WO2009116630A1 - 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池 - Google Patents
固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池 Download PDFInfo
- Publication number
- WO2009116630A1 WO2009116630A1 PCT/JP2009/055457 JP2009055457W WO2009116630A1 WO 2009116630 A1 WO2009116630 A1 WO 2009116630A1 JP 2009055457 W JP2009055457 W JP 2009055457W WO 2009116630 A1 WO2009116630 A1 WO 2009116630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer electrolyte
- electrode assembly
- membrane
- polymer
- fuel cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/106—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/1062—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1067—Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell.
- Fuel cells have high power generation efficiency, the reaction product is only water in principle, and the environmental load is small. Among them, polymer electrolyte fuel cells are expected to be widely used as automobiles, distributed power generation systems, portable power generation systems, and household cogeneration systems because of their high output density.
- a polymer electrolyte fuel cell is usually a cathode having a catalyst layer and a gas diffusion layer, an anode having a catalyst layer and a gas diffusion layer, and a solid high-layer disposed between the cathode catalyst layer and the anode catalyst layer. It is comprised from the cell formed by arrange
- the membrane electrode assembly is required to have sufficient mechanical strength and dimensional stability.
- the solid polymer electrolyte membrane of the membrane electrode assembly has a high ion exchange capacity (that is, equivalent weight (g of polymer per equivalent of ionic group) in order to maintain ionic conductivity even at low humidification. (Hereinafter referred to as EW)) and a small thickness (25 ⁇ m or less).
- the solid polymer electrolyte membrane has the property of causing greater swelling and shrinkage due to changes in the humidity environment as the EW is smaller. Since the swelling and shrinkage are caused by changes in the operating conditions such as the cell temperature, the relative humidity of the reaction gas, the amount of the reaction gas, and the output, in a practical application, the swelling and shrinkage are repeated, so that The molecular electrolyte membrane randomly changes its dimensions, and as a result, wrinkles are generated in the solid polymer electrolyte membrane. When the thickness of the solid polymer electrolyte membrane is thin, the solid polymer electrolyte membrane may be broken by the wrinkles.
- a thin composite membrane having a thickness of about 25 ⁇ m or less in which an expanded and expanded tetrafluoroethylene membrane having a porous microstructure is impregnated with an ion exchange resin Patent Document 1
- a composite membrane containing an ion conductive polymer in a porous body of randomly oriented individual fibers Patent Document 2.
- a membrane / electrode assembly in which a reinforcing material containing conductive nanofibers is disposed on at least one surface of a solid polymer electrolyte membrane Patent Document 3).
- the composite membrane of (1) has a problem that the ionic conductivity is reduced as compared with a membrane that is not reinforced, and the power generation performance is lowered particularly under low humidification conditions.
- a porous body having sufficient chemical stability and mass productivity is selected for the composite membrane of (2) as well, the ionic conductivity is reduced compared to a membrane that is not reinforced, particularly under low humidification conditions.
- power generation performance is lowered.
- the membrane / electrode assembly (3) the dimensional stability and the mechanical strength are still insufficient. Particularly when the thickness of the solid polymer electrolyte membrane is 25 ⁇ m or less, the swelling and shrinking are repeated. I can't stand it.
- the present invention provides a polymer electrolyte fuel that can exhibit high power generation performance even under low humidification conditions, has sufficient mechanical strength and dimensional stability, and has excellent durability even in an environment where wetting and drying are repeated.
- a membrane electrode assembly for a battery and a polymer electrolyte fuel cell capable of generating power under low humidification conditions and simplifying peripheral devices such as a humidifier.
- a membrane electrode assembly for a polymer electrolyte fuel cell includes a cathode having a catalyst layer, an anode having a catalyst layer, and a solid height disposed between the catalyst layer of the cathode and the catalyst layer of the anode.
- a molecular electrolyte membrane, and at least one of the cathode and the anode further includes a reinforcing layer including a porous sheet-like reinforcing material made of a polymer and conductive fibers.
- the cathode and the anode further include a gas diffusion layer, and the reinforcing layer is present between the catalyst layer and the gas diffusion layer.
- the reinforcing layer further includes a binder, and the binder is preferably a fluorine-containing ion exchange resin.
- the mass ratio of the conductive fiber to the binder is preferably 1 / 0.05 to 1/1.
- the conductive fibers are carbon fibers, and the carbon fibers preferably have an average fiber diameter of 50 to 300 nm and an average fiber length of 5 to 30 ⁇ m.
- the sheet-like reinforcing material preferably has a plurality of pores, and the average pore diameter is 0.4 to 7 ⁇ m.
- the sheet-like reinforcing material is preferably composed of a plurality of fibers, and the average fiber diameter of the fibers is preferably 0.2 to 7 ⁇ m.
- the sheet-like reinforcing material is a non-woven fabric, and the non-woven fabric is preferably a non-woven fabric made of polypropylene or a fluorine-containing polymer manufactured by a melt blown method.
- the sheet-like reinforcing material is preferably a porous film made of polytetrafluoroethylene. It is preferable to further have an intermediate layer in contact with the reinforcing layer.
- the thickness of the solid polymer electrolyte membrane is preferably 10 to 30 ⁇ m.
- the EW of the solid polymer electrolyte membrane is preferably 900 g / equivalent or less.
- the solid polymer electrolyte membrane includes a polymer (Q) having a repeating unit represented by the following formula (U1) and a repeating unit represented by the following formula (U2) and an equivalent weight of 400 to 900 g / equivalent:
- Q 1 is a perfluoroalkylene group which may have an etheric oxygen atom
- Q 2 is a perfluoroalkylene group which may have a single bond or an etheric oxygen atom
- R f1 is a perfluoroalkyl group which may have an etheric oxygen atom
- X 1 is an oxygen atom, a nitrogen atom or a carbon atom
- a is 0 when X 1 is an oxygen atom.
- the 90 ° peel strength at all interfaces existing between the solid polymer electrolyte membrane and the reinforcing layer is preferably 0.5 N / cm or more. You may further have the frame-shaped subgasket arrange
- the polymer electrolyte fuel cell of the present invention is a polymer electrolyte fuel cell having the membrane electrode assembly for a polymer electrolyte fuel cell of the present invention, and supplied with a reaction gas having a relative humidity of 25% or less. It is characterized by generating electricity.
- the membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention can exhibit high power generation performance even under low humidification conditions, has sufficient mechanical strength and dimensional stability, and is in an environment where wetting and drying are repeated. Also has excellent durability.
- the polymer electrolyte fuel cell of the present invention is capable of stable power generation even under low humidification conditions and can simplify peripheral devices such as a humidifier, which is advantageous for cost and size reduction.
- the repeating unit represented by the formula (1) is referred to as a unit (1).
- Repeating units represented by other formulas are also described in the same manner.
- the repeating unit means a unit derived from the monomer formed by polymerization of the monomer.
- the repeating unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
- the compound represented by Formula (2) is described as a compound (2). The same applies to compounds represented by other formulas.
- a membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane / electrode assembly), at least one of a cathode and an anode has a reinforcing layer, and the solid polymer electrolyte membrane is formed by this reinforcing layer.
- a membrane / electrode assembly By reinforcing from the outside, it is possible to improve the power generation characteristics by suppressing an increase in resistance as compared with the case where the solid polymer electrolyte membrane is reinforced from the inside while sufficiently suppressing the dimensional change of the solid polymer electrolyte membrane. In particular, the power generation characteristics under low humidification conditions can be improved.
- FIG. 1 is a cross-sectional view showing an example of the membrane electrode assembly of the present invention.
- the membrane electrode assembly 10 includes a cathode 20 having a catalyst layer 22, a reinforcing layer 24, and a gas diffusion layer 26 in this order; an anode 30 having a catalyst layer 32, a reinforcing layer 34, and a gas diffusion layer 36 in this order; 22 and a solid polymer electrolyte membrane 40 disposed between the catalyst layer 32 of the anode 30.
- the catalyst layer 22 and the catalyst layer 32 are layers containing a catalyst and an ion exchange resin.
- the catalyst layer 22 and the catalyst layer 32 may be the same component, composition, thickness, or the like, or may be different layers.
- the catalyst is not particularly limited as long as it promotes the oxidation-reduction reaction in the fuel cell, and a catalyst containing platinum is preferable, and a supported catalyst in which platinum or a platinum alloy is supported on a carbon support is particularly preferable.
- Examples of the carbon carrier include activated carbon and carbon black. From the viewpoint of high chemical durability, those graphitized by heat treatment or the like are preferable.
- the specific surface area of the carbon support is preferably 200 m 2 / g or more. The specific surface area of the carbon support is measured by nitrogen adsorption on the carbon surface with a BET specific surface area apparatus.
- Platinum alloys include platinum group metals other than platinum (ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc An alloy of platinum and one or more metals selected from the group consisting of tin and platinum is preferable.
- the platinum alloy may contain a metal alloyed with platinum and an intermetallic compound of platinum.
- the supported amount of platinum or platinum alloy is preferably 10 to 70% by mass in the supported catalyst (100% by mass).
- the ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, and more preferably a perfluorocarbon polymer having an ionic group (which may contain an etheric oxygen atom).
- a perfluorocarbon polymer having an ionic group which may contain an etheric oxygen atom.
- polymer (H) or polymer (Q) is preferable, and polymer (Q) is particularly preferable.
- the polymer (H) is a copolymer having units based on tetrafluoroethylene (hereinafter referred to as TFE) and units (1).
- X is a fluorine atom or a trifluoromethyl group
- m is an integer of 0 to 3
- n is an integer of 1 to 12
- p is 0 or 1.
- the polymer (H) is obtained by polymerizing a mixture of TFE and the following compound (2) to obtain a precursor polymer (hereinafter referred to as polymer (F)), and then converting —SO 2 F groups in the polymer (F). It is obtained by converting to a sulfonic acid group.
- the conversion of —SO 2 F group to sulfonic acid group is performed by hydrolysis and acidification treatment.
- CF 2 CF (OCF 2 CFX) m —O p — (CF 2 ) n —SO 2 F (2).
- X is a fluorine atom or a trifluoromethyl group
- m is an integer of 0 to 3
- n is an integer of 1 to 12
- p is 0 or 1.
- n1, n2, and n3 are integers of 1 to 8, and m3 is an integer of 1 to 3.
- Polymer (Q) The polymer (Q) is a copolymer having units (U1) and units (U2).
- Q 1 is a perfluoroalkylene group which may have an etheric oxygen atom
- Q 2 is a perfluoroalkylene group which may have a single bond or an etheric oxygen atom
- R f1 is a perfluoroalkyl group which may have an etheric oxygen atom
- X 1 is an oxygen atom, a nitrogen atom or a carbon atom
- a is 0 when X 1 is an oxygen atom.
- Q 3 is a single bond or a perfluoroalkylene group that may have an etheric oxygen atom
- R f2 is a perfluoroalkyl group that may have an etheric oxygen atom
- X 2 is oxygen Child, a nitrogen atom or a carbon atom
- b is 0 when X 2 is an oxygen atom, 1 when X 2 is a nitrogen atom, X 2 is 2 when carbon atoms, Y 2 is,
- a fluorine atom or a monovalent perfluoro organic group, and t is 0 or 1.
- the single bond means that the carbon atom of CY 1 or CY 2 and the sulfur atom of SO 2 are directly bonded.
- An organic group means a group containing one or more carbon atoms.
- the oxygen atom may be 1 or 2 or more.
- the oxygen atom may be inserted between the carbon atom-carbon atom bonds of the perfluoroalkylene group or may be inserted at the carbon atom bond terminal.
- the perfluoroalkylene group may be linear or branched, and is preferably linear.
- the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. If the number of carbon atoms is 6 or less, the boiling point of the raw fluorine-containing monomer is lowered, and distillation purification becomes easy. Moreover, if carbon number is 6 or less, the increase in the equivalent weight of a polymer (Q) will be suppressed and the fall of proton conductivity will be suppressed.
- Q 2 is preferably a C 1-6 perfluoroalkylene group which may have an etheric oxygen atom.
- Q 2 is a perfluoroalkylene group having 1 to 6 carbon atoms which may have an etheric oxygen atom
- the polymer electrolyte fuel cell can be operated over a longer period than when Q 2 is a single bond. In this case, the stability of power generation performance is excellent.
- At least one of Q 1 and Q 2 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom.
- the fluorine-containing monomer having a C 1-6 perfluoroalkylene group having an etheric oxygen atom can be synthesized without undergoing a fluorination reaction with a fluorine gas, the yield is good and the production is easy.
- the perfluoroalkyl group for R f1 may be linear or branched, and is preferably linear.
- the perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
- As the perfluoroalkyl group a perfluoromethyl group, a perfluoroethyl group, and the like are preferable.
- R f1 may be the same group or different groups.
- Y 1 is preferably a fluorine atom or a linear perfluoroalkyl group having 1 to 6 carbon atoms which may have an etheric oxygen atom.
- the unit (U1) the unit (M1) is preferable, and the unit (M11), the unit (M12) or the unit (M13) is preferably used because the production of the polymer (Q) is easy and industrial implementation is easy. More preferred.
- R F11 is a straight-chain perfluoroalkylene group having 1 to 6 carbon atoms which may have a single bond or an etheric oxygen atom
- R F12 is a straight chain having 1 to 6 carbon atoms. It is a chain perfluoroalkylene group.
- the oxygen atom may be one or two or more.
- the oxygen atom may be inserted between the carbon atom-carbon atom bonds of the perfluoroalkylene group or may be inserted at the carbon atom bond terminal.
- the perfluoroalkylene group may be linear or branched.
- the perfluoroalkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. When the number of carbon atoms is 6 or less, an increase in the equivalent weight of the polymer (Q) can be suppressed, and a decrease in proton conductivity can be suppressed.
- the perfluoroalkyl group for R f2 may be linear or branched, and is preferably linear.
- the perfluoroalkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
- As the perfluoroalkyl group a perfluoromethyl group, a perfluoroethyl group, and the like are preferable.
- the — (SO 2 X 2 (SO 2 R f2 ) b ) — H + group is an ionic group.
- Y 2 is preferably a fluorine atom or a trifluoromethyl group.
- the unit (M2) is preferable, and the unit (M21), unit (M22), unit (M23) or The unit (M24) is more preferable.
- Y is a fluorine atom or a trifluoromethyl group
- m is an integer of 0 to 3
- n is an integer of 1 to 12
- p is 0 or 1
- the polymer (Q) may further have a repeating unit (hereinafter referred to as another unit) based on another monomer described later. What is necessary is just to adjust suitably the ratio of another unit so that the equivalent weight of a polymer (Q) may become the preferable range mentioned later.
- the other unit is preferably a repeating unit based on a perfluoromonomer, more preferably a repeating unit based on TFE, from the viewpoint of mechanical strength and chemical durability.
- the proportion of the repeating unit based on TFE is preferably 20 mol% or more, and preferably 40 mol% of all repeating units (100 mol%) constituting the polymer (Q) from the viewpoint of mechanical strength and chemical durability. The above is more preferable.
- the proportion of repeating units based on TFE is preferably 92 mol% or less, more preferably 87 mol% or less, of all repeating units (100 mol%) constituting the polymer (Q) from the viewpoint of electrical resistance.
- the polymer (Q) may have one unit (U1), one unit (U2), and another unit, or two or more units.
- the polymer (Q) is preferably a perfluoropolymer from the viewpoint of chemical durability.
- the equivalent weight of polymer (Q) (the number of grams of polymer per equivalent of ionic group, hereinafter referred to as EW) is preferably 400 to 900 g dry resin / equivalent (hereinafter referred to as g / equivalent), and 500 More preferably, ⁇ 800 g / equivalent is more preferred, 550 to 780 g / equivalent is more preferred, and 580 to 750 g / equivalent is particularly preferred.
- EW is 900 g / equivalent or less, proton conductivity increases (electric resistance decreases), so that sufficient battery output can be obtained.
- the EW is 400 g / equivalent or more
- synthesis of a polymer having a high molecular weight is easy, and the polymer (Q) does not swell excessively with water, so that the mechanical strength can be maintained.
- the EW of a polymer that has been conventionally used for general purposes is set to 900 to 1100 g / equivalent from the balance between electric resistance and mechanical strength.
- the mechanical strength can be maintained even when the EW is reduced and the electric resistance is lowered.
- the ratio of the unit (U2) in the polymer (Q) is preferably 0.2 / 1 to 0.7 / 1 when the unit is (U2) / (unit (U1) + unit (U2)) (molar ratio). 0.25 / 1 to 0.6 / 1 is more preferable, and 0.3 / 1 to 0.55 / 1 is still more preferable. If the ratio of the unit (U2) is 0.2 / 1 or more, the durability against repetition of wetting and drying becomes high, and the solid polymer fuel cell can be stably operated over a long period of time. When the ratio of the unit (U2) is 0.7 / 1 or less, the water content is not too high, and the mechanical strength can be maintained without the softening temperature and the glass transition temperature becoming too low.
- the mass average molecular weight of the polymer (Q) is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7, more preferably 5 ⁇ 10 4 to 5 ⁇ 10 6 , and even more preferably 1 ⁇ 10 5 to 3 ⁇ 10 6 .
- the mass average molecular weight of the polymer (Q) is 1 ⁇ 10 4 or more, the physical properties such as the degree of swelling hardly change with time, and the durability is sufficient. If the mass average molecular weight of the polymer (Q) is 1 ⁇ 10 7 or less, solutionization and molding become easy.
- the mass average molecular weight of the polymer (Q) can be evaluated by measuring the TQ value of the precursor polymer having a —SO 2 F group.
- the TQ value (unit: ° C.) is an index of the molecular weight of the polymer.
- the extrusion amount when the precursor polymer is melt-extruded under the condition of the extrusion pressure of 2.94 MPa using a nozzle having a length of 1 mm and an inner diameter of 1 mm. Is a temperature at which 100 mm 3 / sec.
- a polymer having a TQ value of 200 to 300 ° C. corresponds to a mass average molecular weight of 1 ⁇ 10 5 to 1 ⁇ 10 6 although the composition of repeating units constituting the polymer differs.
- the polymer (Q) can be produced, for example, through the following steps.
- (I) A step of polymerizing the compound (u1), the compound (u2), and, if necessary, another monomer to obtain a precursor polymer having an —SO 2 F group (hereinafter referred to as polymer (P)).
- (Ii) A step of bringing the polymer (P) and fluorine gas into contact with each other as necessary to fluorinate unstable terminal groups of the polymer (P).
- (Iii) A step of obtaining a polymer (Q) by converting the —SO 2 F group of the polymer (P) into a sulfonic acid group, a sulfonimide group, or a sulfonemethide group.
- Compound (m1) can be produced, for example, by the following synthesis route.
- Compound (u2) is preferably compound (m2), more preferably compound (m21), compound (m22), compound (m23) or compound (m24).
- Compound (u2) is, for example, D.I. J. et al. Vauham, “Du Pont Innovation”, Vol. 43, No. 3, 1973, p. 10 and the method described in the examples of US Pat. No. 4,358,412 can be used for the production by a known synthesis method.
- Examples of other monomers include TFE, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, ethylene, propylene, perfluoro ⁇ -olefins (such as hexafluoropropylene), and (perfluoroalkyl).
- Ethylenes ((perfluorobutyl) ethylene etc.), (perfluoroalkyl) propenes (3-perfluorooctyl-1-propene etc.), perfluorovinyl ethers (perfluoro (alkyl vinyl ether), perfluoro ( Etheric oxygen atom-containing alkyl vinyl ethers, etc.).
- the compound (m3) is preferable, and the compound (m31), the compound (m32), or the compound (m33) is more preferable.
- R f is a linear or branched perfluoroalkyl group having 1 to 12 carbon atoms
- u is an integer of 0 to 3
- v is an integer of 1 to 9
- w is an integer of 1 to 9
- x is 2 or 3.
- perfluoromonomer is preferable and TFE is more preferable from the viewpoint of mechanical strength and chemical durability.
- Examples of the polymerization method include known polymerization methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Moreover, you may superpose
- the polymerization temperature is usually 10 to 150 ° C.
- radical initiators include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, azo compounds, persulfates, and the like.
- Perfluoro compounds such as bis (fluoroacyl) peroxides are preferred from the viewpoint of obtaining a polymer F having few unstable terminal groups.
- a solvent having a boiling point of 20 to 350 ° C. is preferable, and a solvent having a boiling point of 40 to 150 ° C. is more preferable.
- the solvent include perfluorotrialkylamines (perfluorotributylamine, etc.), perfluorocarbons (perfluorohexane, perfluorooctane, etc.), hydrofluorocarbons (1H, 4H-perfluorobutane, 1H-perfluoro Hexane, etc.), hydrochlorofluorocarbons (3,3-dichloro-1,1,1,2,2-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, etc. .).
- a monomer, a radical initiator, and the like are added to a solvent, and radicals are generated in the solvent to polymerize the monomer.
- the monomer may be added all at once, sequentially, or continuously.
- Nonionic radical initiators include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, dialkyl peroxides, bis (Fluoroalkyl) peroxides, azo compounds and the like can be mentioned.
- the dispersion medium may contain the above-mentioned solvent as an auxiliary agent; a surfactant as a dispersion stabilizer that prevents aggregation of suspended particles; a hydrocarbon compound (hexane, methanol, etc.) as a molecular weight regulator.
- a surfactant as a dispersion stabilizer that prevents aggregation of suspended particles
- a hydrocarbon compound hexane, methanol, etc.
- the unstable terminal group is a group formed by a chain transfer reaction, a group based on a radical initiator, or the like, and specifically includes —COOH group, —CF ⁇ CF 2 group, —COF group, —CF 2 H Group.
- the fluorine gas may be diluted with an inert gas such as nitrogen, helium or carbon dioxide, or may be used as it is without being diluted.
- the temperature at which the polymer (P) is brought into contact with the fluorine gas is preferably room temperature to 300 ° C., more preferably 50 to 250 ° C., further preferably 100 to 220 ° C., and particularly preferably 150 to 200 ° C.
- the contact time between the polymer (P) and the fluorine gas is preferably 1 minute to 1 week, and more preferably 1 to 50 hours.
- step (Iii-1) A step of hydrolyzing the —SO 2 F group of the polymer (P) to form a sulfonate, converting the sulfonate into an acid form and converting it to a sulfonate group.
- (Iii-2) A salt type sulfonimide group (—SO 2 NMSO 2 R f1 group) obtained by imidizing the —SO 2 F group of the polymer (P) (where M is an alkali metal or primary to quaternary ammonium) And converting it into an acid-type sulfonimide group (—SO 2 NHSO 2 R f1 group).
- Step (iii-1) The hydrolysis is performed, for example, by bringing the polymer (P) and the basic compound into contact in a solvent.
- the basic compound include sodium hydroxide and potassium hydroxide.
- the solvent include water, a mixed solvent of water and a polar solvent, and the like.
- the polar solvent include alcohols (methanol, ethanol, etc.), dimethyl sulfoxide and the like.
- the acidification is performed, for example, by bringing a polymer having a sulfonate into contact with an aqueous solution such as hydrochloric acid or sulfuric acid. Hydrolysis and acidification are usually performed at 0 to 120 ° C.
- Step (iii-2) Examples of imidization include the following methods.
- (Iii-2-1) A method of reacting a —SO 2 F group with R f1 SO 2 NHM.
- (Iii-2-2) a method of reacting —SO 2 F group with R f1 SO 2 NH 2 in the presence of alkali metal hydroxide, alkali metal carbonate, MF, ammonia or primary to tertiary amine.
- (Iii-2-3) A method of reacting —SO 2 F group with R f1 SO 2 NMSi (CH 3 ) 3 . Acidification is performed by treating a polymer having a salt-type sulfonimide group with an acid (sulfuric acid, nitric acid, hydrochloric acid, etc.).
- the polymer (Q) in which the ionic group is a sulfonimide group includes a compound (u1 ′) obtained by converting the —SO 2 F group of the compound (u1) into a sulfonimide group, and —SO 2 F of the compound (u2). It can also be produced by polymerizing a compound (u2 ′) in which a group is converted to a sulfonimide group and another monomer as required. In the compounds (u1 ′) and (u2 ′), chlorine or bromine is added to the unsaturated bond of the compounds (u1) and (u2), and the —SO 2 F group is converted to the sulfone in the same manner as in the step (iii-2). It can manufacture by performing a dechlorination or a debromination reaction using metal zinc, after converting into an imide group.
- the polymer (Q) described above has units (U1) and units (U2), and therefore has low electrical resistance, a higher softening temperature than conventional ion exchange resins, and high flexibility. .
- the reason is as follows.
- the side chain of the unit (U1) has two ionic groups, and the mobility of the side chain is lower than that of the unit (U2) having one ionic group in the side chain. Therefore, it is considered that the softening temperature of the polymer (Q) having the unit (U1) and the unit (U2) is higher than that of the polymer having the unit (U2) and not having the unit (U1).
- the unit (U1) is compared with the polymer having the unit (U1) and not having the unit (U2).
- units (U2) are considered to be highly flexible.
- the mass ratio of the catalyst to the fluorinated ion exchange resin in the catalyst layer is 4/6 to 9.5 / 0.5 (mass ratio) from the viewpoint of conductivity and water repellency. 6/4 to 8/2 is particularly preferable.
- the amount of platinum contained in the catalyst layer is preferably 0.01 to 0.5 mg / cm 2 from the viewpoint of the optimum thickness for efficiently performing the electrode reaction, and is 0 from the viewpoint of the balance between the cost and performance of the raw material. 0.05 to 0.35 mg / cm 2 is more preferable.
- the thickness of the catalyst layer is preferably 20 ⁇ m or less, more preferably 1 to 15 ⁇ m from the viewpoint of facilitating gas diffusion in the catalyst layer and improving the power generation performance of the polymer electrolyte fuel cell. Moreover, it is preferable that the thickness of a catalyst layer is uniform. If the thickness of the catalyst layer is reduced, the amount of catalyst present per unit area may be reduced and the reaction activity may be reduced. In this case, a supported catalyst in which platinum or a platinum alloy is supported at a high loading rate as a catalyst. If it is used, the reaction activity of the electrode can be maintained high without being insufficient in the amount of catalyst even if it is thin. The thickness of the catalyst layer is measured by observing the cross section of the catalyst layer with an SEM (scanning electron microscope) or the like.
- the catalyst layer may contain a water repellent agent from the viewpoint that the effect of suppressing flooding is enhanced.
- the water repellent agent include a copolymer of TFE and hexafluoropropylene, a copolymer of TFE and perfluoro (alkyl vinyl ether), polytetrafluoroethylene (hereinafter referred to as PTFE), and the like.
- PTFE polytetrafluoroethylene
- the amount of the water repellent is preferably 0.01 to 30% by mass in the catalyst layer (100% by mass).
- the reinforcing layer 24 and the reinforcing layer 34 are layers including a porous sheet-shaped reinforcing material made of a polymer, conductive fibers, and a binder as necessary. .
- the reinforcing layer 24 and the reinforcing layer 34 may be the same component, composition, thickness, or the like, or may be different layers.
- the reinforcing layer has a porous sheet-shaped reinforcing material made of a polymer disposed therein, so that the mechanical strength is high, and the porous sheet-shaped reinforcing material is filled with conductive fibers with voids inside. Since the conductive fiber is also present on the surface of the sheet-like reinforcing material, it has conductivity and gas diffusibility.
- the conductive fibers are preferably present in 1% or more of the surface area of the reinforcing layer, and this may be an intermediate layer described later.
- Polymers constituting the sheet-like reinforcing material include polypropylene, polyethylene, polyphenylene sulfide, nylon, polyamide, PTFE, TFE / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), ethylene / TFE copolymer.
- PFA perfluoro (alkyl vinyl ether) copolymer
- ETFE TFE / hexafluoropropylene copolymer
- FEP polychlorotrifluoroethylene
- PCTFE polychlorotrifluoroethylene
- ECTFE ethylene / chlorotrifluoroethylene copolymer
- PVDF fluoride polymer
- PVF polyvinyl fluoride polymer
- the polymer blend may have conductivity.
- Examples of the form of the sheet-like reinforcing material include woven fabric, nonwoven fabric, foam, porous film, and the like.
- a porous film made of PTFE is preferable.
- a porous film made of PTFE is produced by stretching a PTFE film. According to this manufacturing method, it is excellent in mass productivity and manufacturing cost, and a thin film of 100 ⁇ m or less can be manufactured.
- the nonwoven fabric is preferably a nonwoven fabric manufactured by a melt blown method or an electrospinning method.
- a melt blown method a non-woven fabric can be produced with fine fibers having a fiber diameter of about 10 ⁇ m or less, and is also excellent in mass productivity.
- the polymer used in the melt blown method include polypropylene and fluorine-containing polymers (ETFE, FEP, etc.), and fluorine-containing polymers are preferred.
- the electrospinning method a nonwoven fabric can be produced with fine fibers having a fiber diameter of about 1 ⁇ m or less, and is excellent in mass productivity.
- the polymer used for the electrospinning method include polyamide, PVDF, and nylon.
- the average fiber diameter is preferably 0.2 to 7 ⁇ m, more preferably 0.3 to 5 ⁇ m. By setting this range, a sufficient reinforcing effect, gas diffusibility and drainage can be maintained.
- the average fiber diameter of the sheet-like reinforcing material is measured by observing the surface with SEM or the like.
- the average pore diameter is preferably 0.4 to 7 ⁇ m, and more preferably 0.8 to 5 ⁇ m. By setting this range, a sufficient reinforcing effect, gas diffusibility and drainage can be maintained.
- the average pore diameter of the sheet-like reinforcing material can be measured by a bubble point method (JIS K3832).
- the thickness of the sheet-like reinforcing material is preferably 5 to 300 ⁇ m, more preferably 10 to 80 ⁇ m. By setting this range, a sufficient reinforcing effect, gas diffusibility and drainage can be maintained.
- the thickness of the sheet-like reinforcing material is calculated by measuring the thickness at four locations using a digimatic indicator (manufactured by Mitutoyo, 543-250, flat measuring terminal: ⁇ 5 mm), and averaging these.
- the conductive fiber is entangled with the electron conductive material (platinum, platinum alloy, carbon carrier, etc.) contained in the catalyst layer on the surface of the reinforcing layer, and in addition to a conductive path by point contact between the electron conductive materials, Therefore, the electronic conductivity at the interface with the catalyst layer is improved. In addition, even when in contact with the gas diffusion layer, entanglement with the electron conductive material constituting the gas diffusion layer is likely to occur, and the electron conductivity at the interface with the gas diffusion layer is improved. .
- Examples of the conductive fiber include carbon fiber. From the viewpoint of high chemical durability, a graphitized material by heat treatment or the like is preferable. As the carbon fiber, carbon nanofiber is preferable because it is fine and has high electron conductivity. Examples of the carbon nanofiber include vapor grown carbon fiber, carbon nanotube (single wall, double wall, multiwall, cup laminated type, etc.).
- the average fiber diameter of the carbon fiber is preferably 50 to 500 nm, and more preferably 50 to 300 nm.
- the average fiber length of the carbon fiber is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m. By setting it within this range, the carbon fibers are entangled with each other to form voids and do not fill the porous voids, so that high gas diffusivity is maintained. In particular, it is more preferable that the average fiber diameter of the carbon fiber is 50 to 300 nm and the average fiber length is 5 to 30 ⁇ m.
- the fiber diameter and fiber length of the carbon fiber are measured by observation with an optical microscope, SEM, TEM (transmission electron microscope) or the like.
- the fiber diameter and fiber length of the carbon nanofiber indicate the average fiber diameter and average fiber length of the carbon nanofiber, respectively.
- the binder is a component that suppresses the loss of conductive fibers from the sheet-like reinforcing material.
- a polymer is preferable, an ion exchange resin is more preferable, and a fluorine-containing ion exchange resin is further preferable.
- a fluorine-containing ion exchange resin a perfluorocarbon polymer having an ionic group (which may contain an etheric oxygen atom) is preferable, and a polymer (H) or a polymer (Q) is particularly preferable.
- the mass ratio of the conductive fiber to the binder is preferably 1 / 0.05 to 1/1, and more preferably 1 / 0.1 to 1 / 0.7.
- the thickness of the reinforcing layer is preferably 12 to 250 ⁇ m, and more preferably 20 to 100 ⁇ m. By setting this range, a sufficient reinforcing effect, gas diffusibility and drainage can be maintained.
- the thickness of the reinforcing layer is measured by observing the cross section of the reinforcing layer with an SEM or the like.
- the membrane electrode assembly of the present invention is not limited to the illustrated example.
- a membrane electrode assembly in which one of the cathode 20 and the anode 30 has a reinforcing layer and the other does not have a reinforcing layer may be used. From the viewpoint of dimensional stability, it is preferable to provide a reinforcing layer on both the cathode 20 and the anode 30.
- gas diffusion layer examples of the gas diffusion layer 26 and the gas diffusion layer 36 (hereinafter, collectively referred to as a gas diffusion layer) include gas diffusive substrates such as carbon paper, carbon cloth, and carbon felt.
- gas diffusion layer when the gas diffusion layer is provided, physical damage such as the fibers constituting the gas diffusion layer piercing the solid polymer electrolyte membrane can be prevented by the reinforcing layer. Thereby, the short circuit of a membrane electrode assembly can be suppressed, and durability of a membrane electrode assembly can be improved more.
- the presence of the reinforcing layer between the catalyst layer and the gas diffusion layer can prevent physical damage to both the catalyst layer and the solid polymer electrolyte membrane due to fibers constituting the gas diffusion layer, Short-circuiting of the membrane electrode assembly can be further suppressed, and the durability of the membrane electrode assembly can be further improved.
- the surface of the gas diffusion layer is preferably water-repellent treated with a solution or dispersion containing a water-repellent fluoropolymer.
- the surface of the gas diffusion layer is more preferably water-repellent treated with a dispersion containing a water-repellent fluoropolymer and conductive carbon from the viewpoint of the conductivity of the membrane / electrode assembly.
- water-repellent fluorine-containing polymer examples include PTFE.
- conductive carbon examples include carbon black.
- the water-repellent surface of the gas diffusion layer is in contact with the catalyst layer, the reinforcing layer, or an intermediate layer described later.
- the thickness of the gas diffusion layer is preferably 100 to 400 ⁇ m, more preferably 120 to 300 ⁇ m.
- the thickness of the gas diffusion layer is calculated by measuring the thickness at four locations using a digimatic indicator (manufactured by Mitutoyo, 543-250, flat measuring terminal: ⁇ 5 mm) and averaging them.
- the membrane electrode assembly of the present invention may have an intermediate layer (not shown) containing conductive fibers and a binder and not containing a sheet-like reinforcing material between the catalyst layer and the reinforcing layer. .
- an intermediate layer 28 and an intermediate layer 38 may be similarly provided between the reinforcing layer and the gas diffusion layer.
- Examples of the conductive fiber and the binder include those similar to the conductive fiber and the binder constituting the reinforcing layer.
- the thickness of the intermediate layer is preferably 1 to 20 ⁇ m. By setting this range, the adhesion between the catalyst layer and the reinforcing layer and the adhesion between the reinforcing layer and the gas diffusion layer are improved, and the contact resistance at the interface can be sufficiently reduced.
- the thickness of the intermediate layer is measured by observing a cross section of the intermediate layer with an SEM or the like.
- the intermediate layer may be provided on both the cathode 20 and the anode 30, or may be provided on one of the cathode 20 and the anode 30.
- the cathode 20 preferably has an intermediate layer.
- the solid polymer electrolyte membrane 40 is an ion exchange resin membrane.
- the ion exchange resin is preferably a fluorine-containing ion exchange resin from the viewpoint of durability, more preferably a perfluorocarbon polymer having an ionic group (which may contain an etheric oxygen atom), the polymer (H) or Polymer (Q) is more preferable, and polymer (Q) is particularly preferable.
- the polymer (Q) film has a softening temperature higher than that of the conventional ion exchange resin film and has high flexibility, and therefore has a low electrical resistance and higher heat resistance than the conventional ion exchange resin film. In addition, even if the swelling in the wet state and the shrinkage in the dry state are repeated, they are not easily damaged.
- the solid polymer electrolyte membrane 40 may contain one or more atoms selected from the group consisting of cerium and manganese in order to further improve the durability.
- Cerium and manganese decompose hydrogen peroxide, which is a causative substance that causes deterioration of the solid polymer electrolyte membrane 40.
- Cerium and manganese are preferably present as ions in the solid polymer electrolyte membrane 40, and may exist in any state in the solid polymer electrolyte membrane 40 as long as they are present as ions.
- the solid polymer electrolyte membrane 40 may contain silica or heteropolyacid (zirconium phosphate, phosphomolybdic acid, phosphotungstic acid, etc.) as a water retention agent for preventing drying.
- silica or heteropolyacid zirconium phosphate, phosphomolybdic acid, phosphotungstic acid, etc.
- the thickness of the solid polymer electrolyte membrane 40 is preferably 5 to 30 ⁇ m, more preferably 10 to 30 ⁇ m, and even more preferably 15 to 25 ⁇ m.
- the thickness of the solid polymer electrolyte membrane 40 is 30 ⁇ m or less, a decrease in power generation performance of the solid polymer fuel cell under low humidification conditions can be further suppressed.
- the thickness of the solid polymer electrolyte membrane 40 is set to 5 ⁇ m or more, preferably 10 ⁇ m or more, it is possible to suppress gas leakage and electrical short circuit while maintaining high performance under low humidification and non-humidification conditions. it can.
- the thickness of the solid polymer electrolyte membrane 40 is measured by observing the cross section of the solid polymer electrolyte membrane 40 with an SEM or the like.
- the EW of the solid polymer electrolyte membrane 40 is preferably 900 g / equivalent or less, particularly preferably 700 g / equivalent or less. By setting this range, the proton conductivity increases (electric resistance decreases) even in a low humidified environment, so that a sufficient battery output can be obtained. Further, the EW of the solid polymer electrolyte membrane 40 is preferably 400 g / equivalent or more, and the mechanical strength can be maintained by setting the EW in this range.
- the EW of the solid polymer electrolyte membrane 40 is obtained by the following method. Two kinds of polymers (EW of 1000 g / equivalent and 909 g / equivalent of EW) whose EW is known in advance by titration are prepared, and two kinds of films (thickness 200 ⁇ m) made of each polymer are subjected to fluorescent X-rays. (Rigaku Corporation, RIX3000) is used to measure the peak intensity based on sulfur atoms, and a calibration curve showing the relationship between the peak intensity and EW is created.
- the polymer (P) or polymer (F) is pressed at a temperature of TQ value to be described later to produce a film having a thickness of 200 ⁇ m, the peak intensity based on sulfur atoms is measured with fluorescent X-rays, and EW is measured with the calibration curve. Ask for.
- the ratio (molar ratio) of —SO 2 F groups in the polymer (P) or polymer (F) is the same as the ratio (molar ratio) of —SO 3 H groups in the polymer (Q) or polymer (H). Therefore, the EW of the polymer (P) or the polymer (F) can be handled as the EW of the polymer (Q) or the polymer (H) as it is.
- the membrane / electrode assembly of the present invention comprises two frame-shaped subgaskets 80 arranged so as to sandwich the solid polymer electrolyte membrane 40 and the reinforcing layer at the periphery of the membrane / electrode assembly 10. You may have.
- the outer edge of the subgasket 80 is in contact with the peripheral edge of the solid polymer electrolyte membrane 40, and the inner edge is sandwiched between the peripheral edge of the reinforcing layer and the peripheral edge of the gas diffusion layer.
- the subgasket 80 has such a size that the outer edge can be in contact with the solid polymer electrolyte membrane 40, and the area of the opening is smaller than the areas of the reinforcing layer and the gas diffusion layer.
- the area of the solid polymer electrolyte membrane 40 is larger than the areas of the reinforcing layer and the gas diffusion layer.
- the material of the subgasket 80 include non-fluorinated resins (polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyimide, etc.), fluorine-containing resins (PTFE, ETFE, FEP, PFA, etc.) and the like.
- the 90 ° peel strength at all interfaces existing between the solid polymer electrolyte membrane 40 and the reinforcing layer is preferably 0.1 N / cm or more, more preferably 0.3 N / cm or more, and 0.5 N / cm or more. Is more preferable.
- the interface is an interface between the solid polymer electrolyte membrane 40 and the catalyst layer and an interface between the catalyst layer and the reinforcing layer.
- the interface in the case of having an intermediate layer is an interface between the solid polymer electrolyte membrane 40 and the catalyst layer, an interface between the catalyst layer and the intermediate layer, and an interface between the intermediate layer and the reinforcing layer.
- the 90 ° peel strength is 0.1 N / cm or more, the solid polymer electrolyte membrane 40, the catalyst layer, and the reinforcing layer are more firmly integrated, and a membrane electrode assembly with further excellent dimensional stability and mechanical strength Even when the polymer electrolyte fuel cell is operated in an environment where the polymer electrolyte membrane 40 repeatedly swells and contracts, even more stable power generation performance can be obtained. If the 90 ° peel strength is 0.3 N / cm or more, stable power generation performance can be obtained for several thousand hours or more, and if it is 0.5 N / cm or more, stable power generation performance for a longer period can be obtained.
- the 90 ° peel strength is measured by the following procedure.
- a test piece having a width of 10 mm and a length of 80 mm comprising a reinforcing layer / (intermediate layer) / catalyst layer / solid polymer electrolyte membrane / catalyst layer / (intermediate layer) / reinforcing layer is prepared.
- (Procedure 2) As shown in FIG. 4, a 120 mm long single-sided adhesive tape 52 is adhered to the surface of the reinforcing layer 24 (34) from the end of the test piece to 60 mm in the length direction.
- the single-sided adhesive tape 52 a tape having an adhesive strength sufficiently higher than 90 ° peel strength at all interfaces existing between the solid polymer electrolyte membrane 40 and the reinforcing layer is used. (Procedure 3) As shown in FIG. 4, the entire surface of the reinforcing layer 34 (24) on the side to which the single-sided adhesive tape 52 is not adhered is attached to an aluminum plate 54 having a width of 25 mm ⁇ length of 150 mm ⁇ thickness of 3 mm. Paste at 56. In addition, as the double-sided pressure-sensitive adhesive tape 56, a tape having an adhesive strength sufficiently higher than 90 ° peel strength at all interfaces existing between the solid polymer electrolyte membrane 40 and the reinforcing layer is used.
- the end of the single-sided adhesive tape 52 is sandwiched between sample mounting portions of a tensile tester (not shown) via a stainless steel roller 58 having a diameter of 6 mm.
- a tensile tester not shown
- a stainless steel roller 58 having a diameter of 6 mm.
- the end of the sandwiched single-sided adhesive tape 52 is pulled at a speed of 50 mm / min in the direction perpendicular to the test piece. The peel strength at the first peeled interface is measured.
- the 90 ° peel strength is measured by preparing six test pieces according to Procedure 1 and three times on the anode side and three times on the cathode side.
- the 90 ° peel strength is obtained by measuring the strength until the first peeling of the interface existing between the solid polymer electrolyte membrane 40 and the reinforcing layer is completely peeled off through a load cell.
- the average value is obtained for the portion where the strength value is stable, that is, the portion excluding the values at the start and end of the peel strength measurement, and the peel strength is obtained. Then, the average value of the peel strength three times is calculated, and this average value is obtained by dividing the test piece by the width of 10 mm.
- the insulation resistance of the membrane electrode assembly 10 is preferably 1500 ⁇ / cm 2 or more. If the insulation resistance is less than 1500 ⁇ / cm 2 , it is considered that the anode and the cathode are electrically short-circuited because the fibers constituting the gas diffusion layer have digged into or penetrated the solid polymer electrolyte membrane 40.
- the solid polymer electrolyte membrane 40 can be caused to have a large hole due to local heat generation due to current flowing through the short-circuited portion and local temperature rise caused by direct combustion of the reaction gas due to gas leakage at the short-circuited portion. Increases nature. If the insulation resistance is 1500 ⁇ / cm 2 or more, there is little possibility that an electrical short circuit has occurred, and no hole is generated in the solid polymer electrolyte membrane 40 due to the short circuit.
- the insulation resistance of the membrane electrode assembly 10 is determined as follows.
- the membrane electrode assembly 10 is incorporated into a power generation cell, the temperature of the membrane electrode assembly 10 is maintained at 80 ° C., hydrogen is applied to the anode at 50 cc / min, and nitrogen is applied to the cathode at 200 cc / min to 150 kPa (absolute pressure). Supply with pressure.
- the humidity of the gas is 100% relative humidity for both hydrogen and air, and the potential of the cathode with respect to the anode is run from 0.08 V to 0.5 V at a rate of 0.5 mV / min using a potentiostat,
- the current value at that time is recorded on the personal computer together with the potential. From the recorded current value and potential, the slope of the current value with respect to the potential in the range of 0.2 V to 0.5 V is obtained by the least square method, and the reciprocal of the slope is defined as the insulation resistance.
- Examples of the method for producing the membrane / electrode assembly 10 include a method having the following steps (I) to (V).
- (IV) A step of joining the solid polymer electrolyte membrane 40 and the first laminate to obtain a second laminate comprising a reinforcing layer / catalyst layer / solid polymer electrolyte membrane / catalyst layer / reinforcing layer .
- Step (I): The solid polymer electrolyte membrane 40 is formed by the following method, for example.
- (I-1) A method of performing the step (iii) after the polymer (F) or the polymer (P) is formed into a film.
- (I-2) A method of forming the polymer (H) or polymer (Q) obtained in the step (iii) into a film.
- Method (I-1) As a method for forming the polymer (F) or the polymer (P) into a film, the polymer (F) and the polymer (P) are excellent in melt fluidity, and therefore, an extrusion molding method, a pressure press molding method, a stretching method, etc. Is mentioned.
- Method (I-2) As a method for forming the polymer (H) or the polymer (Q) into a film, there is a method (cast method) in which the liquid composition of the polymer (H) or the polymer (Q) is applied to the surface of the substrate film and dried. Can be mentioned.
- the liquid composition is a dispersion in which the polymer (H) or the polymer (Q) is dispersed in a dispersion medium containing an organic solvent having a hydroxyl group and water.
- Examples of the organic solvent having a hydroxyl group include methanol, ethanol, 1-propanol, 2-propanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2 , 3,3-tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 3, , 3,3-trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4,5,5,6 6,7,7,8,8,8-tridecafluoro-1-octanol and the like.
- the organic solvent which has a hydroxyl group may be used individually by 1 type, and 2 or more types may be mixed and used for it.
- the proportion of water is preferably 10 to 99% by mass and more preferably 40 to 99% by mass in the dispersion medium (100% by mass). By increasing the proportion of water, the dispersibility of the polymer (H) or the polymer (Q) in the dispersion medium can be improved.
- the proportion of the organic solvent having a hydroxyl group is preferably 1 to 90% by mass and more preferably 1 to 60% by mass in the dispersion medium (100% by mass).
- the ratio of the polymer (H) or the polymer (Q) is preferably 1 to 50% by mass and more preferably 3 to 30% by mass in the liquid composition (100% by mass).
- the liquid composition may contain a fluorine-containing solvent.
- a fluorine-containing solvent the fluorine-containing solvent used by the solution polymerization method in manufacture of a polymer (Q) is mentioned, for example.
- the heat treatment temperature is preferably 130 to 200 ° C.
- the temperature of the heat treatment is 130 ° C. or higher, the polymer (H) or the polymer (Q) does not excessively contain water. If the temperature of the heat treatment is 200 ° C. or lower, thermal decomposition of the ionic group is suppressed, and a decrease in proton conductivity of the solid polymer electrolyte membrane 40 is suppressed.
- the solid polymer electrolyte membrane 40 may be treated with a hydrogen peroxide solution as necessary.
- a dispersion liquid containing conductive fibers and a binder as necessary (hereinafter referred to as a conductive coating liquid). Is applied, infiltrated, and dried to form a reinforcing layer.
- the conductive coating liquid is prepared by dispersing conductive fibers in a solvent and, if necessary, dissolving or dispersing the binder in the solvent.
- a solvent when a binder is an ion exchange resin, the mixed solvent of water and alcohols (ethanol etc.) is preferable.
- the solid content concentration of the conductive coating solution is preferably 5 to 30% by mass.
- the base film examples include a polypropylene film, a polyethylene terephthalate film, and an ETFE film.
- a coating method a known method may be used.
- the drying temperature is preferably 40 to 130 ° C.
- a coating liquid for forming a catalyst layer a coating liquid for forming a catalyst layer
- the coating liquid for forming a catalyst layer is prepared by dispersing a catalyst in a solvent and dissolving or dispersing the ion exchange resin in the solvent.
- a solvent a mixed solvent of water and alcohols (ethanol or the like) is preferable.
- a coating method a known method may be used.
- the drying temperature is preferably 40 to 130 ° C.
- the bonding method examples include a hot press method, a hot roll press method, and an ultrasonic fusion method, and the hot press method is preferable from the viewpoint of in-plane uniformity.
- the temperature of the press plate in the press is preferably 100 to 150 ° C.
- the pressing pressure is preferably 0.5 to 4.0 MPa.
- the two first laminates may be the same or different as long as they have undergone the steps (II) to (III).
- the subgasket 80 When the subgasket 80 is disposed, as shown in FIG. 5, two frame-shaped subgaskets 80 are disposed on the upper and lower sides of the second laminate 100, and then two gas diffusion base materials (gas The diffusion layers 26 and 36) and the second laminated body 100 with the subgasket 80 are joined to obtain the membrane electrode assembly 10 with the subgasket 80 shown in FIG.
- the subgasket 80 may be formed by applying a liquid sealing material in the form of a frame on the top and bottom of the second laminated body 100 and then curing it.
- the second laminated body may be formed by hot pressing or injection of a thermoplastic resin. It may be formed by molding up and down 100.
- Examples of the bonding method include a hot press method, a hot roll press method, and an ultrasonic fusion method, and the hot press method is preferable from the viewpoint of in-plane uniformity.
- the temperature of the press plate in the press is preferably 100 to 150 ° C.
- the pressing pressure is preferably 0.5 to 4.0 MPa.
- the cathode 20 and / or the anode 30 has the reinforcing layer between the catalyst layer and the gas diffusion layer, sufficient mechanical strength and dimensional stability can be obtained. Have. As a result, it has excellent durability even in an environment where wetting and drying are repeated. Further, in the membrane electrode assembly 10 described above, since the reinforcing material is not present in the solid polymer electrolyte membrane 40, the ion conductivity of the solid polymer electrolyte membrane 40 is not impaired. As a result, high power generation performance can be expressed even under low humidification conditions.
- the membrane electrode assembly 10 can also have the following effects by having a reinforcing layer.
- the reinforcing layer serves as a cushioning material at the time of heat bonding, and the inner edge portion of the subgasket 80 is It is possible to prevent the solid polymer electrolyte membrane 40 from becoming difficult to enter. Thereby, local thinning of the solid polymer electrolyte membrane 40 is suppressed, and the mechanical strength is improved.
- the membrane electrode assembly of the present invention is used for a polymer electrolyte fuel cell.
- a polymer electrolyte fuel cell for example, a cell composed of a membrane electrode assembly and a pair of separators arranged so as to face each other with the membrane electrode assembly interposed therebetween, the membrane electrode assembly and the separator are alternately arranged. Are stacked as expected.
- the separator has a plurality of grooves formed as gas flow paths on both sides.
- the separator include a separator made of various conductive materials such as a metal separator, a carbon separator, and a separator made of a material in which graphite and a resin are mixed.
- the polymer electrolyte fuel cell include a hydrogen / oxygen fuel cell and a direct methanol fuel cell (DMFC).
- the solid polymer fuel cell of the present invention is characterized in that power is generated by supplying a reaction gas (fuel gas and oxidant gas) having a relative humidity of 25% or less to the membrane electrode assembly of the present invention. Specifically, an oxidant gas (air or the like) having a relative humidity of 25% or less is supplied to the cathode 20 side, and a fuel gas (hydrogen gas or the like) having a relative humidity of 25% or less is supplied to the anode 30 side. .
- Examples 1 to 5, 9 to 16, and 18 to 21 are examples, and examples 6 to 8 and 17 are comparative examples.
- the EW of the polymer (P) was determined by the following method. Two kinds of polymers (EW of 1000 g / equivalent and 909 g / equivalent of EW) whose EW is known in advance by titration are prepared, and two kinds of films (thickness 200 ⁇ m) made of each polymer are subjected to fluorescent X-rays. (Rigaku Corporation, RIX3000) was used to measure the peak intensity based on sulfur atoms, and a calibration curve showing the relationship between the peak intensity and EW was prepared.
- the polymer (P) was pressed at a temperature of TQ value to be described later to produce a film having a thickness of 200 ⁇ m, the peak intensity based on sulfur atoms was measured by fluorescent X-ray, and EW was obtained from the calibration curve.
- the ratio (molar ratio) of —SO 2 F groups in the polymer (P) is the same as the ratio (molar ratio) of —SO 3 H groups in the polymer (Q)
- the EW of the polymer (P) is It can be handled as EW of the polymer (Q) as it is.
- the EW of the polymer (Q2) and the polymer (H2) was determined by the following method. About 2 g of a polymer film vacuum-dried at 110 ° C. for 16 hours was prepared, and this film was immersed in 30 mL of 0.1N sodium hydroxide to replace protons in the film with sodium ions. Subsequently, neutralization titration was performed using 0.1N hydrochloric acid, and EW was calculated from the amount of sodium hydroxide consumed by ion exchange onto the film.
- the TQ value (unit: ° C.) is an index of the molecular weight of the polymer, and the extrusion amount when the polymer is melt-extruded under the condition of the extrusion pressure of 2.94 MPa using a nozzle having a length of 1 mm and an inner diameter of 1 mm is 100 mm.
- the temperature is 3 / sec.
- a flow tester CFT-500A manufactured by Shimadzu Corporation
- the extrusion amount of the polymer (P) was measured while changing the temperature, and the TQ value at which the extrusion amount was 100 mm 3 / second was determined.
- the proton conductivity of the polymer (Q) film was determined by the following method. A substrate on which 4 terminal electrodes are arranged at intervals of 5 mm is brought into close contact with a 5 mm width polymer (Q) film, and alternating current is applied under a constant temperature and humidity condition at a temperature of 80 ° C. and a relative humidity of 50% by a known 4 terminal method. The resistance of the film was measured at a voltage of 10 kHz and 1 V, and the proton conductivity was calculated from the result. The proton conductivity is a measure of the electric resistance of the solid polymer electrolyte membrane.
- the softening temperature and glass transition temperature of the polymer (Q) were determined by the following methods. Using a dynamic viscoelasticity measuring apparatus (DVA200, manufactured by IT Measurement Co., Ltd.), the polymer (Q) was measured under the conditions of a sample width of 0.5 cm, a length between grips of 2 cm, a measurement frequency of 1 Hz, and a heating rate of 2 ° C./min. The dynamic viscoelasticity of the film was measured, and the value at which the storage elastic modulus was half the value at 50 ° C. was defined as the softening temperature. Further, the glass transition temperature (Tg) was determined from the peak value of tan ⁇ .
- DVA200 dynamic viscoelasticity measuring apparatus
- the 90 ° peel strength was measured by the following procedure.
- (Procedure 1) A test piece having a width of 10 mm and a length of 80 mm was cut out from the second laminate.
- (Procedure 2) As shown in FIG. 4, on the surface of the reinforcing layer 24 (34) from the end of the test piece to 60 mm in the length direction, a single-sided adhesive tape 52 (manufactured by Nitto Denko, double-sided adhesive tape No. ... 5015, only one side adhesive layer was used).
- (Procedure 3) As shown in FIG.
- the entire surface of the reinforcing layer 34 (24) on the side to which the single-sided adhesive tape 52 is not adhered is attached to an aluminum plate 54 having a width of 25 mm ⁇ length of 150 mm ⁇ thickness of 3 mm. 56 was pasted. Then, the end of the single-sided adhesive tape 52 was sandwiched between the sample mounting portions of a tensile tester (Orientec Corp., universal tester (Tensilon), RTE-1210) via a stainless steel roller 58 having a diameter of 6 mm.
- a tensile tester Orientec Corp., universal tester (Tensilon), RTE-1210
- the 90 ° peel strength was measured by preparing six test pieces according to Procedure 1 and three times on the anode side and three times on the cathode side.
- the 90 ° peel strength is obtained by measuring the strength until the first peeling of the interface existing between the solid polymer electrolyte membrane 40 and the reinforcing layer is completely peeled off through a load cell.
- the average value is obtained for the portion where the strength value is stable, that is, the portion excluding the values at the start and end of the peel strength measurement, and the peel strength is obtained. Then, an average value of two measurement values with stable peel strength was calculated, and this average value was obtained by dividing the test piece by the width of 10 mm.
- the dimensional change rate of the second laminate or membrane catalyst layer assembly was measured by the following procedure.
- (Procedure 1) After placing the second laminate in an atmosphere at a temperature of 25 ° C. and a relative humidity of 50% for 16 hours or more, the length and width are measured at the center of the sample, and the average dimension (a ) was calculated.
- (Procedure 2) The 2nd laminated body was immersed in 80 degreeC warm water for 3 hours.
- the membrane electrode assembly is incorporated into the power generation cell, the membrane electrode assembly is maintained at the temperature shown in the table, hydrogen (availability 70%) for the anode, and air (availability 50%) for the cathode, respectively. Pressurized and supplied at the indicated pressure (absolute pressure). The gas humidity was set to the relative humidity shown in the table for both hydrogen and air, and the cell voltage at the current density shown in the table was recorded.
- the membrane electrode assembly was incorporated into a power generation cell, and the resistance was measured by the current interruption method under the same conditions as those for measuring the cell voltage.
- the membrane electrode assembly is incorporated into a power generation cell, the temperature of the membrane electrode assembly is maintained at 80 ° C., hydrogen is applied to the anode at 50 cc / min, and nitrogen is applied to the cathode at 200 cc / min, each at 150 kPa (absolute pressure). Supplied.
- the humidity of the gas is set to 100% relative humidity for both hydrogen and air, and the cathode potential with respect to the anode is set to 0.5 mV / min from 0.08 V to 0.5 V using a potentiostat (Solartron, 1287).
- the vehicle was run at a high speed, and the current value at that time was recorded on a personal computer together with the potential. From the recorded current value and potential, the slope of the current value with respect to the potential in the range of 0.2 V to 0.5 V was obtained by the least square method, and the reciprocal of the slope was defined as the insulation resistance.
- the membrane electrode assembly was incorporated into a power generation cell (electrode area 25 cm 2 ), and the cell temperature was 80 ° C., and nitrogen was supplied to the anode and cathode at 1 L / min.
- the process of supplying the gas with a humidity of 150% relative humidity for both the anode and the cathode for 2 minutes and then supplying the gas with the relative humidity of 0% for 2 minutes was repeated as one cycle. Every 100 cycles, a pressure difference was produced between the anode and the cathode, and the presence or absence of a physical gas leak was determined.
- the point of time when gas leak occurred and the gas crossover speed became 10 sccm or more was judged as the life.
- the number of cycles at that time is used as an index of durability performance. A cycle number of less than 20,000 cycles was marked with x, and a cycle number of 20,000 cycles or more was marked with ⁇ .
- the recovered amount was 121.9 g, and the GC purity was 63%.
- the recovered liquid was distilled to obtain 72.0 g of compound (d2) as a fraction having a boiling point of 80 to 84 ° C./0.67 to 0.80 kPa (absolute pressure).
- the GC purity was 98% and the yield was 56%.
- the fluid bed reactor is placed in a salt bath, and the compound (d2) is added to the fluid bed reactor so that the molar ratio of compound (d2) / N 2 is 1/20 while maintaining the reaction temperature at 340 ° C. Of 34.6 g was fed over 1.5 hours. After completion of the reaction, 27 g of liquid was obtained from a liquid nitrogen trap. The GC purity was 84%. The liquid was distilled to obtain a compound (m12) as a fraction having a boiling point of 69 ° C./0.40 kPa (absolute pressure). The GC purity was 98%.
- the autoclave (internal volume: 2575 cm 3 , stainless steel) was replaced with nitrogen and sufficiently deaerated. Under reduced pressure, 950.3 g of compound (m12), 291.4 g of compound (m21), 490.1 g of compound (3-1) as a solvent, 173.7 mg of methanol, and compound (4) as a radical initiator ) (Nippon Yushi Co., Ltd., Parroyl IPP) 873.1 mg was added, and the inside of the autoclave was deaerated to the vapor pressure.
- the internal temperature was raised to 40 ° C., TFE was introduced into the autoclave, and the pressure was adjusted to 0.44 MPaG (gauge pressure). Polymerization was carried out for 6.0 hours while keeping the temperature and pressure constant. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the gas in the system was purged. The reaction mixture was diluted with compound (3-1), compound (3-2) was added, the polymer was aggregated, and filtered. CH 3 CCl 2 F (3-2).
- polymer (P1) which is a copolymer of TFE, compound (m12) and compound (m21).
- Table 1 shows the EW, the ratio of the repeating units constituting the polymer, and the TQ value.
- the polymer (P1) was treated by the following method to obtain an acid type polymer (Q1) film.
- the polymer (P1) was added to a potassium hydroxide aqueous solution containing methanol with heating to hydrolyze the —SO 2 F group to convert it into —SO 3 K group.
- the polymer was washed with water and added to an aqueous sulfuric acid solution to obtain an acid type polymer (Q1) in which —SO 3 K groups were converted to sulfonic acid groups.
- the polymer (Q1) dispersion was applied to the surface of an ETFE film (Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m) with a die coater, dried for 15 minutes in an 80 ° C. dryer, and further a 160 ° C. dryer.
- the film was heat-treated for 1 hour to obtain a polymer (Q1) film (solid polymer electrolyte membrane, thickness: 20 ⁇ m).
- the softening temperature, glass transition temperature, and proton conductivity of the polymer (Q1) film were measured. The results are shown in Table 2.
- a polymer (H1) comprising a unit based on TFE and a unit (11) (ion exchange capacity: 1.1 meq / g dry resin) is dispersed in ethanol, and an ion exchange resin liquid having a solid content concentration of 10 mass% ( A) was prepared.
- vapor-grown carbon fiber manufactured by Showa Denko KK, VGCF-H, fiber diameter: about 150 nm, fiber length: 10 to 20 ⁇ m
- ion exchange resin liquid (A) 30 g was added, stirred well, and further mixed and pulverized using an ultrasonic application device to obtain a conductive coating liquid (a).
- the mass ratio (vapor-grown carbon fiber / polymer (H1)) between the vapor-grown carbon fiber and the polymer (H1) in the conductive coating liquid (a) was 1 / 0.3.
- a polypropylene nonwoven fabric (weight per unit area: 5 g / m 2 , average fiber diameter: 2 ⁇ m, thickness: 40 ⁇ m) was prepared as a sheet-like reinforcing material.
- a polypropylene non-woven fabric is placed on the surface of an ETFE film (Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m), and an aqueous solution of 50% by mass of ethanol is contained in the non-woven fabric and adhered to the ETFE film. And dried for 15 minutes in a dryer to fix on the surface of the ETFE film.
- ETFE film Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m
- the conductive coating liquid (a) was applied to the surface of the polypropylene nonwoven fabric using a bar coater, and then dried in an oven at 80 ° C. for 15 minutes to form a reinforcing layer.
- the thickness of the reinforcing layer was approximately 70 ⁇ m.
- an intermediate layer having a total thickness of about 30 ⁇ m was formed simultaneously on both sides of the reinforcing layer.
- the catalyst layer coating solution (b) is applied to the surface of the reinforcing layer formed in step (II) using a die coater so that the platinum amount is 0.5 mg / cm 2, and dried at 80 ° C. It was dried in a container for 15 minutes, and further subjected to heat treatment for 30 minutes in a dryer at 140 ° C. to obtain a first laminate (B1).
- a 20 ⁇ m thick polymer (Q1) film obtained in step (I) was prepared as a solid polymer electrolyte membrane.
- the polymer (Q1) film and the two first laminates (B1) are stacked so that the polymer (Q1) film and the catalyst layer are in contact with each other, and these are placed in a press machine heated to 130 ° C. in advance. And was hot-pressed at a pressure of 3 MPa for 3 minutes.
- the ETFE film was removed to obtain a second laminate (C1) having an electrode area of 25 cm 2 .
- the 90 ° peel strength and the dimensional change rate were measured. The results are shown in Table 3.
- Example 2 A second laminate (C2) and a membrane electrode assembly (D2) were obtained in the same manner as in Example 1 except that the basis weight of the polypropylene nonwoven fabric as the sheet-like reinforcing material was changed to 3 g / m 2 .
- the thickness of the reinforcing layer was approximately 50 ⁇ m.
- the second laminate (C2) was measured for 90 ° peel strength and dimensional change. The results are shown in Table 3. With respect to the membrane / electrode assembly (D2), the cell voltage and the resistance were measured, and a wet-dry cycle test was conducted. The results are shown in Table 3.
- the conductive coating liquid (a) was applied to the surface of the stretched porous PTFE film using a bar coater, and then dried in an oven at 80 ° C. for 15 minutes to form a reinforcing layer.
- the thickness of the reinforcing layer was approximately 50 ⁇ m.
- Steps (III) to (V) In Steps (III) to (V), a second laminate (C3) and a membrane electrode assembly (D3) were obtained in the same manner as in Example 1 except that the reinforcing layer was changed. For the second laminate (C3), the 90 ° peel strength and the dimensional change rate were measured. The results are shown in Table 3. With respect to the membrane / electrode assembly (D3), the cell voltage and the resistance are measured, and the wet-dry cycle test is performed. The results are shown in Table 3.
- Carbon paper with an intermediate layer was placed on both sides of the second laminate (C1) obtained in step (IV) of Example 1 to obtain a membrane electrode assembly (D4).
- the cell voltage and resistance of the membrane / electrode assembly (D4) were measured.
- a wet-dry cycle test is also performed. The results are shown in Table 3.
- ETFE constituting the ETFE nonwoven fabric was a continuous fiber, and the aspect ratio was at least 10,000.
- the basis weight of the ETFE nonwoven fabric was 10 g / m 2 , the average fiber diameter was 5 ⁇ m, and the thickness was 60 ⁇ m.
- a reinforcing layer was formed in the same manner as in Example 3 except that the stretched porous PTFE film was changed to an ETFE nonwoven fabric.
- the thickness of the reinforcing layer was approximately 90 ⁇ m.
- an intermediate layer having a total thickness of approximately 30 ⁇ m was formed on both sides of the reinforcing layer at the same time.
- Steps (III) to (IV) In steps (III) to (IV), a second laminate (C5) was obtained in the same manner as in Example 1 except that the reinforcing layer was changed. The second laminate (C5) was measured for 90 ° peel strength and dimensional change. The results are shown in Table 3.
- the catalyst layer coating solution (b) is applied to the surface of an ETFE film (Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m) using a die coater so that the platinum amount is 0.5 mg / cm 2. And dried in an oven at 80 ° C. for 15 minutes to form a catalyst layer.
- ETFE film Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m
- a 20 ⁇ m thick polymer (Q1) film obtained in step (I) of Example 1 was prepared as a solid polymer electrolyte membrane.
- the polymer (Q1) film and the two ETFE films with the catalyst layer are stacked so that the polymer (Q1) film and the catalyst layer are in contact with each other, and these are put in a press machine preheated to 130 ° C. Hot pressing was performed at a pressure of 3 MPa for 3 minutes.
- the ETFE film was removed to obtain a membrane / catalyst layer assembly having an electrode area of 25 cm 2 .
- the dimensional change rate of the membrane / catalyst layer assembly was measured. The results are shown in Table 3.
- Carbon paper (H2315T10A, manufactured by NOK) subjected to water repellent treatment was disposed on both sides of the membrane catalyst layer assembly to obtain a membrane electrode assembly (D6).
- the cell voltage and resistance of the membrane / electrode assembly (D6) were measured.
- a wet-dry cycle test is also performed. The results are shown in Table 3.
- Example 7 The polymer (Q1) is dispersed in a mixed dispersion medium of ethanol and water to prepare a polymer (Q1) dispersion having a solid content concentration of 13% by mass.
- the same polypropylene non-woven fabric as used in Example 2 was immersed in the polymer (Q1) dispersion with the edges restrained, and pulled up at a rate of 100 mm / min. Is impregnated into the nonwoven fabric. After repeating this dipping and pulling operation three times, in a restrained state, it was dried at 55 ° C. for 1 hour, then subjected to a heat treatment for 30 minutes in a 140 ° C.
- a solid polymer electrolyte membrane having a thickness of about 25 ⁇ m reinforced from the inside with a polypropylene non-woven fabric is obtained by being hot-pressed for 3 minutes at a press pressure of 3 MPa.
- a membrane catalyst layer assembly and a membrane electrode assembly (D7) are obtained in the same manner as in Example 6 except that this solid polymer electrolyte membrane is used.
- the dimensional change rate is measured for the membrane catalyst layer assembly.
- the results are shown in Table 3.
- the cell voltage and resistance of the membrane / electrode assembly (D7) are measured.
- a wet-dry cycle test is also performed. The results are shown in Table 3.
- Example 8 On the surface of an ETFE film (Asahi Glass Co., Ltd., Aflex 100N, thickness: 100 ⁇ m), only the conductive coating liquid (a) was applied and dried in an oven at 80 ° C. for 15 minutes to form a layer. . The thickness of this layer was approximately 30 ⁇ m. Further, the catalyst layer coating solution (b) was applied to the surface of this layer using a die coater so that the amount of platinum was 0.5 mg / cm 2, and dried in an oven at 80 ° C. for 15 minutes. To form a catalyst layer.
- ETFE film Asahi Glass Co., Ltd., Aflex 100N, thickness: 100 ⁇ m
- a 20 ⁇ m thick polymer (Q1) film obtained in step (I) of Example 1 was prepared as a solid polymer electrolyte membrane.
- the polymer (Q1) film and the two ETFE films with the catalyst layer are stacked so that the polymer (Q1) film and the catalyst layer are in contact with each other, and these are put in a press machine preheated to 130 ° C. Hot pressing was performed at a pressure of 3 MPa for 3 minutes.
- the ETFE film was removed to obtain a membrane / catalyst layer assembly having an electrode area of 25 cm 2 .
- the dimensional change rate is measured for the membrane catalyst layer assembly. The results are shown in Table 3.
- the polymer (Q1) was dispersed in a mixed dispersion medium of water and ethanol to obtain a polymer (Q1) dispersion having a solid content concentration of 10% by mass.
- a solution obtained by dissolving cerium nitrate in distilled water was added to the polymer (Q1) dispersion to obtain a polymer (Q2) dispersion in which about 10% of the sulfonic acid groups in the polymer (Q1) were ion-exchanged with Ce 3+ .
- the polymer (Q2) dispersion was applied to the surface of an ETFE film (Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m) with a die coater, dried in an 80 ° C. dryer for 15 minutes, and further a 160 ° C. dryer. The film was subjected to heat treatment for 1 hour to obtain a polymer (Q2) film (solid polymer electrolyte membrane, thickness: 20 ⁇ m). The EW and proton conductivity of the polymer (Q2) film were measured. The results are shown in Table 4.
- the thickness of the reinforcing layer was approximately 70 ⁇ m.
- the 2nd laminated body (C9) the dimensional change rate was measured. The results are shown in Table 6.
- Carbon paper subjected to water repellent treatment (manufactured by NOK, H2315T10A) is arranged on both sides of the second laminate (C9) with a subgasket, and a membrane electrode assembly with a subgasket as shown in FIG. (D9) was obtained.
- the membrane / electrode assembly (D9) With respect to the membrane / electrode assembly (D9), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 10 The mass ratio (vapor-grown carbon fiber / polymer (H1)) between the vapor-grown carbon fiber and the polymer (H1) in the conductive coating liquid (a) used for forming the reinforcing layer on the cathode side is 1 / 0.0.
- a second laminate (C10) and a membrane / electrode assembly (D10) with a subgasket were obtained in the same manner as in Example 9 except that the change was made to 7.
- the thickness of the reinforcing layer was approximately 70 ⁇ m.
- the 2nd laminated body (C10) the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D10), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 11 The mass ratio (vapor-grown carbon fiber / polymer (H1)) of vapor-grown carbon fiber and polymer (H1) in the conductive coating liquid (a) used for forming the anode-side reinforcing layer is 1/1.
- a second laminate (C11) and a membrane / electrode assembly (D11) with a subgasket were obtained in the same manner as in Example 9 except for the change.
- the thickness of the reinforcing layer was approximately 70 ⁇ m.
- the results are shown in Table 6. With respect to the membrane / electrode assembly (D11), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 12 A second laminate (C12) and a membrane / electrode assembly (D12) with a subgasket were obtained in the same manner as in Example 9 except that the average fiber diameter of the polypropylene nonwoven fabric as the sheet-like reinforcing material was changed to 5 ⁇ m. The thickness of the reinforcing layer was approximately 65 ⁇ m. About the 2nd laminated body (C12), the dimensional change rate was measured. The results are shown in Table 6. The membrane electrode assembly (D12) was measured for insulation resistance, cell voltage, and resistance. The results are shown in Tables 6 and 7.
- Example 13 A second laminate (C13) and a membrane electrode assembly (D13) with a subgasket were obtained in the same manner as in Example 9, except that the basis weight of the polypropylene nonwoven fabric as the sheet-like reinforcing material was changed to 10 g / m 2. It was. The thickness of the reinforcing layer was approximately 120 ⁇ m. About the 2nd laminated body (C13), the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D13), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 14 The second laminate (C14) and the membrane / electrode assembly with subgasket (D14) were the same as in Example 9, except that the thickness of the polymer (Q2) film as the solid polymer electrolyte membrane was changed to 15 ⁇ m. Got. The thickness of the reinforcing layer was approximately 70 ⁇ m. About the 2nd laminated body (C14), the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D14), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 15 The second laminate (C15) and the membrane / electrode assembly with subgasket (D15) were the same as in Example 9, except that the thickness of the polymer (Q2) film as the solid polymer electrolyte membrane was changed to 10 ⁇ m. Got. The thickness of the reinforcing layer was approximately 70 ⁇ m. About the 2nd laminated body (C15), the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D15), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 16 The second laminate (C16) and the membrane / electrode assembly with subgasket (D16) were the same as in Example 9, except that the thickness of the polymer (Q2) film as the solid polymer electrolyte membrane was changed to 5 ⁇ m. Got. The thickness of the reinforcing layer was approximately 70 ⁇ m. About the 2nd laminated body (C16), the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D16), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- the catalyst layer coating solution (b) is applied to the surface of an ETFE film (Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m) using a die coater so that the platinum amount is 0.5 mg / cm 2. And dried in an oven at 80 ° C. for 15 minutes to form a catalyst layer.
- ETFE film Asahi Glass Co., Aflex 100N, thickness: 100 ⁇ m
- a polymer (Q2) film having a thickness of 20 ⁇ m obtained in the step (I) of Example 9 was prepared.
- the polymer (Q2) film and the two ETFE films with the catalyst layer are stacked so that the polymer (Q2) film and the catalyst layer are in contact with each other, and these are placed in a press machine heated to 130 ° C. in advance. Hot pressing was performed at a pressure of 3 MPa for 3 minutes.
- the ETFE film was removed to obtain a membrane / catalyst layer assembly having an electrode area of 25 cm 2 .
- the dimensional change rate of the membrane / catalyst layer assembly was measured. The results are shown in Table 6.
- a polymer (H1) (EW: 910 g / equivalent) composed of units based on TFE and units (11) is dispersed in a mixed dispersion medium of water and ethanol, and a polymer (H1) dispersion having a solid content concentration of 20% by mass Got.
- a solution of cerium nitrate dissolved in distilled water was added to the polymer (H1) dispersion to obtain a polymer (H2) dispersion in which about 15% of the sulfonic acid groups in the polymer (H1) were ion-exchanged with Ce 3+ .
- the polymer (H2) dispersion was applied to the surface of an ETFE film (Asahi Glass Co., Ltd., Aflex 100N, thickness: 100 ⁇ m) with a die coater, dried for 15 minutes in an 80 ° C. dryer, and further a 160 ° C. dryer.
- the film was heat-treated for 1 hour to obtain a polymer (H2) film (solid polymer electrolyte membrane, thickness: 25 ⁇ m).
- the EW and proton conductivity of the polymer (H2) film were measured. The results are shown in Table 5.
- the second laminate (C18) and the membrane / electrode assembly with subgasket were the same as in Example 9, except that the polymer (Q2) film as the solid polymer electrolyte membrane was changed to the polymer (H2) film. (D18) was obtained.
- the thickness of the reinforcing layer was approximately 70 ⁇ m.
- the results are shown in Table 6. With respect to the membrane / electrode assembly (D18), insulation resistance, cell voltage and resistance were measured. The results are shown in Tables 6 and 7.
- Example 19 The second laminate (C19) and the membrane / electrode assembly with subgasket (D19) were obtained in the same manner as in Example 18 except that the thickness of the polymer (H2) film as the solid polymer electrolyte membrane was changed to 15 ⁇ m. Got. The thickness of the reinforcing layer was approximately 70 ⁇ m. About the 2nd laminated body (C19), the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D19), insulation resistance, cell voltage and resistance were measured. The results are shown in Tables 6 and 7.
- Example 20 The second laminate (C20) and the membrane / electrode assembly with subgasket (D20) were obtained in the same manner as in Example 18 except that the thickness of the polymer (H2) film as the solid polymer electrolyte membrane was changed to 5 ⁇ m. Got. The thickness of the reinforcing layer was approximately 70 ⁇ m. About the 2nd laminated body (C20), the dimensional change rate was measured. The results are shown in Table 6. With respect to the membrane / electrode assembly (D20), the insulation resistance, the cell voltage and the resistance were measured. The results are shown in Tables 6 and 7.
- Example 21 Except for changing the solid polymer electrolyte membrane to a commercially available product (manufactured by DuPont, Nafion (registered trademark) NRE211, thickness: 25 ⁇ m), the second laminate (C21) and the sub-gasket attached were the same as in Example 9.
- a membrane electrode assembly (D21) was obtained.
- the thickness of the reinforcing layer was approximately 70 ⁇ m.
- the results are shown in Table 6. With respect to the membrane / electrode assembly (D21), insulation resistance, cell voltage and resistance were measured. The results are shown in Tables 6 and 7.
- the membrane electrode assembly of the present invention is useful as a membrane electrode assembly for a polymer electrolyte fuel cell that is operated in an environment where low humidification conditions and wet and dry conditions are repeated.
- the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-074447 filed on March 21, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
(1)多孔質微細構造を有する延伸膨張テトラフルオロエチレン膜にイオン交換樹脂を含浸させた厚さ約25μm以下の薄い複合膜(特許文献1)
(2)無作為に配向した個々の繊維の多孔質体内にイオン伝導性ポリマーを含ませた複合膜(特許文献2)。
(3)固体高分子電解質膜の少なくとも片面に、導電性ナノ繊維を含む補強材を配置した膜電極接合体(特許文献3)。
(2)の複合膜も、充分な化学安定性および量産性を有する多孔質体を選定した場合、補強されていない膜に比べて、イオン伝導性が低下してしまい、特に低加湿条件での発電性能が低くなる問題がある。
(3)の膜電極接合体においては、寸法安定性および機械的強度はいまだ不充分であり、特に固体高分子電解質膜の厚さが25μm以下の場合には、前記膨潤と収縮との繰り返しに耐えうることができない。
前記補強層は、結着剤をさらに含み、該結着剤は、含フッ素イオン交換樹脂であることが好ましい。
前記導電性ファイバーはカーボンファイバーであり、該カーボンファイバーの平均繊維径は、50~300nmであり、平均繊維長は、5~30μmであることが好ましい。
前記シート状補強材は、複数の細孔を有し、かつ平均細孔径は、0.4~7μmであることが好ましい。
前記シート状補強材は、複数の繊維からなり、かつ該繊維の平均繊維径は、0.2~7μmであることが好ましい。
前記シート状補強材は、ポリテトラフルオロエチレンからなる多孔質フィルムであることが好ましい。
前記補強層に接して、中間層をさらに有することが好ましい。
前記固体高分子電解質膜のEWは、900g/当量以下であることが好ましい。
前記固体高分子電解質膜は、下式(U1)で表される繰り返し単位と下式(U2)で表される繰り返し単位とを有し、当量重量が400~900g/当量であるポリマー(Q)からなる固体高分子電解質膜であることが好ましい。
固体高分子形燃料電池用膜電極接合体の周縁部に配置されたフレーム状のサブガスケットをさらに有していてもよい。
本発明の固体高分子形燃料電池は、低加湿条件においても安定的発電が可能であり、加湿器などの周辺機器を簡素化することができることから、コスト的、小型化に有利である。
20 カソード
22 触媒層
24 補強層
26 ガス拡散層
28 中間層
30 アノード
32 触媒層
34 補強層
36 ガス拡散層
38 中間層
80 サブガスケット
また、本明細書においては、式(2)で表される化合物を化合物(2)と記す。他の式で表される化合物も同様に記す。
本発明の固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)は、カソードまたはアノードの少なくとも一方が補強層を有し、この補強層で固体高分子電解質膜を外側から補強することにより、固体高分子電解質膜の寸法変化を充分に抑えつつ、固体高分子電解質膜を内部から補強する場合に比べて抵抗の上昇を抑えて発電特性を向上させることができる。特に、低加湿条件での発電特性を高くすることができる。
触媒層22および触媒層32(以下、まとめて触媒層とも記す。)は、触媒およびイオン交換樹脂を含む層である。触媒層22および触媒層32は、成分、組成、厚さ等が同じ層であってもよく、異なる層であってもよい。
カーボン担体の比表面積は、200m2/g以上が好ましい。カーボン担体の比表面積は、BET比表面積装置により、カーボン表面への窒素吸着により測定する。
白金または白金合金の担持量は、担持触媒(100質量%)のうち、10~70質量%が好ましい。
ポリマー(H)は、テトラフルオロエチレン(以下、TFEと記す。)に基づく単位と、単位(1)とを有するコポリマーである。
ただし、Xはフッ素原子またはトリフルオロメチル基であり、mは0~3の整数であり、nは1~12の整数であり、pは0または1である。
CF2=CFO(CF2)n1SO2F ・・・(2-1)、
CF2=CFOCF2CF(CF3)O(CF2)n2SO2F ・・・(2-2)、
CF2=CF(OCF2CF(CF3))m3O(CF2)n3SO2F ・・・(2-3)。
ただし、n1、n2、n3は1~8の整数であり、m3は1~3の整数である。
ポリマー(Q)は、単位(U1)と単位(U2)とを有するコポリマーである。
単結合は、CY1またはCY2の炭素原子と、SO2のイオウ原子とが直接結合していることを意味する。
有機基は、炭素原子を1以上含む基を意味する。
Q1、Q2のパーフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、パーフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。
パーフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
パーフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。炭素数が6以下であれば、原料の含フッ素モノマーの沸点が低くなり、蒸留精製が容易となる。また、炭素数が6以下であれば、ポリマー(Q)の当量重量の増加が抑えられ、プロトン伝導率の低下が抑えられる。
Q1、Q2の少なくとも一方は、エーテル性の酸素原子を有する炭素数1~6のパーフルオロアルキレン基であることが好ましい。エーテル性の酸素原子を有する炭素数1~6のパーフルオロアルキレン基を有する含フッ素モノマーは、フッ素ガスによるフッ素化反応を経ずに合成できるため、収率が良好で、製造が容易である。
パーフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。パーフルオロアルキル基としては、パーフルオロメチル基、パーフルオロエチル基等が好ましい。
単位(U1)が2つ以上のRf1を有する場合、Rf1は、それぞれ同じ基であってもよく、それぞれ異なる基であってもよい。
-(SO2X1(SO2Rf1)a)-H+基としては、スルホン酸基(-SO3 -H+基)、スルホンイミド基(-SO2N(SO2Rf1)-H+基)、またはスルホンメチド基(-SO2C(SO2Rf1)2)-H+基)が挙げられる。
Y1としては、フッ素原子、またはエーテル性の酸素原子を有していてもよい炭素数1~6の直鎖のパーフルオロアルキル基であることが好ましい。
Q3のパーフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、パーフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。
パーフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよい。
パーフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。炭素数が6以下であれば、ポリマー(Q)の当量重量の増加が抑えられ、プロトン伝導率の低下が抑えられる。
パーフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。パーフルオロアルキル基としては、パーフルオロメチル基、パーフルオロエチル基等が好ましい。
-(SO2X2(SO2Rf2)b)-H+基としては、スルホン酸基(-SO3 -H+基)、スルホンイミド基(-SO2N(SO2Rf2)-H+基)、またはスルホンメチド基(-SO2C(SO2Rf2)2)-H+基)が挙げられる。
Y2としては、フッ素原子またはトリフルオロメチル基が好ましい。
ポリマー(Q)は、さらに、後述する他のモノマーに基づく繰り返し単位(以下、他の単位と記す。)を有していてもよい。他の単位の割合は、ポリマー(Q)の、当量重量が後述の好ましい範囲となるように、適宜調整すればよい。
TFEに基づく繰り返し単位の割合は、機械的強度および化学的な耐久性の点から、ポリマー(Q)を構成する全繰り返し単位(100モル%)のうち、20モル%以上が好ましく、40モル%以上がより好ましい。
TFEに基づく繰り返し単位の割合は、電気抵抗の点から、ポリマー(Q)を構成する全繰り返し単位(100モル%)のうち、92モル%以下が好ましく、87モル%以下がより好ましい。
ポリマー(Q)は、化学的な耐久性の点から、パーフルオロポリマーであることが好ましい。
従来から汎用的に用いられているポリマーのEWは、電気抵抗と機械的強度とのバランスから、900~1100g/当量とされている。一方、ポリマー(Q)においては、EWを小さくして、電気抵抗を下げても、機械的強度を保持できる。
ポリマー(Q)の質量平均分子量は、-SO2F基を有する前駆体ポリマーのTQ値を測定することにより評価できる。TQ値(単位:℃)は、ポリマーの分子量の指標であり、長さ1mm、内径1mmのノズルを用い、2.94MPaの押出し圧力の条件で前駆体ポリマーの溶融押出しを行った際の押出し量が100mm3/秒となる温度である。たとえば、TQ値が200~300℃であるポリマーは、ポリマーを構成する繰り返し単位の組成で異なるが、質量平均分子量が1×105~1×106に相当する。
ポリマー(Q)は、たとえば、下記の工程を経て製造できる。
(i)化合物(u1)、化合物(u2)、および必要に応じて他のモノマーを重合し、-SO2F基を有する前駆体ポリマー(以下、ポリマー(P)と記す。)を得る工程。
(iii)ポリマー(P)の-SO2F基をスルホン酸基、スルホンイミド基、またはスルホンメチド基に変換し、ポリマー(Q)を得る工程。
化合物(u1)としては、化合物(m1)が好ましく、化合物(m11)、化合物(m12)または化合物(m13)がより好ましい。
CF2=CF-(OCF2CFZ)u-O-Rf ・・・(m3)、
CF2=CF-O-(CF2)vCF3 ・・・(m31)、
CF2=CF-OCF2CF(CF3)-O-(CF2)wCF3 ・・・(m32)、
CF2=CF-(OCF2CF(CF3))x-O-(CF2)2CF3 ・・・(m33)。
ただし、Zは、フッ素原子またはトリフルオロメチル基であり、Rfは、直鎖状または分岐状の炭素数1~12のパーフルオロアルキル基であり、uは、0~3の整数であり、vは、1~9の整数であり、wは、1~9の整数であり、xは、2または3である。
他のモノマーのうち、機械的強度および化学的な耐久性の点から、パーフルオロモノマーが好ましく、TFEがより好ましい。
重合は、ラジカルが生起する条件で行われる。ラジカルを生起させる方法としては、紫外線、γ線、電子線等の放射線を照射する方法、ラジカル開始剤を添加する方法等が挙げられる。
ラジカル開始剤としては、ビス(フルオロアシル)パーオキシド類、ビス(クロロフルオロアシル)パーオキシド類、ジアルキルパーオキシジカーボネート類、ジアシルパーオキシド類、パーオキシエステル類、アゾ化合物類、過硫酸塩類等が挙げられ、不安定末端基が少ないポリマーFが得られる点から、ビス(フルオロアシル)パーオキシド類等のパーフルオロ化合物が好ましい。
非イオン性のラジカル開始剤としては、ビス(フルオロアシル)パーオキシド類、ビス(クロロフルオロアシル)パーオキシド類、ジアルキルパーオキシジカーボネート類、ジアシルパーオキシド類、パーオキシエステル類、ジアルキルパーオキシド類、ビス(フルオロアルキル)パーオキシド類、アゾ化合物類等が挙げられる。
分散媒には、助剤として前記溶媒;懸濁粒子の凝集を防ぐ分散安定剤として界面活性剤;分子量調整剤として炭化水素系化合物(ヘキサン、メタノール等。)等を添加してもよい。
不安定末端基とは、連鎖移動反応によって形成される基、ラジカル開始剤に基づく基等であり、具体的には、-COOH基、-CF=CF2基、-COF基、-CF2H基等である。不安定末端基をフッ素化または安定化することにより、ポリマー(Q)の分解が抑えられ、耐久性が向上する。
ポリマー(P)とフッ素ガスとを接触させる際の温度は、室温~300℃が好ましく、50~250℃がより好ましく、100~220℃がさらに好ましく、150~200℃が特に好ましい。
ポリマー(P)とフッ素ガスとの接触時間は、1分~1週間が好ましく、1~50時間がより好ましい。
たとえば、-SO2F基をスルホン酸基に変換する場合は、工程(iii-1)を行い、-SO2F基をスルホンイミド基に変換する場合は、工程(iii-2)を行う。
(iii-1)ポリマー(P)の-SO2F基を加水分解してスルホン酸塩とし、スルホン酸塩を酸型化してスルホン酸基に変換する工程。
(iii-2)ポリマー(P)の-SO2F基をイミド化して塩型のスルホンイミド基(-SO2NMSO2Rf1基)(ただし、Mは、アルカリ金属または1~4級のアンモニウムである。)とし、さらに酸型化して酸型のスルホンイミド基(-SO2NHSO2Rf1基)に変換する工程。
加水分解は、たとえば、溶媒中にてポリマー(P)と塩基性化合物とを接触させて行う。
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。溶媒としては、水、水と極性溶媒との混合溶媒等が挙げられる。極性溶媒としては、アルコール類(メタノール、エタノール等。)、ジメチルスルホキシド等が挙げられる。
酸型化は、たとえば、スルホン酸塩を有するポリマーを、塩酸、硫酸等の水溶液に接触させて行う。
加水分解および酸型化は、通常、0~120℃にて行う。
イミド化としては、下記の方法が挙げられる。
(iii-2-1)-SO2F基と、Rf1SO2NHMとを反応させる方法。
(iii-2-2)アルカリ金属水酸化物、アルカリ金属炭酸塩、MF、アンモニアまたは1~3級アミンの存在下で、-SO2F基と、Rf1SO2NH2とを反応させる方法。
(iii-2-3)-SO2F基と、Rf1SO2NMSi(CH3)3とを反応させる方法。
酸型化は、塩型のスルホンイミド基を有するポリマーを、酸(硫酸、硝酸、塩酸等。)で処理することにより行う。
化合物(u1’)、(u2’)は、化合物(u1)、(u2)の不飽和結合に塩素または臭素を付加し、-SO2F基を工程(iii-2)と同様の方法でスルホンイミド基に変換した後、金属亜鉛を用いて脱塩素または脱臭素反応を行うことにより製造できる。
単位(U1)の側鎖は二つのイオン性基を有しており、一つのイオン性基を側鎖に有する単位(U2)にくらべて側鎖の運動性が低い。そのため、単位(U2)を有し、かつ単位(U1)を有さないポリマーに比べて、単位(U1)と単位(U2)とを有するポリマー(Q)の軟化温度が高くなると考えられる。また、単位(U2)の側鎖は、ポリマーの主鎖の屈曲性を高める効果があるため、単位(U1)を有し、かつ単位(U2)を有さないポリマーに比べて、単位(U1)と単位(U2)とを有するポリマー(Q)は、柔軟性が高いと考えられる。
触媒層の厚さは、触媒層の断面をSEM(走査型電子顕微鏡)等によって観察することにより測定する。
撥水化剤としては、TFEとヘキサフルオロプロピレンとのコポリマー、TFEとパーフルオロ(アルキルビニルエーテル)とのコポリマー、ポリテトラフルオロエチレン(以下、PTFEと記す。)等が挙げられる。撥水化剤としては、触媒層を撥水化処理しやすい点から、溶媒に溶解できる含フッ素ポリマーが好ましい。
撥水化剤の量は、触媒層(100質量%)中、0.01~30質量%が好ましい。
補強層24および補強層34(以下、まとめて補強層とも記す。)は、ポリマーからなる多孔質のシート状補強材と、導電性ファイバーと、必要に応じて結着剤とを含む層である。補強層24および補強層34は、成分、組成、厚さ等が同じ層であってもよく、異なる層であってもよい。
多孔質フィルムとしては、PTFEからなる多孔質フィルムが好ましい。PTFEからなる多孔質フィルムは、PTFEフィルムを延伸して製造される。該製造方法によれば、量産性、製造コストに優れ、100μm以下の薄いフィルムを製造できる。
シート状補強材の平均繊維径は、SEM等によって表面を観察することにより測定する。
シート状補強材の平均細孔径は、バブルポイント法(JIS K3832)で測定できる。
シート状補強材の厚さは、デジマチックインジケータ(Mitutoyo社製、543-250、フラット測定端子:φ5mm)を用いて4箇所の厚さを測定し、これらを平均して算出する。
カーボンファイバーとしては、微細でかつ電子伝導性が高い点から、カーボンナノファイバーが好ましい。カーボンナノファイバーとしては、気相成長炭素繊維、カーボンナノチューブ(シングルウォール、ダブルウォール、マルチウォール、カップ積層型等。)等が挙げられる。
カーボンファイバーの繊維径および繊維長は、光学顕微鏡、SEM、TEM(透過型電子顕微鏡)等による観察により測定する。カーボンナノファイバーの繊維径および繊維長は、それぞれ、カーボンナノファイバーの平均繊維径および平均繊維長を示す。
補強層の厚さは、補強層の断面をSEM等によって観察することにより測定する。
ガス拡散層26およびガス拡散層36(以下、まとめてガス拡散層とも記す。)としては、カーボンペーパー、カーボンクロス、カーボンフェルト等のガス拡散性基材が挙げられる。
本発明の膜電極接合体においては、ガス拡散層を設けた場合、ガス拡散層を構成する繊維等が、固体高分子電解質膜に突き刺さる等の物理的なダメージを補強層によって防ぐことができる。これにより膜電極接合体の短絡を抑えることができ、膜電極接合体の耐久性をより向上させることができる。
さらに、補強層が触媒層とガス拡散層との間に存在することにより、ガス拡散層を構成する繊維等による触媒層や固体高分子電解質膜の両方への物理的ダメージを防ぐことができ、膜電極接合体の短絡をより一層抑え、膜電極接合体の耐久性をさらに向上させることができる。
ガス拡散層の表面は、膜電極接合体の導電性の点から、撥水性の含フッ素ポリマーおよび導電性カーボンを含む分散液よって撥水処理されていることがより好ましい。
ガス拡散層の撥水処理された表面が、触媒層、補強層、または後述の中間層に接する。
ガス拡散層の厚さは、デジマチックインジケータ(Mitutoyo社製、543-250、フラット測定端子:φ5mm)を用いて4箇所の厚さを測定し、これらを平均して算出する。
本発明の膜電極接合体は、触媒層と補強層との間に、導電性ファイバーと結着剤とを含み、シート状補強材を含まない中間層(図示略)を有していてもよい。また、図2に示すように、補強層とガス拡散層との間に、同様に中間層28および中間層38(以下、まとめて中間層とも記す。)を有していてもよい。
中間層の厚さは、中間層の断面をSEM等によって観察することにより測定する。
固体高分子電解質膜40は、イオン交換樹脂の膜である。
イオン交換樹脂としては、耐久性の点から、含フッ素イオン交換樹脂が好ましく、イオン性基を有するパーフルオロカーボンポリマー(エーテル性酸素原子を含んでいてもよい。)がより好ましく、ポリマー(H)またはポリマー(Q)がさらに好ましく、ポリマー(Q)が特に好ましい。ポリマー(Q)の膜は、従来のイオン交換樹脂の膜よりも高い軟化温度を有し、かつ柔軟性が高いため、電気抵抗が低く、従来のイオン交換樹脂の膜よりも高い耐熱性を有し、かつ湿潤状態における膨潤と乾燥状態における収縮とを繰り返しても破損しにくい。
固体高分子電解質膜40の厚さは、固体高分子電解質膜40の断面をSEM等によって観察することにより測定する。
滴定によりあらかじめEWがわかっている2種のポリマー(EWが1000g/当量のものと909g/当量のもの)を用意し、それぞれのポリマーからなる2種の膜(厚さ200μm)について、蛍光X線(リガク社製、RIX3000)を用いてイオウ原子に基づくピーク強度を測定し、該ピーク強度とEWとの関係を示す検量線を作成する。ポリマー(P)またはポリマー(F)を、後述するTQ値の温度でプレスして厚さ200μmの膜を作製し、蛍光X線でイオウ原子に基づくピーク強度を測定し、前記検量線にてEWを求める。なお、ポリマー(P)またはポリマー(F)の-SO2F基の割合(モル比)と、ポリマー(Q)またはポリマー(H)の-SO3H基の割合(モル比)は同じであるため、ポリマー(P)またはポリマー(F)のEWは、そのままポリマー(Q)またはポリマー(H)のEWとして扱うことができる。
本発明の膜電極接合体は、図3に示すように、膜電極接合体10の周縁部の固体高分子電解質膜40および補強層を挟み込むように配置された2つのフレーム状のサブガスケット80を有していてもよい。サブガスケット80は、外縁部が固体高分子電解質膜40の周縁部と接し、内縁部が補強層の周縁部とガス拡散層の周縁部との間に挟まれている。
サブガスケット80は、外縁部が固体高分子電解質膜40と接することができる大きさを有し、かつ開口部の面積が補強層、ガス拡散層の面積よりも小さくされたものである。この際、固体高分子電解質膜40の面積は、補強層、ガス拡散層の面積よりも大きくされている。
サブガスケット80の材料としては、非フッ素系樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリイミド等。)、含フッ素樹脂(PTFE、ETFE、FEP、PFA等。)等が挙げられる。
固体高分子電解質膜40と補強層との間に存在するすべての界面における90°剥離強度は、0.1N/cm以上が好ましく、0.3N/cm以上がより好ましく、0.5N/cm以上がさらに好ましい。該界面は、固体高分子電解質膜40と触媒層との界面および触媒層と補強層との界面である。中間層を有する場合の該界面は、固体高分子電解質膜40と触媒層との界面、触媒層と中間層との界面および中間層と補強層との界面である。
(手順1)補強層/(中間層)/触媒層/固体高分子電解質膜/触媒層/(中間層)/補強層からなる、幅10mm×長さ80mmの試験片を作製する。
(手順2)図4に示すように、試験片の末端から長さ方向の60mmまでの補強層24(34)の表面に、長さ120mmの片面粘着テープ52を粘着させる。
なお、片面粘着テープ52としては、固体高分子電解質膜40と補強層との間に存在するすべての界面における90°剥離強度よりも充分に高い粘着強度を有するものを用いる。
(手順3)図4に示すように、片面粘着テープ52を粘着させてない側の補強層34(24)の全面を、幅25mm×長さ150mm×厚さ3mmのアルミニウム板54に両面粘着テープ56で貼り付ける。
なお、両面粘着テープ56としては、固体高分子電解質膜40と補強層との間に存在するすべての界面における90°剥離強度よりも充分に高い粘着強度を有するものを用いる。
そして、片面粘着テープ52の末端を、直径6mmのステンレス製のローラ58を介して、引張り試験機(図示略)の試料取り付け部に挟持する。
(手順4)挟持された片面粘着テープ52の末端を、試験片に対して垂直方向に、速度50mm/分で引っ張り、固体高分子電解質膜40と補強層との間に存在する界面のうちの最初に剥離した界面の剥離強度を測定する。
90°剥離強度は、固体高分子電解質膜40と補強層との間に存在する界面のうちの最初に剥離し始めた界面が完全に剥離するまでの強度を、ロードセルを介して測定してパソコンに記録し、測定された強度の中で、該強度の値が安定している部分、すなわち剥離強度の測定の開始時と終了時の値を除いた部分について平均値を求めてそれを剥離強度とし、剥離強度の3回の平均値を算出し、この平均値を、試験片の幅10mmで除して求められる。
膜電極接合体10の絶縁抵抗は、1500Ω/cm2以上が好ましい。該絶縁抵抗が1500Ω/cm2未満では、ガス拡散層を構成する繊維等が固体高分子電解質膜40に食い込み、または貫通しているため、アノードとカソードが電気的に短絡していることが考えられ、該短絡箇所を流れる電流による局所発熱や、該短絡箇所でのガスリークによって反応ガスが直接燃焼することによる局所的な温度上昇によって、固体高分子電解質膜40にしだいに大きな穴を生じさせる可能性が高くなる。絶縁抵抗が1500Ω/cm2以上であれば、電気的な短絡が生じている可能性は小さく、短絡を原因として固体高分子電解質膜40に穴を生じさせることはない。
膜電極接合体10を発電用セルに組み込み、膜電極接合体10の温度を80℃に維持し、アノードに水素を50cc/分、カソードに窒素を200cc/分、それぞれ150kPa(絶対圧力)に加圧して供給する。ガスの加湿度を、水素および空気ともに相対湿度100%にし、アノードに対するカソードの電位を、ポテンショスタットを用いて0.08Vから0.5Vまで0.5mV/分の速さで走引して、その時の電流値を電位とともにパソコンに記録する。記録した電流値と電位から、電位が0.2Vから0.5Vの範囲について電位に対する電流値の傾きを最小二乗法で求め、その傾きの逆数を絶縁抵抗とする。
膜電極接合体10の製造方法としては、たとえば、下記の工程(I)~(V)を有する方法が挙げられる。
(I)固体高分子電解質膜40を形成する工程。
(II)補強層を形成する工程。
(III)補強層の表面に触媒層を形成し、補強層/触媒層から構成される第1の積層体を得る工程。
(IV)固体高分子電解質膜40と第1の積層体とを接合して、補強層/触媒層/固体高分子電解質膜/触媒層/補強層から構成される第2の積層体を得る工程。
(V)第2の積層体とガス拡散性基材とを接合し、膜電極接合体10を得る工程。
固体高分子電解質膜40は、たとえば、下記方法によって形成される。
(I-1)ポリマー(F)またはポリマー(P)を膜状に成形した後、前記工程(iii)を行う方法。
(I-2)前記工程(iii)で得られたポリマー(H)またはポリマー(Q)を膜状に成形する方法。
ポリマー(F)またはポリマー(P)を膜状に成形する方法としては、ポリマー(F)およびポリマー(P)が溶融流動性に優れる点から、押出成形法、加圧プレス成形法、延伸法等が挙げられる。
ポリマー(H)またはポリマー(Q)を膜状に成形する方法としては、ポリマー(H)またはポリマー(Q)の液状組成物を基材フィルムの表面に塗工、乾燥する方法(キャスト法)が挙げられる。
液状組成物は、水酸基を有する有機溶媒および水を含む分散媒に、ポリマー(H)またはポリマー(Q)を分散させた分散液である。
水酸基を有する有機溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
水酸基を有する有機溶媒の割合は、分散媒(100質量%)のうち、1~90質量%が好ましく、1~60質量%がより好ましい。
液状組成物は、含フッ素溶媒を含んでいてもよい。含フッ素溶媒としては、たとえば、ポリマー(Q)の製造における溶液重合法にて用いた含フッ素溶媒が挙げられる。
固体高分子電解質膜40は、必要に応じて過酸化水素水で処理してもよい。
基材フィルムの表面に、シート状補強材を配置した後、シート状補強材に、導電性ファイバーと必要に応じて結着剤とを含む分散液(以下、導電性塗工液と記す。)を塗工し、浸透させ、乾燥して補強層を形成する。
溶媒としては、結着剤がイオン交換樹脂の場合、水とアルコール類(エタノール等。)との混合溶媒が好ましい。
導電性塗工液の固形分濃度は、5~30質量%が好ましい。
塗工方法としては、公知の方法を用いればよい。
乾燥温度は、40~130℃が好ましい。
補強層の表面に、触媒とイオン交換樹脂とを含む塗工液(触媒層形成用塗工液と記す。)を塗工し、乾燥して触媒層を形成することにより、補強層/触媒層から構成される第1の積層体を得る。
溶媒としては、水とアルコール類(エタノール等。)との混合溶媒が好ましい。
塗工方法としては、公知の方法を用いればよい。
乾燥温度は、40~130℃が好ましい。
固体高分子電解質膜40と触媒層とが接するように、高分子電解質膜と2つの第1の積層体とを接合することにより、補強層/触媒層/固体高分子電解質膜/触媒層/補強層から構成される第2の積層体を得る。
プレス機内のプレス板の温度は、100~150℃が好ましい。
プレス圧力は、0.5~4.0MPaが好ましい。
なお、2つの第1の積層体は、工程(II)~(III)を経ていれば、同じものであってもよく、異なるものであってもよい。
補強層の表面から基材フィルムを剥離した後、2つのガス拡散基材と第2の積層体を接合することにより、膜電極接合体を得る。
また、サブガスケット80を配置する場合は、図5に示すように、第2の積層体100の上下に、2枚のフレーム状のサブガスケット80を配置した後、2つのガス拡散基材(ガス拡散層26、36)と、サブガスケット80付の第2の積層体100とを接合することにより、図3に示すサブガスケット80付の膜電極接合体10を得る。
なお、サブガスケット80は、液状シール材を第2の積層体100の上下にフレーム状に塗布した後、硬化させて形成してもよく、熱可塑性樹脂を熱プレスや射出により第2の積層体100の上下に成形して形成してもよい。
プレス機内のプレス板の温度は、100~150℃が好ましい。
プレス圧力は、0.5~4.0MPaが好ましい。
また、以上説明した膜電極接合体10にあっては、固体高分子電解質膜40内に補強材が存在していないため、固体高分子電解質膜40のイオン伝導性が損なわれることがない。その結果、低加湿条件においても高い発電性能を発現できる。
(i)固体高分子電解質膜40を保護するためのサブガスケット80の内縁部を補強層の周縁部に配置することにより、加熱接合の際、補強層が緩衝材となりサブガスケット80の内縁部が固体高分子電解質膜40にくい込むことを防止できる。これによって、固体高分子電解質膜40の局所的な薄膜化を抑え、機械的強度が向上する。
(ii)ガス拡散層を加熱接合した場合、ガス拡散層を構成する繊維等が固体高分子電解質膜40に突き刺さる等の物理的なダメージを補強層によって防ぐことができる。これによって、膜電極接合体10の短絡を抑えることができる。すなわち耐久性に優れる。
(iii)サブガスケット80の内縁部が補強層の周縁部にくい込むため、第2の積層体100の両面に、サブガスケット80による段差ができにくい。これによって、ガス拡散層の接合を良好に行うことができる。
また、サブガスケット80付の膜電極接合体10は、固体高分子電解質膜40とサブガスケット80とが部分的に接するように配置することにより、水素ガス等のガスリークを抑えることができる。
本発明の膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形燃料電池は、たとえば、膜電極接合体と、該膜電極接合体を挟んで対向して配置された一対のセパレータとからなるセルを、膜電極接合体とセパレータとが交互に配置されるようにスタックしたものである。
セパレータとしては、金属製セパレータ、カーボン製セパレータ、黒鉛と樹脂とを混合した材料からなるセパレータ等、各種導電性材料からなるセパレータが挙げられる。
固体高分子形燃料電池の種類としては、水素/酸素型燃料電池、直接メタノール型燃料電池(DMFC)等が挙げられる。
例1~5、9~16、18~21は実施例であり、例6~8、17は比較例である。
ポリマー(P)のEWは、下記の方法により求めた。
滴定によりあらかじめEWがわかっている2種のポリマー(EWが1000g/当量のものと909g/当量のもの)を用意し、それぞれのポリマーからなる2種の膜(厚さ200μm)について、蛍光X線(リガク社製、RIX3000)を用いてイオウ原子に基づくピーク強度を測定し、該ピーク強度とEWとの関係を示す検量線を作成した。ポリマー(P)を、後述するTQ値の温度でプレスして厚さ200μmの膜を作製し、蛍光X線でイオウ原子に基づくピーク強度を測定し、前記検量線にてEWを求めた。なお、ポリマー(P)の-SO2F基の割合(モル比)と、ポリマー(Q)の-SO3H基の割合(モル比)は同じであるため、ポリマー(P)のEWは、そのままポリマー(Q)のEWとして扱うことができる。
ポリマーのフィルムを110℃、16時間真空乾燥させたものを約2g用意し、このフィルムを30mLの0.1Nの水酸化ナトリウムに浸漬することで、フィルム中のプロトンをナトリウムイオンに置換した。ついで、0.1Nの塩酸を用いて中和滴定を行い、フィルムへのイオン交換により消費された水酸化ナトリウム量からEWを算出した。
ポリマー(P)を構成する繰り返し単位のモル比を、溶融19F-NMRにより求めた。
TQ値(単位:℃)は、ポリマーの分子量の指標であり、長さ1mm、内径1mmのノズルを用い、2.94MPaの押出し圧力の条件でポリマーの溶融押出しを行った際の押出し量が100mm3/秒となる温度である。
フローテスタCFT-500A(島津製作所社製)を用い、温度を変えてポリマー(P)の押出し量を測定し、押出し量が100mm3/秒となるTQ値を求めた。
ポリマー(Q)のフィルムのプロトン伝導率は、下記の方法により求めた。
5mm幅のポリマー(Q)のフィルムに、5mm間隔で4端子電極が配置された基板を密着させ、公知の4端子法により、温度80℃、相対湿度50%の恒温恒湿条件下にて交流10kHz、1Vの電圧でフィルムの抵抗を測定し、該結果からプロトン伝導率を算出した。該プロトン伝導率は、固体高分子電解質膜の電気抵抗の目安となる。
ポリマー(Q)の軟化温度およびガラス転移温度は、下記の方法により求めた。
動的粘弾性測定装置(アイティー計測社製、DVA200)を用い、試料幅0.5cm、つかみ間長2cm、測定周波数1Hz、昇温速度2℃/分の条件にて、ポリマー(Q)のフィルムの動的粘弾性測定を行い、貯蔵弾性率が50℃における値の半分になる値を軟化温度とした。また、tanδのピーク値からガラス転移温度(Tg)を求めた。
90°剥離強度は、下記の手順により測定した。
(手順1)第2の積層体から、幅10mm×長さ80mmの試験片を切り出した。
(手順2)図4に示すように、試験片の末端から長さ方向の60mmまでの補強層24(34)の表面に、長さ120mmの片面粘着テープ52(日東電工製、両面粘着テープNo.5015において片面の粘着層のみを使用)を粘着させた。
(手順3)図4に示すように、片面粘着テープ52を粘着させてない側の補強層34(24)の全面を、幅25mm×長さ150mm×厚さ3mmのアルミニウム板54に両面粘着テープ56で貼り付けた。
そして、片面粘着テープ52の末端を、直径6mmのステンレス製のローラ58を介して、引張り試験機(オリエンテック社製、万能試験機(テンシロン)、RTE-1210)の試料取り付け部に挟持した。
(手順4)挟持された片面粘着テープ52の末端を、試験片に対して垂直方向に、速度50mm/分で引っ張り、固体高分子電解質膜40と補強層との間に存在する界面のうちの最初に剥離した界面の剥離強度を測定した。
90°剥離強度は、固体高分子電解質膜40と補強層との間に存在する界面のうちの最初に剥離し始めた界面が完全に剥離するまでの強度を、ロードセルを介して測定してパソコンに記録し、測定された強度の中で、該強度の値が安定している部分、すなわち剥離強度の測定の開始時と終了時の値を除いた部分について平均値を求めてそれを剥離強度とし、剥離強度の安定した2回の測定値の平均値を算出し、この平均値を、試験片の幅10mmで除して求めた。
第2の積層体または膜触媒層接合体の寸法変化率は、下記の手順により測定した。
(手順1)第2の積層体を、温度25℃、相対湿度50%の雰囲気下に16時間以上置いた後、サンプルの中心部において縦と横の長さを測定し、その平均寸法(a)を算出した。
(手順2)第2の積層体を80℃の温水に3時間浸漬した。
(手順3)第2の積層体を温水に浸漬した状態で室温まで冷却し、水中から取り出してサンプルの中心部において縦と横の長さを測定し、その平均寸法(b)を算出した。
(手順4)下式から寸法変化率を算出した。
寸法変化率(%)=[寸法(b)-寸法(a)]/寸法(a)×100。
膜電極接合体を発電用セルに組み込み、膜電極接合体を表中に示す温度に維持し、アノードに水素(利用率70%)、カソードに空気(利用率50%)を、それぞれ表中に示す圧力(絶対圧力)に加圧して供給した。ガスの加湿度を、水素および空気ともに表中に示す相対湿度にし、表中に示す電流密度のときのセル電圧をそれぞれ記録した。
膜電極接合体を発電用セルに組み込み、セル電圧の測定時と同じ条件で、電流遮断法により抵抗を測定した。
膜電極接合体を発電用セルに組み込み、膜電極接合体の温度を80℃に維持し、アノードに水素を50cc/分、カソードに窒素を200cc/分、それぞれ150kPa(絶対圧力)に加圧して供給した。ガスの加湿度を、水素および空気ともに相対湿度100%にし、アノードに対するカソードの電位を、ポテンショスタット(ソーラートロン社製、1287)を用いて0.08Vから0.5Vまで0.5mV/分の速さで走引して、その時の電流値を電位とともにパソコンに記録した。記録した電流値と電位から、電位が0.2Vから0.5Vの範囲について電位に対する電流値の傾きを最小二乗法で求め、その傾きの逆数を絶縁抵抗とした。
湿潤-乾燥サイクル試験は、下記の文献に記載の方法に準じて行った。
Yeh-Hung Lai,Cortney K. Mittelsteadt,Craig S. Gittleman,David A. Dillard,”VISCOELASTIC STRESS MODEL AND MECHANICAL CHARACTERIZATION OF PERFLUOROSULFONIC ACID (PFSA) POLYMER ELECTROLYTE MEMBRANES”,Proceedings of FUELCELL2005,Third International Conference on Fuel Cell Science,Engineering and Technology,FUELCELL2005,(2005),74120.
膜電極接合体を発電用セル(電極面積25cm2)に組み込み、セル温度80℃、アノードおよびカソードにそれぞれ窒素を1L/分で供給した。その際に、ガスの加湿度をアノードおよびカソードともに相対湿度150%にして2分間供給した後、相対湿度0%にして2分間供給する工程を1サイクルとして繰り返した。100サイクルごとに、アノードとカソードとの間に圧力差を生じさせ、物理的なガスリークの有無を判定した。ガスリークが生じ、かつ、ガスクロスオーバー速度が10sccm以上になった時点を寿命と判断した。該時点におけるサイクル数を耐久性能の指標とする。
サイクル数が20000サイクル未満を×、20000サイクル以上を○とした。
下記合成ルートにより化合物(m12)を合成した。
特開昭57-176973号公報の実施例2に記載の方法と同様にして、化合物(a2)を合成した。
ジムロート冷却管、温度計、滴下ロートおよび撹拌翼付のガラス棒を備えた300cm3の4口丸底フラスコに、窒素雰囲気下、フッ化カリウム(森田化学社製、クロキャットF)の1.6gおよびジメトキシエタンの15.9gを入れた。ついで、丸底フラスコを氷浴で冷却して、滴下ロートより化合物(b11)の49.1gを32分かけて、内温10℃以下で滴下した。滴下終了後、滴下ロートより化合物(a2)の82.0gを15分かけて滴下した。内温上昇はほとんど観測されなかった。滴下終了後、内温を室温に戻して約90時間撹拌した。分液ロートで下層を回収した。回収量は127.6gであり、ガスクロマトグラフィー(以下、GCと記す。)純度は55%であった。回収液を200cm3の4口丸底フラスコに移して、蒸留を実施した。減圧度1.0~1.1kPa(絶対圧)の留分として化合物(c2)の97.7gを得た。GC純度は98%であり、収率は80%であった。
200cm3のステンレス製オートクレーブに、フッ化カリウム(森田化学社製、クロキャットF)の1.1gを入れた。脱気後、減圧下で、オートクレーブにジメトキシエタンの5.3g、アセトニトリルの5.3gおよび化合物(c2)の95.8gを入れた。
ついで、オートクレーブを氷浴で冷却して、内温0~5℃にて、ヘキサフルオロプロペンオキシドの27.2gを27分かけて加えた後、撹拌しながら内温を室温に戻して一晩撹拌した。分液ロートで下層を回収した。回収量は121.9gであり、GC純度は63%であった。回収液の蒸留により沸点80~84℃/0.67~0.80kPa(絶対圧)の留分として化合物(d2)の72.0gを得た。GC純度は98%であり、収率は56%であった。
内径1.6cmのステンレス製管を用いて、長さ40cmのU字管を作製した。該U字管の一方にガラスウールを充填し、他方にステンレス製焼結金属を目皿としてガラスビーズを充填し、流動層型反応器を作製した。流動化ガスとして窒素ガスを用い、原料を、定量ポンプを用いて連続的に供給できるようにした。出口ガスはトラップ管を用いて液体窒素で捕集した。
δ(ppm):45.5(1F),45.2(1F),-79.5(2F),-82.4(4F),-84.1(2F),-112.4(2F),-112.6(2F),-112.9(dd,J=82.4Hz,67.1Hz,1F),-121.6(dd,J=112.9Hz,82.4Hz,1F),-136.0(ddt,J=112.9Hz,67.1Hz,6.1Hz,1F),-144.9(1F)。
工程(I):
(ポリマー(P1)の合成)
オートクレーブ(内容積2575cm3、ステンレス製)を窒素で置換し、充分に脱気を行った。減圧下で、化合物(m12)の950.3g、化合物(m21)の291.4g、溶媒である化合物(3-1)の490.1g、メタノールの173.7mgおよびラジカル開始剤である化合物(4)(日本油脂社製、パーロイルIPP)の873.1mgを入れ、オートクレーブ内を蒸気圧まで脱気した。
CClF2CF2CHClF ・・・(3-1)、
(CH3)2CHOC(=O)OOC(=O)OCH(CH3)2 ・・・(4)。
反応液を化合物(3-1)で希釈した後、化合物(3-2)を加え、ポリマーを凝集させ、ろ過した。
CH3CCl2F ・・・(3-2)。
ポリマー(P1)を下記の方法で処理し、酸型のポリマー(Q1)のフィルムを得た。
まず、ポリマー(P1)を、メタノールを含む水酸化カリウム水溶液に加熱しながら加え、-SO2F基を加水分解し、-SO3K基に変換した。
ついで、該ポリマーを水洗し、硫酸水溶液に加えて、-SO3K基がスルホン酸基に変換された、酸型のポリマー(Q1)を得た。
ポリマー(Q1)分散液をETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面にダイコータで塗工し、80℃の乾燥器内で15分間乾燥させ、さらに160℃の乾燥器内で1時間の熱処理を施して、ポリマー(Q1)のフィルム(固体高分子電解質膜、厚さ:20μm)を得た。
ポリマー(Q1)のフィルムの軟化温度、ガラス転移温度、プロトン伝導率を測定した。結果を表2に示す。
TFEに基づく単位と、単位(11)とからなるポリマー(H1)(イオン交換容量:1.1ミリ当量/g乾燥樹脂)をエタノールに分散させ、固形分濃度10質量%のイオン交換樹脂液(A)を調製した。
ETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面に、ポリプロピレン不織布を配置し、該不織布に50質量%のエタノールの水溶液を含ませてETFEフィルムに密着させた後、80℃の乾燥器内で15分間乾燥させてETFEフィルムの表面に定着させた。
工程(I)で得られたポリマー(P1)を、メタノールを含む水酸化カリウム水溶液に加熱しながら加え、-SO2F基を加水分解して-SO3K基に変換した。
該ポリマーを水洗し、硫酸水溶液に加えて、-SO3K基をスルホン酸基に変換し酸型のポリマー(Q1)を得た。
ポリマー(Q1)をエタノールおよび水に分散させ、固形分濃度13質量%のポリマー(Q1)分散液を得た。
固体高分子電解質膜として、工程(I)で得られた厚さ20μmのポリマー(Q1)のフィルムを用意した。
ポリマー(Q1)のフィルムと触媒層とが接するように、ポリマー(Q1)のフィルムと2枚の第1の積層体(B1)とを重ね、これらを、あらかじめ130℃に加熱したプレス機の中に入れ、3MPaのプレス圧で3分間熱プレスした。
プレス機から取り出した直後にETFEフィルムを取り除き、電極面積が25cm2である第2の積層体(C1)を得た。
第2の積層体(C1)について、90°剥離強度、寸法変化率を測定した。結果を表3に示す。
撥水処理が施されたカーボンペーパー(NOK社製、H2315T10A)を、第2の積層体(C1)の両側に配置し、膜電極接合体(D1)を得た。
膜電極接合体(D1)について、セル電圧、抵抗を測定した。また、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
シート状補強材であるポリプロピレン不織布の目付け量を3g/m2に変更した以外は、例1と同様にして第2の積層体(C2)および膜電極接合体(D2)を得た。補強層の厚さはおよそ50μmであった。
第2の積層体(C2)について、90°剥離強度、寸法変化率を測定した。結果を表3に示す。
膜電極接合体(D2)について、セル電圧、抵抗を測定し、湿潤-乾燥サイクル試験を行った。結果を表3に示す。
工程(II):
シート状補強材として、延伸多孔質PTFEフィルム(ドナルドソン社製、Tetratex II 3108、厚さ:20μm、平均細孔径;3μm)を用意した。
ETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面に、延伸多孔質PTFEフィルムを配置し、該フィルムにエタノールを含ませてETFEフィルムに密着させた後、80℃の乾燥器内で15分間乾燥させてETFEフィルムの表面に定着させた。
工程(III)~(V)は、補強層を変更した以外は例1と同様にして第2の積層体(C3)および膜電極接合体(D3)を得た。
第2の積層体(C3)について、90°剥離強度、寸法変化率を測定した。結果を表3に示す。
膜電極接合体(D3)について、セル電圧、抵抗を測定し、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
工程(V):
撥水処理が施されたカーボンペーパー(NOK社製、H2315T10A)の表面に、バーコータを用いて導電性塗工液(a)を塗工した後、80℃の乾燥器内で15分間乾燥させ、さらに120℃の乾燥器内で30分間の熱処理を施し、中間層を形成した。中間層の厚さは、およそ5μmであった。
膜電極接合体(D4)について、セル電圧、抵抗を測定した.また、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
工程(II):
メルトブローン不織布製造装置(日本ノズル社製)を用い、ダイ温度:290℃、延伸用ホットエアー温度:320℃の条件で、ETFEをダイから吹き飛ばし、吸引能力を有するコンベア上にETFE不織布を形成した。
ETFE不織布を構成するETFEは連続繊維であり、アスペクト比は最低10000以上であった。ETFE不織布の目付け量は、10g/m2であり、平均繊維径は5μmであり、厚さは60μmであった。
工程(III)~(IV)は、補強層を変更した以外は例1と同様にして第2の積層体(C5)を得た。
第2の積層体(C5)について、90°剥離強度、寸法変化率を測定した。結果を表3に示す。
第2の積層体(C5)を用いた以外は、例4と同様にして膜電極接合体(D5)を得た。
膜電極接合体(D5)について、セル電圧、抵抗を測定し、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
ETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面に、触媒層用塗工液(b)を、白金量が0.5mg/cm2となるようにダイコータを用いて塗工し、80℃の乾燥器内で15分間乾燥して触媒層を形成した。
ポリマー(Q1)のフィルムと触媒層とが接するように、ポリマー(Q1)のフィルムと2枚の触媒層付のETFEフィルムとを重ね、これらを、あらかじめ130℃に加熱したプレス機の中に入れ、3MPaのプレス圧で3分間熱プレスした。
プレス機から取り出した直後にETFEフィルムを取り除き、電極面積が25cm2である膜触媒層接合体を得た。
膜触媒層接合体について、寸法変化率を測定した。結果を表3に示す。
膜電極接合体(D6)について、セル電圧、抵抗を測定した。また、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
ポリマー(Q1)をエタノールおよび水の混合分散媒に分散させ、固形分濃度13質量%のポリマー(Q1)分散液を調製する。
例2に用いたものと同じポリプロピレン不織布(目付け量が3g/m2)を、縁を拘束した状態で、ポリマー(Q1)分散液に浸漬し、毎分100mmの速度で引き上げ、ポリマー(Q1)を不織布中に含浸させる。この浸漬、引き上げの操作を3回繰り返した後、拘束した状態で、55℃で1時間乾燥し、次に140℃の乾燥器内で30分の熱処理を施して、さらにあらかじめ150℃に加熱したプレス機の中に入れ、3MPaのプレス圧で3分間熱プレスしてポリプロピレン不織布で内部から補強した厚さがおよそ25μmである固体高分子電解質膜を得る。
膜触媒層接合体について、寸法変化率を測定する。結果を表3に示す。
膜電極接合体(D7)について、セル電圧、抵抗を測定する。また、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
ETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面に、導電性塗工液(a)のみを塗工し、80℃の乾燥器内で15分間乾燥させて層を形成した。この層の厚さは、およそ30μmであった。さらに、この層の表面に、触媒層用塗工液(b)を、白金量が0.5mg/cm2となるようにダイコータを用いて塗工し、80℃の乾燥器内で15分間乾燥させて触媒層を形成した。
ポリマー(Q1)のフィルムと触媒層とが接するように、ポリマー(Q1)のフィルムと2枚の触媒層付のETFEフィルムとを重ね、これらを、あらかじめ130℃に加熱したプレス機の中に入れ、3MPaのプレス圧で3分間熱プレスした。
プレス機から取り出した直後にETFEフィルムを取り除き、電極面積が25cm2である膜触媒層接合体を得た。
膜触媒層接合体について、寸法変化率を測定する。結果を表3に示す。
膜電極接合体(D8)について、セル電圧、抵抗を測定する。また、湿潤-乾燥サイクル試験を行う。結果を表3に示す。
工程(I):
(ポリマー(Q2)のフィルムの製造)
ポリマー(Q1)を水およびエタノールの混合分散媒に分散させ、固形分濃度が10質量%のポリマー(Q1)分散液を得た。
ポリマー(Q1)分散液に、硝酸セリウムを蒸留水に溶解した溶液を加え、ポリマー(Q1)中のスルホン酸基の約10%をCe3+でイオン交換したポリマー(Q2)分散液を得た。
ポリマー(Q2)分散液をETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面にダイコータで塗工し、80℃の乾燥器内で15分間乾燥させ、さらに160℃の乾燥器内で1時間の熱処理を施して、ポリマー(Q2)のフィルム(固体高分子電解質膜、厚さ:20μm)を得た。
ポリマー(Q2)のフィルムのEW、プロトン伝導率を測定した。結果を表4に示す。
固体高分子電解質膜であるポリマー(Q1)のフィルムを、ポリマー(Q2)のフィルムに変更した以外は、例1と同様にして第2の積層体(C9)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C9)について、寸法変化率を測定した。結果を表6に示す。
サブガスケットを、第2の積層体(C9)の両側に配置し、あらかじめ130℃に加熱したプレス機の中に入れ、3MPaのプレス圧で3分間熱プレスし、図5に示すようなサブガスケット付の第2の積層体(C9)を得た。
撥水処理が施されたカーボンペーパー(NOK社製、H2315T10A)を、サブガスケット付の第2の積層体(C9)の両側に配置し、図3に示すようなサブガスケット付の膜電極接合体(D9)を得た。
膜電極接合体(D9)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
カソード側の補強層の形成に用いる導電性塗工液(a)中の気相成長炭素繊維とポリマー(H1)との質量比(気相成長炭素繊維/ポリマー(H1))を1/0.7に変更した以外は、例9と同様にして第2の積層体(C10)およびサブガスケット付の膜電極接合体(D10)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C10)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D10)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
アノード側の補強層の形成に用いる導電性塗工液(a)中の気相成長炭素繊維とポリマー(H1)との質量比(気相成長炭素繊維/ポリマー(H1))を1/1に変更した以外は、例9と同様にして第2の積層体(C11)およびサブガスケット付の膜電極接合体(D11)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C11)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D11)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
シート状補強材であるポリプロピレン不織布の平均繊維径を5μmに変更した以外は、例9と同様にして第2の積層体(C12)およびサブガスケット付の膜電極接合体(D12)を得た。補強層の厚さはおよそ65μmであった。
第2の積層体(C12)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D12)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
シート状補強材であるポリプロピレン不織布の目付け量を10g/m2に変更した以外は、例9と同様にして第2の積層体(C13)およびサブガスケット付の膜電極接合体(D13)を得た。補強層の厚さはおよそ120μmであった。
第2の積層体(C13)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D13)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
固体高分子電解質膜であるポリマー(Q2)のフィルムの厚さを15μmに変更した以外は、例9と同様にして第2の積層体(C14)およびサブガスケット付の膜電極接合体(D14)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C14)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D14)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
固体高分子電解質膜であるポリマー(Q2)のフィルムの厚さを10μmに変更した以外は、例9と同様にして第2の積層体(C15)およびサブガスケット付の膜電極接合体(D15)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C15)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D15)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
固体高分子電解質膜であるポリマー(Q2)のフィルムの厚さを5μmに変更した以外は、例9と同様にして第2の積層体(C16)およびサブガスケット付の膜電極接合体(D16)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C16)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D16)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
ETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面に、触媒層用塗工液(b)を、白金量が0.5mg/cm2となるようにダイコータを用いて塗工し、80℃の乾燥器内で15分間乾燥させて触媒層を形成した。
ポリマー(Q2)のフィルムと触媒層とが接するように、ポリマー(Q2)のフィルムと2枚の触媒層付のETFEフィルムとを重ね、これらを、あらかじめ130℃に加熱したプレス機の中に入れ、3MPaのプレス圧で3分間熱プレスした。
プレス機から取り出した直後にETFEフィルムを取り除き、電極面積が25cm2である膜触媒層接合体を得た。
膜触媒層接合体について、寸法変化率を測定した。結果を表6に示す。
撥水処理が施されたカーボンペーパー(NOK社製、H2315T10A)を、サブガスケット付の膜触媒層接合体の両側に配置し、サブガスケット付の膜電極接合体(D17)を得た。
膜電極接合体(D17)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
工程(I):
(ポリマー(H2)のフィルムの製造)
TFEに基づく単位と、単位(11)とからなるポリマー(H1)(EW:910g/当量)を水およびエタノールの混合分散媒に分散させ、固形分濃度が20質量%のポリマー(H1)分散液を得た。
ポリマー(H1)分散液に、硝酸セリウムを蒸留水に溶解した溶液を加え、ポリマー(H1)中のスルホン酸基の約15%をCe3+でイオン交換したポリマー(H2)分散液を得た。
ポリマー(H2)分散液をETFEフィルム(旭硝子社製、アフレックス100N、厚さ:100μm)の表面にダイコータで塗工し、80℃の乾燥器内で15分間乾燥させ、さらに160℃の乾燥器内で1時間の熱処理を施して、ポリマー(H2)のフィルム(固体高分子電解質膜、厚さ:25μm)を得た。
ポリマー(H2)のフィルムのEW、プロトン伝導率を測定した。結果を表5に示す。
固体高分子電解質膜であるポリマー(Q2)のフィルムを、ポリマー(H2)のフィルムに変更した以外は、例9と同様にして第2の積層体(C18)およびサブガスケット付の膜電極接合体(D18)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C18)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D18)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
固体高分子電解質膜であるポリマー(H2)のフィルムの厚さを15μmに変更した以外は、例18と同様にして第2の積層体(C19)およびサブガスケット付の膜電極接合体(D19)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C19)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D19)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
固体高分子電解質膜であるポリマー(H2)のフィルムの厚さを5μmに変更した以外は、例18と同様にして第2の積層体(C20)およびサブガスケット付の膜電極接合体(D20)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C20)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D20)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
固体高分子電解質膜を市販品(デュポン社製、ナフィオン(登録商標)NRE211、厚さ:25μm)に変更した以外は、例9と同様にして第2の積層体(C21)およびサブガスケット付の膜電極接合体(D21)を得た。補強層の厚さはおよそ70μmであった。
第2の積層体(C21)について、寸法変化率を測定した。結果を表6に示す。
膜電極接合体(D21)について、絶縁抵抗、セル電圧、抵抗を測定した。結果を表6、7に示す。
なお、2008年3月21日に出願された日本特許出願2008-074447号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (16)
- 触媒層を有するカソードと、
触媒層を有するアノードと、
前記カソードの触媒層と前記アノードの触媒層との間に配置される固体高分子電解質膜とを備え、
前記カソードおよび前記アノードの少なくとも一方が、ポリマーからなる多孔質のシート状補強材と、導電性ファイバーとを含む補強層をさらに有する、固体高分子形燃料電池用膜電極接合体。 - 前記カソードおよび前記アノードが、ガス拡散層をさらに有し、
前記補強層が、前記触媒層と前記ガス拡散層との間に存在する、請求項1に記載の固体高分子形燃料電池用膜電極接合体。 - 前記補強層が、結着剤を含み、該結着剤が、含フッ素イオン交換樹脂である、請求項1または2に記載の固体高分子形燃料電池用膜電極接合体。
- 前記導電性ファイバーと前記結着剤との質量比(導電性ファイバー/結着剤)が、1/0.05~1/1である、請求項3に記載の固体高分子形燃料電池用膜電極接合体。
- 前記導電性ファイバーがカーボンファイバーであり、該カーボンファイバーの平均繊維径が、50~300nmであり、平均繊維長が、5~30μmである、請求項1~4のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記シート状補強材が、複数の細孔を有し、かつ平均細孔径が、0.4~7μmである、請求項1~5のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記シート状補強材が、複数の繊維からなり、かつ該繊維の平均繊維径が、0.2~7μmである、請求項1~6のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記シート状補強材が不織布であり、該不織布が、メルトブローン法で製造されたポリプロピレンまたは含フッ素ポリマーからなる不織布である、請求項1~7のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記シート状補強材が、ポリテトラフルオロエチレンからなる多孔質フィルムである、請求項1~6のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記補強層に接して、中間層をさらに有する、請求項1~9のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記固体高分子電解質膜の厚さが、10~30μmである、請求項1~10のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記固体高分子電解質膜の当量重量が、900g/当量以下である、請求項1~11のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記固体高分子電解質膜が、下式(U1)で表される繰り返し単位と下式(U2)で表される繰り返し単位とを有し、当量重量が400~900g/当量であるポリマー(Q)からなる固体高分子電解質膜である、請求項1~12のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 前記固体高分子電解質膜と前記補強層との間に存在するすべての界面における90°剥離強度が、0.5N/cm以上である、請求項1~13のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 固体高分子形燃料電池用膜電極接合体の周縁部に配置されたフレーム状のサブガスケットをさらに有する、請求項1~14のいずれかに記載の固体高分子形燃料電池用膜電極接合体。
- 請求項1~15のいずれかに記載の固体高分子形燃料電池用膜電極接合体を有する固体高分子形燃料電池であって、
相対湿度が25%以下の反応ガスを供給して発電を行う、固体高分子形燃料電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010503929A JP5333438B2 (ja) | 2008-03-21 | 2009-03-19 | 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池 |
CN200980110600.0A CN101978540B (zh) | 2008-03-21 | 2009-03-19 | 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池 |
EP09722431A EP2254181B1 (en) | 2008-03-21 | 2009-03-19 | Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell comprising the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-074447 | 2008-03-21 | ||
JP2008074447 | 2008-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009116630A1 true WO2009116630A1 (ja) | 2009-09-24 |
Family
ID=41091028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055457 WO2009116630A1 (ja) | 2008-03-21 | 2009-03-19 | 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9118043B2 (ja) |
EP (1) | EP2254181B1 (ja) |
JP (1) | JP5333438B2 (ja) |
KR (1) | KR101589323B1 (ja) |
CN (1) | CN101978540B (ja) |
WO (1) | WO2009116630A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192361A (ja) * | 2009-02-20 | 2010-09-02 | Japan Vilene Co Ltd | 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池 |
WO2011074034A1 (ja) * | 2009-12-16 | 2011-06-23 | トヨタ自動車株式会社 | 燃料電池の制御 |
JP2012018871A (ja) * | 2010-07-09 | 2012-01-26 | Asahi Glass Co Ltd | 固体高分子形燃料電池用膜電極接合体の製造方法 |
WO2012073085A1 (de) * | 2010-12-02 | 2012-06-07 | Basf Se | Membran-elektroden-einheit und brennstoffzellen mit verbesserter lebensdauer |
WO2012093432A1 (ja) * | 2011-01-07 | 2012-07-12 | パナソニック株式会社 | 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池 |
CN102652376A (zh) * | 2010-11-04 | 2012-08-29 | 丰田自动车株式会社 | 燃料电池及燃料电池的制造方法 |
WO2012117661A1 (ja) * | 2011-02-28 | 2012-09-07 | 三洋電機株式会社 | 燃料電池 |
WO2013031479A1 (ja) * | 2011-08-26 | 2013-03-07 | 旭硝子株式会社 | 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体 |
JP2013093189A (ja) * | 2011-10-25 | 2013-05-16 | Honda Motor Co Ltd | 膜電極接合体 |
JP2013531867A (ja) * | 2010-05-25 | 2013-08-08 | スリーエム イノベイティブ プロパティズ カンパニー | 強化電解質膜 |
WO2013115072A1 (ja) * | 2012-01-31 | 2013-08-08 | 旭硝子株式会社 | 含フッ素イオン交換樹脂液の製造方法 |
WO2014174973A1 (ja) * | 2013-04-26 | 2014-10-30 | 日産自動車株式会社 | ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池 |
JP2016506604A (ja) * | 2012-12-21 | 2016-03-03 | アウディ アクチェンゲゼルシャフトAudi Ag | 電解質膜、分散体、および分散方法 |
WO2016104613A1 (ja) * | 2014-12-26 | 2016-06-30 | 昭和電工株式会社 | レドックスフロー電池用電極およびレドックスフロー電池 |
WO2016143348A1 (ja) * | 2015-03-12 | 2016-09-15 | 凸版印刷株式会社 | 固体高分子形燃料電池の電極触媒層形成用の触媒インク及びその製造方法 |
JP2017033639A (ja) * | 2015-07-29 | 2017-02-09 | 本田技研工業株式会社 | 燃料電池用樹脂枠付き電解質膜・電極構造体 |
WO2018012435A1 (ja) * | 2016-07-15 | 2018-01-18 | 旭硝子株式会社 | ガス拡散部材および固体高分子形燃料電池用膜電極接合体 |
CN109980244A (zh) * | 2015-07-16 | 2019-07-05 | 本田技研工业株式会社 | 燃料电池用带有树脂框的电解质膜-电极结构体 |
JPWO2021033102A1 (ja) * | 2019-08-19 | 2021-02-25 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101035619B1 (ko) * | 2009-08-26 | 2011-05-19 | 삼성에스디아이 주식회사 | 연료전지용 막-전극 어셈블리 및 연료전지 스택 |
GB0921996D0 (en) * | 2009-12-17 | 2010-02-03 | Johnson Matthey Plc | Catayst layer assembley |
TWI398035B (zh) * | 2009-12-29 | 2013-06-01 | Nan Ya Printed Circuit Board | 直接甲醇燃料電池結構及其製造方法 |
WO2011114949A1 (ja) * | 2010-03-19 | 2011-09-22 | 旭硝子株式会社 | 固体高分子形燃料電池用膜電極接合体、および固体高分子形燃料電池用カソードの製造方法 |
US8781383B2 (en) * | 2011-03-04 | 2014-07-15 | Xerox Corporation | Fuser topcoat comprising electrospun non-woven polymer nanofabrics |
CN103403936B (zh) | 2011-03-11 | 2016-08-17 | 奥迪股份公司 | 具有高当量重量离子交联聚合物的单元化电极组件 |
US8962213B2 (en) * | 2011-03-25 | 2015-02-24 | GM Global Technology Operations LLC | Direct catalyst coating on free standing microporous layer |
US9123963B2 (en) | 2011-03-25 | 2015-09-01 | GM Global Technology Operations LLC | Direct coated membrane electrode assembly on external reinforcement for fuel cells |
JP6090869B2 (ja) | 2011-12-19 | 2017-03-08 | ナショナル リサーチ カウンシル オブ カナダ | 共押出しされた極薄フィルム |
CN102522572B (zh) * | 2012-01-07 | 2013-10-16 | 大连理工大学 | 一种一体化燃料电池膜电极的制作方法 |
US9761897B2 (en) * | 2012-03-08 | 2017-09-12 | GM Global Technology Operations LLC | Fuel cell durability by orthogonally oriented anisotropic external reinforce layers |
US20130330655A1 (en) * | 2012-06-08 | 2013-12-12 | GM Global Technology Operations LLC | Sulfonated PPS Fuel Cell Electrode |
US20130330653A1 (en) * | 2012-06-08 | 2013-12-12 | GM Global Technology Operations LLC | Novel PPS-S Membrane |
WO2014006817A1 (ja) * | 2012-07-02 | 2014-01-09 | パナソニック株式会社 | 固体高分子型燃料電池用の膜電極接合体とその製造方法および固体高分子型燃料電池 |
US9631105B2 (en) | 2012-08-07 | 2017-04-25 | GM Global Technology Operations LLC | PPS electrode reinforcing material/crack mitigant |
US20140045094A1 (en) * | 2012-08-07 | 2014-02-13 | GM Global Technology Operations LLC | PPS Membrane Reinforcing Material |
CA2888706C (en) * | 2012-12-05 | 2021-03-16 | Toray Industries, Inc. | Carbon-fiber nonwoven cloth and composite, uses and method of manufacturing thereof |
JP5862751B2 (ja) | 2013-11-29 | 2016-02-16 | ダイキン工業株式会社 | 多孔質体、高分子電解質膜、フィルター用濾材及びフィルターユニット |
WO2015080289A1 (ja) | 2013-11-29 | 2015-06-04 | ダイキン工業株式会社 | 変性ポリテトラフルオロエチレンファインパウダー及び一軸延伸多孔質体 |
JP5823601B2 (ja) | 2013-11-29 | 2015-11-25 | 旭化成イーマテリアルズ株式会社 | 高分子電解質膜 |
KR20160091386A (ko) * | 2013-11-29 | 2016-08-02 | 아사히 가세이 가부시키가이샤 | 고분자 전해질막 |
CN103762372B (zh) * | 2014-01-26 | 2016-04-13 | 齐志刚 | 催化剂层水淹的解决方法和超薄催化剂层及其制备方法 |
CN106463746B (zh) * | 2014-03-24 | 2019-06-04 | 庄信万丰燃料电池有限公司 | 膜密封组件 |
US20190259509A1 (en) * | 2016-06-17 | 2019-08-22 | 3M Innovative Properties Company | Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery |
CN109478667B (zh) * | 2016-07-11 | 2023-03-24 | Agc株式会社 | 电解质材料、包含其的液体组合物及其用途 |
JP6833164B2 (ja) * | 2016-09-27 | 2021-02-24 | Agc株式会社 | ポリマー、固体高分子電解質膜および膜電極接合体 |
JP6465237B1 (ja) * | 2017-10-30 | 2019-02-06 | 凸版印刷株式会社 | 電極触媒層、膜電極接合体及び固体高分子形燃料電池 |
KR102673000B1 (ko) * | 2018-07-30 | 2024-06-05 | 현대자동차주식회사 | 연료전지용 평판형 막전극 접합체의 제조방법 및 이를 이용하여 제조된 연료전지용 평판형 막전극 접합체 |
GB2619577B (en) * | 2023-01-27 | 2024-06-05 | Zeroavia Ltd | Polymeric interconnects in PEM stack |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57176973A (en) | 1981-04-03 | 1982-10-30 | Du Pont | Perfluoroglycidyl ethers |
US4358412A (en) | 1980-06-11 | 1982-11-09 | The Dow Chemical Company | Preparation of vinyl ethers |
US5547551A (en) | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
JPH10312815A (ja) | 1997-04-25 | 1998-11-24 | Johnson Matthey Plc | 複合膜 |
JP2001057220A (ja) * | 1999-06-11 | 2001-02-27 | Nok Corp | 燃料電池用ガスケット |
JP2006252967A (ja) | 2005-03-10 | 2006-09-21 | Nissan Motor Co Ltd | 燃料電池用固体高分子電解質膜、および、これを用いた燃料電池 |
JP2006339124A (ja) * | 2005-06-06 | 2006-12-14 | Nissan Motor Co Ltd | 燃料電池用膜電極接合体およびこれを用いた固体高分子型燃料電池 |
JP2007095433A (ja) * | 2005-09-28 | 2007-04-12 | Asahi Glass Co Ltd | 固体高分子形燃料電池用電解質膜及びその製造方法 |
JP2007157637A (ja) * | 2005-12-08 | 2007-06-21 | Toyota Motor Corp | 補強型固体高分子電解質膜およびその製造方法 |
JP2007329015A (ja) * | 2006-06-08 | 2007-12-20 | Hitachi Ltd | 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6054230A (en) * | 1994-12-07 | 2000-04-25 | Japan Gore-Tex, Inc. | Ion exchange and electrode assembly for an electrochemical cell |
US6183898B1 (en) * | 1995-11-28 | 2001-02-06 | Hoescht Research & Technology Deutschland Gmbh & Co. Kg | Gas diffusion electrode for polymer electrolyte membrane fuel cells |
US6127474A (en) * | 1997-08-27 | 2000-10-03 | Andelman; Marc D. | Strengthened conductive polymer stabilized electrode composition and method of preparing |
JP2004220843A (ja) * | 2003-01-10 | 2004-08-05 | Toyota Central Res & Dev Lab Inc | 膜電極接合体 |
EP1469542A1 (en) * | 2003-04-09 | 2004-10-20 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
JP4438408B2 (ja) * | 2003-12-24 | 2010-03-24 | トヨタ自動車株式会社 | 燃料電池 |
WO2005071779A2 (en) * | 2004-01-20 | 2005-08-04 | E.I. Du Pont De Nemours And Company | Processes for preparing stable proton exchange membranes and catalyst for use therein |
JP4533108B2 (ja) * | 2004-11-25 | 2010-09-01 | 新日本製鐵株式会社 | 固体高分子形燃料電池用電極 |
US7629071B2 (en) * | 2004-09-29 | 2009-12-08 | Giner Electrochemical Systems, Llc | Gas diffusion electrode and method of making the same |
JP2006286494A (ja) * | 2005-04-04 | 2006-10-19 | Toshiba Fuel Cell Power Systems Corp | 固体高分子形燃料電池 |
JP2007005017A (ja) * | 2005-06-21 | 2007-01-11 | Mitsubishi Electric Corp | 固体高分子型燃料電池およびその製造方法 |
EP1914824B1 (en) | 2005-07-27 | 2010-03-17 | Asahi Glass Company, Limited | Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly |
US7651581B2 (en) * | 2005-12-20 | 2010-01-26 | Gm Global Technology Operations, Inc. | Catalyst coated diffusion media |
JP5122149B2 (ja) | 2006-06-09 | 2013-01-16 | 旭硝子株式会社 | 固体高分子形燃料電池用膜電極接合体の製造方法 |
EP1927601B1 (en) * | 2006-11-28 | 2010-01-13 | Asahi Glass Company, Limited | Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly |
WO2008105337A1 (ja) | 2007-02-28 | 2008-09-04 | Tomoegawa Co., Ltd. | 固体高分子型燃料電池用ガス拡散電極、固体高分子型燃料電池用膜-電極接合体とその製造方法、および固体高分子型燃料電池 |
JP5193478B2 (ja) | 2007-02-28 | 2013-05-08 | 株式会社巴川製紙所 | ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池 |
-
2009
- 2009-03-19 CN CN200980110600.0A patent/CN101978540B/zh not_active Expired - Fee Related
- 2009-03-19 KR KR1020107016387A patent/KR101589323B1/ko active IP Right Grant
- 2009-03-19 EP EP09722431A patent/EP2254181B1/en not_active Not-in-force
- 2009-03-19 JP JP2010503929A patent/JP5333438B2/ja active Active
- 2009-03-19 WO PCT/JP2009/055457 patent/WO2009116630A1/ja active Application Filing
- 2009-03-20 US US12/408,519 patent/US9118043B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358412A (en) | 1980-06-11 | 1982-11-09 | The Dow Chemical Company | Preparation of vinyl ethers |
JPS57176973A (en) | 1981-04-03 | 1982-10-30 | Du Pont | Perfluoroglycidyl ethers |
US5547551A (en) | 1995-03-15 | 1996-08-20 | W. L. Gore & Associates, Inc. | Ultra-thin integral composite membrane |
JPH10312815A (ja) | 1997-04-25 | 1998-11-24 | Johnson Matthey Plc | 複合膜 |
JP2001057220A (ja) * | 1999-06-11 | 2001-02-27 | Nok Corp | 燃料電池用ガスケット |
JP2006252967A (ja) | 2005-03-10 | 2006-09-21 | Nissan Motor Co Ltd | 燃料電池用固体高分子電解質膜、および、これを用いた燃料電池 |
JP2006339124A (ja) * | 2005-06-06 | 2006-12-14 | Nissan Motor Co Ltd | 燃料電池用膜電極接合体およびこれを用いた固体高分子型燃料電池 |
JP2007095433A (ja) * | 2005-09-28 | 2007-04-12 | Asahi Glass Co Ltd | 固体高分子形燃料電池用電解質膜及びその製造方法 |
JP2007157637A (ja) * | 2005-12-08 | 2007-06-21 | Toyota Motor Corp | 補強型固体高分子電解質膜およびその製造方法 |
JP2007329015A (ja) * | 2006-06-08 | 2007-12-20 | Hitachi Ltd | 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池 |
Non-Patent Citations (2)
Title |
---|
D. J. VAUGHAM, DU PONT INOVATION, vol. 43, no. 3, 1973, pages 10 |
See also references of EP2254181A4 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192361A (ja) * | 2009-02-20 | 2010-09-02 | Japan Vilene Co Ltd | 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池 |
US9065099B2 (en) | 2009-12-16 | 2015-06-23 | Toyota Jidosha Kabushiki Kaisha | Controlling fuel cell |
WO2011074034A1 (ja) * | 2009-12-16 | 2011-06-23 | トヨタ自動車株式会社 | 燃料電池の制御 |
JP2013531867A (ja) * | 2010-05-25 | 2013-08-08 | スリーエム イノベイティブ プロパティズ カンパニー | 強化電解質膜 |
JP2012018871A (ja) * | 2010-07-09 | 2012-01-26 | Asahi Glass Co Ltd | 固体高分子形燃料電池用膜電極接合体の製造方法 |
CN102652376A (zh) * | 2010-11-04 | 2012-08-29 | 丰田自动车株式会社 | 燃料电池及燃料电池的制造方法 |
WO2012073085A1 (de) * | 2010-12-02 | 2012-06-07 | Basf Se | Membran-elektroden-einheit und brennstoffzellen mit verbesserter lebensdauer |
WO2012093432A1 (ja) * | 2011-01-07 | 2012-07-12 | パナソニック株式会社 | 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池 |
US9419301B2 (en) | 2011-01-07 | 2016-08-16 | Panasonic Intellectual Property Management Co., Ltd. | Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell |
JP5193394B2 (ja) * | 2011-01-07 | 2013-05-08 | パナソニック株式会社 | 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池 |
WO2012117661A1 (ja) * | 2011-02-28 | 2012-09-07 | 三洋電機株式会社 | 燃料電池 |
US9379403B2 (en) | 2011-08-26 | 2016-06-28 | Asahi Glass Company, Limited | Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell |
JPWO2013031479A1 (ja) * | 2011-08-26 | 2015-03-23 | 旭硝子株式会社 | 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体 |
WO2013031479A1 (ja) * | 2011-08-26 | 2013-03-07 | 旭硝子株式会社 | 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体 |
JP2013093189A (ja) * | 2011-10-25 | 2013-05-16 | Honda Motor Co Ltd | 膜電極接合体 |
US9531026B2 (en) | 2012-01-31 | 2016-12-27 | Asahi Glass Company, Limited | Process for producing fluorinated ion exchange resin fluid |
WO2013115072A1 (ja) * | 2012-01-31 | 2013-08-08 | 旭硝子株式会社 | 含フッ素イオン交換樹脂液の製造方法 |
US10218023B2 (en) | 2012-01-31 | 2019-02-26 | AGC Inc. | Process for producing fluorinated ion exchange resin fluid |
JP2016506604A (ja) * | 2012-12-21 | 2016-03-03 | アウディ アクチェンゲゼルシャフトAudi Ag | 電解質膜、分散体、および分散方法 |
WO2014174973A1 (ja) * | 2013-04-26 | 2014-10-30 | 日産自動車株式会社 | ガス拡散電極体、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池 |
WO2016104613A1 (ja) * | 2014-12-26 | 2016-06-30 | 昭和電工株式会社 | レドックスフロー電池用電極およびレドックスフロー電池 |
US10727498B2 (en) | 2014-12-26 | 2020-07-28 | Showa Denko K.K. | Redox flow battery electrode, and redox flow battery |
JPWO2016104613A1 (ja) * | 2014-12-26 | 2017-10-05 | 昭和電工株式会社 | レドックスフロー電池用電極およびレドックスフロー電池 |
WO2016143348A1 (ja) * | 2015-03-12 | 2016-09-15 | 凸版印刷株式会社 | 固体高分子形燃料電池の電極触媒層形成用の触媒インク及びその製造方法 |
JP2016170949A (ja) * | 2015-03-12 | 2016-09-23 | 凸版印刷株式会社 | 固体高分子形燃料電池の電極触媒層形成用の触媒インク及びその製造方法 |
US10381661B2 (en) | 2015-07-16 | 2019-08-13 | Honda Motor Co., Ltd. | Resin frame equipped membrane electrode assembly for fuel cell |
CN109980244A (zh) * | 2015-07-16 | 2019-07-05 | 本田技研工业株式会社 | 燃料电池用带有树脂框的电解质膜-电极结构体 |
CN109980244B (zh) * | 2015-07-16 | 2022-02-25 | 本田技研工业株式会社 | 燃料电池用带有树脂框的电解质膜-电极结构体 |
JP2017033639A (ja) * | 2015-07-29 | 2017-02-09 | 本田技研工業株式会社 | 燃料電池用樹脂枠付き電解質膜・電極構造体 |
WO2018012435A1 (ja) * | 2016-07-15 | 2018-01-18 | 旭硝子株式会社 | ガス拡散部材および固体高分子形燃料電池用膜電極接合体 |
JPWO2021033102A1 (ja) * | 2019-08-19 | 2021-02-25 | ||
JP7249421B2 (ja) | 2019-08-19 | 2023-03-30 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 電池及び膜電極接合体 |
US11799111B2 (en) | 2019-08-19 | 2023-10-24 | Robert Bosch Gmbh | Battery and membrane electrode assembly |
Also Published As
Publication number | Publication date |
---|---|
EP2254181A4 (en) | 2011-03-09 |
EP2254181A1 (en) | 2010-11-24 |
US9118043B2 (en) | 2015-08-25 |
CN101978540A (zh) | 2011-02-16 |
EP2254181B1 (en) | 2012-10-24 |
CN101978540B (zh) | 2015-10-21 |
US20090246592A1 (en) | 2009-10-01 |
KR101589323B1 (ko) | 2016-01-27 |
KR20110005774A (ko) | 2011-01-19 |
JP5333438B2 (ja) | 2013-11-06 |
JPWO2009116630A1 (ja) | 2011-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5333438B2 (ja) | 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池 | |
JP5277740B2 (ja) | 触媒層の形成方法および固体高分子形燃料電池用膜電極接合体の製造方法 | |
JP5286797B2 (ja) | ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 | |
JP5251515B2 (ja) | 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 | |
JP5499478B2 (ja) | ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 | |
US11031618B2 (en) | Polymer, polymer electrolyte membrane and membrane/electrode assembly | |
US7838170B2 (en) | Membrane/electrode assembly with multilayered cathode catalyst for polymer electrolyte fuel cells | |
JP6593346B2 (ja) | 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 | |
US8178257B2 (en) | Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell | |
WO2009151013A1 (ja) | 固体高分子形燃料電池用膜電極接合体 | |
JPWO2008066048A1 (ja) | 固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体 | |
JP2008192330A (ja) | 固体高分子形燃料電池用膜電極接合体およびその製造方法 | |
JP2012018871A (ja) | 固体高分子形燃料電池用膜電極接合体の製造方法 | |
US7883807B2 (en) | Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell | |
JP5228378B2 (ja) | 固体高分子形燃料電池用膜電極接合体およびその製造方法 | |
JP2008192328A (ja) | 固体高分子形燃料電池およびその製造方法 | |
JP2008192329A (ja) | 固体高分子形燃料電池用膜電極接合体およびその製造方法 | |
JP5082470B2 (ja) | 固体高分子形燃料電池用膜電極接合体 | |
JP2018106956A (ja) | 固体高分子電解質膜、膜電極接合体および固体高分子形燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980110600.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09722431 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010503929 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107016387 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009722431 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |