WO2007114457A1 - メタクリル酸メチルの製造方法 - Google Patents

メタクリル酸メチルの製造方法 Download PDF

Info

Publication number
WO2007114457A1
WO2007114457A1 PCT/JP2007/057512 JP2007057512W WO2007114457A1 WO 2007114457 A1 WO2007114457 A1 WO 2007114457A1 JP 2007057512 W JP2007057512 W JP 2007057512W WO 2007114457 A1 WO2007114457 A1 WO 2007114457A1
Authority
WO
WIPO (PCT)
Prior art keywords
propyne
methyl methacrylate
distillation
fraction
column
Prior art date
Application number
PCT/JP2007/057512
Other languages
English (en)
French (fr)
Inventor
Masahiko Mizuno
Tateo Seo
Tetsuya Suzuta
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to EP07740948A priority Critical patent/EP2003114A4/en
Priority to CN2007800116256A priority patent/CN101415669B/zh
Priority to US12/294,068 priority patent/US20090209782A1/en
Publication of WO2007114457A1 publication Critical patent/WO2007114457A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Definitions

  • the present invention relates to a method for producing methyl methacrylate. More specifically, the present invention relates to a method for producing methyl methacrylate, which has an excellent feature that it can be produced on a scale of 100,000 tons or more per year and is economical. Methyl methacrylate is important as a raw material for synthetic resins. Background art
  • a plant that thermally decomposes hydrocarbons with 2 to 10 carbon atoms (commonly known as an ethylene plant) (hereinafter referred to as an ethylene plant), which is used to produce various petrochemical basic raw materials such as ethylene, propylene, and aromatic hydrocarbons. )
  • an ethylene plant which is used to produce various petrochemical basic raw materials such as ethylene, propylene, and aromatic hydrocarbons.
  • a method of producing methyl methacrylate by taking out a mixture of propyne and propogen as a by-product by extraction and reacting carbon monoxide with methanol in the presence of a palladium catalyst as a starting material. This is described in Japanese Patent Application Laid-Open No. 0-2-2900831.
  • This production method is an attractive production method that can produce methyl methacrylate in a high yield with a short number of steps.
  • the content of the mixture of propyne and propylene in the cracked gas during naphtha pyrolysis or ethane pyrolysis is 2.3 to 3 in the case of naphtha pyrolysis with respect to 10 million tons of ethylene.
  • an object of the present invention is to provide a method for producing methyl methacrylate, which has an excellent feature that it can be produced on a scale of 100,000 tons or more per year and is economical.
  • the present inventors have described a method that allows the content of the mixture of propyne and propagene in the decomposition gas to be 2% by weight or more, as described in US Pat.
  • a method that allows the content of the mixture of propyne and propagene in the decomposition gas to be 2% by weight or more as described in US Pat.
  • methyl methacrylate can be produced more economically and industrially advantageously, and the present invention has been achieved.
  • the present invention relates to a method for producing methyl methacrylate including the following steps.
  • Pyrolysis process Process of pyrolyzing hydrocarbons with 3 or more carbon atoms to obtain cracked gas with a total content of propyne and propagen of 2% by weight or more
  • Separation process A process that separates a mixture rich in propyne and propagen from the cracked gas obtained in the pyrolysis process.
  • Propin purification process The process of separating the propylene and propagen-rich mixture obtained in the separation process into extractive distillation and separating it into a crude progenitor consisting mainly of purified propyne and provagen.
  • Isomerization process A process in which the crude propene obtained in the propyne purification process is subjected to an isomerization reaction in the presence of an isomerization catalyst to obtain a crude propyne mainly composed of propyne.
  • Carbonylation step A step of producing methyl methacrylate by reacting the purified propyne obtained in the propyne purification step with carbon monoxide and methanol in the presence of a Group 8 metal catalyst system.
  • FIG. 1 shows an example of a flow for implementing the present invention.
  • the present invention includes the following pyrolysis step, separation step, propyne purification step, isomerization step and carbonylation step.
  • the pyrolysis step is a step of pyrolyzing using a hydrocarbon having 3 or more carbon atoms as a raw material gas to obtain a cracked gas having a total content of plug pins and propene of 2% by weight or more.
  • the cracked gas can be obtained.
  • the supply gas consists essentially of raw material gas, recovered gas and water vapor.
  • the source gas is a hydrocarbon having 3 or more carbon atoms, preferably a hydrocarbon having 3 or 4 carbon atoms.
  • the recovered gas is a gas separated from the separation process or the propyne purification process.
  • the amount of water vapor is usually in the range of 0.1 to 5 times by weight, preferably 0.5 to 2 times by weight with respect to the total amount of the raw material gas and the collected gas.
  • the reactor is a tubular cracking furnace and consists of a raw material preheating section, a mixed raw material superheating section, and a radiation section.
  • the raw material gas and the recovered gas are supplied to the preheating unit and preheated.
  • Steam is added to the gas discharged from the preheating section and supplied to the mixed material superheating section.
  • the temperature in the tube of the radiant section is usually in the range of 400 to 1100.
  • the tube temperature need not be constant, and may have a temperature gradient.
  • the pressure is usually in the range of 0.01 to 1.0 MPa, preferably in the range of 0.05 to 0.3 MPa.
  • the separation step is a step of separating a mixed solution rich in propyne and propogen from the cracked gas obtained in the thermal decomposition step.
  • hydrocarbons having 2 to 10 carbon atoms include at least one selected from naphtha, butane, propane, and ethane.
  • First distillation step The cracked gas obtained in the thermal cracking step is cooled and then supplied to the first distillation column, which is extracted from the fraction 1 consisting of hydrocarbons having 4 or more carbon atoms taken from the bottom of the column and from the top of the column.
  • fraction 1 consisting of hydrocarbons having 4 or more carbon atoms taken from the bottom of the column and from the top of the column.
  • fraction 2 consisting mainly of hydrogen and hydrocarbons having 1 to 3 carbon atoms
  • Second distillation step Fraction 2 obtained in the first distillation step is supplied to the second distillation column, and is taken from fraction 3 and the top of the column, which are mainly composed of hydrocarbons having 3 carbon atoms taken from the bottom of the column. Separating into fraction 4 consisting mainly of hydrogen and hydrocarbons having 1 or 2 carbon atoms.
  • Third distillation step Fraction 3 obtained in the second distillation step is supplied to the third distillation column, and propylene and propagen as the main components are removed from the bottom of the column, and propylene is removed from the top of the column. Separating into main component fraction 6
  • the cracked gas coming out of the pyrolysis process is usually composed mainly of hydrogen, methane, ethane, ethylene, acetylene, propane, propylene, propyne, propagen, butane, butenes, and aromatic hydrocarbons.
  • hydrogen, ethylene, acetylene, propylene, butenes and aromatic hydrocarbons in the cracked gas are hydrocarbons having 2 to 10 carbon atoms, which are produced for the purpose of producing various basic petrochemical raw materials.
  • the separation process can be shared with the separation process of the ethylene plant.
  • the methyl methyl methacrylate plant alone may own the separation process, and methyl methacrylate and hydrogen, ethylene, acetylene, propylene, butenes, aromatic hydrocarbons, etc. may be co-produced. In that case, however, the production of co-products such as ethylene will be linked to the production of methyl methacrylate. Normally, the demand for methyl methacrylate is smaller than that of ethylene, etc. Therefore, if the separation process is owned by the methyl methyl methacrylate plant alone, the production volume of ethylene, etc. per plant is It is small compared to the plant, and the equipment cost burden per product in the separation process is large, which is economically disadvantageous.
  • the separation process is shared with the ethylene plant, and co-products such as ethylene are supplied to the ethylene plant, and only the fraction with a high content of the mixture of propyne and propylene obtained in the middle of the separation process is extracted with methyl methacrylate. It is more preferable to use it.
  • cracked gas is mixed with cracked gas coming from a cracking furnace of an ethylene plant, quenched, and then supplied to the first distillation column in the separation process.
  • the fraction 1 taken from the bottom of the first distillation column is usually butane, butene, aromatic hydrocarbons, and water, and this component is supplied to the ethylene plant and becomes the product of the ethylene plant.
  • Fraction 2 taken from the top of the column is usually composed mainly of hydrogen, methane, ethane, ethylene, acetylene, propane, propylene, propyne and propagen, and is compressed to make propane, propylene, propyne and propene liquid.
  • fraction 3 mainly composed of provagen
  • fraction 4 mainly composed of hydrogen, methane, ethane, ethylene and acetylene.
  • fraction 3 is supplied to the third distillation column and separated into fraction 5 mainly composed of propylene and fraction 6 mainly composed of propane, propyne and propylene.
  • fraction 5 is also supplied to the ethylene plant as an active component of the ethylene plant.
  • Fraction 6 is provided to the plug pin purification process.
  • Fraction 6 may be more precisely separated into a fraction containing propane as a main component and a fraction rich in propyne and propagen, and only the fraction rich in propyne and propagen may be subjected to the propyne purification process. .
  • the fraction containing propane as the main component is recycled to the pyrolysis process.
  • the propyne purification step is a step of subjecting the mixture rich in propyne and propagen obtained in the separation step to extractive distillation to separate it into crude propylene and crude progeny containing propagen as a main component.
  • a mixture of fraction 6 obtained mainly from propane, propyne, and propagen obtained in the separation step, or a mixture rich in propyne and propagen that is further separated from fraction 6 is subjected to extractive distillation, and extracted solvent.
  • the purified propyne can be separated using the difference in solubility.
  • the liquid mixture used for the extractive distillation may contain propylene.
  • the extraction solvent for the propyne purification process is not particularly limited as long as there is a difference in the solubility of propyne, propagen, propane, and propylene, but N, N-dimethylformamide is propyne resolution, economic efficiency, and chemical stability. And from the viewpoint of industrial availability.
  • N, N-dimethylformamide When N, N-dimethylformamide is used as the extraction solvent, the solubility of propyne is the highest, the next is propagen, the third is propylene, and the lowest is propane.
  • N, N-dimethylformamide is used as an extraction solvent, it is possible to obtain a purified propine having a quality sufficient to be used for the production of methyl methacrylate through the extraction process and the propylene emission process described below. it can.
  • the quality of purified propyne the content of each of propane, propylene and propagen is usually 1% by weight or less, preferably 100 ppm by weight or less, and more preferably 100 ppm by weight or less.
  • the extraction step consists of fraction 6 obtained from the separation step, which is mainly composed of propane, propyne, and propagen, or a mixture rich in propyne and propylene, which is a more precise separation of fraction 6, and N,
  • N-dimethylformamide is supplied to an extractive distillation column, and a mixture containing propyne, propagen and N, N-dimethylformamide as main components is obtained from the bottom of the column, and a mixture containing propane as a main component is obtained from the top.
  • the mixture containing propyne, propagen and N, N-dimethylformamide obtained in the extraction process as the main components is applied to a stripping tower, heat is applied, and a crude probagen based on propylene having a low solubility is the main component.
  • the propyne distillation process is a process in which the propyne obtained at the bottom of the stripping tower and N, N-dimethylformamide as the main components are supplied to the distillation tower and purified propyne is obtained from the top of the tower.
  • the propane-based mixture that appears at the top of the extraction process is recycled to the pyrolysis process as recovered gas.
  • the crude propylene that is released in the propagen release process is supplied to the isomerization process.
  • the N, N-dimethylformamide remaining in the bottom of the propyne distillation process may be recycled to the extraction process as it is, or after purification by distillation, it may be recycled to the extraction process.
  • the isomerization step is a step of obtaining a crude propyne mainly composed of propyne by subjecting the crude proben obtained in the propyne purification step to an isomerization reaction in the presence of an isomerization catalyst.
  • Crude provagen can be isomerized to a thermodynamically stable pout pin in accordance with, for example, the method described in JP-A No. 02-229083.
  • the ratio of propyne to propagen in the feed solution is not particularly limited, but usually the ratio of propyne Z propagen is 2 or less.
  • the ratio of propyne propagen in the isomerization reaction product coming out of the reactor depends on the reaction temperature and the residence time in the reactor, but is usually 3 or more, preferably 5 or more.
  • the reaction form is not particularly limited, such as a liquid phase suspension bed, a liquid phase fixed bed, and a gas phase fixed bed.
  • the crude propyne obtained in the isomerization step is preferably supplied to the propyne purification step from the viewpoint of economy.
  • isomerization catalyst isomerization ability, economy and industrial availability From the viewpoint of easiness, it is preferable to use an alkali metal or aluminum alloy supported on alumina.
  • the carbonylation step is a step of producing methyl methacrylate by reacting the purified propyne obtained in the propyne purification step with carbon monoxide and methanol in the presence of a Group 8 metal catalyst system.
  • Methyl methacrylate can be produced by reacting the purified propyne obtained in the propyne purification step with carbon monoxide and methanol in the presence of a Group 8 metal catalyst system.
  • a Group 8 metal catalyst system a catalyst containing palladium element is preferable from the viewpoint of reaction selectivity.
  • the amount used is not particularly limited, but is usually 1 mol percent or less, preferably 0.1 mol percent or less, more preferably 0.1 mol percent or less, relative to propyne from an economic viewpoint. On the other hand, from the viewpoint of reactivity, it is usually at least 0.001 mol percent, preferably at least 0.001 mol percent.
  • a compound containing a phosphorus atom, a nitrogen atom, an oxygen atom, a sulfur atom or the like can be used as a ligand in the reaction solution to control reaction selectivity and catalytic activity.
  • the ligand is not particularly limited, but dialyl (alkyl-substituted 2-pyridyl) phosphine described in Japanese Patent Application Laid-Open No. 04-2158581 from the viewpoint of reaction selectivity and catalytic activity. Preferably coexist.
  • the amount used is not particularly limited, but is usually in the range of 0.1 to 10 mole times the Group 8 metal catalyst.
  • the solvent is not particularly limited as long as it dissolves propyne, carbon monoxide, methanol and the eighth metal catalyst system, but it is preferable from the viewpoint of ease of recycling to use methanol which is also a reaction raw material as a solvent. .
  • the amount used is not particularly limited.
  • Carbon monoxide can be produced, for example, by a hydrocarbon steam reforming method or a partial combustion method, and the production method is not particularly limited. When carbon dioxide and hydrogen are mixed into carbon monoxide, side reactions occur at the same time, so it is preferable to remove them by pretreatment.
  • the reaction form is not particularly limited, it is usually a liquid phase homogeneous reaction.
  • the reaction temperature is 100 from the viewpoint of inhibiting polymerization of the produced methyl methacrylate, and the following is preferable.
  • the production method of the present invention includes the following methyl methacrylate purification step from the viewpoint of improving the methyl methacrylate quality and economic efficiency by recycling raw materials.
  • the reaction mixture obtained in the carbonylation process is subjected to gas diffusion operation, distillation operation and / or extraction operation, and unreacted carbon monoxide, propyne and methanol. Is a process of purifying methyl methacrylate.
  • the reaction solution coming out of the carbonylation step contains methyl methacrylate, methyl crotonate, methanol, propyne, carbon monoxide, and an eighth metal catalyst system as main components.
  • methyl crotonate is a by-product and the product must be removed from the system.
  • Methanol, propyne, carbon monoxide, and eighth metal catalyst systems are preferably recycled.
  • the separation method is not particularly limited, but usually, distillation using a difference in boiling point or separation by extractive distillation using a difference in solubility in an extraction solvent is advantageous. For example, first, carbon monoxide, which is a gas component, and some propynes that are not dissolved in the solvent are diffused in the gas diffusion tower.
  • Propine dissolved in the liquid can be partly released by supplying an inert gas.
  • the entrained gas include nitrogen, argon, carbon dioxide, carbon monoxide, methane, and the like.
  • carbon monoxide which is also a reaction raw material.
  • the amount used is preferably converted to methyl methacrylate by reacting with carbon monoxide in one pass. If this amount is insufficient for propyne emission, nitrogen, argon, carbon dioxide, methane, etc.
  • a single gas selected from the above or a mixture of two or more mixed gases may be supplied. The separated carbon monoxide and propyne are recycled to the carbonylation process.
  • components having a higher vapor pressure than methyl methacrylate are separated by distillation.
  • Components having a higher vapor pressure than methyl methacrylate are, for example, propyne and methanol.
  • methyl methacrylate is distilled, leaving a mixture of methyl crotonate and the eighth metal catalyst system at the bottom of the column.
  • the mixed liquid mainly composed of methyl crotonate and the eighth metal catalyst system may be discarded, but it is usually preferable to recycle the eighth metal because it is expensive.
  • the recycling method is not particularly limited, but usually, only the amount corresponding to the methyl crotonate content generated in the carbonylation process is removed from the mixture from a mixture mainly composed of methyl crotonate and the eighth metal catalyst system. The rest is recycled to the carbonylation process.
  • Methyl methacrylate purification process temperature Is preferably '100 or less from the viewpoint of inhibiting polymerization of methyl methacrylate.
  • a polymerization inhibitor may be added. Examples of the polymerization inhibitor include hydroquinone. Example
  • the numbers in the figure correspond to the fluid numbers in the table.
  • Propane (fluid number 1) is 3 4 T / h, recovery pan (fluid number 5) 10.1 l TZh, steam (fluid number 2) 4 4. 14 4 T Zh is supplied and pyrolyzed to obtain cracked gas (fluid number 3) 8 8.25 T_h with a total content of propyne and propogen of 9.3% by weight.
  • the obtained cracked gas (fluid number 3) is supplied to the separation process (B) of the ethylene plant, and is combined with the fluid of the ethylene plant, and is firstly taken out from the bottom of the tower in the first distillation column. It is separated into a fraction 1 having 4 or more carbon atoms and a fraction 2 having 3 or less carbon atoms taken from the top of the column.
  • the obtained fraction 2 having 3 or less carbon atoms is separated into a fraction 3 having 3 carbon atoms extracted from the bottom of the second distillation column and a fraction 4 having 2 or less carbon atoms extracted from the top of the column.
  • the Fraction 3 consists of propylene, propane, propyne and propagen.
  • the fraction 3 is a fraction 5 consisting of propylene at the top of the third distillation column,
  • the bottom of the column is separated into fraction 6 (fluid number 4) consisting of propane, propyne, propagen and propylene.
  • the flow rate of fraction 6 (fluid number 4) is 17.83 TZ h.
  • Fraction 6 (fluid number 4) obtained in this manner is purified by extraction distillation using N, N-dimethylformamide as an extraction solvent in the propyne purification step (C), and recovered propanes (fluid No. 5) 10.
  • l lT / h crude propagen mainly composed of propylene (fluid no. 6) 17. 37T / h, fine propylene (fluid no. 8) 7. 69T / h.
  • Crude Provagen (fluid number 6) is isomerized in the isomerization step (D); it is isomerized with potassium carbonate supported alumina catalyst to give crude propyne (fluid number 7) 17. 37 T / h. Recycled.
  • Recycled fraction from the methyl methacrylate refining process combined with 82 T / h (Fluid No. 1 2) 14. Along with 46 TZh, it was supplied to the carbonylation step (E) and palladium Reacting in the presence of a catalyst system, a reaction mixture containing methyl methacrylate 20.
  • the obtained reaction mixture (fluid no.
  • Fluid number 8 9 10 1 1 12 13 14 Temperature (.c) -24 25 40 49 -33 to 69 86

Abstract

以下の工程を含むメタクリル酸メチルの製造方法。 熱分解工程:炭素数3以上の炭化水素を熱分解し、プロピンとプロパジエンの合計含有量が2重量%以上である分解ガスを得る工程 分離工程:熱分解工程で得られた分解ガスから、プロピン及びプロパジエンに富む混合液を分離する工程 プロピン精製工程:分離工程で得られたプロピン及びプロパジエンに富む混合液を抽出蒸留に付し、精プロピン、及びプロパジエンを主成分とする粗プロパジエンに分離する工程 異性化工程:プロピン精製工程で得られた粗プロパジエンを異性化触媒の存在下に異性化反応させ、プロピンを主成分とする粗プロピンを得る工程 カルボニル化工程:第8族金属触媒系の存在下、プロピン精製工程にて得られた精プロピンを、一酸化炭素及びメタノールと反応させることによりメタクリル酸メチルを製造する工程

Description

メタクリル酸メチルの製造方法 技術分野
本発明は、メタクリル酸メチルの製造方法に関するものである。更に詳しくは、 本発明は、年産 1 0万トン以上の規模で製造でき、 かつ経済的であるという優れ た特徴を有するメタクリル酸メチルの製造方法に関するものである。 なお、 メタ クリル酸メチルは、 合成樹脂の原料等として重要なものである。 背景技術
エチレン、 プロピレン及び芳香族炭化水素をはじめ、各種石油化学基礎原料を 製造する目的で行われる、 炭素数が 2〜1 0の炭化水素を熱分解するプラン卜 (通称 エチレンプラント) (以下エチレンプラントと称する場合がある。 ) に て、副生するプロピンとプロパジェンの混合物を抽出により取り出し、 出発原料 にして、パラジウム触媒の存在下、一酸化炭素とメタノールを反応させてメタク リル酸メチルを製造する方法が、特開平 0 2— 2 9 0 8 3 1号公報に記載されて いる。 当該製造法は、 工程数が短く、 かつ高収率でメタクリル酸メチルを製造す ることができ魅力的な製造方法である。
し力、し、 本発明者らの検討によれば、 通常、 コモディティーケミカルズにおい て経済的に有利となる 1プラント当り年産 1 0万トン以上の規模のプラント化 が、下記に示す 2つの理由により困難であり、必ずしも経済的あるいは工業的に 有利な製造法とはいえなかった。
( 1 )ナフサ熱分解時あるいはエタン熱分解時の分解ガス中のプロピンとプロパ ジェンの混合物の含量が、 ナフサ熱分解のケースで、 エチレン 1 0 0万トンに対 して 2 . 3〜3 . 3万トン、 エタン分解のケースでエチレン 1 0 0万トンに対し て 0 . 1万トンと極めて少なく、 1 0 0万トンクラスのエチレンセンタ一に隣接 したとしても最大でメ夕クリル酸メチル 5万トン程度しか製造できない。 (石油 化学プロセス 2 9頁 (石油学会編 講談社 2 0 0 1年発行) )
( 2 ) プロピン供給量を多くするために、複数のエチレンプラントからプロピン とプロバジェンの混合物を運搬して集めることは、プロピンが 3重結合を含み分 解爆発の危険を有する化合物であることより実用的ではない。そのため、 メチル メタクリル酸メチル製造ブラントの規模は、上記に記載の通り最大でも 1ブラン ト当り年産 5万トンに限定される。 発明の開示
かかる状況において、本発明の目的は、年産 1 0万トン以上の規模で製造でき、 かつ経済的であるという優れた特徴を有するメタクリル酸メチルの製造方法を 提供する点にある。
本発明者らは、米国特許第 6 3 3 3 4 4 3号明細書に記載されている、分解ガ ス中のプロピンとプロパジェンの混合物の含量を、 2重量%以上とすることがで きる方法に着目し、鋭意検討した結果、 当該分解ガスからメタクリル酸メチル製 造に供することができる品質のプロピンを経済的有利に取り出すことができ、取 り出したプロピンをメタクリル酸メチル製造に供すれば、より経済的かつ工業的 に有利にメタクリル酸メチルを製造することができることを見出し本発明に至 つた。
すなわち、本発明は、 以下の工程を含むメタクリル酸メチルの製造方法に係る ものである。
熱分解工程:炭素数 3以上の炭化水素を熱分解し、 プロピンとプロパジェンの 合計含有量が 2重量%以上である分解ガスを得る工程
分離工程:熱分解工程で得られた分解ガスから、 プロピン及びプロバジェンに 富む混合液を分離する工程
プロピン精製工程:分離工程で得られたプロピン及びプロパジェンに富む混合 液を抽出蒸留に付し、精プロピン及びプロバジェンを主成分とする粗プロバジェ ンに分離する工程 ' 異性化工程:プロピン精製工程で得られた粗プロパジェンを異性化触媒の存在 下に異性化反応させ、 プロピンを主成分とする粗プロピンを得る工程
カルポニル化工程:第 8族金属触媒系の存在下、 プロピン精製工程にて得られ た精プロピンを、一酸化炭素及びメ夕ノールと反応させることによりメタクリル 酸メチルを製造する工程 図面の簡単な説明
図 1は本発明を実施する場合のフローの例を示す。
符号の説明
A: :熱分解工程
B: :分離工程
C: :プロピン精製工程
D: :異性化工程
E: :カルポニル化工程
F: :メタクリル酸メチル精製工程 発明を実施するための形態
本発明は、 下記の熱分解工程、 分離工程、 プロピン精製工程、 異性化工程及び カルポニル化工程を含むものである。
熱分解工程は、炭素数 3以上の炭化水素を原料ガスとして用いて熱分解し、 プ 口ピンとプロパジェンの合計含有量が 2重量%以上である分解ガスを得る工程 である。
例えば、炭素数が 3以上の炭化水素を米国特許第 6 3 3 3 4 4 3号明細書に記 載の方法に準じて熱分解することにより、プロピンとプロパジェンの合計含有量 が 2重量%以上の分解ガスを得ることができる。供給ガスは、本質的に原料ガス と回収ガスと水蒸気からなる。原料ガスは炭素数が 3以上の炭化水素であり、好 ましくは炭素数が 3及び 4の炭化水素であり、 例えば、 プロパン、 プロピレン、 ブタン、 1ーブテン、 2—ブテン、 イソブタン、 イソブテン、 ブタジエンから選 ばれる単独もしくは 2種以上の混合ガスである。 回収ガスは、分離工程あるいは プロピン精製工程から分離されるガスである。水蒸気量は、 通常、 原料ガスと回 収ガスの総量に対して通常、 0 . 1〜5重量倍、 好ましくは 0 . 5〜2重量倍の 範囲である。 反応装置は管式分解炉であり、 原料予熱部、 混合原料過熱部、 輻射 部より構成される。原料ガスと回収ガスは予熱部に供給され予熱される。予熱部 から排出されるガスにスチームが追加され、混合原料過熱部へ供給される。輻射 部の管内の温度は、 通常、 4 0 0〜1 1 0 0 の範囲である。 管内温度は一定で ある必要はなく、 温度勾配があってもよい。 圧力は、 通常、 0 . 0 1〜1 . 0 M P aの範囲であり、 好ましくは 0 . 0 5〜0 . 3 M P aの範囲である。
分離工程は熱分解工程で得られた分解ガスから、プロピン及びプロパジェンに 富む混合液を分離する工程である。
本工程の具体例としては、炭素数が 2〜1 0の炭化水素を熱分解して水素、 メ タン、 ェタン、 エチレン、 プロパン、 プロピレン、 ブテン類及び芳香族炭化水素 を製造するプラント (通称 エチレンプラント) の一部、 例えば分離工程と共用 される態様をあげることができる。 ここで、 炭素数が 2〜1 0の炭化水素として は、 ナフサ、 ブタン、 プロパン及びェタンから選ばれる少なくとも一種をあげる ことができる。
分離工程の一層具体的で好ましい態様として、以下の工程を含むものを例示す ることができる。
第一蒸留工程:熱分解工程で得られた分解ガスを冷却した後第一蒸留塔に供給 し、塔底より取り出される炭素数が 4以上の炭化水素からなる留分 1及び塔頂よ り取り出される水素及び炭素数 1〜 3の炭化水素を主成分とする留分 2に分離 する工程
第二蒸留工程:第一蒸留工程で得られた留分 2を第二蒸留塔に供給し、塔底よ り取り出される炭素数 3の炭化水素を主成分とする留分 3及び塔頂より取り出 される水素及び炭素数 1〜 2の炭化水素を主成分とする留分 4に分離する工程 第三蒸留工程:第二蒸留工程で得られた留分 3を第三蒸留塔に供給し、塔底よ り取り出されるプロピン及びプロバジェンを主成分とする留分 5及び塔頂より 取り出されるプロピレンを主成分とする留分 6に分離する工程
熱分解工程から出てくる分解ガスは、通常、水素、メタン、ェタン、エチレン、 アセチレン、 プロパン、 プロピレン、 プロピン、 プロパジェン、 ブタン、 ブテン 類、 芳香族炭化水素を主成分とする。 この際、 当該分解ガス中の、 水素、 ェチレ ン、 アセチレン、 プロピレン、 ブテン類、 芳香族炭化水素は、 各種石油化学基礎 原料を製造する目的で行われる、炭素数が 2〜 1 0の炭化水素を熱分解するェチ レンプラン卜の製品と共通であることから、分離工程はエチレンプラントの分離 工程と共用することもできる。 もちろん、分離工程をメチルメタクリル酸メチル プラント単独で所有して、 メタクリル酸メチルと水素、 エチレン、 アセチレン、 プロピレン、ブテン類、芳香族炭化水素等を併産してもよい。しかし、その場合、 ェチレン等の併産物の生産量は、メタクリル酸メチルの製造量に連動したものに なる。 通常、 メ夕クリル酸メチルの需要は、 エチレン等と比較して小さく、 その ため、分離工程をメチルメ夕クリル酸メチルプラント単独で所有する場合は、 1 プラント当りのエチレン等の生産量は、エチレンプラントと比較して小さいもの となり、 分離工程の製品当りの設備費負担が大きく、 経済的に不利である。 その ため、分離工程はエチレンプラントと共用して、 エチレン等の併産物はエチレン プラントへ供して、分離工程の途中で得られるプロピンとプロパジェンの混合物 の含量が高い留分のみをメタクリル酸メチルブラン卜へ供することがより好ま しい。例えば、 分解ガスは、 エチレンプラントの分解炉から出てくる分解ガスと 混合され、 急冷された後、 分離工程の第一蒸留塔へ供給される。
第一蒸留塔の塔底より取り出される留分 1は、 通常、 ブタン、 ブテン、 芳香族 炭化水素、水であり、 この成分はエチレンプラントに供されエチレンプラントの 製品となる。 塔頂より取り出される留分 2は、 通常、 水素、 メタン、 ェタン、 ェ チレン、 アセチレン、 プロパン、 プロピレン、 プロピン、 プロバジェンが主成分 であり、 プロパン、 プロピレン、 プロピン、 プロパジェンを液ィ匕させるため圧縮 機により圧縮された後、第二蒸留塔へ供され、プロパン、プロピレン、プロピン、 プロバジェンを主成分とする留分 3と、 水素、 メタン、 ェタン、 エチレン、 ァセ チレンを主成分とする留分 4に分離される。留分 4は、 留分 1と同様にエチレン プラントに供され、 エチレンプラントの有効成分となる。 一方、 留分 3は、 第三 蒸留塔へ供され、 プロピレンを主成分とする留分 5とプロパン、 プロピン、 プロ パジェンを主成分とする留分 6に分離される。留分 5も留分 1、留分 4と同様に エチレンプラントの有効成分としてエチレンプラントに供される。留分 6は、 プ 口ピン精製工程へ供される。留分 6は、 さらに精密にプロパンを主成分とする留 分と、 プロピン、 プロパジェンに富む留分に分離された後、 プロピン、 プロパジ ェンに富む留分のみプロピン精製工程へ供されてもよい。 この場合、 プロパンを 主成分とする留分は熱分解工程へリサイクルされる。
プロピン精製工程は、分離工程で得られたプロピン及びプロパジェンに富む混 合液を抽出蒸留に付し、精プロピン、及びプロバジェンを主成分とする粗プロパ ジェンに分離する工程である。
分離工程で得られたプロパン、 プロピン、 プロパジェンを主成分とする留分 6 の混合液あるいは、留分 6をさらに精密に分離したプロピンとプロバジェンに富 む混合液を抽出蒸留に付し、抽出溶剤への溶解度差を利用して精プロピンを分離 することができる。当該抽出蒸留に供される混合液はプロピレンを含んでいても よい。 プロピン精製工程の抽出溶剤としては、 プロピン、 プロパジェン、 プロパ ン、 プロピレンの溶解度に差があるものであれば特に限定されないが、 N, N— ジメチルホルムアミドが、 プロピン分離能、 経済性、 化学安定性及び工業的入手 の容易性の観点から好ましい。 N, N—ジメチルホルムアミドを抽出溶剤として 使用した場合、 溶解度はプロピンが最も高く、 次がプロパジェン、 3番目がプロ ピレン、 最も低いのがプロパンの順である。 例えば、 N, N—ジメチルホルムァ ミドを抽出溶剤として使用すると、以下に記載する抽出工程及びプロパジェン放 散工程を経て、メタクリル酸メチル製造に供するに十分足る品質を有する精プロ ピンを得ることができる。 精プロピンの品質としては、 通常、 プロパン、 プロピ レン、 プロバジェンの各々の含量が 1重量%以下、 好ましくは、 1 0 0 0重量 p p m以下、 より好ましくは、 1 0 0重量 p p m以下である。 抽出工程は、 分離工程で得られた、 プロパン、 プロピン、 プロパジェンを主成 分とする留分 6、 あるいは、留分 6をさらに精密に分離したプロピンとプロパジ ェンに富む混合液と、 N, N—ジメチルホルムアミドを抽出蒸留塔に供し、 塔底 よりプロピン、 プロパジェン及び N, N—ジメチルホルムアミドを主成分とする 混合物を得て、 塔頂よりプロパンを主成分とする混合物を得る工程である。 プロパジェン放散工程は、抽出工程で得られたプロピン、プロバジェン及び N, N—ジメチルホルムアミドを主成分とする混合物を放散塔に供し、熱を加え、溶 解度の低いプロパジェンを主成分とする粗プロバジェンを放散し、塔底にプロピ ンと N, N—ジメチルホルムアミドを主成分とする液を得る工程である。
プロピン蒸留工程は、放散塔の塔底に得られたプロピンと N, N—ジメチルホ ルムアミドを主成分とする液を、蒸留塔に供し塔頂より精プロピンを得る工程で める。
抽出工程の塔頂に出てくるプロパンを主成分とする混合物は、熱分解工程へ回 収ガスとしてリサイクルされる。プロパジェン放散工程にて放散される粗プロパ ジェンは異性化工程へ供される。 プロピン蒸留工程の塔底に残った N, N—ジメ チルホルムアミドは、.そのまま抽出工程へリサイクルしてもいいし、 蒸留により 精製した後、 抽出工程へリサイクルしてもよい。
異性化工程は、プロピン精製工程で得られた粗プロバジェンを異性化触媒の存 在下に異性化反応させ、 プロピンを主成分とする粗プロピンを得る工程である。 粗プロバジェンは、例えば、特開平 0 2— 2 9 0 8 3 1号公報に記載の方法に 準じて熱力学的に安定なプ口ピンへ異性化できる。供給液のプロピンとプロパジ ェンの比は特に限定されないが、通常、 プロピン Zプロパジェンの比は 2以下で ある。 反応器から出てくる異性化反応物の、 プロピン プロパジェンの比は、 反 応温度、 反応器への滞留時間に依存するが、 通常、 3以上、 好ましくは、 5以上 である。反応形態は、液相懸濁床、液相固定床、気相固定床等特に限定されない。 異性化工程で得られた粗プロピンは、 プロピン精製工程に供給することが、経済 性の観点から好ましい。 異性化触媒としては、 異性化能、 経済性及び工業的入手 の容易性の観点から、アルミナ上に担持されたアル力リ金属又はアル力リ金属酸 化物が好ましい。
カルポニル化工程は、第 8族金属触媒系の存在下、 プロピン精製工程にて得ら れた精プロピンを一酸化炭素とメタノールと反応させることによりメ夕クリル 酸メチルを製造する工程である。
プロピン精製工程で得られた精プロピンと一酸化炭素とメタノールを第 8族 金属触媒系の存在下反応させることによりメタクリル酸メチルを製造すること ができる。 第 8族金属触媒系としては、 反応選択性の観点から、 パラジウム元素 を含有する触媒が好ましい。使用量は特に限定されないが、経済的観点より通常 プロピンに対して 1モルパーセント以下、 好ましくは、 0 . 1モルパーセント以 下、 より好ましくは、 0 . 0 1モルパーセント以下である。 一方、 反応性の観点 より、 通常、 0 . 0 0 0 0 1モルパーセント以上、 好ましくは、 0 . 0 0 0 1モ ルパ一セント以上である。 リン原子、 窒素原子、 酸素原子、 硫黄原子等を含む化 合物を配位子として反応液に共存させ、反応選択性、触媒活性を制御することが できる。 配位子としては、 特に限定されないが、 反応選択性、 触媒活性の観点か ら、特開平 0 4— 2 1 5 8 5 1号公報に記載されているジァリール(アルキル置 換 2—ピリジル) ホスフィンを共存させることが好ましい。 使用量は、 特に限定 されないが、 通常、 第 8族金属触媒に対して 0 . 1〜1 0モル倍の範囲である。 溶媒は、 プロピン、 一酸化炭素、 メタノール及び第 8金属触媒系を溶解するもの であれば特に限定されないが、反応原料でもあるメタノールを溶媒として使用す ることが、リサイクルの容易性の観点から好ましい。使用量は特に限定されない。 一酸化炭素は、 例えば、 炭化水素の水蒸気改質法、 部分燃焼法で製造することが でき、 その製造法は特に限定されない。 二酸化炭素、 水素が、 一酸化炭素に混入 すると副反応を併発させるので、 前処理で除去しておくことが好ましい。反応形 態は特に限定されないが、 通常、 液相均一系反応である。 反応温度は、 生成する メタクリル酸メチルの重合抑制の観点から 1 0 0で以下が好ましい。
本発明の製造方法は、下記のメタクリル酸メチル精製工程を含むことが、 メタ クリル酸メチル品質及び原料リサイクルによる経済性改善の観点から、好ましい。 メ夕クリル酸メチル精製工程は、 カルポニル化工程で得られた反応混合物を、 ガス放散操作、 蒸留操作及び/又は抽出操作に付し、 未反応の一酸化炭素、 プロ ピン及びメ夕ノ一ルを回収するとともに、メタクリル酸メチルを精製する工程で ある。
カルポニル化工程から出てくる反応液は、 メ夕クリル酸メチル、 クロトン酸メ チル、メタノール、プロピン、一酸化炭素、第 8金属触媒系を主成分として含む。 このうち、 クロトン酸メチルは副生成物であり、 生成分は系外に除去する必要が ある。 メタノール、 プロピン、 一酸化炭素、 第 8金属触媒系はリサイクルされる ことが好ましい。分離方法は特に限定されないが、通常、沸点差を利用した蒸留、 あるいは、 抽出溶剤への溶解度差を利用した抽出蒸留による分離が有利である。 例えば、先ず、 ガス放散塔にてガス成分である一酸化炭素と溶媒に溶解していな い一部のプロピンが放散される。液に溶解しているプロピンは、不活性ガスを供 給することにより一部同伴させて放散できる。 同伴ガスとしては、 窒素、 ァルゴ ン、 二酸化炭素、 一酸化炭素、 メタン等が挙げられるが、 放散後の分離を省略で きることから、 反応原料でもある一酸化炭素を使用するのが好ましい。 使用量 は、 1パスで一酸化炭素が反応してメタクリル酸メチルに変換される分が好まし レ^ この量で、プロピンの放散が不十分な場合は、窒素、アルゴン、二酸化炭素、 メタン等から選ばれる単独、又は 2種以上の混合ガスを共供給してもよい。分離 された、 一酸化炭素とプロピンはカルポニル化工程にリサイクルされる。 次に、 メタクリル酸メチルより蒸気圧の高い成分が蒸留により分離される。メ夕クリル 酸メチルより蒸気圧の高い成分とは、 例えば、 プロピン、 メタノールである。 そ の後、 メ夕クリル酸メチルが蒸留され、塔底にクロトン酸メチルと第 8金属触媒 系を主成分とする混合液が残る。クロトン酸メチルと第 8金属触媒系を主成分と する混合液は廃棄してもかまはないが、通常、第 8金属は高価であることよりリ サイクルすることが好ましい。 リサイクル方法は、 特に限定されないが、 通常、 クロトン酸メチルと第 8金属触媒系を主成分とする混合液からカルボニル化工 程で発生するクロトン酸メチル分に相当する量のみを系外に除去し、残りをカル ポニル化工程にリサイクルする方法である。メタクリル酸メチル精製工程の温度 は、 メタクリル酸メチルの重合抑制の観点より' 1 0 0 以下が好ましい。重合禁 止剤を添加してもよい。重合禁止剤としてはたとえば、ハイドロキノン等が挙げ られる。 実施例
以下、実施例により本発明を詳細に説明するが、本発明はこれにより限定され るものではない。
実施例 1
以下の前提で製造される精プロピン経由で、メ夕クリル酸メチル製造を行う場 合、例えば、 図 1のフローと表 1及び 2の物質収支により最適に実施することが できる。
図中の番号は表中の流体番号に対応している。
前提( 1 ) :熱分解工程では原料としてプロパンを使用し米国特許第 6 3 3 3 4 4 3号明細書に準じてプロピンとプロバジェンの組成が 2重量%以上である 分解ガスを製造する。
前提 (2 ) :分離工程はエチレンプラントの分離工程と共用する。 そのため、 炭素数 3以外の炭化水素成分 (留分) については記載を省略した。
熱分解工程 (A) の分解炉に、 プロパン (流体番号 1 ) を 3 4 T/h、 回収プ 口パン類 (流体番号 5 ) 1 0 . 1 l TZh、 水蒸気 (流体番号 2 ) 4 4. 1 4 T Zhを供給し、熱分解させることにより、 プロピンとプロパジェンの合計含有量 が 9 . 3重量%である分解ガス (流体番号 3 ) 8 8 . 2 5 T_ hを得る。 得られ る分解ガス (流体番号 3 ) は、 エチレンプラントの分離工程 (B ) に供給され、 当該エチレンプラントの流体と合算され、 先ず、 第一の蒸留塔にて、 塔底より取 り出される炭素数 4以上の留分 1と塔頂より取り出される炭素数 3以下の留分 2に分離される。得られた炭素数 3以下の留分 2は、第二の蒸留塔で塔底より取 り出される炭素数 3の留分 3と塔頂より取り出される炭素数 2以下の留分 4に 分離される。留分 3はプロピレン、プロパン、プロピン、プロバジェンより成る。 続いて、 当該留分 3は、 第 3の蒸留塔にて、 塔頂にプロピレンよりなる留分 5、 塔底にプロパン、 プロピン、 プロバジェン、 プロピレンよりなる留分 6 (流体番 号 4) へと分離される。 この時、 留分 6 (流体番号 4) の流量は 17. 83TZ hとなる。 このようにして得られる留分 6 (流体番号 4) は、 プロピン精製工程 (C) にて、 N, N—ジメチルホルムアミドを抽出溶剤として抽出蒸留を行うこ とにより精製され、 回収プロパン類 (流体番号 5) 10. l lT/h、 プロパジ ェンを主成分とする粗プロバジェン (流体番号 6) 17. 37T/h、 精プロピ ン (流体番号 8) 7. 69T/hに分離される。 粗プロバジェン (流体番号 6) は、 異性化工程 (D) にて; 炭酸カリウム担持アルミナ触媒により異性化され、 粗プロピン (流体番号 7) 17. 37 T/hとなり、 プロピン精製工程 (C) に リサイクルされる。 プロピン精製工程 (C) にて得られた、 精プロピン (流体番 号 8) 7. 69T/hは、 メタノール (流体番号 9) 6. 08T/h及びメタク リル酸メチル精製工程に供給される一酸化炭素 (流体番号 11) 5. 82T/h が合算されたメタクリル酸メチル精製工程から出るリサイクル留分(流体番号 1 2) 14. 46TZhと伴に、 カルポニル化工程 (E) に供され、 パラジウム触 媒系の存在下反応し、 メタクリル酸メチル 20. STZhを含む反応混合物 (流 体番号 10) 27. 8 T/hが得られる。 得られた反応混合物 (流体番号 10) 及び一酸化炭素 (流体番号 11) 5. 82Τ/1Ίがメチルメタクリル酸メチル精 製工程 (F) に供され、 ガス放散、 蒸留操作により、 一酸化炭素、 プロピン、 メ 夕ノールを主成分とするリサイクル留分 (流体番号 12) 14. 46TZh、 精 メ夕クリル酸メチル (流体番号 13) 18. 75 T/ , 高沸留分 (流体番号 1 4) 1. 36TZhに分離される。
表 1
流体番号 1 2 3 4 5 6 7 温度 (°C) 30 224 130 55 18 -6 28 質量流量 (T/h) 34 44.14 88.25 17.83 10.11 17.37 17.37 重量百分率
( t¾)
メタン 10.5
水素 1.8
ェタン 19.1
エチレン 1.3
プロパン 100.0 0.7 54.1 95.5 37.0 37.0 プロピレン 4.2 1.7 3.0 15.5 15.5 プロピン 5.1 25.1 1.2 24.0 43.2 プロバジェン 3.86 19.1 0.4 23.4 4.2
N, N—ジメチ
ルホルムアミド
メタノール
一酸化炭素
メタクリル酸メ
チル
水 100.0 50.0
不活性ガス (窒 その他 3.5
計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2
流体番号 8 9 10 1 1 12 13 14 温度 (。c) -24 25 40 49 -33〜 69 86
51
質量流量 (T/h) 7.69 6.08 27.8 5.82 14.46 18.75 1.36 重量百分率
( t%)
メタン
水素
ェ夕ン
エチレン
プロパン
プロピレン
プロピン 100.0 9.3 17.3
N, N—ジメチ
ルホルムアミド
メタノール 100.0 13.4 25.9
一酸化炭素 92.8 36.7
メタクリル酸メ 72.7 9.9 100.0 14.7 チル
不活性ガス (窒 0.4 7.2 3.6 その他 4.2 6.6 85.3 計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 産業上の利用可能性
本発明により、年産 1 0万トン以上の規模で製造でき、かつ経済的であるとい う優れた特徴を有するメタクリル酸メチルの製造方法を提供することができる。

Claims

請 求 の 範 囲
1 . 以下の工程を含むメタクリル酸メチルの製造方法。
熱分解工程:炭素数 3以上の炭化水素を熱分解し、 プロピンとプロパジェンの 合計含有量が 2重量%以上である分解ガスを得る工程
分離工程:熱分解工程で得られた分解ガスから、 プロピン及びプロバジェンに 富む混合液を分離する工程
プロピン精製工程:分離工程で得られたプロピン及びプロバジェンに富む混合 液を抽出蒸留に付し、精プロピン、及びプロバジェンを主成分とする粗プロパジ ェンに分離する工程
異性化工程:プロピン精製工程で得られた粗プロパジェンを異性化触媒の存在 下に異性化反応させ、 プロピンを主成分とする粗プロピンを得る工程
カルポニル化工程:第 8族金属触媒系の存在下、 プロピン精製工程にて得られ た精プロピンを、一酸化炭素及びメ夕ノールと反応させることによりメタクリル 酸メチルを製造する工程
2 . 分離工程が、 炭素数が 2〜1 0の炭化水素を熱分解して水素、 メタン、 エタ ン、 エチレン、 プロパン、 プロピレン、 ブテン類及び芳香族炭化水素を製造する プラントの分離工程と共用される請求の範囲第 1項に記載の製造方法。
3 . 炭素数が 2〜1 0の炭化水素が、 ナフサ、 ブタン、 プロパン及びェタンから 選ばれる少なくとも一種である請求の範囲第 2項に記載の製造方法。
4. 分離工程が以下の工程を含む請求の範囲第 1項に記載の製造方法。
第一蒸留工程:熱分解工程で得られた分解ガスを冷却した後第一蒸留塔に供給 し、塔底より取り出される炭素数が 4以上の炭化水素からなる留分 1及び塔頂よ り取り出される水素及び炭素数 1〜 3の炭化水素を主成分とする留分 2に分離 する工程
第二蒸留工程:第一蒸留工程で得られた留分 2を第二蒸留塔に供給し、塔底よ り取り出される炭素数 3の炭化水素を主成分とする留分 3及び塔頂より取り出 される水素及び炭素数 1〜 2の炭ィヒ水素を主成分とする留分 4に分離する工程 第三蒸留工程:第二蒸留工程で得られた留分 3を第三蒸留塔に供給し、塔底よ り取り出されるプロピン及びプロパジェンを主成分とする留分 6及び塔頂より 取り出されるプロピレンを主成分とする留分 5に分離する工程
5 . 以下の工程を含む請求の範囲第 1項に記載の製造方法。
メタクリル酸メチル精製工程:カルポニル化工程で得られた反応混合物を、 ガ ス放散操作、 蒸留操作及び/又は抽出操作に付し、 未反応の一酸化炭素、 プロピ ン及びメタノールを回収するとともに、 メタクリル酸メチルを精製する工程
6 .異性化工程で得られた粗プロピンをプロピン精製工程に供給する請求の範囲 第 1項に記載の製造方法。
7 . プロピン精製工程の抽出溶剤が N, N—ジメチルホルムアミドである請求の 範囲第 1項に記載の製造方法。
8 .異性化触媒がアルミナ上に担持されたアル力リ金属又はアル力リ金属酸化物 である請求の範囲第 1項に記載の製造方法。
9 .第 8族金属触媒系がパラジウム元素を含有する請求の範囲第 1項に記載の製 造方法。
PCT/JP2007/057512 2006-03-31 2007-03-28 メタクリル酸メチルの製造方法 WO2007114457A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07740948A EP2003114A4 (en) 2006-03-31 2007-03-28 PROCESS FOR THE PRODUCTION OF METHYL METHACRYLATE
CN2007800116256A CN101415669B (zh) 2006-03-31 2007-03-28 甲基丙烯酸甲酯的制造方法
US12/294,068 US20090209782A1 (en) 2006-03-31 2007-03-28 Production method of methyl methacrylate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-097937 2006-03-31
JP2006097937A JP4539599B2 (ja) 2006-03-31 2006-03-31 メタクリル酸メチルの製造方法

Publications (1)

Publication Number Publication Date
WO2007114457A1 true WO2007114457A1 (ja) 2007-10-11

Family

ID=38563718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057512 WO2007114457A1 (ja) 2006-03-31 2007-03-28 メタクリル酸メチルの製造方法

Country Status (6)

Country Link
US (1) US20090209782A1 (ja)
EP (1) EP2003114A4 (ja)
JP (1) JP4539599B2 (ja)
KR (1) KR20080112348A (ja)
CN (1) CN101415669B (ja)
WO (1) WO2007114457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119508A1 (ja) * 2008-03-25 2009-10-01 住友化学株式会社 アルコキシカルボニル化合物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085206B2 (ja) 2013-03-26 2017-02-22 住友化学株式会社 メタクリル酸エステルの製造方法
JP6176965B2 (ja) * 2013-03-28 2017-08-09 住友化学株式会社 アセチレン化合物の製造方法
JP6271331B2 (ja) * 2014-04-22 2018-01-31 住友化学株式会社 アセチレン結合を有する化合物及び/又はジエンの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290831A (ja) 1989-04-11 1990-11-30 Shell Internatl Res Maatschappij Bv アルキルメタクリレートの製造方法
JPH04215851A (ja) 1990-02-05 1992-08-06 Shell Internatl Res Maatschappij Bv カルボニル化触媒系
JPH05194317A (ja) * 1991-10-30 1993-08-03 Shell Internatl Res Maatschappij Bv メタクリレートエステルの製造方法
JP2000510818A (ja) * 1996-01-24 2000-08-22 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー プロピンの製造方法
US6333443B1 (en) 1999-03-31 2001-12-25 Institut Francais Du Petrole Process for the production of methylacetylene and propadiene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081286A (en) * 1989-04-11 1992-01-14 Shell Oil Company Process for the preparation of an alkyl methacrylate
GB9002491D0 (en) * 1990-02-05 1990-04-04 Shell Int Research Carbonylation catalyst system
US5179225A (en) * 1990-02-05 1993-01-12 Shell Oil Company Carbonylation catalyst system
GB9014724D0 (en) * 1990-07-03 1990-08-22 Shell Int Research Process for the preparation of alpha,beta-olefinically unsaturated compounds
GB9120122D0 (en) * 1991-09-20 1991-11-06 Shell Int Research Process for the preparation of methacrylate esters
EP0870753A1 (en) * 1997-04-04 1998-10-14 Imperial Chemical Industries Plc A process for the preparation of methacrylate esters
US5868987A (en) * 1997-06-19 1999-02-09 Minnesotamining And Manufacturing Superimposed embossing of capped stem mechanical fastener structures
JPH11199545A (ja) * 1998-01-13 1999-07-27 Daicel Chem Ind Ltd メタクリル酸メチルの製造方法
US7402720B2 (en) * 2002-12-19 2008-07-22 Exxonmobil Chemical Patents Inc. Distillation process for removal of methyl acetylene and/or propadiene from an olefin stream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290831A (ja) 1989-04-11 1990-11-30 Shell Internatl Res Maatschappij Bv アルキルメタクリレートの製造方法
JPH04215851A (ja) 1990-02-05 1992-08-06 Shell Internatl Res Maatschappij Bv カルボニル化触媒系
JPH05194317A (ja) * 1991-10-30 1993-08-03 Shell Internatl Res Maatschappij Bv メタクリレートエステルの製造方法
JP2000510818A (ja) * 1996-01-24 2000-08-22 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー プロピンの製造方法
US6333443B1 (en) 1999-03-31 2001-12-25 Institut Francais Du Petrole Process for the production of methylacetylene and propadiene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003114A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119508A1 (ja) * 2008-03-25 2009-10-01 住友化学株式会社 アルコキシカルボニル化合物の製造方法
US8399699B2 (en) 2008-03-25 2013-03-19 Sumitomo Chemical Company, Limited Process for production of alkoxycarbonyl compound
CN101977887B (zh) * 2008-03-25 2014-07-09 住友化学株式会社 烷氧基羰基化合物的制造方法

Also Published As

Publication number Publication date
US20090209782A1 (en) 2009-08-20
JP4539599B2 (ja) 2010-09-08
KR20080112348A (ko) 2008-12-24
EP2003114A4 (en) 2011-03-16
CN101415669A (zh) 2009-04-22
JP2007269707A (ja) 2007-10-18
CN101415669B (zh) 2012-11-14
EP2003114A1 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US10052608B2 (en) Low emissions oxidative dehydrogenation apparatus for producing butadiene
KR101408633B1 (ko) 에틸렌의 생산방법
TWI465430B (zh) 自c烴混合物獲得高純度1-丁烯之方法
JP2011527287A5 (ja)
JP2008544999A5 (ja)
JP2011521995A (ja) 化学的使用のための低濃度エチレンの製造方法
KR20070086665A (ko) 프로판으로부터 프로펜을 제조하는 방법
JP4471977B2 (ja) 希薄エチレン流からのプロピレンおよびアルキル芳香族化合物の製造プロセス
EP3063117B1 (en) Process for preparing methyl methacrylate
TW201016632A (en) Absorber demethanizer for methanol to olefins process
CN105712816B (zh) 用于从甲醇生产丙烯的设备和方法
WO2014148323A1 (ja) 1,3-ブタジエンの製造方法
US8471082B2 (en) Process for converting methane to ethylene
JP4669199B2 (ja) 2〜8個の炭素原子を有するオレフィンのヒドロホルミル化生成物の製造方法
JP4539599B2 (ja) メタクリル酸メチルの製造方法
WO2006061554A1 (en) Process for the production of methanol
KR20060036061A (ko) C4 분획으로부터의 1-옥텐의 제조방법
CA3047660A1 (en) Process and plant for producing olefins
US20140114107A1 (en) Use of hydrocarbon diluents to enhance conversion in a dehydrogenation process at low steam/oil ratios
US20130303815A1 (en) Process for Cooling the Stream Leaving an Ethylbenzene Dehydrogenation Reactor
KR20060010739A (ko) 올레핀 유도체의 제조를 위한 통합 공정
KR101291651B1 (ko) 이소부텐 및 부텐-1의 제조 방법 및 제조 장치
JPS59164730A (ja) 改良された1,3−ブタジエンの製造方法
WO2014168051A1 (ja) 1,3-ブタジエンの製造方法
US9738572B2 (en) Methods and apparatuses for selective hydrogenation of olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12294068

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780011625.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007740948

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087026421

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5886/CHENP/2008

Country of ref document: IN