WO2013147144A1 - パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 - Google Patents

パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 Download PDF

Info

Publication number
WO2013147144A1
WO2013147144A1 PCT/JP2013/059500 JP2013059500W WO2013147144A1 WO 2013147144 A1 WO2013147144 A1 WO 2013147144A1 JP 2013059500 W JP2013059500 W JP 2013059500W WO 2013147144 A1 WO2013147144 A1 WO 2013147144A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
power module
copper
aluminum
heat sink
Prior art date
Application number
PCT/JP2013/059500
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
長友 義幸
黒光 祥郎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US14/388,051 priority Critical patent/US9723707B2/en
Priority to KR1020147023551A priority patent/KR101971756B1/ko
Priority to EP13767363.8A priority patent/EP2833398B1/en
Priority to IN8073DEN2014 priority patent/IN2014DN08073A/en
Priority to CN201380015967.0A priority patent/CN104205323B/zh
Publication of WO2013147144A1 publication Critical patent/WO2013147144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/103Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding or embedding conductive wires or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention provides a power module substrate having a circuit layer formed on one surface of an insulating layer, a power module substrate with a heat sink in which a heat sink is bonded to the power module substrate, and a semiconductor element bonded to the power module substrate.
  • the present invention relates to a power module and a method for manufacturing a power module substrate.
  • a power element for high power control used for controlling an electric vehicle, an electric vehicle or the like generates a large amount of heat. Therefore, as a substrate on which this power element is mounted, for example, a power module substrate in which a metal plate having excellent conductivity is bonded as a circuit layer on a ceramic substrate (insulating layer) made of AlN (aluminum nitride) or the like has been conventionally used. Widely used.
  • a power module substrate has a semiconductor element mounted as a power element on the circuit layer via a solder material to form a power module.
  • a heat sink having excellent thermal conductivity is joined, and the heat is dissipated. Things are known.
  • Patent Document 1 proposes a power module substrate in which a circuit layer made of an aluminum plate is bonded to one surface of a ceramic substrate.
  • Patent Document 2 proposes a power module substrate in which a circuit layer made of a copper plate is bonded to one surface of a ceramic substrate.
  • the circuit layer is made of an aluminum plate having a relatively small deformation resistance. Therefore, the thermal stress generated between the ceramic substrate and the circuit layer when the heat cycle is loaded can be absorbed by the circuit layer, but when the power cycle is loaded, the semiconductor element and the circuit layer are The solder to be joined may be cracked, and the reliability of the power module may be reduced. Moreover, since aluminum is inferior in heat conductivity compared to copper, a circuit layer made of an aluminum plate is inferior in heat dissipation compared to a circuit layer made of copper. Further, since an aluminum oxide film is formed on the surface of the aluminum plate, it is difficult to satisfactorily bond the circuit layer and the semiconductor element with solder in that state.
  • Patent Document 2 when the circuit layer is made of a copper plate, copper has a relatively high deformation resistance. Therefore, when the heat cycle is loaded, cracks may occur in the ceramic substrate due to thermal stress generated between the ceramic substrate and the copper plate.
  • the circuit layer comprised with aluminum has high reliability with respect to a heat cycle, the reliability with respect to a power cycle falls. Therefore, conventionally, priority can be given only to the reliability of either the power cycle or the heat cycle, and the reliability of the power module with respect to the heat cycle and the power cycle cannot be achieved at the same time.
  • This invention suppresses an increase in thermal resistance at the time of power cycle load, suppresses cracking of the ceramic substrate at the time of heat cycle load, and has high reliability with respect to the power cycle and heat cycle load.
  • a module substrate a power module substrate with a heat sink, a power module, and a method for manufacturing a power module substrate.
  • a power module substrate is a power module substrate including an insulating layer and a circuit layer formed on one surface of the insulating layer.
  • the circuit layer has an aluminum layer disposed on one surface of the insulating layer, and a copper layer laminated on one side of the aluminum layer, and the aluminum layer and the copper layer are Solid phase diffusion bonded.
  • the circuit layer has a copper layer.
  • a semiconductor element is mounted on this copper layer, when the heat generated from the semiconductor element is transferred to the power module substrate side, the heat is spread efficiently in the plane direction by the copper layer of the circuit layer.
  • the heat can be dissipated.
  • an aluminum layer having a relatively small deformation resistance is formed on one surface of the insulating layer, which occurs due to a difference in thermal expansion coefficient between the insulating layer and the circuit layer when a heat cycle is applied. Since the aluminum layer absorbs the thermal stress, it is possible to suppress the occurrence of cracks in the insulating layer and to obtain high reliability for bonding.
  • the copper layer having a relatively large deformation resistance is formed on one side of the aluminum layer, the deformation of the circuit layer can be suppressed when a power cycle is applied. Therefore, the reliability of the power module substrate with respect to the power cycle can be obtained.
  • the aluminum layer and the copper layer are bonded by solid phase diffusion bonding, the occurrence of delamination between the aluminum layer and the copper layer is suppressed when a heat cycle is applied. Thermal conductivity and conductivity can be maintained.
  • the one side of the aluminum layer is the surface side that is not joined to the insulating layer.
  • a diffusion layer made of Cu and Al is formed at the bonding interface between the aluminum layer and the copper layer, and the diffusion layer has a structure in which a plurality of intermetallic compounds are stacked along the bonding interface.
  • the oxide may be dispersed in layers along the bonding interface at the bonding interface between the copper layer and the diffusion layer. Since a diffusion layer made of Cu and Al is formed at the bonding interface between the aluminum layer and the copper layer, Al (aluminum atoms) in the aluminum layer and Cu (copper atoms) in the copper layer are sufficiently mutually The aluminum layer and the copper layer are firmly bonded. In addition, since oxides are dispersed in layers along the bonding interface at the bonding interface between the copper layer and the diffusion layer, the oxide film formed on the surface of the aluminum layer is destroyed and solid phase diffusion bonding is performed. Is fully progressing.
  • the thickness of the copper layer may be 0.1 mm or more and 6.0 mm or less.
  • a power module substrate with a heat sink according to the present invention includes the power module substrate and a heat sink bonded to the other side of the power module substrate. According to the power module substrate with a heat sink according to the present invention, since the heat sink is bonded to the other side of the power module substrate as described above, the heat on the power module substrate side can be efficiently dissipated to the heat sink. Can do.
  • the power module according to the present invention includes the power module substrate and a semiconductor element bonded to one side of the circuit layer.
  • the power module substrate as described above is used, when the power cycle is loaded, the heat generated from the semiconductor element is transferred to the power module substrate side.
  • the copper layer of the circuit layer can be spread in the surface direction to efficiently dissipate the heat. Then, the temperature rise of the semiconductor element can be suppressed, the semiconductor element can be operated at a predetermined temperature, and the operational stability can be improved.
  • the power module according to the present invention is configured so that the semiconductor element is bonded to the copper layer via solder, the solder bonding is better than in the case of the power module in which the circuit layer is formed of aluminum. Can be done.
  • the one side of the circuit layer is a surface side that is not joined to the insulating layer.
  • a method for manufacturing a power module substrate according to another aspect of the present invention is a method for manufacturing a power module substrate comprising: an insulating layer; and a circuit layer formed on one surface of the insulating layer.
  • a copper layer laminating step of laminating a copper layer on one side of the aluminum layer, and in the copper layer laminating step, the aluminum layer and the copper layer are solid phase diffusion bonded.
  • the circuit layer forming step includes an aluminum layer disposing step and a copper layer laminating step, and in the copper layer laminating step, the aluminum layer and the copper layer are solid-phased. It is configured to be diffusion bonded. Therefore, it is possible to obtain a power module substrate including a circuit layer in which an aluminum layer and a copper layer are joined by solid phase diffusion.
  • the copper layer was laminated on one side of the aluminum layer, with respect to the copper layer and the aluminum layer, in a state loaded with 3 kgf / cm 2 or more 35 kgf / cm 2 or less of a load
  • the aluminum layer and the copper layer may be solid phase diffusion bonded by holding at 400 ° C. or higher and lower than 548 ° C. By performing solid phase diffusion bonding under such conditions, the aluminum layer and the copper layer can be reliably bonded by solid phase diffusion. Moreover, it is possible to suppress the formation of a gap at the interface between the aluminum layer and the copper layer.
  • a power module substrate, a power module substrate with a heat sink, a power module, and a method for manufacturing the power module substrate can be provided.
  • FIG. 3 is an enlarged explanatory view of a diffusion layer in FIG. 2. It is a flowchart explaining the manufacturing method of the power module which concerns on embodiment of this invention. It is a schematic explanatory drawing of the manufacturing method of the board
  • FIG. 1 shows a power module 1, a power module substrate 30 with a heat sink, and a power module substrate 10 according to an embodiment of the present invention.
  • the power module 1 includes a power module substrate 30 with a heat sink, and a semiconductor element 3 bonded to one side (the upper side in FIG. 1) of the power module substrate 30 with a heat sink via a solder layer 2. Yes.
  • the solder layer 2 is, for example, a Sn—Ag, Sn—Cu, Sn—In, or Sn—Ag—Cu solder material (so-called lead-free solder material).
  • the element 3 is joined.
  • the semiconductor element 3 is an electronic component including a semiconductor, and various semiconductor elements are selected according to the required function. In this embodiment, an IGBT element is used.
  • the power module substrate 30 with a heat sink includes a power module substrate 10 and a heat sink 31 bonded to the other side (lower side in FIG. 1) of the power module substrate 10.
  • the power module substrate 10 includes a ceramic substrate 11 (insulating layer), a circuit layer 12 formed on one surface of the ceramic substrate 11 (upper surface in FIG. 1), and a ceramic substrate. 11 and a metal layer 13 formed on the other surface (the lower surface in FIG. 1). That is, the ceramic substrate 11 has a first surface (one surface) and a second surface (the other surface), and the circuit layer 12 is formed on the first surface of the ceramic substrate 11. A metal layer 13 is formed on the second surface.
  • the ceramic substrate 11 prevents electrical connection between the circuit layer 12 and the metal layer 13, and is made of highly insulating AlN (aluminum nitride). Further, the thickness of the ceramic substrate 11 is set within a range of 0.2 to 1.5 mm, and in this embodiment is set to 0.635 mm.
  • the metal layer 13 is formed by bonding a metal plate made of aluminum or an aluminum alloy to the second surface (the lower surface in FIG. 1) of the ceramic substrate 11. In the present embodiment, the metal layer 13 is formed by joining an aluminum plate 23 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 11.
  • the circuit layer 12 includes an aluminum layer 12A disposed on the first surface of the ceramic substrate 11, and a copper layer 12B laminated on one side (the upper side in FIG. 1) of the aluminum layer 12A. And have.
  • the aluminum layer 12 ⁇ / b> A is formed by bonding an aluminum plate 22 ⁇ / b> A to the first surface of the ceramic substrate 11.
  • the aluminum layer 12A is formed by joining an aluminum plate 22A made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 11.
  • Copper layer 12B is formed by bonding to one side (upper side in FIG. 1) of aluminum layer 12A.
  • the copper layer 12B is formed by solid-phase diffusion bonding a copper plate 22B made of an oxygen-free copper rolled plate to the aluminum layer 12A.
  • a diffusion layer 12C is formed at the interface between the aluminum layer 12A and the copper layer 12B as shown in FIG.
  • the thickness of the copper layer 12B is preferably set to 0.1 mm or more and 6.0 mm or less.
  • the diffusion layer 12C is formed by mutual diffusion of aluminum atoms in the aluminum layer 12A and copper atoms in the copper layer 12B.
  • the diffusion layer 12C has a concentration gradient in which the concentration of aluminum atoms gradually decreases and the concentration of copper atoms gradually increases as it goes from the aluminum layer 12A to the copper layer 12B.
  • FIG. 3 is an enlarged explanatory view of the diffusion layer 12C.
  • the diffusion layer 12C is made of an intermetallic compound composed of Cu and Al.
  • a plurality of intermetallic compounds are stacked along the bonding interface.
  • the thickness t of the diffusion layer 12C is set in the range of 1 ⁇ m to 80 ⁇ m, preferably in the range of 5 ⁇ m to 80 ⁇ m.
  • it is set as the structure where three types of intermetallic compounds were laminated
  • a ⁇ phase 16, a ⁇ 2 phase 17, and a ⁇ 2 phase 18 are sequentially formed from the aluminum layer 12 A to the copper layer 12 B.
  • the oxide 19 is dispersed in layers along the bonding interface at the bonding interface between the diffusion layer 12C and the copper layer 12B.
  • the oxide 19 is an aluminum oxide such as alumina (Al 2 O 3 ).
  • the oxide 19 is dispersed in a state of being divided at the interface between the diffusion layer 12C and the copper layer 12B, and the diffusion layer 12C and the copper layer 12B are in direct contact with each other.
  • the average crystal grain size of the copper layer 12B is in the range of 50 ⁇ m or more and 200 ⁇ m or less, and the average crystal grain size of the aluminum layer 12A is 500 ⁇ m or more.
  • the heat sink 31 is for dissipating heat of the power module substrate 10.
  • the heat sink 31 is preferably made of a material having good thermal conductivity.
  • the heat sink 31 is made of A6063 (Al alloy).
  • the heat sink 31 is provided with a flow path 32 through which a cooling fluid flows.
  • the metal layer 13 and the heat sink 31 of the power module substrate 10 are bonded via the bonding layer 33.
  • the bonding layer 33 bonds the power module substrate 10 and the heat sink 31 together.
  • a copper plate 43 made of an oxygen-free copper rolled plate is disposed between the metal layer 13 and the heat sink 31 and is solid-phase diffusion bonded to thereby form the metal layer 13.
  • the heat sink 31 is bonded to the heat sink 31 via the bonding layer 33.
  • a concentration gradient of aluminum and copper is formed by mutual diffusion.
  • the bonding layer 33 has a concentration gradient in which the concentration of copper atoms gradually decreases and the concentration of aluminum atoms gradually increases as it goes from the metal layer 13 toward the heat sink 31.
  • FIG.4 and FIG.5 the manufacturing method of the power module 1 which is this embodiment, the power module substrate 30 with a heat sink, and the power module substrate 10 is demonstrated using FIG.4 and FIG.5.
  • FIG. 5 aluminum plates 22A and 23 are laminated on the first surface and the second surface of the ceramic substrate 11 with an Al—Si brazing material interposed therebetween.
  • the ceramic substrate 11 and the aluminum plates 22A and 23 are pressurized, heated and cooled to join the ceramic substrate 11 and the aluminum plates 22A and 23 to form the aluminum layer 12A and the metal layer 13 (the aluminum layer and Metal layer bonding step S11).
  • the brazing temperature is set to 640 ° C. to 650 ° C.
  • the copper plate 22B is disposed on the first surface of the aluminum layer 12A, the copper plate 43 is disposed on the other side of the metal layer 13, and the heat sink 31 is further disposed on the other side of the copper plate 43.
  • a load is applied from one side and the other side to the ceramic substrate 11 and the aluminum layer 12A and the metal layer 13 formed on both sides thereof with the copper plate 22B, the copper plate 43, and the heat sink 31 arranged as described above, and vacuum Place in the furnace.
  • the heating temperature of vacuum heating shall be 400 degreeC or more and less than 548 degreeC, hold
  • the metal layer 13 and the heat sink 31 are bonded via the bonding layer 33 (copper layer and heat sink bonding step S12).
  • the surfaces to which the aluminum layer 12A and the copper plate 22B, the metal layer 13 and the copper plate 43, and the heat sink 31 and the copper plate 43 are joined are previously solidified after removing the scratches on the surfaces.
  • Phase diffusion bonded the copper plate 22B is solid phase diffusion bonded to one side of the aluminum layer 12A
  • the copper plate 43 is solid phase diffusion bonded to the other side of the metal layer 13
  • the heat sink 31 is further solid phase diffused to the other side of the copper plate 43.
  • the preferable heating temperature of the vacuum heating in the case of joining is the metal (Al) constituting the aluminum plate 22A and the metal (Cu) constituting the copper plate 22B, the metal (Al) constituting the aluminum plate 23 and the metal constituting the copper plate 43.
  • the lowest eutectic temperature (not including the eutectic temperature)
  • the eutectic temperature is in the range of ⁇ 5 ° C.
  • the circuit layer 12 having the aluminum layer 12A and the copper layer 12B laminated on one side of the aluminum layer 12A is formed.
  • the power module substrate with heat sink 30 and the power module substrate 10 in which the circuit layer 12 is formed on one side of the ceramic substrate 11 according to the present embodiment are obtained.
  • the semiconductor element 3 is placed on one side (surface) of the circuit layer 12 via a solder material, and soldered in a reduction furnace (semiconductor element joining step S13).
  • the power module 1 which is this embodiment is produced as mentioned above.
  • the circuit layer 12 has the copper layer 12B, and the semiconductor element is formed on the copper layer 12B. 3 is installed. Therefore, compared with the circuit layer made of aluminum, heat generated from the semiconductor element 3 can be spread in the plane direction by the copper layer 12B of the circuit layer 12, and the heat can be efficiently dissipated to the power module substrate 10. it can. In the power module substrate 30 with a heat sink, the heat of the power module substrate 10 can be further dissipated by the heat sink 31.
  • an aluminum layer 12A and a metal layer 13 made of aluminum having relatively small deformation resistance are formed on the first surface and the second surface of the ceramic substrate 11, and when the heat cycle is applied, the ceramic layer Since the aluminum layer 12A and the metal layer 13 absorb the thermal stress generated due to the difference in thermal expansion coefficient between the substrate 11 and the circuit layer 12 and between the ceramic substrate 11 and the metal layer 13, high reliability with respect to the heat cycle is obtained. Can do.
  • a copper layer 12B having a relatively large deformation resistance is formed on one side of the aluminum layer 12A, and when the power cycle is loaded, the deformation of the circuit layer 12 can be suppressed, so that the thermal resistance is reduced. The rise can be suppressed and high reliability with respect to the power cycle can be obtained.
  • the diffusion layer 12C made of a diffusion layer of Cu and Al is formed between the aluminum layer 12A and the copper layer 12B, Al in the aluminum layer 12A is transferred to the copper layer 12B.
  • Cu in the layer 12B is sufficiently interdiffused into the aluminum layer 12A, and the aluminum layer 12A and the copper layer 12B are securely bonded by solid phase diffusion, so that the bonding strength can be ensured.
  • the oxide 19 is dispersed in layers along the bonding interface at the bonding interface between the copper layer 12B and the diffusion layer 12C, the oxide film formed on the aluminum layer 12A is reliably destroyed, and Cu and Al Therefore, the copper layer 12B and the diffusion layer 12C are reliably bonded to each other.
  • the diffusion layer 12C has a structure in which a plurality of intermetallic compounds are stacked along the bonding interface, the brittle intermetallic compound can be prevented from growing greatly.
  • intermetallic compounds suitable for the respective compositions are formed in layers from the copper layer 12B to the aluminum layer 12A due to mutual diffusion of Cu in the copper layer 12B and Al in the aluminum layer 12A. Therefore, the characteristics of the bonding interface can be stabilized.
  • the diffusion layer 12C three types of intermetallic compounds of the ⁇ phase 16, the ⁇ 2 phase 17, and the ⁇ 2 phase 18 are laminated in this order from the aluminum layer 12A to the copper layer 12B. Therefore, the volume fluctuation inside the diffusion layer 12C is reduced, and the internal strain is suppressed.
  • the average crystal grain size of the aluminum layer 12A is 500 ⁇ m or more
  • the average crystal grain size of the copper layer 12B is in the range of 50 ⁇ m to 200 ⁇ m
  • the aluminum layer 12A and the copper layer 12B are set to be relatively large. Therefore, excessive strain or the like is not accumulated in the aluminum layer 12A and the copper layer 12B, and the fatigue characteristics are improved. Therefore, in the heat cycle load, the bonding reliability against the thermal stress generated between the power module substrate 10 and the heat sink 31 is improved.
  • the average thickness of the diffusion layer 12C is in the range of 1 ⁇ m to 80 ⁇ m, preferably 5 ⁇ m to 80 ⁇ m. Therefore, the interdiffusion of Cu and Al is sufficiently advanced, the aluminum layer 12A and the copper layer 12B can be firmly bonded, and brittle intermetallic compounds grow more than necessary compared to the aluminum layer 12A and the copper layer 12B. Therefore, the characteristics of the bonding interface are stabilized.
  • the preferable thickness of the copper layer 12B is 0.1 mm or more and 6.0 mm or less.
  • the heat from the semiconductor element 3 can be spread by the copper layer 12B to more efficiently transfer heat, and the initial thermal resistance during power cycle load can be reduced. . Therefore, the reliability with respect to the power cycle can be further increased.
  • the rigidity of the circuit layer 12 can be reduced by making the copper layer 12B 6.0 mm or less, and it can suppress that the ceramic substrate 11 cracks at the time of a heat cycle load.
  • the aluminum layer 12A and the copper layer 12B are bonded by solid phase diffusion bonding, a circuit having the aluminum layer 12A and the copper layer 12B formed on one side of the ceramic substrate 11 is used. Layer 12 can be obtained.
  • the aluminum layer 12A is formed on the first surface of the ceramic substrate 11, the metal layer 13 is formed on the second surface of the ceramic substrate 11, and the copper plate 22B is formed on one side of the aluminum layer 12A.
  • the aluminum layer 12A and the copper plate 22B, the metal layer 13 and the copper plate 43, and the heat sink 31 and the copper plate 43 are 3 kgf / cm 2 or more and 35 kgf. It is set as the structure hold
  • the copper atoms of the copper plate 22B are solid-phase diffused in the aluminum layer 12A, and the aluminum atoms of the aluminum layer 12A are incorporated in the copper plate 22B. Solid phase diffusion and solid phase diffusion bonding are performed, and the copper layer 12B can be reliably formed on one side of the aluminum layer 12A.
  • a diffusion layer 12C is formed at the interface between the solid phase diffusion bonded aluminum layer 12A and the copper layer 12B. Since the diffusion layer 12C is formed by solid phase diffusion, the bonding strength is high. Therefore, when a heat cycle and a power cycle are loaded, it is difficult for the interface to peel off and a good bonding state can be maintained, and thermal conductivity and conductivity can be maintained.
  • the metal layer 13 and the copper plate 43, the heat sink 31 and the copper plate 43 are respectively solid phase diffusion bonded, and the metal layer 13 and the heat sink 31 can be bonded via the bonding layer 33. Further, by performing solid phase diffusion bonding under the above-described conditions, it is possible to suppress the formation of a gap between the metal layer 13 and the heat sink 31 and to bond via the bonding layer 33. The thermal conductivity between the layer 13 and the heat sink 31 can be improved. Further, the metal layer 13 and the heat sink 31 are firmly bonded by the bonding layer 33, and when the heat cycle and the power cycle are loaded, the metal layer 13 and the bonding layer 33 and the heat sink 31 and the bonding layer 33 are connected. Separation of the interface hardly occurs and a good bonding state can be maintained, and thermal conductivity can be maintained.
  • the load applied to the aluminum layer 12A and the copper plate 22B during solid phase diffusion bonding is less than 3 kgf / cm 2, it becomes difficult to sufficiently bond the aluminum layer 12A and the copper plate 22B, and the aluminum layer 12A There may be a gap between the copper layer 12B and the copper layer 12B. In addition, if it exceeds 35 kgf / cm 2 , the load applied is too high, so that the ceramic substrate 11 may be cracked. Set to range.
  • the preferable temperature of solid phase diffusion bonding is set in the range of 400 ° C. or higher and lower than 548 ° C.
  • a more preferable heat treatment temperature at the time of solid phase diffusion bonding is the eutectic temperature from the eutectic temperature (not including the eutectic temperature) of the metal (Al) constituting the aluminum plate 22A and the metal (Cu) constituting the copper plate 22B—
  • the range is 5 ° C.
  • the eutectic temperature (not including the eutectic temperature) is selected within the eutectic temperature of -5 ° C, the liquid phase is not formed and the compound of aluminum and copper is not generated.
  • the diffusion speed during solid phase diffusion bonding is high, and solid phase diffusion bonding can be performed in a relatively short time, so that the above is set.
  • the semiconductor element 3 is configured to be bonded to the copper layer 12B via the solder layer 2, the soldering should be performed better than the case where the semiconductor element 3 is bonded to the circuit layer composed of only aluminum. Is possible.
  • the metal layer 13 and the heat sink 31 are bonded by solid phase diffusion bonding via the bonding layer 33, and compared with aluminum or copper between the metal layer 13 and the heat sink 31. Since no solder or grease with poor thermal conductivity is interposed, the thermal conductivity between the metal layer 13 and the heat sink 31 can be improved. Further, since the copper layer 12B and the heat sink 31 can be joined at a time, the manufacturing cost can be greatly reduced.
  • the power module 1 since the power module 1 according to the present embodiment includes the heat sink 31 below the power module substrate 10, the heat generated from the semiconductor element 3 is transmitted to the power module substrate 10 via the heat sink 31. Heat can be dissipated efficiently.
  • the case where the copper layer and the heat sink are simultaneously bonded by solid phase diffusion bonding has been described.
  • the heat sink is solid phase diffusion bonded. It may be said.
  • the case where the copper layer is formed by solid phase diffusion bonding on one side of the aluminum layer has been described. After joining, you may be set as the structure joined to the 1st surface of a ceramic substrate.
  • the aluminum layer and the metal layer formed on the first surface and the second surface of the ceramic substrate have been described as a rolled plate of pure aluminum having a purity of 99.99%.
  • the present invention is not limited to this. However, it may be 99% pure aluminum (2N aluminum), aluminum alloy, or the like.
  • the copper layer is made of an oxygen-free copper plate.
  • the present invention is not limited to this, and the copper layer may be made of other copper plates such as pure copper and copper alloys. good.
  • a ceramic substrate made of AlN is not limited thereto, it may be used a ceramic substrate made of Si 3 N 4 or Al 2 O 3, or the like, insulating The insulating layer may be made of resin.
  • the metal layer and the heat sink may be soldered or screwed together. It may be joined by, for example.
  • Example 1 Below, the result of the confirmation experiment (Example 1) conducted in order to confirm the effect of this invention is demonstrated. According to the procedure described in the flowchart of FIG. 4, solid phase diffusion bonding was performed under the conditions shown in Table 1, and power modules with heat sinks of Invention Examples 1-1 to 1-10 were produced.
  • the ceramic substrate was made of AlN, and had a size of 40 mm ⁇ 40 mm and a thickness of 0.635 mm.
  • the aluminum layer of the circuit layer was composed of a 4N aluminum rolled plate, and a 37 mm ⁇ 37 mm, 0.1 mm thick layer was used.
  • the copper layer of the circuit layer was formed of a rolled plate of oxygen-free copper, and a layer having a size of 37 mm ⁇ 37 mm and a thickness of 0.3 mm was used.
  • the metal layer was composed of a 4N aluminum rolled plate, and was 37 mm ⁇ 37 mm and 1.6 mm thick.
  • the joining layer is composed of an oxygen-free copper rolled plate and uses a 37 mm ⁇ 37 mm, 0.05 mm thick material, and the heat sink is composed of an A6063 alloy rolled plate, 50 mm ⁇ 50 mm thick 5 mm thick. It was used. Further, the solid phase diffusion bonding was performed in a range where the pressure in the vacuum heating furnace was 10 ⁇ 6 Pa or more and 10 ⁇ 3 Pa or less.
  • As the semiconductor element an IGBT element having a size of 12.5 mm ⁇ 9.5 mm and a thickness of 0.25 mm was used.
  • Heat cycle test The heat cycle test uses a thermal shock tester TSPE-51 manufactured by Espec, and the test piece (power module with heat sink) is in the liquid phase (Fluorinert) at ⁇ 40 ° C. for 5 minutes and at 125 ° C. A cycle of 5 minutes was repeated for 3000 cycles.
  • Power cycle test The power cycle test was performed by using an Sn-Ag-Cu solder to solder an IGBT element to a copper layer and bonding a connection wiring made of an aluminum alloy to form a power module with a heat sink. With a constant cooling water temperature and flow rate in the heat sink, the IGBT element is energized for 10 cycles of energization (ON) at an element surface temperature of 140 ° C.
  • the bonding rate at the interface between the aluminum layer and the copper layer was evaluated using an ultrasonic flaw detector and calculated from the following formula.
  • the initial bonding area is the area to be bonded before bonding, that is, the area of the aluminum layer and the copper layer in this embodiment.
  • peeling is indicated by a white portion in the joint, and thus the area of the white portion was taken as the peeling area.
  • Invention Examples 1-1 to 1-10 are power modules with heat sinks that have high joining ratios after the power cycle test and after the heat cycle test, and have high joining reliability with respect to the power cycle load and the heat cycle load. It could be confirmed.
  • Invention Examples 1-1 to 1-6 both the joining rate after the power cycle test and after the heat cycle test is higher, and the heat sink with higher joining reliability against the power cycle load and the heat cycle load is provided. It was confirmed that it was a power module.
  • Example 2 Below, the result of the confirmation experiment (Example 2) performed in order to confirm the effect of this invention is demonstrated.
  • solid phase diffusion bonding was performed under the conditions of load: 9 kgf / cm 2 , temperature: 540 ° C., holding time: 180 minutes, and with heat sinks of Invention Examples 2-1 to 2-8 A power module was produced.
  • the ceramic substrate was made of AlN, and had a size of 40 mm ⁇ 40 mm and a thickness of 0.635 mm.
  • the aluminum layer of the circuit layer is composed of a 4N aluminum rolled plate, having a size of 37 mm ⁇ 37 mm, having a thickness of 0.6 mm in Invention Examples 2-1 to 2-7, and having a thickness of 0 in Invention Example 2-8. A 1 mm one was used.
  • the copper layer of the circuit layer was formed of an oxygen-free copper rolled plate (copper plate), and a 37 mm ⁇ 37 mm plate was used. The thickness of the copper plate was set to the thickness shown in Table 2.
  • the metal layer was composed of a 4N aluminum rolled plate, and was 37 mm ⁇ 37 mm and 1.6 mm thick.
  • the joining layer is composed of an oxygen-free copper rolled plate and uses a 37 mm ⁇ 37 mm, 0.05 mm thick material
  • the heat sink is composed of an A6063 alloy rolled plate, 50 mm ⁇ 50 mm thick 5 mm thick. It was used. Further, the solid phase diffusion bonding was performed in a range where the pressure in the vacuum heating furnace was 10 ⁇ 6 Pa or more and 10 ⁇ 3 Pa or less.
  • the semiconductor element an IGBT element having a size of 12.5 mm ⁇ 9.5 mm and a thickness of 0.25 mm was used.
  • the following power module with a heat sink was produced as the prior art example 1.
  • the power module substrate, an IGBT element (12.5 mm ⁇ 9.5 mm, thickness 0.25 mm), and a heat sink were joined to form a power module with a heat sink.
  • the power module with a heat sink produced by the following means was defined as Conventional Example 2.
  • an aluminum plate (37 mm ⁇ 37 mm, thickness 0.4 mm) to be a circuit layer, a ceramic substrate made of AlN, and an aluminum plate (37 mm ⁇ 37 mm, thickness 0.4 mm) to be a metal layer are made of Al— It is laminated through a brazing filler metal foil of 10% by mass, charged in a laminating direction at 5 kgf / cm 2 , placed in a vacuum heating furnace, and heated at 650 ° C. for 30 minutes to join and power A module substrate was prepared.
  • the power module substrate, an IGBT element (12.5 mm ⁇ 9.5 mm, thickness 0.25 mm), and a heat sink were joined to form a power module with a heat sink.
  • Heat cycle test In the same manner as in Example 1, a heat cycle test was performed on the power module with a heat sink. After this heat cycle test, the bonding rate at the interface between the ceramic substrate and the circuit layer was measured. (Evaluation of bonding rate at interface between ceramic substrate and circuit layer) For the power module with a heat sink after the heat cycle test, the bonding rate at the interface between the ceramic substrate and the circuit layer was evaluated using an ultrasonic flaw detector and calculated from the following equation.
  • the initial bonding area is the area to be bonded before bonding, that is, the area of the circuit layer in this embodiment.
  • peeling is indicated by a white portion in the joint, and thus the area of the white portion was taken as the peeling area.
  • Example 2 Power cycle test As in Example 1, a power cycle test was performed on the power module with a heat sink. The initial thermal resistance in the power cycle test and the thermal resistance after the power cycle test were measured. About the measurement of thermal resistance, it carried out by the same method as Example 1. The results of the above evaluation are shown in Table 2.
  • a power module substrate, a power module substrate with a heat sink, a power module, and a method for manufacturing the power module substrate can be provided.
  • Power Module 3 Semiconductor Element 10 Power Module Substrate 11 Ceramic Substrate (Insulating Layer) 12 Circuit layer 12A Aluminum layer 12B Copper layer 12C Diffusion layer 13 Metal layer 30 Power module substrate with heat sink 31 Heat sink

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

本発明に係わるパワーモジュール用基板において、回路層12は、絶縁層11の一方の面に配設されたアルミニウム層12Aと、このアルミニウム層12Aの一方側に積層された銅層12Bと、を有し、前記アルミニウム層12Aと前記銅層12Bは、固相拡散接合されている。

Description

パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
 この発明は、絶縁層の一方の面に回路層が形成されたパワーモジュール用基板、このパワーモジュール用基板にヒートシンクが接合されたヒートシンク付パワーモジュール用基板、パワーモジュール用基板に半導体素子が接合されたパワーモジュール、及びパワーモジュール用基板の製造方法に関する。
 本願は、2012年03月30日に日本に出願された特願2012-083249号および2012年09月14日に日本に出願された特願2012-203362号について優先権を主張し、その内容をここに援用する。
 各種の半導体素子のうちでも、電気自動車や電気車両などを制御するために用いられる大電力制御用のパワー素子においては、発熱量が多い。よって、このパワー素子を搭載する基板としては、例えばAlN(窒化アルミ)などからなるセラミックス基板(絶縁層)上に導電性の優れた金属板を回路層として接合したパワーモジュール用基板が、従来から広く用いられている。
 そして、このようなパワーモジュール用基板は、その回路層上に、はんだ材を介してパワー素子としての半導体素子が搭載され、パワーモジュールとされる。なお、この種のパワーモジュール用基板としては、セラミックス基板の下面にも半導体素子に起因する熱を放熱するために、熱伝導性が優れたヒートシンクを接合して、その熱を放熱させる構造としたものが知られている。
 回路層を構成する金属としては、Al(アルミニウム)やCu(銅)等が用いられている。例えば、特許文献1には、セラミックス基板の一方の面に、アルミニウム板からなる回路層が接合されたパワーモジュール用基板が提案されている。
 また、特許文献2には、セラミックス基板の一方の面に銅板からなる回路層が接合されたパワーモジュール用基板が提案されている。
特許第3171234号公報 特許第3211856号公報
 ところで、特許文献1で示すパワーモジュールにおいては、回路層が比較的変形抵抗の小さなアルミニウム板で構成されている。よって、ヒートサイクルが負荷された際に、セラミックス基板と回路層との間に生じる熱応力を回路層によって吸収することができるものの、パワーサイクルが負荷された際に、半導体素子と回路層とを接合するはんだに割れが生じてパワーモジュールの信頼性が低下する場合がある。また、アルミニウムは銅と比べて熱伝導性が劣るので、アルミニウム板で構成された回路層は、銅で構成された回路層と比べて放熱性が劣る。さらに、アルミニウム板では、その表面にアルミニウムの酸化被膜が形成されるため、その状態で回路層と半導体素子とをはんだで良好に接合することは困難である。
 一方、特許文献2に示すように、回路層が銅板で構成されている場合には、銅は比較的変形抵抗が高い。よって、ヒートサイクルが負荷された際に、セラミックス基板と銅板との間に生じる熱応力によって、セラミックス基板に割れが発生する場合があった。
 特に、最近では、パワーモジュールの小型化・薄肉化が進められるとともに、その使用環境も厳しくなってきており、半導体素子からの発熱量が大きくなっている。その結果、ヒートサイクル及びパワーサイクルによる負荷に対して信頼性に関するパワーモジュールの要件が厳しくなっている。そのため、アルミニウムで回路層を構成した場合は、パワーサイクルが負荷された際に、パワーモジュールの信頼性が低下することが問題となる。また、銅で回路層を構成した場合は、ヒートサイクルが負荷された際に、パワーモジュールの信頼性が低下することが問題となる。
 このように、銅で構成された回路層は、パワーサイクルに対する信頼性は高いものの、ヒートサイクルに対する信頼性が低下する。また、アルミニウムで構成された回路層はヒートサイクルに対する信頼性は高いものの、パワーサイクルに対する信頼性が低下する。よって、従来はパワーサイクルもしくはヒートサイクルのどちらか一方の信頼性を優先することしかできず、ヒートサイクル及びパワーサイクルに対するパワーモジュールの信頼性を両立させることはできなかった。
 この発明は、パワーサイクル負荷時において熱抵抗の上昇を抑制するとともに、ヒートサイクル負荷時においてセラミックス基板に割れが生じることを抑制し、パワーサイクル及びヒートサイクルの負荷に対して高い信頼性を有するパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法を提供する。
 前述の課題を解決するために、本発明に係わる一態様のパワーモジュール用基板は、絶縁層と、この絶縁層の一方の面に形成された回路層と、を備えたパワーモジュール用基板であって、前記回路層は、前記絶縁層の一方の面に配設されたアルミニウム層と、このアルミニウム層の一方側に積層された銅層と、を有し、前記アルミニウム層と前記銅層は、固相拡散接合されている。
 本発明に係わるパワーモジュール用基板によれば、回路層が銅層を有している。この銅層の上に半導体素子が搭載された場合には、半導体素子から発生する熱をパワーモジュール用基板側へ伝達する際に、その熱を回路層の銅層で面方向に拡げて効率的にその熱を放散することができる。
 さらに、絶縁層の一方の面に、比較的変形抵抗の小さいアルミニウム層が形成されており、ヒートサイクルが負荷された場合に絶縁層と回路層との熱膨張係数の差に起因して発生する熱応力をアルミニウム層が吸収するので、絶縁層に割れが発生することを抑制でき、接合に対する高い信頼性を得ることができる。
 また、アルミニウム層の一方側には、比較的変形抵抗の大きい銅層が形成されているので、パワーサイクルが負荷された場合に、回路層の変形を抑制することができる。そのため、パワーサイクルに対するパワーモジュール用基板の信頼性を得ることができる。
 また、アルミニウム層と銅層とは、固相拡散接合によって接合されているので、ヒートサイクルが負荷された場合に、アルミニウム層と銅層との間に剥離が生じることが抑制され、回路層の熱伝導性及び導電性を維持することができる。
 なお、アルミニウム層の一方側とは、絶縁層と接合されていない面側のことである。
 また、前記アルミニウム層と前記銅層との接合界面には、CuとAlからなる拡散層が形成されており、前記拡散層は、複数の金属間化合物が前記接合界面に沿って積層した構造とされ、前記銅層と前記拡散層との接合界面には、酸化物が、前記接合界面に沿って層状に分散している構成としても良い。
 アルミニウム層と銅層との接合界面に、CuとAlからなる拡散層が形成されていることから、アルミニウム層中のAl(アルミニウム原子)と銅層中のCu(銅原子)とが十分に相互拡散しており、アルミニウム層と銅層とが強固に接合されている。
 また、銅層と拡散層との接合界面には、酸化物が、接合界面に沿って層状に分散していることから、アルミニウム層の表面に形成された酸化膜が破壊されて固相拡散接合が十分に進行している。
 また、前記銅層の厚さは、0.1mm以上6.0mm以下とされていても良い。
 上記の範囲に銅層の厚さを設定することによって、半導体素子から発生する熱がパワーモジュール用基板側へ伝達される際に、回路層の銅層で面方向に熱を拡げて、より効率的にその熱を放散することができる。よって、パワーサイクル負荷時の初期の熱抵抗を低減することが可能である。さらには、パワーサイクル負荷後においてもはんだに割れが発生することを抑制できるので、熱抵抗の上昇を抑制することが可能である。
 また、本発明に係わるヒートシンク付パワーモジュール用基板は、前記パワーモジュール用基板と、このパワーモジュール用基板の他方側に接合されたヒートシンクと、を備えている。
 本発明に係わるヒートシンク付パワーモジュール用基板によれば、上述のようなパワーモジュール用基板の他方側にヒートシンクが接合されているので、パワーモジュール用基板側の熱をヒートシンクへ効率的に放散することができる。
 また、本発明に係わるパワーモジュールは、前記パワーモジュール用基板と、前記回路層の一方側に接合された半導体素子と、を備えている。
 本発明に係わるパワーモジュールによれば、上述のようなパワーモジュール用基板を用いているので、パワーサイクルが負荷された場合に、半導体素子から発生する熱がパワーモジュール用基板側へ伝達される際に、回路層の銅層で面方向に拡げて、効率的にその熱を放散することができる。そして、半導体素子の温度上昇を抑制して、所定の温度で半導体素子を動作させることができ、動作の安定性を向上させることが可能となる。
 また、本発明に係わるパワーモジュールは、半導体素子がはんだを介して銅層に接合される構成とされているので、アルミニウムで回路層を構成したパワーモジュールの場合と比較して、はんだ接合を良好に行うことができる。
 なお、回路層の一方側とは、絶縁層と接合されていない面側のことである。
 本発明に係わる他態様のパワーモジュール用基板の製造方法は、絶縁層と、この絶縁層の一方の面に形成された回路層と、を備えたパワーモジュール用基板の製造方法であって、前記絶縁層の一方の面に、回路層を形成する回路層形成工程を備え、前記回路層形成工程は、前記絶縁層の一方の面に、アルミニウム層を配設するアルミニウム層配設工程と、前記アルミニウム層の一方側に、銅層を積層する銅層積層工程と、を有し、前記銅層積層工程において、前記アルミニウム層と前記銅層とを、固相拡散接合する。
 本発明に係わるパワーモジュール用基板の製造方法によれば、回路層形成工程は、アルミニウム層配設工程と、銅層積層工程とを備え、銅層積層工程においてアルミニウム層と銅層とを固相拡散接合する構成とされている。よって、アルミニウム層と銅層とが固相拡散によって接合された回路層を備えたパワーモジュール用基板を得ることができる。
 また、前記銅層積層工程において、前記アルミニウム層の一方側に銅層を積層し、前記アルミニウム層と前記銅層に対して、3kgf/cm以上35kgf/cm以下の荷重を負荷した状態で、400℃以上548℃未満で保持することにより、前記アルミニウム層と前記銅層とを固相拡散接合する構成とされても良い。
 このような条件で固相拡散接合を行うことにより、アルミニウム層と銅層とを確実に固相拡散によって接合できる。また、アルミニウム層と銅層との界面に、隙間が生じることを抑制することが可能である。
 本発明によれば、パワーサイクル負荷時において熱抵抗の上昇を抑制するとともに、ヒートサイクル負荷時においてセラミックス基板に割れが生じることを抑制し、パワーサイクル及びヒートサイクルの負荷に対して高い信頼性を有するパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法を提供することができる。
本発明の実施形態に係るパワーモジュール、ヒートシンク付パワーモジュール用基板、パワーモジュール用基板の概略説明図である。 図1のアルミニウム層と銅層との界面の拡大図である。 図2の拡散層の拡大説明図である。 本発明の実施形態に係るパワーモジュールの製造方法を説明するフロー図である。 本発明の実施形態に係るヒートシンク付パワーモジュール用基板の製造方法の概略説明図である。
 以下に、本発明の実施形態について、添付した図面を参照して説明する。
 図1に、本発明の実施形態であるパワーモジュール1、ヒートシンク付パワーモジュール用基板30、パワーモジュール用基板10を示す。
 このパワーモジュール1は、ヒートシンク付パワーモジュール用基板30と、このヒートシンク付パワーモジュール用基板30の一方側(図1において上側)にはんだ層2を介して接合された半導体素子3と、を備えている。
 はんだ層2は、例えばSn-Ag系、Sn-Cu系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材(いわゆる鉛フリーはんだ材)であり、ヒートシンク付パワーモジュール用基板30と半導体素子3とを接合する。
 半導体素子3は、半導体を備えた電子部品であり、必要とされる機能に応じて種々の半導体素子が選択される。本実施形態では、IGBT素子とされている。
 ヒートシンク付パワーモジュール用基板30は、パワーモジュール用基板10と、パワーモジュール用基板10の他方側(図1において下側)に接合されたヒートシンク31とを備えている。
 そして、パワーモジュール用基板10は、図1で示すように、セラミックス基板11(絶縁層)と、このセラミックス基板11の一方の面(図1において上面)に形成された回路層12と、セラミックス基板11の他方の面(図1において下面)に形成された金属層13と、を備えている。すなわち、セラミックス基板11は第一の面(一方の面)と第二の面(他方の面)とを有し、セラミックス基板11の第一の面には回路層12が形成され、セラミックス基板11の第二の面には金属層13が形成される。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、絶縁性の高いAlN(窒化アルミ)で構成されている。また、セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 金属層13は、セラミックス基板11の第二の面(図1において下面)に、アルミニウム又はアルミニウム合金からなる金属板が接合されることにより形成されている。本実施形態においては、金属層13は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板23がセラミックス基板11に接合されることで形成されている。
 回路層12は、図1で示すように、セラミックス基板11の第一の面に配設されたアルミニウム層12Aと、このアルミニウム層12Aの一方側(図1において上側)に積層された銅層12Bと、を有している。
 アルミニウム層12Aは、図5に示すように、アルミニウム板22Aがセラミックス基板11の第一の面に接合されることにより形成されている。本実施形態においては、アルミニウム層12Aは、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板22Aがセラミックス基板11に接合されることにより形成されている。
 銅層12Bは、アルミニウム層12Aの一方側(図1において上側)に接合されることにより形成されている。
本実施形態においては、銅層12Bは、図5に示すように、無酸素銅の圧延板からなる銅板22Bがアルミニウム層12Aに固相拡散接合されることにより形成されている。
 そして、これらのアルミニウム層12Aと銅層12Bとの界面には、図2で示すように、拡散層12Cが形成されている。この銅層12Bの厚さは、0.1mm以上6.0mm以下に設定されていることが好ましい。
 拡散層12Cは、アルミニウム層12Aのアルミニウム原子と、銅層12Bの銅原子とが相互拡散することによって形成される。この拡散層12Cにおいては、アルミニウム層12Aから銅層12Bに向かうにしたがい、漸次アルミニウム原子の濃度が低くなり、かつ漸次銅原子の濃度が高くなる濃度勾配を有している。
 図3に、拡散層12Cの拡大説明図を示す。この拡散層12Cは、CuとAlからなる金属間化合物で構成されており、本実施形態では、複数の金属間化合物が接合界面に沿って積層した構造とされている。ここで、この拡散層12Cの厚さtは、1μm以上80μm以下の範囲内、好ましくは、5μm以上80μm以下の範囲内に設定されている。
 本実施形態では、図3に示すように、3種の金属間化合物が積層された構造とされている。パワーモジュール用基板10の厚さ方向において、アルミニウム層12Aから銅層12Bに向けて順に、θ相16、η2相17、ζ2相18とされている。
 また、この拡散層12Cと銅層12Bとの接合界面には、酸化物19が、接合界面に沿って層状に分散している。なお、本実施形態においては、この酸化物19は、アルミナ(Al)等のアルミニウム酸化物とされている。なお、図3に示すように、酸化物19は、拡散層12Cと銅層12Bとの界面に分断された状態で分散しており、拡散層12Cと銅層12Bとが直接接触している領域も存在している。さらに、本実施形態では、銅層12Bの平均結晶粒径が50μm以上200μm以下の範囲内とされ、アルミニウム層12Aの平均結晶粒径が500μm以上とされている。
 ヒートシンク31は、パワーモジュール用基板10の熱を放散するためのものである。ヒートシンク31は、熱伝導性が良好な材質で構成されることが望ましく、本実施形態においては、A6063(Al合金)で構成されている。このヒートシンク31には、冷却用の流体が流れるための流路32が設けられている。
 そして、本実施形態においては、パワーモジュール用基板10の金属層13とヒートシンク31とが、接合層33を介して接合されている。
 接合層33は、パワーモジュール用基板10とヒートシンク31とを接合する。本実施形態においては、図5に示すように、無酸素銅の圧延板からなる銅板43が、金属層13とヒートシンク31との間に配置されて固相拡散接合されることによって、金属層13とヒートシンク31とが接合層33を介して接合されるようになっている。この接合層33には、相互拡散によるアルミニウムと銅の濃度勾配が形成されている。接合層33は、金属層13からヒートシンク31に向かうにしたがい、漸次銅原子の濃度が低くなり、かつ漸次アルミニウム原子の濃度が高くなる濃度勾配を有している。
 次に、本実施形態であるパワーモジュール1、ヒートシンク付パワーモジュール用基板30、パワーモジュール用基板10の製造方法について、図4及び図5を用いて説明する。
 まず、図5で示すように、セラミックス基板11の第一の面及び第二の面に、Al-Si系のろう材を介してアルミニウム板22A、23を積層する。そして、セラミックス基板11とアルミニウム板22A、23とを加圧・加熱後冷却することによって、セラミックス基板11とアルミニウム板22A、23を接合し、アルミニウム層12A及び金属層13を形成する(アルミニウム層及び金属層接合工程S11)。なお、このろう付けの温度は、640℃~650℃に設定されている。
 次に、図5で示すように、アルミニウム層12Aの第一の面に銅板22Bを配置し、金属層13の他方側に銅板43を配置し、銅板43の他方側にはさらにヒートシンク31を配置する。そして、セラミックス基板11とその両面に形成されたアルミニウム層12Aおよび金属層13に銅板22Bと銅板43とヒートシンク31とを上述のように配置したものに一方側及び他方側から荷重を負荷し、真空加熱炉の中に配置する。本実施形態においては、アルミニウム層12A及び銅板22B、金属層13及び銅板43、ヒートシンク31及び銅板43との接触面に負荷される荷重は、3kgf/cm以上35kgf/cm以下とされている。そして、真空加熱の加熱温度を、400℃以上548℃未満とし、5分以上240分以下保持して固相拡散接合を行い、アルミニウム層12Aに銅板22Bを接合して銅層12Bを形成すると同時に、金属層13とヒートシンク31とを、接合層33を介して接合する(銅層及びヒートシンク接合工程S12)。本実施形態においては、アルミニウム層12Aと銅板22B、金属層13と銅板43、ヒートシンク31と銅板43の接合されるそれぞれの面は、予め当該面の傷が除去されて平滑にされた後に、固相拡散接合されている。
 なお、同時に、アルミニウム層12Aの一方側に銅板22Bを固相拡散接合し、金属層13の他方側に銅板43を固相拡散接合し、銅板43の他方側にはさらにヒートシンク31を固相拡散接合する場合の真空加熱の好ましい加熱温度は、アルミニウム板22Aを構成する金属(Al)と銅板22Bを構成する金属(Cu)、アルミニウム板23を構成する金属(Al)と銅板43を構成する金属(Cu)、及びヒートシンク31を構成する金属(Al-Mg-Si系)と銅板43を構成する金属(Cu)、の共晶温度のうち、最も低い共晶温度(共晶温度含まず)から共晶温度-5℃の範囲とされている。
 こうして、アルミニウム層12Aと、アルミニウム層12Aの一方側に積層された銅層12Bと、を有する回路層12が形成されるようになっている。
 上述のようにして、本実施形態であるセラミックス基板11の一方側に回路層12が形成されたヒートシンク付パワーモジュール用基板30、及びパワーモジュール用基板10が得られる。
 そして、回路層12の一方側(表面)に、はんだ材を介して半導体素子3を載置し、還元炉内においてはんだ接合する(半導体素子接合工程S13)。
 上述のようにして、本実施形態であるパワーモジュール1が製出される。
 以上のような構成とされた本実施形態であるヒートシンク付パワーモジュール用基板30、及びパワーモジュール用基板10によれば、回路層12が銅層12Bを有し、銅層12Bの上に半導体素子3が搭載される。よって、アルミニウムで構成された回路層と比べて、半導体素子3から発生する熱を回路層12の銅層12Bで面方向に拡げ、その熱を効率的にパワーモジュール用基板10に放散することができる。ヒートシンク付パワーモジュール用基板30では、ヒートシンク31によってパワーモジュール用基板10の熱をさらに放散することができる。
 さらに、セラミックス基板11の第一の面及び第二の面に比較的変形抵抗の小さいアルミニウムで構成されたアルミニウム層12A及び金属層13が形成されており、ヒートサイクルが負荷された場合に、セラミックス基板11と回路層12及びセラミックス基板11と金属層13との熱膨張係数の差に起因して生じる熱応力をアルミニウム層12A及び金属層13が吸収するので、ヒートサイクルに対する高い信頼性を得ることができる。
 また、アルミニウム層12Aの一方側には、比較的変形抵抗の大きい銅層12Bが形成されており、パワーサイクルが負荷された場合に、回路層12の変形を抑制することができるため熱抵抗の上昇を抑制でき、パワーサイクルに対する高い信頼性を得ることができる。
 また、本実施形態では、アルミニウム層12Aと銅層12Bとの間に、CuとAlの拡散層からなる拡散層12Cが形成されているので、アルミニウム層12A中のAlが銅層12Bへ、銅層12B中のCuがアルミニウム層12Aへと十分に相互拡散し、アルミニウム層12Aと銅層12Bとが確実に固相拡散接合されており、接合強度を確保することができる。
 また、銅層12Bと拡散層12Cとの接合界面に、酸化物19が接合界面に沿って層状に分散しているので、アルミニウム層12Aに形成された酸化膜が確実に破壊され、CuとAlの相互拡散が十分に進行していることになり、銅層12Bと拡散層12Cとが確実に接合されている。
 また、本実施形態では、拡散層12Cは、複数の金属間化合物が前記接合界面に沿って積層した構造とされているので、脆い金属間化合物が大きく成長してしまうことを抑制できる。また、銅層12B中のCuとアルミニウム層12A中のAlとが相互拡散することにより、銅層12Bからアルミニウム層12Aに向けてそれぞれの組成に適した金属間化合物が層状に形成されていることから、接合界面の特性を安定させることができる。
 具体的には、拡散層12Cは、アルミニウム層12Aから銅層12Bに向けて順に、θ相16、η2相17、ζ2相18の3種の金属間化合物が積層している。よって、拡散層12C内部における体積変動が小さくなり、内部歪みが抑えられることになる。
 さらに、本実施形態においては、アルミニウム層12Aの平均結晶粒径が500μm以上とされ、銅層12Bの平均結晶粒径が50μm以上200μm以下の範囲内とされており、アルミニウム層12A及び銅層12Bの平均結晶粒径が比較的大きく設定されている。よって、アルミニウム層12A及び銅層12Bに過剰な歪み等が蓄積されておらず、疲労特性が向上することになる。したがって、ヒートサイクル負荷において、パワーモジュール用基板10とヒートシンク31との間に生じる熱応力に対する接合信頼性が向上する。
 さらに、本実施形態においては、拡散層12Cの平均厚みが1μm以上80μm以下、好ましくは5μm以上80μm以下の範囲内とされている。よって、CuとAlの相互拡散が十分に進行しており、アルミニウム層12Aと銅層12Bとを強固に接合できるとともに、アルミニウム層12A及び銅層12Bに比べて脆い金属間化合物が必要以上に成長することが抑えられており、接合界面の特性が安定することになる。
 ここで、銅層12Bの好ましい厚さは0.1mm以上6.0mm以下とされている。
 銅層12Bを0.1mm以上とすることで、半導体素子3からの熱を銅層12Bで拡げてより効率的に熱を伝達し、パワーサイクル負荷時の初期の熱抵抗を低減することができる。よって、パワーサイクルに対する信頼性をより高くすることが可能である。また、銅層12Bを6.0mm以下とすることで、回路層12の剛性を低減させ、ヒートサイクル負荷時においてセラミックス基板11に割れが生じることを抑制できる。
 上述のようなパワーモジュール用基板10、及びヒートシンク付パワーモジュール用基板30を用いたパワーモジュール1においては、半導体素子3から発生する熱を効率的に放散することができる。そして、半導体素子3の温度上昇を抑制して、所定の温度で半導体素子3を動作させることができ、動作の安定性を向上させることが可能となる。
 また、本実施形態においては、アルミニウム層12Aと銅層12Bとは、固相拡散接合によって接合されているので、セラミックス基板11の一方側に形成されたアルミニウム層12Aと銅層12Bとを有する回路層12を得ることができる。
 また、固相拡散接合は、セラミックス基板11の第一の面にアルミニウム層12Aを形成し、セラミックス基板11の第二の面に金属層13を形成し、アルミニウム層12Aの一方側に銅板22Bを配置し、金属層13の他方側に銅板43とヒートシンク31とを配置した後に、アルミニウム層12Aと銅板22B、金属層13と銅板43、ヒートシンク31と銅板43に対して、3kgf/cm以上35kgf/cm以下の荷重が負荷された状態で、400℃以上548℃未満で保持する構成とされている。このような構成にすることによって、アルミニウム層12Aと銅板22Bが十分に密着した状態で、アルミニウム層12A中に銅板22Bの銅原子を固相拡散させ、銅板22B中にアルミニウム層12Aのアルミニウム原子を固相拡散させて固相拡散接合し、アルミニウム層12Aの一方側に銅層12Bを確実に形成することができる。
 さらに、このように固相拡散接合を行うことで、アルミニウム層12Aと銅層12Bとの間に隙間が生じることを抑制してアルミニウム層12Aと銅層12Bとを接合することができる。よって、アルミニウム層12Aと銅層12Bとの接合界面における熱伝導性及び導電性を良好にし、半導体素子3から生じる熱をセラミックス基板11に向かって、効率的に放散することが可能である。さらには、固相拡散接合されたアルミニウム層12Aと銅層12Bとの界面には、拡散層12Cが形成されている。この拡散層12Cは、固相拡散によって形成されているので、接合強度が高い。そのため、ヒートサイクル及びパワーサイクルが負荷された際に、界面の剥離が生じ難く良好な接合状態を保つことができ、熱伝導性及び導電性を維持することが可能である。
 また、金属層13と銅板43、ヒートシンク31と銅板43がそれぞれ固相拡散接合され、接合層33を介して金属層13とヒートシンク31とを接合することができる。さらに、上述のような条件で固相拡散接合を行うことで、金属層13とヒートシンク31との間に隙間が生じることを抑制して、接合層33を介して接合することができるので、金属層13とヒートシンク31との間における熱伝導性を良好にすることができる。また、金属層13とヒートシンク31とは、接合層33によって強固に接合されており、ヒートサイクル及びパワーサイクルが負荷された際に、金属層13と接合層33、ヒートシンク31と接合層33との界面の剥離が生じ難く良好な接合状態を保つことができ、熱伝導性を維持することが可能である。
 固相拡散接合する際にアルミニウム層12A及び銅板22Bに対して負荷される荷重が3kgf/cm未満の場合は、アルミニウム層12Aと銅板22Bとを十分に接合させることが困難となり、アルミニウム層12Aと銅層12Bとの間に隙間が生じる場合がある。また、35kgf/cmを超える場合には、負荷される荷重が高すぎるために、セラミックス基板11に割れが発生することがあるため、固相拡散接合の際に負荷される荷重は、上記の範囲に設定されている。
 固相拡散接合する際の温度が400℃以上の場合には、アルミニウム原子と銅原子との拡散が促進され、短時間で十分に固相拡散させることができる。また、548℃未満の場合には、アルミニウムと銅との間で液相が生じて接合界面にコブが生じたり、厚みが変動したりすることを抑制できる。そのため、固相拡散接合の好ましい温度は、400℃以上548℃未満の範囲に設定されている。
 また、固相拡散接合時におけるより望ましい熱処理温度は、アルミニウム板22Aを構成する金属(Al)と銅板22Bを構成する金属(Cu)の共晶温度(共晶温度含まず)から共晶温度-5℃の範囲とされている。このような共晶温度(共晶温度含まず)から共晶温度-5℃の範囲を選択したときには、液相が形成されずアルミニウムと銅の化合物が生成されないので、固相拡散接合の接合信頼性が良好となることに加えて、固相拡散接合の際の拡散速度が速く、比較的短時間で固相拡散接合できるため上記のように設定されている。
 また、固相拡散接合する際に、接合される面に傷がある場合、固相拡散接合時に隙間が生じる場合があるが、アルミニウム層12Aと銅板22B、金属層13と銅板43、ヒートシンク31と銅板43、の接合される面は、予め当該面の傷が除去されて平滑にされた後に、固相拡散接合されているので、それぞれの接合界面に隙間が生じることを抑制して接合することが可能である。
 また、半導体素子3がはんだ層2を介して銅層12Bに接合される構成とされているので、アルミニウムのみで構成された回路層に接合される場合と比べて、はんだ付けを良好に行うことが可能である。
 また、本実施形態においては、金属層13とヒートシンク31とが接合層33を介して固相拡散接合によって接合されており、金属層13とヒートシンク31との間に、アルミニウムや銅と比較して熱伝導性が劣るはんだやグリースを介在させていないので、金属層13とヒートシンク31との間の熱伝導性を向上させることができる。
 また、銅層12B及びヒートシンク31を一度に接合可能な構成とされているので、製造コストを大幅に低減することが可能である。
 また、本実施形態であるパワーモジュール1は、パワーモジュール用基板10の下方にヒートシンク31を備えているので、半導体素子3から発生する熱がパワーモジュール用基板10に伝達され、ヒートシンク31を介して熱を効率的に放散することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 なお、上記の実施形態においては、銅層とヒートシンクとを固相拡散接合によって、同時に接合する場合について説明したが、銅層を固相拡散接合で形成した後に、ヒートシンクを固相拡散接合する構成とされても良い。
 また、セラミックス基板の第一の面にアルミニウム層を形成した後に、アルミニウム層の一方側に銅板を固相拡散接合して銅層を形成する場合について説明したが、アルミニウム板と銅板を固相拡散接合した後に、セラミックス基板の第一の面に接合する構成とされても良い。
 また、上記の実施形態では、セラミックス基板の第一の面及び第二の面に形成されるアルミニウム層及び金属層を、純度99.99%の純アルミニウムの圧延板として説明したが、これに限定されることはなく、純度99%のアルミニウム(2Nアルミニウム)やアルミニウム合金等であっても良い。
 また、上記の実施形態では、銅層は無酸素銅の銅板で構成されている場合について説明したが、これに限定されることはなく、その他の純銅や銅合金等の銅板で構成されても良い。
 さらに、絶縁層としてAlNからなるセラミックス基板を用いたものとして説明したが、これに限定されることはなく、SiやAl等からなるセラミックス基板を用いても良いし、絶縁樹脂によって絶縁層を構成しても良い。
 また、上記の実施形態では、パワーモジュール用基板が金属層を備える場合について説明したが、金属層を備えていなくても良い。
 また、上記実施の形態では、パワーモジュールがヒートシンクを備える場合について説明したが、ヒートシンクを備えていなくても良い。
 また、上記実施の形態では、パワーモジュール用基板の金属層とヒートシンクとの間に銅板を介在させて固相拡散接合によって接合する場合について説明したが、金属層とヒートシンクとを、はんだやネジ留めなどによって接合しても良い。
(実施例1)
 以下に、本発明の効果を確認すべく行った確認実験(実施例1)の結果について説明する。
 図4のフロー図に記載した手順に従って、表1に示す条件で固相拡散接合を行い、発明例1-1~1-10のヒートシンク付パワーモジュールを作製した。
 なお、セラミックス基板は、AlNで構成され、40mm×40mm、厚さ0.635mmのものを使用した。
 また、回路層のアルミニウム層は、4Nアルミニウムの圧延板で構成され、37mm×37mm、厚さ0.1mmのものを使用した。
 回路層の銅層は、無酸素銅の圧延板で構成され、37mm×37mm、厚さ0.3mmのものを使用した。
 金属層は、4Nアルミニウムの圧延板で構成され、37mm×37mm、厚さ1.6mmのものを使用した。
 接合層は、無酸素銅の圧延板で構成され、37mm×37mm、厚さ0.05mmのものを使用し、ヒートシンクは、A6063合金の圧延板で構成され、50mm×50mm、厚さ5mmのものを使用した。
 また、固相拡散接合は、真空加熱炉内の圧力が、10-6Pa以上、10-3Pa以下の範囲内で行った。
 半導体素子は、IGBT素子とし、12.5mm×9.5mm、厚さ0.25mmのものを使用した。
(ヒートサイクル試験)
 ヒートサイクル試験は、冷熱衝撃試験機エスペック社製TSB-51を使用し、試験片(ヒートシンク付パワーモジュール)に対して、液相(フロリナート)で、-40℃にて5分及び125℃にて5分のサイクルを繰り返して、3000サイクル実施した。
(パワーサイクル試験) 
 パワーサイクル試験は、Sn-Ag-Cuはんだを用いてIGBT素子を銅層へはんだ付けするとともに、アルミニウム合金からなる接続配線をボンディングしてヒートシンク付パワーモジュールとし、これを用いて行った。ヒートシンク中の冷却水温度、流量を一定とした状態で、IGBT素子への通電を、通電(ON)で素子表面温度140℃、非通電(OFF)で素子表面温度80℃となる1サイクルを10秒毎に繰り返すようにして調整し、これを10万回繰り返すパワーサイクル試験を実施した。
 このヒートサイクル試験前後及びパワーサイクル試験前後における、アルミニウム層と銅層との界面における接合率及びヒートシンク付パワーモジュールの熱抵抗を測定した。
(アルミニウム層と銅層との界面の接合率評価)
 パワーサイクル試験前後のヒートシンク付パワーモジュールに対して、アルミニウム層と銅層との界面の接合率について超音波探傷装置を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち本実施例ではアルミニウム層及び銅層の面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
 (接合率)={(初期接合面積)-(剥離面積)}/(初期接合面積)
(熱抵抗評価)
 熱抵抗は、次のようにして測定した。ヒータチップ(半導体素子)を100Wの電力で加熱し、熱電対を用いてヒータチップの温度を実測した。また、ヒートシンクを流通する冷却媒体(エチレングリコール:水=9:1)の温度を実測した。そして、ヒータチップの温度と冷却媒体の温度差を電力で割った値を熱抵抗とした。
 上記の評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
                  
 発明例1-1~1-10では、パワーサイクル試験後及びヒートサイクル試験後の接合率が共に高く、パワーサイクル負荷及びヒートサイクル負荷に対する高い接合の信頼性を有するヒートシンク付パワーモジュールであることが確認できた。
 また、発明例1-1~1-6では、パワーサイクル試験後及びヒートサイクル試験後の接合率が共にさらに高く、パワーサイクル負荷及びヒートサイクル負荷に対し、さらに高い接合の信頼性を有するヒートシンク付パワーモジュールであることが確認できた。
(実施例2)
 以下に、本発明の効果を確認すべく行った確認実験(実施例2)の結果について説明する。
 図4のフロー図に記載した手順に従って、荷重:9kgf/cm、温度:540℃、保持時間:180分の条件で固相拡散接合を行い、発明例2-1~2-8のヒートシンク付パワーモジュールを作製した。
 なお、セラミックス基板は、AlNで構成され、40mm×40mm、厚さ0.635mmのものを使用した。
 回路層のアルミニウム層は、4Nアルミニウムの圧延板で構成され、37mm×37mm、発明例2-1~2-7においては厚さ0.6mmのものを、発明例2-8においては厚さ0.1mmのものを使用した。
 回路層の銅層は、無酸素銅の圧延板(銅板)で構成され、37mm×37mmのものを使用し、銅板の厚さは表2に示す厚さに設定した。
 金属層は、4Nアルミニウムの圧延板で構成され、37mm×37mm、厚さ1.6mmのものを使用した。
 接合層は、無酸素銅の圧延板で構成され、37mm×37mm、厚さ0.05mmのものを使用し、ヒートシンクは、A6063合金の圧延板で構成され、50mm×50mm、厚さ5mmのものを使用した。
 また、固相拡散接合は、真空加熱炉内の圧力が、10-6Pa以上、10-3Pa以下の範囲内で行った。
 半導体素子は、IGBT素子とし、12.5mm×9.5mm、厚さ0.25mmのものを使用した。
 また、従来例1として次のヒートシンク付パワーモジュールを作製した。
 まず、回路層となる無酸素銅からなる銅板(37mm×37mm、厚さ0.3mm)とAlNで構成されたセラミックス基板と金属層となる無酸素銅からなる銅板(37mm×37mm、厚さ0.3mm)とを、Ag-27.4質量%Cu-2.0質量%Tiのろう材箔を介して積層し、積層方向に0.5kgf/cmで加圧した状態で、10-3Paの真空雰囲気とした真空加熱炉内に装入し、850℃で10分加熱することによって、接合し、パワーモジュール用基板を作製した。次に前記パワーモジュール用基板とIGBT素子(12.5mm×9.5mm、厚さ0.25mm)及びヒートシンクを接合し、ヒートシンク付パワーモジュールを作成した。
 さらに、次の手段にて作製したヒートシンク付パワーモジュールを従来例2とした。
 まず、回路層となるアルミニウム板(37mm×37mm、厚さ0.4mm)とAlNで構成されたセラミックス基板と金属層となるアルミニウム板(37mm×37mm、厚さ0.4mm)とを、Al-10質量%Siのろう材箔を介して積層し、積層方向に5kgf/cmで加圧した状態で、真空加熱炉内に装入し、650℃で30分加熱することによって、接合しパワーモジュール用基板を作製した。次に前記パワーモジュール用基板とIGBT素子(12.5mm×9.5mm、厚さ0.25mm)及びヒートシンクを接合し、ヒートシンク付パワーモジュールを作成した。
(ヒートサイクル試験)
 実施例1と同様にして、ヒートシンク付パワーモジュールに対してヒートサイクル試験を行った。
 このヒートサイクル試験後において、セラミックス基板と回路層との界面における接合率を測定した。
(セラミックス基板と回路層との界面の接合率評価)
 ヒートサイクル試験後のヒートシンク付パワーモジュールに対して、セラミックス基板と回路層との界面の接合率について超音波探傷装置を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち本実施例では回路層の面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。なお、ヒートサイクル試験においてセラミックス基板に割れが生じた場合、超音波探傷像において白色部として示され、接合率が小さくなる。したがって、接合率は、界面における剥離面積とセラミックス基板の割れの面積とが合わされて評価されたものである。
 (接合率)={(初期接合面積)-(剥離面積)}/(初期接合面積)
(パワーサイクル試験) 
 実施例1と同様に、ヒートシンク付パワーモジュールに対してパワーサイクル試験を行った。
 このパワーサイクル試験における初期の熱抵抗、及びパワーサイクル試験後の熱抵抗を測定した。熱抵抗の測定については、実施例1と同様の方法で行った。
 上記の評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
                  
 従来例1では、パワーサイクル試験の初期の熱抵抗、及びパワーサイクル試験後の熱抵抗の上昇が小さいが、ヒートサイクル試験においてセラミックス基板に割れが生じ、セラミックス基板と回路層との界面における接合率が低下した。
 また、従来例2では、ヒートサイクル試験後のセラミックス基板と回路層との間の接合率は高いが、パワーサイクル試験において初期の熱抵抗が大きく、試験後の熱抵抗の上昇も大きかった。
 一方、発明例2-1~2-8では、パワーサイクル試験において初期の熱抵抗が小さく、試験後の熱抵抗の上昇も小さく良好であった。さらに、ヒートサイクル試験後において、セラミックス基板とアルミニウム層(回路層)との界面における接合率が大きく良好であった。このように、発明例2-1~2-8は、パワーサイクル及びヒートサイクルの負荷に対して高い信頼性を有するヒートシンク付パワーモジュールであることが確認できた。
 本発明によれば、パワーサイクル負荷時において熱抵抗の上昇を抑制するとともに、ヒートサイクル負荷時においてセラミックス基板に割れが生じることを抑制し、パワーサイクル及びヒートサイクルの負荷に対して高い信頼性を有するパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法を提供することができる。
1 パワーモジュール
3 半導体素子
10 パワーモジュール用基板
11 セラミックス基板(絶縁層)
12 回路層
12A アルミニウム層
12B 銅層
12C 拡散層
13 金属層
30 ヒートシンク付パワーモジュール用基板
31 ヒートシンク

Claims (7)

  1.  絶縁層と、この絶縁層の一方の面に形成された回路層と、を備えたパワーモジュール用基板であって、
     前記回路層は、前記絶縁層の一方の面に配設されたアルミニウム層と、
     このアルミニウム層の一方側に積層された銅層と、を有し、
     前記アルミニウム層と前記銅層は、固相拡散接合されているパワーモジュール用基板。
  2.  前記アルミニウム層と前記銅層との接合界面には、CuとAlからなる拡散層が形成されており、
     前記拡散層は、複数の金属間化合物が前記接合界面に沿って積層した構造とされ、
     前記銅層と前記拡散層との接合界面には、酸化物が、前記接合界面に沿って層状に分散している請求項1に記載のパワーモジュール用基板。
  3.  前記銅層の厚さは、0.1mm以上6.0mm以下とされている請求項1または請求項2に記載のパワーモジュール用基板。
  4.  請求項1から請求項3のいずれか一項に記載の前記パワーモジュール用基板と、このパワーモジュール用基板の他方側に接合されたヒートシンクと、を備えているヒートシンク付パワーモジュール用基板。
  5.  請求項1から請求項3のいずれか一項に記載のパワーモジュール用基板と、前記回路層の一方側に接合された半導体素子と、を備えているパワーモジュール。
  6.  絶縁層と、この絶縁層の一方の面に形成された回路層と、を備えたパワーモジュール用基板の製造方法であって、
     前記絶縁層の一方の面に、回路層を形成する回路層形成工程を備え、
     前記回路層形成工程は、
     前記絶縁層の一方の面に、アルミニウム層を配設するアルミニウム層配設工程と、
     前記アルミニウム層の一方側に、銅層を積層する銅層積層工程と、を有し、
     前記銅層積層工程において、前記アルミニウム層と前記銅層とを、固相拡散接合するパワーモジュール用基板の製造方法。
  7.  前記銅層積層工程において、
     前記アルミニウム層の一方側に銅板を積層し、
     前記アルミニウム層と前記銅板に対して、3kgf/cm以上35kgf/cm以下の荷重を負荷した状態で、400℃以上548℃未満で保持することにより、前記アルミニウム層と前記銅板とを固相拡散接合する請求項6に記載のパワーモジュール用基板の製造方法。
PCT/JP2013/059500 2012-03-30 2013-03-29 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 WO2013147144A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/388,051 US9723707B2 (en) 2012-03-30 2013-03-29 Power module substrate, power module substrate with heatsink, power module, and method for producing power module substrate
KR1020147023551A KR101971756B1 (ko) 2012-03-30 2013-03-29 파워 모듈용 기판, 히트 싱크 부착 파워 모듈용 기판, 파워 모듈 및 파워 모듈용 기판의 제조 방법
EP13767363.8A EP2833398B1 (en) 2012-03-30 2013-03-29 Power module substrate, and method for manufacturing a power module substrate
IN8073DEN2014 IN2014DN08073A (ja) 2012-03-30 2013-03-29
CN201380015967.0A CN104205323B (zh) 2012-03-30 2013-03-29 功率模块用基板、自带散热器的功率模块用基板、功率模块及功率模块用基板的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012083249 2012-03-30
JP2012-083249 2012-03-30
JP2012-203362 2012-09-14
JP2012203362A JP5403129B2 (ja) 2012-03-30 2012-09-14 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2013147144A1 true WO2013147144A1 (ja) 2013-10-03

Family

ID=49260386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059500 WO2013147144A1 (ja) 2012-03-30 2013-03-29 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法

Country Status (7)

Country Link
US (1) US9723707B2 (ja)
EP (1) EP2833398B1 (ja)
JP (1) JP5403129B2 (ja)
KR (1) KR101971756B1 (ja)
CN (1) CN104205323B (ja)
IN (1) IN2014DN08073A (ja)
WO (1) WO2013147144A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2898979A4 (en) * 2012-09-21 2016-06-08 Mitsubishi Materials Corp CONNECTING STRUCTURE FOR AN ALUMINUM AND COPPER ELEMENT
CN106537580A (zh) * 2014-07-29 2017-03-22 电化株式会社 陶瓷电路基板及其制造方法
JP2017063127A (ja) * 2015-09-25 2017-03-30 三菱マテリアル株式会社 発光モジュール用基板、発光モジュール、冷却器付き発光モジュール用基板、および発光モジュール用基板の製造方法
US9968012B2 (en) 2012-10-16 2018-05-08 Mitsubishi Materials Corporation Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate
WO2021140785A1 (ja) * 2020-01-09 2021-07-15 古河電気工業株式会社 金属接合材

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307832B2 (ja) * 2013-01-22 2018-04-11 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール
JP6413229B2 (ja) * 2013-11-14 2018-10-31 三菱マテリアル株式会社 抵抗器及び抵抗器の製造方法
JP6413230B2 (ja) * 2013-11-14 2018-10-31 三菱マテリアル株式会社 抵抗器及び抵抗器の製造方法
US9969654B2 (en) 2014-01-24 2018-05-15 United Technologies Corporation Method of bonding a metallic component to a non-metallic component using a compliant material
JP6269116B2 (ja) * 2014-02-05 2018-01-31 三菱マテリアル株式会社 下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、下地層付き金属部材の製造方法
JP6192561B2 (ja) * 2014-02-17 2017-09-06 三菱電機株式会社 電力用半導体装置
JP6384112B2 (ja) 2014-04-25 2018-09-05 三菱マテリアル株式会社 パワーモジュール用基板及びヒートシンク付パワーモジュール用基板
CN106471616B (zh) * 2014-07-02 2019-05-31 三菱综合材料株式会社 接合体和多层接合体制法、功率模块基板和带散热器功率模块基板制法及层叠体制造装置
WO2016002804A1 (ja) * 2014-07-02 2016-01-07 三菱マテリアル株式会社 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置
US9837363B2 (en) * 2014-07-04 2017-12-05 Mitsubishi Materials Corporation Power-module substrate unit and power module
JP6396703B2 (ja) * 2014-07-08 2018-09-26 トヨタ自動車株式会社 半導体素子用放熱部品の製造方法
JP6435711B2 (ja) * 2014-08-21 2018-12-12 三菱マテリアル株式会社 放熱板付パワーモジュール用基板及びパワーモジュール
JP6432466B2 (ja) * 2014-08-26 2018-12-05 三菱マテリアル株式会社 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP6432465B2 (ja) * 2014-08-26 2018-12-05 三菱マテリアル株式会社 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP6428327B2 (ja) * 2015-02-04 2018-11-28 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、パワーモジュール、及び、ヒートシンク付パワーモジュール用基板の製造方法
JP6575386B2 (ja) * 2015-03-11 2019-09-18 三菱マテリアル株式会社 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
WO2016143631A1 (ja) * 2015-03-11 2016-09-15 三菱マテリアル株式会社 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法
JP6696215B2 (ja) 2015-04-16 2020-05-20 三菱マテリアル株式会社 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
DE102015111667A1 (de) 2015-07-17 2017-01-19 Rogers Germany Gmbh Substrat für elektrische Schaltkreise und Verfahren zur Herstellung eines derartigen Substrates
JP6638282B2 (ja) * 2015-09-25 2020-01-29 三菱マテリアル株式会社 冷却器付き発光モジュールおよび冷却器付き発光モジュールの製造方法
CN108346637B (zh) * 2017-01-24 2019-10-08 比亚迪股份有限公司 一种功率模块及其制造方法
JP6776953B2 (ja) * 2017-03-07 2020-10-28 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板
JP6717245B2 (ja) 2017-03-17 2020-07-01 三菱マテリアル株式会社 接合体の製造方法、絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
DE102017217537B4 (de) 2017-10-02 2021-10-21 Danfoss Silicon Power Gmbh Leistungsmodul mit integrierter Kühleinrichtung
JP7039933B2 (ja) * 2017-11-06 2022-03-23 三菱マテリアル株式会社 接合体、絶縁回路基板、ヒートシンク付絶縁回路基板、ヒートシンク、及び、接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付絶縁回路基板の製造方法、ヒートシンクの製造方法
JP6601512B2 (ja) 2018-01-24 2019-11-06 三菱マテリアル株式会社 ヒートシンク付きパワーモジュール用基板及びパワーモジュール
KR20200138262A (ko) * 2018-03-26 2020-12-09 미쓰비시 마테리알 가부시키가이샤 절연 회로 기판용 접합체의 제조 방법 및 절연 회로 기판용 접합체
JP7167642B2 (ja) * 2018-11-08 2022-11-09 三菱マテリアル株式会社 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク
JP7342371B2 (ja) * 2019-02-14 2023-09-12 三菱マテリアル株式会社 絶縁回路基板、及び、絶縁回路基板の製造方法
CN110216939B (zh) * 2019-04-25 2022-02-15 吉林省中赢高科技有限公司 一种铜铝复合基材及其压力扩散焊接加工方法和应用
JP2022139874A (ja) * 2021-03-12 2022-09-26 三菱マテリアル株式会社 ヒートシンク一体型絶縁回路基板
WO2022229038A1 (en) * 2021-04-25 2022-11-03 Danfoss Silicon Power Gmbh Electronic device with improved cooling
WO2023100917A1 (ja) 2021-11-30 2023-06-08 三菱マテリアル株式会社 接合用金属ペースト、および、接合体の製造方法、絶縁回路基板の製造方法
WO2023100939A1 (ja) 2021-11-30 2023-06-08 三菱マテリアル株式会社 仮止め材、および、接合体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171234B2 (ja) 1997-03-26 2001-05-28 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP2003078086A (ja) * 2001-09-04 2003-03-14 Kubota Corp 半導体素子モジュール基板の積層構造
JP2010034238A (ja) * 2008-07-28 2010-02-12 Shin Kobe Electric Mach Co Ltd 配線板
WO2011155379A1 (ja) * 2010-06-08 2011-12-15 株式会社Neomaxマテリアル アルミニウム銅クラッド材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952938A (en) * 1973-12-10 1976-04-27 Clad Metals, Inc. Method of making multiple member composite metal products
US4427716A (en) * 1983-01-21 1984-01-24 General Electric Company Method for predetermining peel strength at copper/aluminum interface
JPH08255973A (ja) * 1995-03-17 1996-10-01 Toshiba Corp セラミックス回路基板
JP3012835B2 (ja) 1997-11-07 2000-02-28 電気化学工業株式会社 基板とその製造法、基板に好適な金属接合体
JP4055596B2 (ja) * 2003-02-05 2008-03-05 日本発条株式会社 複合材
WO2005014217A1 (ja) * 2003-08-07 2005-02-17 Sumitomo Precision Products Co., Ltd. Al-Cu接合構造物およびその製造方法
IN2012DN02727A (ja) * 2009-09-09 2015-09-11 Mitsubishi Materials Corp
DK2495067T3 (da) * 2009-10-26 2014-07-07 Neomax Materials Co Ltd Beklædningsmateriale med et af en nikkel-magnesium-legering dannet bindelegeringslag
JP5884291B2 (ja) * 2011-04-20 2016-03-15 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856B2 (ja) 1994-11-02 2001-09-25 電気化学工業株式会社 回路基板
JP3171234B2 (ja) 1997-03-26 2001-05-28 三菱マテリアル株式会社 ヒートシンク付セラミック回路基板
JP2003078086A (ja) * 2001-09-04 2003-03-14 Kubota Corp 半導体素子モジュール基板の積層構造
JP2010034238A (ja) * 2008-07-28 2010-02-12 Shin Kobe Electric Mach Co Ltd 配線板
WO2011155379A1 (ja) * 2010-06-08 2011-12-15 株式会社Neomaxマテリアル アルミニウム銅クラッド材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833398A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2898979A4 (en) * 2012-09-21 2016-06-08 Mitsubishi Materials Corp CONNECTING STRUCTURE FOR AN ALUMINUM AND COPPER ELEMENT
US10011093B2 (en) 2012-09-21 2018-07-03 Mitsubishi Materials Corporation Bonding structure of aluminum member and copper member
US9968012B2 (en) 2012-10-16 2018-05-08 Mitsubishi Materials Corporation Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate
CN106537580A (zh) * 2014-07-29 2017-03-22 电化株式会社 陶瓷电路基板及其制造方法
JP2017063127A (ja) * 2015-09-25 2017-03-30 三菱マテリアル株式会社 発光モジュール用基板、発光モジュール、冷却器付き発光モジュール用基板、および発光モジュール用基板の製造方法
WO2017051798A1 (ja) * 2015-09-25 2017-03-30 三菱マテリアル株式会社 発光モジュール用基板、発光モジュール、冷却器付き発光モジュール用基板、および発光モジュール用基板の製造方法
WO2021140785A1 (ja) * 2020-01-09 2021-07-15 古河電気工業株式会社 金属接合材
JPWO2021140785A1 (ja) * 2020-01-09 2021-07-15
JP7051000B2 (ja) 2020-01-09 2022-04-08 古河電気工業株式会社 金属接合材

Also Published As

Publication number Publication date
US20150041188A1 (en) 2015-02-12
JP5403129B2 (ja) 2014-01-29
EP2833398A4 (en) 2016-01-20
CN104205323B (zh) 2018-04-06
KR101971756B1 (ko) 2019-04-23
CN104205323A (zh) 2014-12-10
IN2014DN08073A (ja) 2015-05-01
JP2013229545A (ja) 2013-11-07
KR20140142235A (ko) 2014-12-11
EP2833398A1 (en) 2015-02-04
EP2833398B1 (en) 2018-06-20
US9723707B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP5403129B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
KR102122625B1 (ko) 파워 모듈용 기판, 히트 싱크가 형성된 파워 모듈용 기판, 히트 싱크가 형성된 파워 모듈
JP5614485B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP6111764B2 (ja) パワーモジュール用基板の製造方法
JP6384112B2 (ja) パワーモジュール用基板及びヒートシンク付パワーモジュール用基板
KR102422607B1 (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 및 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 히트 싱크의 제조 방법
TWI641300B (zh) 接合體及功率模組用基板
US9807865B2 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JP5991102B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP6696214B2 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
TWI637466B (zh) 接合體及功率模組用基板
TWI609461B (zh) 接合體之製造方法及功率模組用基板之製造方法
JP5991103B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP6958441B2 (ja) ヒートシンク付き絶縁回路基板の製造方法
JP2014039062A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
JP6303420B2 (ja) パワーモジュール用基板
JP7039933B2 (ja) 接合体、絶縁回路基板、ヒートシンク付絶縁回路基板、ヒートシンク、及び、接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付絶縁回路基板の製造方法、ヒートシンクの製造方法
JP6673635B2 (ja) 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法、及び、接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023551

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388051

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013767363

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE