間の接合界面においてCuを含有する金属板(22,23)と、を含み、前記接合界面におけるCu濃度が0.05~5wt%の範囲内に設定されている。

Description

パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
 本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板、このパワーモジュール基板を備えたパワーモジュール、及びこのパワーモジュール用基板の製造方法に関する。
 本願は、2008年6月6日に出願された特願2008-149902号、2009年3月17日に出願された特願2009-065033号、2009年3月26日に出願された特願2009-075315号、2009年3月31日に出願された特願2009-086247号、及び2009年3月31日に出願された特願2009-086248号に基づき優先権を主張し、その内容をここに援用する。
 従来、半導体素子の中でも電力供給のためにパワーモジュールが用いられている。パワーモジュールの発熱量は、比較的高い。そのため、このパワーモジュールを搭載する基板としては、例えば、AlN(窒化アルミ)、Si(窒化ケイ素)、又はAl(酸化アルミ)からなるセラミックス基板上に、Al(アルミニウム)の金属板がAl-Si系のろう材を介して接合されたパワーモジュール用基板が用いられる。
 また、この金属板は回路層として形成され、その金属板の上には、はんだ材を介してパワー素子である半導体チップが搭載される。
 なお、放熱効率を改善するために、Al等の金属板をセラミックス基板の下面に接合することによって金属層を形成し、この金属層を介して放熱板上にパワーモジュール用基板全体が接合された構造が提案されている。
 従来、例えば下記特許文献1に開示されているように、前記回路層及び前記金属層として機能する金属板とセラミックス基板との間の接合強度を良好に得るために、セラミックス基板の表面粗さを0.5μm未満にしている技術が知られている。
特開平3-234045号公報
 しかしながら、金属板をセラミックス基板に接合する場合、単にセラミックス基板の表面粗さを低減しても十分に高い接合強度が得られず、信頼性の向上が図れないという不都合があった。
 例えば、セラミックス基板の表面に対して、乾式でAl粒子によるホーニング処理を行ない、表面粗さをRa=0.2μmにしても、剥離試験で界面剥離が生じる場合があった。
 また、研磨法により、表面粗さがRa=0.1μm以下となるようにセラミックス基板を研磨しても、やはり同様に界面剥離が生じる場合があった。
 また、熱サイクルがパワーモジュール用基板に負荷された場合において、接合界面の剥離のみでなく、セラミックス基板に割れが発生することも知られている。
 特に、最近では、パワーモジュールの小型化及びパワーモジュールの厚さを薄くすることが要求され、その使用環境も厳しくなってきている。例えば、熱応力が繰り返し生じるような使用環境において、パワーモジュールが使用されている。
 また、近年、電子部品からの発熱量が増加する傾向にあり、前述のように放熱板上にパワーモジュール用基板を配設する必要がある。
 この場合、パワーモジュール用基板が放熱板によって拘束されるために、熱サイクル負荷時に、金属板とセラミックス基板との間の接合界面に大きなせん断力が作用する。そのため、さらなる接合強度の向上及び信頼性の向上が求められている。
 この発明は、前述した事情に鑑みてなされたものであって、金属板とセラミックス基板とが確実に接合され、熱サイクル信頼性の高いパワーモジュール用基板、このパワーモジュール基板を含むパワーモジュール及びこのパワーモジュール用基板の製造方法を提供することを目的とする。
 このような課題を解決して、前記目的を達成するために、本発明の第1態様のパワーモジュール用基板は、表面を有するセラミックス基板と、前記セラミックス基板の前記表面に接合され、アルミニウムからなり、前記セラミックス基板との間の接合界面においてCuを含有する金属板と、を含み、前記接合界面におけるCu濃度が0.05~5wt%の範囲内に設定されている。
 この構成のパワーモジュール用基板においては、金属板にCuが拡散しており、接合界面のCu濃度が0.05~5wt%の範囲内に設定されているので、金属板の接合界面が固溶強化される。
 よって、熱サイクル等を負荷した際に、金属板にクラックが発生・進展することが防止され、接合信頼性を向上させることができる。
 本発明の第1態様のパワーモジュール用基板においては、前記金属板の幅方向の端部に、アルミニウム中にCuが含有されているアルミニウム相と、AlとCuとの2元共晶組織からなる共晶相と、が形成されていることが好ましい。
 この場合、金属板の幅方向の端部にAlとCuとの2元共晶組織からなる共晶相が形成されているので、金属板の幅方向の端部をさらに強化することが可能となる。
 これにより、金属板の幅方向の端部からのクラックの発生・進展を防止することができ、接合信頼性を向上させることができる。
 本発明の第1態様のパワーモジュール用基板においては、前記共晶相においてCuを含む化合物からなる析出粒子が析出していることが好ましい。
 この場合、金属板の幅方向の端部に形成された共晶相において、Cuを含む化合物からなる析出粒子が析出しているので、金属板の幅方向の端部をさらに析出強化することが可能となる。
 これにより、金属板の幅方向の端部からのクラックの発生・進展を確実に防止することができ、接合信頼性を向上させることができる。
 本発明の第1態様のパワーモジュール用基板においては、前記金属板は、前記金属板と前記セラミックス基板とが積層される方向において、前記接合界面から離間するにしたがい漸次Cu濃度が低下する濃度傾斜部と、前記濃度傾斜部の前記セラミックス基板とは反対側に形成され、前記接合界面近傍よりも硬度が低い軟質層と、を含むことが好ましい。
 この場合、金属板のうち接合界面近傍は、Cu濃度が高く設定されていて固溶強化によって硬くなっている。
 一方、軟質層においては、Cu濃度が低く設定されており、硬度が低く、変形抵抗が小さい。
 よって、この軟質層により、金属板及びセラミックス基板の熱膨張係数の差によって生じる熱ひずみ(熱応力)を吸収することができ、熱サイクル信頼性を大幅に向上させることができる。
 本発明の第2態様のパワーモジュールは、前述の第1態様のパワーモジュール用基板と、前記パワーモジュール用基板上に搭載される電子部品と、を備える。
 この構成のパワーモジュールによれば、セラミックス基板と金属板との間の接合強度が高く構成されているので、使用環境が厳しい場合であっても、例えば、熱応力が繰り返し生じるように使用する場合であっても、その信頼性を飛躍的に向上させることができる。
 本発明の第3態様のパワーモジュール用基板の製造方法は、セラミックス基板と、アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し(積層工程)、前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、前記セラミックス基板及び前記金属板の界面に溶融金属層を形成し(溶融工程)、前記溶融金属層を冷却することによって前記溶融金属層を凝固させ(凝固工程)、溶融工程及び凝固工程において、前記金属板における前記セラミックス基板と前記金属板との間の接合界面近傍にCu濃度が0.05~5wt%の範囲内となるようにCuを含有させる。
 この構成のパワーモジュール用基板の製造方法は、セラミックス基板及び金属板を、Cu層を介して積層し、積層された前記セラミックス基板及び前記金属板を積層方向に加圧するとともに加熱する。これにより、Cu層のCuと金属板のAlとが共晶反応することによって接合界面近傍の融点が降下し、比較的低温でもセラミックス基板及び金属板の界面に溶融金属層を形成することが可能となり、セラミックス基板と金属板とを接合することができる。
 すなわち、Al-Si合金等からなるろう材を使用することなく、セラミックス基板と金属板とを接合することができる。
 このように、ろう材を使用せずに接合するため、ろう材が回路層表面に滲み出してくることがなく、回路層表面にNiめっき層を良好に形成することができる。
 ここで、Cu層の厚さが0.15μm未満であると、セラミックス基板及び金属板の界面に溶融金属層を十分に形成することができないおそれがある。
 また、Cu層の厚さが3μmを超えると、CuとAlとの反応物が接合界面に過剰に発生し、金属板の接合界面近傍が必要以上に強化され、熱サイクル負荷時にセラミックス基板に割れが発生するおそれがある。
 このため、Cu層の厚さは0.15μm以上3μm以下であることが好ましい。
 なお、上述の作用効果を確実に得るために、Cu層の厚さは0.5μm以上2.5μm以下であることが好ましい。
 本発明の第3態様のパワーモジュール用基板の製造方法においては、前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることが好ましい。
 この場合、セラミックス基板に対向する金属板の面(接合面)又は金属板に対向するセラミックス基板の面(接合面)にCuが固着されているので、セラミックス基板と金属板とを確実にCu層を介して積層することができ、セラミックス基板と金属板とを確実に接合することができる。
 本発明の第3態様のパワーモジュール用基板の製造方法においては、前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることが好ましい。
 この場合、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法によってCu層を確実に形成でき、セラミックス基板と金属板とを接合することができる。
 本発明の第3態様のパワーモジュール用基板の製造方法においては、前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることが好ましい。
 この場合、Cu箔を介装することにより、セラミックス基板に対向する金属板の面(接合面)又は金属板に対向するセラミックス基板の面(接合面)にCu層を形成することができる。
 よって、セラミックス基板と金属板とを強固に接合することが可能となる。
 本発明の第4態様のパワーモジュール用基板は、AlN又はSiからなり、表面を有するセラミックス基板と、前記セラミックス基板の前記表面に接合され、純アルミニウムからなる金属板と、前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部と、を含む。
 この構成のパワーモジュール用基板においては、AlN又はSiからなるセラミックス基板と純アルミニウムからなる金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部が形成されているので、界面近傍に存在するCu原子により、セラミックス基板と金属板との間の接合強度の向上を図ることが可能となる。
 なお、金属板中のCu濃度とは、金属板のうち接合界面から一定距離(例えば、50nm以上)離れた部分におけるCu濃度である。
 本発明の第4態様のパワーモジュール用基板においては、前記Cu高濃度部における酸素濃度は、前記金属板中及び前記セラミックス基板中の酸素濃度よりも高いことが好ましい。
 この場合、接合界面に酸素が介在することにより、AlN又はSiからなるセラミックス基板と純アルミニウムからなる金属板との間の接合強度のさらなる向上を図ることが可能となる。
 また、接合界面に高濃度で存在する酸素は、セラミックス基板の表面に存在する酸素及び金属板の表面に形成された酸化膜から取り込まれた酸素であると考えられる。
 ここで、酸素濃度が接合界面において高濃度に存在することは、これらの酸化膜等が確実に除去されるように十分に加熱されていることを意味する。従って、セラミックス基板と金属板とを強固に接合することが可能となる。
 本発明の第4態様のパワーモジュール用基板においては、前記セラミックス基板がAlNで構成されており、前記Cu高濃度部を含む前記接合界面をエネルギー分散型X線分析法により分析した際、Al、Cu、O、Nの質量比は、Al:Cu:O:N=50~90wt%:1~10wt%:2~20wt%:25wt%以下であることが好ましい。
 本発明の第4態様のパワーモジュール用基板においては、前記セラミックス基板がSiで構成されており、前記Cu高濃度部を含む前記接合界面をエネルギー分散型X線分析法により分析した際、Al、Si、Cu、O、Nの質量比は、Al:Si:Cu:O:N=15~45wt%:15~45wt%:1~10wt%:2~20wt%:25wt%以下であることが好ましい。
 接合界面に存在するCu原子の質量比が10wt%を超えると、AlとCuとの反応物が過剰に生成され、この反応物が接合を阻害するおそれがある。
 また、この反応物によって金属板の接合界面近傍が必要以上に強化され、熱サイクル負荷時にセラミックス基板に応力が作用し、セラミックス基板が割れてしまうおそれがある。
 一方、Cu原子の質量比が1wt%未満であると、Cu原子による接合強度の向上を充分に図ることができないおそれがある。
 よって、接合界面におけるCu原子の質量比は、1~10wt%の範囲内であることが好ましい。
 また、前記Cu高濃度部を含む接合界面に存在する酸素原子の質量比が20wt%を超えると、酸素濃度の高い部分の厚さが増加し、熱サイクルを負荷した際にこの高濃度部においてクラックが発生してしまう。従って、接合信頼性が低下するおそれがある。このため、酸素濃度は2~20wt%であることが好ましい。
 ここで、エネルギー分散型X線分析法による分析を行う際のスポット径は極めて小さいため、前記接合界面の複数点(例えば、10~100点)が測定され、その平均値が算出される。
 また、測定する際には、金属板の結晶粒界とセラミックス基板との間の接合界面を測定せずに、結晶粒とセラミックス基板との間の接合界面のみを測定する。
 なお、本明細書中におけるエネルギー分散型X線分析法による分析値は、日本電子製の電子顕微鏡JEM-2010Fに搭載したサーモフィッシャーサイエンティフィック株式会社製のエネルギー分散型蛍光X線元素分析装置NORAN System7を用いて、加速電圧200kVの条件の下で、得られている。
 本発明の第5態様のパワーモジュールは、前述の第4態様のパワーモジュール用基板と、前記パワーモジュール用基板上に搭載される電子部品と、を備える。
 この構成のパワーモジュールによれば、セラミックス基板と金属板との間の接合強度が高く、使用環境が厳しい場合であっても、例えば、熱応力が繰り返し生じるように使用する場合であっても、その信頼性を飛躍的に向上させることができる。
 本発明の第6態様のパワーモジュール用基板の製造方法は、AlNからなるセラミックス基板と、純アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し(積層工程)、前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、前記セラミックス基板及び前記金属板の界面に溶融アルミニウム層を形成し(溶融工程)、前記溶融アルミニウム層を冷却することによって前記溶融アルミニウム層を凝固させ(凝固工程)、溶融工程及び凝固工程において、前記セラミックス基板と前記金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部を形成する。
 この構成のパワーモジュール用基板の製造方法は、セラミックス基板及び金属板を、Cu層を介して積層し、積層された前記セラミックス基板及び前記金属板を積層方向に加圧するとともに加熱する。これにより、Cu層のCuと金属板のAlとが共晶反応することによって接合界面近傍の融点が降下し、比較的低温でもセラミックス基板及び金属板の界面に溶融アルミニウム層を形成することが可能となり、セラミックス基板と金属板とを接合することができる。
 すなわち、Al-Si合金等からなるろう材を使用することなく、セラミックス基板と金属板とを接合することができる。
 また、Cu層の厚さが0.15μm未満であると、セラミックス基板及び金属板の界面に溶融アルミニウム層を十分に形成することができないおそれがある。
 また、Cu層の厚さが3μmを超えると、CuとAlとの反応物が接合界面に過剰に発生し、金属板の接合界面近傍が必要以上に強化され、熱サイクル負荷時にAlNからなるセラミックス基板に割れが発生するおそれがある。
 このため、AlNからなるセラミックス基板の場合、Cu層の厚さは、0.15μm以上3μm以下であることが好ましい。
 本発明の第7態様のパワーモジュール用基板の製造方法は、Siからなるセラミックス基板と、純アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し(積層工程)、前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、前記セラミックス基板及び前記金属板の界面に溶融アルミニウム層を形成し(溶融工程)、前記溶融アルミニウム層を冷却することによって前記溶融アルミニウム層を凝固させ(凝固工程)、溶融工程及び凝固工程において、前記セラミックス基板と前記金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部を形成する。
 この構成のパワーモジュール用基板の製造方法は、セラミックス基板及び金属板を、Cu層を介して積層し、積層された前記セラミックス基板及び前記金属板を積層方向に加圧するとともに加熱する。これにより、Cu層のCuと金属板のAlとが共晶反応することによって接合界面近傍の融点が降下し、比較的低温でもセラミックス基板及び金属板の界面に溶融アルミニウム層を形成することが可能となり、セラミックス基板と金属板とを接合することができる。
 すなわち、Al-Si合金等からなるろう材を使用することなく、セラミックス基板と金属板とを接合することができる。
 また、Cu層の厚さが0.15μm未満であると、セラミックス基板及び金属板の界面に溶融アルミニウム層を十分に形成することができないおそれがある。
 また、Cu層の厚さが3μmを超えると、CuとAlとの反応物が接合界面に過剰に発生し、接合を阻害するおそれがある。
 このため、Siからなるセラミックス基板の場合、Cu層の厚さは、0.15μm以上3μm以下であることが好ましい。
 本発明の第6態様又は第7態様のパワーモジュール用基板の製造方法においては、前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることが好ましい。
 本発明の第6態様又は第7態様のパワーモジュール用基板の製造方法においては、前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることが好ましい。
 本発明の第6態様又は第7態様のパワーモジュール用基板の製造方法においては、前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることが好ましい。
 これらの方法によれば、セラミックス基板と金属板との間に、所望の厚さのCu層を形成することが可能となり、確実にセラミックス基板と金属板とを接合することができる。
 本発明の第8態様のパワーモジュール用基板は、Alからなり、表面を有するセラミックス基板と、前記セラミックス基板の前記表面に接合され、純アルミニウムからなる金属板と、前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部と、を含む。
 この構成のパワーモジュール用基板においては、Alからなるセラミックス基板と純アルミニウムからなる金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部が形成されているので、界面近傍に存在するCu原子により、セラミックス基板と金属板との間の接合強度の向上を図ることが可能となる。
 なお、金属板中のCu濃度とは、金属板のうち接合界面から一定距離(例えば、50nm以上)離れた部分におけるCu濃度である。
 本発明の第8態様のパワーモジュール用基板においては、前記Cu高濃度部を含む前記接合界面をエネルギー分散型X線分析法により分析した際、Al、Cu、Oの質量比は、Al:Cu:O=50~90wt%:1~10wt%:0~45wt%であることが好ましい。
 接合界面に存在するCu原子の質量比が10wt%を超えると、AlとCuとの反応物が過剰に生成され、この反応物が接合を阻害するおそれがある。
 一方、Cu原子の質量比が1wt%未満であると、Cu原子による接合強度の向上を充分に図ることができないおそれがある。
 よって、接合界面におけるCu原子の質量比は、1~10wt%の範囲内であることが好ましい。
 ここで、エネルギー分散型X線分析法による分析を行う際のスポット径は極めて小さいため、前記接合界面の複数点(例えば、10~100点)で測定し、その平均値を算出する。
 また、測定する際には、金属板の結晶粒界とセラミックス基板との間の接合界面を測定せずに、結晶粒とセラミックス基板との間の接合界面のみを測定する。
 本発明の第9態様のパワーモジュールは、前述の第8態様のパワーモジュール用基板と、前記パワーモジュール用基板上に搭載される電子部品と、を備える。
 この構成のパワーモジュールによれば、セラミックス基板と金属板との間の接合強度が高く、使用環境が厳しい場合であっても、例えば、熱応力が繰り返し生じるように使用する場合であっても、その信頼性を飛躍的に向上させることができる。
 本発明の第10態様のパワーモジュール用基板の製造方法は、Alからなるセラミックス基板と、純アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し(積層工程)、前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、前記セラミックス基板及び前記金属板の界面に溶融アルミニウム層を形成し(溶融工程)、前記溶融アルミニウム層を冷却することによって前記溶融アルミニウム層を凝固させ(凝固工程)、溶融工程及び凝固工程において、前記セラミックス基板と前記金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部を形成する。
 この構成のパワーモジュール用基板の製造方法は、セラミックス基板及び金属板を、Cu層を介して積層し、積層された前記セラミックス基板及び前記金属板を積層方向に加圧するとともに加熱する。これにより、Cu層のCuと金属板のAlとが共晶反応することによって接合界面近傍の融点が降下し、比較的低温でもセラミックス基板及び金属板の界面に溶融アルミニウム層を形成することが可能となり、セラミックス基板と金属板とを接合することができる。
 すなわち、Al-Si合金等からなるろう材を使用することなく、セラミックス基板と金属板とを接合することができる。
 また、Cu層の厚さが0.15μm未満であると、セラミックス基板及び金属板の界面に溶融アルミニウム層を十分に形成することができないおそれがある。
 また、Cu層の厚さが3μmを超えると、CuとAlとの反応物が接合界面に過剰に発生し、金属板の接合界面近傍が必要以上に強化され、熱サイクル負荷時にAlからなるセラミックス基板に割れが発生するおそれがある。
 このため、Alからなるセラミックス基板の場合、Cu層の厚さは、0.15μm以上3μm以下であることが好ましい。
 本発明の第10態様のパワーモジュール用基板の製造方法においては、前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることが好ましい。
 本発明の第10態様のパワーモジュール用基板の製造方法においては、前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることが好ましい。
 本発明の第10態様のパワーモジュール用基板の製造方法においては、前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることが好ましい。
 これらの方法によれば、セラミックス基板と金属板との間に、所望の厚さのCu層を形成することが可能となり、確実にセラミックス基板と金属板とを接合することができる。
 本発明の第11態様のパワーモジュール用基板は、表面を有するセラミックス基板と、前記セラミックス基板の前記表面にSiを含有するろう材を介して接合され、アルミニウムからなる金属板と、前記セラミックス基板と前記金属板との間の接合界面に添加されたCuと、を含み、前記金属板には、Si及びCuが含まれており、前記金属板の前記接合界面に近い部分におけるSi濃度が0.05~0.5wt%の範囲内に設定され、Cu濃度が0.05~1.0wt%の範囲内に設定されている。
 この構成のパワーモジュール用基板においては、セラミックス基板とアルミニウムからなる金属板とがSiを含有するろう材を用いて接合されるとともに、前記金属板と前記セラミックス基板の接合界面にCuが添加されている。
 ここで、Cuは、Alに対して反応性の高い元素であるため、接合界面にCuが存在することによってアルミニウムからなる金属板の表面が活性化する。
 よって、一般的なAl-Si系のろう材を用いて、比較的低温、短時間の接合条件で接合しても、セラミックス基板と金属板とを強固に接合することが可能となる。
 なお、Cuを接合界面に添加する方法としては、セラミックス基板及びろう材の表面にCuを蒸着法、スパッタリング法、及びメッキ法等によって固着してもよいし、Al-Si系のろう材中にCuを含有させてもよい。
 また、前記金属板にCuが拡散しており、接合界面に近い部分のCu濃度が、0.05~1.0wt%の範囲内に設定されているので、金属板の接合界面に近い部分が固溶強化される。
 これにより、金属板部分での破断を防止することができ、接合信頼性を向上させることができる。
 さらに、セラミックス基板とアルミニウムからなる金属板とがSiを含有するろう材を用いて接合されており、前記金属板にSiが拡散し、接合界面に近い部分のSi濃度が、0.05~0.5wt%の範囲内に設定されている。これにより、ろう材が確実に溶融して固溶状態となり、Siが十分に金属板に拡散しており、セラミックス基板と金属板とが強固に接合される。
 本発明の第11態様のパワーモジュール用基板においては、前記セラミックス基板の幅は、前記金属板の幅よりも広く、前記金属板の幅方向の端部においては、アルミニウム中にSi,Cuが含有されているアルミニウム相と、Siの含有率が98wt%以上であるSi相と、Al,Cu,及びSiの3元共晶組織からなる共晶相と、が形成されていることが好ましい。
 この場合、金属板の幅方向の端部に、アルミニウム中にSi,Cuが拡散されたアルミニウム相以外に、Siの含有率が98wt%以上であるSi相と、AlとCuとSiの3元共晶組織からなる共晶相が形成されているので、金属板の幅方向の端部を強化することが可能となる。
 本発明の第11態様のパワーモジュール用基板においては、前記共晶相には、Cuを含む化合物からなる析出粒子が析出していることが好ましい。
 この場合、金属板の幅方向の端部に形成された共晶相において、Cuを含む化合物からなる析出粒子が析出しているので、金属板の幅方向の端部を析出強化することが可能となる。
 これにより、金属板の幅方向の端部から発生する破断を防止することができ、接合信頼性を向上させることができる。
 本発明の第11態様のパワーモジュール用基板においては、前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中のSi濃度の5倍以上であるSi濃度を有するSi高濃度部を含み、前記セラミックス基板がAlN又はAlで構成されていてもよい。
 この場合、前記金属板と前記セラミックス基板との間の接合界面に、前記金属板中のSi濃度の5倍以上であるSi濃度を有するSi高濃度部が形成されているので、接合界面に存在するSi原子によってAlN又はAlからなるセラミックス基板とアルミニウムからなる金属板との間の接合強度が向上する。
 なお、ここで、金属板中のSi濃度とは、金属板のうち接合界面から一定距離(例えば、50nm以上)離れた部分におけるSi濃度である。
 接合界面に高濃度で存在するSiは、主にろう材中に含有されたSiであると考えられる。
 接合時に、Siはアルミニウム(金属板)中に拡散し、接合界面においてその量は減少するが、セラミックスとアルミニウム(金属板)との間の界面部分が不均一核生成のサイトとなってSi原子が界面部分に残存し、前記金属板中のSi濃度の5倍以上であるSi濃度を有するSi高濃度部が形成される。
 本発明の第11態様のパワーモジュール用基板においては、前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中及び前記セラミックス基板中の酸素濃度よりも高い酸素濃度を有し、厚さが4nm以下である酸素高濃度部を含み、前記セラミックス基板がAlN又はSiで構成されていてもよい。
 この場合、AlN又はSiからなるセラミックス基板とアルミニウムからなる金属板との間の接合界面に、前記金属板中及び前記セラミックス基板中の酸素濃度よりも高い酸素濃度を有する酸素高濃度部が形成されているので、接合界面に存在する酸素によってAlN又はSiからなるセラミックス基板とアルミニウムからなる金属板との間の接合強度が向上する。
 さらに、この酸素高濃度部の厚さが4nm以下であるので、熱サイクルを負荷した際の応力によって酸素高濃度部にクラックが発生することが抑制される。
 なお、ここで、金属板中及びセラミックス基板中の酸素濃度とは、金属板及びセラミックス基板のうち接合界面から一定距離(例えば、50nm以上)離れた部分における酸素濃度である。
 また、接合界面に高濃度で存在する酸素は、セラミックス基板の表面に存在する酸素及びろう材の表面に形成された酸化膜から取り込まれた酸素であると考えられる。
 ここで、酸素濃度が接合界面において高濃度に存在することは、これらの酸化膜等が確実に除去されるように十分に加熱されていることを意味する。従って、セラミックス基板と金属板とを強固に接合することが可能となる。
 本発明の第12態様のパワーモジュールは、前述の第11態様のパワーモジュール用基板と、前記パワーモジュール用基板上に搭載される電子部品と、を備える。
 この構成のパワーモジュールによれば、セラミックス基板と金属板との間の接合強度が高く、使用環境が厳しい場合であっても、例えば、熱応力が繰り返し生じるように使用する場合であっても、その信頼性を飛躍的に向上させることができる。
 本発明の第13態様のパワーモジュール用基板の製造方法は、接合面を有するセラミックス基板と、アルミニウムからなる金属板と、Siを含有するろう材とを準備し、前記セラミックス基板と前記金属板とを前記ろう材を介装させて積層し(積層工程)、前記積層された前記セラミックス基板、前記ろう材、及び前記金属板を加圧した状態で加熱し、前記ろう材を溶融させてセラミックス基板及び金属板の界面に溶融アルミニウム層を形成し(溶融工程)、前記溶融アルミニウム層を凝固させ(凝固工程)、前記セラミックス基板と前記金属板とを前記ろう材を介装させて積層する前に、前記セラミックス基板の前記接合面及び前記ろう材のセラミックス基板に対向する面のうち少なくとも一方にCuを固着させる(固着工程)。
 この構成のパワーモジュール用基板の製造方法は、前記セラミックス基板と前記金属板との間にSiを含有するろう材を介装させて積層させる積層工程の前に、前記セラミックス基板の接合面及び前記ろう材のセラミックス基板に対向する面のうち少なくとも一方にCuを固着させるCu固着工程を有している。これにより、前記セラミックス基板と前記金属板との間の接合界面にCuが確実に添加され、このCuによって金属板の表面が活性化され、一般的なAl-Si系のろう材を用いて比較的低温、短時間の接合条件で接合しても、セラミックス基板と金属板とを強固に接合することが可能となる。
 本発明の第13態様のパワーモジュール用基板の製造方法においては、前記Cuを固着する際には、蒸着法又はスパッタリング法によって前記セラミックス基板の前記接合面及び前記ろう材のセラミックス基板に対向する面のうち少なくとも一方にCuを固着させることが好ましい。
 この場合、蒸着法又はスパッタリング法によって、Cuが前記セラミックス基板の接合面及び前記ろう材の表面の少なくとも一方に確実に固着され、セラミックス基板と金属板との間の接合界面にCuを確実に存在させることが可能となる。
 これにより、Cuによって金属板の表面が活性化され、セラミックス基板と金属板とを強固に接合することが可能となる。
 本発明によれば、金属板とセラミックス基板とが確実に接合され、熱サイクル信頼性の高いパワーモジュール用基板、このパワーモジュール基板を備えたパワーモジュール及びこのパワーモジュール用基板の製造方法を提供することが可能となる。
本発明の第1実施形態であるパワーモジュール用基板を用いたパワーモジュールの概略断面図である。 本発明の第1実施形態であるパワーモジュール用基板の回路層及び金属層のCu濃度分布を示す説明図である。 本発明の第1実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)の幅方向の端部を示す説明図である。 本発明の第1実施形態であるパワーモジュール用基板の製造方法を示す断面図である。 図4における金属板とセラミックス基板との間の接合界面近傍を示す断面図である。 実施例1における接合信頼性の評価結果を示す図である。 実施例1における接合信頼性の評価結果を示す図である。 本発明の第2実施形態であるパワーモジュール用基板を用いたパワーモジュールの概略断面図である。 本発明の第2実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)とセラミックス基板との間の接合界面の模式断面図である。 本発明の第2実施形態であるパワーモジュール用基板の製造方法を示す断面図である。 図10における金属板とセラミックス基板との間の接合界面近傍を示す断面図である。 本発明の第3実施形態であるパワーモジュール用基板を用いたパワーモジュールの概略断面図である。 本発明の第3実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)とセラミックス基板との間の接合界面の模式断面図である。 本発明の第3実施形態であるパワーモジュール用基板の製造方法を示す断面図である。 図14における金属板とセラミックス基板との間の接合界面近傍を示す断面図である。 実施例2におけるセラミックス基板の割れの評価結果を示す図である。 実施例2における接合信頼性の評価結果を示す図である。 実施例3におけるセラミックス基板の割れの評価結果を示す図である。 実施例3における接合信頼性の評価結果を示す図である。 本発明の第4実施形態であるパワーモジュール用基板を用いたパワーモジュールの概略断面図である。 本発明の第4実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)とセラミックス基板との間の接合界面の模式断面図である。 本発明の第4実施形態であるパワーモジュール用基板の製造方法を示す断面図である。 図22における金属板とセラミックス基板との間の接合界面近傍を示す断面図である。 実施例4におけるセラミックス基板の割れの評価結果を示す図である。 実施例4における接合信頼性の評価結果を示す図である。 本発明の第5実施形態であるパワーモジュール用基板を用いたパワーモジュールの概略断面図である。 本発明の第5実施形態であるパワーモジュール用基板の回路層及び金属層のSi濃度分布及びCu濃度分布を示す説明図である。 本発明の第5実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)とセラミックス基板との間の接合界面の幅方向の端部を示す説明図である。 本発明の第5実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)とセラミックス基板との間の接合界面の模式断面図である。 本発明の第5実施形態であるパワーモジュール用基板の製造方法を示す断面図である。 図29における金属板とセラミックス基板との間の接合界面近傍を示す断面図である。 本発明の第6実施形態であるパワーモジュール用基板を用いたパワーモジュールの概略断面図である。 本発明の第6実施形態であるパワーモジュール用基板の回路層及び金属層(金属板)とセラミックス基板との間の接合界面の模式断面図である。 比較実験に用いたパワーモジュール用基板を示す断面図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
(第1実施形態)
 図1は、本発明の第1実施形態であるパワーモジュール用基板及びパワーモジュールを示す。
 このパワーモジュール1は、回路層12が配設されたパワーモジュール用基板10と、回路層12の表面にはんだ層2を介して接合された半導体チップ3と、ヒートシンク4とを含む。
 ここで、はんだ層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材である。
 なお、第1実施形態では、回路層12とはんだ層2との間にNiめっき層(図示なし)が設けられている。
 パワーモジュール用基板10は、セラミックス基板11と、このセラミックス基板11の第1面(図1において上面)に配設された回路層12と、セラミックス基板11の第2面(図1において下面)に配設された金属層13とを含む。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止する基板であって、絶縁性の高いAlN(窒化アルミ)で構成されている。
 また、セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されており、第1実施形態では、0.635mmに設定されている。
 なお、第1実施形態では、図1に示すように、セラミックス基板11の幅は、回路層12及び金属層13の幅より広く設定されている。
 回路層12は、セラミックス基板11の第1面に導電性を有する金属板22が接合されることにより形成されている。
 第1実施形態においては、回路層12は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板22がセラミックス基板11に接合されることにより形成されている。
 金属層13は、セラミックス基板11の第2面に金属板23が接合されることにより形成されている。
 第1実施形態においては、金属層13は、回路層12と同様に、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板23がセラミックス基板11に接合されることで形成されている。
 ヒートシンク4は、前述のパワーモジュール用基板10を冷却するための部材であり、パワーモジュール用基板10に接合される天板部5と、冷却媒体(例えば冷却水)を流通するための流路6と、を備えている。
 ヒートシンク4(天板部5)は、熱伝導性が良好な材質で構成されることが望ましく、第1実施形態においては、A6063(アルミニウム合金)で構成されている。
 また、第1実施形態においては、ヒートシンク4の天板部5と金属層13との間には、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層15が設けられている。
 そして、図1及び図2に示すように、セラミックス基板11と回路層12(金属板22)との間の接合界面30の幅方向の中央部、及びセラミックス基板11と金属層13(金属板23)との間の接合界面30の幅方向の中央部(図1のA部)においては、回路層12(金属板22)及び金属層13(金属板23)にCuが拡散しており、接合界面30から積層方向に離間するにしたがい漸次Cuの濃度が低下する濃度傾斜層33(濃度傾斜部)が形成されている。
 なお、本明細書において、「積層方向」とは、セラミックス,基板11,回路層12,及び金属層13が積層される方向を意味する。
 ここで、濃度傾斜層33の接合界面30に近い部分のCu濃度は、0.05~5wt%の範囲内に設定されている。
 なお、濃度傾斜層33の接合界面30に近い部分のCu濃度は、EPMA分析(スポット径30μm)で、接合界面30から50μmまでの範囲内を5点測定した平均値である。
 また、濃度傾斜層33のセラミックス基板11とは反対側(図2において下側)には、接合界面30近傍よりもCu濃度が低く、かつ、硬度が低い軟質層34が形成されている。
 また、セラミックス基板11と回路層12(金属板22)との間の接合界面30の幅方向の端部、及びセラミックス基板11と金属層13(金属板23)との間の接合界面30の幅方向の端部(図1のB部)においては、図3に示すように、アルミニウム中にCuが固溶状態となるように拡散したアルミニウム相41と、AlとCuの2元共晶組織からなる共晶相42と、が形成されている。
 また、共晶相42内においては、Cuを含む化合物(例えばCuAl)からなる析出物粒子が析出している。
 このようなパワーモジュール用基板10は、以下のようにして製造される。
 まず、図4(a)及び図5(a)に示すように、AlNからなるセラミックス基板11と、回路層12となる金属板22(4Nアルミニウムの圧延板)と、金属層13となる金属板23(4Nアルミニウムの圧延板)とを準備する。
 その後、セラミックス基板11の両面に、スパッタリングによってCuが固着され、厚さ0.15μm以上3μm以下の膜厚を有するCu層24、25が形成される(Cu固着工程)。これによって、セラミックス基板11、金属板22,23、及びCu層24、25が準備される。
 次に、図4(b)に示すように、セラミックス基板11の第1面に、金属板22が積層され、セラミックス基板11の第2面に金属板23が積層される(積層工程)。これによって積層体20が形成される。
 次に、このようにして形成された積層体20をその積層方向に加圧(圧力1~5kgf/cm)した状態で真空炉内に装入して加熱する。
 ここで真空炉内の真空度は、10-3Pa~10-5Paであり、加熱温度は610℃~650℃である。
 この加圧・加熱工程によって、図5(b)に示すように、回路層12及び金属層13となる金属板22、23の表層とCu層24、25とが溶融し、セラミックス基板11の表面に溶融金属層26、27が形成される(溶融工程)。
 次に、図4(c)及び図5(c)に示すように、積層体20を冷却することによって溶融金属層26、27を凝固させる(凝固工程)。
 この溶融工程と凝固工程によって、回路層12となる金属板22とセラミックス基板11との間の接合界面近傍、又は金属層13となる金属板23とセラミックス基板11との間の接合界面近傍において、Cu濃度が0.05~5wt%の範囲内となるようにCuを拡散させる。
 このようして、回路層12及び金属層13となる金属板22、23とセラミックス基板11とが接合され、第1実施形態であるパワーモジュール用基板10が製造される。
 以上の構成を有する第1実施形態であるパワーモジュール用基板10及びパワーモジュール1においては、回路層12(金属板22)及び金属層13(金属板23)にCuが固溶状態に拡散している。また、回路層12とセラミックス基板11との接合界面30、又は金属層13とセラミックス基板11との接合界面30におけるCu濃度が0.05~5wt%の範囲内に設定されているので、回路層12(金属板22)及び金属層13(金属板23)の接合界面30が固溶強化される。従って、熱サイクル等を負荷した際に、回路層12(金属板22)及び金属層13(金属板23)部分にクラックが進展することが防止され、このパワーモジュール用基板10及びパワーモジュール1の信頼性を大幅に向上させることができる。
 また、回路層12(金属板22)及び金属層13(金属板23)の幅方向の端部においては、アルミニウム中にCuが拡散されたアルミニウム相41と、AlとCuとの2元共晶組織からなる共晶相42と、が形成されているので、回路層12(金属板22)及び金属層13(金属板23)の幅方向の端部をさらに強化することが可能となる。
 これにより、回路層12(金属板22)及び金属層13(金属板23)の幅方向の端部から発生する破断を防止することができ、このパワーモジュール用基板10の接合信頼性を向上させることができる。
 しかも、第1実施形態においては、共晶相42に、Cuを含む化合物(例えばCuAl)からなる析出物粒子が析出しているので、回路層12(金属板22)及び金属層13(金属板23)の幅方向の端部を析出強化することが可能となり、回路層12(金属板22)及び金属層13(金属板23)の幅方向の端部からのクラックの進展を確実に防止することができる。
 また、セラミックス基板11と回路層12(金属板22)との間の接合界面30の幅方向の中央部、及びセラミックス基板11と金属層13(金属板23)との間の接合界面30の幅方向の中央部(図1のA部)においては、回路層12(金属板22)及び金属層13(金属板23)にCuが固溶状態に拡散しており、接合界面30から積層方向に離間するにしたがい漸次Cuの濃度が低下する濃度傾斜層33が形成されており、さらに、この濃度傾斜層33のセラミックス基板11とは反対側(図2において下側)に、接合界面30近傍よりもCu濃度が低く、かつ、硬度が低く変形抵抗の小さい軟質層34が形成されている。この構成においては、軟質層34により、回路層12(金属板22)とセラミックス基板11との熱膨張係数の差、及び金属層13(金属板23)とセラミックス基板11の熱膨張係数の差によって生じる熱ひずみ(熱応力)を吸収することができ、このパワーモジュール用基板10の熱サイクル信頼性を大幅に向上させることができる。
 第1実施形態であるパワーモジュール用基板の製造方法によれば、セラミックス基板11,回路層12となる金属板22,及び金属層13となる金属板23をCu層24、25を介して積層し、積層されたセラミックス基板11及び金属板22、23を積層方向に加圧するとともに加熱するので、Cu層24、25のCuと金属板22、23のAlとが共晶反応することによって接合界面30近傍の融点が降下し、比較的低温でもセラミックス基板11及び金属板22、23の界面に溶融金属層26、27を形成することが可能となり、セラミックス基板11と金属板22、23とを接合することができる。
 このように、Al-Si合金等からなるろう材を使用することなく、セラミックス基板11と金属板22、23とを接合することができるので、ろう材が回路層12の表面に染み出すおそれがなく、回路層12表面に形成したNiめっきの剥がれ等を防止することができる。
 これにより、回路層12の上にNiめっきを介してはんだ層2を良好に形成することができる。
 また、Cu層24、25の厚さが0.15μm以上3μm以下に設定されているので、セラミックス基板11及び金属板22、23の界面に溶融金属層26、27を確実に形成してセラミックス基板11と金属板22、23とを接合することができる。また、接合界面30近傍にCuとAlとの反応物が過剰に発生することを防止でき、熱サイクル負荷時にセラミックス基板11に割れが発生することを防止できる。
 さらに、Cu層24、25が、セラミックス基板11の第1面及び第2面(接合面、金属板22,23に対向する面)にスパッタリングよってCuを固着させるCu固着工程によって形成されているので、セラミックス基板11と金属板22、23とを確実にCu層24、25を介して積層することができ、セラミックス基板11と金属板22、23とを確実に接合して、第1実施形態であるパワーモジュール用基板10を製造することができる。
 以上、本発明の第1実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本発明の第1実施形態においては、セラミックス基板の表面にCuを固着させるCu固着工程を有する製造方法を説明したが、これに限定されることはなく、金属板のセラミックス基板11に対向する面(接合面)にCuを固着させてもよい。
 さらに、積層工程において、セラミックス基板と金属板との間に銅箔を介装させることによってCu層を形成してもよい。
 また、スパッタ法によってCu層を形成する方法を説明したが、これに限定されることはなく、蒸着法、めっき法、ペーストの塗布法等によってCuを固着させてもよい。
(第2実施形態)
 図8は、本発明の第2実施形態であるパワーモジュール用基板60及びパワーモジュール51を示す。
 第2実施形態においては、第1実施形態と同一部材には同一符号を付して、その説明を省略または簡略化している。
 このパワーモジュール51は、回路層62が配設されたパワーモジュール用基板60と、回路層62の表面にはんだ層2を介して接合された半導体チップ3と、ヒートシンク4とを含む。
 パワーモジュール用基板60は、セラミックス基板61と、このセラミックス基板61の第1面(図8において上面)に配設された回路層62と、セラミックス基板61の第2面(図8において下面)に配設された金属層63とを含む。
 セラミックス基板61は、回路層62と金属層63との間の電気的接続を防止する基板であって、絶縁性の高いAlN(窒化アルミ)で構成されている。
 また、セラミックス基板61の厚さは、0.2~1.5mmの範囲内に設定されており、第2実施形態では、0.635mmに設定されている。
 回路層62は、セラミックス基板61の第1面に導電性を有する金属板72が接合されることにより形成されている。
 第2実施形態においては、回路層62は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板72がセラミックス基板61に接合されることにより形成されている。
 金属層63は、セラミックス基板61の第2面に金属板73が接合されることにより形成されている。
 第2実施形態においては、金属層63は、回路層62と同様に、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板73がセラミックス基板61に接合されることで形成されている。
 そして、セラミックス基板61と回路層62(金属板72)との間の接合界面80、及びセラミックス基板61と金属層63(金属板73)との間の接合界面80を透過電子顕微鏡において観察した場合には、図9に示すように、接合界面80に、Cuが濃縮したCu高濃度部82が形成されている。
 このCu高濃度部82におけるCu濃度は、回路層62(金属板72)及び金属層63(金属板73)中のCu濃度よりも高い。具体的には、接合界面80におけるCu濃度は、回路層62及び金属層63中のCu濃度の2倍以上である。ここで、第2実施形態では、Cu高濃度部82の厚さHは4nm以下である。
 さらに、このCu高濃度部82においては、酸素濃度が、回路層62及び金属層63中の酸素濃度よりも高く設定されている。
 ここで、透過電子顕微鏡によって観察される接合界面80において、図9に示すように、回路層62(金属板72)及び金属層63(金属板73)の格子像の界面側端部とセラミックス基板61の格子像の界面側端部との間の中央を基準面Sと定義する。
 また、回路層62(金属板72)及び金属層63(金属板73)中のCu濃度及び酸素濃度とは、回路層62(金属板72)及び金属層63(金属板73)のうち接合界面80から一定距離(第2実施形態では、50nm以上)離れた部分におけるCu濃度及び酸素濃度である。
 また、この接合界面80をエネルギー分散型X線分析法(EDS)で分析した際のAl、Cu、O、Nの質量比は、Al:Cu:O:N=50~90wt%:1~10wt%:2~20wt%:25wt%以下の範囲内に設定されている。
 なお、EDSによる分析を行う際のスポット径は1~4nmであり、接合界面80における複数点(例えば、第2実施形態では100点)が測定され、その平均値が算出される。
 また、回路層62及び金属層63を構成する金属板72、73の結晶粒界とセラミックス基板61との間の接合界面80を測定せず、回路層62及び金属層63を構成する金属板72、73の結晶粒とセラミックス基板61との間の接合界面80のみを測定する。
 このようなパワーモジュール用基板60は、以下のようにして製造される。
 図10(a)及び図11(a)に示すように、AlNからなるセラミックス基板61と、回路層62となる金属板72(4Nアルミニウムの圧延板)と、厚さ0.15μm以上3μm以下(第2実施形態では3μm)の銅箔74と、金属層63となる金属板73(4Nアルミニウムの圧延板)と、厚さ0.15μm以上3μm以下(第2実施形態では3μm)の銅箔75とを準備する。
 次に、図10(b)及び図11(b)に示すように、セラミックス基板61の第1面に金属板72が銅箔74を介して積層され、セラミックス基板61の第2面に金属板73が銅箔75を介して積層される。これによって積層体70が形成される。
 次に、この積層体70をその積層方向に加圧(圧力1~5kgf/cm)した状態で真空炉内に装入して加熱する(加圧・加熱工程)。
 ここで真空炉内の真空度は、10-3Pa~10-5Paであり、加熱温度は610℃~650℃である。
 この加圧・加熱工程によって、図11(b)に示すように、回路層62及び金属層63となる金属板72、73の表層と銅箔74、75とが溶融し、セラミックス基板61の表面(第1面及び第2面)に溶融アルミニウム層76、77が形成される。
 次に、図10(c)及び図11(c)に示すように、積層体70を冷却することによって溶融アルミニウム層76、77を凝固させる(凝固工程)。
 この加圧・加熱工程と凝固工程によって、接合界面80には、回路層62及び金属層63を構成する金属板72、73中のCu濃度及び酸素濃度よりも高いCu濃度及び酸素濃度を有するCu高濃度部82が生成される。
 このようにして第2実施形態であるパワーモジュール用基板60が製造される。
 以上の構成を有する第2実施形態であるパワーモジュール用基板60及び付パワーモジュール51においては、回路層62及び金属層63とセラミックス基板61との間の接合界面80に、回路層62及び金属層63中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部82が形成されており、さらにCu高濃度部82における酸素濃度は、回路層62及び金属層63中の酸素濃度よりも高い。これにより、接合界面80に酸素原子とCu原子が介在し、AlNからなるセラミックス基板61と回路層62との間の接合強度、及びこのセラミックス基板61と金属層63との間の接合強度を向上させることができる。
 さらに、第2実施形態では、接合界面80をエネルギー分散型X線分析法により分析した際、Al、Cu、O、Nの質量比は、Al:Cu:O:N=50~90wt%:1~10wt%:2~20wt%:25wt%以下である。この結果、接合界面80に、AlとCuとの反応物が過剰に生成して接合を阻害することを防止できるとともに、Cu原子による接合強度の向上効果を充分に得ることができる。
 また、接合界面80において、酸素濃度の高い部分の厚さが増加することが防止され、熱サイクルを負荷した際のクラックの発生を抑制することができる。
 また、AlNからなるセラミックス基板61の第1面に回路層62となる金属板72、厚さ0.15μm以上3μm以下(第2実施形態では3μm)の銅箔74を介して積層するとともに、セラミックス基板61の第2面に金属層63となる金属板73(4Nアルミニウムの圧延板)が厚さ0.15μm以上3μm以下(第2実施形態では3μm)の銅箔75を介して積層し、この積層体を加圧・加熱している。この結果、銅箔74、75のCuと金属板72、73のAlとが共晶反応し、銅箔74、75と金属板72、73の表層部分の融点が低下する。従って、比較的低温(610℃~650℃)でもセラミックス基板61及び金属板72、73の界面に溶融アルミニウム層76、77を形成することが可能となり、セラミックス基板61と金属板72、73とを接合することができる。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。
 図12に本発明の第3実施形態であるパワーモジュール用基板110及びパワーモジュール101を示す。
 第3実施形態においては、上記の第1及び第2実施形態と同一部材には同一符号を付して、その説明を省略または簡略化している。
 パワーモジュール用基板110は、セラミックス基板111と、このセラミックス基板111の第1面(図12において上面)に配設された回路層112と、セラミックス基板111の第2面(図12において下面)に配設された金属層113とを含む。
 セラミックス基板111は、回路層112と金属層113との間の電気的接続を防止する基板であって、絶縁性の高いSi(窒化ケイ素)で構成されている。
 また、セラミックス基板111の厚さは、0.2~1.5mmの範囲内に設定されており、第3実施形態では、0.32mmに設定されている。
 回路層112は、セラミックス基板111の第1面に導電性を有する金属板122が接合されることにより形成されている。
 第3実施形態においては、回路層112は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板22がセラミックス基板111に接合されることにより形成されている。
 金属層113は、セラミックス基板111の第2面に金属板123が接合されることにより形成されている。
 第3実施形態においては、金属層113は、回路層112と同様に、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板123がセラミックス基板111に接合されることで形成されている。
 そして、セラミックス基板111と回路層112(金属板122)との間の接合界面130、及びセラミックス基板111と金属層113(金属板123)との間の接合界面130を透過電子顕微鏡において観察した場合には、図13に示すように、接合界面130に、Cuが濃縮したCu高濃度部132が形成されている。
 このCu高濃度部132におけるCu濃度は、回路層112(金属板122)及び金属層113(金属板123)中のCu濃度よりも高い。具体的には、接合界面130におけるCu濃度は、回路層112及び金属層113中のCu濃度の2倍以上である。
 ここで、第3実施形態では、Cu高濃度部132の厚さHは4nm以下である。
 さらに、このCu高濃度部132においては、酸素濃度が、回路層112及び金属層113中の酸素濃度よりも高く設定されている。
 ここで、透過電子顕微鏡によって観察される観察される接合界面130において、図13に示すように、回路層112(金属板122)及び金属層113(金属板123)の格子像の界面側端部とセラミックス基板111の格子像の界面側端部との間の中央を基準面Sと定義する。
 また、回路層112及び金属層113中のCu濃度及び酸素濃度とは、回路層112及び金属層13のうち接合界面130から一定距離(第3実施形態では、50nm以上)離れた部分におけるCu濃度及び酸素濃度である。
 また、この接合界面130をエネルギー分散型X線分析法(EDS)で分析した際のAl、Si、Cu、O、Nの質量比は、Al:Si:Cu:O:N=15~45wt%:15~45wt%:1~10wt%:2~20wt%:25wt%以下の範囲内に設定されている。
 なお、EDSによる分析を行う際のスポット径は1~4nmであり、接合界面130における複数点(例えば、第3実施形態では100点)が測定され、その平均値が算出される。
 また、回路層112及び金属層113を構成する金属板122、123の結晶粒界とセラミックス基板111との間の接合界面130を測定せず、回路層112及び金属層113を構成する金属板122、123の結晶粒とセラミックス基板111との間の接合界面130のみを測定する。
 このようなパワーモジュール用基板110は、以下のようにして製造される。
 まず、図14(a)に示すように、Siからなるセラミックス基板111の両面に、真空蒸着法によってCuを固着し、厚さ0.15μm~3μmのCu固着層124、125を形成する(Cu固着工程)。
 次に、図14(b),(c)及び図15(a),(b)に示すように、Cu固着層124、125が形成されたセラミックス基板111の第1面に回路層112となる金属板122(4Nアルミニウムの圧延板)が積層され、セラミックス基板111の第2面に金属層113となる金属板123(4Nアルミニウムの圧延板)が積層される(積層工程)。
 このようにして形成された積層体120をその積層方向に加圧(圧力1~5kgf/cm)した状態で真空炉内に装入して加熱する(加圧・加熱工程)。
 ここで真空炉内の真空度は、10-3Pa~10-5Paであり、加熱温度は610℃~650℃である。
 この加圧・加熱工程によって、図15に示すように、回路層112及び金属層113となる金属板122、123の表層及びCu固着層124、125が溶融し、セラミックス基板111の表面に溶融アルミニウム層126、127が形成される。
 次に、図14(d)及び図15(c)に示すように、積層体120を冷却することによって溶融アルミニウム層126、127を凝固させる(凝固工程)。
 この加圧・加熱工程と凝固工程によって、接合界面130に、回路層112及び金属層113を構成する金属板122、123中のCu濃度及び酸素濃度よりも高いCu濃度及び酸素濃度を有するCu高濃度部132が生成される。
 このようにして第3実施形態であるパワーモジュール用基板110が製造される。
 以上の構成を有する第3実施形態であるパワーモジュール用基板110においては、回路層112及び金属層113とセラミックス基板111との間の接合界面130に、回路層112及び金属層113中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部132が形成されている。更に、Cu高濃度部132における酸素濃度が、回路層112及び金属層113中の酸素濃度よりも高く設定されている。これにより、接合界面130に酸素原子とCu原子が介在し、Siからなるセラミックス基板111と回路層112、金属層113との間の接合強度の向上を図ることが可能となる。
 さらに、第3実施形態では、接合界面130をエネルギー分散型X線分析法(EDS)で分析した際のAl、Si、Cu、O、Nの質量比が、Al:Si:Cu:O:N=15~45wt%:15~45wt%:1~10wt%:2~20wt%:25wt%以下の範囲内に設定されているので、接合界面130に、AlとCuとの反応物が過剰に生成して接合を阻害することを防止できるとともに、Cu原子による接合強度の向上効果を充分に得ることができる。
 また、接合界面130において、酸素濃度の高い部分の厚さが増加することが防止され、熱サイクルを負荷した際のクラックの発生を抑制することができる。
 また、Siからなるセラミックス基板111の両面に、真空蒸着法によってCuを固着し、Cu固着層124、125が形成されたセラミックス基板111の第1面に回路層112となる金属板122(4Nアルミニウムの圧延板)を積層し、セラミックス基板111の第2面に金属層113となる金属板123(4Nアルミニウムの圧延板)を積層し、この積層体を加圧・加熱している。この結果、Cu固着層124、125のCuと金属板122、123のAlとが共晶反応することによって金属板122、123の表層部分の融点が低下し、比較的低温(610℃~650℃)でもセラミックス基板111及び金属板122、123の界面に溶融アルミニウム層126、127を形成することが可能となり、セラミックス基板111と金属板122、123とを接合することができる。
 以上、本発明の第2実施形態及び第3実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 第3実施形態においては、セラミックス基板の両面にCuを固着する方法を説明したが、これに限定されることはなく、金属板のセラミックス基板11に対向する面(接合面)にCuを固着してもよいし、金属板及びセラミックス基板と両方にCuを固着させてもよい。
 さらに、真空蒸着法によってCuを固着する方法を説明したが、これに限定されることはなく、スパッタリング法、めっき法、銅ペーストの塗布法等の方法によって、Cuを固着させてもよい。
(第4実施形態)
 図20は、本発明の第4実施形態であるパワーモジュール用基板160及びパワーモジュール151を示す。
 第4実施形態においては、第1~第3実施形態と同一部材には同一符号を付して、その説明を省略または簡略化している。
 このパワーモジュール151は、回路層162が配設されたパワーモジュール用基板160と、回路層162の表面にはんだ層2を介して接合された半導体チップ3と、ヒートシンク4とを含む。
 パワーモジュール用基板160は、セラミックス基板161と、このセラミックス基板161の第1面(図20において上面)に配設された回路層162と、セラミックス基板161の第2面(図20において下面)に配設された金属層163とを含む。
 セラミックス基板161は、回路層162と金属層163との間の電気的接続を防止する基板であって、絶縁性の高いAl(アルミナ)で構成されている。
 また、セラミックス基板161の厚さは、0.2~1.5mmの範囲内に設定されており、第4実施形態では、0.635mmに設定されている。
 回路層162は、セラミックス基板161の第1面に導電性を有する金属板172が接合されることにより形成されている。
 第4実施形態においては、回路層162は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板172がセラミックス基板161に接合されることにより形成されている。
 金属層163は、セラミックス基板161の第2面に金属板173が接合されることにより形成されている。
 第4実施形態においては、金属層163は、回路層162と同様に、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板173がセラミックス基板161に接合されることで形成されている。
 そして、セラミックス基板161と回路層162(金属板172)との間の接合界面180、及びセラミックス基板161と金属層163(金属板173)との間の接合界面180を透過電子顕微鏡において観察した場合には、図21に示すように、接合界面180に、Cuが濃縮したCu高濃度部182が形成されている。
 このCu高濃度部182におけるCu濃度は、回路層162(金属板172)及び金属層163(金属板173)中のCu濃度よりも高い。具体的には、接合界面180におけるCu濃度は、回路層162及び金属層163中のCu濃度の2倍以上である。ここで、第4実施形態では、Cu高濃度部182の厚さHは4nm以下である。
 ここで、透過電子顕微鏡によって観察される観察する接合界面180において、図21に示すように、回路層162(金属板172)及び金属層163(金属板173)の格子像の界面側端部とセラミックス基板161の格子像の界面側端部との間の中央を基準面Sと定義する。
 また、回路層162(金属板172)及び金属層163(金属板173)中のCu濃度とは、回路層162(金属板172)及び金属層163(金属板173)のうち接合界面180から一定距離(第4実施形態では、50nm以上)離れた部分におけるCu濃度である。
 また、この接合界面180をエネルギー分散型X線分析法(EDS)で分析した際のAl、Cu、Oの質量比は、Al:Cu:O=50~90wt%:1~10wt%:0~45wt%の範囲内に設定されている。
 なお、EDSによる分析を行う際のスポット径は1~4nmであり、接合界面180における複数点(例えば、第4実施形態では100点)が測定され、その平均値が算出される。
 また、回路層162及び金属層163を構成する金属板172、173の結晶粒界とセラミックス基板161との間の接合界面180は測定せず、回路層162及び金属層163を構成する金属板172、173の結晶粒とセラミックス基板161との間の接合界面180のみを測定する。
 このようなパワーモジュール用基板160は、以下のようにして製造される。
 図22(a)及び図23(a)に示すように、Alからなるセラミックス基板161と、回路層162となる金属板172(4Nアルミニウムの圧延板)と、厚さ0.15μm以上3μm以下(第2実施形態では3μm)の銅箔174と、金属層163となる金属板173(4Nアルミニウムの圧延板)と、厚さ0.15μm以上3μm以下(第2実施形態では3μm)の銅箔175とを準備する。
 次に、図22(b)及び図23(b)に示すように、セラミックス基板161の第1面に金属板172が銅箔174を介して積層され、セラミックス基板161の第2面に金属板173が銅箔175を介して積層される。これによって積層体170が形成される。
 次に、この積層体170をその積層方向に加圧(圧力1~5kgf/cm)した状態で真空炉内に装入して加熱する(加圧・加熱工程)。
 ここで真空炉内の真空度は、10-3Pa~10-5Paであり、加熱温度は610℃~650℃である。
 この加圧・加熱工程によって、図23に示すように、回路層162及び金属層163となる金属板172、173の表層と銅箔174、175とが溶融し、セラミックス基板161の表面に溶融アルミニウム層176、177が形成される。
 次に、図22(c)及び図23(c)に示すように、積層体170を冷却することによって溶融アルミニウム層176、177を凝固させる(凝固工程)。
 この加圧・加熱工程と凝固工程によって、接合界面180には、回路層162及び金属層163を構成する金属板172、173中のCu濃度よりも高いCu濃度を有するCu高濃度部182が生成される。
 このようにして第4実施形態であるパワーモジュール用基板160が製造される。
 以上の構成を有する第4実施形態であるパワーモジュール用基板160及び付パワーモジュール151においては、回路層162及び金属層163とセラミックス基板161との間の接合界面180に、回路層162及び金属層163中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部182が形成されている。これにより、接合界面180にCu原子が介在し、Alからなるセラミックス基板161と回路層162との間の接合強度、及びこのセラミックス基板161と金属層163との間の接合強度を向上させることができる。
 さらに、第4実施形態では、接合界面180をエネルギー分散型X線分析法により分析した際、Al、Cu、Oの質量比は、Al:Cu:O=50~90wt%:1~10wt%:0~45wt%である。この結果、接合界面180に、AlとCuとの反応物が過剰に生成して接合を阻害することを防止できるとともに、Cu原子による接合強度の向上効果を充分に得ることができる。
 また、Alからなるセラミックス基板161の第1面に回路層162となる金属板172、厚さ0.15μm以上3μm以下(第4実施形態では3μm)の銅箔174を介して積層するとともに、セラミックス基板161の第2面に金属層163となる金属板173(4Nアルミニウムの圧延板)が厚さ0.15μm以上3μm以下(第4実施形態では3μm)の銅箔175を介して積層し、この積層体を加圧・加熱している。この結果、銅箔174、175のCuと金属板172、173のAlとが共晶反応し、銅箔174、175と金属板172、173の表層部分の融点が低下する。従って、比較的低温(610℃~650℃)でもセラミックス基板161及び金属板172、173の界面に溶融アルミニウム層176、177を形成することが可能となり、セラミックス基板161と金属板172、173とを接合することができる。
 以上、本発明の第4実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 本発明の第4実施形態においては、積層工程において、銅箔をセラミックス基板と金属板との間に介装する方法を説明したが、これに限定されることはなく、前記積層工程の前に、セラミックス基板に対向する金属板の面(接合面)及び金属板に対向するセラミックス基板の面(接合面)のうち少なくとも一方にCuを固着させるCu固着工程によって、Cu層を形成してもよい。
 なお、Cuを固着する方法としては、例えば、真空蒸着法、スパッタリング法、めっき法、銅ペーストの塗布法等が挙げられる。
(第5実施形態)
 図26は、本発明の第5実施形態であるパワーモジュール用基板及びパワーモジュールを示す。
 第5実施形態においては、第1~第4実施形態と同一部材には同一符号を付して、その説明を省略または簡略化している。
 このパワーモジュール201は、回路層212が配設されたパワーモジュール用基板210と、回路層212の表面にはんだ層2を介して接合された半導体チップ3と、ヒートシンク4とを含む。
 パワーモジュール用基板210は、セラミックス基板211と、このセラミックス基板211の第1面(図26において上面)に配設された回路層212と、セラミックス基板211の第2面(図26において下面)に配設された金属層213とを含む。
 セラミックス基板211は、回路層212と金属層213との間の電気的接続を防止する基板であって、絶縁性の高いAlN(窒化アルミ)で構成されている。
 また、セラミックス基板211の厚さは、0.2~1.5mmの範囲内に設定されており、第5実施形態では、0.635mmに設定されている。
 なお、第5実施形態では、図26に示すように、セラミックス基板211の幅は、回路層212及び金属層213の幅より広く設定されている。
 回路層212は、セラミックス基板211の第1面に導電性を有する金属板222が接合されることにより形成されている。
 第5実施形態においては、回路層212は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板222がセラミックス基板211に接合されることにより形成されている。
 ここで、セラミックス基板211と金属板222の接合には、融点降下元素であるSiを含有したAl-Si系のろう材を用いている。
 金属層213は、セラミックス基板211の第2面に金属板223が接合されることにより形成されている。
 第5実施形態においては、金属層213は、回路層212と同様に、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなる金属板223がセラミックス基板211に接合されることで形成されている。
 ここで、セラミックス基板211と金属板223の接合には、融点降下元素であるSiを含有したAl-Si系のろう材を用いている。
 そして、図27に示すように、セラミックス基板211と回路層212(金属板222)との間の接合界面230の幅方向の中央部、及びセラミックス基板211と金属層213(金属板223)との間の接合界面230の幅方向の中央部(図26のA部)においては、回路層212(金属板222)及び金属層213(金属板223)にSi,Cuが拡散しており、接合界面230から積層方向に離間するにしたがい漸次Si,Cuの濃度が低下する濃度傾斜層233が形成されている。
 ここで、この濃度傾斜層233の接合界面230に近い部分において、Si濃度は、0.05~0.5wt%の範囲内に設定され、Cu濃度が0.05~1.0wt%の範囲内に設定されている。
 なお、濃度傾斜層233の接合界面230に近い部分のSi濃度及びCu濃度は、EPMA分析(スポット径30μm)で、接合界面230から50μmまでの範囲内を5点測定した平均値である。
 また、セラミックス基板211と回路層212(金属板222)との間の接合界面230の幅方向の端部235、及びセラミックス基板211と金属層213(金属板223)との間の接合界面230の幅方向の端部235(図26のB部)においては、図28に示すように、アルミニウム中にSi,Cuが固溶状態に拡散したアルミニウム相241と、Siの含有率が98wt%以上であるSi相242と、AlとCuとSiの3元共晶組織からなる共晶相243と、が形成されている。
 また、共晶相243内においては、Cuを含む化合物(例えばCuAl)からなる析出物粒子が析出している。
 また、セラミックス基板211と回路層212(金属板222)との間の接合界面230、セラミックス基板211及び金属層213(金属板223)との間の接合界面230を透過電子顕微鏡において観察した場合には、図29に示すように、接合界面230にSiが濃縮したSi高濃度部232が形成されている。
 このSi高濃度部232におけるSi濃度は、回路層212(金属板222)及び金属層213(金属板223)中のSi濃度よりも5倍以上高い。なお、このSi高濃度部232の厚さHは4nm以下である。
 ここで、透過電子顕微鏡によって観察される観察される接合界面230において、図29に示すように、回路層212(金属板222)及び金属層213(金属板223)の格子像の界面側端部とセラミックス基板211の格子像の界面側端部との間の中央を基準面Sと定義する。
 このようなパワーモジュール用基板210は、以下のようにして製造される。
 まず、AlNからなるセラミックス基板211の両面に、スパッタリング法によってCuが固着される(Cu固着工程)。
 次に、図30(a)及び図31(a)に示すように、Cuが固着されたAlNからなるセラミックス基板211と、回路層212となる金属板222(4Nアルミニウムの圧延板)と、厚さ10~30μm(第5実施形態では20μm)のろう材箔224と、金属層213となる金属板223(4Nアルミニウムの圧延板)と、厚さ10~30μm(第5実施形態では20μm)のろう材箔225とを準備する。
 次に、図30(b)及び図31(b)に示すように、セラミックス基板211の第1面に金属板222がろう材箔224を介して積層され、セラミックス基板211の第2面に金属板223がろう材箔225を介して積層される(積層工程)。これによって積層体220が形成される。
 次に、この積層体220をその積層方向に加圧(圧力1~5kgf/cm)した状態で真空炉内に装入して加熱し、ろう材箔224、225を溶融する(溶融工程)。
 ここで真空炉内の真空度は、10-3Pa~10-5Paである。この溶融工程によって、図31(b)に示すように、回路層212及び金属層213となる金属板222、223の一部とろう材箔224、225とが溶融し、セラミックス基板211の表面に溶融アルミニウム層226、227が形成される。
 次に、図30(c)及び図31(c)に示すように、積層体220を冷却することによって溶融アルミニウム層226、227を凝固させる(凝固工程)。
 このようにして、回路層212及び金属層213となる金属板222、223とセラミックス基板211とが接合され、第5実施形態であるパワーモジュール用基板210が製造される。
 以上の構成を有する第5実施形態であるパワーモジュール用基板210及びパワーモジュール201においては、セラミックス基板211と回路層212(金属板222)及び金属層213(金属板223)とが、Al-Si系のろう材を用いて接合されるとともに、回路層212(金属板222)及び金属層213(金属板223)とセラミックス基板211の接合界面230にCuが添加されている。これにより、接合界面230に存在するCuとAlとが溶融反応し、比較的低温、短時間の接合条件で接合しても、セラミックス基板211と回路層212(金属板222)及び金属層213(金属板223)とを強固に接合でき、接合信頼性を大幅に向上させることができる。
 また、セラミックス基板211と回路層212(金属板222)との間の接合界面230の幅方向の中央部、及びセラミックス基板211と金属層213(金属板223)との間の接合界面230の幅方向の中央部(図26のA部)においては、回路層212(金属板222)及び金属層213(金属板223)にSi,Cuが拡散しており、接合界面230から積層方向に離間するにしたがい漸次Si,Cuの濃度が低下する濃度傾斜層233が形成されている。また、この濃度傾斜層233の接合界面230に近い部分のCu濃度が0.05~1.0wt%の範囲内に設定されているので、回路層212(金属板222)及び金属層213(金属板223)の接合界面230に近い部分が固溶強化され、回路層212(金属板222)及び金属層213(金属板223)における破断の発生を防止することができる。
 また、この濃度傾斜層233の接合界面230に近い部分のSi濃度が0.05~0.5wt%の範囲内に設定されているので、Siが十分に回路層212(金属板222)及び金属層213(金属板223)中に拡散している。これにより、ろう材が確実に溶融して凝固されることでセラミックス基板211と回路層212(金属板222)とを、及びセラミックス基板211と金属層213(金属板223)とを強固に接合することができる。
 さらに、セラミックス基板211の幅が回路層212(金属板222)及び金属層213(金属板223)の幅よりも広く設定され、回路層212(金属板222)及び金属層213(金属板223)の幅方向の端部235に、アルミニウム中にSi,Cuが拡散したアルミニウム相241と、Siの含有率が98wt%以上とされたSi相242と、AlとCuとSiの3元共晶組織からなる共晶相243と、が形成されている。これにより、回路層212(金属板222)及び金属層213(金属板223)の幅方向の端部235の強度が向上する。
 さらに、共晶相243内においては、Cuを含む化合物(例えばCuAl)からなる析出物粒子が析出しているので、幅方向の端部235を析出強化することができる。
 これにより、回路層212(金属板222)及び金属層213(金属板223)の幅方向の端部235から発生する破断を防止することができる。
 また、第5実施形態では、セラミックス基板211がAlNで構成されており、金属板222、223とセラミックス基板211との間の接合界面230に、回路層212(金属板222)及び金属層213(金属板223)中のSi濃度の5倍以上のSi濃度を有するSi高濃度部232が形成されている。これにより、接合界面230に存在するSiによってセラミックス基板211と金属板222、223との間の接合強度の向上を図ることができる。
(第6実施形態)
 次に、本発明の第6実施形態について図32及び図33を参照して説明する。
 第6実施形態においては、第1~第5実施形態と同一部材には同一符号を付して、その説明を省略または簡略化している。
 この第6実施形態であるパワーモジュール用基板260においては、セラミックス基板261がSiで構成されている点が第5実施形態と異なっている。
 ここで、セラミックス基板261と回路層262(金属板272)との間の接合界面280、及びセラミックス基板261と金属層263(金属板273)との間の接合界面280を透過電子顕微鏡によって観察した場合には、図33に示すように、接合界面280に酸素が濃縮した酸素高濃度部282が形成されていることが観察される。
 この酸素高濃度部282においては、回路層262(金属板272)及び金属層263(金属板273)中の酸素濃度よりも酸素濃度が高い。
 なお、この酸素高濃度部282の厚さHは4nm以下である。
 ここで、透過電子顕微鏡によって観察される接合界面280において、図33に示すように、回路層262(金属板272)及び金属層263(金属板273)の格子像の界面側端部とセラミックス基板261の格子像の接合界面側端部との間の中央を基準面Sと定義する。
 以上の構成を有する第6実施形態であるパワーモジュール用基板260においては、回路層262及び金属層263となる金属板272、273とセラミックス基板261との間の接合界面280に、酸素濃度が回路層262及び金属層263を構成する金属板272、273中の酸素濃度よりも高くされた酸素高濃度部282が生成されているので、この酸素によってセラミックス基板261と金属板272、273との間の接合強度の向上を図ることができる。
 また、この酸素高濃度部282の厚さが4nm以下であるので、熱サイクルを負荷した際の応力によって酸素高濃度部282にクラックが発生することが抑制される。
 以上、本発明の第1~第6実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、回路層及び金属層を構成する金属板を純度99.99%の純アルミニウムの圧延板を採用した場合を説明したが、これに限定されることはなく、純度99%のアルミニウム(2Nアルミニウム)を用いてもよい。
 また、ヒートシンクの天板部と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けた場合を説明したが、この緩衝層は設けなくてもよい。
 さらに、ヒートシンクをアルミニウムで形成された構造を説明したが、アルミニウム合金、アルミニウムを含む複合材、銅、銅合金等でヒートシンクが形成された構造を採用してもよい。
 さらに、ヒートシンクとして冷却媒体の流路を有する構造を説明したが、ヒートシンクの構造に特に限定はない。
 また、第5実施形態において、AlNで構成されたセラミックス基板を用いる場合について説明したが、これに限定されることはなく、Al等の他のセラミックスを用いてもよい。
 また、セラミックス基板の表面にCuを固着させるCu固着工程を有する製造方法を説明したが、これに限定されることはなく、ろう材箔の表面にCuを固着させてもよい。
 また、スパッタ法でなく蒸着法やメッキ法等によってCuを固着させてもよい。
 さらには、Al-Si系のろう材中にCuを添加してもよい。
 次に、上記の第1~第6実施形態のパワーモジュール用基板(パワーモジュール)の有効性を確認するために行った確認実験の結果について説明する。
(実施例1)
 以下に説明する実施例1においては、図6及び図7を参照し、第1実施形態のパワーモジュール用基板の有効性を確認するために行なった確認実験の結果を述べる。
 まず、実験に用いるパワーモジュール用基板として、次の製造方法によりパワーモジュール用基板を製造した。
 具体的に、40mm角で厚さ0.635mmのAlNからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、セラミックス基板の両面に、真空蒸着によってCuを固着させ、このセラミックス基板の両面に、金属板をそれぞれ積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 同様に、40mm角で厚さ0.635mmのAlNからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、各々の金属板の片面に真空蒸着によってCuを固着させ、この金属板をセラミックス基板の両面に、金属板の蒸着面がセラミックス基板に向くように積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 以上のように、実施例1では、2種類のパワーモジュール用基板を用いた。
 ここで、真空蒸着によるCuの固着量(Cu厚さ)を、0.1μm、0.5μm、1.0μm、2.0μm、3.0μmである5つのパラメータ(5水準)により異ならせた。また、加熱温度を610℃、630℃、650℃である3つのパラメータ(3水準)により異ならせた。これにより、計30種類のパワーモジュール用基板を準備した。
 このようにして形成されたパワーモジュール用基板の金属層に、AlSiCからなり、厚さ0.9mmの緩衝層を介して、ヒートシンクの天板に相当する50mm×60mm、厚さ5mmのアルミニウム板(A6063)を接合した。これにより、計30種類の試験片を準備した。
 次に、この計30種類の試験片に対して熱サイクル試験を施す前に、セラミックス基板と金属板との間の接合界面における接合面積比率(接合比率)を求めた。具体的に、超音波映像装置(探触子の周波数15MHz)を用いてセラミックス基板と金属板との間の接合界面を撮像し、撮像によって得られたデータを2値化し、接合界面全体に占める接合部分の面積を得ることによって接合比率を算出した。なお、熱サイクル試験を施す前において、セラミックス基板と金属板との接合比率は100%であった。
 続いて、この計30種類の試験片に対し、-40℃~105℃の熱サイクルを3000回行なうことによって負荷を与えた。その後、超音波映像装置を用いた上記と同様の方法により、セラミックス基板と金属板との接合比率、即ち、3000回の熱サイクルが施された後の接合比率を求めた。これによってパワーモジュール用基板の評価結果を得た。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図6に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図7に示す。
 なお、図6及び図7においては、負荷として熱サイクルを3000回行なった後の接合比率が85%以上であるパワーモジュール用基板は記号「○」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%以上85%未満であるパワーモジュール用基板は記号「△」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%未満であるパワーモジュール用基板は記号「×」で示されている。
 図6及び図7に示すように、加熱温度が高いほど接合信頼性が向上する傾向が認められた。
 また、Cu層厚さが1.0μm~2.0μm程度の場合には、加熱温度が低温でも接合信頼性が向上していることが確認された。
 さらに、図6及び図7は、同様の傾向を示しており、セラミックス基板にCuを蒸着した場合と、金属板にCuを蒸着した場合とで差は認められなかった。
(実施例2)
 以下に説明する実施例2においては、図16(a),(b)及び図17(a),(b)を参照し、第2実施形態のパワーモジュール用基板の有効性を確認するために行なった確認実験の結果を述べる。
 まず、実験に用いるパワーモジュール用基板として、次の製造方法によりパワーモジュール用基板を製造した。
 具体的に、40mm角で厚さ0.635mmのAlNからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、セラミックス基板の両面に、真空蒸着によってCuを固着させ、このセラミックス基板の両面に、金属板をそれぞれ積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 同様に、40mm角で厚さ0.635mmのAlNからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、各々の金属板の片面に真空蒸着によってCuを固着させ、この金属板をセラミックス基板の両面に、金属板の蒸着面がセラミックス基板に向くように積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 以上のように、実施例2では、2種類のパワーモジュール用基板を用いた。
 ここで、真空蒸着によるCuの固着量(Cu厚さ)を、0.1μm、0.5μm、1.0μm、2.0μm、3.0μmである5つのパラメータ(5水準)により異ならせた。また、加熱温度を610℃、630℃、650℃である3つのパラメータ(3水準)により異ならせた。これにより、計30種類のパワーモジュール用基板を形成した。
 このようにして形成されたパワーモジュール用基板の金属層に、4Nアルミニウムからなり、厚さ0.9mmの緩衝層を介して、ヒートシンクの天板に相当する50mm×60mm、厚さ5mmのアルミニウム板(A6063)を接合した。
 これにより、計30種類の試験片を準備した。
 次に、この計30種類の試験片に対して熱サイクル試験を施す前に、セラミックス基板と金属板との間の接合界面における接合面積比率(接合比率)を求めた。接合比率の算出方法としては、上記の実施例1において述べたように超音波映像装置(探触子の周波数15MHz)を用いて接合比率を算出する方法を採用している。なお、熱サイクル試験を施す前において、セラミックス基板と金属板との接合比率は100%であった。
 続いて、この計30種類の試験片に対し、-40℃~105℃の熱サイクルを3000回行なうことによって負荷を与え、セラミックス基板の割れの有無を確認した。
 なお、この実験においては、30種類の試験片の各々を2個用意して、セラミックス基板の割れの有無を確認した。この結果を図16(a),(b)に示す。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図16(a)に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図16(b)に示す。
 また、2個の試験片の両方においてセラミックス基板の割れが発生しなかったパワーモジュール用基板は記号「○」で示されており、2個の試験片のうち一つにおいてセラミックス基板の割れが発生したパワーモジュール用基板は記号「△」で示されており、2個の試験片の両方においてセラミックス基板の割れが発生したパワーモジュール用基板は記号「×」で示されている。
 また、前述の熱サイクルを3000回行なった後、計30種類の試験片について接合比率を求めた。
 具体的には、超音波映像装置を用いた上記と同様の方法により、セラミックス基板と金属板との接合比率、即ち、3000回の熱サイクルが施された後の接合比率を求めた。これによってパワーモジュール用基板の評価結果を得た。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図17(a)に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図17(b)に示す。
 なお、図17(a)、(b)においては、負荷として熱サイクルを3000回行なった後の接合比率が85%以上であるパワーモジュール用基板は記号「○」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%以上85%未満であるパワーモジュール用基板は記号「△」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%未満であるパワーモジュール用基板は記号「×」で示されている。
 図16(a),(b)に示すように、Cu固着工程において形成されるCu厚さが厚くなると、AlNからなるセラミックス基板の割れが発生しやすい傾向が確認された。
 また、Cu厚さが2μmの試験片においては、加熱温度が高いほどセラミックスの割れが抑制される傾向が確認された。
 また、図17(a),(b)に示すように、加熱温度が高いほど接合信頼性が向上する傾向が認められた。
 また、Cu厚さが2μm程度の場合には、加熱温度が低温でも接合信頼性が向上していることが確認された。
 これらの試験結果から、AlNからなるセラミックス基板においては、接合時に金属板とセラミックス基板との間の界面に存在するCu厚さを2.5μm以下に設定することが好ましいことが確認された。
(実施例3)
 以下に説明する実施例3においては、図18(a),(b)及び図19(a),(b)を参照し、第3実施形態のパワーモジュール用基板の有効性を確認するために行なった確認実験の結果を述べる。
 まず、実験に用いるパワーモジュール用基板として、次の製造方法によりパワーモジュール用基板を製造した。
 具体的に、40mm角で厚さ0.32mmのSiからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、セラミックス基板の両面に、真空蒸着によってCuを固着させ、このセラミックス基板の両面に、金属板をそれぞれ積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 同様に、40mm角で厚さ0.32mmのSiからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、各々の金属板の片面に真空蒸着によってCuを固着させ、この金属板をセラミックス基板の両面に、金属板の蒸着面がセラミックス基板に向くように積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 以上のように、実施例3では、2種類のパワーモジュール用基板を用いた。
 ここで、真空蒸着によるCuの固着量(Cu厚さ)を、0.1μm、0.5μm、1.0μm、2.0μm、3.0μmである5つのパラメータ(5水準)により異ならせた。また、加熱温度を610℃、630℃、650℃である3つのパラメータ(3水準)により異ならせた。これにより、計30種類のパワーモジュール用基板を形成した。
 このようにして形成されたパワーモジュール用基板の金属層に、4Nアルミニウムからなり、厚さ0.9mmの緩衝層を介して、ヒートシンクの天板に相当する50mm×60mm、厚さ5mmのアルミニウム板(A6063)を接合した。
 これにより、計30種類の試験片を準備した。
 次に、この計30種類の試験片に対して熱サイクル試験を施す前に、セラミックス基板と金属板との間の接合界面における接合面積比率(接合比率)を求めた。接合比率の算出方法としては、上記の実施例1において述べたように超音波映像装置(探触子の周波数15MHz)を用いて接合比率を算出する方法を採用している。なお、熱サイクル試験を施す前において、セラミックス基板と金属板との接合比率は100%であった。
 続いて、この計30種類の試験片に対し、-40℃~105℃の熱サイクルを3000回行なうことによって負荷を与え、セラミックス基板の割れの有無を確認した。
 なお、この実験においては、30種類の試験片の各々を2個用意して、セラミックス基板の割れの有無を確認した。この結果を図18(a),(b)に示す。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図18(a)に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図18(b)に示す。
 また、2個の試験片の両方においてセラミックス基板の割れが発生しなかったパワーモジュール用基板は記号「○」で示されており、2個の試験片のうち一つにおいてセラミックス基板の割れが発生したパワーモジュール用基板は記号「△」で示されており、2個の試験片の両方においてセラミックス基板の割れが発生したパワーモジュール用基板は記号「×」で示されている。
 また、前述の熱サイクルを3000回行なった後、計30種類の試験片について接合比率を求めた。
 具体的には、超音波映像装置を用いた上記と同様の方法により、セラミックス基板と金属板との接合比率、即ち、3000回の熱サイクルが施された後の接合比率を求めた。これによってパワーモジュール用基板の評価結果を得た。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図19(a)に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図19(b)に示す。
 なお、図19(a)、(b)においては、負荷として熱サイクルを3000回行なった後の接合比率が85%以上であるパワーモジュール用基板は記号「○」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%以上85%未満であるパワーモジュール用基板は記号「△」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%未満であるパワーモジュール用基板は記号「×」で示されている。
 図18(a)、(b)に示すように、Siからなるセラミックス基板においては、本実験条件下では、セラミックス基板の割れは確認されなかった。
 また、図19(a)、(b)に示すように、加熱温度が高いほど接合信頼性が向上する傾向が認められた。
 また、Cu厚さが2μm程度の場合には、加熱温度が低温でも接合信頼性が向上していることが確認された。
 これらの試験結果から、Siからなるセラミックス基板においては、接合時に金属板とセラミックス基板との間の界面に存在するCu厚さを0.15μm以上3μm以下に設定することが好ましいことが確認された。
(実施例4)
 以下に説明する実施例4においては、図24(a),(b)及び図25(a),(b)を参照し、第4実施形態のパワーモジュール用基板の有効性を確認するために行なった確認実験の結果を述べる。
 まず、実験に用いるパワーモジュール用基板として、次の製造方法によりパワーモジュール用基板を製造した。
 具体的に、40mm角で厚さ0.635mmのAlからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、セラミックス基板の両面に、真空蒸着によってCuを固着させ、このセラミックス基板の両面に、金属板をそれぞれ積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 同様に、40mm角で厚さ0.635mmのAlからなるセラミックス基板と、厚さ0.6mmの4Nアルミニウムからなる2枚の金属板とを準備した。その後、各々の金属板の片面に真空蒸着によってCuを固着させ、この金属板をセラミックス基板の両面に、金属板の蒸着面がセラミックス基板に向くように積層して積層体を形成した。積層方向に圧力1~5kgf/cmで加圧した状態で、この積層体を真空炉(真空度10-3Pa~10-5Pa)で加熱し、セラミックス基板と回路層及び金属層とを備えたパワーモジュール用基板を製造した。
 以上のように、実施例4では、2種類のパワーモジュール用基板を用いた。
 ここで、真空蒸着によるCuの固着量(Cu厚さ)を、0.1μm、0.5μm、1.0μm、2.0μm、3.0μmである5つのパラメータ(5水準)により異ならせた。加熱温度を610℃、630℃、650℃である3つのパラメータ(3水準)により異ならせた。これにより、計30種類のパワーモジュール用基板を形成した。
 このようにして形成されたパワーモジュール用基板の金属層に、4Nアルミニウムからなり、厚さ0.9mmの緩衝層を介して、ヒートシンクの天板に相当する50mm×60mm、厚さ5mmのアルミニウム板(A6063)を接合した。
 これにより、計30種類の試験片を準備した。
 次に、この計30種類の試験片に対して熱サイクル試験を施す前に、セラミックス基板と金属板との間の接合界面における接合面積比率(接合比率)を求めた。接合比率の算出方法としては、上記の実施例1において述べたように超音波映像装置(探触子の周波数15MHz)を用いて接合比率を算出する方法を採用している。なお、熱サイクル試験を施す前において、セラミックス基板と金属板との接合比率は100%であった。
 続いて、この計30種類の試験片に対し、-40℃~105℃の熱サイクルを3000回行なうことによって負荷を与え、セラミックス基板の割れの有無を確認した。
 なお、この実験においては、30種類の試験片の各々を2個用意して、セラミックス基板の割れの有無を確認した。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図24(a)に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図24(b)に示す。
 また、2個の試験片の両方においてセラミックス基板の割れが発生しなかったパワーモジュール用基板は記号「○」で示されており、2個の試験片のうち一つにおいてセラミックス基板の割れが発生したパワーモジュール用基板は記号「△」で示されており、2個の試験片の両方においてセラミックス基板の割れが発生したパワーモジュール用基板は記号「×」で示されている。
 また、前述の熱サイクルを3000回行なった後、計30種類の試験片について接合比率を求めた。
 具体的には、超音波映像装置を用いた上記と同様の方法により、セラミックス基板と金属板との接合比率、即ち、3000回の熱サイクルが施された後の接合比率を求めた。これによってパワーモジュール用基板の評価結果を得た。
 セラミックス基板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図25(a)に示す。
 また、金属板にCuを蒸着することによって得られたパワーモジュール用基板の評価結果を図25(b)に示す。
 なお、図25(a)、(b)においては、負荷として熱サイクルを3000回行なった後の接合比率が85%以上であるパワーモジュール用基板は記号「○」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%以上85%未満であるパワーモジュール用基板は記号「△」で示されており、負荷として熱サイクルを3000回行なった後の接合比率が70%未満であるパワーモジュール用基板は記号「×」で示されている。
 図24(a)、(b)に示すように、Cu固着工程において形成されるCu厚さが厚くなると、Alからなるセラミックス基板の割れが発生しやすい傾向が確認された。
 また、Cu厚さが2μmの試験片においては、加熱温度が高いほどセラミックスの割れが抑制される傾向が確認された。
 また、図25(a)、(b)に示すように、加熱温度が高いほど接合信頼性が向上する傾向が認められた。
 また、Cu厚さが1μm程度の場合には、加熱温度が低温でも接合信頼性が向上していることが確認された。
 これらの試験結果から、Alからなるセラミックス基板においては、接合時に金属板とセラミックス基板との間の界面に存在するCu厚さを2.5μm以下に設定することが好ましいことが確認された。
(実施例5)
 以下に説明する実施例5,6においては、図34及び表1を参照し、第5及び第6実施形態のパワーモジュール用基板の有効性を確認するために行なった確認実験の結果を述べる。
 図34に示すように、比較例及び実施例5においては、共通のパワーモジュール用基板として、厚さ0.635mmのAlNからなるセラミックス基板211と、厚さ0.6mmの4Nアルミニウムからなる回路層212と、厚さ0.6mmの4Nアルミニウムからなる金属層213と、厚さ5mmのアルミニウム合金(A6063)からなる天板部5と、厚さ1.0mmの4Nアルミニウムからなる緩衝層15とを有するパワーモジュール用基板を用いて確認実験を行なった。
 実施例5においては、セラミックス基板211の表面にCuをスパッタリングによって固着させた後に、回路層212及び金属層213となる金属板をAl-Si系ろう材を用いてセラミックス基板211に接合した。
 一方、比較例においては、セラミックス基板211と金属板との間の接合界面にCuを添加することなく、回路層212及び金属層213となる金属板をAl-Si系ろう材を用いてセラミックス基板211に接合した。
 これにより、実施例5の試験片と、比較例の試験片とを用意した。
 次に、これらの試験片に対して熱サイクル試験を施す前に、セラミックス基板と金属板との間の接合界面における接合面積比率(接合比率)を求めた。接合比率の算出方法としては、上記の実施例1において述べたように超音波映像装置(探触子の周波数15MHz)を用いて接合比率を算出する方法を採用している。なお、熱サイクル試験を施す前において、実施例5の試験片におけるセラミックス基板と金属板との接合比率は100%であり、比較例の試験片におけるセラミックス基板と金属板との接合比率は99.8%であった。
 続いて、これらの試験片を用いて接合信頼性の評価を行った。
 接合信頼性の評価として、熱サイクル(-45℃~125℃)を繰り返した後の接合比率に関して、比較例と実施例5とを比較した。
 具体的には、超音波映像装置を用いた上記と同様の方法により、比較例と実施例5におけるセラミックス基板と金属板との接合比率を求めた。さらに、1000回,2000回,及び3000回の熱サイクルが施された後の各々の接合比率を求めた。これによってパワーモジュール用基板の評価結果を得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 接合界面にCuが添加されておらず、Al-Si系のろう材を用いて接合された比較例においては、熱サイクルを1000回行なった時点では接合比率が100%近く(99.8%)であった。しかしながら、熱サイクルを2000回行なった時点では接合比率の低下が認められ(94.2%)、熱サイクルを3000回行なった時点では91.5%まで低下した。
 一方、接合界面にCuが添加された実施例5においては、熱サイクルを2000回行なった時点であっても接合比率は低下しなかった。熱サイクルを3000回行なった後の接合比率は99.2%であった。
 この確認実験により、接合界面にCuを添加することによって、熱サイクル信頼性が向上することが確認された。
(実施例6)
 次に、第5及び第6実施形態のパワーモジュール用基板における金属層の成分分析結果を示す。
 厚さ0.635mmのAlNからなるセラミックス基板211に、厚さ0.6mmの4Nアルミニウムからなる回路層212と、厚さ0.6mmの4Nアルミニウムからなる金属層213とを接合し、パワーモジュール用基板を作製した。
 ここで、実施例6A~6Cにおいては、Al―7.5wt%Siろう材の表面に1.5μm厚さのCu層を形成し、このAl―7.5wt%Siろう材を用いて、セラミックス基板211に回路層212と金属層213とが接合されている。
 なお、接合温度を610℃、630℃、650℃である3つのパラメータ(3水準)により異ならせた。
 実施例6D~6Fにおいては、セラミックス基板211の表面に1.5μm厚さのCu層を形成し、Al―7.5wt%Siろう材を用いて、セラミックス基板211に回路層212と金属層213とが接合されている。
 なお、接合温度を610℃、630℃、650℃である3つのパラメータ(3水準)により異ならせた。
 これら実施例6A~6Fについて、金属層とセラミックス基板との間の界面の幅方向の中央部、前記界面の幅方向の端部におけるCu濃度及びSi濃度をEPMAを用いて定量分析した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この定量分析の結果、Cu層を形成するとともにAl-Si系ろう材を用いて、セラミックス基板と金属板とを接合した場合、幅方向の中央部においては、接合界面に近い部分におけるSi濃度が0.05~0.5wt%,Cu濃度が0.05~1.0wt%の範囲内に設定されることが確認された。
 また、幅方向の端部においては、Si及びCuが高濃度に存在していることが確認された。
1,51,101,151,201,251 パワーモジュール
2 半導体チップ(電子部品)
10,60,110,160,210,260 パワーモジュール用基板
11,61,111,161,211,261 セラミックス基板
12,62,112,162,212,262 回路層
13,63,113,163,213,263 金属層
22,23,72,73,122,123,172,173,222,223,272,273 金属板
24、25 Cu層
26、27 溶融金属層
30,80,130,180,230,280 接合界面
33,233 濃度傾斜層(濃度傾斜部)
34 軟質層
41,241 アルミニウム相
42,243 共晶相
74、75、174、175 銅箔(Cu層)
76、77、126、127、176、177、226、227 溶融アルミニウム層
82、132、182 Cu高濃度部
124、125 Cu固着層(Cu層)
224、225 ろう材箔(ろう材)
232 Si高濃度部
282 酸素高濃度部

Claims (37)

  1.  パワーモジュール用基板であって、
     表面を有するセラミックス基板と、
     前記セラミックス基板の前記表面に接合され、アルミニウムからなり、前記セラミックス基板との間の接合界面においてCuを含有する金属板と、
     を含み、
     前記接合界面におけるCu濃度が0.05~5wt%の範囲内に設定されていることを特徴とするパワーモジュール用基板。
  2.  請求項1に記載のパワーモジュール用基板であって、
     前記金属板の幅方向の端部においては、アルミニウム中にCuが含有されているアルミニウム相と、AlとCuとの2元共晶組織からなる共晶相と、が形成されていることを特徴とするパワーモジュール用基板。
  3.  請求項2に記載のパワーモジュール用基板であって、
     前記共晶相においては、Cuを含む化合物からなる析出粒子が析出していることを特徴とするパワーモジュール用基板。
  4.  請求項1に記載のパワーモジュール用基板であって、
     前記金属板は、
     前記金属板と前記セラミックス基板とが積層される方向において、前記接合界面から離間するにしたがい漸次Cu濃度が低下する濃度傾斜部と、
     前記濃度傾斜部の前記セラミックス基板とは反対側に形成され、前記接合界面近傍よりも硬度が低い軟質層と、
     を含むことを特徴とするパワーモジュール用基板。
  5.  パワーモジュールであって、
     請求項1に記載のパワーモジュール用基板と、
     前記パワーモジュール用基板上に搭載される電子部品と、
     を備えることを特徴とするパワーモジュール。
  6.  パワーモジュール用基板の製造方法であって、 
     セラミックス基板と、アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、
     前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し、
     前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、
     前記セラミックス基板及び前記金属板の界面に溶融金属層を形成し、
     前記溶融金属層を冷却することによって前記溶融金属層を凝固させ、
     前記金属板における、前記セラミックス基板と前記金属板との間の接合界面近傍にCu濃度が0.05~5wt%の範囲内となるようにCuを含有させる、
     ことを特徴とするパワーモジュール用基板の製造方法。
  7.  請求項6に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることを特徴とするパワーモジュール用基板の製造方法。
  8.  請求項7に記載のパワーモジュール用基板の製造方法であって、
     前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることを特徴とするパワーモジュール用基板の製造方法。
  9.  請求項6に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることを特徴とするパワーモジュール用基板の製造方法。
  10.  パワーモジュール用基板であって、
     AlN又はSiからなり、表面を有するセラミックス基板と、
     前記セラミックス基板の前記表面に接合され、純アルミニウムからなる金属板と、
     前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部と、
     を含むことを特徴とするパワーモジュール用基板。
  11.  請求項10に記載のパワーモジュール用基板であって、
     前記Cu高濃度部における酸素濃度は、前記金属板中及び前記セラミックス基板中の酸素濃度よりも高いことを特徴とするパワーモジュール用基板。
  12.  請求項10に記載のパワーモジュール用基板であって、
     前記セラミックス基板がAlNで構成されており、
     前記Cu高濃度部を含む前記接合界面をエネルギー分散型X線分析法により分析した際、Al、Cu、O、Nの質量比は、Al:Cu:O:N=50~90wt%:1~10wt%:2~20wt%:25wt%以下であることを特徴とするパワーモジュール用基板。
  13.  請求項10に記載のパワーモジュール用基板であって、
     前記セラミックス基板がSiで構成されており、
     前記Cu高濃度部を含む前記接合界面をエネルギー分散型X線分析法により分析した際、Al、Si、Cu、O、Nの質量比は、Al:Si:Cu:O:N=15~45wt%:15~45wt%:1~10wt%:2~20wt%:25wt%以下であることを特徴とするパワーモジュール用基板。
  14.  パワーモジュールであって、
     請求項10に記載のパワーモジュール用基板と、
     前記パワーモジュール用基板上に搭載される電子部品と、
     を備えることを特徴とするパワーモジュール。
  15.  パワーモジュール用基板の製造方法であって、
     AlNからなるセラミックス基板と、純アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、
     前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し、
     前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、
     前記セラミックス基板及び前記金属板の界面に溶融アルミニウム層を形成し、
     前記溶融アルミニウム層を冷却することによって前記溶融アルミニウム層を凝固させ、
     前記セラミックス基板と前記金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部を形成する、
     ことを特徴とするパワーモジュール用基板の製造方法。
  16.  請求項15に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることを特徴とするパワーモジュール用基板の製造方法。
  17.  請求項15に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることを特徴とするパワーモジュール用基板の製造方法。
  18.  請求項17に記載のパワーモジュール用基板の製造方法であって、
     前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることを特徴とするパワーモジュール用基板の製造方法。
  19.  パワーモジュール用基板の製造方法であって、
     Siからなるセラミックス基板と、純アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、
     前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し、
     前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、
     前記セラミックス基板及び前記金属板の界面に溶融アルミニウム層を形成し、
     前記溶融アルミニウム層を冷却することによって前記溶融アルミニウム層を凝固させ、
     前記セラミックス基板と前記金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部を形成する、
     ことを特徴とするパワーモジュール用基板の製造方法。
  20.  請求項19に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることを特徴とするパワーモジュール用基板の製造方法。
  21.  請求項19に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることを特徴とするパワーモジュール用基板の製造方法。
  22.  請求項21に記載のパワーモジュール用基板の製造方法であって、
     前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることを特徴とするパワーモジュール用基板の製造方法。
  23.  パワーモジュール用基板であって、
     Alからなり、表面を有するセラミックス基板と、
     前記セラミックス基板の前記表面に接合され、純アルミニウムからなる金属板と、
     前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部と、
     を含むことを特徴とするパワーモジュール用基板。
  24.  請求項23に記載のパワーモジュール用基板であって、
     前記Cu高濃度部を含む前記接合界面をエネルギー分散型X線分析法により分析した際、Al、Cu、Oの質量比は、Al:Cu:O=50~90wt%:1~10wt%:0~45wt%であることを特徴とするパワーモジュール用基板。
  25.  パワーモジュールであって、
     請求項23に記載のパワーモジュール用基板と、
     前記パワーモジュール用基板上に搭載される電子部品と、
     を備えることを特徴とするパワーモジュール。
  26.  パワーモジュール用基板の製造方法であって、
     Alからなるセラミックス基板と、純アルミニウムからなる金属板と、厚さ0.15μm以上3μm以下のCu層とを準備し、
     前記セラミックス基板と前記金属板とを、前記Cu層を介して積層し、
     前記積層された前記セラミックス基板、前記Cu層、及び前記金属板を積層方向に加圧するとともに加熱し、
     前記セラミックス基板及び前記金属板の界面に溶融アルミニウム層を形成し、
     前記溶融アルミニウム層を冷却することによって前記溶融アルミニウム層を凝固させ、
     前記セラミックス基板と前記金属板との間の接合界面に、前記金属板中のCu濃度の2倍以上であるCu濃度を有するCu高濃度部を形成する、
     ことを特徴とするパワーモジュール用基板の製造方法。
  27.  請求項26に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板と前記金属板とを前記Cu層を介して積層する際に、前記セラミックス基板及び前記金属板の間に銅箔を介装することによって、前記Cu層が配置されていることを特徴とするパワーモジュール用基板の製造方法。
  28.  請求項26に記載のパワーモジュール用基板の製造方法であって、
     前記セラミックス基板、前記Cu層、及び前記金属板を積層する前に、前記セラミックス基板及び前記金属板のうち少なくとも一方に、Cu層を固着させることを特徴とするパワーモジュール用基板の製造方法。
  29.  請求項28に記載のパワーモジュール用基板の製造方法であって、
     前記Cuを前記セラミックス基板及び前記金属板のうち少なくとも一方に固着させる際には、蒸着法、スパッタリング法、めっき法、又はCuペーストの塗布法のいずれかから選択される方法により、前記セラミックス基板及び前記金属板のうち少なくとも一方にCuを固着させることを特徴とするパワーモジュール用基板の製造方法。
  30.  パワーモジュール用基板であって、
     表面を有するセラミックス基板と、
     前記セラミックス基板の前記表面にSiを含有するろう材を介して接合され、アルミニウムからなる金属板と、
     前記セラミックス基板と前記金属板との間の接合界面に添加されたCuと、
     を含み、
     前記金属板には、Si及びCuが含まれており、前記金属板の前記接合界面に近い部分におけるSi濃度が0.05~0.5wt%の範囲内に設定され、Cu濃度が0.05~1.0wt%の範囲内に設定されていることを特徴とするパワーモジュール用基板。
  31.  請求項30に記載のパワーモジュール用基板であって、
     前記セラミックス基板の幅は、前記金属板の幅よりも広く、
     前記金属板の幅方向の端部においては、アルミニウム中にSi,Cuが含有されているアルミニウム相と、Siの含有率が98wt%以上であるSi相と、Al,Cu,及びSiの3元共晶組織からなる共晶相と、が形成されていることを特徴とするパワーモジュール用基板。
  32.  請求項31に記載のパワーモジュール用基板であって、
     前記共晶相においては、Cuを含む化合物からなる析出粒子が析出していることを特徴とするパワーモジュール用基板。
  33.  請求項30に記載のパワーモジュール用基板であって、
     前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中のSi濃度の5倍以上であるSi濃度を有するSi高濃度部を含み、
     前記セラミックス基板がAlN又はAlで構成されていることを特徴とするパワーモジュール用基板。
  34.  請求項30に記載のパワーモジュール用基板であって、
     前記金属板と前記セラミックス基板との間の接合界面に形成され、前記金属板中及び前記セラミックス基板中の酸素濃度よりも高い酸素濃度を有し、厚さが4nm以下である酸素高濃度部を含み、
     前記セラミックス基板がAlN又はSiで構成されていることを特徴とするパワーモジュール用基板。
  35.  パワーモジュールであって、
     請求項30に記載のパワーモジュール用基板と、
     前記パワーモジュール用基板上に搭載される電子部品と、
     を備えることを特徴とするパワーモジュール。
  36.  パワーモジュール用基板の製造方法であって、
     接合面を有するセラミックス基板と、アルミニウムからなる金属板と、Siを含有するろう材とを準備し、
     前記セラミックス基板と前記金属板とを前記ろう材を介装させて積層し、
     前記積層された前記セラミックス基板、前記ろう材、及び前記金属板を加圧した状態で加熱し、
     前記ろう材を溶融させてセラミックス基板及び金属板の界面に溶融アルミニウム層を形成し、
     前記溶融アルミニウム層を凝固させ、
     前記セラミックス基板と前記金属板とを前記ろう材を介装させて積層する前に、前記セラミックス基板の前記接合面及び前記ろう材のセラミックス基板に対向する面のうち少なくとも一方にCuを固着させる、
     ことを特徴とするパワーモジュール用基板の製造方法。
  37.  請求項36に記載のパワーモジュール用基板の製造方法であって、
     前記Cuを固着する際には、
     蒸着法又はスパッタリング法によって前記セラミックス基板の前記接合面及び前記ろう材のセラミックス基板に対向する面のうち少なくとも一方にCuを固着させることを特徴とするパワーモジュール用基板の製造方法。
PCT/JP2009/060392 2008-06-06 2009-06-05 パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 WO2009148168A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980120627.8A CN102047413B (zh) 2008-06-06 2009-06-05 功率模块用基板、功率模块以及功率模块用基板的制造方法
US12/737,042 US8564118B2 (en) 2008-06-06 2009-06-05 Power module substrate, power module, and method for manufacturing power module substrate
EP09758435.3A EP2296177B1 (en) 2008-06-06 2009-06-05 Method for manufacturing a power module substrate
US14/027,601 US8921996B2 (en) 2008-06-06 2013-09-16 Power module substrate, power module, and method for manufacturing power module substrate
US14/511,610 US20150022977A1 (en) 2008-06-06 2014-10-10 Power module substrate, power module, and method for manufacturing power module substrate

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008149902 2008-06-06
JP2008-149902 2008-06-06
JP2009065033A JP5423076B2 (ja) 2008-06-06 2009-03-17 パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2009-065033 2009-03-17
JP2009075315 2009-03-26
JP2009-075315 2009-03-26
JP2009086247 2009-03-31
JP2009-086247 2009-03-31
JP2009086248 2009-03-31
JP2009-086248 2009-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/737,042 A-371-Of-International US8564118B2 (en) 2008-06-06 2009-06-05 Power module substrate, power module, and method for manufacturing power module substrate
US14/027,601 Division US8921996B2 (en) 2008-06-06 2013-09-16 Power module substrate, power module, and method for manufacturing power module substrate

Publications (1)

Publication Number Publication Date
WO2009148168A1 true WO2009148168A1 (ja) 2009-12-10

Family

ID=43589695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060392 WO2009148168A1 (ja) 2008-06-06 2009-06-05 パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法

Country Status (5)

Country Link
US (3) US8564118B2 (ja)
EP (1) EP2296177B1 (ja)
KR (1) KR20110033117A (ja)
CN (1) CN102047413B (ja)
WO (1) WO2009148168A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059836A (ja) * 2010-09-07 2012-03-22 Mitsubishi Materials Corp パワーモジュール用基板、パワーモジュール用基板の製造方法及びパワーモジュール
JP2012064801A (ja) * 2010-09-16 2012-03-29 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、パワーモジュール及びヒートシンク付パワーモジュール用基板の製造方法
JP2012129548A (ja) * 2012-02-29 2012-07-05 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール用基板の製造方法
CN102646604A (zh) * 2011-02-18 2012-08-22 三菱综合材料株式会社 自带散热器的功率模块用基板及其制造方法以及功率模块
JP2012160641A (ja) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール
JP2012160642A (ja) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール
JP2012164708A (ja) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2012164709A (ja) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2012164710A (ja) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2012178513A (ja) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp パワーモジュールユニット及びパワーモジュールユニットの製造方法
JP2017208477A (ja) * 2016-05-19 2017-11-24 京セラ株式会社 複合基板およびその製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296177B1 (en) * 2008-06-06 2021-04-14 Mitsubishi Materials Corporation Method for manufacturing a power module substrate
WO2013024813A1 (ja) * 2011-08-12 2013-02-21 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
WO2013089099A1 (ja) * 2011-12-12 2013-06-20 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、フラックス成分侵入防止層形成用ペーストおよび接合体の接合方法
JP5614423B2 (ja) * 2012-03-29 2014-10-29 三菱マテリアル株式会社 パワーモジュール用基板及びその製造方法
JP2014060314A (ja) * 2012-09-19 2014-04-03 Toyota Motor Corp 放熱基板およびこれを備えた半導体装置
JP6056446B2 (ja) * 2012-12-17 2017-01-11 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5672324B2 (ja) 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6111764B2 (ja) * 2013-03-18 2017-04-12 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP6079505B2 (ja) * 2013-08-26 2017-02-15 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
CN103794571B (zh) * 2014-01-25 2017-01-04 嘉兴斯达半导体股份有限公司 一种功率半导体用新型金属-陶瓷绝缘基板
CN104987079A (zh) * 2015-07-08 2015-10-21 长沙鼎成新材料科技有限公司 一种led用氮化钛陶瓷基板
JP6819299B2 (ja) * 2016-01-22 2021-01-27 三菱マテリアル株式会社 接合体、パワーモジュール用基板、接合体の製造方法及びパワーモジュール用基板の製造方法
JP6440903B2 (ja) * 2016-04-21 2018-12-19 三菱電機株式会社 半導体装置およびその製造方法
WO2017217221A1 (ja) 2016-06-16 2017-12-21 三菱電機株式会社 半導体実装用放熱ベース板およびその製造方法
JP7127641B2 (ja) * 2017-05-11 2022-08-30 住友電気工業株式会社 半導体装置
CN113226610B (zh) * 2018-12-28 2022-08-16 电化株式会社 陶瓷-铜复合体、陶瓷电路基板、功率模块及陶瓷-铜复合体的制造方法
WO2020241739A1 (ja) * 2019-05-29 2020-12-03 国立大学法人大阪大学 接合構造体の製造方法、及び接合構造体
CN115039217A (zh) * 2020-03-18 2022-09-09 三菱综合材料株式会社 绝缘电路基板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234045A (ja) 1990-02-09 1991-10-18 Toshiba Corp 窒化アルミニウム基板およびこれを用いた半導体モジュール
JPH08255973A (ja) * 1995-03-17 1996-10-01 Toshiba Corp セラミックス回路基板
JP2001010874A (ja) * 1999-03-27 2001-01-16 Nippon Hybrid Technologies Kk 無機材料とアルミニウムを含む金属との複合材料の製造方法とその関連する製品
JP2001085808A (ja) * 1999-05-28 2001-03-30 Denki Kagaku Kogyo Kk 回路基板
JP2008149902A (ja) 2006-12-18 2008-07-03 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2009065033A (ja) 2007-09-07 2009-03-26 Sei Hybrid Kk ウエハ保持体及びそれを搭載した半導体製造装置
JP2009075315A (ja) 2007-09-20 2009-04-09 Konica Minolta Opto Inc 広角レンズ
JP2009086247A (ja) 2007-09-28 2009-04-23 Canon Inc 支持装置
JP2009086248A (ja) 2007-09-28 2009-04-23 Nippon Hoso Kyokai <Nhk> 光制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807969A (en) * 1970-07-13 1974-04-30 Southwire Co Aluminum alloy electrical conductor
JPS59174581A (ja) 1983-03-22 1984-10-03 石川島播磨重工業株式会社 アルミニウムとアルミナとの接合方法
JPS60250893A (ja) * 1984-05-25 1985-12-11 Sumitomo Light Metal Ind Ltd アルミニウム製熱交換器用アルミニウム合金ろう
DE3888380T2 (de) * 1987-04-02 1994-10-13 Toshiba Kawasaki Kk Luftdichter Keramikbehälter.
JPH07202063A (ja) * 1993-12-28 1995-08-04 Toshiba Corp セラミックス回路基板
DE69535775D1 (de) * 1994-10-07 2008-08-07 Hitachi Ltd Halbleiteranordnung mit einer Mehrzahl von Halbleiterelementen
US5906310A (en) * 1994-11-10 1999-05-25 Vlt Corporation Packaging electrical circuits
JP3230181B2 (ja) 1995-07-18 2001-11-19 三菱マテリアル株式会社 パワーモジュール用基板の製造方法及びこの方法により製造されたパワーモジュール用基板
JPH09153567A (ja) * 1995-09-28 1997-06-10 Toshiba Corp 高熱伝導性窒化珪素回路基板および半導体装置
JP3364402B2 (ja) * 1996-01-26 2003-01-08 日本特殊陶業株式会社 Al金属接合体
EP0874399A1 (en) * 1996-08-20 1998-10-28 Kabushiki Kaisha Toshiba Silicon nitride circuit board and semiconductor module
KR100371974B1 (ko) * 1997-05-26 2003-02-17 스미토모덴키고교가부시키가이샤 구리회로접합기판 및 그 제조방법
EP1056321B1 (en) 1999-05-28 2007-11-14 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic substrate circuit and its manufacturing process
JP2001160676A (ja) 1999-12-01 2001-06-12 Denki Kagaku Kogyo Kk セラミックス回路基板
DE10146227B4 (de) * 2000-09-20 2015-01-29 Hitachi Metals, Ltd. Siliciumnitrid-Sinterkörper, Leiterplatte und thermoelektrisches Modul
JP5038565B2 (ja) * 2000-09-22 2012-10-03 株式会社東芝 セラミックス回路基板およびその製造方法
US6583505B2 (en) * 2001-05-04 2003-06-24 Ixys Corporation Electrically isolated power device package
JP3786097B2 (ja) * 2002-03-25 2006-06-14 セイコーエプソン株式会社 圧電デバイスの蓋封止方法及び圧電デバイスの製造方法並びに圧電デバイスの蓋封止装置
JP4241397B2 (ja) 2002-04-19 2009-03-18 三菱マテリアル株式会社 回路基板の製造方法
JP4362597B2 (ja) * 2003-05-30 2009-11-11 Dowaメタルテック株式会社 金属−セラミックス回路基板およびその製造方法
KR20110124372A (ko) * 2004-04-05 2011-11-16 미쓰비시 마테리알 가부시키가이샤 Al/AlN 접합체, 전력 모듈용 기판 및 전력 모듈, 그리고 Al/AlN 접합체의 제조 방법
KR101246978B1 (ko) * 2005-04-28 2013-03-25 히타치 긴조쿠 가부시키가이샤 질화규소 기판, 그 제조방법, 그것을 사용한 질화규소배선기판 및 반도체 모듈
JP4609296B2 (ja) * 2005-12-05 2011-01-12 株式会社日立製作所 高温半田及び高温半田ペースト材、及びそれを用いたパワー半導体装置
US8273993B2 (en) * 2006-03-08 2012-09-25 Kabushiki Kaisha Toshiba Electronic component module
US8004075B2 (en) * 2006-04-25 2011-08-23 Hitachi, Ltd. Semiconductor power module including epoxy resin coating
JP4957208B2 (ja) 2006-11-28 2012-06-20 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2008147309A (ja) 2006-12-07 2008-06-26 Hitachi Metals Ltd セラミックス基板およびこれを用いた半導体モジュール
EP2296177B1 (en) * 2008-06-06 2021-04-14 Mitsubishi Materials Corporation Method for manufacturing a power module substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234045A (ja) 1990-02-09 1991-10-18 Toshiba Corp 窒化アルミニウム基板およびこれを用いた半導体モジュール
JPH08255973A (ja) * 1995-03-17 1996-10-01 Toshiba Corp セラミックス回路基板
JP2001010874A (ja) * 1999-03-27 2001-01-16 Nippon Hybrid Technologies Kk 無機材料とアルミニウムを含む金属との複合材料の製造方法とその関連する製品
JP2001085808A (ja) * 1999-05-28 2001-03-30 Denki Kagaku Kogyo Kk 回路基板
JP2008149902A (ja) 2006-12-18 2008-07-03 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2009065033A (ja) 2007-09-07 2009-03-26 Sei Hybrid Kk ウエハ保持体及びそれを搭載した半導体製造装置
JP2009075315A (ja) 2007-09-20 2009-04-09 Konica Minolta Opto Inc 広角レンズ
JP2009086247A (ja) 2007-09-28 2009-04-23 Canon Inc 支持装置
JP2009086248A (ja) 2007-09-28 2009-04-23 Nippon Hoso Kyokai <Nhk> 光制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2296177A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059836A (ja) * 2010-09-07 2012-03-22 Mitsubishi Materials Corp パワーモジュール用基板、パワーモジュール用基板の製造方法及びパワーモジュール
JP2012064801A (ja) * 2010-09-16 2012-03-29 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、パワーモジュール及びヒートシンク付パワーモジュール用基板の製造方法
JP2012160641A (ja) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール
JP2012160642A (ja) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール
JP2012164708A (ja) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2012164709A (ja) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2012164710A (ja) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板
CN102646604A (zh) * 2011-02-18 2012-08-22 三菱综合材料株式会社 自带散热器的功率模块用基板及其制造方法以及功率模块
JP2012178513A (ja) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp パワーモジュールユニット及びパワーモジュールユニットの製造方法
JP2012129548A (ja) * 2012-02-29 2012-07-05 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール用基板の製造方法
JP2017208477A (ja) * 2016-05-19 2017-11-24 京セラ株式会社 複合基板およびその製造方法

Also Published As

Publication number Publication date
CN102047413A (zh) 2011-05-04
US20110074010A1 (en) 2011-03-31
US20150022977A1 (en) 2015-01-22
EP2296177A1 (en) 2011-03-16
US8564118B2 (en) 2013-10-22
US8921996B2 (en) 2014-12-30
KR20110033117A (ko) 2011-03-30
CN102047413B (zh) 2015-04-15
EP2296177B1 (en) 2021-04-14
EP2296177A4 (en) 2014-11-26
US20140015140A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2009148168A1 (ja) パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
JP4747315B2 (ja) パワーモジュール用基板及びパワーモジュール
TWI641300B (zh) 接合體及功率模組用基板
WO2009139472A1 (ja) パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
WO2013147144A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
WO2014142310A1 (ja) 接合体、パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板
TW201526171A (zh) 接合體之製造方法及功率模組用基板之製造方法
JP5504842B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5423076B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5828352B2 (ja) 銅/セラミックス接合体、及び、パワーモジュール用基板
JP5664038B2 (ja) パワーモジュール用基板、パワーモジュール用基板の製造方法及びパワーモジュール
JP5640569B2 (ja) パワーモジュール用基板の製造方法
JP6031784B2 (ja) パワーモジュール用基板及びその製造方法
TWI708754B (zh) 接合體,電源模組用基板,電源模組,接合體的製造方法及電源模組用基板的製造方法
JP5724273B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
JP4935753B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5359953B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP4807378B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP4798171B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP6756189B2 (ja) ヒートシンク付パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板の製造方法
JP5359943B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5640548B2 (ja) パワーモジュール用基板の製造方法
JP5359942B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5640571B2 (ja) パワーモジュール用基板の製造方法
JP5640570B2 (ja) パワーモジュール用基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120627.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026985

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12737042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4748/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009758435

Country of ref document: EP