WO2009107697A1 - エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 - Google Patents
エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 Download PDFInfo
- Publication number
- WO2009107697A1 WO2009107697A1 PCT/JP2009/053500 JP2009053500W WO2009107697A1 WO 2009107697 A1 WO2009107697 A1 WO 2009107697A1 JP 2009053500 W JP2009053500 W JP 2009053500W WO 2009107697 A1 WO2009107697 A1 WO 2009107697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- fiber
- weight
- composite material
- Prior art date
Links
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 357
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 338
- 239000000203 mixture Substances 0.000 title claims abstract description 100
- 239000000463 material Substances 0.000 title claims abstract description 73
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 51
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 49
- 238000005191 phase separation Methods 0.000 claims description 99
- 229920005989 resin Polymers 0.000 claims description 86
- 239000011347 resin Substances 0.000 claims description 86
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 30
- 239000012783 reinforcing fiber Substances 0.000 claims description 29
- 239000004593 Epoxy Substances 0.000 claims description 25
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 15
- 150000004982 aromatic amines Chemical class 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 9
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 5
- 230000003068 static effect Effects 0.000 abstract description 3
- 239000000470 constituent Substances 0.000 abstract 1
- 238000001723 curing Methods 0.000 description 83
- 238000000034 method Methods 0.000 description 52
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 45
- 239000000835 fiber Substances 0.000 description 34
- 239000011342 resin composition Substances 0.000 description 29
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000465 moulding Methods 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 229920005992 thermoplastic resin Polymers 0.000 description 15
- 229920000049 Carbon (fiber) Polymers 0.000 description 13
- 239000004917 carbon fiber Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 12
- 229920001187 thermosetting polymer Polymers 0.000 description 12
- 229930185605 Bisphenol Natural products 0.000 description 11
- 239000002131 composite material Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000005060 rubber Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 238000001000 micrograph Methods 0.000 description 9
- 230000001588 bifunctional effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000004695 Polyether sulfone Substances 0.000 description 7
- -1 aromatic ring halogens Chemical class 0.000 description 7
- 229920003986 novolac Polymers 0.000 description 7
- 229920006393 polyether sulfone Polymers 0.000 description 7
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 6
- 238000009863 impact test Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 229930003836 cresol Natural products 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 239000012943 hotmelt Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011146 organic particle Substances 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000011208 reinforced composite material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 2
- PULOARGYCVHSDH-UHFFFAOYSA-N 2-amino-3,4,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1OC1CC1=C(CC2OC2)C(N)=C(O)C=C1CC1CO1 PULOARGYCVHSDH-UHFFFAOYSA-N 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000011968 lewis acid catalyst Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000005501 phase interface Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- OVEUFHOBGCSKSH-UHFFFAOYSA-N 2-methyl-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound CC1=CC=CC=C1N(CC1OC1)CC1OC1 OVEUFHOBGCSKSH-UHFFFAOYSA-N 0.000 description 1
- WDGCBNTXZHJTHJ-UHFFFAOYSA-N 2h-1,3-oxazol-2-id-4-one Chemical group O=C1CO[C-]=N1 WDGCBNTXZHJTHJ-UHFFFAOYSA-N 0.000 description 1
- MOAPNXVHLARBNQ-UHFFFAOYSA-N 3-[4-[[4-(dimethylcarbamoylamino)phenyl]methyl]phenyl]-1,1-dimethylurea Chemical compound C1=CC(NC(=O)N(C)C)=CC=C1CC1=CC=C(NC(=O)N(C)C)C=C1 MOAPNXVHLARBNQ-UHFFFAOYSA-N 0.000 description 1
- RDIGYBZNNOGMHU-UHFFFAOYSA-N 3-amino-2,4,5-tris(oxiran-2-ylmethyl)phenol Chemical compound OC1=CC(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 RDIGYBZNNOGMHU-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- CXXSQMDHHYTRKY-UHFFFAOYSA-N 4-amino-2,3,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1=C(O)C(CC2OC2)=C(CC2OC2)C(N)=C1CC1CO1 CXXSQMDHHYTRKY-UHFFFAOYSA-N 0.000 description 1
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WWNGFHNQODFIEX-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;styrene Chemical compound C=CC=C.COC(=O)C(C)=C.C=CC1=CC=CC=C1 WWNGFHNQODFIEX-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/182—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
- C08G59/184—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/226—Mixtures of di-epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
- C08G59/38—Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5033—Amines aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2363/02—Polyglycidyl ethers of bis-phenols
Definitions
- the present invention relates to an epoxy resin composition whose cured product is suitably used as a matrix resin of a fiber-reinforced composite material suitable for sports use, aircraft use and general industrial use, a prepreg using this as a matrix resin, and curing the prepreg. It is related with the fiber reinforced composite material obtained in this way.
- Fiber reinforced composite materials using carbon fibers, aramid fibers, etc. as reinforcing fibers make use of their high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, sports such as tennis rackets, golf shafts and fishing rods. And widely used in general industrial applications.
- a prepreg that is a sheet-like intermediate material in which reinforcing fibers are impregnated with an uncured matrix resin is used.
- a resin transfer molding method in which a liquid resin is poured into the arranged reinforcing fibers and heat-cured, is used.
- the method using a prepreg has an advantage that it is easy to obtain a high-performance fiber-reinforced composite material because the orientation of the reinforcing fibers can be strictly controlled and the design flexibility of the laminated structure is high.
- a thermosetting resin is mainly used from the viewpoint of heat resistance and productivity, and an epoxy resin is preferably used from the viewpoint of mechanical properties such as adhesion to reinforcing fibers. .
- the epoxy resin has a higher elastic modulus than the thermoplastic resin, but is inferior in toughness, so that the impact resistance of the fiber-reinforced composite material is insufficient.
- thermoplastic resin such as phenoxy resin and polyethersulfone
- a large amount of thermoplastic resin such as phenoxy resin and polyethersulfone is blended and phase-separated to greatly improve toughness and greatly increase the minimum viscosity.
- a sufficient fillet (fillet) is formed on the joint surface with the honeycomb core and high self-adhesiveness is obtained (Patent Document 2).
- Patent Document 2 shows that when used in aircraft primary structural material prepregs that require even higher mechanical properties and long-term reliability, due to the increase in viscosity accompanying the blending of thermoplastic resins, voids and fiber orientation are likely to occur in the molded body, which is sufficient. It was inferior in versatility, such as not being able to express the performance.
- the epoxy resin can compensate for the shortcomings by combining various epoxy resins, and can exhibit balanced characteristics compared to single-component resins, but usually does not form a phase separation structure,
- the increase in toughness was small, and the impact resistance of the fiber reinforced composite material was hardly improved.
- the toughness and the elastic modulus are intermediate values between the two components, and the impact strength is improved. The problem was not being seen.
- Patent Document 3 and Patent Document 4 by adding an amine-type epoxy resin having a high elastic modulus to a bisphenol-type epoxy resin, the fiber-direction bending strength and the interlaminar shear strength, which have a strong correlation with the fiber-direction compressive strength, are remarkable. Although improvement has been seen, sufficient improvement has not been seen in terms of resin toughness and impact resistance.
- An object of the present invention is to provide an epoxy resin composition that improves the drawbacks of the prior art and forms a cured product having both excellent elastic modulus and toughness, and a prepreg and fiber-reinforced composite material using the epoxy resin composition. There is to do.
- the present invention provides the following epoxy resin composition.
- An epoxy resin composition comprising the following [A], [B], [C] and [D] in a content ratio satisfying the following formulas (1) to (4).
- [A] in this specification shows one of the components (component) contained in the epoxy resin composition of this invention.
- [B], [C], [D] and [E], and [A ′], [B ′], [C ′], [D ′] and [E ′] One of the components contained in the epoxy resin composition is shown.
- the present invention it is possible to provide an epoxy resin composition in which a fine phase separation structure of an epoxy resin is formed at the time of curing, and a cured product having a high elastic modulus and high toughness is obtained. Further, the obtained fiber reinforced composite material has both excellent static strength characteristics and impact resistance.
- the epoxy resin composition of the present invention contains two kinds of diglycidyl ether type epoxy resins having different molecular weights, an epoxy resin whose SP value as a structural unit satisfies a predetermined value, and a predetermined curing agent.
- an epoxy resin whose SP value as a structural unit satisfies a predetermined value and a predetermined curing agent.
- 1st Embodiment and 2nd Embodiment as shown next are mentioned.
- the epoxy resin composition of the first embodiment of the present invention contains the following [A], [B], [C], and [D] as contained components in a content ratio that satisfies the following formulas (1) to (4). It is an epoxy resin composition.
- the epoxy resin composition of the second embodiment of the present invention includes the following [A ′], [B ′], [C ′], and [D ′] as the components contained in the following formulas (1 ′) to ( 4 ') is an epoxy resin composition containing at a content ratio satisfying.
- the above formulas (1) to (4) represent the following. That is, in the epoxy resin composition of the first embodiment, [A] a diglycidyl ether type epoxy resin having a molecular weight of 1500 or more as an epoxy resin, and a structural unit having an SP value [A] as a structural unit of [B] It is essential to include an epoxy resin 1.5 to 6.5 higher than the SP value as, and [C] a diglycidyl ether type epoxy resin having a molecular weight of 500 to 1200, and [A], [B], [ C] and 100 parts by weight of other epoxy resins [E] (hereinafter referred to as all epoxy resins), [A] is 20 to 60 parts by weight, and [B] is 20 to 100 parts by weight of all epoxy resins.
- the epoxy resin [E] other than [A], [B], and [C] needs to be 20 parts by weight or less out of 100 parts by weight in all epoxy resins.
- the formulas (1 ′) to (4 ′) represent the following. That is, in the epoxy resin composition of the present invention, when [D ′] aromatic amine type epoxy resin curing agent is used as the curing agent, [A ′] diglycidyl ether having a molecular weight of 1500 to 5000 is used as the epoxy resin.
- Type epoxy resin epoxy resin whose SP value as a structural unit of [B ′] is 1.5 to 6.5 higher than the SP value as a structural unit of [A ′], and [C ′] molecular weight of 300 to 1200 It is essential to contain a diglycidyl ether type epoxy resin, [A ′], [B ′], [C ′] and other epoxy resins [E ′] (hereinafter referred to as all epoxy resins) 100 parts by weight Of these, [A ′] is 20 to 60 parts by weight, [B ′] is 20 to 60 parts by weight of 100 parts by weight of the total epoxy resin, and [C ′] is 15 to 4 parts of 100 parts by weight of the total epoxy resin. It is necessary to include parts. Further, the epoxy resin [E ′] other than [A ′], [B ′], and [C ′] needs to be 20 parts by weight or less out of 100 parts by weight in the total epoxy resin.
- the present inventors exhibit a homogeneous compatibility state before the curing reaction, and a plurality of types of epoxy resin components cause phase separation in the curing reaction process, thereby causing fiber It has been found that the impregnated formability of the reinforced composite material can be compatible with mechanical properties such as impact resistance. As a result of intensive studies, it has been found that by satisfying the above requirements, phase separation between epoxy resins occurs during the curing reaction process, and a fiber-reinforced composite material having desired characteristics can be obtained.
- [E] is an epoxy resin other than [A] to [C] as described above.
- [E ′] is an epoxy resin other than [A ′] to [C ′] as described above.
- [E] or [E ′] has a bisphenol type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a resorcinol type epoxy resin, a phenol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, or a biphenyl skeleton. Examples thereof include an epoxy resin and a urethane-modified epoxy resin. A preferred range is 0 to 15 parts by weight.
- thermoplastic resins soluble in epoxy resins examples include thermoplastic resins soluble in epoxy resins, organic particles such as rubber particles and thermoplastic resin particles, inorganic particles, and the like.
- a preferable range is 0 to 20 parts by weight, and more preferable. 0 to 15 parts by weight.
- the cured resin obtained by curing such an epoxy resin composition can have both properties of elasticity and toughness.
- the cured epoxy resin it has a phase separation structure having [A] rich phase and [B] rich phase, or [A ′] rich phase and [B ′] rich phase, and a phase separation structure Examples thereof include those having a period of 0.01 to 5 ⁇ m, and due to having such a phase separation structure, both elastic modulus and toughness can be achieved.
- [A] to [E] or [A ′] to [E ′] are uniformly compatible, but the molecular weight of both increases in the course of the curing reaction during molding. Accordingly, the above-mentioned [A] rich phase and [B] rich phase, or [A ′] rich phase and [A] rich phase are produced by so-called reaction-induced phase separation that causes phase separation between [A] rich phase and [B] rich phase.
- B ′] A phase structure having a rich phase is formed.
- the phase separation structure refers to a structure in which phases mainly composed of different components have a structural period of 0.01 ⁇ m or more.
- the state of being uniformly mixed at the molecular level is referred to as a compatible state, and in the present invention, when the phase mainly composed of different components has a phase separation structure period of less than 0.01 ⁇ m, It shall be regarded as a molten state. Whether or not the phase separation structure is exhibited can be determined by an electron microscope, a phase-contrast optical microscope, and various other methods.
- a preferable embodiment of the cured epoxy resin of the present invention has a phase separation structure having [A] rich phase and [B] rich phase, or [A ′] rich phase and [B ′] rich phase. And a cured epoxy resin having a structural period of 0.01 to 5 ⁇ m.
- the structural period of phase separation is defined as follows.
- the phase separation structure includes a two-phase continuous structure and a sea-island structure. In the case of a two-phase continuous structure, a straight line of a predetermined length is drawn on the micrograph, the intersection of the straight line and the phase interface is extracted, the distance between adjacent intersections is measured, and the number average value of these is the structure period And
- the predetermined length is set as follows based on a micrograph.
- a photograph is taken at a magnification of 20,000 times, and a length of 20 mm randomly on the photograph (a length of 1 ⁇ m on the sample) ) Refers to a selection of three.
- the phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
- the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m)
- the photograph is taken at a magnification of 200 times.
- the photograph three 20 mm lengths (100 ⁇ m length on the sample) are selected at random. If the measured phase separation structure period is out of the expected order, the corresponding length is measured again at the magnification corresponding to the corresponding order, and this is adopted. In the case of a sea-island structure, it is the number average value of the distance between the island phase and the island phase existing in a predetermined region on the micrograph. The shortest distance between the island phase and the island phase shall be used even if the island phase is elliptical, indefinite, or a circle or ellipse with two or more layers.
- cured epoxy resin of the present invention include [A] rich phase and [B] rich phase, or phase separation of sea-island structure having [A ′] rich phase and [B ′] rich phase.
- examples thereof include a cured epoxy resin having a structure and an island phase diameter of 0.01 to 5 ⁇ m.
- the diameter of the island phase indicates the size of the island phase in the sea-island structure, and is a number average value in a predetermined region.
- the island phase is elliptical, the major axis is taken, and when it is indefinite, the diameter of the circumscribed circle is used.
- the diameter of the outermost layer circle or the major axis of the ellipse is used.
- the major axis of all island phases existing in a predetermined region is measured, and the number average value thereof is taken as the island phase diameter.
- the structure period may not reflect the quality of the epoxy resin cured product, but the island phase diameter may reflect the properties and may be preferable. Specifically, when the content of [A] is small, the diameter of the island phase tends to reflect the characteristics. The same tendency is seen also about the content ratio of [A '] and [B'], and the characteristic of the cured epoxy resin containing these.
- a micrograph of a predetermined region is taken.
- the predetermined area is set as follows based on a micrograph.
- the phase separation structure period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m)
- a photograph is taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0. (2 ⁇ m square area) refers to an area selected from three locations.
- phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
- a photograph is taken at a magnification of 2,000 times
- a 4 mm square region on the sample 2 ⁇ m square area
- a photograph is taken at a magnification of 200 times
- phase separation structure of the cured resin product can be observed with a scanning electron microscope or a transmission electron microscope. You may dye
- the structural period and the island phase diameter are more preferably in the range of 0.01 to 5 ⁇ m, and still more preferably in the range of 0.01 to 1 ⁇ m.
- the structural period is less than 0.01 ⁇ m, the toughness of the resin cured product may be insufficient, and when the structural period exceeds 5 ⁇ m, the phase separation structure period of the fiber reinforced composite material is larger than the inter-single yarn region, When a fiber reinforced composite material is used, a sufficient toughness improving effect may not be exhibited.
- the epoxy resin composition of the present invention is a reaction-induced phase separation by blending each component so as to satisfy the above-mentioned conditions, but the embodiment of the component and the like of the epoxy resin composition of the present invention This will be described in more detail below.
- a diglycidyl ether type epoxy resin having a molecular weight of 1500 or more needs to be contained in an amount of 20 to 60 parts by weight out of 100 parts by weight of the total epoxy resin. It is preferable to contain 30 to 50 parts by weight of 100 parts by weight of the resin. When it is less than 20 parts by weight, it is difficult for the cured product to form a phase separation structure, and toughness is insufficient. When the amount exceeds 60 parts by weight, the elastic modulus of the cured product is insufficient and the heat resistance is insufficient, which may cause distortion or deformation during molding or use of the fiber-reinforced composite material.
- the molecular weight of [A] is 5000 or less from a viewpoint of the impregnation property to the reinforced fiber of a resin composition, and the heat resistance of a fiber reinforced composite material.
- the upper limit of the molecular weight of [A] is preferably 5000 or less. From the viewpoint of toughness, the upper limit of the molecular weight of [A] is not particularly required. However, when it exceeds 5000, the phase separation structure of the cured product becomes coarse and the heat resistance is insufficient.
- [A ′] has a molecular weight in the range of 1500 to 5000.
- the glycidyl ether type epoxy resin needs to be contained in an amount of 20 to 60 parts by weight out of 100 parts by weight of the total epoxy resin, and preferably 30 to 50 parts by weight of 100 parts by weight of the total epoxy resin.
- it is less than 20 parts by weight it is difficult for the cured product to form a phase separation structure, and toughness is insufficient.
- the amount exceeds 60 parts by weight the elastic modulus of the cured product is insufficient and the heat resistance is insufficient, which may cause distortion or deformation during molding or use of the fiber-reinforced composite material.
- the molecular weight of [A ′] When the molecular weight of [A ′] is less than 1500, it is difficult for the cured product to form a phase separation structure, and toughness is insufficient. On the other hand, when it exceeds 5000, the phase separation structure of the cured product becomes coarse, the heat resistance is insufficient, the impact resistance of the fiber-reinforced composite material is insufficient, and distortion or deformation may occur during use. Further, when the molecular weight of [A ′] exceeds 5000, the minimum viscosity of the resin composition becomes too high, and when used in a prepreg for aircraft primary structure material, impregnation failure occurs in the prepreg process, and voids are formed in the molded body. There is a tendency for problems to occur.
- the epoxy resin used as [A] or [A ′] in the present invention is not particularly limited as long as it is a diglycidyl ether type epoxy resin having a predetermined molecular weight, but a bisphenol type epoxy resin is particularly preferable. Can be used. Generally, commercially available epoxy resins have a certain molecular weight distribution in the manufacturing process. Here, the molecular weight of the epoxy resin refers to a relative molecular weight determined by GPC (Gel Permeation Chromatography) using a polystyrene standard sample.
- GPC Gel Permeation Chromatography
- Examples of such bisphenol-type epoxy resins include bisphenol A-type, bisphenol F-type, bisphenol AD-type, bisphenol S-type, or aromatic ring halogens, alkyl-substituted products, and aromatic-hydrogenated products of these bisphenol-type epoxy resins. Used. Moreover, you may use combining these two or more.
- commercially available epoxy resins have a certain degree of molecular weight distribution. Therefore, a resin composition containing a predetermined amount of [A] or [A ′] is prepared using such an epoxy resin as a raw material.
- an epoxy resin whose main component is a bisphenol-type epoxy having a molecular weight of 1500 or more as a raw material.
- the molecular weight of the epoxy resin refers to the relative molecular weight determined by GPC using a polystyrene standard sample.
- epoxy resin examples include the following.
- Examples of commercially available products of bisphenol A type epoxy resins include jER1004, jER1004F, jER1004AF, jER1005F, jER1007, jER1009 (above, Japan Epoxy Resin Co., Ltd., “jER” is a registered trademark of the same company (hereinafter the same)). Can be mentioned.
- Examples of the commercially available brominated bisphenol A type epoxy resin include jER5057 (manufactured by Japan Epoxy Resin Co., Ltd.).
- Examples of commercially available hydrogenated bisphenol A type epoxy resins include ST4100D, ST5100 (manufactured by Tohto Kasei Co., Ltd.) and the like.
- bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable because of a good balance between heat resistance, elastic modulus, and toughness.
- [B] in the epoxy resin composition of the first embodiment of the present invention is an epoxy resin whose SP value as a structural unit is 1.5 to 6.5 higher than the SP value as a structural unit of [A]. It is necessary to contain 20 to 60 parts by weight of 100 parts by weight of the total epoxy resin, and preferably 30 to 50 parts by weight of 100 parts by weight of the total epoxy resin. When it is less than 20 parts by weight, the elastic modulus of the cured product is insufficient, it is difficult to form a phase separation structure, and the toughness is insufficient. Moreover, when it exceeds 60 weight part, the elongation of hardened
- [B ′] in the epoxy resin composition of the second embodiment of the present invention has an SP value as a structural unit of 1.5 to 6.5 than the SP value as a structural unit of [A ′].
- the high epoxy resin needs to be contained in an amount of 20 to 60 parts by weight out of 100 parts by weight of the total epoxy resin, and preferably 30 to 50 parts by weight of 100 parts by weight of the total epoxy resin.
- the elastic modulus of the cured product is insufficient, it is difficult to form a phase separation structure, and the toughness is insufficient.
- it exceeds 60 weight part the elongation of hardened
- the structural unit is a partial chemical structure derived from the epoxy resin component in the cured epoxy resin produced through the curing reaction with the epoxy resin curing agent.
- the structural unit of the epoxy resin component of the chemical formula (I) is as shown in the chemical formula (II).
- Such SP value is a generally known solubility parameter, and is an indicator of solubility and compatibility.
- Polym. Eng. Sci. , 14 (2), 147-154 (1974) the SP value calculated from the molecular structure based on the Fedors method is used, and the unit is (cal / cm 3 ) 1/2 . I will do it.
- the cured product has a uniform structure that does not form phase separation, and toughness Is lacking.
- the value obtained by subtracting the SP value as the structural unit of [A] from the SP value as the structural unit of [B] is higher than 6.5, the phase separation structure of the cured product becomes coarse, and the resin When the composition is prepared, the two are not compatible with each other, resulting in a non-uniform resin composition, which may adversely affect the impregnation property of the reinforcing fibers.
- the relationship relating to the difference between the SP value as the structural unit [B ′] and the SP value as the structural unit [A ′] is the same as described above.
- [B] or [B ′] belongs to a class having a high SP value as a structural unit among generally known epoxy resins. Accordingly, an epoxy resin having a highly polar skeleton, or a resin containing a large amount of epoxy groups, that is, having a high epoxy equivalent, can be preferably used.
- high-polarity epoxy resins such as urethane-modified epoxy resins and isocyanurate ring-containing epoxy resins
- low epoxy equivalent epoxy such as amine-type epoxy resins, polyfunctional novolak-type epoxy resins, and aliphatic polyfunctional epoxy resins.
- the amine type epoxy resin is excellent in the uniform compatibility of the resin composition and the phase separation formability of the cured product, and is excellent in the elastic modulus and heat resistance. Therefore, it is preferable. Further, among the amine type epoxy resins, by using a trifunctional amine type epoxy resin, it is easy to achieve both the elastic modulus and the toughness of the cured product with a good balance.
- amine-type epoxy resins examples include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, diglycidylaniline, diglycidyltoluidine, tetraglycidylxylylenediamine, halogens thereof, alkyl-substituted products, and hydrogenated products. Goods can be used.
- tetraglycidyldiaminodiphenylmethane examples include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Tohto Kasei Co., Ltd.), and “jER (registered trademark)” 604 (Japan Epoxy Resin Co., Ltd.). ), “Araldide (registered trademark)” MY720, MY721 (manufactured by Huntsman Advanced Materials), etc. can be used.
- TTRAD tetraglycidylxylylenediamine and hydrogenated products thereof
- TETRAD registered trademark
- TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Inc.
- trifunctional aminophenol type epoxy resins are more preferred because of their low viscosity and good balance between the elastic modulus and toughness of the cured product.
- [C] in the epoxy resin composition of the first embodiment of the present invention includes 15 to 40 parts by weight of a diglycidyl ether type epoxy resin having a molecular weight of 500 to 1200 out of 100 parts by weight of the total epoxy resin. It is necessary to include 20 to 35 parts by weight out of 100 parts by weight of the total epoxy resin. Since [C] is compatible with both [A] and [B] epoxy resins, the start of phase separation of the [A] rich phase and the [B] rich phase is delayed, so the phase separation structure is not coarsened. The curing reaction can be completed, and the phase separation structure period can be fixed at 5 ⁇ m or less. Therefore, excellent mechanical properties can be obtained.
- the molecular weight of [C] when the molecular weight of [C] is less than 500, it is easily incorporated into any phase, so that the compatibilizing effect becomes insufficient, the phase separation structure becomes coarse or homogeneously compatible, and fiber reinforcement The impact resistance of the composite material becomes insufficient. Moreover, when the molecular weight exceeds 1200, it is easy to be taken into the [A] rich phase, and the effect of slowing the coarsening of the phase separation structure is small.
- [C ′] in the epoxy resin composition of the second embodiment of the present invention includes 15 to 40 parts by weight of a diglycidyl ether type epoxy resin having a molecular weight of 300 to 1200 out of 100 parts by weight of the total epoxy resin.
- the molecular weight is preferably 500 to 1200, and 20 to 35 parts by weight of [C ′] is preferably included in 100 parts by weight of the total epoxy resin. Since [C ′] is compatible with both [A ′] and [B ′] both epoxy resins, the start of phase separation of the [A ′] rich phase and the [B ′] rich phase is delayed.
- the curing reaction can be completed before coarsening, and the phase separation structure period can be fixed at 5 ⁇ m or less. Therefore, excellent mechanical properties can be obtained.
- the molecular weight of [C ′] is less than 300, it is easily taken into one of the phases, so that the compatibilizing effect becomes insufficient, and the phase separation structure becomes coarse or homogeneously compatible.
- the impact resistance of the reinforced composite material becomes insufficient.
- the molecular weight exceeds 1200, it is easy to be incorporated into the [A ′] rich phase, and the effect of slowing the coarsening of the phase separation structure is small.
- [D ′] aromatic amine type epoxy resin curing agent is used as a curing agent, and “D ′” is compared with a normal epoxy resin curing agent, Since the reaction rate with the epoxy resin is slow, stable and fine phase separation can be obtained even in a region where the molecular weight of [C] is smaller.
- the appropriate content of [C] or [C ′] is 15 to 40 depending on the type of the curing agent. It adjusts suitably within the range of a weight part.
- [C] or [C ′] epoxy resin is not particularly limited as long as it is a diglycidyl ether type epoxy resin within a predetermined molecular weight range, but a bisphenol type epoxy resin can be particularly preferably used.
- a bisphenol type epoxy resin can be particularly preferably used as the bisphenol type epoxy resin.
- bisphenol A type, bisphenol F type, bisphenol AD type, bisphenol S type, or halogens, alkyl-substituted products, hydrogenated products, etc. of these bisphenol type epoxy resins are used.
- the molecular weight is determined by GPC using a polystyrene standard sample as in [A] or [A ′].
- Examples of commercially available products mainly composed of a diglycidyl ether type epoxy resin having a molecular weight of 1200 or less that can be suitably applied as the main component of [C] or [C ′] include the following.
- Examples of commercially available bisphenol A type epoxy resins include jER825, jER826, jER827, jER828, jER834, jER1001, and jER1002 (above, “JER”: registered trademark manufactured by Japan Epoxy Resin Co., Ltd.).
- brominated bisphenol A type epoxy resins examples include Epc152, Epc153 (above, Dainippon Ink Co., Ltd.), jER5050, jER5051 (above, Japan Epoxy Resin Co., Ltd.).
- Commercial products of hydrogenated bisphenol A type epoxy resin include Denacol EX-252 (manufactured by Nagase ChemteX Corporation, “Denacol” is a registered trademark of the company), ST3000, ST5080, ST4000D (manufactured by Toto Kasei Co., Ltd.) Etc.
- the content component of [C] or [C ′] is preferably a bisphenol A type epoxy resin or a bisphenol F type epoxy resin because of a good balance between heat resistance, elastic modulus, and toughness.
- [D] or [D ′] epoxy resin curing agent in the epoxy resin composition of the present invention is a component necessary for curing the epoxy resin.
- the curing agent is not particularly limited as long as it cures the epoxy resin, and may be a curing agent that undergoes an addition reaction such as amine or anhydride, or may be a curing catalyst that causes addition polymerization such as cationic polymerization or anionic polymerization. .
- an aliphatic amine type epoxy resin curing agent excellent in mechanical properties and heat resistance in particular, dicyandiamide or a derivative thereof has an elastic modulus, Since it has an excellent balance of elongation and excellent storage stability of the resin composition, it can be suitably used mainly for sports applications.
- Such dicyandiamide derivatives are obtained by bonding various compounds to dicyandiamide, and include reactants with epoxy resins, reactants with vinyl compounds and acrylic compounds.
- the blending amount is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin in the epoxy resin composition from the viewpoint of heat resistance and mechanical properties. 2 to 8 parts by weight is more preferable. If it is less than 1 part by weight, the cured product has insufficient crosslinking density, so that the elastic modulus is insufficient and the mechanical properties may be inferior. When it exceeds 10 parts by weight, the crosslink density of the cured product becomes high, the plastic deformation ability becomes small, and the impact resistance may be inferior.
- blending dicyandiamide or a derivative thereof as a powder into the resin as [D] is preferable from the viewpoint of storage stability at room temperature and viscosity stability during prepreg formation.
- the average particle size is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less. When it exceeds 10 ⁇ m, for example, when used for prepreg applications, when impregnating the resin composition into the reinforcing fiber bundle by heating and pressing, dicyandiamide or a derivative thereof may not enter the reinforcing fiber bundle and may remain on the surface of the fiber bundle. is there.
- Examples of commercially available dicyandiamide include DICY-7 and DICY-15 (manufactured by Japan Epoxy Resin Co., Ltd.).
- Dicyandiamide may be used alone or in combination with a curing catalyst for dicyandiamide or a curing agent for other epoxy resins.
- dicyandiamide curing catalysts to be combined include ureas, imidazoles, Lewis acid catalysts, and epoxy resin curing agents include aromatic amine curing agents, alicyclic amine curing agents, and acid anhydride curing agents.
- Examples of commercially available ureas include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.), Omicure 24, Omicure 52, and Omicure 94 (above CVC Specialty Chemicals, Inc.).
- Lewis acid catalysts include boron trifluoride / piperidine complex, boron trifluoride / monoethylamine complex, boron trifluoride / triethanolamine complex, boron trichloride / octylamine complex, etc. Is mentioned.
- diaminodiphenyl sulfone or a derivative thereof has heat resistance in addition to elastic modulus and elongation. Therefore, it can be suitably used mainly for aircraft applications.
- [D ′] aromatic amine type epoxy resin curing agent has a slow curing reaction with epoxy resin
- [C ′] has a molecular weight of 300 to 1200, and a fine phase separation even at a lower molecular weight.
- the structure can be formed stably.
- a liquid such as a liquid aliphatic amine, a liquid alicyclic amine, or a liquid aromatic amine is used as a curing agent.
- Amine curing agents can be applied.
- [E] or [E ′] is used for the purpose of improving workability by adjusting viscoelasticity when uncured or improving the elastic modulus and heat resistance of the cured resin.
- the epoxy resin may be added within a range that does not affect the phase separation structure.
- [E] is an optional component other than [A] to [D] in the epoxy resin composition of the first embodiment.
- [E ′] is an optional component other than [A ′] to [D ′] in the epoxy resin composition of the second embodiment.
- [E] or [E '] may be added in combination of not only one type but also a plurality of types.
- epoxy resin of [E] or [E ′] include, for example, bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, resorcinol type epoxy resin, phenol aralkyl type epoxy resin, dicyclopentadiene.
- Type epoxy resin epoxy resin having biphenyl skeleton, urethane-modified epoxy resin, and the like.
- phenol novolac type epoxy resins include “Epicoat (registered trademark)” 152, “Epicoat (registered trademark)” 154 (above, manufactured by Japan Epoxy Resin Co., Ltd.), “Epicron (registered trademark)” N-740, “Epicron (registered trademark)” N-770, “Epicron (registered trademark)” N-775 (manufactured by Dainippon Ink & Chemicals, Inc.), and the like.
- cresol novolac type epoxy resins Commercial products of cresol novolac type epoxy resins include “Epicron (registered trademark)” N-660, “Epicron (registered trademark)” N-665, “Epicron (registered trademark)” N-670, “Epicron (registered trademark)” "N-673", “Epicron (registered trademark)” N-695 (above, manufactured by Dainippon Ink & Chemicals, Inc.), EOCN-1020, EOCN-102S, EOCN-104S (above, manufactured by Nippon Kayaku Co., Ltd.) ) And the like.
- resorcinol type epoxy resin examples include “Denacol (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
- dicyclopentadiene type epoxy resins include “Epicron (registered trademark)” HP7200, “Epicron (registered trademark)” HP7200L, “Epicron (registered trademark)” HP7200H (above, Dainippon Ink & Chemicals, Inc.) And Tactix 558 (manufactured by Huntsman Advanced Material), XD-1000-1L, XD-1000-2L (manufactured by Nippon Kayaku Co., Ltd.), and the like.
- Examples of commercially available urethane and isocyanate-modified epoxy resins include AER4152 (produced by Asahi Kasei Epoxy Co., Ltd.) having an oxazolidone ring and ACR1348 (produced by Asahi Denka Co., Ltd.).
- a molding method in which a low-viscosity liquid resin composition such as a resin transfer molding method is suitably used includes [E] or [E ′] as an aliphatic epoxy resin, an alicyclic epoxy resin, or the like.
- a low viscosity epoxy resin is applicable.
- the epoxy resin composition of the present invention has a heat-solubility that is soluble in epoxy resin in order to control viscoelasticity, improve tack and drape characteristics of prepreg, and improve mechanical properties such as impact resistance of fiber reinforced composite materials.
- Organic particles such as plastic resins, rubber particles and thermoplastic resin particles, inorganic particles, and the like can be blended.
- thermoplastic resin soluble in the epoxy resin a thermoplastic resin having a hydrogen-bonding functional group that can be expected to improve the adhesion between the resin and the reinforcing fiber is preferably used.
- hydrogen bonding functional groups include alcoholic hydroxyl groups, amide bonds, sulfonyl groups, and the like.
- thermoplastic resin having an alcoholic hydroxyl group examples include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resin, and thermoplastic resins having an amide bond such as polyamide, polyimide, polyvinyl pyrrolidone, and heat having a sulfonyl group.
- plastic resin examples include polysulfone such as polyethersulfone.
- Polyamide, polyimide and polysulfone may have a functional group such as an ether bond and a carbonyl group in the main chain.
- the polyamide may have a substituent on the nitrogen atom of the amide group.
- polyvinyl formal and polyethersulfone are excellent in compatibility with epoxy resins, and have a phase separation structure of an appropriate size between [A] and [B] or between [A ′] and [B ′]. Since it can mix
- polyvinyl formal examples include “Denka Formal (registered trademark)” (manufactured by Denki Kagaku Kogyo Co., Ltd.) and “Vinylec (registered trademark)” (manufactured by Chisso Corporation).
- the acrylic resin has high compatibility with the epoxy resin and is suitably used for controlling viscoelasticity.
- Commercially available acrylic resins include “Dynar (registered trademark)” BR series (Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere (registered trademark)” M, M100, M500 (Matsumoto Yushi Seiyaku Co., Ltd.) ) And the like.
- cross-linked rubber particles, and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like.
- crosslinked rubber particles include FX501P (manufactured by Nippon Synthetic Rubber Industry Co., Ltd.) composed of a crosslinked product of carboxyl-modified butadiene-acrylonitrile copolymer, and CX-MN series (manufactured by Nippon Shokubai Co., Ltd.) composed of acrylic rubber fine particles.
- YR-500 series (manufactured by Toto Kasei Co., Ltd.) can be used.
- core-shell rubber particles include, for example, “Paraloid (registered trademark)” EXL-2655 (manufactured by Kureha Chemical Industry Co., Ltd.), acrylic ester / methacrylic ester consisting of butadiene / alkyl methacrylate / styrene copolymer.
- STAPHYLOID (registered trademark) AC-3355 made of copolymer, TR-2122 (manufactured by Takeda Pharmaceutical Co., Ltd.), "PARALOID (registered trademark)” EXL made of butyl acrylate / methyl methacrylate copolymer -2611, EXL-3387 (manufactured by Rohm & Haas), “Kane Ace (registered trademark)” MX series (manufactured by Kaneka Corporation), and the like can be used.
- thermoplastic resin particles polyamide particles or polyimide particles are preferably used, and as commercially available polyamide particles, SP-500 (manufactured by Toray Industries, Inc.), “Orgasol (registered trademark)” (manufactured by Arkema), etc. Can be used.
- the organic particles such as rubber particles and thermoplastic resin particles are used in an amount of 0.1 to 30 parts by weight with respect to 100 parts by weight of the total epoxy resin from the viewpoint of achieving both the elastic modulus and toughness of the resulting cured resin. It is preferable to add 1 to 15 parts by weight.
- a kneader, a planetary mixer, a three-roll extruder, a twin-screw extruder, or the like is preferably used.
- the temperature of the epoxy resin mixture is raised to an arbitrary temperature of 130 to 180 ° C. while stirring, and the remaining components other than the curing agent and the curing catalyst are dissolved or dispersed in the epoxy resin mixture.
- the temperature is preferably lowered to 100 ° C. or lower, more preferably 80 ° C. or lower, and a curing agent and a curing catalyst are added and kneaded and dispersed.
- This method is preferably used because an epoxy resin composition having excellent storage stability can be obtained.
- the epoxy resin composition of the present invention comprises a cured epoxy resin obtained by curing the epoxy resin composition, a prepreg for a fiber reinforced composite material using the cured epoxy resin and a cured product thereof, and a cured epoxy resin and a reinforced fiber substrate. It can be used as a reinforced fiber composite material combined.
- a cured product obtained by curing the epoxy resin composition of the present invention at least [A] rich phase and [B] rich phase, or [A ′] rich phase and [B ′] rich phase.
- An epoxy resin cured product having a phase separation structure having a structure period of 0.01 to 5 ⁇ m is provided.
- it has a phase separation structure having at least a [A ′] rich phase and a [B ′] rich phase, An epoxy resin cured product having a structural period of 0.01 to 5 ⁇ m is provided.
- the viscosity at 80 ° C. is preferably from 0.1 to 200 Pa ⁇ s, more preferably from the viewpoint of processability such as tack and drape. It is desirable to be in the range of 5 to 100 Pa ⁇ s, more preferably 1 to 50 Pa ⁇ s. If the viscosity at 80 ° C. is less than 0.1 Pa ⁇ s, the shape retention of the prepreg may be insufficient and cracking may occur, and a large amount of resin flow occurs during molding, resulting in variations in reinforcing fiber content. May occur. When the viscosity at 80 ° C. exceeds 200 Pa ⁇ s, the epoxy resin composition may be fainted in the film forming process, or an unimpregnated portion may be generated in the reinforcing fiber impregnation process.
- the epoxy resin composition of the present invention when used as a prepreg for aircraft primary structural materials, preferably has a minimum viscosity of 0.05 to 20 Pa ⁇ s, more preferably 0.1 to 10 Pa ⁇ s. It is desirable to be in range. If the minimum viscosity is less than 0.05 Pa ⁇ s, the shape retention of the prepreg may be insufficient and cracking may occur, and a lot of resin flow will occur during molding, resulting in variations in reinforcing fiber content. There is a case. When the minimum viscosity exceeds 20 Pa ⁇ s, blurring may occur in the film forming process of the epoxy resin composition, or an unimpregnated part may occur in the impregnation process of the reinforcing fibers.
- the viscosity here is determined by using a dynamic viscoelasticity measuring device (Rheometer RDA2: manufactured by Rheometrics), using a parallel plate with a diameter of 40 mm, simply raising the temperature at a rate of temperature increase of 2 ° C./min, and a frequency of 0.5 Hz.
- Gap 1 mm refers to the complex viscoelastic modulus ⁇ * measured.
- the curing temperature and curing time for obtaining a cured product are not particularly limited, depending on the curing agent and catalyst to be blended, cost and productivity, mechanical properties of the resulting cured product, It can be appropriately selected from the viewpoints of heat resistance, quality and the like.
- a curing agent system combining dicyandiamide and DCMU is preferably cured at a temperature of 135 ° C. for 2 hours, and when diaminodiphenyl sulfone is used, it is preferably cured at a temperature of 180 ° C. for 2 hours. It is.
- the sample for measuring the resin flexural modulus of the cured product was obtained by defoaming an uncured epoxy resin composition in a vacuum, and then in a mold set to a thickness of 2 mm by a 2 mm thick “Teflon (registered trademark)” spacer.
- the plate-like cured product without voids is obtained by curing under the predetermined curing conditions, and this is cut into a width of 10 mm and a length of 60 mm with a diamond cutter.
- the resin toughness measurement sample of the cured product is predetermined in a mold set to a thickness of 6 mm with a 6 mm thick “Teflon (registered trademark)” spacer after defoaming the uncured epoxy resin composition in vacuum.
- a plate-like cured product without voids is obtained by curing under the curing conditions described above, cut into a width of 12.7 mm and a length of 150 mm with a diamond cutter, and produced by introducing a pre-crack of 5 to 7 mm from one end in the width direction. did.
- the initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer.
- the reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers from which a lightweight and highly rigid fiber-reinforced composite material can be obtained. Of these, carbon fibers having a tensile modulus of 100 to 900 GPa are preferable, and carbon fibers having a tensile modulus of 200 to 800 GPa are more preferable.
- the form of the reinforcing fibers is not particularly limited, and for example, long fibers arranged in one direction, tows, woven fabrics, mats, knits, braids, short fibers chopped to a length of less than 10 mm, and the like are used.
- long fibers refer to single fibers or fiber bundles that are substantially continuous for 10 mm or more.
- a short fiber is a fiber bundle cut to a length of less than 10 mm.
- an array in which reinforcing fiber bundles are aligned in a single direction is most suitable for applications that require a high specific strength and specific elastic modulus. Arrangements are also suitable for the present invention.
- the prepreg of the present invention is obtained by impregnating a fiber base material with the epoxy resin composition of the present invention.
- the impregnation method include a wet method in which the epoxy resin composition is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the viscosity and impregnation, and a hot melt method (dry method) in which the viscosity is reduced by heating and impregnation. it can.
- the wet method is a method in which the reinforcing fiber is immersed in a solution of the epoxy resin composition and then lifted and the solvent is evaporated using an oven or the like.
- the hot melt method directly applies the epoxy resin composition whose viscosity has been reduced by heating.
- a method of impregnating reinforcing fibers, or a film in which an epoxy resin composition is once coated on a release paper or the like is prepared, and then the films are laminated from both sides or one side of the reinforcing fibers and heated and pressed to form reinforcing fibers. This is a method of impregnating a resin.
- the hot melt method is preferable because substantially no solvent remains in the prepreg.
- the prepreg preferably has a reinforcing fiber amount per unit area of 70 to 200 g / m 2 .
- the fiber weight content is preferably 60 to 90% by weight, and is usually used in the range of 65 to 85% by weight.
- the fiber weight content is less than 60% by weight, the ratio of the resin is too large to obtain the advantages of the fiber reinforced composite material having excellent specific strength and specific elastic modulus, and when the fiber reinforced composite material is molded, The amount of heat generated may be too high. On the other hand, if the fiber weight content exceeds 90% by weight, poor resin impregnation may occur, and the resulting composite material may have many voids.
- the composite material according to the present invention is produced by a method of heat curing the resin while applying pressure to the shaped product and / or the laminated product.
- a press molding method an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be used as appropriate.
- the autoclave molding method is a method of laminating a prepreg on a tool plate of a predetermined shape, covering with a bagging film, pressurizing and heat-curing while degassing the inside of the laminate, and the fiber orientation can be precisely controlled, Further, since the generation of voids is small, a molded article having excellent mechanical properties and high quality can be obtained.
- the wrapping tape method is a method of winding a prepreg on a mandrel or other core metal to form a tubular body made of a fiber reinforced composite material, and is a method suitable for producing a rod-shaped body such as a golf shaft or a fishing rod.
- a prepreg is wound around a mandrel
- a wrapping tape made of a thermoplastic film is wound around the outside of the prepreg for fixing and applying pressure, and the resin is heated and cured in an oven, and then a cored bar.
- This is a method for extracting a tube to obtain a tubular body.
- the internal pressure molding method is to set a preform in which a prepreg is wound on an internal pressure applying body such as a tube made of a thermoplastic resin in a mold, and then introduce a high pressure gas into the internal pressure applying body to apply pressure. At the same time, the mold is heated and molded.
- This method is preferably used when molding a complicated shape such as a golf shaft, a bad, a racket such as tennis or badminton.
- the fiber reinforced composite material using the cured product of the epoxy resin composition of the present invention as a matrix resin is suitably used for sports applications, general industrial applications, and aerospace applications. More specifically, in sports applications, it is suitably used for golf shafts, fishing rods, tennis and badminton racket applications, hockey stick applications, and ski pole applications. Furthermore, in general industrial applications, it is used as a structural material for moving bodies such as automobiles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, and repair and reinforcement materials. Preferably used. Suitable for aerospace applications such as aircraft primary structural materials such as main wings, tail wings and floor beams, secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite structural materials Used for.
- aircraft primary structural materials such as main wings, tail wings and floor beams
- secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite
- the tubular body made of fiber reinforced composite material obtained by curing the prepreg of the present invention into a tubular shape can be suitably used for golf shafts, fishing rods and the like.
- [E ′] are also as shown in Table 1-1, Table 1-2, Table 2-1, and Table 2-2.
- EEW represents the epoxy equivalent
- the number of functional groups represents the average number of epoxy groups
- Mn represents the number average molecular weight
- SP represents the solubility parameter.
- the epoxy equivalent, the average number of epoxy groups, etc. of each raw material used for preparing each epoxy resin composition are as shown below.
- Triglycidyl-m-aminophenol (Sumiepoxy (registered trademark)" ELM120, epoxy equivalent: 118, trifunctional, manufactured by Sumitomo Chemical Co., Ltd.)
- Triglycidyl-p-aminophenol (“Araldide (registered trademark)” MY0510, epoxy equivalent: 101, trifunctional, manufactured by Huntsman Advanced Materials)
- Tetraglycidyldiaminodiphenylmethane ("Sumiepoxy (registered trademark)" ELM434, epoxy equivalent: 120, tetrafunctional, manufactured by Sumitomo Chemical Co., Ltd.) -Modified TEPIC (epoxy equivalent: 349, 2.6 functional) Dissolve 100 parts by weight of TEPIC-P (triglycidyl isocyanurate, epoxy equivalent: 106, trifunctional, manufactured by Nissan Chemical Co., Ltd.) in 3000 parts by weight of toluene, add 16 parts by weight of propionic
- Viscosity measurement of epoxy resin composition The viscosity of the epoxy resin composition was measured using a dynamic viscoelasticity measuring device (Rheometer RDA2: manufactured by Rheometrics), using a parallel plate with a diameter of 40 mm, and a heating rate of 2 ° C. The temperature was simply raised at / min, the frequency was measured at 0.5 Hz, and the gap was 1 mm, and the lowest value of the complex viscosity was measured.
- the initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer.
- the toughness of the cured resin refers to the critical stress strength of deformation mode 1 (opening type).
- phase separation structure of the cured product forms a two-phase continuous structure or a sea-island structure, and was measured as follows.
- the phase structure period of the cured resin is as shown in the column of phase structure size ( ⁇ m).
- a straight line of a predetermined length is drawn on the micrograph, the intersection of the straight line and the phase interface is extracted, the distance between adjacent intersections is measured, and the number average value of these is the structure period It was.
- the predetermined length was set as follows based on a micrograph.
- the number average value of the distance between the island phase and the island phase existing in a predetermined region is defined as the structure period.
- the shortest distance between the island phase and the island phase was used when the island phase was an ellipse, an indeterminate shape, or a circle or ellipse with two or more layers.
- the predetermined region was set as follows based on a micrograph.
- phase separation structure periodic distance When the phase separation structure periodic distance is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m), a photograph is taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0 on the sample) .2 ⁇ m square area) 3 locations are selected, and in the same way, if the phase separation structure periodic distance is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m), photograph is taken at a magnification of 2,000 times.
- the major axis of all the island phases existing in a predetermined region was measured, and the number average value of these was obtained as the island phase diameter.
- the island phase is an ellipse, an indeterminate shape, or a circle or ellipse of two or more layers
- the diameter of the outermost circle or the major axis of the ellipse was used.
- the predetermined region was set as follows based on a micrograph. When the phase separation structure period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m), a photograph is taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0.
- phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
- a photograph is taken at a magnification of 2,000 times. If you select 3 regions of 4mm square (2 ⁇ m square area on the sample) at random and the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m), take a photo at 200x magnification, Three areas of 4 mm square (20 ⁇ m square area on the sample) were randomly selected on the photograph. If the measured phase separation structure period was out of the expected order, the corresponding region was measured again at a magnification corresponding to the corresponding order and adopted.
- the carbon fiber weight per unit area was 125 g / m 2 in the same procedure except that carbon fiber trading card M40SC-12K (manufactured by Toray Industries, Inc., tensile elastic modulus: 380 GPa, tensile strength: 4900 MPa) was used as the reinforcing fiber.
- a unidirectional prepreg using M40SC having a fiber weight content of 75% was prepared.
- a wrapping tape heat-resistant film tape
- the width of the wrapping tape was 15 mm
- the tension was 3.0 kg
- the winding pitch (deviation amount during winding) was 1.0 mm
- this was 2 ply lapping.
- the Charpy impact test composite material tubular body obtained above was cut to a length of 60 mm to produce a test piece having an inner diameter of 6.3 mm and a length of 60 mm.
- a Charpy impact test was performed by applying an impact from the side surface of the tubular body at a weight of 29.4 N ⁇ m.
- E WR [(cos ⁇ -cos ⁇ ) ⁇ (cos ⁇ ′ ⁇ cos ⁇ ) ( ⁇ + ⁇ ) / ( ⁇ + ⁇ ′)]
- J Absorbed energy
- WR Moment around the rotation axis of the hammer (N ⁇ m)
- ⁇ Hammer lift angle (°)
- ⁇ ' Swing angle when the hammer is swung from the lift angle ⁇ (°)
- ⁇ Hammer swing angle after test specimen breakage (°)
- the unidirectional prepreg produced in the above (8) was laminated in a (+ 45 ° / 0 ° / ⁇ 45 ° / 90 °) 3s configuration in a quasi-isotropic manner with 24 plies, and the autoclave was heated to 2 ° C. at a temperature of 180 ° C.
- the laminate was produced by molding at a temperature rising rate of 1.5 ° C./min for a time and under a pressure of 0.59 MPa.
- a sample 150 mm long ⁇ 100 mm wide was cut out from this laminate, and a falling weight impact of 6.7 J / mm was applied to the center of the sample according to SACMA SRM 2R-94 to determine the compressive strength after impact.
- the unidirectional prepreg produced by the above (8) was laminated in a (+ 45 ° / 0 ° / ⁇ 45 ° / 90 °) 2s configuration in a pseudo-isotropic manner with 16 plies, and was autoclaved at a temperature of 180 ° C.
- the laminate was produced by molding at a temperature rising rate of 1.5 ° C./min for a time and under a pressure of 0.59 MPa.
- a sample having a length of 305 mm ⁇ width of 25.4 mm was cut out from the laminate, and a hole having a diameter of 6.35 mm was drilled in the center to be processed into a perforated plate.
- This perforated plate was immersed in warm water at a temperature of 72 ° C. for 2 weeks, and the compressive strength was determined in an atmosphere at a temperature of 82 ° C. according to SACMA SRM 3R-94.
- Table 1-1 to Table 2-2 collectively show the results of measuring epoxy resin compositions, prepregs, and fiber-reinforced composite material tubular bodies for each Example and Comparative Example by the above method.
- the bisphenol-type epoxy resins used in the examples and comparative examples were individually measured for molecular weights in advance, and in Examples 1 to 6, 8, 9 and Comparative Examples 1 to 8, the molecular weight was 500 to 500.
- the contents of 1,200 and those having a molecular weight of 1500 or more were obtained, and the blending amount of each diglycidyl ether type epoxy resin was determined so as to be the ratio of the molecular weight of the present invention.
- Example 1 As shown in Table 1-1, when [ER] is used as the main component [A], ELM120 is used as [B], and jER834 is used as the main component [C], a fine phase separation structure period is obtained. And the mechanical properties of the tubular body were good.
- Example 2 Instead of jER1007, jER1009 ([A] is the main component) was used and the blending ratios shown in Table 1-1 were used, except that [A] was set near the upper limit of the specified range.
- a thermosetting resin composition was prepared. As a result of a slight decrease in the resin elastic modulus compared with Example 1, the mechanical properties of the tubular body were also slightly decreased, but at a level with no problem.
- Example 3 As another epoxy resin, a thermosetting resin composition was added in the same manner as in Example 2 except that jER154 was added and the mixing ratio shown in Table 1-1 was set, and [E] was set near the upper limit of the specified range. Was prepared. Compared to Example 2, the resin elastic modulus was improved but the toughness was reduced. As a result, the mechanical properties of the tubular body were also at the same level.
- Example 4 jER4004P ([A] is the main component) is used instead of jER1007, YDF2001 ([C] is the main component) is used instead of jER834, and the mixture ratios shown in Table 1-1 are used.
- [C] is the specified range
- a thermosetting resin composition was prepared in the same manner as in Example 1 except that the lower limit was set. Since the phase separation structure period was larger than that in Example 1, the mechanical properties of the tubular body were slightly deteriorated, but at a level with no problem.
- Example 5 A thermosetting resin composition was prepared in the same manner as in Example 4 except that a part of ELM120 was replaced with YDF2001 and the blending ratio shown in Table 1-1 was set, and [C] was set near the upper limit of the specified range. did. Compared to Example 3, it had an extremely fine phase separation structure period, and the mechanical properties of the tubular body were greatly improved.
- thermosetting resin composition was prepared in the same manner as in Example 4 except that it was set to 1.9 and near the lower limit of the specified range. Compared to Example 5, the resin elastic modulus decreased and the mechanical properties of the tubular body slightly decreased, but were at a sufficient level.
- Example 7 As [D], 4,4′-DDS is used in place of DICY-7, and DCMU99 is excluded to obtain the blending ratio shown in Table 1. (3) Flexural modulus of cured resin, (4) Resin Except that the curing temperature of the epoxy resin or prepreg in the measurement of the toughness (K IC ) of the cured product, (7) preparation of the composite material tubular body for Charpy impact test, etc. was 180 ° C. A thermosetting resin composition was prepared. Compared to Example 5, since the phase separation structure period was large and the resin toughness was also lowered, the mechanical properties of the tubular body were lowered, but at a level with no problem.
- the post-impact compressive strength which is important for the aircraft primary structural material, showed a very high value, and the perforated plate compressive strength in a wet heat environment was at a level with no problem.
- Example 8 As shown in Table 1-2, a TEPIC modified product was used as [B], DICY-7 was used as [D], and the difference in SP value between [A] and [B] was set high to 5.3. As a result, the phase separation structure was as large as 4 ⁇ m, but the mechanical properties of the tubular body were at an acceptable level.
- Example 9 As a result of setting the contents of [A], [B], and [C] in the optimum region, a fine phase separation structure is obtained, the toughness is as very high as 1.8, and the mechanical properties of the tubular body are extremely high. It was good.
- Example 11 As a result of replacing jER1007 in Example 10 with jER4004P, an appropriate phase separation structure was obtained, and the mechanical properties of the fiber-reinforced composite material plate were good.
- Example 12 As a result of setting the curing agent to 3,3′-DDS, the content of [A ′] and [B ′] is set to the lower limit, and the content of [C ′] is set to the upper limit, an extremely fine phase separation structure is obtained.
- the toughness was an acceptable level of 1.1, and the mechanical properties of the fiber-reinforced composite material flat plate were at a level with no problem.
- Example 13 As a result of setting the curing agent to 3,3′-DDS and setting the content of [A ′], [B ′], and [C ′] in the optimum region, a fine phase separation structure is obtained, and the toughness is 1 The mechanical properties of the fiber-reinforced composite plate were very good.
- thermosetting resin composition was prepared in the same manner as in Example 1 except that only 100 parts by weight of [B] ELM120 was used as the epoxy resin.
- the cured resin was uniform without phase separation, and the resin elastic modulus was extremely high.
- the resin toughness being lowered, the mechanical properties of the tubular body were greatly lowered and became insufficient.
- thermosetting resin composition was prepared in the same manner as in Example 2 except that the epoxy resin whose main component was [C] was not used and the content ratio of [A] and [B] was changed. .
- the mechanical properties of the tubular body were greatly reduced and became insufficient.
- thermosetting resin composition was prepared in the same manner as in Example 2 except that jER834 was 50 parts by weight, jER1009 and ELM120 were both 25 parts by weight, and [C] was set in an area exceeding the specified range. .
- the cured resin was uniform without phase separation, and the resin toughness was greatly reduced. As a result, the mechanical properties of the tubular body were greatly reduced and became insufficient.
- thermosetting resin composition was prepared in the same manner as in Example 2 except that 10 parts by weight of jER1009, 70 parts by weight of ELM120, and [B] were set in a region exceeding the specified range.
- the cured resin was uniform without phase separation, and the resin toughness was greatly reduced. As a result, the mechanical properties of the tubular body were greatly reduced and became insufficient.
- thermosetting resin composition was prepared in the same manner as in Example 1 except that 40 parts by weight of jER828 was blended and [B] was set in a region below the specified range.
- the cured resin was uniform without phase separation, the resin elastic modulus and resin toughness were lowered, and the mechanical properties of the tubular body became insufficient.
- the epoxy resin composition of the present invention provides a cured product with excellent toughness while having a high room temperature elastic modulus, and therefore has excellent static strength characteristics even when combined with a reinforcing fiber having a particularly high tensile elastic modulus, and A fiber-reinforced composite material having excellent impact resistance can be obtained. This makes it possible to apply high-modulus fibers to applications and sites that have been difficult to apply until now, and further reduction in the weight of fiber-reinforced composite materials is expected in each direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Epoxy Resins (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
例えば、特許文献3および特許文献4では、ビスフェノール型エポキシ樹脂に高弾性率なアミン型エポキシ樹脂を配合することで、繊維方向圧縮強度と相関関係の強い繊維方向曲げ強さや層間剪断強度に顕著な向上が見られているが、樹脂靱性や耐衝撃性に関しては十分な向上が見られなかった。
〔1〕下記[A]、[B]、[C]、[D]を、下記式(1)~(4)を満たす含有比で含むエポキシ樹脂組成物。
[A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂
[B]構造ユニットとしてのSP値が、[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂
[D]エポキシ樹脂硬化剤
0.2 ≦A/(A+B+C+E)≦0.6 (1)
0.2 ≦B/(A+B+C+E)≦0.6 (2)
0.15≦C/(A+B+C+E)≦0.4 (3)
0≦E/(A+B+C+E)≦0.2 (4)
(各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量)
〔2〕下記[A’]、[B’]、[C’]、[D’]を、下記式(1’)~(4’)を満たす含有比で含むエポキシ樹脂組成物。
[A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂
[B’]構造ユニットとしてのSP値が、[A’]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂
[D’]芳香族アミン型エポキシ樹脂硬化剤
0.2 ≦A’/(A’+B’+C’+E’)≦0.6 (1’)
0.2 ≦B’/(A’+B’+C’+E’)≦0.6 (2’)
0.15≦C’/(A’+B’+C’+E’)≦0.4 (3’)
0≦E’/(A’+B’+C’+E’)≦0.2 (4’)
(各式中、A’、B’、C’は、それぞれ[A’]、[B’]、[C’]の重量、E’は[A’]、[B’]、[C’]以外のエポキシ樹脂の重量)
〔3〕[B]がアミン型エポキシ樹脂である、上記〔1〕に記載のエポキシ樹脂組成物。
〔4〕[B’]がアミン型エポキシ樹脂である、上記〔2〕に記載のエポキシ樹脂組成物。
〔5〕[C’]の分子量が500~1200である、上記〔2〕または〔4〕に記載のエポキシ樹脂組成物。
〔6〕[D]がジシアンジアミドまたはその誘導体である、上記〔1〕または〔3〕に記載のエポキシ樹脂組成物。
〔7〕[D’]がジアミノジフェニルスルホンまたはその誘導体である、上記〔2〕、〔4〕または〔5〕に記載のエポキシ樹脂組成物。
〔8〕上記〔1〕から〔7〕のいずれか一項に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物。
〔9〕上記〔1〕または〔2〕に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する海島構造の相分離構造を有し、島相の径が0.01~5μmであるエポキシ樹脂硬化物。
〔10〕上記〔1〕から〔7〕のいずれか一項に記載のエポキシ樹脂組成物をマトリックスとした繊維強化複合材料用プリプレグ。
〔11〕上記〔10〕に記載のプリプレグを硬化させてなる繊維強化複合材料。
〔12〕上記〔8〕に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
〔13〕上記〔9〕に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
[A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂
[B]構造ユニットとしてのSP値が、[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂
[D]エポキシ樹脂硬化剤
0.2 ≦A/(A+B+C+E)≦0.6 (1)
0.2 ≦B/(A+B+C+E)≦0.6 (2)
0.15≦C/(A+B+C+E)≦0.4 (3)
0≦E/(A+B+C+E)≦0.2 (4)
(各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量)
[A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂
[B’]構造ユニットとしてのSP値が[A’]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂
[D’]芳香族アミン型エポキシ樹脂硬化剤
0.2 ≦A’/(A’+B’+C’+E’)≦0.6 (1’)
0.2 ≦B’/(A’+B’+C’+E’)≦0.6 (2’)
0.15≦C’/(A’+B’+C’+E’)≦0.4 (3’)
0≦E’/(A’+B’+C’+E’)≦0.2 (4’)
(各式中、A’、B’、C’は、それぞれ[A’]、[B’]、[C’]の重量、E’は[A’]、[B’]、[C’]以外のエポキシ樹脂の重量)
また、本発明の効果を損なわない範囲において、[A]~[E]、または、[A’]~[E’]以外に、その他の成分を含んでも構わない。その他の成分としては、エポキシ樹脂に可溶性の熱可塑性樹脂や、ゴム粒子及び熱可塑性樹脂粒子等の有機粒子や、無機粒子等が挙げられ、好ましい範囲としては、0~20重量部、さらに好ましくは0~15重量部である。
[A]と[B]の含有比によっては、構造周期がエポキシ樹脂硬化物の特性の良否を反映せず、むしろ島相の径の方が特性を反映し好ましい場合がある。具体的には、[A]の含有量が少ない場合には、島相の径の方が特性を反映する傾向にある。[A’]と[B’]の含有比とこれらを含むエポキシ樹脂硬化物の特性についても同様の傾向が見られる。
ニーダー中に、硬化剤および硬化促進剤以外の成分を所定量加え、混練しつつ、160℃まで昇温し、160℃、1時間混練することで、透明な粘調液を得た。80℃まで混練しつつ降温させた後、硬化剤および硬化促進剤を所定量添加え、混練しエポキシ樹脂組成物を得た。各実施例、比較例の原料配合比は、表1-1、表1-2、表2-1および表2-2に示す通りである。また得られたエポキシ樹脂組成物における[A]、[B]、[C]、「D」および[E]、並びに、[A’]、[B’]、[C’]、[D’]および[E’]の含有量も表1-1、表1-2、表2-1および表2-2に示す通りである。各表中、EEWはエポキシ当量を、官能基数は平均エポキシ基数を、Mnは数平均分子量を、SPは溶解度パラメーターを示す。
各エポキシ樹脂組成物を調製するために用いた各原料のエポキシ当量、平均エポキシ基数等は以下に示す通りである。
・ビスフェノールF型エポキシ樹脂(“エピクロン(登録商標)”Epc830、エポキシ当量:170、2官能、大日本インキ(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”828、エポキシ当量:189、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”834、エポキシ当量:250、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールF型エポキシ樹脂(“エポトート(登録商標)”YDF2001、エポキシ当量:475、2官能、東都化成(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4004P、エポキシ当量:880、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1007、エポキシ当量:1975、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4007P、エポキシ当量:2270、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1009、エポキシ当量:2850、2官能、ジャパンエポキシレジン(株)製)
・トリグリシジル-m-アミノフェノール(“スミエポキシ(登録商標)”ELM120、エポキシ当量:118、3官能、住友化学工業(株)製)
・トリグリシジル-p-アミノフェノール(“アラルダイド(登録商標)”MY0510、エポキシ当量:101、3官能、ハンツマン・アドバンズド・マテリアルズ社製)
・テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434、エポキシ当量:120、4官能、住友化学工業(株)製)
・TEPIC変性品(エポキシ当量:349、2.6官能)
TEPIC-P(トリグリシジルイソシアヌレート、エポキシ当量:106、3官能、日産化学(株)製)100重量部をトルエン3000重量部に溶解し、プロピオン酸無水物16重量部を加え、120℃にて撹拌し、完全に反応させた後、トルエンを除去して得た。
・フェノールノボラック型エポキシ樹脂(“jER(登録商標)”154、エポキシ当量:178、6.5官能、ジャパンエポキシレジン(株)製)
・トリフェノールメタン型エポキシ樹脂(TMH574、エポキシ当量:214、3官能、住友化学工業(株)製)
・トリグリシジルイソシアヌレート(TEPIC-P、エポキシ当量:106、3官能、日産化学(株)製)
・ジシアンジアミド(硬化剤、DICY-7、ジャパンエポキシレジン(株)製)
・4,4’-DDS(硬化剤、4,4’-ジアミノジフェニルスルホン、スミキュアS、住友化学工業(株)製)
・3,3’-DDS(硬化剤、3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製))
・“ビニレック(登録商標)”K(ポリビニルホルマール、チッソ(株)製)
・DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、硬化促進剤、保土ヶ谷化学工業(株)製)
・PES(ポリエーテルスルホン“スミカエクセル(登録商標)”PES5003P(住友化学(株)製)
エポキシ樹脂をTHFに、濃度0.1mg/mlで溶解させ、HLC-8220GPC(東ソー株式会社製)、検出器としてUV-8000(254nm)を用いて、ポリスチレン標準サンプルを用いて、相対分子量測定を行った。カラムにはTSK-G4000H(東ソー株式会社製)を用い、流速1.0ml/min、温度40℃にて測定した。面積比から含まれるエポキシ樹脂分子量の重量比を算出した。
各エポキシ樹脂原料の硬化物を想定した場合の構造ユニットについて、Polym.Eng.Sci.,14(2),147-154(1974)に記載された、Fedorsの方法に基づき、分子構造からSP値を算出した。その単位は、(cal/cm3)1/2を用いた。
エポキシ樹脂組成物の粘度は、動的粘弾性測定装置(レオメーターRDA2:レオメトリックス社製)を用い、直径40mmのパラレルプレートを用い、昇温速度2℃/minで単純昇温し、周波数0.5Hz、Gap 1mmで測定を行い、複素粘性率の最低値を測定した。
未硬化の樹脂組成物を真空中で脱泡した後、2mm厚のテフロン(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で特に断らない限り、135℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパン間長さを32mm、クロスヘッドスピードを2.5mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、曲げ弾性率を得た。サンプル数n=5とし、その平均値で比較した。
未硬化のエポキシ樹脂組成物を真空中で脱泡した後、6mm厚のテフロン(登録商標)製スペーサーにより厚み6mmになるように設定したモールド中で特に断らない限り、135℃の温度で2時間硬化させ、厚さ6mmの樹脂硬化物を得た。この樹脂硬化物を12.7×150mmでカットし、試験片を得た。インストロン万能試験機(インストロン社製)を用い、ASTM D5045(1999)に従って、試験片の加工実験をおこなった。試験片への初期の予亀裂の導入は、液体窒素温度まで冷やした剃刀の刃を試験片にあてハンマーで剃刀に衝撃を加えることで行った。ここでいう、樹脂硬化物の靱性とは、変形モード1(開口型)の臨界応力強度のことをさしている。
上記(6)で得られた樹脂硬化物を染色後、薄切片化し、透過型電子顕微鏡(TEM)を用いて下記の条件で透過電子像を取得した。染色剤は、モルホロジーに十分なコントラストが付くよう、OsO4とRuO4を樹脂組成に応じて使い分けた。
・装置:H-7100透過型電子顕微鏡(日立製作所(株)製)
・加速電圧:100kV
・倍率:10,000倍
実施例1~13、および比較例1~12について、以下の手順で試験を行った。
上記(1)に従って作製したエポキシ樹脂組成物を、リバースロールコーターを使用し離型紙状に塗布し、樹脂フィルムを作製した。次に、シート状に一方向に整列させた炭素繊維“トレカ(登録商標)”T800HB-12K(東レ(株)製、引張弾性率:294GPa、引張強度:5490MPa)に樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧して樹脂組成物を含浸させ、単位面積辺りの炭素繊維重量125g/m2、繊維重量含有率75%の、T800HB使い一方向プリプレグを作製した。
次の(a)~(e)の操作により、M40SC使い一方向プリプレグを、繊維方向が円筒軸方向に対して45°および-45°になるよう、各3plyを交互に積層し、さらにT800H使い一方向プリプレグを、繊維方向が円筒軸方向に対して平行になるよう、3plyを積層し、内径が6.3mmの複合材料製管状体を作製した。マンドレルは、直径6.3mm、長さ1000mmのステンレス製丸棒を使用した。
上記で得たシャルピー衝撃試験用複合材料製管状体を長さ60mmに切断し、内径6.3mm、長さ60mmの試験片を作製した。秤量29.4N・mで管状体の側面から衝撃を与えてシャルピー衝撃試験を行った。振り上がり角から、下記の式:
E=WR[(cosβ-cosα)-(cosα’-cosα)(α+β)/(α+α’)]
E:吸収エネルギー(J)
WR:ハンマーの回転軸の周りのモーメント(N・m)
α:ハンマーの持ち上げ角度(°)
α’:ハンマーの持ち上げ角αから空振りさせたときの振り上がり角(°)
β:試験片破断後のハンマーの振り上がり角(°)
に従って衝撃の吸収エネルギーを計算した。
なお、試験片にはノッチ(切り欠き)は導入していない。測定数はn=5で行い平均値で比較した。
実施例7、10~13、および比較例9~12について、以下の手順で試験を行った。
上記(1)で作製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ(登録商標)”T800G-24K-31E(繊維数24000本、引張強度5.9GPa、引張弾性率290GPa、引張伸度2.0%)に、樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧により樹脂を含浸させ、炭素繊維の目付が190g/m2、マトリックス樹脂の重量分率が35.5%の一方向プリプレグを作製した。
上記(8)により作製した一方向プリプレグを、(+45°/0°/-45°/90°)3s構成で、擬似等方的に24プライ積層し、オートクレーブにて、180℃の温度で2時間、0.59MPaの圧力下、昇温速度1.5℃/分で成型して積層体を作製した。この積層体から、縦150mm×横100mmのサンプルを切り出し、SACMA SRM 2R-94に従い、サンプルの中心部に6.7J/mmの落錘衝撃を与え、衝撃後圧縮強度を求めた。
上記(8)により作製した一方向プリプレグを、(+45°/0°/-45°/90°)2s構成で、擬似等方的に16プライ積層し、オートクレーブにて、180℃の温度で2時間、0.59MPaの圧力下、昇温速度1.5℃/分で成型して積層体を作製した。この積層体から、縦305mm×横25.4mmのサンプルを切り出し、中央部に直径6.35mmの孔を穿孔して有孔板に加工した。この有孔板を72℃の温度の温水中に2週間浸漬し、SACMA SRM 3R-94に従い、82℃の温度の雰囲気下で圧縮強度を求めた。
表1-1に示す通り、[A]が主成分であるjER1007を用い、[B]として、ELM120を用い、[C]が主成分であるjER834を用いた場合、微細な相分離構造周期を有し、管状体の力学特性は良好であった。
jER1007に代えて、jER1009([A]が主成分)を用い、表1-1に示す配合比率とし、[A]を規定範囲の上限付近に設定したこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。実施例1に比べて樹脂弾性率がやや低下した結果、管状体の力学特性もやや低下したが問題ないレベルであった。
その他のエポキシ樹脂として、jER154を追加し、表1-1に示す配合比率とし、[E]を規定範囲の上限付近に設定したこと以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。実施例2に比べて、樹脂弾性率が向上したが靭性は低下した結果、管状体の力学特性も同レベルであった。
jER1007に代えて、jER4004P([A]が主成分)を用い、jER834に代えて、YDF2001([C]が主成分)を用い、表1-1に示す配合比率とし、[C]を規定範囲の下限に設定したこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。実施例1に比べて大きな相分離構造周期となったため、管状体の力学特性がやや低下したが問題ないレベルであった。
ELM120の一部をYDF2001に置き換え、表1-1に示す配合比率とし、[C]を規定範囲の上限付近に設定したこと以外は、実施例4と同様にして熱硬化性樹脂組成物を調製した。実施例3に比べて、極めて微細な相分離構造周期を有し、管状体の力学特性も大きく向上した。
jER4004Pに代えて、jER4007Pを用い、[B]として、ELM434を用い、その他の成分として、jER828を用い、表1-1に示す配合比率とし、[A]と[B]のSP値の差を1.9と、規定範囲の下限付近に設定したこと以外は、実施例4と同様にして熱硬化性樹脂組成物を調製した。実施例5に比べて、樹脂弾性率が低下し、管状体の力学特性がやや低下したが十分なレベルであった。
[D]として、DICY-7に代えて、4,4’-DDSを用い、DCMU99を除き、表1に示す配合比率とすると共に、(3)樹脂硬化物の曲げ弾性率、(4)樹脂硬化物の靱性(KIC)の測定、(7)シャルピー衝撃試験用複合材料製管状体の作製等におけるエポキシ樹脂またはプリプレグの硬化温度を180℃としたこと以外は、実施例5と同様にして熱硬化性樹脂組成物を調製した。実施例5に比べて、大きな相分離構造周期となり樹脂靭性も低下したため、管状体の力学特性が低下したが問題ないレベルであった。また、繊維強化複合材料平板の力学特性において、航空機1次構造材にとって重要な衝撃後圧縮強度は非常に高い値を示し、湿熱環境下有孔板圧縮強度も問題ないレベルであった。
表1-2に示すとおり、[B]としてTEPIC変性品を、[D]としてDICY-7を使用し、[A]と[B]のSP値の差を5.3と、高めに設定した結果、相分離構造が4μmと大きめとなったが、管状体の力学特性は許容できるレベルであった。
[A]、[B]、[C]の含有量等を最適な領域に設定した結果、微細な相分離構造が得られ、靭性が1.8と非常に高く、管状体の力学特性は極めて良好であった。
硬化剤を3,3’-DDSとし、ジグリシジルエーテル型エポキシ樹脂としてjER828とjER1007を組み合わせた結果、相分離構造が3μmとやや大きめとなったが、繊維強化複合材料平板の力学特性はいずれも比較的良好であった。
実施例10のjER1007をjER4004Pに置き換えた結果、適正な相分離構造が得られ、繊維強化複合材料平板の力学特性は良好であった。
硬化剤を3,3’-DDSとし、[A’]、[B’]の含有量を下限に、[C’]の含有量を上限近くに設定した結果、非常に微細な相分離構造となり、靭性が1.1と許容できるレベルであり、繊維強化複合材料平板の力学特性も問題ないレベルであった。
硬化剤を3,3’-DDSとし、[A’]、[B’]、[C’]の含有量等を最適な領域に設定した結果、微細な相分離構造が得られ、靭性が1.4と非常に高く、繊維強化複合材料平板の力学特性は極めて良好であった。
表2-1に示すとおり、エポキシ樹脂として、[B]のELM120のみを100重量部用いたこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率は極めて高いが、樹脂靭性が低下した結果、管状体の力学特性が大きく低下し、不十分となった。
[C]が主成分であるエポキシ樹脂を用いなかったこと、及び、[A]、[B]の含有比率を変更した以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。相分離構造周期が粗大となり、樹脂靭性が大きく低下した結果、管状体の力学特性が大きく低下し、不十分となった。
jER834を50重量部とし、jER1009と、ELM120をともに25重量部とし、[C]を規定範囲を上回る領域に設定したこと以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下した結果、管状体の力学特性が大きく低下し、不十分となった。
jER1009を10重量部、ELM120を70重量部とし、[B]を規定範囲を上回る領域に設定したこと以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下した結果、管状体の力学特性が大きく低下し、不十分となった。
ELM120を配合しない代わりに、jER828を40重量部配合し、[B]を規定範囲を下回る領域に設定したこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率と樹脂靭性が低下し、管状体の力学特性が不十分となった。
表2-2に示すとおり、[A]としてjER4004Pを用いた場合に、SP値の差が1.0と、規定範囲の下限である1.5を下回るTMH574を[B]に代えて使用した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下し、管状体の力学特性が不十分なものとなった。
ジグリシジルエーテル型エポキシ樹脂としてjER828とjER4004Pを組み合わせ、[C]を規定範囲を下回る領域に設定した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率と樹脂靭性が大きく低下し、管状体の力学特性が不十分となった。
ジグリシジルエーテル型エポキシ樹脂としてjER828とjER1009を組み合わせ、[C]を4重量部と適正範囲外に設定した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率と樹脂靭性が大きく低下し、管状体の力学特性が不十分となった。
硬化剤を3,3’-DDSとし、また[A]としてjER4004Pを用いた場合に、SP値の差が8.3と、規定範囲の上限である6.5を上回るTEPIC-Pを[B]に代えて使用した結果、相分離構造周期が粗大となり、樹脂靭性が低下し、繊維強化複合材料平板の衝撃後圧縮強度が全く不十分なものとなった。
実施例10のjER1007をjER1009に置き換えた結果、樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下し、繊維強化複合材料平板の衝撃後圧縮強度が全く不十分となった。
ポリエーテルスルホンを配合しないこと以外は、特許文献1の実施例1と同等の樹脂組成にて樹脂組成物を調製した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下し、繊維強化複合材料平板の衝撃後圧縮強度が全く不十分となった。
特許文献1の実施例1と同等の樹脂組成にて樹脂組成物を調製した結果、最低粘度が適正範囲を大きく上回り、成形体内部にボイドが多数発生したため、繊維強化複合材料平板の衝撃後圧縮強度、湿熱環境下有孔板圧縮強度とも不十分となった。
Claims (13)
- 下記[A]、[B]、[C]、[D]を、下記式(1)~(4)を満たす含有比で含むエポキシ樹脂組成物。
[A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂
[B]構造ユニットとしてのSP値が、[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂
[D]エポキシ樹脂硬化剤
0.2 ≦A/(A+B+C+E)≦0.6 (1)
0.2 ≦B/(A+B+C+E)≦0.6 (2)
0.15≦C/(A+B+C+E)≦0.4 (3)
0≦E/(A+B+C+E)≦0.2 (4)
(各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量) - 下記[A’]、[B’]、[C’]、[D’]を、下記式(1’)~(4’)を満たす含有比で含むエポキシ樹脂組成物。
[A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂
[B’]構造ユニットとしてのSP値が、[A’]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂
[D’]芳香族アミン型エポキシ樹脂硬化剤
0.2 ≦A’/(A’+B’+C’+E’)≦0.6 (1’)
0.2 ≦B’/(A’+B’+C’+E’)≦0.6 (2’)
0.15≦C’/(A’+B’+C’+E’)≦0.4 (3’)
0≦E’/(A’+B’+C’+E’)≦0.2 (4’)
(各式中、A’、B’、C’は、それぞれ[A’]、[B’]、[C’]の重量、E’は[A’]、[B’]、[C’]以外のエポキシ樹脂の重量) - [B]がアミン型エポキシ樹脂である請求項1に記載のエポキシ樹脂組成物。
- [B’]がアミン型エポキシ樹脂である請求項2に記載のエポキシ樹脂組成物。
- [C’]の分子量が500~1200である請求項2または4記載のエポキシ樹脂組成物。
- [D]がジシアンジアミドまたはその誘導体である請求項1または3記載のエポキシ樹脂組成物。
- [D’]がジアミノジフェニルスルホンまたはその誘導体である請求項2または4に記載のエポキシ樹脂組成物。
- 請求項1または2に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物。
- 請求項1または2に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する海島構造の相分離構造を有し、島相の径が0.01~5μmであるエポキシ樹脂硬化物。
- 請求項1または2のいずれか一項に記載のエポキシ樹脂組成物をマトリックスとした繊維強化複合材料用プリプレグ。
- 請求項10に記載のプリプレグを硬化させてなる繊維強化複合材料。
- 請求項8に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
- 請求項9に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/919,285 US8309631B2 (en) | 2008-02-26 | 2009-02-26 | Epoxy resin composition, prepreg, and fiber reinforced composite material |
CN2009801049690A CN101945916B (zh) | 2008-02-26 | 2009-02-26 | 环氧树脂组合物、预浸料及纤维增强复合材料 |
JP2009532075A JP5321464B2 (ja) | 2008-02-26 | 2009-02-26 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
EP09714886.0A EP2248838B1 (en) | 2008-02-26 | 2009-02-26 | Epoxy resin composition, prepreg, abd fiber-reinforced composite material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008043904 | 2008-02-26 | ||
JP2008-043904 | 2008-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009107697A1 true WO2009107697A1 (ja) | 2009-09-03 |
Family
ID=41016085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/053500 WO2009107697A1 (ja) | 2008-02-26 | 2009-02-26 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8309631B2 (ja) |
EP (1) | EP2248838B1 (ja) |
JP (1) | JP5321464B2 (ja) |
KR (1) | KR101555395B1 (ja) |
CN (1) | CN101945916B (ja) |
TW (1) | TWI435887B (ja) |
WO (1) | WO2009107697A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110184091A1 (en) * | 2008-09-29 | 2011-07-28 | Toray Industries, Inc. | Epoxy resin composition, prepreg and fiber-reinforced composite material |
JP2011157491A (ja) * | 2010-02-02 | 2011-08-18 | Toray Ind Inc | トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ |
JP2012056980A (ja) * | 2010-09-06 | 2012-03-22 | Toray Ind Inc | トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ |
WO2012043453A1 (ja) | 2010-09-28 | 2012-04-05 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
US20120164463A1 (en) * | 2010-12-24 | 2012-06-28 | Guangdong Shengyi Sci.Tech Co., Ltd | Cyanate ester resin composition, and prepreg and laminate made therefrom |
JP2012131849A (ja) * | 2010-12-20 | 2012-07-12 | Toray Ind Inc | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料 |
KR101227900B1 (ko) | 2010-10-28 | 2013-02-06 | 주식회사 유니테크 | 기계적, 전기적 특성이 우수한 신규의 복합 재료 조성물 |
US20130280536A1 (en) * | 2010-12-23 | 2013-10-24 | Sika Technology Ag | Heat-curing sealant compositions having fast skin formation and high tensile strength |
DE102013224762A1 (de) | 2012-12-04 | 2014-06-05 | Honda Motor Co., Ltd. | Verfahren zur beurteilung von dispersionsgraden von gemischten epoxidharzen |
WO2014142024A1 (ja) | 2013-03-11 | 2014-09-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
WO2015001909A1 (ja) * | 2013-07-02 | 2015-01-08 | ダンロップスポーツ株式会社 | ゴルフクラブシャフト |
JP2015516497A (ja) * | 2012-05-18 | 2015-06-11 | ヘクセル コンポジッツ、リミテッド | 速硬性エポキシ樹脂及びそれらから得られたプリプレグ |
JP2016148020A (ja) * | 2015-02-09 | 2016-08-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2016148021A (ja) * | 2015-02-09 | 2016-08-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2016148022A (ja) * | 2015-02-09 | 2016-08-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
KR20160127023A (ko) | 2014-02-25 | 2016-11-02 | 도레이 카부시키가이샤 | 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그 |
JP6066026B1 (ja) * | 2015-09-17 | 2017-01-25 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2017020004A (ja) * | 2015-07-09 | 2017-01-26 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
WO2017047225A1 (ja) * | 2015-09-17 | 2017-03-23 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2018024773A (ja) * | 2016-08-10 | 2018-02-15 | 住友ベークライト株式会社 | 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法 |
JP2019001151A (ja) * | 2017-05-01 | 2019-01-10 | ザ・ボーイング・カンパニーThe Boeing Company | 熱可塑性薄膜フィルム被覆と共に硬化された複合材料 |
JP2019157057A (ja) * | 2018-03-16 | 2019-09-19 | 三菱ケミカル株式会社 | 硬化性樹脂組成物、並びにこれを用いたプリプレグ、フィルム及び繊維強化プラスチック |
WO2019244829A1 (ja) * | 2018-06-18 | 2019-12-26 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JPWO2019111747A1 (ja) * | 2017-12-04 | 2020-11-19 | 東レ株式会社 | プリプレグおよび繊維強化複合材料 |
JP2021001245A (ja) * | 2019-06-20 | 2021-01-07 | 三菱ケミカル株式会社 | 繊維強化エポキシ樹脂複合材及び繊維強化プラスチック |
WO2021177089A1 (ja) * | 2020-03-06 | 2021-09-10 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
WO2022196624A1 (ja) * | 2021-03-15 | 2022-09-22 | 三菱ケミカル株式会社 | 樹脂組成物、プリプレグおよび繊維強化プラスチック |
WO2023153435A1 (ja) * | 2022-02-08 | 2023-08-17 | 三菱ケミカル株式会社 | プリプレグ、炭素繊維強化プラスチック、およびプリプレグの製造方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103380161B (zh) * | 2011-02-16 | 2016-04-20 | 三菱丽阳株式会社 | 获得纤维强化复合材料的制造方法及其所使用的环氧树脂组合物 |
JP5780917B2 (ja) | 2011-10-25 | 2015-09-16 | キヤノン株式会社 | インクジェット記録ヘッド用配線保護封止剤、並びに、それを用いたインクジェット記録ヘッド及びその製造方法 |
WO2014050264A1 (ja) * | 2012-09-28 | 2014-04-03 | 東レ株式会社 | プリプレグおよび炭素繊維強化複合材料 |
JP5655976B1 (ja) * | 2013-01-28 | 2015-01-21 | 東レ株式会社 | プリプレグ、繊維強化複合材料および熱可塑性樹脂粒子 |
CN103660310B (zh) * | 2013-11-26 | 2017-01-04 | 上海复合材料科技有限公司 | 光固化的热塑性纤维增强环氧基复合材料及其制备方法 |
JP5888349B2 (ja) * | 2014-01-29 | 2016-03-22 | 大日本印刷株式会社 | 粘着剤組成物およびそれを用いた粘着シート |
EP3208309B1 (en) * | 2014-10-16 | 2020-11-25 | Mitsubishi Chemical Corporation | Resin composition and press-molded article of same |
EP3456779B1 (en) * | 2016-05-13 | 2023-03-01 | Showa Denko Materials Co., Ltd. | Prepreg, metal foil with resin, laminate and printed wiring board |
JP6878076B2 (ja) * | 2017-03-24 | 2021-05-26 | 日鉄ケミカル&マテリアル株式会社 | オキサゾリドン環含有エポキシ樹脂組成物、その製造方法、硬化性樹脂組成物、及び硬化物 |
CN107589507A (zh) * | 2017-11-01 | 2018-01-16 | 江苏永鼎股份有限公司 | 一种用于轻型全介质架空光缆中的玻璃纤维增强塑料圆杆 |
JP7095732B2 (ja) * | 2018-02-22 | 2022-07-05 | 昭和電工マテリアルズ株式会社 | エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体 |
EP3766926A4 (en) * | 2018-03-20 | 2022-01-26 | Toray Industries, Inc. | PREPREG AND FIBER REINFORCED COMPOSITE MATERIAL |
CN111868137B (zh) * | 2018-03-28 | 2023-08-15 | 积水化学工业株式会社 | 环氧树脂组合物 |
CN111410817A (zh) * | 2019-12-26 | 2020-07-14 | 北京理工大学 | 一种环氧树脂组合物、制备方法及其在热熔预浸料中的应用 |
CN114410065B (zh) * | 2022-01-21 | 2022-09-30 | 深圳市郎搏万先进材料有限公司 | 一种环氧树脂组合物及碳纤维预浸料、碳纤维复合材料 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621717A (ja) | 1985-06-28 | 1987-01-07 | Nippon Oil Co Ltd | エポキシ樹脂組成物 |
JPS621719A (ja) | 1985-06-28 | 1987-01-07 | Nippon Oil Co Ltd | エポキシ樹脂組成物 |
JPH07278412A (ja) * | 1994-02-17 | 1995-10-24 | Toray Ind Inc | エポキシ樹脂組成物、プリプレグおよび繊維強化プラスチック |
JP2004027043A (ja) * | 2002-06-26 | 2004-01-29 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料 |
JP2005225982A (ja) * | 2004-02-13 | 2005-08-25 | Toray Ind Inc | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
WO2005082982A1 (ja) * | 2004-02-27 | 2005-09-09 | Toray Industries, Inc. | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体 |
JP2006052385A (ja) * | 2004-07-13 | 2006-02-23 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料 |
JP2006077202A (ja) * | 2004-09-13 | 2006-03-23 | Toray Ind Inc | 難燃性プリプレグ |
WO2006077153A2 (en) | 2005-01-20 | 2006-07-27 | Arkema France | Thermoset materials with improved impact resistance |
JP2006233188A (ja) * | 2005-01-31 | 2006-09-07 | Toray Ind Inc | 複合材料用プリプレグ、および複合材料 |
JP2007314753A (ja) | 2006-04-25 | 2007-12-06 | Yokohama Rubber Co Ltd:The | 繊維強化複合材料用エポキシ樹脂組成物 |
JP2008094961A (ja) * | 2006-10-12 | 2008-04-24 | Toray Ind Inc | ベンゾオキサジン樹脂組成物 |
WO2008143044A1 (ja) * | 2007-05-16 | 2008-11-27 | Toray Industries, Inc. | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4216246A (en) * | 1977-05-14 | 1980-08-05 | Hitachi Chemical Company, Ltd. | Method of improving adhesion between insulating substrates and metal deposits electrolessly plated thereon, and method of making additive printed circuit boards |
JPH07288412A (ja) * | 1994-04-19 | 1995-10-31 | Kyocera Corp | アンテナ |
US6756414B2 (en) * | 1999-07-30 | 2004-06-29 | Sanyo Chemical Industries, Ltd. | Polymer polyol composition, process for producing the same, and process for producing polyurethane resin |
JP4416965B2 (ja) * | 2000-06-26 | 2010-02-17 | 株式会社リコー | 静電荷像現像用カラートナー及び定着方法、トナー容器、画像形成装置 |
JP2002126620A (ja) * | 2000-10-26 | 2002-05-08 | Nippon Paint Co Ltd | 多層塗膜形成方法及び多層塗膜 |
KR100679361B1 (ko) * | 2001-01-25 | 2007-02-05 | 산요가세이고교 가부시키가이샤 | 경화성 수지재료로된 경화성 필름 및 절연체 |
TW200415219A (en) * | 2002-11-08 | 2004-08-16 | Nippon Paint Co Ltd | Process for forming cured gradient coating film and multi-layered coating film containing the same |
US7208228B2 (en) * | 2003-04-23 | 2007-04-24 | Toray Composites (America), Inc. | Epoxy resin for fiber reinforced composite materials |
US7166322B2 (en) * | 2003-08-08 | 2007-01-23 | Toyoda Gosei Co., Ltd. | Optical waveguide and method for producing the same |
US7838577B2 (en) * | 2007-07-19 | 2010-11-23 | Sekisui Chemical Co., Ltd. | Adhesive for electronic component |
US8574669B2 (en) * | 2008-05-21 | 2013-11-05 | Toray Industries, Inc. | Method for producing polymer fine particle comprising contacting an emulsion with a poor solvent |
CN104119645B (zh) * | 2008-09-29 | 2016-10-26 | 东丽株式会社 | 环氧树脂组合物、预浸料坯及纤维增强复合材料 |
-
2009
- 2009-02-25 TW TW098105901A patent/TWI435887B/zh active
- 2009-02-26 JP JP2009532075A patent/JP5321464B2/ja active Active
- 2009-02-26 US US12/919,285 patent/US8309631B2/en active Active
- 2009-02-26 CN CN2009801049690A patent/CN101945916B/zh active Active
- 2009-02-26 WO PCT/JP2009/053500 patent/WO2009107697A1/ja active Application Filing
- 2009-02-26 KR KR1020107018968A patent/KR101555395B1/ko active IP Right Grant
- 2009-02-26 EP EP09714886.0A patent/EP2248838B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621717A (ja) | 1985-06-28 | 1987-01-07 | Nippon Oil Co Ltd | エポキシ樹脂組成物 |
JPS621719A (ja) | 1985-06-28 | 1987-01-07 | Nippon Oil Co Ltd | エポキシ樹脂組成物 |
JPH07278412A (ja) * | 1994-02-17 | 1995-10-24 | Toray Ind Inc | エポキシ樹脂組成物、プリプレグおよび繊維強化プラスチック |
JP2004027043A (ja) * | 2002-06-26 | 2004-01-29 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料 |
JP2005225982A (ja) * | 2004-02-13 | 2005-08-25 | Toray Ind Inc | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
WO2005082982A1 (ja) * | 2004-02-27 | 2005-09-09 | Toray Industries, Inc. | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体 |
JP2006052385A (ja) * | 2004-07-13 | 2006-02-23 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料 |
JP2006077202A (ja) * | 2004-09-13 | 2006-03-23 | Toray Ind Inc | 難燃性プリプレグ |
WO2006077153A2 (en) | 2005-01-20 | 2006-07-27 | Arkema France | Thermoset materials with improved impact resistance |
JP2006233188A (ja) * | 2005-01-31 | 2006-09-07 | Toray Ind Inc | 複合材料用プリプレグ、および複合材料 |
JP2007314753A (ja) | 2006-04-25 | 2007-12-06 | Yokohama Rubber Co Ltd:The | 繊維強化複合材料用エポキシ樹脂組成物 |
JP2008094961A (ja) * | 2006-10-12 | 2008-04-24 | Toray Ind Inc | ベンゾオキサジン樹脂組成物 |
WO2008143044A1 (ja) * | 2007-05-16 | 2008-11-27 | Toray Industries, Inc. | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料 |
Non-Patent Citations (3)
Title |
---|
FEDORS, POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154 |
POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154 |
See also references of EP2248838A4 |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8658736B2 (en) * | 2008-09-29 | 2014-02-25 | Toray Industries, Inc. | Epoxy resin composition, prepreg and fiber-reinforced composite material |
US20110184091A1 (en) * | 2008-09-29 | 2011-07-28 | Toray Industries, Inc. | Epoxy resin composition, prepreg and fiber-reinforced composite material |
US9243139B2 (en) | 2008-09-29 | 2016-01-26 | Toray Industries, Inc. | Epoxy resin composition, prepreg and fiber-reinforced composite material |
JP2011157491A (ja) * | 2010-02-02 | 2011-08-18 | Toray Ind Inc | トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ |
JP2012056980A (ja) * | 2010-09-06 | 2012-03-22 | Toray Ind Inc | トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ |
US9738782B2 (en) | 2010-09-28 | 2017-08-22 | Toray Industries, Inc. | EPOXY resin composition, prepreg and fiber-reinforced composite materials |
WO2012043453A1 (ja) | 2010-09-28 | 2012-04-05 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
KR101227900B1 (ko) | 2010-10-28 | 2013-02-06 | 주식회사 유니테크 | 기계적, 전기적 특성이 우수한 신규의 복합 재료 조성물 |
JP2012131849A (ja) * | 2010-12-20 | 2012-07-12 | Toray Ind Inc | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料 |
US20130280536A1 (en) * | 2010-12-23 | 2013-10-24 | Sika Technology Ag | Heat-curing sealant compositions having fast skin formation and high tensile strength |
US9512341B2 (en) * | 2010-12-23 | 2016-12-06 | Sika Technology Ag | Heat-curing sealant compositions having fast skin formation and high tensile strength |
US20120164463A1 (en) * | 2010-12-24 | 2012-06-28 | Guangdong Shengyi Sci.Tech Co., Ltd | Cyanate ester resin composition, and prepreg and laminate made therefrom |
JP2015516497A (ja) * | 2012-05-18 | 2015-06-11 | ヘクセル コンポジッツ、リミテッド | 速硬性エポキシ樹脂及びそれらから得られたプリプレグ |
DE102013224762A1 (de) | 2012-12-04 | 2014-06-05 | Honda Motor Co., Ltd. | Verfahren zur beurteilung von dispersionsgraden von gemischten epoxidharzen |
US9335212B2 (en) | 2012-12-04 | 2016-05-10 | Honda Motor Co., Ltd. | Method of evaluating dispersion degrees of mixed epoxy resins |
DE102013224762B4 (de) | 2012-12-04 | 2022-05-05 | Honda Motor Co., Ltd. | Verfahren zur beurteilung von dispersionsgraden von gemischten epoxidharzen |
WO2014142024A1 (ja) | 2013-03-11 | 2014-09-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
US9783670B2 (en) | 2013-03-11 | 2017-10-10 | Toray Industries, Inc. | Epoxy resin composition, prepreg, and fiber-reinforced composite material |
JP2015009099A (ja) * | 2013-07-02 | 2015-01-19 | ダンロップスポーツ株式会社 | ゴルフクラブシャフト |
WO2015001909A1 (ja) * | 2013-07-02 | 2015-01-08 | ダンロップスポーツ株式会社 | ゴルフクラブシャフト |
US9717963B2 (en) | 2013-07-02 | 2017-08-01 | Dunlop Sports Co. Ltd. | Golf club shaft |
KR20160127023A (ko) | 2014-02-25 | 2016-11-02 | 도레이 카부시키가이샤 | 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그 |
JP2016148022A (ja) * | 2015-02-09 | 2016-08-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2016148021A (ja) * | 2015-02-09 | 2016-08-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2016148020A (ja) * | 2015-02-09 | 2016-08-18 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2017020004A (ja) * | 2015-07-09 | 2017-01-26 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP6066026B1 (ja) * | 2015-09-17 | 2017-01-25 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
KR101878128B1 (ko) * | 2015-09-17 | 2018-07-12 | 도레이 카부시키가이샤 | 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료 |
US10316159B2 (en) | 2015-09-17 | 2019-06-11 | Toray Industries, Inc. | Epoxy resin composition, prepreg, and fiber reinforced material |
WO2017047225A1 (ja) * | 2015-09-17 | 2017-03-23 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2018024773A (ja) * | 2016-08-10 | 2018-02-15 | 住友ベークライト株式会社 | 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法 |
JP2019001151A (ja) * | 2017-05-01 | 2019-01-10 | ザ・ボーイング・カンパニーThe Boeing Company | 熱可塑性薄膜フィルム被覆と共に硬化された複合材料 |
JP7290398B2 (ja) | 2017-05-01 | 2023-06-13 | ザ・ボーイング・カンパニー | 熱可塑性薄膜フィルム被覆と共に硬化された複合材料 |
JPWO2019111747A1 (ja) * | 2017-12-04 | 2020-11-19 | 東レ株式会社 | プリプレグおよび繊維強化複合材料 |
JP7159875B2 (ja) | 2017-12-04 | 2022-10-25 | 東レ株式会社 | プリプレグおよび繊維強化複合材料 |
JP2019157057A (ja) * | 2018-03-16 | 2019-09-19 | 三菱ケミカル株式会社 | 硬化性樹脂組成物、並びにこれを用いたプリプレグ、フィルム及び繊維強化プラスチック |
WO2019244829A1 (ja) * | 2018-06-18 | 2019-12-26 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
US11912859B2 (en) | 2018-06-18 | 2024-02-27 | Toray Industries, Inc. | Epoxy resin composition, prepreg, and fiber-reinforced composite material |
JP7290109B2 (ja) | 2018-06-18 | 2023-06-13 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JPWO2019244829A1 (ja) * | 2018-06-18 | 2021-05-06 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2021001245A (ja) * | 2019-06-20 | 2021-01-07 | 三菱ケミカル株式会社 | 繊維強化エポキシ樹脂複合材及び繊維強化プラスチック |
WO2021177089A1 (ja) * | 2020-03-06 | 2021-09-10 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
WO2022196624A1 (ja) * | 2021-03-15 | 2022-09-22 | 三菱ケミカル株式会社 | 樹脂組成物、プリプレグおよび繊維強化プラスチック |
WO2023153435A1 (ja) * | 2022-02-08 | 2023-08-17 | 三菱ケミカル株式会社 | プリプレグ、炭素繊維強化プラスチック、およびプリプレグの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US8309631B2 (en) | 2012-11-13 |
JP5321464B2 (ja) | 2013-10-23 |
EP2248838A4 (en) | 2016-01-27 |
CN101945916A (zh) | 2011-01-12 |
US20110009528A1 (en) | 2011-01-13 |
KR101555395B1 (ko) | 2015-09-23 |
TWI435887B (zh) | 2014-05-01 |
EP2248838B1 (en) | 2017-04-26 |
KR20100133963A (ko) | 2010-12-22 |
EP2248838A1 (en) | 2010-11-10 |
TW200948844A (en) | 2009-12-01 |
CN101945916B (zh) | 2012-07-25 |
JPWO2009107697A1 (ja) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5321464B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
US9738782B2 (en) | EPOXY resin composition, prepreg and fiber-reinforced composite materials | |
JP5444713B2 (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料 | |
EP2886586B1 (en) | Epoxy resin composition, prepreg, and fiber-reinforced composite material | |
JP5747763B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP5564870B2 (ja) | エポキシ樹脂組成物、プリプレグ、および繊維強化複合材料 | |
JP5747762B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
WO2012039456A1 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP5347630B2 (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料 | |
WO2013099862A1 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP2008007682A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP2010059225A (ja) | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 | |
JP2014167103A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP2016132709A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP5811883B2 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP5573650B2 (ja) | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料 | |
JP2012056981A (ja) | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグ、および繊維強化複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104969.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2009532075 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09714886 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12919285 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107018968 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009714886 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009714886 Country of ref document: EP |