WO2009147938A1 - 新規な樹脂組成物及びその利用 - Google Patents

新規な樹脂組成物及びその利用 Download PDF

Info

Publication number
WO2009147938A1
WO2009147938A1 PCT/JP2009/058975 JP2009058975W WO2009147938A1 WO 2009147938 A1 WO2009147938 A1 WO 2009147938A1 JP 2009058975 W JP2009058975 W JP 2009058975W WO 2009147938 A1 WO2009147938 A1 WO 2009147938A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
solution
imide oligomer
carboxylic acid
Prior art date
Application number
PCT/JP2009/058975
Other languages
English (en)
French (fr)
Inventor
由英 関藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2010515822A priority Critical patent/JP5735275B2/ja
Priority to US12/993,721 priority patent/US9458279B2/en
Priority to CN2009801195146A priority patent/CN102046727B/zh
Publication of WO2009147938A1 publication Critical patent/WO2009147938A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to a thermosetting resin composition that can be cured at a low temperature and can be suitably used as an insulating material for electric and electronic applications, and an insulating material that can be cured at a low temperature and used for electric and electronic applications. It is related with the photosensitive resin composition which can be used suitably as an alkaline aqueous solution developable, the cured film obtained from them, an insulating film, and a printed wiring board with an insulating film.
  • Polyimide resin is used for electrical and electronic applications because of its excellent heat resistance, electrical insulation and chemical resistance, and excellent mechanical properties. For example, it is used to form insulating films and protective coatings on semiconductor devices, surface protective materials such as flexible circuit boards and integrated circuits, base resin, and fine circuit interlayer insulating films and protective films. .
  • a coverlay film obtained by applying an adhesive to a molded body such as a polyimide film, or a liquid liquid covercoat ink composed of a polyimide resin or the like is used. Has been.
  • a polyimide resin solution used for such a liquid cover coat ink for example, a polyimide resin composition using a thermosetting resin such as a polyimide resin soluble in an organic solvent and an epoxy resin has been proposed.
  • a thermosetting resin such as a polyimide resin soluble in an organic solvent and an epoxy resin
  • a curable resin composition containing an imide-based oligomer having an acid anhydride group at the terminal and an epoxy resin obtained from an asymmetric aromatic or alicyclic tetracarboxylic dianhydride and diaminopolysiloxane has been proposed (for example, see Patent Document 6.)
  • JP-A-11-199669 JP 2002-371182 A Japanese Patent Laying-Open No. 2005-220339 JP 2006-96825 A JP 2001-316469 A JP 2002-97270 A
  • the polyimide resin compositions described in Patent Documents 1 to 4 above are high molecular weight polymer solutions, the solute has a large molecular weight, and the solvent solubility is low. Therefore, for example, when forming a coating film, it is necessary to volatilize a large amount of solvent, and it is difficult to obtain a uniform film thickness of the coating film, resulting in poor productivity. It was.
  • the composition contains a cross-linking agent, the viscosity of the solution increases dramatically even when the high molecular weight polymer slightly reacts with the cross-linking agent in the composition. There was also a problem that it was poor in nature and easily gelled.
  • the curable imide resin composition in which the carboxyl group-containing amideimide resin and / or carboxyl group-containing imide resin having a low molecular weight described in Patent Document 5 and an epoxy resin are dissolved is an oligomer having no flexible skeleton. Since the terminal carboxyl group of the resin reacts with the epoxy resin, the crosslink density becomes very high, and the resulting cured film is hard and brittle. For example, the flexible printed wiring board has high flexibility and requires bending characteristics. When used as an insulating protective film for a base material, there is a problem that the insulating protective film is broken at the time of bending, and the printed wiring board is warped after thermosetting at the time of forming the cured film.
  • a cured film obtained by curing is used as, for example, a circuit board material, there is a problem that impurities contained in diaminopolysiloxane bleed out from the cured film and cause a semiconductor malfunction.
  • the wettability of the cured film surface was bad and adhesiveness with various sealing agents was bad.
  • the problem of the present invention is that it can be cured at a low temperature (200 ° C. or lower), is flexible, has excellent electrical insulation reliability, solder heat resistance, and organic solvent resistance, and warps the substrate after curing.
  • the present invention provides a thermosetting resin composition, a photosensitive resin composition, a resin composition solution, a resin film, an insulating film, and a printed wiring board with an insulating film that are small in size and excellent in adhesion with a sealant.
  • the present inventors have cured at a low temperature (200 ° C. or less) from a composition containing at least (A) a terminal carboxylic acid urethane imide oligomer and (B) a thermosetting resin. It is possible to obtain a cured film that is excellent in flexibility, electrical insulation reliability, solder heat resistance, organic solvent resistance, small warpage of the substrate after curing, and excellent adhesion to the sealant. I found it.
  • the resin composition solution containing (A) a terminal carboxylic acid urethane imide oligomer and (B) a thermosetting resin despite being dissolved in a high concentration when prepared into a solution.
  • the present inventors have obtained knowledge that cured films having low viscosity and good physical properties can be obtained from this solution, and have reached the present invention based on these findings.
  • the present invention can solve the above problems by a resin composition having the following novel structure.
  • thermosetting resin composition according to the present invention is characterized by containing at least (A) a terminal carboxylic acid urethane imide oligomer and (B) a thermosetting resin.
  • the (A) terminal carboxylic acid urethane imide oligomer is preferably a tetracarboxylic acid urethane imide oligomer.
  • the said (A) terminal carboxylic acid urethane imide oligomer is at least (a) the diol compound shown by following General formula (1), (b) The following general formula ( The terminal isocyanate compound is synthesized by reacting with the diisocyanate compound represented by 2), and then (c) the terminal acid anhydride urethane imide oligomer is reacted with the tetracarboxylic dianhydride represented by the following general formula (3). It is preferably synthesized and then (d) obtained by reacting water and / or a primary alcohol.
  • R represents a divalent organic group, and l is an integer of 1 to 20.
  • thermosetting resin composition concerning this invention, it is preferable that the said (a) diol compound contains the polycarbonate diol shown by following General formula (4) at least.
  • thermosetting resin composition concerning this invention, it is preferable that the said (A) terminal carboxylic acid urethane imide oligomer contains a carboxyl group also in a side chain.
  • thermosetting resin composition according to the present invention, the blending ratio of the (B) thermosetting resin is 1 to 100 parts by weight with respect to 100 parts by weight of the (A) terminal carboxylic acid urethane imide oligomer. It is preferable that they are blended as described above.
  • the photosensitive resin composition according to the present invention is characterized by containing at least the thermosetting resin composition, (C) a photosensitive resin, and (D) a photopolymerization initiator.
  • thermosetting resin In the photosensitive resin composition concerning this invention, (A) terminal carboxylic acid urethane imide oligomer, (B) thermosetting resin, (C) photosensitive resin, and (D) photoinitiator are (A) terminal carboxylic acid. (C) 10 to 200 parts by weight of the photosensitive resin, and (D) the photopolymerization initiator is 0.1 parts by weight based on 100 parts by weight of the total solid content of the acid urethane imide oligomer and the (B) thermosetting resin. It is preferably blended so as to be ⁇ 50 parts by weight.
  • the resin composition solution according to the present invention is obtained by dissolving the thermosetting resin composition or the photosensitive resin composition in an organic solvent.
  • the resin film according to the present invention is obtained by applying the resin composition solution to the substrate surface and drying it.
  • the insulating film according to the present invention is obtained by curing the resin film.
  • the printed wiring board with an insulating film according to the present invention is obtained by coating the above insulating film on the printed wiring board.
  • the thermosetting resin composition of the present invention has a structure containing at least (A) a terminal carboxylic acid urethane imide oligomer and (B) a thermosetting resin, and is thus soluble in an organic solvent. In this case, the solution has a low viscosity even though the solute is dissolved at a high concentration.
  • the cured film obtained from the thermosetting resin composition of the present invention has excellent physical properties, excellent coating film adhesion, environmental test stability, chemical resistance, flexibility, and coating film wettability. . Therefore, the thermosetting resin composition of the present invention can be used for protective films of various circuit boards and exhibits excellent effects.
  • the photosensitive resin composition using the thermosetting resin composition of the present invention can be cured at low temperature without using siloxane diamine, and has various excellent properties when applied and molded on a wiring board. Is expressed.
  • thermosetting resin composition of this invention should just contain (A) terminal carboxylic acid urethane imide oligomer and (B) thermosetting resin at least.
  • thermosetting resin composition of this invention although the terminal tetracarboxylic acid urethane imide oligomer obtained using polycarbonate diol is used more preferably, it is limited to this. Is not to be done.
  • thermosetting resin of the present invention are excellent in various properties. However, this is presumed to be due to the following reasons.
  • the (A) terminal carboxylic acid urethane imide oligomer is an oligomer having an imide skeleton and a urethane bond in the molecule, it is not only excellent in solubility in an organic solvent, but also mixed with a crosslinking agent and left at room temperature. In this case, even if it reacts slightly with the oligomer, the molecular weight of the oligomer region is still maintained, so that a thermosetting resin composition solution having excellent viscosity stability at room temperature can be obtained.
  • the cured film containing this is excellent in heat resistance derived from an imide skeleton, electrical insulation reliability and flame retardancy, and excellent in chemical resistance and flexibility derived from a urethane bond.
  • a cured film obtained from a terminal tetracarboxylic acid urethane imide oligomer obtained by using a polycarbonate diol surprisingly has a hydrolytic property of urethane bonds under high temperature and high humidity due to the excellent hydrolysis resistance of the polycarbonate skeleton. It becomes possible to suppress decomposition and has excellent hydrolysis resistance.
  • the carboxyl group contained in the terminal carboxylic acid urethane imide oligomer is heated to (B) react with the thermosetting resin to increase the molecular weight with three-dimensional crosslinking.
  • the terminal carboxylic acid is a tetracarboxylic acid
  • the activity of the tetracarboxylic acid is stabilized at a low temperature at room temperature.
  • the viscosity stability of the curable resin composition solution is very good, and no increase in viscosity occurs due to the reaction between the carboxylic acid and the thermosetting resin.
  • the reaction between the (A) terminal carboxylic acid urethane imide oligomer and the crosslinking agent (B) thermosetting resin proceeds at a temperature of 200 ° C. or less and about 160 to 170 ° C. Due to the flexibility derived from the urethane bond and raw material diol component contained in the oligomer and the high mobility of the molecular skeleton derived from the low molecular weight, molecular motion is active even in the curing temperature range of about 160-170 ° C. As a result of sufficient collision between the terminal carboxyl group and the crosslinking agent, the high molecular weight reaction proceeds while generating three-dimensional crosslinking.
  • the resulting cured film surface has good wettability, not only very good adhesion to various members, but also derived from the siloxane component from the cured film Therefore, when a cured film is used as an insulating film of a printed wiring board, the semiconductor does not malfunction.
  • Terminal carboxylic acid urethane imide oligomer used in the present invention has at least one carboxylic acid at the terminal, has a urethane structure inside, and the imide ring is closed, and the number average molecular weight is in terms of polyethylene glycol.
  • the oligomer is 30,000 or less, more preferably 20,000 or less.
  • terminal carboxylic acid urethane imide oligomer does not have a siloxane bond in the main chain skeleton, and has the following general formula (5)
  • R and X each independently represent a divalent organic group, and n represents an integer of 1 or more.
  • n represents an integer of 1 or more.
  • each of R 2 independently represents a divalent organic group
  • R 3 independently represents a hydrogen atom or an alkyl group
  • Y represents a tetravalent organic group
  • p represents Indicates an integer of 0 or more.
  • the number average molecular weight of the terminal carboxylic acid urethane imide oligomer of the present invention is preferably 30,000 or less, more preferably 20,000 or less, and particularly preferably 15,000 or less in terms of polyethylene glycol. Controlling the number average molecular weight within the above range is preferable because the solubility of the terminal carboxylic acid urethane imide oligomer in the organic solvent is improved.
  • the terminal carboxylic acid urethane imide oligomer of the present invention has no siloxane bond in the structure, it has excellent wettability on the surface of a cured film formed using this, and has good adhesion to various sealants. It is. Furthermore, since the bond in the structure is not an amide bond but an imide bond, the storage stability is excellent. Therefore, it is possible to suppress a change in the viscosity of the solution with time when the resin composition solution is prepared and stored.
  • the (A) terminal carboxylic acid urethane imide oligomer used in the present invention is not particularly limited as long as it has the above structure, but more preferably, at least (a) the following general formula (1) )
  • Y represents a tetravalent organic group. It is obtained by reacting a tetracarboxylic dianhydride represented by the following formula to synthesize a terminal acid anhydride urethane imide oligomer, and (d) reacting with water and / or a primary alcohol.
  • the (a) diol compound used in the present invention is a branched or straight-chain compound having two hydroxyl groups in the molecule represented by the general formula (1).
  • the diol compound is not particularly limited as long as it has the above structure.
  • ethylene glycol diethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neo Pentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decane Diols, alkylene diols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol, dimethylolpropionic acid (2,2-bis (hydroxymethyl) propionic acid), dimethylolbutanoic acid (2,2-bis ( Hydroxymethyl) butanoic acid), 2,3-dihydroxybenzoic acid, 2 Carboxyl group-containing diols such as 4-dihydroxybenzoic acid, 1,
  • polycarbonate diol More specific examples of the polycarbonate diol include, for example, trade names PCDL T-4671, T-4672, T-4691, T-4692, T-5650J, T-5651, T-5651 manufactured by Asahi Kasei Chemicals Corporation. T-6001, T-6002, Daicel Chemical Industries, Ltd. Product Name Plaxel CD CD205, CD205PL, CD205HL, CD210, CD210PL, CD210HL, CD220, CD220PL, CD220HL, Kuraray Co., Ltd.
  • the number average molecular weight of the polycarbonate diol is preferably 500 to 5000, more preferably 750 to 2500, and particularly preferably 1000 to 2000 in terms of polystyrene.
  • the number average molecular weight of the polycarbonate diol is within the above range, it is preferable in that the chemical resistance and flexibility of the obtained cured film can be improved.
  • the number average molecular weight is less than 500, the flexibility of the resulting cured film may be reduced, and when it is 5000 or more, the solvent solubility of the terminal carboxylic acid urethane imide oligomer may be reduced.
  • a carboxyl group can be introduced into the side chain of the terminal carboxylic acid urethane imide oligomer.
  • the branch point of the main chain of a terminal carboxylic acid urethane imide oligomer increases, crystallinity falls, and it is preferable at the point which can improve the solvent solubility of a terminal carboxylic acid urethane imide oligomer.
  • the (b) diisocyanate compound used in the present invention is a compound having two isocyanate groups in the molecule, represented by the general formula (2).
  • Examples of the (b) diisocyanate compound include diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- Or 5,2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2 ' -Or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, Diphenylmethane-3,3'-di Cyan
  • blocking agents include alcohol, phenol, oxime and the like, but are not particularly limited.
  • Diisocyanate compounds include diphenylmethane-4,4'-diisocyanate, diphenylmethane-3,3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate It is particularly preferable to use norbornene diisocyanate. Thereby, it is preferable at the point which can improve the heat resistance of the cured film obtained, and water resistance further.
  • the reaction with (b) diisocyanate compound may be carried out after mixing two or more types of (a) diol compounds. You may react a compound and (b) diisocyanate compound separately. Moreover, after reacting (a) diol compound and (b) diisocyanate compound, the obtained terminal isocyanate compound is further reacted with another (a) diol compound, and this is further reacted with (b) diisocyanate compound. May be. The same applies when two or more types of (b) diisocyanate compounds are used. In this way, a desired terminal isocyanate compound can be produced.
  • the reaction temperature between (a) and (b) is preferably 40 to 160 ° C, more preferably 60 to 150 ° C. If it is less than 40 ° C., the reaction time becomes too long. If it exceeds 160 ° C., a three-dimensional reaction occurs during the reaction and gelation tends to occur.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed. If necessary, the reaction may be performed in the presence of a catalyst such as a tertiary amine, an alkali metal, an alkaline earth metal, a metal such as tin, zinc, titanium, cobalt, or a metalloid compound.
  • the above reaction can be carried out in the absence of a solvent.
  • the organic solvent include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N , N-dimethylformamide, N, N-diethylformamide and other formamide solvents, N, N-dimethylacetamide, N, N-diethylacetamide and other acetamide solvents, N-methyl-2-pyrrolidone, N-vinyl-2 -Pyrrolidone solvents such as pyrrolidone, phenol solvents such as phenol, o-, m- or p-cresol, xylenol, halogenated phenol, catechol, hexamethylphosphoramide, ⁇ -butyrolactone and the like.
  • these organic polar solvents can be used in combination with an aromatic hydrocarbon such as
  • the amount of solvent used in the reaction is desirably such that the solute weight concentration in the reaction solution, that is, the solution concentration is 5% by weight or more and 90% by weight or less.
  • the solute weight concentration in the reaction solution is more preferably 10 wt% or more and 80 wt% or less.
  • the terminal isocyanate compound obtained by the above reaction can also block the isocyanate group at the resin end with a blocking agent such as alcohols, lactams, oximes after the completion of synthesis.
  • a blocking agent such as alcohols, lactams, oximes after the completion of synthesis.
  • the terminal acid anhydride urethane imide oligomer used in the present invention can be obtained by reacting the terminal isocyanate compound obtained as described above with tetracarboxylic dianhydride.
  • combination of the said terminal isocyanate compound may be used for reaction of a terminal isocyanate compound and tetracarboxylic dianhydride as it is, and also said solvent can be added in addition.
  • tetracarboxylic dianhydride examples include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-oxydiphthalic dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis (4-hydroxyphenyl) ) Propanedibenzoate-3,3 ′, 4,4′-tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Biphenyltetracarboxylic dianhydride, 2,3,3 ', 4-biphenyltetracardianhydride
  • the tetracarboxylic dianhydride used in the synthesis of the terminal acid anhydride urethane imide oligomer is 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 3, 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and 3,3 ′, 4,4′-oxydiphthalic dianhydride.
  • the solubility of the terminal carboxylic acid urethane imide oligomer obtained in an organic solvent can be improved, and the chemical resistance of the resulting cured film is improved.
  • tetracarboxylic dianhydride 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride or 5- (2,5-dioxotetrahydro-3-furanyl)
  • -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride is more preferable from the viewpoint of compatibility with other materials in the thermosetting resin composition.
  • the amount of the tetracarboxylic dianhydride used in the present invention is as follows when the amount of the polyol (more specifically, the diol compound) used in the production of the terminal isocyanate compound is 1 mol. It is preferably used in a proportion of 50 mol or more and 2.50 mol or less in order to arrange a carboxyl group at both ends of the terminal carboxylic acid urethane imide oligomer, and a particularly preferable use range is 1.90 mol or more and 2.10 mol or less. It is to use at the rate of. This is preferable because tetracarboxylic dianhydride that does not contribute to the reaction can be reduced.
  • ⁇ Method for producing terminal acid anhydride urethane imide oligomer Various methods are mentioned as a reaction method of a terminal isocyanate compound and tetracarboxylic dianhydride in the manufacturing method of a terminal acid anhydride urethane imide oligomer. The typical method is illustrated below. However, any method may be used as long as tetracarboxylic dianhydride is arranged at the terminal.
  • Method 1 A terminal isocyanate compound is gradually added to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent.
  • the reaction temperature at this time is 100 ° C. or higher and 300 ° C. or lower, more preferably 140 ° C. or higher and 250 ° C. or lower. It is preferred that the reaction occurs and imidization proceeds at the same time when the terminal isocyanate compound is added by heating to such a temperature. However, after the terminal isocyanate compound and tetracarboxylic dianhydride are completely dissolved at a low temperature, a method of imidizing by heating to a high temperature may be used.
  • Method 2 A terminal isocyanate compound is gradually added and dissolved in a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent. Imidization can be carried out by drawing a vacuum while heating and drying a uniformly dissolved solution heated to 100 ° C. or higher and 250 ° C. or lower.
  • the terminal carboxylic acid urethane imide oligomer can be obtained by reacting water and / or a primary alcohol with the terminal acid anhydride urethane imide oligomer that can be obtained by the above method.
  • a primary alcohol for example, methanol, ethanol, propanol, a butanol etc. can be used suitably.
  • the terminal acid anhydride urethane imide oligomer As a method of reacting the terminal acid anhydride urethane imide oligomer with water and / or primary alcohol, water and / or primary alcohol is added to the terminal acid anhydride urethane imide oligomer, and the terminal acid anhydride urethane imide oligomer is used. It is preferable to add the ring at a rate of 2.0 to 300 times, more preferably 2.0 to 200 times the molar amount of the tetracarboxylic dianhydride used for the production, thereby opening the ring. This reaction can be carried out without solvent.
  • sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide
  • formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide, N, N-dimethylacetamide
  • Acetamide solvents such as N, N-diethylacetamide
  • pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, o-, m- or p-cresol, xylenol, halogenated Phenol solvents such as phenol and catechol, or hexamethylphosphoramide, ⁇ -butyrolactone, methylmonoglyme (1,2-dimethoxyethane), methyldiglyme (bis (2-methoxyether) ether), methyltriglyme ( 1,2-bis (2-mesh Xyloxy) ethane), methyltetraglyme (bis [2- (2
  • low-boiling hexane, acetone, toluene, xylene and the like can be used in combination.
  • symmetric glycol diethers are particularly preferable because of high solubility of oligomers.
  • the above reaction is preferably heated in such a range that the added water and / or primary alcohol does not come out of the reaction system, and is heated in a temperature range of 20 ° C. or higher and 150 ° C. or lower, more preferably 120 ° C. or lower. Is preferable because it facilitates the reaction. It should be noted that the amount of water and / or primary alcohol added is preferably large, but if it is too large, the solubility of other added resins decreases, so that it is preferable to remove unreacted substances after the reaction.
  • the temperature at which unreacted substances are removed after the reaction is preferably equal to or higher than the boiling point of the added water and / or primary alcohol. Unreacted substances can be removed out of the system by heating at such a temperature.
  • the (B) thermosetting resin in the present invention is a compound that generates a crosslinked structure by heating and functions as a crosslinking agent.
  • a crosslinking agent for example, amino resin, melamine resin, guanamine resin, urea resin, sulfoamide resin, aniline resin, cyanate ester resin, isocyanate resin, epoxy resin, phenoxy resin, phenol resin, xylene resin, furan resin, oxetane resin, bismaleimide resin,
  • Thermosetting resins such as bisallyl nadiimide resin, benzoxazine resin, oxazoline resin, acrylic resin, methacrylic resin, hydrosilyl cured resin, allyl cured resin, alkyd resin, unsaturated polyester resin; on the side chain or terminal of polymer chain
  • a side chain reactive group type thermosetting polymer having a reactive group such as an allyl group, a vinyl group, an alkoxysilyl group, a hydrosily
  • thermosetting resin As the thermosetting resin, it is more preferable to use an epoxy resin as the thermosetting resin.
  • an epoxy resin component By containing an epoxy resin component, heat resistance can be imparted to a cured film obtained by curing a thermosetting resin composition, and adhesion to a conductor such as a metal foil or a circuit board can be imparted. .
  • the epoxy resin is a compound containing at least two epoxy groups in the molecule.
  • a bisphenol A type epoxy resin product names jER828, jER1001, jER1002, and ADEKA manufactured by Japan Epoxy Resin Co., Ltd.
  • the product names Epototo YD-115, Epototo YD-127, Epototo YD-128, manufactured by Toto Kasei Co., Ltd., and the bisphenol F type epoxy resin include the product names jER806 and jER manufactured by Japan Epoxy Resins Co., Ltd. 07, trade names Adeka Resin EP-4901E, Adeka Resin EP-4930, Adeka Resin EP-4950, manufactured by Adeka Co., Ltd., trade names RE-303S, RE-304S, RE-403S, RE-404S, manufactured by Nippon Kayaku Co., Ltd.
  • the epoxy resin trade names “Epicron HP-4032”, “Epicron HP-4700”, “Epicron HP-4200” manufactured by Dainippon Ink Co., Ltd. -7000L, phenol novolac type epoxy resin, trade names jER152 and jER154 manufactured by Japan Epoxy Resins Co., Ltd., trade name EPPN-201-L manufactured by Nippon Kayaku Co., Ltd., trade name Epicron N manufactured by Dainippon Ink Co., Ltd.
  • Epicron N-770 trade name Epototo YDPN-638 manufactured by Toto Kasei Co., Ltd.
  • cresol novolac type epoxy resins include trade names EOCN-1020, EOCN-102S, EOCN-103S manufactured by Nippon Kayaku Co., Ltd.
  • EOCN-104S trade names manufactured by Dainippon Ink Co., Ltd.
  • Epicron N-660, Epicron N-670, Epicron N-680, Epicron N-695, and Trisphenolmethane type epoxy resin are products manufactured by Nippon Kayaku Co., Ltd.
  • thermosetting resin composition of this invention Although it does not specifically limit as a hardening
  • phenol resins such as a phenol novolak resin, a cresol novolak resin, a naphthalene type phenol resin, melamine, dicyandiamide, etc. These can be used alone or in combination of two or more.
  • the curing accelerator is not particularly limited.
  • phosphine compounds such as triphenylphosphine; amine compounds such as tertiary amine, trimethanolamine, triethanolamine and tetraethanolamine; 1,8- Borate compounds such as diaza-bicyclo [5,4,0] -7-undecenium tetraphenylborate, imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-un Imidazoles such as decylimidazole, 1-benzyl-2-methylimidazole, 2-heptadecylimidazole, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl-4-methylimidazole; 2-methylimidazoline, 2- Ethyl imidazoline, -Imidazolines such as isopropylimidazoline, 2-phenylimidazoline, 2-unde
  • the component (B) in the thermosetting resin composition of the present invention is preferably 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, particularly preferably 5 parts per 100 parts by weight of the component (A). ⁇ 50 parts by weight.
  • thermosetting resin composition By adjusting the amount of component (B) within the above range, the heat resistance, chemical resistance, and electrical insulation reliability of the cured film obtained by curing the thermosetting resin composition can be improved. preferable.
  • the cured film obtained by curing the thermosetting resin composition may be inferior in heat resistance and electrical insulation reliability. Moreover, when there are more (B) components than the said range, the cured film obtained by hardening a thermosetting resin composition becomes weak, it is inferior to a softness
  • thermosetting resin composition If the photosensitive resin composition of this invention contains the said thermosetting resin composition, (C) photosensitive resin, and (D) photoinitiator at least. Good.
  • thermosetting resin composition used for the photosensitive resin composition of this invention if it is the said thermosetting resin composition, it can be used without limitation.
  • the photosensitive resin composition of the present invention comprises at least (A) a terminal carboxylic acid urethane imide oligomer, (B) a thermosetting resin, (C) a photosensitive resin, and (D) a photopolymerization initiator. Should just be contained.
  • the terminal carboxylic acid urethane imide oligomer is preferably a terminal tetracarboxylic acid urethane imide oligomer obtained using polycarbonate diol, but is not limited thereto. Absent.
  • a photosensitive resin containing at least (A) a terminal carboxylic acid urethane imide oligomer, (B) a thermosetting resin, (C) a photosensitive resin, and (D) a photopolymerization initiator according to the present invention.
  • the present inventors have found that the composition is excellent in various properties, but it is speculated that this may be due to the following reason.
  • the terminal carboxylic acid urethane imide oligomer has an imide skeleton and a urethane bond in the molecule, and therefore has excellent heat resistance and electrical insulation reliability derived from the imide skeleton, chemical resistance and flexibility derived from the urethane bond, Since it has a carboxyl group at the end, it becomes soluble in a developing solution typified by a dilute alkaline aqueous solution and can be finely processed by exposure and development.
  • the terminal tetracarboxylic acid urethane imide oligomer obtained by using polycarbonate diol is surprisingly excellent in chemical resistance of the polycarbonate skeleton, although it contains many carboxyl groups at the terminal,
  • the exposed part (cured part) has no damage such as swelling / dissolution of the coating film by the developer, and the unexposed part (uncured part) contains many carboxyl groups at the end, so it dissolves in a short development time, A pattern with very good resolution can be obtained.
  • the photosensitive resin (C) in the present invention is a resin in which a chemical bond is formed by a photopolymerization initiator.
  • a resin having at least one unsaturated double bond in the molecule is preferable.
  • the unsaturated double bond is an acryl group (CH 2 ⁇ CH— group), a methacryloyl group (CH ⁇ C (CH 3 ) — group) or a vinyl group (—CH ⁇ CH— group). Is preferred.
  • the number of repeating units of EO (ethylene oxide) contained in one molecule of diacrylate or methacrylate is preferably 2 to 50, and more preferably 2 to 40.
  • the solubility of the photosensitive resin composition in an aqueous developer typified by an alkaline aqueous solution is improved, and the development time is shortened.
  • the printed wiring boards when laminated on a flexible printed wiring board based on a polyimide resin, curling of the printed wiring board is prevented.
  • the EO-modified diacrylate or dimethacrylate together with an acrylic resin having 3 or more acrylic groups or methacrylic groups in order to improve developability.
  • ethoxylated isocyanuric acid EO-modified triacrylate Ethoxylated isocyanuric acid EO modified trimethacrylate, ethoxylated trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, pentaerythritol tri Acrylate, ethoxylated pentaerythritol tetraacrylate, ethoxylated pentaerythritol tetraacrylate, ditrime Rollpropane tetraacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane
  • hydroxyl groups in the molecular structure skeleton such as 2-hydroxy-3-phenoxypropyl acrylate, monohydroxyethyl acrylate phthalate, ⁇ -carboxy-polycaprolactone monoacrylate, acrylic acid dimer, pentaerythritol tri and tetraacrylate, Those having a carbonyl group are also preferably used.
  • any photosensitive resin such as epoxy-modified acrylic resin, urethane-modified acrylic resin, and polyester-modified acrylic resin may be used.
  • the (D) photopolymerization initiator in the present invention is a compound that is activated by energy such as UV and starts and accelerates the reaction of the photosensitive resin.
  • Examples of the (D) photopolymerization initiator include Mihilaz ketone, 4,4′-bis (diethylamino) benzophenone, 4,4 ′, 4 ′′ -tris (dimethylamino) triphenylmethane, and 2,2 ′.
  • (A) component, (B) component, (C) component, and (D) component in the photosensitive resin composition of this invention are with respect to 100 weight part of solid content which totaled (A) component and (B) component.
  • the component (C) is preferably blended in an amount of 10 to 200 parts by weight and the component (D) is blended in an amount of 0.1 to 50 parts by weight.
  • an inorganic filler can be used for the purpose of improving the adhesion and the hardness of the cured film.
  • the inorganic filler is not particularly limited, and examples thereof include barium sulfate, barium titanate, talc, ultrafine anhydrous silica, synthetic silica, natural silica, calcium carbonate, magnesium carbonate, and aluminum oxide. It can be used alone or in combination of two or more.
  • additives such as an antifoaming agent, a leveling agent, a flame retardant, a colorant, an adhesion imparting agent, and a polymerization inhibitor can be further used as necessary. These additives are not particularly limited.
  • a silicon compound, an acrylic compound, as a leveling agent, as a silicon compound, an acrylic compound, and as a flame retardant for example, phosphoric acid Ester compounds, halogen-containing compounds, metal hydroxides, organophosphorus compounds, etc., as colorants, phthalocyanine compounds, azo compounds, carbon black, titanium oxide, as adhesion promoters, silane coupling agents
  • phosphoric acid Ester compounds for example, phosphoric acid Ester compounds, halogen-containing compounds, metal hydroxides, organophosphorus compounds, etc., as colorants, phthalocyanine compounds, azo compounds, carbon black, titanium oxide, as adhesion promoters, silane coupling agents
  • the triazole compound, tetrazole compound, triazine compound, and polymerization inhibitor include hydroquinone and hydroquinone monomethyl ether, and these can be used alone or in combination of two or more.
  • the photosensitive resin composition of the present invention can be obtained by uniformly mixing the components (A) to (D) with the other components as required.
  • a method of uniformly mixing for example, a general kneading apparatus such as a three roll or bead mill apparatus may be used for mixing.
  • a general stirring apparatus such as a three roll or bead mill apparatus
  • thermosetting resin composition and photosensitive resin composition of the present invention A resin composition solution obtained by dissolving the thermosetting resin composition and photosensitive resin composition of the present invention in an organic solvent is also included in the present invention.
  • the above-mentioned thermosetting resin composition and photosensitive resin composition have high solubility in various organic solvents.
  • sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N, N-dimethylformamide, N, N— Formamide solvents such as diethylformamide, N, N-dimethylacetamide, acetamide solvents such as N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, phenol, Phenolic solvents such as o-, m- or p-cresol, xylenol, halogenated phenol, catechol, or hexamethylphosphoramide, ⁇ -butyrolactone, methylmonoglyme (1,2-dimethoxyethane), methyldiglyme ( Bis (2-methoxyether) ester Ter), methyltriglyme (1,2-bis (2-methoxyethoxy) ethane), methyltetraglyme (bis [2- (2-
  • thermosetting resin composition and the photosensitive resin composition have high solubility.
  • the resin composition solution obtained by dissolving the thermosetting resin composition and the photosensitive resin composition of the present invention in an organic solvent is composed of the component (A) and the component (B) or the components (A) to (D).
  • the organic solvent is preferably blended in an amount of 10 to 100 parts by weight with respect to 100 parts by weight of the solid content.
  • thermosetting resin composition of the present invention directly or after preparing the thermosetting resin composition solution, the cured film or A pattern can be formed.
  • the thermosetting resin composition is applied to a substrate.
  • the said thermosetting resin composition solution is apply
  • the substrate can be applied by screen printing, curtain roll, river roll, spray coating, spin coating using a spinner, or the like.
  • the coating film (preferably having a thickness of 5 to 100 ⁇ m, particularly 10 to 100 ⁇ m) is dried at 120 ° C. or less, preferably 40 to 100 ° C.
  • a cured film rich in heat resistance and flexibility can be obtained by performing heat curing treatment.
  • the thickness of the cured film is determined in consideration of the wiring thickness and the like, but the thickness is preferably about 2 to 50 ⁇ m.
  • the final curing temperature at this time is desired to be cured by heating at a low temperature for the purpose of preventing oxidation of the wiring and the like and not reducing the adhesion between the wiring and the substrate.
  • the heat curing temperature at this time is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 200 ° C. or lower, and particularly preferably 130 ° C. or higher and 190 ° C. or lower.
  • the final heating temperature becomes high, the wiring may be oxidized and deteriorated.
  • the cured film formed from the thermosetting resin composition of the present invention has excellent heat resistance, chemical resistance, electrical and mechanical properties, and is particularly excellent in flexibility.
  • the insulating film of the present invention is preferably used with a thickness of about 2 to 50 ⁇ m.
  • the insulating film of the present invention is particularly suitable as an insulating material for a high-density flexible substrate.
  • they are used for various thermosetting wiring coating protective agents, thermosetting heat-resistant adhesives, electric wire / cable insulation coatings, and the like.
  • this invention can provide the same insulating material even if it uses the thermosetting film obtained by apply
  • the photosensitive resin composition of the present invention can form a pattern as follows. First, the photosensitive resin composition is applied onto a substrate and dried to remove the organic solvent.
  • the substrate can be applied by screen printing, roller coating, curtain coating, spray coating, spin coating using a spinner, or the like.
  • the coating film (preferably thickness: 5 to 100 ⁇ m) is dried at 120 ° C. or lower, preferably 40 to 100 ° C. After drying, a negative photomask is placed on the dried coating film and irradiated with actinic rays such as ultraviolet rays, visible rays, and electron beams.
  • the pattern can be obtained by washing the unexposed portion with a developing solution using various methods such as shower, paddle, dipping or ultrasonic waves. Since the time until the pattern is exposed varies depending on the spray pressure and flow velocity of the developing device and the temperature of the developer, it is preferable to find the optimum device conditions as appropriate.
  • an aqueous alkaline solution is preferably used.
  • This developer is soluble in water such as methanol, ethanol, n-propanol, isopropanol, N-methyl-2-pyrrolidone, etc.
  • An organic solvent may be contained.
  • the alkaline compound that gives the alkaline aqueous solution include hydroxides, carbonates, hydrogen carbonates, amine compounds, and the like of alkali metals, alkaline earth metals, or ammonium ions, specifically sodium hydroxide.
  • the concentration of the alkaline compound that can be suitably used in the development step of the photosensitive resin composition of the present invention is preferably 0.01 to 10% by weight, particularly preferably 0.05 to 5% by weight. preferable.
  • the temperature of the developer depends on the composition of the photosensitive resin composition and the composition of the developer, and is generally 0 ° C. or higher and 80 ° C. or lower, more generally 20 ° C. or higher and 50 ° C. or lower. It is preferable to use it.
  • the pattern formed by the above developing process is rinsed to remove unnecessary developer residue.
  • the rinsing liquid include water and acidic aqueous solutions.
  • a cured film rich in heat resistance and flexibility can be obtained by performing heat curing treatment.
  • the thickness of the cured film is determined in consideration of the wiring thickness and the like, but the thickness is preferably about 2 to 50 ⁇ m.
  • the final curing temperature at this time is desired to be cured by heating at a low temperature for the purpose of preventing oxidation of the wiring and the like and not reducing the adhesion between the wiring and the substrate.
  • the heat curing temperature at this time is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 200 ° C. or lower, and particularly preferably 130 ° C. or higher and 190 ° C. or lower.
  • the final heating temperature becomes high, the wiring may be oxidized and deteriorated.
  • a pattern comprising a cured film formed from the photosensitive resin composition of the present invention is excellent in heat resistance, chemical resistance, electrical and mechanical properties, and particularly excellent in flexibility.
  • the insulating film of the present invention preferably has a thickness of about 2 to 50 ⁇ m and a resolution of at least 10 ⁇ m after photocuring, and particularly a resolution of about 10 to 1000 ⁇ m.
  • the insulating film of the present invention is particularly suitable as an insulating material for a high-density flexible substrate.
  • it is used for various photo-curing type wiring coating protective agents, photosensitive heat-resistant adhesives, electric wire / cable insulation coatings, and the like.
  • this invention can provide the same insulating material even if it uses the photosensitive film obtained by apply
  • BPADA 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride
  • methyltriglyme 40.0 g
  • the intermediate A was added to the solution over 1 hour to react. After the addition, the mixture was heated to 200 ° C. and reacted for 3 hours.
  • the terminal acid anhydride urethane imide oligomer solution was obtained by performing the said reaction.
  • 7.2 g (0.400 mol) of pure water was added and heated to reflux at 80 ° C. for 5 hours to obtain a terminal carboxylic acid urethane imide oligomer solution.
  • This synthetic resin is abbreviated as resin A.
  • thermosetting resin composition solution ⁇ Preparation of thermosetting resin composition solution>
  • the obtained terminal carboxylic acid urethane imide oligomer solution (resin A) is cooled to room temperature, and 10 parts by weight of epoxy resin (trade name: Epicron, manufactured by Dainippon Ink & Chemicals, Inc.) with respect to 100 parts by weight of the resin content of the solution.
  • epoxy resin trade name: Epicron, manufactured by Dainippon Ink & Chemicals, Inc.
  • N-665-EXP a cresol novolac-type polyfunctional epoxy resin
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. And the viscosity after one month was measured. The viscosity at that time was 230 poise at 23 ° C., and it was revealed that it could be stored for a long time at room temperature with no change in viscosity.
  • thermosetting resin composition solution was cast and applied to a 75 ⁇ m-thick polyimide film (manufactured by Kaneka Corporation: trade name: 75NPI) using a Baker type applicator so that the final dry thickness was 25 ⁇ m.
  • the resin film of this invention was formed on the polyimide film used as a base after drying at 20 degreeC.
  • the obtained resin film was heated and cured at 160 ° C. for 90 minutes in an air atmosphere to obtain a cured film, and a polyimide film laminate in which the cured film was formed on the base polyimide film was obtained.
  • (Iii) Chemical resistance The chemical resistance of the cured film surface was evaluated.
  • the evaluation method was evaluated by observing the state of the cured film surface after the polyimide film laminate was immersed under the evaluation conditions of the following evaluation items 1 to 3.
  • Evaluation item 1 It was immersed in methyl ethyl ketone at 25 ° C. for 10 minutes and then air-dried.
  • Evaluation item 2 After immersing in a 2N hydrochloric acid solution at 25 ° C. for 10 minutes, it was washed with pure water and air-dried.
  • Evaluation item 3 After being immersed in a 2N sodium hydroxide solution at 25 ° C. for 10 minutes, it was washed with pure water and air-dried. Yes, the cured film does not change ⁇ , where the cured film is partially dissolved The cured film was completely dissolved.
  • thermosetting resin composition solution was applied to the surface of a 25 ⁇ m-thick polyimide film (Apical 25NPI manufactured by Kaneka Corporation) so that the final film thickness was 25 ⁇ m, and then at 80 ° C. for 20 minutes, 160 ° C. And dried for 90 minutes to obtain a polyimide film laminate.
  • This polyimide film laminate was cut into 30 mm ⁇ 10 mm strips, bent 10 times at 180 ° at 15 mm, and the coating film was visually confirmed to check for cracks.
  • The cured film has no cracks
  • The cured film has some cracks x: The cured film has cracks
  • thermosetting resin composition solution The obtained terminal carboxylic acid urethane imide oligomer solution (resin B) is cooled to room temperature, and 10 parts by weight of epoxy resin (product name: Epicron, manufactured by Dainippon Ink & Chemicals, Inc.) with respect to 100 parts by weight of the resin content of the solution. N-665-EXP, a cresol novolac-type polyfunctional epoxy resin) was added and stirred uniformly at room temperature for 1 hour to obtain a thermosetting resin composition solution. The solute concentration of this solution was 60%, and the viscosity of the solution was 220 poise at 23 ° C.
  • epoxy resin product name: Epicron, manufactured by Dainippon Ink & Chemicals, Inc.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. And the viscosity after one month was measured. The viscosity at that time was 220 poise at 23 ° C., and it was revealed that the viscosity was not changed and could be stored at room temperature for a long time.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is described in Table 1.
  • thermosetting resin composition solution 10 parts by weight of epoxy resin (made by Nippon Kayaku Co., Ltd .: trade name NC-3000H, biphenyl novolak) with respect to 100 parts by weight of the resin content of the terminal carboxylic acid urethane imide oligomer solution (resin A) obtained in Example 1 above.
  • Type polyfunctional epoxy resin was added and stirred uniformly for 1 hour at room temperature to obtain a thermosetting resin composition solution.
  • the solute concentration of this solution was 60%, and the viscosity of the solution was 250 poise at 23 ° C.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. And the viscosity after one month was measured. The viscosity at that time was 250 poise at 23 ° C., and it became clear that it could be stored at room temperature for a long time without any change in viscosity.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is described in Table 1.
  • thermosetting resin composition solution 10 parts by weight of oxetane resin (manufactured by Toagosei Co., Ltd .: Aron Oxetane OXT-121, 1) with respect to 100 parts by weight of the resin content of the terminal carboxylic acid urethane imide oligomer solution (resin A) obtained in Example 1 above.
  • 4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene) was added and stirred uniformly at room temperature for 1 hour to obtain a thermosetting resin composition solution.
  • the solute concentration of this solution was 60%, and the viscosity of the solution was 180 poise at 23 ° C.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. And the viscosity after one month was measured. The viscosity at that time was 180 poise at 23 ° C., and it was revealed that the viscosity was not changed and could be stored for a long time at room temperature.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is described in Table 1.
  • resin C This synthetic resin is abbreviated as resin C.
  • the obtained resin was diluted with ⁇ -butyrolactone, 22.8 g of 2-butanone oxime was further added, and the mixture was heated at 90 ° C. for 3 hours to obtain a polyamideimide resin solution having a nonvolatile content of 30% by weight.
  • thermosetting resin composition solution > 5 parts by weight of an epoxy resin (trade name YDF-170, bisphenol F type epoxy resin manufactured by Toto Kasei Co., Ltd.) is added to 100 parts by weight of the resin content of the polyamideimide resin solution obtained above, and diluted with ⁇ -butyrolactone. Then, uniform stirring was performed at room temperature for 1 hour to obtain a thermosetting resin composition solution.
  • the solution had a solute concentration of 30% and a solution viscosity of 200 poise at 23 ° C.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. As a result, the solution gelled and viscosity measurement became impossible, and it became clear that there was a problem in storage stability at room temperature.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is shown in Table 2.
  • thermosetting resin composition solution ⁇ Preparation of thermosetting resin composition solution>
  • the obtained polyurethane imide resin is dissolved in methyl ethyl ketone at a solute concentration of 40% by weight to obtain a polyurethane imide resin solution, and then urethane acrylate resin (made by Shin-Nakamura Chemical Co., Ltd .: commercial product) with respect to 100 parts by weight of the resin content of the solution.
  • No. U-108 25 parts by weight, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane (made by NOF Corporation: trade name Perhexa TMH) 3.75 wt.
  • thermosetting resin composition solution The solute concentration of this solution was 40%, and the viscosity of the solution was 1200 poise at 23 ° C., which was a very high viscosity.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. As a result, the solution gelled and viscosity measurement became impossible, and it became clear that there was a problem in storage stability at room temperature.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is shown in Table 2.
  • thermosetting resin composition solution 38.50 g of epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name: Epicron N-665-EXP, cresol novolac type polyfunctional epoxy) with respect to 100 parts by weight of the resin content of the obtained terminal carboxylic imide oligomer solution Resin) was added and stirred uniformly for 1 hour at room temperature to obtain a thermosetting resin composition solution.
  • the solute concentration of this solution was 68%, and the viscosity of the solution was 250 poise at 23 ° C.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. As a result, the solution gelled and viscosity measurement became impossible, and it became clear that there was a problem in storage stability at room temperature.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is shown in Table 2.
  • thermosetting resin composition solution ⁇ Preparation of thermosetting resin composition solution>
  • the obtained terminal acid anhydride siloxane imide resin is dissolved in methyl ethyl ketone at a solute concentration of 40% by weight to obtain a terminal acid anhydride siloxane imide resin solution, and then 100 parts by weight of epoxy resin with respect to 24 parts by weight of the resin content of the solution.
  • thermosetting resin composition solution (Japan Epoxy Resin Co., Ltd .: trade name jER828, bisphenol A type bifunctional epoxy resin), alicyclic acid anhydride type curing agent 116 parts by weight (Japan Epoxy Resin Co., Ltd .: trade name Epicure YH306), curing acceleration 1 part by weight of a catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd .: trade name: Curazole 2E4MZ, imidazole compound) was added and stirred uniformly for 1 hour at room temperature to obtain a thermosetting resin composition solution. The solute concentration of this solution was 87%, and the viscosity of the solution was 320 poise at 23 ° C.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. As a result, the solution gelled and viscosity measurement became impossible, and it became clear that there was a problem in storage stability at room temperature.
  • thermosetting resin composition was evaluated in the same manner as in Example 1.
  • the evaluation method is shown in Table 2.
  • BPADA 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride
  • methyltriglyme 40.0 g
  • the intermediate A was added to the solution over 1 hour to react. After the addition, the mixture was heated to 200 ° C. and reacted for 3 hours.
  • the terminal acid anhydride urethane imide oligomer solution was obtained by performing the said reaction.
  • thermosetting resin composition solution ⁇ Preparation of thermosetting resin composition solution>
  • the obtained terminal acid anhydride urethane imide oligomer solution was cooled to room temperature, and 10 parts by weight of epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name: Epicron N-665) with respect to 100 parts by weight of the resin content of the solution.
  • -EXP a cresol novolac type polyfunctional epoxy resin
  • the solute concentration of this solution was 60%, and the viscosity of the solution was 240 poise at 23 ° C.
  • thermosetting resin body composition solution is allowed to stand for 1 month in a room kept at 20 ° C. and sealed with a 10 ml screw tube. As a result, the solution gelled and viscosity measurement became impossible, and it became clear that there was a problem in storage stability at room temperature.
  • thermosetting resin composition was evaluated by the same method as in Example 1. However, since the liquid for the thermosetting resin composition was gelled, the coating on the substrate was not performed. It was impossible and a uniform cured film could not be obtained.
  • spray development was performed for 60 seconds at a discharge pressure of 1.0 kgf / mm 2 using a solution obtained by heating a 1.0 wt% sodium carbonate aqueous solution to 30 ° C. After development, the film was sufficiently washed with pure water, and then cured by heating in an oven at 160 ° C. for 90 minutes to prepare a cured film of the photosensitive resin composition.
  • Adhesiveness of cured film The adhesive strength of the cured film obtained in the above item ⁇ Preparation of coating film on polyimide film> was evaluated by a cross-cut tape method according to JIS K5400. ⁇ : No peeling by cross-cut tape method ⁇ : 95% or more of the squares remain ⁇ : The residual quantity of the squares is less than 80%.
  • a 100 V direct current was applied to both terminals of the test piece in an environmental test machine at 85 ° C. and 85% RH, and changes in the insulation resistance value and occurrence of migration were observed.
  • A resistance value of 10 8 or more in 1000 hours after the start of the test and no occurrence of migration, dendrite, etc.
  • An occurrence of migration, dendrite, etc. in 1000 hours after the start of the test.
  • (Vii) Solder heat resistance A cured film of a photosensitive resin composition is laminated on the surface of a 75 ⁇ m-thick polyimide film (Apical 75NPI manufactured by Kaneka Corporation) in the same manner as in the above item ⁇ Preparation of coating film on polyimide film>.
  • a film was prepared. The coated film was floated so that the surface coated with the cured film of the photosensitive resin composition was in contact with a solder bath completely dissolved at 260 ° C., and then pulled up 10 seconds later. The operation was performed three times, and the adhesive strength of the cured film was evaluated by a cross-cut tape method according to JIS K5400. ⁇ : No peeling by cross-cut tape method ⁇ : 95% or more of the squares remain ⁇ : The residual quantity of the squares is less than 80%.
  • the cured film was cut into a film with an area of 50 mm ⁇ 50 mm, and placed on a smooth table so that the coating film was on the upper surface, and the warp height of the film edge was measured.
  • a schematic diagram of the measurement site is shown in FIG.
  • the warp amount is preferably 5 mm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

 本発明の課題は、低温(200℃以下)で硬化可能であり、柔軟性に富み、電気絶縁信頼性、ハンダ耐熱性、耐有機溶剤性に優れ、硬化後の基板の反りが小さく、封止剤との密着性に優れる熱硬化性樹脂組成物、感光性樹脂組成物、樹脂組成物溶液、樹脂フィルム、絶縁膜、絶縁膜付きプリント配線板を提供することにある。少なくとも(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂とを含有することを特徴とする熱硬化性樹脂組成物を用いることで上記問題点を改善することができる。

Description

新規な樹脂組成物及びその利用
 この発明は、低温で硬化可能であって、電気・電子用途の絶縁材料として好適に用いることのできる熱硬化性樹脂組成物、並びに、低温で硬化可能であって、電気・電子用途の絶縁材料として好適に用いることのできる、アルカリ水溶液で現像可能な感光性樹脂組成物、それらから得られる硬化膜、絶縁膜、及び絶縁膜付きプリント配線板に関するものである。
 ポリイミド樹脂は、耐熱性、電気絶縁性や耐薬品性に優れ、機械特性に優れることから電気・電子用途に使用される。例えば、半導体デバイス上への絶縁フィルムや保護コーティング剤、フレキシブル回路基板や集積回路等の表面保護材料や基材樹脂、更には、微細な回路の層間絶縁膜や保護膜を形成させる場合に用いられる。特に、基板配線用のコーティング材料として用いる場合には、ポリイミドフィルム等の成形体に接着剤を塗布して得られるカバーレイフィルムや、ポリイミド樹脂等で構成された液状の液状カバーコートインクなどが用いられてきた。
 かかる液状カバーコートインクに用いられるポリイミド樹脂溶液としては、例えば、有機溶媒に可溶なポリイミド樹脂及びエポキシ樹脂などの熱硬化性樹脂を用いたポリイミド系樹脂組成物が提案されている。(例えば、特許文献1~4参照。)。
 また、分子量の低いカルボキシル基含有アミドイミド樹脂及び/又はカルボキシル基含有イミド樹脂と、エポキシ樹脂とを溶解した硬化性イミド樹脂組成物が提案されている(例えば、特許文献5参照。)。
 また、非対称芳香族又は脂環式テトラカルボン酸二無水物とジアミノポリシロキサンから得られる末端に酸無水物基を有するイミド系オリゴマー及びエポキシ樹脂を含有する硬化性樹脂組成物が提案されている(例えば、特許文献6参照。)。
特開平11-199669号公報 特開2002-371182号公報 特開2005-220339号公報 特開2006-96825号公報 特開2001-316469号公報 特開2002-97270号公報
 ところが、上記の特許文献1~4に記載されているポリイミド系樹脂組成物は、高分子量体のポリマー溶液であり、溶質の分子量が大きく、溶剤溶解性が低いため、溶質の濃度を高濃度に調製することができず、そのため、例えば、塗布膜を形成する際に、溶剤を大量に揮発させる必要があり、塗布膜の膜厚均一性を得ることが難しく、生産性が悪いという問題があった。また、組成物中に架橋剤が含まれる場合、高分子量体のポリマーが僅かに組成物中の架橋剤と反応した場合でも、溶液の粘度が飛躍的に増大するため、組成物溶液の粘度安定性が悪く、ゲル化しやすいという問題もあった。
 上記の特許文献5に記載されている分子量の低いカルボキシル基含有アミドイミド樹脂及び/又はカルボキシル基含有イミド樹脂と、エポキシ樹脂とを溶解した硬化性イミド樹脂組成物は、柔軟性骨格を有さないオリゴマーの末端カルボキシル基とエポキシ樹脂を反応させるため、架橋密度が非常に高くなり、得られる硬化膜は硬くて脆いものとなり、例えばフレキシブルプリント配線板のように柔軟性に富み屈曲特性の要求されるような基材の絶縁保護膜として用いた場合、折り曲げ時に絶縁保護膜が割れてしまい、また硬化膜を形成する際の熱硬化後にプリント配線板が反り上がってしまうという問題があった。
 上記の特許文献6に記載されている非対称芳香族又は脂環式テトラカルボン酸二無水物とジアミノポリシロキサンから得られる末端に酸無水物基を有するイミド系オリゴマー及びエポキシ樹脂を含有する硬化性樹脂組成物は、室温においても活性な酸無水物基を末端に有するため、エポキシ樹脂との反応が徐々に進行してしまい、硬化性樹脂組成物溶液の粘度が増大し、粘度安定性に劣る問題がある。また、硬化することにより得られる硬化膜を、例えば、回路基板材料に用いた場合、ジアミノポリシロキサンに含まれる不純物が硬化膜からブリードアウトし、半導体の動作不良を誘発させるという問題があった。また、硬化膜表面の濡れ性が悪く、各種封止剤との密着性が悪いという問題もあった。
 上記状況に鑑み、本発明の課題は、低温(200℃以下)で硬化可能であり、柔軟性に富み、電気絶縁信頼性、ハンダ耐熱性、耐有機溶剤性に優れ、硬化後の基板の反りが小さく、封止剤との密着性に優れる熱硬化性樹脂組成物、感光性樹脂組成物、樹脂組成物溶液、樹脂フィルム、絶縁膜、絶縁膜付きプリント配線板を提供することにある。
 本願発明者らは上記課題を解決すべく鋭意研究した結果、少なくとも(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂とを含む組成物から、低温(200℃以下)で硬化可能であり、柔軟性に富み、電気絶縁信頼性、ハンダ耐熱性、耐有機溶剤性に優れ、硬化後の基板の反りが小さく、封止剤との密着性に優れる硬化膜が得られることを見出した。すなわち、(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂とを含有する樹脂組成物溶液は、溶液に調製した際に溶質が高濃度で溶解しているにも拘らず、低粘度を示し、しかも、この溶液からは良好な諸物性を有する硬化膜が得られるとの知見を得、これらの知見に基づいて、本願発明に達したものである。本願発明は以下の新規な構成の樹脂組成物により上記課題を解決しうる。
 すなわち、本願発明にかかる熱硬化性樹脂組成物は、少なくとも(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂とを含有することを特徴としている。
 本願発明にかかる熱硬化性樹脂組成物では、上記(A)末端カルボン酸ウレタンイミドオリゴマーはテトラカルボン酸ウレタンイミドオリゴマーであることが好ましい。
 また、本願発明にかかる熱硬化性樹脂組成物では、上記(A)末端カルボン酸ウレタンイミドオリゴマーは、少なくとも(a)下記一般式(1)で示されるジオール化合物と、(b)下記一般式(2)で示されるジイソシアネート化合物とを反応させて末端イソシアネート化合物を合成し、次いで(c)下記一般式(3)で示されるテトラカルボン酸二無水物を反応させて末端酸無水物ウレタンイミドオリゴマーを合成し、更に(d)水及び/または1級アルコールを反応させて得られるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは2価の有機基を示し、lは1~20の整数である。)
Figure JPOXMLDOC01-appb-C000006
(式中、Xは2価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000007
(式中、Yは4価の有機基を示す。)
 また、本願発明にかかる熱硬化性樹脂組成物では、上記(a)ジオール化合物は、少なくとも下記一般式(4)で示されるポリカーボネートジオールを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式中、複数個のRはそれぞれ独立に2価の有機基を示し、mは1~20の整数である。)
 また、本願発明にかかる熱硬化性樹脂組成物では、上記(A)末端カルボン酸ウレタンイミドオリゴマーは、更に側鎖にもカルボキシル基を含有することが好ましい。
 また、本願発明にかかる熱硬化性樹脂組成物では、上記(B)熱硬化性樹脂の配合割合が、(A)末端カルボン酸ウレタンイミドオリゴマー100重量部に対して、1~100重量部となるように配合されていることが好ましい。
 また、本願発明にかかる感光性樹脂組成物は、少なくとも上記熱硬化性樹脂組成物と、(C)感光性樹脂と、(D)光重合開始剤とを含有することを特徴としている。
 本願発明にかかる感光性樹脂組成物では、(A)末端カルボン酸ウレタンイミドオリゴマー、(B)熱硬化性樹脂、(C)感光性樹脂および(D)光重合開始剤は、(A)末端カルボン酸ウレタンイミドオリゴマーと(B)熱硬化性樹脂とを合計した固形分100重量部に対して、(C)感光性樹脂が10~200重量部、(D)光重合開始剤が、0.1~50重量部となるように配合されていることが好ましい。
 また、本願発明にかかる樹脂組成物溶液は、上記熱硬化性樹脂組成物又は上記感光性樹脂組成物を有機溶剤に溶解して得られるものである。
 また、本願発明にかかる樹脂フィルムは、上記樹脂組成物溶液を基材表面に塗布した後、乾燥して得られるものである。
 また、本願発明にかかる絶縁膜は、上記樹脂フィルムを硬化させて得られるものである。
 また、本願発明にかかる絶縁膜付きプリント配線板は、上記絶縁膜をプリント配線板に被覆してなるものである。
 本願発明の熱硬化性樹脂組成物は、以上のように、少なくとも(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂とを含有する構成を備えているので、有機溶媒に溶解した際に、溶質が高濃度に溶解しているにもかかわらず、その溶液は低粘度である。そして、本願発明の熱硬化性樹脂組成物から得られる硬化膜は、塗膜の接着性、耐環境試験安定性、耐薬品性、屈曲性及び塗膜の濡れ性に優れ、良好な物性を有する。従って、本願発明の熱硬化性樹脂組成物は、種々の回路基板の保護膜等に使用でき、優れた効果を奏するものである。また、本願発明の熱硬化性樹脂組成物を用いた感光性樹脂組成物は、シロキサンジアミンを用いることなく低温硬化可能であって、配線板上に塗布・成形した際に、優れた種々の特性を発現する。
フィルムの反り量を測定している模式図
 以下本願発明について詳細に説明する。
 (I)熱硬化性樹脂組成物
 本願発明の熱硬化性樹脂組成物は、少なくとも、(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂を含有していればよい。
 なお、本願発明の熱硬化性樹脂組成物における、(A)末端カルボン酸ウレタンイミドオリゴマーについては、ポリカーボネートジオールを用いて得られる、末端テトラカルボン酸ウレタンイミドオリゴマーがより好ましく用いられるが、これに限定されるものではない。
 ここで、本願発明の少なくとも、(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂を含む熱硬化性樹脂組成物は、各種特性に優れる事を、本発明者らは見出したが、これは、以下の理由によるのではないかと推測している。
 つまり、(A)末端カルボン酸ウレタンイミドオリゴマーは、分子中にイミド骨格及びウレタン結合を有するオリゴマーであるため、有機溶剤に対する溶解性が非常に優れるだけでなく、架橋剤と混合し、室温で放置した場合に僅かにオリゴマーと反応した場合であっても、依然としてオリゴマー領域の分子量を保持するため、室温で粘度安定性に優れた熱硬化性樹脂組成物溶液が得られる。
 また、これを含有する硬化膜は、イミド骨格由来の耐熱性、電気絶縁信頼性及び難燃性に優れ、ウレタン結合由来の耐薬品性や柔軟性に優れる。なかでも、ポリカーボネートジオールを用いて得られる末端テトラカルボン酸ウレタンイミドオリゴマーから得られる硬化膜は、驚くべきことに、ポリカーボネート骨格の優れた耐加水分解性のため、高温高湿下におけるウレタン結合の加水分解を抑制することが可能となり、優れた耐加水分解性を有する。
 また、(A)末端カルボン酸ウレタンイミドオリゴマーに含有されるカルボキシル基は、加熱されることにより(B)熱硬化性樹脂と反応し三次元架橋を伴いながら高分子量化する。なかでも、末端カルボン酸が、テトラカルボン酸である場合、驚くべきことに、室温で熱硬化性樹脂と混合された場合、室温ではテトラカルボン酸の活性が低く安定化されているため、熱硬化性樹脂組成物溶液の粘度安定性が非常に良好であり、カルボン酸と熱硬化性樹脂との反応による粘度上昇が起こらない。尚、(A)末端カルボン酸ウレタンイミドオリゴマーと、架橋剤である(B)熱硬化性樹脂の反応は200℃以下、160~170℃程度の温度で進行するが、これは末端カルボン酸ウレタンイミドオリゴマーに含まれるウレタン結合及び原料ジオール成分由来の柔軟性や、分子量が低いことに由来する分子骨格の運動性の高さにより、160~170℃程度の硬化温度域においても、分子運動が活発に起こり、末端のカルボキシル基と架橋剤との衝突が十分に起こった結果、三次元架橋を生成しながら高分子量化反応が進行する。
 また、分子骨格中にシロキサン骨格を含有しないため、得られる硬化膜表面の濡れ性が良好であり、種々の部材との密着性が非常に良好であるだけではなく、硬化膜からのシロキサン成分由来の不純物のブリードアウトが発生しないため、硬化膜をプリント配線板の絶縁膜などに用いた場合、半導体の動作不良を誘発しない。
 以下、(A)末端カルボン酸ウレタンイミドオリゴマー、(B)熱硬化性樹脂、その他の成分、及び、(A)~(B)の混合方法について説明する。
 <(A)末端カルボン酸ウレタンイミドオリゴマー>
 本願発明で用いられる末端カルボン酸ウレタンイミドオリゴマーとは、末端に少なくとも1つのカルボン酸を有し、内部にはウレタン構造を有し、イミド環が閉環している、数平均分子量がポリエチレングリコール換算で3万以下、より好ましくは2万以下のオリゴマーである。
 より具体的には、本願発明において(A)末端カルボン酸ウレタンイミドオリゴマーとは、主鎖骨格中にシロキサン結合を有さず、下記一般式(5)
Figure JPOXMLDOC01-appb-C000009
(式中、R及びXはそれぞれ独立に2価の有機基を示し、nは1以上の整数を示す。)
で示される、ウレタン結合を有する繰り返し単位を少なくとも1つ有しており、且つ、下記一般式(6)
Figure JPOXMLDOC01-appb-C000010
(式中、複数個のRはそれぞれ独立に2価の有機基を示し、Rはそれぞれ独立に水素原子又はアルキル基を示し、Yはそれぞれ独立に4価の有機基を示し、pは0以上の整数を示す。)
で示される、少なくとも2つのイミド結合、及び末端に少なくとも1つのカルボキシル基を有する構造を有する化合物である。
 また、本願発明の末端カルボン酸ウレタンイミドオリゴマーの数平均分子量は、ポリエチレングリコール換算で、好ましくは30,000以下、より好ましくは20,000以下、特に好ましくは15,000以下である。上記範囲内に数平均分子量を制御して反応させることにより、末端カルボン酸ウレタンイミドオリゴマーの有機溶媒への溶解性が向上するので好ましい。
 また、本願発明の末端カルボン酸ウレタンイミドオリゴマーは、構造中にシロキサン結合を有さないため、これを用いて形成される硬化膜表面の濡れ性に優れ、各種封止剤との密着性が良好である。更に、構造中の結合がアミド結合ではなく、イミド結合となっているので、貯蔵安定性に優れる。そのため、樹脂組成物溶液を調製し貯蔵する場合の溶液粘度の経時変化を抑えることができる。
 本願発明で用いられる(A)末端カルボン酸ウレタンイミドオリゴマーは、上記構造を有しているものであれば特に限定はされるものではないが、より好ましくは、少なくとも(a)下記一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは2価の有機基を示し、lは1~20の整数である。)
で示されるジオール化合物と、(b)下記一般式(2)
Figure JPOXMLDOC01-appb-C000012
(式中、Xは2価の有機基を示す。)
で示されるジイソシアネート化合物とを反応させ末端イソシアネート化合物を合成し、次いで(c)下記一般式(3)
Figure JPOXMLDOC01-appb-C000013
(式中、Yは4価の有機基を示す。)
で示されるテトラカルボン酸二無水物を反応させて末端酸無水物ウレタンイミドオリゴマーを合成し、更に(d)水及び/または1級アルコールを反応させることにより得られる。
 <(a)ジオール化合物>
 本願発明で用いられる(a)ジオール化合物とは、一般式(1)で示される、分子内に2つの水酸基を有する分岐状又は直鎖状の化合物である。(a)ジオール化合物は、上記構造であれば特に限定はされないが、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等のアルキレンジオール、ジメチロールプロピオン酸(2,2-ビス(ヒドロキシメチル)プロピオン酸)、ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)ブタン酸)、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸等のカルボキシル基含有ジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、テトラメチレングリコールとネオペンチルグリコールとのランダム共重合体等のポリオキシアルキレンジオール、多価アルコールと多塩基酸とを反応させて得られるポリエステルジオール、カーボネート骨格を有するポリカーボネートジオール、γ-ブチルラクトン、ε-カプロラクトン、δ-バレロラクトン等のラクトン類を開環付加反応させて得られるポリカプロラクトンジオール、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、水添ビスフェノールA、水添ビスフェノールAのエチレンオキサイド付加物、水添ビスフェノールAのプロピレンオキサイド付加物等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 (a)ジオール化合物としては、下記一般式(4)
Figure JPOXMLDOC01-appb-C000014
(式中、複数個のRはそれぞれ独立に2価の有機基を示し、mは1~20の整数である。)
で示されるポリカーボネートジオールを用いることが特に好ましい。これにより、得られる硬化膜の耐熱性、柔軟性、耐水性、耐薬品性、高温高湿下での電気絶縁信頼性をさらに向上させることができる点で好ましい。
 上記ポリカーボネートジオールとしては、より具体的には、例えば、旭化成ケミカルズ株式会社製の商品名PCDL T-4671、T-4672、T-4691、T-4692、T-5650J、T-5651、T-5652、T-6001、T-6002、ダイセル化学工業株式会社製の商品名プラクセルCD CD205、CD205PL、CD205HL、CD210、CD210PL、CD210HL、CD220、CD220PL、CD220HL、クラレ株式会社製の商品名クラレポリオールC-1015N、C-1050、C-1065N、C-1090、C-2015N、C-2065N、C-2090、日本ポリウレタン工業株式会社製の商品名ニッポラン981、980R、982Rとして市販されているものが挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。上記ポリカーボネートジオールの数平均分子量は、ポリスチレン換算で好ましくは、500~5000、より好ましくは750~2500、特に好ましくは1000~2000である。上記ポリカーボネートジオールの数平均分子量が上記範囲内であることにより、得られる硬化膜の耐薬品性、柔軟性を向上させることができる点で好ましい。数平均分子量が500未満の場合には、得られる硬化膜の柔軟性が低下する場合があり、5000以上の場合には、末端カルボン酸ウレタンイミドオリゴマーの溶剤溶解性が低下する場合がある。
 更に好ましくは、上記ポリカーボネートジオールとカルボキシル基含有ジオールとを組み合わせることにより、末端カルボン酸ウレタンイミドオリゴマーの側鎖にもカルボキシル基を導入することができる。これにより、末端カルボン酸ウレタンイミドオリゴマーの主鎖の分岐点が増えて結晶性が低下し、末端カルボン酸ウレタンイミドオリゴマーの溶剤溶解性を向上させることができる点で好ましい。
 <(b)ジイソシアネート化合物>
 本願発明で用いられる(b)ジイソシアネート化合物とは、一般式(2)で示される、分子内に2つのイソシアネート基を有する化合物である。
 かかる(b)ジイソシアネート化合物としては、例えば、ジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメチルジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジエチルジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメトキシジフェニルメタン-2,4′-ジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、ジフェニルメタン-3,3′-ジイソシアネート、ジフェニルメタン-3,4′-ジイソシアネート、ジフェニルエーテル-4,4′-ジイソシアネート、ベンゾフェノン-4,4′-ジイソシアネート、ジフェニルスルホン-4,4′-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4′-[2,2-ビス(4-フェノキシフェニル)プロパン]ジイソシアネートなどの芳香族ジイソシアネート化合物、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート等の脂環族ジイソシアネート化合物、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。これらを使用することは得られる硬化膜の耐熱性を上げる上で好ましい。また、経日変化を避けるために必要なブロック剤で安定化したものを使用してもよい。かかるブロック剤としては、アルコール、フェノール、オキシム等があるが、特に制限はない。
 (b)ジイソシアネート化合物としては、ジフェニルメタン-4,4′-ジイソシアネート、ジフェニルメタン-3,3′-ジイソシアネート、ジフェニルメタン-3,4′-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、ノルボルネンジイソシアネートを用いることが特に好ましい。これにより、得られる硬化膜の耐熱性、耐水性をさらに向上させることができる点で好ましい。
 <末端イソシアネート化合物の合成方法>
 本願発明で用いられる(a)ジオール化合物と(b)ジイソシアネート化合物とを反応させて得られる末端イソシアネート化合物の合成方法は、ジオール化合物とジイソシアネート化合物との配合量を、水酸基数とイソシアネート基数との比率が、イソシアネート基/水酸基=1以上2.10以下、より好ましくは1.10以上2.10以下、さらに好ましくは1.90以上2.10以下になるように無溶媒あるいは有機溶媒中で反応させることで得られる。
 また、2種類以上の(a)ジオール化合物を用いる場合、(b)ジイソシアネート化合物との反応は、2種類以上の(a)ジオール化合物を混合した後に行ってもよいし、それぞれの(a)ジオール化合物と(b)ジイソシアネート化合物とを別個に反応させてもよい。また、(a)ジオール化合物と(b)ジイソシアネート化合物とを反応させた後に、得られた末端イソシアネート化合物をさらに他の(a)ジオール化合物と反応させ、さらにこれを(b)ジイソシアネート化合物と反応させてもよい。また、2種類以上の(b)ジイソシアネート化合物を用いる場合も同様である。このようにして、所望の末端イソシアネート化合物を製造することができる。
 (a)と(b)との反応温度は、40~160℃とすることが好ましく、60~150℃とすることがより好ましい。40℃未満では反応時間が長くなり過ぎ、160℃を超えると反応中に三次元化反応が生じてゲル化が起こり易い。反応時間は、バッチの規模、採用される反応条件により適宜選択することができる。また、必要に応じて、三級アミン類、アルカリ金属、アルカリ土類金属、錫、亜鉛、チタニウム、コバルト等の金属又は半金属化合物等の触媒存在下に反応を行っても良い。
 上記反応は、無溶媒で反応させることもできるが、反応を制御する為には、有機溶媒系で反応させることが望ましく、例えば有機溶媒としては、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、フェノール、o-、m-またはp-クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ-ブチロラクトンなどを挙げることができる。さらに必要に応じて、これらの有機極性溶媒とキシレンあるいはトルエンなどの芳香族炭化水素とを組み合わせて用いることもできる。
 更に、例えばメチルモノグライム(1,2-ジメトキシエタン)、メチルジグライム(ビス(2-メトキシエテル)エーテル)、メチルトリグライム(1,2-ビス(2-メトキシエトキシ)エタン)、メチルテトラグライム(ビス[2-(2-メトキシエトキシエチル)]エーテル)、エチルモノグライム(1,2-ジエトキシエタン)、エチルジグライム(ビス(2-エトキシエチル)エーテル)、ブチルジグライム(ビス(2-ブトキシエチル)エーテル)等の対称グリコールジエーテル類、メチルアセテート、エチルアセテート、イソプロピルアセテート、n―プロピルアセテート、ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(別名、カルビトールアセテート、酢酸2-(2-ブトキシエトキシ)エチル))、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3―ブチレングリコールジアセテート等のアセテート類や、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、ジプロピレングリコールn-ブチルエーテル、トリピレングリコールn-プロピルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル、1,3―ジオキソラン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールものエチルエーテル等のエーテル類の溶剤を用いることもできる。中でも、副反応が生じにくいことから、対称グリコールジエーテル類を用いることが好ましい。
 反応の際に用いられる溶剤量は、反応溶液中の溶質重量濃度すなわち溶液濃度が5重量%以上90重量%以下となるような量とすることが望ましい。反応溶液中の溶質重量濃度は、更に好ましくは、10重量%以上80重量%以下となることが望ましい。溶液濃度が5%以下の場合には、重合反応が起こりにくく反応速度が低下すると共に、所望の構造物質が得られない場合があるので好ましくない。
 また、上記反応で得られる末端イソシアネート化合物は、合成終了後に樹脂末端のイソシアネート基をアルコール類、ラクタム類、オキシム類等のブロック剤でブロックすることもできる。
 <末端酸無水物ウレタンイミドオリゴマーの合成方法>
 本願発明で用いられる末端酸無水物ウレタンイミドオリゴマーは、上記のようにして得られた末端イソシアネート化合物に、次いでテトラカルボン酸二無水物を反応させることにより得ることができる。この時、末端イソシアネート化合物とテトラカルボン酸二無水物との配合量は、イソシアネート基数と酸二無水物基数の比率が、酸二無水物基/イソシアネート基=2.10以下であることが好ましく、1.10以上2.10以下であることがより好ましく、1.90以上2.10以下であることがさらに好ましい。また、末端イソシアネート化合物とテトラカルボン酸二無水物との反応には、上記末端イソシアネート化合物の合成時に使用した溶媒をそのまま使用してもよいし、更に追加して上記の溶媒を加えることもできる。
 <テトラカルボン酸二無水物>
 本願発明において末端酸無水物ウレタンイミドオリゴマーの合成に用いられるテトラカルボン酸二無水物としては、例えば3,3’,4,4’―ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’―オキシジフタル酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3´,4,4´-テトラカルボン酸二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’―ビフェニルテトラカルボン酸二無水物、2,3,3’,4―ビフェニルテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等のテトラカルボン酸二無水物を用いることができる。
 末端酸無水物ウレタンイミドオリゴマーの合成に用いられるテトラカルボン酸二無水物は、より好ましくは、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’―オキシジフタル酸二無水物である。これらを用いることで得られる末端カルボン酸ウレタンイミドオリゴマーの有機溶剤への溶解性を向上させることができるとともに、得られる硬化膜の耐薬品性を向上させる上で好ましい。
 また、上記テトラカルボン酸二無水物として、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物又は5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物を用いることが、熱硬化性樹脂組成物中の他の材料との相溶性の観点からさらに好ましい。
 本願発明で用いられる上記テトラカルボン酸二無水物の使用量は、上記末端イソシアネート化合物の製造に用いられたポリオール(より具体的にはジオール化合物)の使用量を1モルとした場合に、1.50モル以上2.50モル以下の割合で用いることが、末端カルボン酸ウレタンイミドオリゴマーの両末端にカルボキシル基を配する上で好ましく、特に好ましい使用範囲は、1.90モル以上2.10モル以下の割合で使用することである。これにより、反応に寄与しないテトラカルボン酸二無水物を減らすことができるので好ましい。
 <末端酸無水物ウレタンイミドオリゴマーの製造方法>
 末端酸無水物ウレタンイミドオリゴマーの製造方法における、末端イソシアネート化合物とテトラカルボン酸二無水物の反応方法としては種々の方法が挙げられる。その代表的な方法を下記に例記する。但し、末端にテトラカルボン酸二無水物を配する方法であればどのような方法を用いてもよい。
 方法1:テトラカルボン酸二無水物を有機溶剤中に分散もしくは溶解させた溶液中に、徐々に末端イソシアネート化合物を添加する。このときの反応温度は、100℃以上300℃以下、より好ましくは、140℃以上250℃以下である。かかる温度に加熱して末端イソシアネート化合物が添加されたと同時に反応が生じてイミド化が進むことが好ましい。但し、低温で完全に末端イソシアネート化合物とテトラカルボン酸二無水物を溶解した後に、高温に加熱してイミド化する方法を用いてもよい。
 方法2:テトラカルボン酸二無水物を有機溶剤中に分散もしくは溶解させた溶液中に、徐々に末端イソシアネート化合物を添加して溶解する。均一に溶解した溶液を100℃以上250℃以下に加熱した真空減圧乾燥機中で加熱・乾燥を行いながら真空に引くことでイミド化を行うことができる。
 <末端カルボン酸ウレタンイミドオリゴマーの合成>
 上記の方法により得ることができる末端酸無水物ウレタンイミドオリゴマーに、水、及び/又は、1級アルコールを反応させることで末端カルボン酸ウレタンイミドオリゴマーを得ることができる。なお、1級アルコールとしては特に限定されるものではないが、例えば、メタノール、エタノール、プロパノール、ブタノール等を好適に用いることができる。
 末端酸無水物ウレタンイミドオリゴマーと、水及び/又は1級アルコールとの反応方法としては、上記末端酸無水物ウレタンイミドオリゴマーに水及び/又は1級アルコールを、上記末端酸無水物ウレタンイミドオリゴマーの製造に使用したテトラカルボン酸二無水物のモル量の2.0倍以上300倍以下、より好ましくは、2.0倍以上200倍以下の割合で添加して、開環することが好ましい。この反応は、無溶剤で行うこともできるが、例えばジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、フェノール、o-、m-またはp-クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ-ブチロラクトン、メチルモノグライム(1,2-ジメトキシエタン)、メチルジグライム(ビス(2-メトキシエテル)エーテル)、メチルトリグライム(1,2-ビス(2-メトキシエトキシ)エタン)、メチルテトラグライム(ビス[2-(2-メトキシエトキシエチル)]エーテル)、エチルモノグライム(1,2-ジエトキシエタン)、エチルジグライム(ビス(2-エトキシエチル)エーテル)、ブチルジグライム(ビス(2-ブトキシエチル)エーテル)等の対称グリコールジエーテル類、γ―ブチロラクトンやN-メチル-2-ピロリドン、メチルアセテート、エチルアセテート、イソプロピルアセテート、n―プロピルアセテート、ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(別名、カルビトールアセテート、酢酸2-(2-ブトキシエトキシ)エチル))、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3―ブチレングリコールジアセテート等のアセテート類や、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、ジプロピレングリコールn-ブチルエーテル、トリピレングリコールn-プロピルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル、1,3―ジオキソラン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールものエチルエーテル等のエーテル類の溶剤を用いることもできる。尚、必要に応じて低沸点のヘキサン、アセトン、トルエン、キシレン等も併用するこができる。中でも特に対称グリコールジエーテル類がオリゴマーの溶解性が高いので望ましい。
 上記反応は、添加した水及び/又は1級アルコールが反応系外に出ない範囲で加熱することが好ましく、20℃以上150℃以下、上限はより好ましくは120℃以下の温度範囲で加熱することが反応を促進し易いので好ましい。尚、水及び/又は1級アルコールの添加量は、多い方が好ましいが、多すぎると他の添加樹脂の溶解度が低下するため、反応後に未反応物は取り除くことが好ましい。反応後に未反応物を取り除く際の温度は、添加した水及び/又は1級アルコールの沸点以上であることが好ましい。かかる温度で加熱することで未反応物を系外に除去することができる。
 <(B)熱硬化性樹脂>
 本願発明における(B)熱硬化性樹脂とは、加熱により架橋構造を生成し、架橋剤として機能する化合物である。例えば、アミノ樹脂、メラミン樹脂、グアナミン樹脂、ユリア樹脂、スルホアミド樹脂、アニリン樹脂、シアン酸エステル樹脂、イソシアネート樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂、オキセタン樹脂、ビスマレイミド樹脂、ビスアリルナジイミド樹脂、ベンゾオキサジン樹脂、オキサゾリン樹脂、アクリル樹脂、メタクリル樹脂、ヒドロシリル硬化樹脂、アリル硬化樹脂、アルキド樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂;高分子鎖の側鎖または末端にアリル基、ビニル基、アルコキシシリル基、ヒドロシリル基、アクリロイル基、メタクリロイル基等の反応性基を有する側鎖反応性基型熱硬化性高分子等を用いることができる。上記熱硬化性成分、すなわち、(B)熱硬化性樹脂は、1種又は2種以上を適宜組み合わせて用いればよい。
 (B)熱硬化性樹脂としては、この中でも、エポキシ樹脂を用いることがより好ましい。エポキシ樹脂成分を含有することにより、熱硬化性樹脂組成物を硬化させて得られる硬化膜に対して耐熱性を付与できると共に、金属箔等の導体や回路基板に対する接着性を付与することができる。
 上記エポキシ樹脂とは、分子内に少なくとも2個のエポキシ基を含む化合物であり、例えば、ビスフェノールA型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER828、jER1001、jER1002、株式会社ADEKA製の商品名アデカレジンEP-4100E、アデカレジンEP-4300E、日本化薬株式会社製の商品名RE-310S、RE-410S、大日本インキ株式会社製の商品名エピクロン840S、エピクロン850S、エピクロン1050、エピクロン7050、東都化成株式会社製の商品名エポトートYD-115、エポトートYD-127、エポトートYD-128、ビスフェノールF型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER806、jER807、株式会社ADEKA製の商品名アデカレジンEP-4901E、アデカレジンEP-4930、アデカレジンEP-4950、日本化薬株式会社製の商品名RE-303S、RE-304S、RE-403S,RE-404S、大日本インキ株式会社製の商品名エピクロン830、エピクロン835、東都化成株式会社製の商品名エポトートYDF-170、エポトートYDF-175S、エポトートYDF-2001、ビスフェノールS型エポキシ樹脂としては、大日本インキ株式会社製の商品名エピクロンEXA-1514、水添ビスフェノールA型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jERYX8000、jERYX8034,jERYL7170、株式会社ADEKA製の商品名アデカレジンEP-4080E、大日本インキ株式会社製の商品名エピクロンEXA-7015、東都化成株式会社製の商品名エポトートYD-3000、エポトートYD-4000D、ビフェニル型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jERYX4000、jERYL6121H、jERYL6640、jERYL6677、日本化薬株式会社製の商品名NC-3000、NC-3000H、フェノキシ型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER1256、jER4250、jER4275、ナフタレン型エポキシ樹脂としては、大日本インキ株式会社製の商品名エピクロンHP-4032、エピクロンHP-4700、エピクロンHP-4200、日本化薬株式会社製の商品名NC-7000L、フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER152、jER154、日本化薬株式会社製の商品名EPPN-201-L、大日本インキ株式会社製の商品名エピクロンN-740、エピクロンN-770、東都化成株式会社製の商品名エポトートYDPN-638、クレゾールノボラック型エポキシ樹脂としては、日本化薬株式会社製の商品名EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、大日本インキ株式会社製の商品名エピクロンN-660、エピクロンN-670、エピクロンN-680、エピクロンN-695、トリスフェノールメタン型エポキシ樹脂としては、日本化薬株式会社製の商品名EPPN-501H、EPPN-501HY、EPPN-502H、ジシクロペンタジエン型エポキシ樹脂としては、日本化薬株式会社製の商品名XD-1000、大日本インキ株式会社製の商品名エピクロンHP-7200、アミン型エポキシ樹脂としては、東都化成株式会社の商品名エポトートYH-434、エポトートYH-434L、可とう性エポキシ樹脂としては、ジャパンエポキシレジン株式会社製の商品名jER871、jER872、jERYL7175、jERYL7217、大日本インキ株式会社製の商品名エピクロンEXA-4850、ウレタン変性エポキシ樹脂としては、株式会社ADEKA製の商品名アデカレジンEPU-6、アデカレジンEPU-73、アデカレジンEPU-78-11、ゴム変性エポキシ樹脂としては、株式会社ADEKA製の商品名アデカレジンEPR-4023、アデカレジンEPR-4026、アデカレジンEPR-1309、キレート変性エポキシ樹脂としては、株式会社ADEKA製の商品名アデカレジンEP-49-10、アデカレジンEP-49-20等が挙げられる。
 本願発明の熱硬化性樹脂組成物には、上記熱硬化性化合物の硬化剤として、特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフタレン型フェノール樹脂等のフェノール樹脂、メラミン、ジシアンジアミド等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 また、硬化促進剤としては、特に限定されないが、例えば、トリフェニルホスフィン等のホスフィン系化合物;3級アミン系、トリメタノールアミン、トリエタノールアミン、テトラエタノールアミン等のアミン系化合物;1,8-ジアザ-ビシクロ[5,4,0]-7-ウンデセニウムテトラフェニルボレート等のボレート系化合物等、イミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-イソプロピルイミダゾール、2,4-ジメチルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類;2-メチルイミダゾリン、2-エチルイミダゾリン、2-イソプロピルイミダゾリン、2-フェニルイミダゾリン、2-ウンデシルイミダゾリン、2,4-ジメチルイミダゾリン、2-フェニル-4-メチルイミダゾリン等のイミダゾリン類;2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン等のアジン系イミダゾール類等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明の熱硬化性樹脂組成物における(B)成分は、(A)成分100重量部に対して、好ましくは1~100重量部、さらに好ましくは、1~50重量部、特に好ましくは、5~50重量部である。
 上記範囲内に(B)成分の量を調整することにより、熱硬化性樹脂組成物を硬化させることにより得られる硬化膜の耐熱性、耐薬品性、電気絶縁信頼性を向上することができるので好ましい。
 (B)成分が上記範囲よりも少ない場合には、熱硬化性樹脂組成物を硬化させることにより得られる硬化膜の耐熱性、電気絶縁信頼性に劣る場合がある。また、(B)成分が上記範囲よりも多い場合には、熱硬化性樹脂組成物を硬化させることにより得られる硬化膜が脆くなり柔軟性に劣り、硬化膜の反りも大きくなる場合がある。
 (II)感光性樹脂組成物
 本願発明の感光性樹脂組成物は、少なくとも上記熱硬化性樹脂組成物と、(C)感光性樹脂と、(D)光重合開始剤とを含有していればよい。なお、本願発明の感光性樹脂組成物に使用する熱硬化性樹脂組成物としては、上記熱硬化性樹脂組成物であれば、特に限定すること無く使用可能である。
 すなわち、本願発明の感光性樹脂組成物は、少なくとも、(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂と、(C)感光性樹脂と、(D)光重合開始剤とを含有していればよい。
 なお、感光性樹脂組成物において、(A)末端カルボン酸ウレタンイミドオリゴマーについては、ポリカーボネートジオールを用いて得られる、末端テトラカルボン酸ウレタンイミドオリゴマーがより好ましく用いられるが、これに限定されるものではない。
 ここで、本願発明の少なくとも、(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂と、(C)感光性樹脂と、(D)光重合開始剤とを含有する感光性樹脂組成物は、各種特性に優れる事を、本発明者らは見出したが、これは、以下の理由によるのではないかと推測している。
つまり、(A)末端カルボン酸ウレタンイミドオリゴマーは、分子中にイミド骨格及びウレタン結合を有するため、イミド骨格由来の耐熱性や電気絶縁信頼性、ウレタン結合由来の耐薬品性や柔軟性に優れ、末端にカルボキシル基を有するため、希アルカリ水溶液に代表される現像液に可溶となり、露光・現像により微細加工が可能となる。なかでも、ポリカーボネートジオールを用いて得られる末端テトラカルボン酸ウレタンイミドオリゴマーは、驚くべきことに、ポリカーボネート骨格の優れた耐薬品性のため、末端にカルボキシル基を多く含有しているにも拘らず、露光部(硬化部)は現像液による塗膜の膨潤・溶解などのダメージが全く無く、さらに未露光部(未硬化部)は末端にカルボキシル基を多く含有するため、短い現像時間で溶解し、非常に解像性の良いパターンが得られる。
 (A)成分及び(B)成分については、上記(I)で説明したとおりであるので、ここでは説明を省略し、以下、(C)感光性樹脂、(D)光重合開始剤、その他の成分、及び、(A)~(D)の混合方法について説明する。
 <(C)感光性樹脂>
 本願発明における(C)感光性樹脂とは、光重合開始剤により化学結合が形成される樹脂である。その中でも分子内に不飽和二重結合を少なくとも1つ有する樹脂であることが好ましい。さらには、上記不飽和二重結合は、アクリル基(CH=CH-基)、メタアクリロイル基(CH=C(CH)-基)もしくはビニル基(-CH=CH-基)であることが好ましい。
 かかる(C)感光性樹脂としては、例えばビスフェノールF EO変性(n=2~50)ジアクリレート、ビスフェノールA EO変性(n=2~50)ジアクリレート、ビスフェノールS EO変性(n=2~50)ジアクリレート、ビスフェノールF EO変性(n=2~50)ジメタクリレート、ビスフェノールA EO変性(n=2~50)ジメタクリレート、ビスフェノールS EO変性(n=2~50)ジメタクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、エチレングリコールジアクリレート、ペンタエリスリトールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、テトラメチロールプロパンテトラアクリレート、テトラエチレングリコールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ペンタエリスリトールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサメタクリレート、テトラメチロールプロパンテトラメタクリレート、テトラエチレングリコールジメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、β-メタクリロイルオキシエチルハイドロジェンフタレート、β-メタクリロイルオキシエチルハイドロジェンサクシネート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ステアリルメタクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、β-アクリロイルオキシエチルハイドロジェンサクシネート、ラウリルアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2-ヒドロキシ-1,3-ジメタクリロキシプロパン、2,2-ビス[4-(メタクリロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(メタクリロキシ・ポリエトキシ)フェニル]プロパン、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2-ビス[4-(アクリロキシ・ジエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリエトキシ)フェニル]プロパン、2-ヒドロキシ-1-アクリロキシ-3-メタクリロキシプロパン、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、メトキシジプロピレングリコールメタクリレート、メトキシトリエチレングリコールアクリレート、ノニルフェノキシポリエチレングリコールアクリレート、ノニルフェノキシポリプロピレングリコールアクリレート、1 - アクリロイルオキシプロピル-2-フタレート、イソステアリルアクリレート、ポリオキシエチレンアルキルエーテルアクリレート、ノニルフェノキシエチレングリコールアクリレート、ポリプロピレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、3-メチル-1,5-ペンタンジオールジメタクリレート、1,6-メキサンジオールジメタクリレート、1,9-ノナンジオールメタクリレート、2,4-ジエチル-1,5-ペンタンジオールジメタクリレート、1,4-シクロヘキサンジメタノールジメタクリレート、ジプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、2,2-水添ビス[4-(アクリロキシ・ポリエトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシ・ポリプロポキシ)フェニル]プロパン、2,4-ジエチル-1,5-ペンタンジオールジアクリレート、エトキシ化トチメチロールプロパントリアクリレート、プロポキシ化トチメチロールプロパントリアクリレート、イソシアヌル酸トリ(エタンアクリレート)、ペンタスリトールテトラアクリレート、エトキシ化ペンタスリトールテトラアクリレート、プロポキシ化ペンタスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールポリアクリレート、イソシアヌル酸トリアリル、グリシジルメタクリレート、グリシジルアリルエーテル、1,3,5-トリアクリロイルヘキサヒドロ-s-トリアジン、トリアリル1,3,5-ベンゼンカルボキシレート、トリアリルアミン、トリアリルシトレート、トリアリルフォスフェート、アロバービタル、ジアリルアミン、ジアリルジメチルシラン、ジアリルジスルフィド、ジアリルエーテル、ザリルシアルレート、ジアリルイソフタレート、ジアリルテレフタレート、1,3-ジアリロキシ-2-プロパノール、ジアリルスルフィドジアリルマレエート、4,4’-イソプロピリデンジフェノールジメタクリレート、4,4’-イソプロピリデンジフェノールジアクリレート、等が好ましいが、これらに限定されない。特に、ジアクリレートあるいはメタアクリレートの一分子中に含まれるEO(エチレンオキサイド)の繰り返し単位が、2~50の範囲のものが好ましく、さらに好ましくは2~40である。EOの繰り返し単位が2~50の範囲の物を使用することにより、感光性樹脂組成物のアルカリ水溶液に代表される水系現像液への溶解性が向上し、現像時間が短縮される。更に、感光性樹脂組成物を硬化した硬化膜中に応力が残りにくく、例えばプリント配線板の中でも、ポリイミド樹脂を基材とするフレキシブルプリント配線板上に積層した際に、プリント配線板のカールを抑えることができるなどの特徴を有する。
 特に、上記EO変性のジアクリレート或いは、ジメタクリレートと、アクリル基もしくは、メタクリル基を3以上有するアクリル樹脂を併用することが現像性を高める上で特に好ましく、例えばエトキシ化イソシアヌル酸EO変性トリアクリレート、エトキシ化イソシアヌル酸EO変性トリメタクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、プロポキシ化ペンタエリストールテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、2,2,2-トリスアクリロイロキシメチルエチルコハク酸、2,2,2-トリスアクリロイロキシメチルエチルフタル酸、プロポキシ化ジトリメチロールプロパンテトラアクリレート、プロポキシ化ジペンタエリスリトールヘキサアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、カプロラクトン変性ジトリメチロールプロパンテトラアクリレート、下記一般式(7)
Figure JPOXMLDOC01-appb-C000015
(式中、a+b=6、n=12である。)で表される化合物、下記一般式(8)
Figure JPOXMLDOC01-appb-C000016
(式中、a+b=4、n=4である。)で表される化合物、下記式(9)
Figure JPOXMLDOC01-appb-C000017
で表される化合物、下記一般式(10)
Figure JPOXMLDOC01-appb-C000018
(式中、m=1、a=2、b=4もしくは、m=1、a=3、b=3もしくは、m=1、a=6、b=0もしくは、m=2、a=6、b=0である。)で表される化合物、下記一般式(11)
Figure JPOXMLDOC01-appb-C000019
(式中、a+b+c=3.6である。)で表される化合物、下記式(12)
Figure JPOXMLDOC01-appb-C000020
で表される化合物、下記一般式(13)
Figure JPOXMLDOC01-appb-C000021
(式中、m・a=3、a+b=3、ここで「m・a」は、mとaとの積である。)で表される化合物等のアクリル樹脂が好適に用いられる。
 また、2-ヒドロキシ-3-フェノキシプロピルアクリレート、フタル酸モノヒドロキシエチルアクリレート、ω-カルボキシ-ポリカプロラクトンモノアクリレート、アクリル酸ダイマー、ペンタエスリトールトリ及びテトラアクリレート等の分子構造骨格中にヒドロキシル基、カルボニル基を有する物も好適に用いられる。
 この他、エポキシ変性のアクリル(メタクリル)樹脂や、ウレタン変性のアクリル(メタクリル)樹脂、ポリエステル変性のアクリル(メタクリル)樹脂等どのような感光性樹脂を用いてもよい。
 尚、感光性樹脂としては、1種を使用することも可能であるが、2種以上を併用することが、光硬化後の硬化膜の耐熱性を向上させる上で好ましい。
 <(D)光重合開始剤>
 本願発明における(D)光重合開始剤とは、UVなどのエネルギーによって活性化し、感光性樹脂の反応を開始・促進させる化合物である。かかる(D)光重合開始剤としては、例えば、ミヒラ-ズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’,4’’-トリス(ジメチルアミノ)トリフェニルメタン、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ジイミダゾール、アセトフェノン、ベンゾイン、2-メチルベンゾイン、ベンゾインメチルエ-テル、ベンゾインエチルエ-テル、ベンゾインイソプロピルエ-テル、ベンゾインイソブチルエ-テル、2-t-ブチルアントラキノン、1,2-ベンゾ-9,10-アントラキノン、メチルアントラキノン、チオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ジアセチルベンジル、ベンジルジメチルケタ-ル、ベンジルジエチルケタ-ル、2(2’-フリルエチリデン)-4,6-ビス(トリクロロメチル)-S-トリアジン、2[2’(5’’-メチルフリル)エチリデン]-4,6-ビス(トリクロロメチル)-S-トリアジン、2(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-S-トリアジン、2,6-ジ(p-アジドベンザル)-4-メチルシクロヘキサノン、4,4’-ジアジドカルコン、ジ(テトラアルキルアンモニウム)-4,4’-ジアジドスチルベン-2,2’-ジスルフォネ-ト、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-ケトン、ビス(n5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、1,2-オクタノンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、ヨード二ウム,(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]-ヘキサフルオロフォスフェート(1-)、エチル-4-ジメチルアミノベンゾエート、2-エチルヘキシル-4-ジメチルアミノベンゾエート、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシオム)などが挙げられる。上記光重合開始剤は適宜選択することが望ましく、1種以上を混合させて用いることが望ましい。
 本願発明の感光性樹脂組成物における(A)成分、(B)成分、(C)成分および(D)成分は、(A)成分と(B)成分を合計した固形分100重量部に対して、(C)成分が、10~200重量部、(D)成分が、0.1~50重量部となるように配合されていることが好ましい。
 上記配合割合にすることで最終的に得られる硬化物や絶縁膜の諸特性(電気絶縁信頼性等)が向上するので好ましい。
 (C)感光性樹脂が上記範囲よりも少ない場合には、感光性樹脂組成物を光硬化した後の硬化被膜の耐熱性が低下すると共に、露光・現像したときのコントラストがつきにくくなるので好ましくない場合がある。そのため、上記範囲内にすることで露光・現像時の解像度を最適な範囲にすることが可能となる。
 (D)光重合開始剤が上記範囲よりも少ない場合には、光照射時のアクリル樹脂の硬化反応が起こりにくく、硬化が不十分となることが多い場合がある。また、多すぎた場合には、光照射量の調整が難しくなり、過露光状態となる場合がある。そのため、光硬化反応を効率良く進めるためには上記範囲内に調整することが好ましい。
 <その他の成分>
 本願発明の感光性樹脂組成物には、密着性、硬化膜の硬度を向上させる目的で、無機充填剤を用いることができる。無機充填剤としては、特に限定はされないが、例えば、硫酸バリウム、チタン酸バリウム、タルク、超微粒子状無水シリカ、合成シリカ、天然シリカ、炭酸カルシウム、炭酸マグネシウム、酸化アルミニウム等が挙げられる、これらを単独で又は2種類以上を組み合わせて使用できる。
 本願発明の感光性樹脂組成物には、更に必要に応じて、消泡剤、レベリング剤、難燃剤、着色剤、密着性付与剤、重合禁止剤等の添加剤を用いることができる。これら添加剤としては、特に限定はされないが、例えば、消泡剤としては、シリコン系化合物、アクリル系化合物、レベリング剤としては、シリコン系化合物、アクリル系化合物、難燃剤としては、例えば、リン酸エステル系化合物、含ハロゲン系化合物、金属水酸化物、有機リン系化合物等、着色剤としては、フタロシアニン系化合物、アゾ系化合物、カーボンブラック、酸化チタン、密着性付与剤としては、シランカップリング剤、トリアゾール系化合物、テトラゾール系化合物、トリアジン系化合物、重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエーテル等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用できる。
 <(A)~(D)の混合方法>
 本願発明の感光性樹脂組成物は、前記各成分(A)~(D)成分と、必要に応じて上記他の成分とを均一に混合して得られる。均一に混合する方法としては、例えば3本ロール、ビーズミル装置等の一般的な混練装置を用いて混合すればよい。また、溶液の粘度が低い場合には、一般的な攪拌装置を用いて混合してもよい。
 (III)樹脂組成物溶液
 本願発明の熱硬化性樹脂組成物及び感光性樹脂組成物を有機溶剤に溶解して得られる樹脂組成物用液も本願発明に含まれる。上記、熱硬化性樹脂組成物及び感光性樹脂組成物は、種々の有機溶媒に対する溶解性が高く、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどのホルムアミド系溶媒、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどのアセトアミド系溶媒、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドンなどのピロリドン系溶媒、フェノール、o-、m-またはp-クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、あるいはヘキサメチルホスホルアミド、γ-ブチロラクトン、メチルモノグライム(1,2-ジメトキシエタン)、メチルジグライム(ビス(2-メトキシエテル)エーテル)、メチルトリグライム(1,2-ビス(2-メトキシエトキシ)エタン)、メチルテトラグライム(ビス[2-(2-メトキシエトキシエチル)]エーテル)、エチルモノグライム(1,2-ジエトキシエタン)、エチルジグライム(ビス(2-エトキシエチル)エーテル)、ブチルジグライム(ビス(2-ブトキシエチル)エーテル)等の対称グリコールジエーテル類、γ―ブチロラクトンやN-メチル-2-ピロリドン、メチルアセテート、エチルアセテート、イソプロピルアセテート、n―プロピルアセテート、ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(別名、カルビトールアセテート、酢酸2-(2-ブトキシエトキシ)エチル))、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、1,3―ブチレングリコールジアセテート等のアセテート類や、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、ジプロピレングリコールn-ブチルエーテル、トリピレングリコールn-プロピルエーテル、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル、1,3―ジオキソラン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールものエチルエーテル等のエーテル類の溶剤を用いることができる。尚、上記溶媒としては、必要に応じて低沸点のヘキサン、アセトン、トルエン、キシレン等も併用するこができる。
 中でも特に対称グリコールジエーテル類は、上記熱硬化性樹脂組成物及び感光性樹脂組成物の溶解性が高いので望ましい。
 本願発明の熱硬化性樹脂組成物及び感光性樹脂組成物を有機溶剤に溶解して得られる樹脂組成物溶液は、(A)成分及び(B)成分又は(A)~(D)成分の全固形分100重量部に対して、有機溶剤が、10重量部以上100重量部以下で配合されていることが好ましい。
 この範囲内の樹脂組成物溶液にすることで乾燥後の膜減り率が小さくなるので望ましい。
 (IV)熱硬化性樹脂組成物の使用方法
 本願発明の熱硬化性樹脂組成物を直接に用いて、又は、上記熱硬化性樹脂組成物溶液を調製した後に、以下のようにして硬化膜又はパターンを形成することができる。先ず、上記熱硬化性樹脂組成物を基板に塗布する。或いは上記熱硬化性樹脂組成物溶液を基板に塗布し、乾燥して有機溶媒を除去する。基板への塗布はスクリ-ン印刷、カ-テンロ-ル、リバ-スロ-ル、スプレーコーティング、スピンナーを利用した回転塗布等により行うことができる。塗布膜(好ましくは厚み:5~100μm、特に10~100μm)の乾燥は120℃以下、好ましくは40~100℃で行う。次に、加熱硬化処理を行うことにより耐熱性及び柔軟性に富む硬化膜を得ることができる。プリント配線板の絶縁膜として硬化膜を用いる場合、硬化膜の厚みは配線厚み等を考慮して決定されるが、厚みが2~50μm程度であることが好ましい。このときの最終硬化温度は配線等の酸化を防ぎ、配線と基材との密着性を低下させないことを目的として低温で加熱して硬化させることが望まれている。この時の加熱硬化温度は100℃以上250℃以下であることが好ましく、更に好ましくは120℃以上200℃以下であることが望ましく、特に好ましくは130℃以上190℃以下である。最終加熱温度が高くなると配線の酸化劣化が進む場合がある。
 本願発明の熱硬化性樹脂組成物から形成した硬化膜は、耐熱性、耐薬品性、電気的及び機械的性質に優れており、特に柔軟性に優れている。例えば、この発明の絶縁膜は、好適には厚さ2~50μm程度の膜厚で用いられる。この為、本願発明の絶縁膜は高密度フレキシブル基板の絶縁材料として特に適しているのである。また更には、熱硬化型の各種配線被覆保護剤、熱硬化性の耐熱性接着剤、電線・ケーブル絶縁被膜等に用いられる。
 尚、本願発明は前記熱硬化性樹脂組成物を基材表面に塗布し乾燥して得られた熱硬化性フィルムを用いても同様の絶縁材料を提供することができる。
 (V)感光性樹脂組成物の使用方法
 本願発明の感光性樹脂組成物は、以下のようにしてパタ-ンを形成することができる。先ず上記の感光性樹脂組成物を基板上に塗布し、乾燥して有機溶媒を除去する。基板への塗布はスクリ-ン印刷、ローラーコーティング、カ-テンコーティング、スプレーコーティング、スピンナーを利用した回転塗布等により行うことができる。塗布膜(好ましくは厚み:5~100μm)の乾燥は120℃以下、好ましくは40~100℃で行う。乾燥後、乾燥塗布膜にネガ型のフォトマスクを置き、紫外線、可視光線、電子線などの活性光線を照射する。次いで、未露光部分をシャワー、パドル、浸漬または超音波等の各種方式を用い、現像液で洗い出すことによりパタ-ンを得ることができる。なお、現像装置の噴霧圧力や流速、現像液の温度によりパターンが露出するまでの時間が異なる為、適宜最適な装置条件を見出すことが好ましい。
 上記現像液としては、アルカリ水溶液を使用することが好ましく、この現像液には、メタノ-ル、エタノ-ル、n-プロパノ-ル、イソプロパノ-ル、N-メチル-2-ピロリドン等の水溶性有機溶媒が含有されていてもよい。上記のアルカリ性水溶液を与えるアルカリ性化合物としては、例えば、アルカリ金属、アルカリ土類金属またはアンモニウムイオンの、水酸化物または炭酸塩や炭酸水素塩、アミン化合物などが挙げられ、具体的には水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトライソプロピルアンモニウムヒドロキシド、N-メチルジエタノ-ルアミン、N-エチルジエタノ-ルアミン、N,N-ジメチルエタノ-ルアミン、トリエタノ-ルアミン、トリイソプロパノ-ルアミン、トリイソプロピルアミン等が挙げられ、水溶液が塩基性を呈するものであればこれ以外の化合物も使用することができる。
 本願発明の感光性樹脂組成物の現像工程に好適に用いることのできる、アルカリ性化合物の濃度は、好ましくは0.01~10重量%、特に好ましくは、0.05~5重量%とすることが好ましい。また、現像液の温度は感光性樹脂組成物の組成や、現像液の組成に依存しており、一般的には0℃以上80℃以下、より一般的には、20℃以上50℃以下で使用することが好ましい。
 上記現像工程によって形成したパタ-ンは、リンスして不用な現像液残分を除去する。リンス液としては、水、酸性水溶液などが挙げられる。
 次に、加熱硬化処理を行うことにより耐熱性及び柔軟性に富む硬化膜を得ることができる。プリント配線板の絶縁膜として硬化膜を用いる場合、硬化膜の厚みは配線厚み等を考慮して決定されるが、厚みが2~50μm程度であることが好ましい。このときの最終硬化温度は配線等の酸化を防ぎ、配線と基材との密着性を低下させないことを目的として低温で加熱して硬化させることが望まれている。この時の加熱硬化温度は100℃以上250℃以下であることが好ましく、更に好ましくは120℃以上200℃以下であることが望ましく、特に好ましくは130℃以上190℃以下である。最終加熱温度が高くなると配線の酸化劣化が進む場合がある。
 本願発明の感光性樹脂組成物から形成した硬化膜からなるパタ-ンは、耐熱性、耐薬品性、電気的及び機械的性質に優れており、特に柔軟性に優れている。例えば、この発明の絶縁膜は、好適には厚さ2~50μm程度の膜厚で光硬化後少なくとも10μmまでの解像性、特に10~1000μm程度の解像性である。この為、本願発明の絶縁膜は高密度フレキシブル基板の絶縁材料として特に適しているのである。また更には、光硬化型の各種配線被覆保護剤、感光性の耐熱性接着剤、電線・ケーブル絶縁被膜等に用いられる。
 尚、本願発明は前記感光性樹脂組成物を基材表面に塗布し乾燥して得られた感光性フィルムを用いても同様の絶縁材料を提供することができる。
 以下本発明を実施例により具体的に説明するが本発明はこれらの実施例により限定されるものではない。
 〔合成例1〕
 <末端カルボン酸ウレタンイミドオリゴマーの合成>
 窒素で加圧した、セパラブルフラスコ中に、重合用溶媒としてメチルトリグライム(16.0g)を仕込み、これに、ノルボルネンジイソシアネートを20.7g(0.1004モル)を仕込み80℃に加温して溶解させた。この溶液に、ポリカーボネートジオールを50.0g(0.025モル)(旭化成株式会社製:商品名PCDL T5652、下記一般式(14)で表されるポリカーボネートジオール、平均分子量が2000)と、ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)ブタン酸)8.1g(0.050モル)をメチルトリグライム(40.0g)に溶解した溶液を1時間かけて添加した。
Figure JPOXMLDOC01-appb-C000022
(式中、q、r、sは1以上の整数である。)
この溶液を5時間加熱還流を行った。上記の反応溶液を中間体Aと称する。
 上記反応に使用した反応装置とは別の反応装置中に、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(以下BPADAと略す)を52.0g(0.100モル)とメチルトリグライム(40.0g)を添加して80℃に加温してメチルトリグライム中に分散した。
 この溶液中に上記中間体Aを1時間かけて添加して、反応させた。添加後に200℃に加温して3時間反応させた。上記反応を行うことで末端酸無水物ウレタンイミドオリゴマー溶液を得た。この溶液に純水7.2g(0.400モル)を投入して、80℃で5時間加熱還流して、末端カルボン酸ウレタンイミドオリゴマー溶液を得た。この合成樹脂を樹脂Aと略す。
 〔実施例1〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られた末端カルボン酸ウレタンイミドオリゴマー溶液(樹脂A)を室温まで冷却し、溶液の樹脂分100重量部に対して、エポキシ樹脂10重量部(大日本インキ化学工業株式会社製:商品名エピクロンN-665-EXP、クレゾールノボラック型の多官能エポキシ樹脂)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は60%、溶液の粘度は23℃で230ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置し、1ヶ月後の粘度を測定した。そのときの粘度が23℃で230ポイズであり、粘度変化が無く室温で長期間保存可能であることが明らかになった。
 <ポリイミドフィルム上への硬化膜の作製>
 上記熱硬化性樹脂組成物溶液を、ベーカー式アプリケーターを用いて、膜厚75μmのポリイミドフィルム(株式会社カネカ製:商品名75NPI)に最終乾燥厚みが25μmになるように流延・塗布し、80℃で20分乾燥して、ベースとなるポリイミドフィルム上に本願発明の樹脂フィルムを形成した。得られた樹脂フィルムを、空気雰囲気下160℃で90分加熱して熱硬化を行い、硬化膜とし、ベースとなるポリイミドフィルム上に硬化膜が形成されたポリイミドフィルム積層体を得た。
 <硬化膜の評価>
 得られた硬化膜について、以下の項目につき評価を行った。評価結果を表1に記載する。
 (i)硬化膜の接着性
 得られた硬化膜の接着強度をJIS K5400に従って碁盤目テープ法で評価した。
碁盤目テープ法で剥がれの無いものを○、
升目の半分以上が残存している場合を△、
升目の残存量が半分未満のものを×とした。
 (ii)硬化膜の耐環境試験安定性
 硬化膜の熱硬化が充分でないと、環境試験装置内での安定性が低下する。そのため、硬化膜の環境試験装置内での安定性を測定した。環境試験装置として、エスペック株式会社製恒温高湿器 型式:PR-1Kを用いて85℃/85%RH 1000時間試験後のポリイミドフィルム上に形成された硬化膜の状態で判断した。
硬化膜が変化無いものを〇、
硬化膜が一部溶解しているものを△、
硬化膜が完全に溶解しているもの×とした。
 (iii)耐薬品性
 硬化膜表面の耐薬品性の評価を行った。評価方法は下記評価項目1~3の評価条件でポリイミドフィルム積層体を浸漬した後に硬化膜表面の状態を観察して評価を行った。
評価項目1:25℃のメチルエチルケトン中に10分浸漬した後、風乾した。
評価項目2:25℃の2Nの塩酸溶液中に10分間浸漬した後、純水で洗浄して風乾燥した。
評価項目3:25℃の2Nの水酸化ナトリウム溶液中に10分間浸漬した後、純水で洗浄して風乾した。
硬化膜が変化無いものを〇、
硬化膜が一部溶解しているものを△、
硬化膜が完全に溶解しているもの×とした。
 (vi)屈曲性評価
 25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に熱硬化性樹脂組成物溶液を最終フィルム厚みが25μmになるように塗布して、80℃で20分、160℃で90分乾燥してポリイミドフィルム積層体を得た。本ポリイミドフィルム積層体を30mm×10mmの短冊に切り出して、15mmのところで180°に10回折り曲げて塗膜を目視で確認してクラックの確認を行った。
○:硬化膜にクラックが無いもの
△:硬化膜に若干クラックがあるもの
×:硬化膜にクラックがあるもの。
 (v)濡れ性
 JIS K6768測定方法に準拠して上記<ポリイミドフィルム上への硬化膜の作製>で作製した硬化膜の濡れ性を測定した。
Figure JPOXMLDOC01-appb-T000023
 〔合成例2〕
 合成例1で反応後に投入する純水7.2g(0.400モル)をメタノール12.8g(0.400モル)に変更し、ハーフエステル化して、末端カルボン酸ウレタンイミドオリゴマー溶液を得た。この合成樹脂を樹脂Bと略す。
 〔実施例2〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られた末端カルボン酸ウレタンイミドオリゴマー溶液(樹脂B)を室温まで冷却し、溶液の樹脂分100重量部に対して、エポキシ樹脂10重量部(大日本インキ化学工業株式会社製:商品名エピクロンN-665-EXP、クレゾールノボラック型の多官能エポキシ樹脂)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は60%、溶液の粘度は23℃で220ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置し、1ヶ月後の粘度を測定した。そのときの粘度が23℃で220ポイズであり、粘度変化が無く室温で長期間保存可能であることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表1に記載する。
 〔実施例3〕
 <熱硬化性樹脂組成物溶液の調製>
 上記実施例1で得られた末端カルボン酸ウレタンイミドオリゴマー溶液(樹脂A)の樹脂分100重量部に対して、エポキシ樹脂10重量部(日本化薬株式会社製:商品名NC-3000H、ビフェニルノボラック型の多官能エポキシ樹脂)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は60%、溶液の粘度は23℃で250ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置し、1ヶ月後の粘度を測定した。そのときの粘度が23℃で250ポイズであり、粘度変化が無く室温で長期間保存可能であることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表1に記載する。
 〔実施例4〕
 <熱硬化性樹脂組成物溶液の調製>
 上記実施例1で得られた末端カルボン酸ウレタンイミドオリゴマー溶液(樹脂A)の樹脂分100重量部に対して、オキセタン樹脂10重量部(東亞合成株式会社製:商品名アロンオキセタンOXT-121、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は60%、溶液の粘度は23℃で180ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置し、1ヶ月後の粘度を測定した。そのときの粘度が23℃で180ポイズであり、粘度変化が無く室温で長期間保存可能であることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表1に記載する。
 〔比較合成例1〕
 撹拌機、冷却管、窒素導入管及び温度計を備えた5リットルの四つ口フラスコに、ジフェニルメタン-2,4′-ジイソシアネート227.5g(0.909モル)、ジフェニルメタン-4,4′-ジイソシアネート227.5g(0.909モル)、3,3′,4,4′-ジフェニルスルホンテトラカルボン酸二無水物644.9g(1.8モル)及びγ-ブチロラクトン1649.9gを仕込み、170℃まで昇温した後、6時間反応させて、数平均分子量が15,000の樹脂を得た。この合成樹脂を樹脂Cと略す。得られた樹脂をγ-ブチロラクトンで希釈し、さらに、2-ブタノンオキシム22.8gを添加して、90℃で3時間加熱し、不揮発分30重量%のポリアミドイミド樹脂溶液を得た。
 〔比較例1〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られたポリアミドイミド樹脂溶液の樹脂分100重量部に対してエポキシ樹脂(東都化成株式会社製:商品名YDF-170、ビスフェノールF型エポキシ樹脂)5重量部を加え、γ-ブチロラクトンで希釈して、室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は30%、溶液の粘度は23℃で200ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置したところ、溶液はゲル化し粘度測定は不可能となり、室温での貯蔵安定性に問題があることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表2に記載する。
 〔比較合成例2〕
 ジフェニルメタン-4,4’-ジイソシアネート(1.0mol)、ジフェニルメタン-2,4’-ジイソシアネート(1.0mol)及び平均分子量2,000のポリ(ヘキサメチレンカーボネート)(0.8mol)を1-メチル-2-ピロリドン中で窒素雰囲気下、100℃で1時間反応させ、そこに、4,4’-オキシジフタル酸無水物(1.0mol)、トリエチルアミンおよび1-メチル-2-ピロリドンを添加し、さらに100℃で3時間かくはんした。さらに、ベンジルアルコールを添加し100℃で1時間攪拌し、反応を終了した。得られた溶液を激しく攪拌させた水に入れ沈殿物を濾別し、真空中80℃で8時間乾燥させポリウレタンイミド樹脂を得た。この合成樹脂を樹脂Dと略す。得られたポリウレタンイミド樹脂をGPCを用いて測定した結果、ポリスチレン換算で、Mw=55,000、Mn=25,000、であった。 
 〔比較例2〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られたポリウレタンイミド樹脂を溶質濃度40重量%でメチルエチルケトンに溶解しポリウレタンイミド樹脂溶液を得、次いで、溶液の樹脂分100重量部に対してウレタンアクリレート樹脂(新中村化学工業株式会社製:商品名U-108)25重量部、硬化剤として、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン(日本油脂株式会社製:商品名パーヘキサTMH)3.75重量部を加え、室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は40%、溶液の粘度は23℃で1200ポイズであり、非常に高粘度であった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置したところ、溶液はゲル化し粘度測定は不可能となり、室温での貯蔵安定性に問題があることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表2に記載する。
 〔比較合成例3〕
 撹拌装置、温度計、コンデンサーを付けたフラスコにEDGA(ジエチレングリコールモノメチルエーテルアセテート)1496部、IPDI(イソホロンジイソシアネート)888部(4mol)及び無水トリメリット酸960部(5mol)を加え、160℃まで昇温した。反応は、発泡とともに進行した。この温度で4時間反応させた。系内は薄茶色のクリア液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1、1780cm-1、1720cm-1にイミド基の吸収が確認された。この合成樹脂を樹脂Eと略す。酸価は、固形分換算で85KOHmg/gで、分子量はポリスチレン換算で数平均分子量1600であった。
 〔比較例3〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られた末端カルボン酸イミドオリゴマー溶液の樹脂分100重量部に対してエポキシ樹脂38.50g(大日本インキ化学工業株式会社製:商品名エピクロンN-665-EXP、クレゾールノボラック型の多官能エポキシ樹脂)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は68%、溶液の粘度は23℃で250ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置したところ、溶液はゲル化し粘度測定は不可能となり、室温での貯蔵安定性に問題があることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表2に記載する。
 〔比較合成例4〕
 窒素置換した四つ口フラスコに、撹拌機、窒素導入管、還流冷却器、共栓を取り付け、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物20.23g(68.76mmol)、メタノ-ル30gを入れ、還流した。3時間後、室温まで冷却し、還流冷却器を水分離器付きの還流冷却器に換え、消泡剤(ダウコ-ニングアジア株式会社製:商品名FSアンチフォ-ムDB-100)0.07g、アミノ変性シリコ-ンオイル(東レ・ダウコ-ニングシリコ-ン株式会社製:商品名BY16-853U、アミン価451)31.01g(34.38mmol)を加え、1時間かけてメタノ-ルを留去した。続けて190℃まで昇温し、水を留去しながら、1時間反応させ、48.75g(収率97.50%)の茶褐色の粘調物を得た。この合成樹脂を樹脂Fと略す。この生成物の80℃での粘度は、392poiseであった。 
 〔比較例4〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られた末端酸無水物シロキサンイミド樹脂を溶質濃度40重量%でメチルエチルケトンに溶解し末端酸無水物シロキサンイミド樹脂溶液を得、次いで、溶液の樹脂分24重量部に対してエポキシ樹脂100重量部(ジャパンエポキシレジン株式会社製:商品名jER828、ビスフェノールA型の2官能エポキシ樹脂)、脂環式酸無水物型硬化剤116重量部(ジャパンエポキシレジン株式会社製:商品名エピキュアYH306)、硬化促進触媒1重量部(四国化成工業株式会社製:商品名キュアゾール2E4MZ、イミダゾール系化合物)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は87%、溶液の粘度は23℃で320ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置したところ、溶液はゲル化し粘度測定は不可能となり、室温での貯蔵安定性に問題があることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行った。その評価方法を表2に記載する。
Figure JPOXMLDOC01-appb-T000024
 〔比較合成例5〕
 <末端酸無水物ウレタンイミドオリゴマーの合成>
 窒素で加圧した、セパラブルフラスコ中に、重合用溶媒としてメチルトリグライム(16.0g)を仕込み、これに、ノルボルネンジイソシアネートを20.7g(0.1004モル)を仕込み80℃に加温して溶解させた。この溶液に、ポリカーボネートジオールを50.0g(0.025モル)(旭化成株式会社製:商品名PCDL T5652、下記一般式(14)で表されるポリカーボネートジオール、平均分子量が2000)と、ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)ブタン酸)8.1g(0.050モル)をメチルトリグライム(40.0g)に溶解した溶液を1時間かけて添加した。
Figure JPOXMLDOC01-appb-C000025
(式中、q、r、sは1以上の整数である。)
この溶液を5時間加熱還流を行った。上記の反応溶液を中間体Aと称する。
 上記反応に使用した反応装置とは別の反応装置中に、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(以下BPADAと略す)を52.0g(0.100モル)とメチルトリグライム(40.0g)を添加して80℃に加温してメチルトリグライム中に分散した。
 この溶液中に上記中間体Aを1時間かけて添加して、反応させた。添加後に200℃に加温して3時間反応させた。上記反応を行うことで末端酸無水物ウレタンイミドオリゴマー溶液を得た。
 〔比較例5〕
 <熱硬化性樹脂組成物溶液の調製>
 上記得られた末端酸無水物ウレタンイミドオリゴマー溶液を室温まで冷却し、溶液の樹脂分100重量部に対して、エポキシ樹脂10重量部(大日本インキ化学工業株式会社製:商品名エピクロンN-665-EXP、クレゾールノボラック型の多官能エポキシ樹脂)を投入して室温下で1時間均一攪拌を行い熱硬化性樹脂組成物溶液を得た。この溶液の溶質濃度は60%、溶液の粘度は23℃で240ポイズであった。
 <熱硬化性樹脂組成物溶液の貯蔵安定性の評価>
 熱硬化性樹脂組成物溶液の貯蔵安定性を確認する為に、熱硬化性樹脂体組成物溶液を、20℃に保った部屋の中で、10mlのスクリュー管で密封した状態で1ヶ月間放置したところ、溶液はゲル化し粘度測定は不可能となり、室温での貯蔵安定性に問題があることが明らかになった。
 更に、熱硬化性樹脂組成物から得られる硬化膜の評価を実施例1と同様の方法で行おうとしたが、熱硬化性樹脂組成物用液がゲル化したため、基材上への塗工が不可能であり、均一な硬化膜が得られなかった。
 〔実施例5~8〕
 <感光性樹脂組成物の調製>
 合成例1~2で得られた(A)末端カルボン酸ウレタンイミドオリゴマー、(B)熱硬化性樹脂、(C)感光性樹脂、(D)光重合開始剤、及びその他の成分を添加して感光性樹脂組成物を作製した。それぞれの構成原料の樹脂固形分での配合量及び原料の種類を表3に記載する。なお、表中の溶媒である1,2-ビス(2-メトキシエトキシ)エタンは上記合成樹脂溶液等に含まれる溶剤等も含めた全溶剤量である。混合溶液を脱泡装置で溶液中の泡を完全に脱泡して下記評価を実施した。
Figure JPOXMLDOC01-appb-T000026
<1>大日本インキ化学工業株式会社製、製品名:エピクロンN-665-EXPの製品名、クレゾールノボラック型の多官能エポキシ樹脂
<2>日本化薬株式会社製、製品名:NC-3000H、ビフェニルノボラック型の多官能エポキシ樹脂
<3>東亞合成株式会社製、製品名:アロンオキセタンOXT-121、オキセタン樹脂
<4>新中村化学株式会社製、製品名:NKエステルA-9300、エトキシ化イソシアヌル酸トリアクリレート
<5>新中村化学株式会社製、製品名:NKエステルBPE-1300、ビスフェノールA EO変性ジアクリレート
<6>チバ・スペシャルティケミカルズ社製、光重合開始剤の製品名
<7>日本アエロジル株式会社製、シリカ粒子の製品名。
 <ポリイミドフィルム上への塗膜の作製>
 上記感光性樹脂組成物を、ベーカー式アプリケーターを用いて、75μmのポリイミドフィルム(株式会社カネカ製:商品名75NPI)に最終乾燥厚みが25μmになるように100mm×100mmの面積に流延・塗布し、80℃で20分乾燥した後、50mm×50mmの面積のライン幅/スペース幅=100μm/100μmのネガ型フォトマスクを置いて300mJ/cmの積算露光量の紫外線を照射して露光した。次いで、1.0重量%の炭酸ナトリウム水溶液を30℃に加熱した溶液を用いて、1.0kgf/mmの吐出圧で60秒スプレー現像を行った。現像後、純水で十分洗浄した後、160℃のオーブン中で90分加熱硬化させて感光性樹脂組成物の硬化膜を作製した。
 <硬化膜の評価>
 得られた硬化膜について、以下の項目につき評価を行った。評価結果を表4に記載する。
 (i)感光性評価
 感光性樹脂組成物の感光性の評価は、上記<ポリイミドフィルム上への塗膜の作製>の項目で得られた硬化膜の表面観察を行い判定した。
〇:ポリイミドフィルム表面にくっきりとしたライン幅/スペース幅=100/100μmの感光パターンが描けており、ライン部の剥離に伴うラインの揺れが発生しておらず、スペース部にも溶解残りが無いもの。
△:ポリイミドフィルム表面にくっきりとしたライン幅/スペース幅=100/100μmの感光パターンが描けており、ライン部に剥離に伴うラインの揺れが発生しているが、スペース部には溶解残りが無いもの。
×:ポリイミドフィルム表面にくっきりとしたライン幅/スペース幅=100/100μmの感光パターンが描けておらず、ライン部が剥離しており、しかも、スペース部には溶解残りが発生しているもの。
 (ii)硬化膜の密着性
 上記<ポリイミドフィルム上への塗膜の作製>の項目で得られた硬化膜の接着強度をJIS K5400に従って碁盤目テープ法で評価した。
○:碁盤目テープ法で剥がれの無いもの
△:升目の95%以上が残存しているもの
×:升目の残存量が80%未満のもの。
 (iii)耐溶剤性
 上記<ポリイミドフィルム上への塗膜の作製>の項目で得られた硬化膜の耐溶剤性の評価を行った。評価方法は25℃のメチルエチルケトン中に15分間浸漬した後風乾し、フィルム表面の状態を観察した。
○:塗膜に異常がない。
×:塗膜に膨れや剥がれなどの異常が発生する。
 (iv)屈曲性
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に感光性樹脂組成物の硬化膜積層フィルムを作製した。硬化膜積層フィルムを30mm×10mmの短冊に切り出して、15mmのところで180°に10回折り曲げて塗膜を目視で確認してクラックの確認を行った。
○:硬化膜にクラックが無いもの
△:硬化膜に若干クラックがあるもの
×:硬化膜にクラックがあるもの。
 (v)絶縁信頼性
 フレキシブル銅貼り積層版(銅箔の厚み12μm、ポリイミドフィルムは株式会社カネカ製アピカル25NPI、ポリイミド系接着剤で銅箔を接着している)上にライン幅/スペース幅=100μm/100μmの櫛形パターンを作製し、10容量%の硫酸水溶液中に1分間浸漬した後、純水で洗浄し銅箔の表面処理を行った。その後、上記<ポリイミドフィルム上への塗膜の作製>方法と同様の方法で櫛形パターン上に感光性樹脂組成物の硬化膜を作製し試験片の調整を行った。85℃、85%RHの環境試験機中で試験片の両端子部分に100Vの直流電流を印加し、絶縁抵抗値の変化やマイグレーションの発生などを観察した。
○:試験開始後、1000時間で10の8乗以上の抵抗値を示し、マイグレーション、デンドライトなどの発生が無いもの
×:試験開始後、1000時間でマイグレーション、デンドライトなどの発生があるもの。
 (vi)濡れ性
 上記<ポリイミドフィルム上への塗膜の作製>の項目で得られた硬化膜の濡れ性をJIS K6768に従って評価した。
 (vii)半田耐熱性
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、75μm厚みのポリイミドフィルム(株式会社カネカ製アピカル75NPI)表面に感光性樹脂組成物の硬化膜積層フィルムを作製した。
上記塗工膜を260℃で完全に溶解してある半田浴に感光性樹脂組成物の硬化膜が塗工してある面が接する様に浮かべて10秒後に引き上げた。その操作を3回行い、硬化膜の接着強度をJIS K5400に従って碁盤目テープ法で評価した。
○:碁盤目テープ法で剥がれの無いもの
△:升目の95%以上が残存しているもの
×:升目の残存量が80%未満のもの。
 (viii)反り
 上記<ポリイミドフィルム上への塗膜の作製>の項目と同様の方法で、25μm厚みのポリイミドフィルム(株式会社カネカ製アピカル25NPI)表面に感光性樹脂組成物の硬化膜積層フィルムを作製した。
 この硬化膜を50mm×50mmの面積のフィルムに切り出して平滑な台の上に塗布膜が上面になるように置き、フィルム端部の反り高さを測定した。測定部位の模式図を図1に示す。ポリイミドフィルム表面での反り量が少ない程、プリント配線板表面での応力が小さくなり、プリント配線板の反り量も低下することになる。反り量は5mm以下であることが好ましい。
Figure JPOXMLDOC01-appb-T000027
 〔比較例6~9〕
 <感光性樹脂組成物の調製>
 比較合成例1~4で得られた合成樹脂、(B)熱硬化性樹脂、(C)感光性樹脂、(D)光重合開始剤、及びその他の成分を添加して感光性樹脂組成物を作製した。それぞれの構成原料の樹脂固形分での配合量及び原料の種類を表5に記載する。なお、表中の溶媒である1,2-ビス(2-メトキシエトキシ)エタンは上記合成樹脂溶液等に含まれる溶剤等も含めた全溶剤量である。混合溶液を脱泡装置で溶液中の泡を完全に脱泡して上記実施例5と同様の評価を実施した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000028
<1>大日本インキ化学工業株式会社製、製品名:エピクロンN-665-EXPの製品名、クレゾールノボラック型の多官能エポキシ樹脂
<2>日本化薬株式会社製、製品名:NC-3000H、ビフェニルノボラック型の多官能エポキシ樹脂
<3>東亞合成株式会社製、製品名:アロンオキセタンOXT-121、オキセタン樹脂
<4>新中村化学株式会社製、製品名:NKエステルA-9300、エトキシ化イソシアヌル酸トリアクリレート
<5>新中村化学株式会社製、製品名:NKエステルBPE-1300、ビスフェノールA EO変性ジアクリレート
<6>チバ・スペシャルティケミカルズ社製、光重合開始剤の製品名
<7>日本アエロジル株式会社製、シリカ粒子の製品名
 1  感光性樹脂組成物を積層したポリイミドフィルム
 2  反り量
 3  平滑な台

Claims (12)

  1.  少なくとも(A)末端カルボン酸ウレタンイミドオリゴマーと、(B)熱硬化性樹脂とを含有することを特徴とする熱硬化性樹脂組成物。
  2.  上記(A)末端カルボン酸ウレタンイミドオリゴマーはテトラカルボン酸ウレタンイミドオリゴマーであることを特徴とする請求項1記載の熱硬化性樹脂組成物。
  3.  上記(A)末端カルボン酸ウレタンイミドオリゴマーは、少なくとも(a)下記一般式(1)で示されるジオール化合物と、(b)下記一般式(2)で示されるジイソシアネート化合物とを反応させて末端イソシアネート化合物を合成し、次いで(c)下記一般式(3)で示されるテトラカルボン酸二無水物を反応させて末端酸無水物ウレタンイミドオリゴマーを合成し、更に(d)水及び/または1級アルコールを反応させて得られることを特徴とする請求項1または2記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは2価の有機基を示し、lは1~20の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは2価の有機基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Yは4価の有機基を示す。)
  4.  上記(a)ジオール化合物は、少なくとも下記一般式(4)で示されるポリカーボネートジオールを含むことを特徴とする請求項3に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、複数個のRはそれぞれ独立に2価の有機基を示し、mは1~20の整数である。)
  5.  上記(A)末端カルボン酸ウレタンイミドオリゴマーは、更に側鎖にもカルボキシル基を含有することを特徴とする請求項1~4のいずれか1項に記載の熱硬化性樹脂組成物。
  6.  上記(B)熱硬化性樹脂の配合割合が、(A)末端カルボン酸ウレタンイミドオリゴマー100重量部に対して、1~100重量部となるように配合されていることを特徴とする請求項1~5のいずれか1項に記載の熱硬化性樹脂組成物。
  7.  少なくとも請求項1~6のいずれか1項に記載の熱硬化性樹脂組成物と、(C)感光性樹脂と、(D)光重合開始剤とを含有することを特徴とする感光性樹脂組成物。
  8.  上記感光性樹脂組成物における(A)末端カルボン酸ウレタンイミドオリゴマー、(B)熱硬化性樹脂、(C)感光性樹脂および(D)光重合開始剤は、(A)末端カルボン酸ウレタンイミドオリゴマーと(B)熱硬化性樹脂とを合計した固形分100重量部に対して、(C)感光性樹脂が10~200重量部、(D)光重合開始剤が、0.1~50重量部となるように配合されていることを特徴とする請求項7記載の感光性樹脂組成物。
  9.  請求項1~6のいずれか1項に記載の熱硬化性樹脂組成物、請求項7~8のいずれか1項に記載の感光性樹脂組成物を有機溶剤に溶解して得られる樹脂組成物溶液。
  10.  請求項9記載の樹脂組成物溶液を基材表面に塗布した後、乾燥して得られた樹脂フィルム。
  11.  請求項10記載の樹脂フィルムを硬化させて得られる絶縁膜。
  12.  請求項11記載の絶縁膜をプリント配線板に被覆した絶縁膜付きプリント配線板。
PCT/JP2009/058975 2008-06-02 2009-05-14 新規な樹脂組成物及びその利用 WO2009147938A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010515822A JP5735275B2 (ja) 2008-06-02 2009-05-14 新規な樹脂組成物及びその利用
US12/993,721 US9458279B2 (en) 2008-06-02 2009-05-14 Resin composition and use thereof
CN2009801195146A CN102046727B (zh) 2008-06-02 2009-05-14 树脂组合物及其利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008144983 2008-06-02
JP2008-144983 2008-06-02

Publications (1)

Publication Number Publication Date
WO2009147938A1 true WO2009147938A1 (ja) 2009-12-10

Family

ID=41398014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058975 WO2009147938A1 (ja) 2008-06-02 2009-05-14 新規な樹脂組成物及びその利用

Country Status (5)

Country Link
US (1) US9458279B2 (ja)
JP (1) JP5735275B2 (ja)
KR (1) KR101581387B1 (ja)
CN (1) CN102046727B (ja)
WO (1) WO2009147938A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138361A (ja) * 2008-12-15 2010-06-24 Hitachi Chem Co Ltd 硬化性樹脂組成物及びフィルム状接着剤
JP2011181628A (ja) * 2010-02-26 2011-09-15 Kaneka Corp ボンディングシート
JP2011184514A (ja) * 2010-03-05 2011-09-22 Dic Corp 活性エネルギー線硬化型樹脂組成物およびその硬化物
JP2012097232A (ja) * 2010-11-04 2012-05-24 Kaneka Corp ボンディングシート
JP2013101185A (ja) * 2011-11-07 2013-05-23 Kaneka Corp 新規なフレキシブルプリント配線基板およびその作成方法
JP2016000782A (ja) * 2014-06-12 2016-01-07 パナソニックIpマネジメント株式会社 エポキシ樹脂組成物、金属張積層板、及びパッケージ用基板材料
WO2021020542A1 (ja) * 2019-08-01 2021-02-04 株式会社カネカ 熱硬化性樹脂組成物、熱硬化性樹脂膜、熱硬化膜、積層体、ならびにプリント配線板およびその製造方法
WO2023054523A1 (ja) * 2021-09-29 2023-04-06 太陽インキ製造株式会社 感光性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132960A1 (ja) * 2007-04-19 2008-11-06 Kaneka Corporation 新規なポリイミド前駆体組成物及びその利用
US9375867B2 (en) * 2011-06-20 2016-06-28 Jnc Corporation Transfer film for in-mold molding and method for producing same
US9637607B2 (en) 2012-11-21 2017-05-02 Sealed Air Corporation (Us) Method of making foam
FR3024797B1 (fr) * 2014-08-07 2016-07-29 Nexans Cable comprenant une couche reticulee
KR101704138B1 (ko) * 2014-12-12 2017-02-08 현대자동차주식회사 1회 도장용 질감도료 조성물
JP6955486B2 (ja) * 2016-04-19 2021-10-27 株式会社カネカ プリント配線板の製造方法
US11136458B2 (en) * 2017-10-09 2021-10-05 Corning Incorporated Thermally stable and electrically isolating barrier film
KR102070573B1 (ko) 2018-04-20 2020-01-29 주식회사 엘지화학 수지 조성물 및 이를 포함하는 배터리 모듈
JP7020341B2 (ja) * 2018-08-10 2022-02-16 信越化学工業株式会社 半導体封止用熱硬化性樹脂組成物及び半導体装置
CN114174422B (zh) * 2019-08-23 2024-04-30 Dic株式会社 树脂组合物及其应用
KR102538275B1 (ko) * 2021-07-02 2023-05-31 한국화학연구원 자동차용 저온 경화 일액형 클리어코트 조성물, 이를 이용한 멀티코트 코팅 방법 및 멀티코트 코팅층
CN115895267B (zh) * 2022-12-30 2023-10-03 广州市白云化工实业有限公司 双固化的有机硅聚合物-苯并噁嗪-环氧树脂杂化封装材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302747A (ja) * 2000-04-19 2001-10-31 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2004211064A (ja) * 2002-12-16 2004-07-29 Ube Ind Ltd ポリイミドシロキサン絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP2004240267A (ja) * 2003-02-07 2004-08-26 Mitsui Chemicals Inc 高分子光導波路
JP2006152017A (ja) * 2004-11-25 2006-06-15 Ube Ind Ltd ポリイミドシロキサン絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP2006307183A (ja) * 2005-03-28 2006-11-09 Ube Ind Ltd ポリカーボネートを含んだ変性ポリイミド樹脂、その組成物及び硬化絶縁膜
JP2008120954A (ja) * 2006-11-14 2008-05-29 Kaneka Corp 新規なポリイミド樹脂
WO2008078620A1 (ja) * 2006-12-26 2008-07-03 Kaneka Corporation 新規なポリイミド前駆体組成物、その利用及びそれらの製造方法
JP2008255249A (ja) * 2007-04-05 2008-10-23 Kaneka Corp 新規な熱硬化性樹脂組成物、それを用いたフレキシブルプリント配線板
WO2008132960A1 (ja) * 2007-04-19 2008-11-06 Kaneka Corporation 新規なポリイミド前駆体組成物及びその利用

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2654112C2 (de) * 1976-11-29 1984-10-04 Bayer Ag, 5090 Leverkusen Polykondensate
JPS61162525A (ja) 1985-01-04 1986-07-23 ゼネラル エレクトリツク カンパニイ 新しいコポリアミドイミドとその製造法及びそのプレポリマ−とその製造法
JPH10316855A (ja) 1997-05-15 1998-12-02 Toray Ind Inc 化学線感応性重合体組成物
JP4016226B2 (ja) * 1998-01-14 2007-12-05 味の素株式会社 変成ポリイミド樹脂及びこれを含有する熱硬化性樹脂組成物
JPH11209609A (ja) 1998-01-26 1999-08-03 Unitika Ltd 感光性ポリイミド前駆体溶液、それから得られるポリイミド塗膜又はポリイミドフィルム及びそれらの製造方法
JPH11217502A (ja) 1998-02-04 1999-08-10 Unitika Ltd 感光性ポリイミド前駆体溶液、それから得られるポリイミド塗膜及びその製造方法
JP4589471B2 (ja) 1998-11-25 2010-12-01 ユニチカ株式会社 ポリイミド前駆体溶液及びその製造方法、それから得られる塗膜及びその製造方法
JP2000234023A (ja) 1998-12-15 2000-08-29 Unitika Ltd ポリイミド前駆体溶液及びその製造方法、それから得られる塗膜及びその製造方法
JP3887982B2 (ja) 1999-01-26 2007-02-28 宇部興産株式会社 感光性樹脂組成物および絶縁膜
JP2000319389A (ja) 1999-05-07 2000-11-21 Unitika Ltd ポリイミド前駆体水溶液及びその製造方法、それから得られるポリイミド塗膜及びその製造方法
JP2000319391A (ja) 1999-05-10 2000-11-21 Unitika Ltd ポリイミド前駆体水溶液及びその製造方法、それから得られるポリイミド塗膜及びその製造方法
JP4120110B2 (ja) 1999-09-22 2008-07-16 宇部興産株式会社 ポリイミド系絶縁膜用組成物、絶縁膜および絶縁膜の形成法
JP4232297B2 (ja) 1999-10-29 2009-03-04 宇部興産株式会社 プラズマエッチングレジスト及びエッチング法
JP4475711B2 (ja) 1999-12-09 2010-06-09 ユニチカ株式会社 ポリイミド前駆体溶液
JP4058873B2 (ja) 2000-01-31 2008-03-12 宇部興産株式会社 イミド系感光性樹脂組成物、絶縁膜およびその形成法
JP4560886B2 (ja) 2000-05-01 2010-10-13 Dic株式会社 カルボキシル基含有アミドイミド樹脂及び/又はカルボキシル基含有イミド樹脂
JP4374756B2 (ja) 2000-09-22 2009-12-02 宇部興産株式会社 末端に酸無水物基を有するイミド系オリゴマ−および硬化性樹脂組成物
JP2002371182A (ja) 2001-06-15 2002-12-26 Hitachi Chem Co Ltd ポリイミド樹脂組成物及びそれを含む被膜形成材料
TW574263B (en) * 2001-06-28 2004-02-01 Dainippon Ink & Chemicals Active energy ray-curable polyimide resin composition
KR100930937B1 (ko) * 2002-01-31 2009-12-10 디아이씨 가부시끼가이샤 열경화성 폴리이미드 수지 조성물 및 폴리이미드 수지의제조 방법
TWI330653B (en) * 2002-12-16 2010-09-21 Ube Industries Electronic device packaging and curable resin composition
JP4617848B2 (ja) 2004-01-08 2011-01-26 日立化成工業株式会社 接着剤組成物及び回路接続用接着剤組成物
JP2006096825A (ja) 2004-09-28 2006-04-13 Hitachi Chem Co Ltd ポリイミド樹脂及びそれを用いた耐熱性樹脂組成物
JP4701914B2 (ja) * 2004-10-29 2011-06-15 宇部興産株式会社 耐燃性が改良されたテープキャリアパッケージ用柔軟性配線板
JP4650129B2 (ja) 2005-07-06 2011-03-16 日立化成工業株式会社 ポリアミドイミド樹脂系耐熱性樹脂組成物、シームレス管状体、塗膜、塗膜板及び耐熱性塗料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302747A (ja) * 2000-04-19 2001-10-31 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2004211064A (ja) * 2002-12-16 2004-07-29 Ube Ind Ltd ポリイミドシロキサン絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP2004240267A (ja) * 2003-02-07 2004-08-26 Mitsui Chemicals Inc 高分子光導波路
JP2006152017A (ja) * 2004-11-25 2006-06-15 Ube Ind Ltd ポリイミドシロキサン絶縁膜用組成物、絶縁膜、および、絶縁膜の形成方法
JP2006307183A (ja) * 2005-03-28 2006-11-09 Ube Ind Ltd ポリカーボネートを含んだ変性ポリイミド樹脂、その組成物及び硬化絶縁膜
JP2008120954A (ja) * 2006-11-14 2008-05-29 Kaneka Corp 新規なポリイミド樹脂
WO2008078620A1 (ja) * 2006-12-26 2008-07-03 Kaneka Corporation 新規なポリイミド前駆体組成物、その利用及びそれらの製造方法
JP2008255249A (ja) * 2007-04-05 2008-10-23 Kaneka Corp 新規な熱硬化性樹脂組成物、それを用いたフレキシブルプリント配線板
WO2008132960A1 (ja) * 2007-04-19 2008-11-06 Kaneka Corporation 新規なポリイミド前駆体組成物及びその利用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138361A (ja) * 2008-12-15 2010-06-24 Hitachi Chem Co Ltd 硬化性樹脂組成物及びフィルム状接着剤
JP2011181628A (ja) * 2010-02-26 2011-09-15 Kaneka Corp ボンディングシート
JP2011184514A (ja) * 2010-03-05 2011-09-22 Dic Corp 活性エネルギー線硬化型樹脂組成物およびその硬化物
JP2012097232A (ja) * 2010-11-04 2012-05-24 Kaneka Corp ボンディングシート
JP2013101185A (ja) * 2011-11-07 2013-05-23 Kaneka Corp 新規なフレキシブルプリント配線基板およびその作成方法
JP2016000782A (ja) * 2014-06-12 2016-01-07 パナソニックIpマネジメント株式会社 エポキシ樹脂組成物、金属張積層板、及びパッケージ用基板材料
WO2021020542A1 (ja) * 2019-08-01 2021-02-04 株式会社カネカ 熱硬化性樹脂組成物、熱硬化性樹脂膜、熱硬化膜、積層体、ならびにプリント配線板およびその製造方法
JPWO2021020542A1 (ja) * 2019-08-01 2021-02-04
JP7229361B2 (ja) 2019-08-01 2023-02-27 株式会社カネカ 熱硬化性樹脂組成物、熱硬化性樹脂膜、熱硬化膜、積層体、ならびにプリント配線板およびその製造方法
WO2023054523A1 (ja) * 2021-09-29 2023-04-06 太陽インキ製造株式会社 感光性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP7445095B2 (ja) 2021-09-29 2024-03-06 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板

Also Published As

Publication number Publication date
KR101581387B1 (ko) 2015-12-30
US20110061915A1 (en) 2011-03-17
CN102046727A (zh) 2011-05-04
JP5735275B2 (ja) 2015-06-17
KR20110013413A (ko) 2011-02-09
CN102046727B (zh) 2013-02-13
US9458279B2 (en) 2016-10-04
JPWO2009147938A1 (ja) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5735275B2 (ja) 新規な樹脂組成物及びその利用
JP5895024B2 (ja) 新規なポリイミド前駆体組成物及びその利用
JP5049175B2 (ja) 新規な感光性樹脂組成物、それから得られる感光性樹脂組成物溶液、感光性フィルム、絶縁膜及び絶縁膜付きプリント配線板
JP5642961B2 (ja) 新規なポリイミド前駆体組成物及びその利用
JP5064950B2 (ja) 新規な感光性樹脂組成物、それから得られる感光性樹脂組成物溶液、感光性フィルム、絶縁膜及び絶縁膜付きプリント配線板
JP6134403B2 (ja) 新規な感光性樹脂組成物及びその利用
JP2009271445A (ja) 新規な感光性樹脂組成物及びその利用
JP5178296B2 (ja) 新規な感光性樹脂組成物及びその利用並びに絶縁膜の製造方法
JP2009300873A (ja) 新規な回路基板の製造方法
JP2009300872A (ja) 新規な感光性樹脂組成物及びその利用
JP6360792B2 (ja) 補強板一体型フレキシブルプリント基板
US9332653B2 (en) Resin composition for insulating film, and use thereof
JP2009282172A (ja) 新規な感光性樹脂組成物及びその利用
JP2011126922A (ja) 新規な樹脂組成物及びその利用
JP2011059340A (ja) 新規な感光性樹脂組成物及びその利用
JP2009288517A (ja) 新規な感光性樹脂組成物及びその利用
JP6093563B2 (ja) 黒色感光性樹脂組成物及びその利用
JP5097025B2 (ja) 新規なポリイミド前駆体組成物及びその利用
JP2010006868A (ja) 新規な硬化膜及びその利用
JP2009288518A (ja) 新規な感光性樹脂組成物及びその利用
JP2009294252A (ja) 新規な感光性樹脂組成物及びその利用
JP2010002717A (ja) 新規な感光性樹脂組成物及びその利用
JP6134187B2 (ja) 黒色感光性樹脂組成物及びその利用
JP6387130B2 (ja) 黒色感光性樹脂組成物及びその利用
JP6043066B2 (ja) 新規な絶縁膜及びその利用、並びに絶縁膜の生産方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119514.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515822

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12993721

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107026152

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758205

Country of ref document: EP

Kind code of ref document: A1