WO2009119508A1 - アルコキシカルボニル化合物の製造方法 - Google Patents

アルコキシカルボニル化合物の製造方法 Download PDF

Info

Publication number
WO2009119508A1
WO2009119508A1 PCT/JP2009/055670 JP2009055670W WO2009119508A1 WO 2009119508 A1 WO2009119508 A1 WO 2009119508A1 JP 2009055670 W JP2009055670 W JP 2009055670W WO 2009119508 A1 WO2009119508 A1 WO 2009119508A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphine
compound
methylacetylene
pyridyl
mol
Prior art date
Application number
PCT/JP2009/055670
Other languages
English (en)
French (fr)
Inventor
真人 川村
三千男 山本
文郷 後藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN200980109626.3A priority Critical patent/CN101977887B/zh
Priority to KR1020167008099A priority patent/KR20160039308A/ko
Priority to US12/934,163 priority patent/US8399699B2/en
Priority to EP09724353.9A priority patent/EP2256102B1/en
Publication of WO2009119508A1 publication Critical patent/WO2009119508A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond

Definitions

  • the present invention relates to a method for producing an alkoxycarbonyl compound.
  • Patent Documents 1, 2, and 3 disclose a method for producing methyl methacrylate by reacting methylacetylene with carbon monoxide and methanol using a palladium compound, a protonic acid and a phosphine compound as catalysts. It is known that the methylacetylene used in such a reaction contains propadiene in the range of 0.2% to 3%.
  • JP-A-2-277551 Special table 9-501671 public information JP-A-2-290831
  • the present invention provides a method for efficiently producing an alkoxycarbonyl compound.
  • the propadiene content of methylacetylene is 50 ppm or less
  • an alkoxycarbonyl compound can be produced efficiently.
  • the methylacetylene used in the method of the present invention has a propadiene content of 50 ppm or less, preferably 30 ppm or less, more preferably 20 ppm or less, more preferably 10 ppm or less, and most preferably 5 ppm or less.
  • Methylacetylene may contain impurities in addition to propadiene as long as it does not significantly inhibit alkoxycarbonylation. Specific examples of such impurities include butadiene, propylene, butene, propane, carbon monoxide, and carbon dioxide.
  • the carbon monoxide used in the present invention may contain pure carbon monoxide, a catalyst such as nitrogen, helium, carbon dioxide, and argon, or a gas inert to methylacetylene.
  • the reaction of the present invention is carried out using a Group 10 metal compound, a protonic acid and a phosphine compound as catalysts.
  • the catalyst is used as a mixture comprising a Group 10 metal compound, a protonic acid and a phosphine compound.
  • the amount of the Group 10 metal compound, protonic acid and phosphine compound used may be a catalytic amount, but is typically used in the manner exemplified below.
  • Examples of the Group 10 metal compound include nickel compounds, palladium compounds, and platinum compounds, and preferably include palladium compounds.
  • Examples of such palladium compounds include palladium acetylacetonate, tetrakis (triphenylphosphine) palladium, bis (triphenylphosphine) palladium acetate, palladium acetate, palladium trifluoroacetate, palladium trifluoromethanesulfonate, palladium sulfate, palladium chloride, and these. Mention may be made of mixtures.
  • the palladium compound is palladium acetylacetonate, tetrakis (triphenylphosphine) palladium, bis (triphenylphosphine) palladium acetate, palladium acetate, palladium trifluoroacetate, palladium trifluoromethanesulfonate, palladium sulfate and mixtures thereof. More preferably, it is palladium acetate.
  • the amount of the Group 10 metal compound used is 1/200000 mol or less per 1 mol of methylacetylene, preferably in the range of 1/1000000 to 1/200000 mol. That is, methylacetylene is 200,000 moles or more, preferably in the range of 200,000 to 1,000,000 moles per mole of Group 10 metal compound.
  • the phosphine compound is not particularly limited, but a tertiary phosphine compound is usually used, and preferably includes an aromatic tertiary phosphine compound represented by the following formula (1).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, halogen atom, cyano group, hydroxyl group, halogen Substitution selected from the group consisting of an alkyl group optionally substituted with an atom, an aralkyl group, a substituted or unsubstituted aryl group, a pyridyl group, a silyl group, an amino group, an alkoxy group, an aralkyloxy group, an aryloxy group, and an acyl group Each group adjacent to each other may be bonded to each other to form a ring.
  • n represents an integer of 0 to 3.
  • the phosphine compound is an aromatic tertiary pyridylphosphine compound in which the integer n in the general formula (1) is 1 or more.
  • aromatic tertiary pyridylphosphine compound include diphenyl (2-pyridyl) phosphine, diphenyl (6-methyl-2-pyridyl) phosphine, diphenyl (6-ethyl-2-pyridyl) phosphine, and diphenyl [6 -(N-propyl) -2-pyridyl] phosphine, diphenyl [6- (iso-propyl) -2-pyridyl] phosphine, diphenyl [6- (n-butyl) -2-pyridyl] phosphine, diphenyl [6- ( iso-butyl) -2-pyridyl] phosphine, diphenyl (6- (iso
  • aromatic tertiary pyridylphosphine compounds are not limited to being used alone, and may be used by appropriately mixing them.
  • the amount of the aromatic tertiary pyridylphosphine compound used is not particularly limited as long as it exceeds 0.000020 mol per 1 mol of methylacetylene, but preferably exceeds 0.000020 mol per 1 mol of methylacetylene, and It is in the range of 2 moles or more per mole of propadiene, more preferably in the range of more than 0.000020 moles to 0.00048 moles or less per mole of methylacetylene and in the range of 2 moles or more per mole of propadiene.
  • the above aromatic tertiary pyridylphosphine compound can be produced by a known method.
  • various aromatic tertiary pyridylphosphine compounds can be obtained by reacting a halogenated pyridine with an alkyllithium and then lithiating and then reacting with a phosphine chloride. Can be manufactured.
  • a monodentate tertiary monophosphine compound coexists with the aromatic tertiary pyridylphosphine compound.
  • the monodentate tertiary monophosphine compound in this case is a tertiary phosphine compound that does not contain a functional group that becomes a coordination site in addition to one phosphorus atom.
  • the monodentate tertiary monophosphine compound may be substituted with a trialkylphosphine compound or at least one substituent selected from the group consisting of an alkyl group, a halogen atom, a haloalkyl group and an alkoxy group, the same or different
  • a trialkylphosphine compound or at least one substituent selected from the group consisting of an alkyl group, a halogen atom, a haloalkyl group and an alkoxy group the same or different
  • An aromatic tertiary phosphine compound having an aryl group is exemplified.
  • the monodentate tertiary monophosphine compound examples include triethylphosphine, tributylphosphine, tricyclohexylphosphine, triphenylphosphine, tris (4-fluorophenyl) phosphine, tris (4-chlorophenyl) phosphine, tris (4- Methylphenyl) phosphine, tris [4- (trifluoromethyl) phenyl] phosphine, tris (4-methoxyphenyl) phosphine, tris (3-methylphenyl) phosphine, tris [3,5-bis (trifluoromethyl) phenyl]
  • Examples include phosphine, (4-methylphenyl) (diphenyl) phosphine, and mixtures thereof, preferably the above-mentioned aromatic tertiary phosphine compound, more preferably triphenylphosphine. The amount
  • protonic acid examples include organic or inorganic protonic acids.
  • protonic acids include boric acid, orthophosphoric acid, pyrophosphoric acid, sulfuric acid, hydrohalic acid, benzenephosphoric acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, chlorosulfonic acid, methanesulfonic acid , Trifluoromethanesulfonic acid, trimethylmethanesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, oxalic acid, bis (trifluoromethanesulfonyl) imide, tris (trifluoromethanesulfonyl) methide and mixtures thereof,
  • sulfonic acid compounds are used, more preferably methanesulfonic acid.
  • the amount to be used is not particularly limited, but is preferably 3
  • an amine compound as a catalyst is not essential, but a reaction in the presence of an amine compound may give a favorable result.
  • the amine compound is not particularly limited, but a known tertiary amine or cyclic amine is usually used. Specific examples of the amine compound include N, N-dialkylaniline, pyridine, quinoline, isoquinoline, triazine, imidazole, triethylamine, tributylamine, N, N-diisopropylethylamine, and mixtures thereof, preferably N, N— Dimethylaniline and pyridine.
  • the addition amount of the amine compound is not limited, but is preferably in the range of 1 to 50 mol, more preferably 1 to 10 mol, per 1 mol of the protonic acid.
  • the alcohol compound used in the present invention is not particularly limited, and specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, sec-butanol, tert-butanol and ethylene glycol. As a preferred embodiment, a form in which methyl methacrylate is produced by reacting with methanol can be mentioned.
  • the amount of the alcohol compound used is not particularly limited, but preferably 1 mol or more is used per 1 mol of methylacetylene.
  • a solvent is not essential, but from the viewpoint of safety, it is preferable to lower the partial pressure of methylacetylene / propadiene, and preferably an excess alcohol is used instead of the solvent. However, it is possible to use another solvent separately.
  • Solvents that can be used are not particularly limited as long as they do not greatly inhibit the alkoxycarbonylation reaction, but are aromatic hydrocarbons, aliphatic hydrocarbons, sulfoxides, sulfones, esters, ketones, ethers, amides. , Alcohols, ionic fluids and mixtures thereof. There is no restriction
  • the solvent include toluene, xylene, hexane, cyclohexane, heptane, octane, dimethyl sulfoxide, sulfolane, methyl acetate, ethyl acetate, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, acetone, methyl ethyl ketone,
  • Examples include anisole, dimethoxyethane, diethyl ether, tetrahydrofuran, diglyme, dibutyl ether, dimethylformamide, N-methylpyrrolidone, dimethylacetamide, methanol, ethanol, propanol, butanol, ethylene glycol and mixtures thereof.
  • the reaction temperature is not particularly limited, but it is preferably carried out in the range of 20 to 100 ° C.
  • the reaction time is usually 0.5 to 48 hours, although it depends on conditions such as the amount of catalyst used, reaction temperature and pressure.
  • the reaction pressure at the time of alkoxycarbonylating methylacetylene is not particularly limited, but is preferably 0.5 to 10 MPaG (gauge pressure), more preferably 1 to 7 MPaG (gauge pressure).
  • the carbon monoxide partial pressure at this time is not particularly limited, but is preferably 0.5 to 10 MPaG (gauge pressure), and more preferably 1 to 7 MPaG (gauge pressure).
  • the embodiment of the reaction of the present invention is not particularly limited, and may be, for example, a batch system or a continuous system.
  • alkoxycarbonyl compound obtained by alkoxycarbonylating methylacetylene include alkyl methacrylate compounds.
  • the methylacetylene gas After removing unreacted carbon monoxide, the methylacetylene gas, which has been vaporized by heating to 35 ° C, is collected as a liquid in a Schlenk tube that has been cooled by a dry ice-ethanol bath in advance, and filled into a cylinder as it is. As a result, 99.3 g (49%) of methylacetylene having a propadiene content of 802 ppm was obtained.
  • Production Example 2 Instead of commercially available methylacetylene, 33.8 g (835 mmol) of methylacetylene obtained in Production Example 1 was used, and 15.0 mg (0.0660 mmol) of palladium acetate, 179 mg (0.660 mmol) of diphenyl (2-pyridyl) phosphine, The same operation as in Production Example 1 was performed except that 128 ⁇ l (1.98 mmol) of methanesulfonic acid, 20 ml of methanol, a 100 ml autoclave was used as a reaction vessel, and the reaction pressure was maintained at 2.0 MPa. As a result, 10.7 g (32%) of methylacetylene having a propadiene content of 37 ppm was obtained.
  • Example 1 In a Schlenk tube, 1.8 mg (0.0080 mmol) of palladium acetate and 130 mg (0.480 mmol) of diphenyl (2-pyridyl) phosphine were dissolved in 45 mL of methanol, and then 0.15 ml of N, N-dimethylaniline (1. 20 mmol) and 47 ⁇ l (0.72 mmol) of methanesulfonic acid were added to prepare a catalyst solution. 1.7 ml of this catalyst solution was collected (equivalent to 0.00030 mmol of palladium), introduced into a stainless steel autoclave having an internal volume of 100 ml under a nitrogen atmosphere, and then 28.3 ml of methanol was further introduced.
  • the autoclave containing the catalyst solution was cooled in a dry ice-ethanol bath, 6.87 g (170 mmol) of methylacetylene having a propadiene concentration of less than 3 ppm was introduced, and then pressurized with carbon monoxide (CO) and maintained at 5 MPaG.
  • CO carbon monoxide
  • the carbon monoxide consumed was constantly introduced by a pressure reducing valve.
  • Example 2 In a Schlenk tube, 1.8 mg (0.0080 mmol) of palladium acetate and 521 mg (1.92 mmol) of diphenyl (2-pyridyl) phosphine were dissolved in 45 mL of methanol, and then 0.62 ml (4. N.N-dimethylaniline). 80 mmol) and 187 ⁇ l (2.88 mmol) of methanesulfonic acid were added to prepare a catalyst solution. 1.7 ml of this catalyst solution was collected (equivalent to 0.00030 mmol of palladium), introduced into a stainless steel autoclave having an internal volume of 100 ml under a nitrogen atmosphere, and then 28.3 ml of methanol was further introduced.
  • the autoclave containing the catalyst solution was cooled in a dry ice-ethanol bath, 6.67 g (165 mmol) of methylacetylene having a propadiene concentration of 24 ppm was introduced, and then pressurized with carbon monoxide and maintained at 5 MPaG. During the reaction, in order to keep the CO partial pressure at 5 MPaG, the carbon monoxide consumed was constantly introduced by a pressure reducing valve.
  • the reaction solution after being held at a reaction temperature of 65 ° C. for 6 hours was quantitatively analyzed by gas chromatography (GC), the amount of methyl methacrylate produced was 520,000 mol / Pd mol, and the selectivity per recovered product was It was 96%.
  • Example 3 In a Schlenk tube, 1.8 mg (0.0080 mmol) of palladium acetate and 90.5 mg (0.32 mmol) of (6-methyl-2-pyridyl) diphenylphosphine were dissolved in 45 mL of methanol, and then N, N-dimethylaniline. 0.10 ml (0.80 mmol) and 31 ⁇ l (0.48 mmol) of methanesulfonic acid were added to prepare a catalyst solution. 1.7 ml of this catalyst solution was collected (equivalent to 0.00030 mmol of palladium), introduced into a stainless steel autoclave having an internal volume of 100 ml under a nitrogen atmosphere, and then 28.3 ml of methanol was further introduced.
  • the autoclave containing the catalyst solution was cooled in a dry ice-ethanol bath, 6.29 g (155 mmol) of methylacetylene having a propadiene concentration of less than 10 ppm was introduced, and then pressurized with carbon monoxide and maintained at 5 MPaG.
  • the carbon monoxide consumed was constantly introduced by a pressure reducing valve.
  • Example 4 In a Schlenk tube, 1.8 mg (0.0080 mmol) of palladium acetate, 90.5 mg (0.320 mmol) of diphenyl (6-methyl-2-pyridyl) phosphine, and 85.6 mg (0.320 mmol) of triphenylphosphine in 45 mL of methanol. Then, 0.20 ml (1.60 mmol) of N, N-dimethylaniline and 62 ⁇ l (0.96 mmol) of methanesulfonic acid were added to prepare a catalyst solution.
  • Example 5 In a Schlenk tube, 1.8 mg (0.0080 mmol) of palladium acetate, 86.9 mg (0.320 mmol) of diphenyl (2-pyridyl) phosphine, and 96.4 mg (0.360 mmol) of triphenylphosphine were dissolved in 45 mL of methanol. Thereafter, 0.20 ml (1.60 mmol) of N, N-dimethylaniline and 62 ⁇ l (0.96 mmol) of methanesulfonic acid were added to prepare a catalyst solution.
  • Example 6 In a Schlenk tube, 1.8 mg (0.0080 mmol) of palladium acetate and 86.9 mg (0.320 mmol) of diphenyl (2-pyridyl) phosphine were dissolved in 45 mL of methanol, and 31 ⁇ l (0.48 mmol) of methanesulfonic acid was then added. In addition, a catalyst solution was prepared, and the same operation as in Example 1 was performed except that 6.30 g (156 mmol) of methylacetylene having a propadiene concentration of 13 ppm was used. As a result, the amount of methyl methacrylate produced was 150,000 mol / Pd mol. And the selectivity per recovered product was 84%.
  • Example 7 Results obtained by performing the same operation as in Example 3 except that 86.9 mg (0.320 mmol) of diphenyl (2-pyridyl) phosphine and 6.25 g (154 mmol) of methylacetylene having a propadiene concentration of 25 ppm were used as the phosphine compound.
  • the amount of methyl methacrylate produced was 170,000 mol / Pd mol, and the selectivity per recovered product was 81%.
  • Example 8 Except for using 98.7 mg (0.32 mmol) of bis (4-methylphenyl) (6-methyl-2-pyridyl) phosphine as a phosphine compound and 6.38 g (158 mmol) of methylacetylene having a propadiene concentration of 11 ppm. As a result of performing the same operation as in Example 3, the amount of methyl methacrylate produced was 250,000 mol / Pd mol. The selectivity per recovered product was 97%.
  • Reference example 1 As a result of performing the same operation as in Example 2 except that 6.66 g (165 mmol) of methylacetylene having a propadiene concentration of 537 ppm was used, the amount of methyl methacrylate produced was reduced to 180,000 mol / Pd mol. The selectivity per product was 81%.
  • Comparative Example 2 As a result of performing the same operation as in Example 7 except that 6.13 g (151 mmol) of methylacetylene having a propadiene concentration of 389 ppm was used, the amount of methyl methacrylate produced decreased to 26,000 mol / Pd mol.
  • the present invention can be used for a method for producing an alkoxycarbonyl compound, specifically, for producing an alkyl methacrylate, particularly methyl methacrylate.

Abstract

 第10族金属化合物、プロトン酸及びホスフィン化合物を含む触媒の存在下、一酸化炭素及びアルコール化合物をメチルアセチレンと反応させる際に、メチルアセチレンのプロパジエン含有量を50ppm以下とし、ホスフィン化合物をメチルアセチレン1モルに対して0.000020モル超使用し、かつ、一酸化炭素及びアルコール化合物を、第10族金属化合物1モルに対して200000モル以上のメチルアセチレンと反応させるアルコキシカルボニル化合物の製造方法。

Description

アルコキシカルボニル化合物の製造方法
 本発明は、アルコキシカルボニル化合物の製造方法に関するものである。
 特許文献1、2、3には、パラジウム化合物、プロトン酸及びホスフィン化合物を触媒として用い、メチルアセチレンを一酸化炭素及びメタノールと反応させメチルメタクリレートを製造する方法が開示されている。かかる反応に使用されるメチルアセチレンは、プロパジエンを0.2%~3%の範囲で含むものである事が知られている。
特開平2-277551号公報 特表平9-501671号広報 特開平2-290831号公報
 従来の方法では、アルコキシカルボニル化合物を製造するのにパラジウム金属当たりの生産性は低く、かかる貴金属触媒を使用する反応としてはその効率は、工業的には必ずしも満足行くものではなかった。
 本発明は、効率よくアルコキシカルボニル化合物を製造する方法を提供するものである。
 すなわち、本発明は、第10族金属化合物、プロトン酸及びホスフィン化合物を含む触媒の存在下、一酸化炭素及びアルコール化合物をメチルアセチレンと反応させる際に、メチルアセチレンのプロパジエン含有量を50ppm以下とし、ホスフィン化合物をメチルアセチレン1モルに対して0.000020モル超使用し、かつ、一酸化炭素及びアルコール化合物を、第10族金属化合物1モルに対して200000モル以上のメチルアセチレンと反応させるアルコキシカルボニル化合物の製造方法に関する。
 本発明によれば、アルコキシカルボニル化合物を効率良く製造することができる。
 本発明の方法において用いられるメチルアセチレンは、プロパジエンの含有量が50ppm以下のものであり、好ましくは30ppm以下、より好ましくは20ppm以下、一層好ましくは10ppm以下、最も好ましくは5ppm以下のものである。メチルアセチレンは、アルコキシカルボニル化を著しく阻害するもので無い限りは、プロパジエンのほかにも不純物を含んでいてもよい。かかる不純物として具体的には、ブタジエン、プロピレン、ブテン、プロパン、一酸化炭素、および二酸化炭素などがあげられる。本発明に用いられる一酸化炭素は、純粋な一酸化炭素のほか、窒素、ヘリウム、二酸化炭素、アルゴン等の触媒やメチルアセチレンに不活性なガスを含んでいてもよい。
 本発明の反応は、第10族金属化合物、プロトン酸及びホスフィン化合物を触媒として用いて実施される。通常、上記触媒は、第10族金属化合物、プロトン酸及びホスフィン化合物からなる混合物として使用される。第10族金属化合物、プロトン酸及びホスフィン化合物の使用量は、触媒量でよいが、典型的には、以下に例示するような態様で使用される。
 第10族金属化合物としては、ニッケル化合物、パラジウム化合物、白金化合物が挙げられ、好ましくはパラジウム化合物を挙げることができる。かかるパラジウム化合物としては、パラジウムアセチルアセトナート、テトラキス(トリフェニルホスフィン)パラジウム、ビス(トリフェニルホスフィン)パラジウムアセテート、酢酸パラジウム、トリフルオロ酢酸パラジウム、トリフルオロメタンスルホン酸パラジウム、硫酸パラジウム、塩化パラジウム及びこれらの混合物を挙げることができる。パラジウム化合物として、より好ましくは、パラジウムアセチルアセトナート、テトラキス(トリフェニルホスフィン)パラジウム、ビス(トリフェニルホスフィン)パラジウムアセテート、酢酸パラジウム、トリフルオロ酢酸パラジウム、トリフルオロメタンスルホン酸パラジウム、硫酸パラジウム及びこれらの混合物であり、更に好ましくは酢酸パラジウムである。第10族金属化合物の使用量はメチルアセチレン1モルに対して、1/200000モル以下であるが、好ましくは1/1000000~1/200000モルの範囲である。すなわち、メチルアセチレンが、第10族金属化合物1モルに対して200000モル以上であり、好ましくは200000~1000000モルの範囲である。
 ホスフィン化合物は特に限定されないが、通常は第3級ホスフィン化合物が用いられ、好ましくは下記式(1)で表される芳香族第3級ホスフィン化合物を含むものである。
Figure JPOXMLDOC01-appb-C000001
式(1)中、R、R、R、R、R、R、R、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、水酸基、ハロゲン原子で置換されていてもよいアルキル基、アラルキル基、置換又は無置換アリール基、ピリジル基、シリル基、アミノ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基及びアシル基からなる群から選ばれる置換基を表し、それぞれ隣接する基は互いに結合して環を形成していてもよい。nは0~3の整数を表す。
 ホスフィン化合物としてより好ましくは、一般式(1)中の整数nが1以上で表される芳香族第3級ピリジルホスフィン化合物である。芳香族第3級ピリジルホスフィン化合物として、具体的には、ジフェニル(2-ピリジル)ホスフィン、ジフェニル(6-メチル-2-ピリジル)ホスフィン、ジフェニル(6-エチル-2-ピリジル)ホスフィン、ジフェニル[6-(n-プロピル)-2-ピリジル]ホスフィン、ジフェニル[6-(iso-プロピル)-2-ピリジル]ホスフィン、ジフェニル[6-(n-ブチル)-2-ピリジル]ホスフィン、ジフェニル[6-(iso-ブチル)-2-ピリジル]ホスフィン、ジフェニル(6-フェニル-2-ピリジル)ホスフィン、ジフェニル(6-ヒドロキシ-2-ピリジル)ホスフィン、ジフェニル(6-メトキシ-2-ピリジル)ホスフィン、ジフェニル(6-フルオロ-2-ピリジル)ホスフィン、ジフェニル(6-クロロ-2-ピリジル)ホスフィン、ジフェニル(6-ブロモ-2-ピリジル)ホスフィン、ビス(4-フルオロフェニル)(2-ピリジル)ホスフィン、ビス(4-クロロフェニル)(2-ピリジル)ホスフィン、ビス(4-ブロモフェニル)(2-ピリジル)ホスフィン、ビス(3-メチルフェニル)(2-ピリジル)ホスフィン、ビス(4-メチルフェニル)(2-ピリジル)ホスフィン、ビス(4-メトキシフェニル)(2-ピリジル)ホスフィン、ビス[4-(トリフルオロメチル)フェニル](2-ピリジル)ホスフィン、ビス(3,4,5-トリフルオロフェニル)(2-ピリジル)ホスフィン、ビス(4-フルオロフェニル)(6-メチル-2-ピリジル)ホスフィン、ビス(4-クロロフェニル)(6-メチル-2-ピリジル)ホスフィン、ビス(4-ブロモフェニル)(6-メチル-2-ピリジル)ホスフィン、ビス(3-メチルフェニル)(6-メチル-2-ピリジル)ホスフィン、ビス(4-メチルフェニル)(6-メチル-2-ピリジル)ホスフィン、ビス(4-メトキシフェニル)(6-メチル-2-ピリジル)ホスフィン、ビス[4-(トリフルオロメチル)フェニル](6-メチル-2-ピリジル)ホスフィン、ビス(4-メチルフェニル)(6-エチル-2-ピリジル)ホスフィン、ビス(4-メチルフェニル)[6-(n-プロピル)-2-ピリジル]ホスフィン、ビス(4-メチルフェニル)[6-(iso-プロピル)-2-ピリジル]ホスフィン、ビス(4-メチルフェニル)[6-(n-ブチル)-2-ピリジル]ホスフィン、ビス(4-メチルフェニル)[6-(iso-ブチル)-2-ピリジル]ホスフィン、ビス(4-メトキシフェニル)(6-エチル-2-ピリジル)ホスフィン、ビス(4-メトキシフェニル)[6-(n-プロピル)-2-ピリジル]ホスフィン、ビス(4-メトキシフェニル)[6-(iso-プロピル)-2-ピリジル]ホスフィン、ビス(4-メトキシフェニル)[6-(n-ブチル)-2-ピリジル]ホスフィン、ビス(4-メトキシフェニル)[6-(iso-ブチル)-2-ピリジル]ホスフィン、ビス(2-ピリジル)フェニルホスフィン、トリス(2-ピリジル)ホスフィン、ビス(6-メチル-2-ピリジル)フェニルホスフィン、トリス(6-メチル-2-ピリジル)ホスフィンが例示され、より一層好ましくは、ジフェニル(2-ピリジル)ホスフィン、ジフェニル(6-メチル-2ピリジル)ホスフィン、ビス(4-メチルフェニル)(6-メチル-2-ピリジル)ホスフィンが例示される。
 これらの芳香族第3級ピリジルホスフィン化合物は単独での使用に限られず、適宜混合して用いてもよい。上記芳香族第3級ピリジルホスフィン化合物の使用量はメチルアセチレン1モルに対して0.000020モル超であれば特に制限は無いが、好ましくはメチルアセチレン1モルに対して0.000020モル超、且つプロパジエン1モルに対して2モル以上の範囲、一層好ましくはメチルアセチレン1モルに対して0.000020モル超0.00048モル以下で、且つプロパジエン1モルに対して2モル以上の範囲である。
 上記の芳香族第3級ピリジルホスフィン化合物は公知の方法による製造が可能である。例えば、特開平2-277551号公報に開示されているように、ハロゲン化ピリジンをアルキルリチウムと反応させてリチオ化した後、ホスフィンクロライドを反応させることで種々の芳香族第3級ピリジルホスフィン化合物を製造する事ができる。
 また、上記芳香族第3級ピリジルホスフィン化合物に対して単座3級モノホスフィン化合物を共存させた場合にも好ましい結果が得られる。この場合の単座3級モノホスフィン化合物とは、1つのリン原子の他に配位座となるような官能基を含まない3級ホスフィン化合物である。単座3級モノホスフィン化合物としては、トリアルキルホスフィン化合物、又は、アルキル基、ハロゲン原子、ハロアルキル基及びアルコキシ基からなる群から選ばれる少なくとも一つの置換基で置換されていてもよい、同一又は相異なるアリール基を有する芳香族3級ホスフィン化合物が例示される。かかる単座3級モノホスフィン化合物としては、具体的には、トリエチルホスフィン、トリブチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリス(4-フルオロフェニル)ホスフィン、トリス(4-クロロフェニル)ホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス[4-(トリフルオロメチル)フェニル]ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(3-メチルフェニル)ホスフィン、トリス[3,5-ビス(トリフルオロメチル)フェニル]ホスフィン、(4-メチルフェニル)(ジフェニル)ホスフィン及びこれらの混合物が例示され、好ましくは前記の芳香族3級ホスフィン化合物、更に好ましくはトリフェニルホスフィンが用いられる。その使用量に特に制限は無いが、第10族金属化合物1モルに対して好ましくは、1~600モルの範囲であり、より好ましくは1~300モルの範囲である。
 プロトン酸としては、有機又は無機のプロトン酸が例示される。プロトン酸として、具体的には、ホウ酸、オルトリン酸、ピロリン酸、硫酸、ハロゲン化水素酸、ベンゼンリン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸、クロロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリメチルメタンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、シュウ酸、ビス(トリフルオロメタンスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メタイド及びこれらの混合物が例示され、好ましくは、スルホン酸化合物、さらに好ましくはメタンスルホン酸が使用される。その使用量は、特に限定されないが、第10族金属化合物1モルに対して好ましくは、3~300モルで十分であり、より好ましくは、10~240モルである。
 本発明の反応において、触媒としてアミン化合物の使用は必須ではないが、アミン化合物の共存下での反応は好ましい結果を与える場合がある。アミン化合物は、特に限定されないが、通常、公知の3級アミン又は環状アミンが用いられる。アミン化合物として、具体的にはN,N-ジアルキルアニリン、ピリジン、キノリン、イソキノリン、トリアジン、イミダゾール、トリエチルアミン、トリブチルアミン、N,N-ジイソプロピルエチルアミン及びこれらの混合物が例示され、好ましくはN,N-ジメチルアニリン、ピリジンである。アミン化合物の添加量に制限はないが、好ましくはプロトン酸1モルに対して1~50モル、より好ましくは1~10モルの範囲である。
 本発明に用いられるアルコール化合物に特に制限はないが、具体的にはメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、sec-ブタノール、tert-ブタノール及びエチレングリコールを挙げることができる。好ましい実施形態として、メタノールを反応させることでメタクリル酸メチルを製造する形態が挙げられる。アルコール化合物の使用量は特に制限されないが、好ましくは、メチルアセチレン1モルに対して1モル以上が使用される。
 本発明の反応においては、溶媒の使用は必須ではないが、安全性の観点より、メチルアセチレン・プロパジエンの分圧を低くすることが好ましく、好適には過剰のアルコールを溶媒の代わりに用いる。しかし、別途、別の溶媒を使用することも可能である。使用できる溶媒はアルコキシカルボニル化反応を大きく阻害するものでなければ特に限定されないが、芳香族炭化水素類、脂肪族炭化水素類、スホキシド類、スルホン類、エステル類、ケトン類、エーテル類、アミド類、アルコール類、イオン性流体及びこれらの混合物が挙げられる。その使用量には特に制限はない。溶媒として、具体的にはトルエン、キシレン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ジメチルスルホキシド、スルホラン、酢酸メチル、酢酸エチル、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、アセトン、メチルエチルケトン、アニソール、ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、ジグライム、ジブチルエーテル、ジメチルホルムアミド、N-メチルピロリドン、ジメチルアセトアミド、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール及びこれらの混合物が例示される。
 本発明のメチルアセチレンのアルコキシカルボニル化方法において、その反応温度に特に制限はないが、好ましくは、20~100℃の範囲において実施される。また、反応時間は、触媒使用量や反応温度並びに圧力等の条件にもよるが、通常は0.5~48時間である。メチルアセチレンをアルコキシカルボニル化する際の反応圧力は特に限定されないが、好ましくは0.5~10MPaG(ゲージ圧)であり、さらに好ましくは1から7MPaG(ゲージ圧)の範囲である。このときの一酸化炭素分圧は特に限定されないが、好ましくは0.5~10MPaG(ゲージ圧)であり、さらに好ましくは1~7MPaG(ゲージ圧)の範囲である。本発明の反応の実施態様は特に限定されず、例えば、バッチ方式でも連続方式でもよい。
 メチルアセチレンをアルコキシカルボニル化して得られるアルコキシカルボニル化合物として、具体的には、アルキルメタクリレート化合物を挙げることができる。
 以下、実施例により本発明を説明するが、本発明は、これらの実施例に限定されるものではない。
製造例1
 窒素置換した1000mlのシュレンク管中に、酢酸パラジウム125mg(0.550mmol)、ジフェニル(2-ピリジル)ホスフィン1.49g(5.50mmol)をメタノール750mlに溶解させ、メタンスルホン酸535μl(8.25mmol)を加え、室温で撹拌し、触媒溶液を得た。得られた触媒溶液を窒素置換した1500mlオートクレーブ中に導入し、ドライアイス-エタノール浴によって冷却した。冷却したオートクレーブ中に市販メチルアセチレン203g(5.01mol、プロパジエン含有量3500~3000ppm)を導入し、一酸化炭素で加圧し1.2MPaに保持した(反応中は全圧が1.2MPaとなるよう、減圧弁にて消費分の一酸化炭素を常時導入した)。50℃で3時間撹拌した後、反応液を再びドライアイス-エタノール浴によって冷却した。未反応の一酸化炭素を抜いた後、35℃まで加熱して気化してきたメチルアセチレンガスを予めドライアイス-エタノール浴によって冷却していたシュレンク管中に液体として捕集し、ボンベにそのまま充填することでプロパジエン含有量が802ppmであるメチルアセチレン99.3g(49%)を得た。
製造例2
 市販メチルアセチレンの代わりに、製造例1で得られたメチルアセチレン33.8g(835mmol)を用い、酢酸パラジウム15.0mg(0.0660mmol)、ジフェニル(2-ピリジル)ホスフィン179mg(0.660mmol)、メタンスルホン酸を128μl(1.98mmol)、メタノール20ml、反応容器として100mlのオートクレーブを使用し、反応圧を2.0MPaに保持した以外は、製造例1と同様の操作を行った。その結果、プロパジエン含有量が37ppmのメチルアセチレン10.7g(32%)を得た。
製造例3
 2-ブロモ-6-メチルピリジン(23.5mmol)をテトラヒドロフラン40mlに溶解させ、ドライアイス-エタノール浴下に冷却し、撹拌しながらn-ブチルリチウムの1.59Mヘキサン溶液(23.5mmol)を滴下し、10分撹拌し、反応混合物を得た。得られた反応混合物に、テトラヒドロフラン40mlに溶解させたクロロビス(4-メチルフェニル)ホスフィン(17.5mmol)を加え、更に室温で2時間撹拌した。反応溶液を水でクエンチし、酢酸エチルで抽出し、無水硫酸マグネシウムで有機層を乾燥した。溶媒を減圧にて留去後、シリカゲルカラムクロマトグラフィーで2回精製することにより(展開液:ヘキサン/酢酸エチル=5/1、9/1)、2.68gのビス(4-メチルフェニル)(6-メチル-2-ピリジル)ホスフィンを得た(収率50%)。
H-NMR(CDCl,270Hz):δ 7.41(1H,td,J=8,2Hz)、7.29-7.10(8H,m)、7.00(1H,d,J=8Hz)、6.81(1H,d,J=8Hz)、2.56(3H,s)、2.34(6H,s)
実施例1
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)とジフェニル(2-ピリジル)ホスフィン130mg(0.480mmol)を溶解させた後、N,N-ジメチルアニリン0.15ml(1.20mmol)、メタンスルホン酸47μl(0.72mmol)を加え触媒溶液を調製した。この触媒溶液を1.7ml分取(パラジウム0.00030mmol相当)し、窒素雰囲気下で内容積100mlのステンレス製オートクレーブに導入後、更にメタノール28.3mlを導入した。触媒溶液の入ったオートクレーブをドライアイス-エタノール浴下に冷却し、プロパジエン濃度が3ppm未満のメチルアセチレン6.87g(170mmol)を導入後、一酸化炭素(CO)で加圧し5MPaGに保持した。反応中はCO分圧を5MPaGに保つ為、減圧弁にて消費分の一酸化炭素を常時導入した。反応温度65℃で7時間保持した後の反応液をガスクロマトグラフィー(GC)により定量分析したところ、メチルメタクリレートの生成量は51万モル/Pdモルであり、回収した生成物あたりの選択率は95%であった。
 実施例2
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)とジフェニル(2-ピリジル)ホスフィン521mg(1.92mmol)を溶解させた後、N,N-ジメチルアニリン0.62ml(4.80mmol)、メタンスルホン酸187μl(2.88mmol)を加え触媒溶液を調製した。この触媒溶液を1.7ml分取(パラジウム0.00030mmol相当)し、窒素雰囲気下で内容積100mlのステンレス製オートクレーブに導入後、更にメタノール28.3mlを導入した。触媒溶液の入ったオートクレーブをドライアイス-エタノール浴下に冷却し、プロパジエン濃度が24ppmのメチルアセチレン6.67g(165mmol)を導入後、一酸化炭素で加圧し5MPaGに保持した。反応中はCO分圧を5MPaGに保つ為、減圧弁にて消費分の一酸化炭素を常時導入した。反応温度65℃で6時間保持した後の反応液をガスクロマトグラフィー(GC)により定量分析したところ、メチルメタクリレートの生成量は52万モル/Pdモルであり、回収した生成物あたりの選択率は96%であった。
実施例3
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)と(6-メチル-2-ピリジル)ジフェニルホスフィン90.5mg(0.32mmol)を溶解させた後、N,N-ジメチルアニリン0.10ml(0.80mmol)、メタンスルホン酸31μl(0.48mmol)を加え触媒溶液を調製した。この触媒溶液を1.7ml分取(パラジウム0.00030mmol相当)し、窒素雰囲気下で内容積100mlのステンレス製オートクレーブに導入後、更にメタノール28.3mlを導入した。触媒溶液の入ったオートクレーブをドライアイス-エタノール浴下に冷却し、プロパジエン濃度が10ppm未満のメチルアセチレン6.29g(155mmol)を導入後、一酸化炭素で加圧し5MPaGに保持した。反応中はCO分圧を5MPaGに保つ為、減圧弁にて消費分の一酸化炭素を常時導入した。反応温度65℃で7時間保持した後の反応液をガスクロマトグラフィー(GC)により定量分析したところ、メチルメタクリレートの生成量は35万モル/Pdモルであり、回収した生成物あたりの選択率は94%であった。
実施例4
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)とジフェニル(6-メチル-2-ピリジル)ホスフィン90.5mg(0.320mmol)、トリフェニルホスフィン85.6mg(0.320mmol)を溶解させた後、N,N-ジメチルアニリン0.20ml(1.60mmol)、メタンスルホン酸62μl(0.96mmol)を加え触媒溶液を調製した。この触媒溶液を1.7ml分取(パラジウム0.00030mmol相当)し、窒素雰囲気下で内容積100mlのステンレス製オートクレーブに導入後、更にメタノール28.3mlを導入した。触媒溶液の入ったオートクレーブをドライアイス-エタノール浴下に冷却し、プロパジエン濃度が7ppmのメチルアセチレン6.60g(163mmol)を導入後、一酸化炭素で加圧し5MPaGに保持した。反応中はCO分圧を5MPaGに保つ為、減圧弁にて消費分の一酸化炭素を常時導入した。反応温度65℃で7時間保持した後の反応液をガスクロマトグラフィー(GC)により定量分析したところ、メチルメタクリレートの生成量は38万モル/Pdモルであり、回収した生成物あたりの選択率は99%であった。
実施例5
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)とジフェニル(2-ピリジル)ホスフィン86.9mg(0.320mmol)、トリフェニルホスフィン96.4mg(0.360mmol)を溶解させた後、N,N-ジメチルアニリン0.20ml(1.60mmol)、メタンスルホン酸62μl(0.96mmol)を加え触媒溶液を調製した。この触媒溶液を1.7ml分取(パラジウム0.00030mmol相当)し、窒素雰囲気下で内容積100mlのステンレス製オートクレーブに導入後、更にメタノール28.3mlを導入した。触媒溶液の入ったオートクレーブをドライアイス-エタノール浴下に冷却し、プロパジエン濃度が4ppmのメチルアセチレン6.11g(151mmol)を導入後、一酸化炭素で加圧し5MPaGに保持した。反応中はCO分圧を5MPaGに保つ為、減圧弁にて消費分の一酸化炭素を常時導入した。反応温度65℃で7時間保持した後の反応液をガスクロマトグラフィー(GC)により定量分析したところ、メチルメタクリレートの生成量は34万モル/Pdモルであった。回収した生成物あたりの選択率は99%であった。
実施例6
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)とジフェニル(2-ピリジル)ホスフィン86.9mg(0.320mmol)を溶解させた後、メタンスルホン酸31μl(0.48mmol)を加え触媒溶液を調製し、プロパジエン濃度が13ppmのメチルアセチレン6.30g(156mmol)を使用した以外は、実施例1と同様の操作を行った結果、メチルメタクリレートの生成量は15万モル/Pdモルであり、回収した生成物あたりの選択率は84%であった。
実施例7
 ホスフィン化合物にジフェニル(2-ピリジル)ホスフィンを86.9mg(0.320mmol)、プロパジエン濃度が25ppmのメチルアセチレンを6.25g(154mmol)使用した以外は、実施例3と同様の操作を行った結果、メチルメタクリレートの生成量は17万モル/Pdモルであり、回収した生成物あたりの選択率は81%であった。
実施例8
 ホスフィン化合物にビス(4-メチルフェニル)(6-メチル-2-ピリジル)ホスフィンを98.7mg(0.32mmol)、プロパジエン濃度が11ppmのメチルアセチレンを6.38g(158mmol)使用した以外は、実施例3と同様の操作を行った結果、メチルメタクリレートの生成量は25万モル/Pdモルであった。回収した生成物あたりの選択率は97%であった。
参考例1
 プロパジエン濃度が537ppmのメチルアセチレン6.66g(165mmol)を使用した以外は、実施例2と同様の操作を行った結果、メチルメタクリレートの生成量は18万モル/Pdモルにまで低下した、回収した生成物あたりの選択率は81%であった。
比較例1
 シュレンク管中で45mLのメタノールに酢酸パラジウム1.8mg(0.0080mmol)とジフェニル(2-ピリジル)ホスフィン21.7mg(0.0800mmol)を溶解させた後、N,N-ジメチルアニリン26μl(0.20mmol)、メタンスルホン酸8μl(0.12mmol)を加え触媒溶液を調製し、プロパジエン濃度が2ppmのメチルアセチレンを6.11g(151mmol)を使用した以外は、実施例1と同様の操作を行った結果、メチルメタクリレートの生成量は僅か0.1万モル/Pdモルであった。
比較例2
 プロパジエン濃度が389ppmのメチルアセチレン6.13g(151mmol)を使用した以外は、実施例7と同様の操作を行った結果、メチルメタクリレートの生成量は2.6万モル/Pdモルにまで低下した。
 実施例、参考例及び比較例で得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明は、アルコキシカルボニル化合物の製造方法、具体的には、アルキルメタクリレート、特にメチルメタクリレートの製造に利用できる。

Claims (16)

  1.  第10族金属化合物、プロトン酸及びホスフィン化合物を含む触媒の存在下、一酸化炭素及びアルコール化合物をメチルアセチレンと反応させる際に、
     メチルアセチレンのプロパジエン含有量を50ppm以下とし、ホスフィン化合物をメチルアセチレン1モルに対して0.000020モル超使用し、かつ、一酸化炭素及びアルコール化合物を、第10族金属化合物1モルに対して200000モル以上のメチルアセチレンと反応させる、アルコキシカルボニル化合物の製造方法。
  2.  触媒がアミン化合物を更に含む、請求項1記載の製造方法
  3.  ホスフィン化合物をプロパジエン1モルに対して2モル以上使用する、請求項1又は2に記載の製造方法。
  4.  メチルアセチレン中のプロパジエン含有量が30ppm以下である請求項1~3のいずれか一項に記載の製造方法。
  5.  メチルアセチレン中のプロパジエン含有量が20ppm以下である請求項1~4のいずれか一項に記載の製造方法。
  6.  メチルアセチレン中のプロパジエン含有量が10ppm以下である請求項1~5のいずれか一項に記載の製造方法。
  7.  メチルアセチレン中のプロパジエン量が5ppm以下である請求項1~6のいずれか一項に記載の製造方法。
  8.  第10族金属化合物がパラジウム化合物である請求項1~7のいずれか一項に記載の製造方法。
  9.  ホスフィン化合物が芳香族第3級ピリジルホスフィンを含む請求項1~8のいずれか一項に記載の製造方法。
  10.  ホスフィン化合物がジフェニル(2-ピリジル)ホスフィンを含む請求項1~9のいずれか一項に記載の製造方法。
  11.  ホスフィン化合物がジフェニル(6-メチル-2-ピリジル)ホスフィンを含む請求項1~9のいずれか一項に記載の製造方法。
  12.  ホスフィン化合物がビス(4-メチルフェニル)(6-メチル-2-ピリジル)ホスフィンを含む請求項1~9のいずれか一項に記載の製造方法。
  13.  ホスフィン化合物が単座3級モノホスフィンを更に含む請求項9~12のいずれか一項に記載の製造方法。
  14.  単座3級モノホスフィンがトリフェニルホスフィンである請求項13に記載の製造方法。
  15.  プロトン酸がスルホン酸化合物である請求項1~14のいずれか一項に記載の製造方法。
  16.  アミン化合物がN,N-ジメチルアニリンである請求項2~15のいずれか一項に記載の製造方法。
PCT/JP2009/055670 2008-03-25 2009-03-23 アルコキシカルボニル化合物の製造方法 WO2009119508A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980109626.3A CN101977887B (zh) 2008-03-25 2009-03-23 烷氧基羰基化合物的制造方法
KR1020167008099A KR20160039308A (ko) 2008-03-25 2009-03-23 알콕시카보닐 화합물의 제조 방법
US12/934,163 US8399699B2 (en) 2008-03-25 2009-03-23 Process for production of alkoxycarbonyl compound
EP09724353.9A EP2256102B1 (en) 2008-03-25 2009-03-23 Process for production of alkoxycarbonyl compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008077980 2008-03-25
JP2008-077980 2008-03-25
JP2008269412 2008-10-20
JP2008-269412 2008-10-20

Publications (1)

Publication Number Publication Date
WO2009119508A1 true WO2009119508A1 (ja) 2009-10-01

Family

ID=41113701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055670 WO2009119508A1 (ja) 2008-03-25 2009-03-23 アルコキシカルボニル化合物の製造方法

Country Status (7)

Country Link
US (1) US8399699B2 (ja)
EP (1) EP2256102B1 (ja)
JP (1) JP5515349B2 (ja)
KR (2) KR101632449B1 (ja)
CN (1) CN101977887B (ja)
TW (1) TWI430989B (ja)
WO (1) WO2009119508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869698A (zh) * 2010-01-25 2013-01-09 巴斯夫欧洲公司 由可再生资源制备的聚合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047323A (ja) * 2011-07-28 2013-03-07 Sumitomo Chemical Co Ltd ピラジン誘導体を配位子とする配位高分子を用いた炭化水素の分離方法
JP2013193992A (ja) * 2012-03-21 2013-09-30 Sumitomo Chemical Co Ltd メタクリル酸アルキルの製造方法
JP6085206B2 (ja) 2013-03-26 2017-02-22 住友化学株式会社 メタクリル酸エステルの製造方法
CN116351476A (zh) * 2022-12-18 2023-06-30 石河子大学 一种用于催化乙炔氢氯化反应的配体-铜基催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277551A (ja) 1989-03-03 1990-11-14 Shell Internatl Res Maatschappij Bv カルボニル化触媒
JPH02290831A (ja) 1989-04-11 1990-11-30 Shell Internatl Res Maatschappij Bv アルキルメタクリレートの製造方法
JPH04215851A (ja) * 1990-02-05 1992-08-06 Shell Internatl Res Maatschappij Bv カルボニル化触媒系
JPH05194317A (ja) * 1991-10-30 1993-08-03 Shell Internatl Res Maatschappij Bv メタクリレートエステルの製造方法
JPH05221923A (ja) * 1991-09-20 1993-08-31 Shell Internatl Res Maatschappij Bv メタクリレートエステルの製造方法
JPH09501671A (ja) 1993-08-19 1997-02-18 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ アセチレン性不飽和化合物のカルボニル化方法
JP2002504093A (ja) * 1997-04-04 2002-02-05 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー メタクリレートエステルの製造法
WO2007114457A1 (ja) * 2006-03-31 2007-10-11 Sumitomo Chemical Company, Limited メタクリル酸メチルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081286A (en) * 1989-04-11 1992-01-14 Shell Oil Company Process for the preparation of an alkyl methacrylate
GB9002491D0 (en) * 1990-02-05 1990-04-04 Shell Int Research Carbonylation catalyst system
TW272949B (ja) * 1994-07-22 1996-03-21 Taishal Kagaku Kogyo Kk
TW414789B (en) * 1996-03-26 2000-12-11 Shell Int Research Process for the carbonylation of acetylenically unsaturated compounds

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277551A (ja) 1989-03-03 1990-11-14 Shell Internatl Res Maatschappij Bv カルボニル化触媒
JPH02290831A (ja) 1989-04-11 1990-11-30 Shell Internatl Res Maatschappij Bv アルキルメタクリレートの製造方法
JPH04215851A (ja) * 1990-02-05 1992-08-06 Shell Internatl Res Maatschappij Bv カルボニル化触媒系
JPH05221923A (ja) * 1991-09-20 1993-08-31 Shell Internatl Res Maatschappij Bv メタクリレートエステルの製造方法
JPH05194317A (ja) * 1991-10-30 1993-08-03 Shell Internatl Res Maatschappij Bv メタクリレートエステルの製造方法
JPH09501671A (ja) 1993-08-19 1997-02-18 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ アセチレン性不飽和化合物のカルボニル化方法
JP2002504093A (ja) * 1997-04-04 2002-02-05 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー メタクリレートエステルの製造法
WO2007114457A1 (ja) * 2006-03-31 2007-10-11 Sumitomo Chemical Company, Limited メタクリル酸メチルの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869698A (zh) * 2010-01-25 2013-01-09 巴斯夫欧洲公司 由可再生资源制备的聚合物
CN102869698B (zh) * 2010-01-25 2015-11-25 巴斯夫欧洲公司 由可再生资源制备的聚合物

Also Published As

Publication number Publication date
JP2010120921A (ja) 2010-06-03
KR20160039308A (ko) 2016-04-08
TW201002665A (en) 2010-01-16
KR20100133442A (ko) 2010-12-21
US20110046417A1 (en) 2011-02-24
CN101977887A (zh) 2011-02-16
JP5515349B2 (ja) 2014-06-11
EP2256102A4 (en) 2012-02-08
EP2256102A1 (en) 2010-12-01
CN101977887B (zh) 2014-07-09
US8399699B2 (en) 2013-03-19
EP2256102B1 (en) 2018-09-26
KR101632449B1 (ko) 2016-06-21
TWI430989B (zh) 2014-03-21

Similar Documents

Publication Publication Date Title
US4356333A (en) Process for preparing n-octadienol
JP5515349B2 (ja) アルキルメタクリレートの製造方法
JPH09188632A (ja) アセチレン系不飽和化合物のカルボニル化方法
EP2740719B1 (en) Process for producing a-fluoroaldehydes
US20120214999A1 (en) Metal complex, pyridylphosphine compound, and method for producing alkyl methacrylate
Scrivanti et al. (2-Furyl) phenyl (2-pyridyl) phosphine as a new ligand in the alkoxycarbonylation of terminal alkynes
JP2613251B2 (ja) オクタ―2,7―ジエン―1―オールの連続的製造法
EP2537582A1 (en) Novel phosphine-based catalysts suitable for butadiene telomerisation
EP2828232B1 (en) Process for producing alkyl methacrylate
JP2016006018A (ja) カルボン酸エステルの製造方法
Ungvary The preparation of acyltetracarbonylcobalt compounds from ketenes and hydridotetracarbonylcobalt
CA3059585A1 (en) Process for the preparation of deuterated ethanol from d2o
WO1995030638A1 (en) Process for preparing intermediates for the synthesis of antifungal agents
EP0206958B1 (fr) Procédé de préparation d'acides carboxyliques et de leurs esters
JP4053325B2 (ja) ホスホニウム塩、その製造方法およびその用途
JP2015174826A (ja) メタクリル酸エステルの製造方法
JP2014181202A (ja) メタクリル酸エステルの製造方法
US20050090683A1 (en) Preparation of 2,3,3',4' -biphenyltetracarboxylic acid tetraester
JP2012197232A (ja) α,β−不飽和カルボン酸エステルの製造方法
JP2009227585A (ja) メチルアセチレンの精製方法
JP2010138127A (ja) 含硫黄官能基を有するピリジルホスフィン化合物
JP2003506422A (ja) オレフィンのカルボニル化によるカルボン酸の製造方法
JP2004300058A (ja) トリフルオロメチル基を有するピリジン類の製造方法
JP2016147812A (ja) (2,2,2−トリフルオロエチル)ケトンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109626.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009724353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12934163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6662/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107023446

Country of ref document: KR

Kind code of ref document: A