WO2009107697A1 - エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 - Google Patents

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 Download PDF

Info

Publication number
WO2009107697A1
WO2009107697A1 PCT/JP2009/053500 JP2009053500W WO2009107697A1 WO 2009107697 A1 WO2009107697 A1 WO 2009107697A1 JP 2009053500 W JP2009053500 W JP 2009053500W WO 2009107697 A1 WO2009107697 A1 WO 2009107697A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
fiber
weight
composite material
Prior art date
Application number
PCT/JP2009/053500
Other languages
English (en)
French (fr)
Inventor
伸之 富岡
史郎 本田
祐樹 三辻
麻紀 水木
孝之 今岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US12/919,285 priority Critical patent/US8309631B2/en
Priority to CN2009801049690A priority patent/CN101945916B/zh
Priority to JP2009532075A priority patent/JP5321464B2/ja
Priority to EP09714886.0A priority patent/EP2248838B1/en
Publication of WO2009107697A1 publication Critical patent/WO2009107697A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to an epoxy resin composition whose cured product is suitably used as a matrix resin of a fiber-reinforced composite material suitable for sports use, aircraft use and general industrial use, a prepreg using this as a matrix resin, and curing the prepreg. It is related with the fiber reinforced composite material obtained in this way.
  • Fiber reinforced composite materials using carbon fibers, aramid fibers, etc. as reinforcing fibers make use of their high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, sports such as tennis rackets, golf shafts and fishing rods. And widely used in general industrial applications.
  • a prepreg that is a sheet-like intermediate material in which reinforcing fibers are impregnated with an uncured matrix resin is used.
  • a resin transfer molding method in which a liquid resin is poured into the arranged reinforcing fibers and heat-cured, is used.
  • the method using a prepreg has an advantage that it is easy to obtain a high-performance fiber-reinforced composite material because the orientation of the reinforcing fibers can be strictly controlled and the design flexibility of the laminated structure is high.
  • a thermosetting resin is mainly used from the viewpoint of heat resistance and productivity, and an epoxy resin is preferably used from the viewpoint of mechanical properties such as adhesion to reinforcing fibers. .
  • the epoxy resin has a higher elastic modulus than the thermoplastic resin, but is inferior in toughness, so that the impact resistance of the fiber-reinforced composite material is insufficient.
  • thermoplastic resin such as phenoxy resin and polyethersulfone
  • a large amount of thermoplastic resin such as phenoxy resin and polyethersulfone is blended and phase-separated to greatly improve toughness and greatly increase the minimum viscosity.
  • a sufficient fillet (fillet) is formed on the joint surface with the honeycomb core and high self-adhesiveness is obtained (Patent Document 2).
  • Patent Document 2 shows that when used in aircraft primary structural material prepregs that require even higher mechanical properties and long-term reliability, due to the increase in viscosity accompanying the blending of thermoplastic resins, voids and fiber orientation are likely to occur in the molded body, which is sufficient. It was inferior in versatility, such as not being able to express the performance.
  • the epoxy resin can compensate for the shortcomings by combining various epoxy resins, and can exhibit balanced characteristics compared to single-component resins, but usually does not form a phase separation structure,
  • the increase in toughness was small, and the impact resistance of the fiber reinforced composite material was hardly improved.
  • the toughness and the elastic modulus are intermediate values between the two components, and the impact strength is improved. The problem was not being seen.
  • Patent Document 3 and Patent Document 4 by adding an amine-type epoxy resin having a high elastic modulus to a bisphenol-type epoxy resin, the fiber-direction bending strength and the interlaminar shear strength, which have a strong correlation with the fiber-direction compressive strength, are remarkable. Although improvement has been seen, sufficient improvement has not been seen in terms of resin toughness and impact resistance.
  • An object of the present invention is to provide an epoxy resin composition that improves the drawbacks of the prior art and forms a cured product having both excellent elastic modulus and toughness, and a prepreg and fiber-reinforced composite material using the epoxy resin composition. There is to do.
  • the present invention provides the following epoxy resin composition.
  • An epoxy resin composition comprising the following [A], [B], [C] and [D] in a content ratio satisfying the following formulas (1) to (4).
  • [A] in this specification shows one of the components (component) contained in the epoxy resin composition of this invention.
  • [B], [C], [D] and [E], and [A ′], [B ′], [C ′], [D ′] and [E ′] One of the components contained in the epoxy resin composition is shown.
  • the present invention it is possible to provide an epoxy resin composition in which a fine phase separation structure of an epoxy resin is formed at the time of curing, and a cured product having a high elastic modulus and high toughness is obtained. Further, the obtained fiber reinforced composite material has both excellent static strength characteristics and impact resistance.
  • the epoxy resin composition of the present invention contains two kinds of diglycidyl ether type epoxy resins having different molecular weights, an epoxy resin whose SP value as a structural unit satisfies a predetermined value, and a predetermined curing agent.
  • an epoxy resin whose SP value as a structural unit satisfies a predetermined value and a predetermined curing agent.
  • 1st Embodiment and 2nd Embodiment as shown next are mentioned.
  • the epoxy resin composition of the first embodiment of the present invention contains the following [A], [B], [C], and [D] as contained components in a content ratio that satisfies the following formulas (1) to (4). It is an epoxy resin composition.
  • the epoxy resin composition of the second embodiment of the present invention includes the following [A ′], [B ′], [C ′], and [D ′] as the components contained in the following formulas (1 ′) to ( 4 ') is an epoxy resin composition containing at a content ratio satisfying.
  • the above formulas (1) to (4) represent the following. That is, in the epoxy resin composition of the first embodiment, [A] a diglycidyl ether type epoxy resin having a molecular weight of 1500 or more as an epoxy resin, and a structural unit having an SP value [A] as a structural unit of [B] It is essential to include an epoxy resin 1.5 to 6.5 higher than the SP value as, and [C] a diglycidyl ether type epoxy resin having a molecular weight of 500 to 1200, and [A], [B], [ C] and 100 parts by weight of other epoxy resins [E] (hereinafter referred to as all epoxy resins), [A] is 20 to 60 parts by weight, and [B] is 20 to 100 parts by weight of all epoxy resins.
  • the epoxy resin [E] other than [A], [B], and [C] needs to be 20 parts by weight or less out of 100 parts by weight in all epoxy resins.
  • the formulas (1 ′) to (4 ′) represent the following. That is, in the epoxy resin composition of the present invention, when [D ′] aromatic amine type epoxy resin curing agent is used as the curing agent, [A ′] diglycidyl ether having a molecular weight of 1500 to 5000 is used as the epoxy resin.
  • Type epoxy resin epoxy resin whose SP value as a structural unit of [B ′] is 1.5 to 6.5 higher than the SP value as a structural unit of [A ′], and [C ′] molecular weight of 300 to 1200 It is essential to contain a diglycidyl ether type epoxy resin, [A ′], [B ′], [C ′] and other epoxy resins [E ′] (hereinafter referred to as all epoxy resins) 100 parts by weight Of these, [A ′] is 20 to 60 parts by weight, [B ′] is 20 to 60 parts by weight of 100 parts by weight of the total epoxy resin, and [C ′] is 15 to 4 parts of 100 parts by weight of the total epoxy resin. It is necessary to include parts. Further, the epoxy resin [E ′] other than [A ′], [B ′], and [C ′] needs to be 20 parts by weight or less out of 100 parts by weight in the total epoxy resin.
  • the present inventors exhibit a homogeneous compatibility state before the curing reaction, and a plurality of types of epoxy resin components cause phase separation in the curing reaction process, thereby causing fiber It has been found that the impregnated formability of the reinforced composite material can be compatible with mechanical properties such as impact resistance. As a result of intensive studies, it has been found that by satisfying the above requirements, phase separation between epoxy resins occurs during the curing reaction process, and a fiber-reinforced composite material having desired characteristics can be obtained.
  • [E] is an epoxy resin other than [A] to [C] as described above.
  • [E ′] is an epoxy resin other than [A ′] to [C ′] as described above.
  • [E] or [E ′] has a bisphenol type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a resorcinol type epoxy resin, a phenol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, or a biphenyl skeleton. Examples thereof include an epoxy resin and a urethane-modified epoxy resin. A preferred range is 0 to 15 parts by weight.
  • thermoplastic resins soluble in epoxy resins examples include thermoplastic resins soluble in epoxy resins, organic particles such as rubber particles and thermoplastic resin particles, inorganic particles, and the like.
  • a preferable range is 0 to 20 parts by weight, and more preferable. 0 to 15 parts by weight.
  • the cured resin obtained by curing such an epoxy resin composition can have both properties of elasticity and toughness.
  • the cured epoxy resin it has a phase separation structure having [A] rich phase and [B] rich phase, or [A ′] rich phase and [B ′] rich phase, and a phase separation structure Examples thereof include those having a period of 0.01 to 5 ⁇ m, and due to having such a phase separation structure, both elastic modulus and toughness can be achieved.
  • [A] to [E] or [A ′] to [E ′] are uniformly compatible, but the molecular weight of both increases in the course of the curing reaction during molding. Accordingly, the above-mentioned [A] rich phase and [B] rich phase, or [A ′] rich phase and [A] rich phase are produced by so-called reaction-induced phase separation that causes phase separation between [A] rich phase and [B] rich phase.
  • B ′] A phase structure having a rich phase is formed.
  • the phase separation structure refers to a structure in which phases mainly composed of different components have a structural period of 0.01 ⁇ m or more.
  • the state of being uniformly mixed at the molecular level is referred to as a compatible state, and in the present invention, when the phase mainly composed of different components has a phase separation structure period of less than 0.01 ⁇ m, It shall be regarded as a molten state. Whether or not the phase separation structure is exhibited can be determined by an electron microscope, a phase-contrast optical microscope, and various other methods.
  • a preferable embodiment of the cured epoxy resin of the present invention has a phase separation structure having [A] rich phase and [B] rich phase, or [A ′] rich phase and [B ′] rich phase. And a cured epoxy resin having a structural period of 0.01 to 5 ⁇ m.
  • the structural period of phase separation is defined as follows.
  • the phase separation structure includes a two-phase continuous structure and a sea-island structure. In the case of a two-phase continuous structure, a straight line of a predetermined length is drawn on the micrograph, the intersection of the straight line and the phase interface is extracted, the distance between adjacent intersections is measured, and the number average value of these is the structure period And
  • the predetermined length is set as follows based on a micrograph.
  • a photograph is taken at a magnification of 20,000 times, and a length of 20 mm randomly on the photograph (a length of 1 ⁇ m on the sample) ) Refers to a selection of three.
  • the phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
  • the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m)
  • the photograph is taken at a magnification of 200 times.
  • the photograph three 20 mm lengths (100 ⁇ m length on the sample) are selected at random. If the measured phase separation structure period is out of the expected order, the corresponding length is measured again at the magnification corresponding to the corresponding order, and this is adopted. In the case of a sea-island structure, it is the number average value of the distance between the island phase and the island phase existing in a predetermined region on the micrograph. The shortest distance between the island phase and the island phase shall be used even if the island phase is elliptical, indefinite, or a circle or ellipse with two or more layers.
  • cured epoxy resin of the present invention include [A] rich phase and [B] rich phase, or phase separation of sea-island structure having [A ′] rich phase and [B ′] rich phase.
  • examples thereof include a cured epoxy resin having a structure and an island phase diameter of 0.01 to 5 ⁇ m.
  • the diameter of the island phase indicates the size of the island phase in the sea-island structure, and is a number average value in a predetermined region.
  • the island phase is elliptical, the major axis is taken, and when it is indefinite, the diameter of the circumscribed circle is used.
  • the diameter of the outermost layer circle or the major axis of the ellipse is used.
  • the major axis of all island phases existing in a predetermined region is measured, and the number average value thereof is taken as the island phase diameter.
  • the structure period may not reflect the quality of the epoxy resin cured product, but the island phase diameter may reflect the properties and may be preferable. Specifically, when the content of [A] is small, the diameter of the island phase tends to reflect the characteristics. The same tendency is seen also about the content ratio of [A '] and [B'], and the characteristic of the cured epoxy resin containing these.
  • a micrograph of a predetermined region is taken.
  • the predetermined area is set as follows based on a micrograph.
  • the phase separation structure period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m)
  • a photograph is taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0. (2 ⁇ m square area) refers to an area selected from three locations.
  • phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times
  • a 4 mm square region on the sample 2 ⁇ m square area
  • a photograph is taken at a magnification of 200 times
  • phase separation structure of the cured resin product can be observed with a scanning electron microscope or a transmission electron microscope. You may dye
  • the structural period and the island phase diameter are more preferably in the range of 0.01 to 5 ⁇ m, and still more preferably in the range of 0.01 to 1 ⁇ m.
  • the structural period is less than 0.01 ⁇ m, the toughness of the resin cured product may be insufficient, and when the structural period exceeds 5 ⁇ m, the phase separation structure period of the fiber reinforced composite material is larger than the inter-single yarn region, When a fiber reinforced composite material is used, a sufficient toughness improving effect may not be exhibited.
  • the epoxy resin composition of the present invention is a reaction-induced phase separation by blending each component so as to satisfy the above-mentioned conditions, but the embodiment of the component and the like of the epoxy resin composition of the present invention This will be described in more detail below.
  • a diglycidyl ether type epoxy resin having a molecular weight of 1500 or more needs to be contained in an amount of 20 to 60 parts by weight out of 100 parts by weight of the total epoxy resin. It is preferable to contain 30 to 50 parts by weight of 100 parts by weight of the resin. When it is less than 20 parts by weight, it is difficult for the cured product to form a phase separation structure, and toughness is insufficient. When the amount exceeds 60 parts by weight, the elastic modulus of the cured product is insufficient and the heat resistance is insufficient, which may cause distortion or deformation during molding or use of the fiber-reinforced composite material.
  • the molecular weight of [A] is 5000 or less from a viewpoint of the impregnation property to the reinforced fiber of a resin composition, and the heat resistance of a fiber reinforced composite material.
  • the upper limit of the molecular weight of [A] is preferably 5000 or less. From the viewpoint of toughness, the upper limit of the molecular weight of [A] is not particularly required. However, when it exceeds 5000, the phase separation structure of the cured product becomes coarse and the heat resistance is insufficient.
  • [A ′] has a molecular weight in the range of 1500 to 5000.
  • the glycidyl ether type epoxy resin needs to be contained in an amount of 20 to 60 parts by weight out of 100 parts by weight of the total epoxy resin, and preferably 30 to 50 parts by weight of 100 parts by weight of the total epoxy resin.
  • it is less than 20 parts by weight it is difficult for the cured product to form a phase separation structure, and toughness is insufficient.
  • the amount exceeds 60 parts by weight the elastic modulus of the cured product is insufficient and the heat resistance is insufficient, which may cause distortion or deformation during molding or use of the fiber-reinforced composite material.
  • the molecular weight of [A ′] When the molecular weight of [A ′] is less than 1500, it is difficult for the cured product to form a phase separation structure, and toughness is insufficient. On the other hand, when it exceeds 5000, the phase separation structure of the cured product becomes coarse, the heat resistance is insufficient, the impact resistance of the fiber-reinforced composite material is insufficient, and distortion or deformation may occur during use. Further, when the molecular weight of [A ′] exceeds 5000, the minimum viscosity of the resin composition becomes too high, and when used in a prepreg for aircraft primary structure material, impregnation failure occurs in the prepreg process, and voids are formed in the molded body. There is a tendency for problems to occur.
  • the epoxy resin used as [A] or [A ′] in the present invention is not particularly limited as long as it is a diglycidyl ether type epoxy resin having a predetermined molecular weight, but a bisphenol type epoxy resin is particularly preferable. Can be used. Generally, commercially available epoxy resins have a certain molecular weight distribution in the manufacturing process. Here, the molecular weight of the epoxy resin refers to a relative molecular weight determined by GPC (Gel Permeation Chromatography) using a polystyrene standard sample.
  • GPC Gel Permeation Chromatography
  • Examples of such bisphenol-type epoxy resins include bisphenol A-type, bisphenol F-type, bisphenol AD-type, bisphenol S-type, or aromatic ring halogens, alkyl-substituted products, and aromatic-hydrogenated products of these bisphenol-type epoxy resins. Used. Moreover, you may use combining these two or more.
  • commercially available epoxy resins have a certain degree of molecular weight distribution. Therefore, a resin composition containing a predetermined amount of [A] or [A ′] is prepared using such an epoxy resin as a raw material.
  • an epoxy resin whose main component is a bisphenol-type epoxy having a molecular weight of 1500 or more as a raw material.
  • the molecular weight of the epoxy resin refers to the relative molecular weight determined by GPC using a polystyrene standard sample.
  • epoxy resin examples include the following.
  • Examples of commercially available products of bisphenol A type epoxy resins include jER1004, jER1004F, jER1004AF, jER1005F, jER1007, jER1009 (above, Japan Epoxy Resin Co., Ltd., “jER” is a registered trademark of the same company (hereinafter the same)). Can be mentioned.
  • Examples of the commercially available brominated bisphenol A type epoxy resin include jER5057 (manufactured by Japan Epoxy Resin Co., Ltd.).
  • Examples of commercially available hydrogenated bisphenol A type epoxy resins include ST4100D, ST5100 (manufactured by Tohto Kasei Co., Ltd.) and the like.
  • bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable because of a good balance between heat resistance, elastic modulus, and toughness.
  • [B] in the epoxy resin composition of the first embodiment of the present invention is an epoxy resin whose SP value as a structural unit is 1.5 to 6.5 higher than the SP value as a structural unit of [A]. It is necessary to contain 20 to 60 parts by weight of 100 parts by weight of the total epoxy resin, and preferably 30 to 50 parts by weight of 100 parts by weight of the total epoxy resin. When it is less than 20 parts by weight, the elastic modulus of the cured product is insufficient, it is difficult to form a phase separation structure, and the toughness is insufficient. Moreover, when it exceeds 60 weight part, the elongation of hardened
  • [B ′] in the epoxy resin composition of the second embodiment of the present invention has an SP value as a structural unit of 1.5 to 6.5 than the SP value as a structural unit of [A ′].
  • the high epoxy resin needs to be contained in an amount of 20 to 60 parts by weight out of 100 parts by weight of the total epoxy resin, and preferably 30 to 50 parts by weight of 100 parts by weight of the total epoxy resin.
  • the elastic modulus of the cured product is insufficient, it is difficult to form a phase separation structure, and the toughness is insufficient.
  • it exceeds 60 weight part the elongation of hardened
  • the structural unit is a partial chemical structure derived from the epoxy resin component in the cured epoxy resin produced through the curing reaction with the epoxy resin curing agent.
  • the structural unit of the epoxy resin component of the chemical formula (I) is as shown in the chemical formula (II).
  • Such SP value is a generally known solubility parameter, and is an indicator of solubility and compatibility.
  • Polym. Eng. Sci. , 14 (2), 147-154 (1974) the SP value calculated from the molecular structure based on the Fedors method is used, and the unit is (cal / cm 3 ) 1/2 . I will do it.
  • the cured product has a uniform structure that does not form phase separation, and toughness Is lacking.
  • the value obtained by subtracting the SP value as the structural unit of [A] from the SP value as the structural unit of [B] is higher than 6.5, the phase separation structure of the cured product becomes coarse, and the resin When the composition is prepared, the two are not compatible with each other, resulting in a non-uniform resin composition, which may adversely affect the impregnation property of the reinforcing fibers.
  • the relationship relating to the difference between the SP value as the structural unit [B ′] and the SP value as the structural unit [A ′] is the same as described above.
  • [B] or [B ′] belongs to a class having a high SP value as a structural unit among generally known epoxy resins. Accordingly, an epoxy resin having a highly polar skeleton, or a resin containing a large amount of epoxy groups, that is, having a high epoxy equivalent, can be preferably used.
  • high-polarity epoxy resins such as urethane-modified epoxy resins and isocyanurate ring-containing epoxy resins
  • low epoxy equivalent epoxy such as amine-type epoxy resins, polyfunctional novolak-type epoxy resins, and aliphatic polyfunctional epoxy resins.
  • the amine type epoxy resin is excellent in the uniform compatibility of the resin composition and the phase separation formability of the cured product, and is excellent in the elastic modulus and heat resistance. Therefore, it is preferable. Further, among the amine type epoxy resins, by using a trifunctional amine type epoxy resin, it is easy to achieve both the elastic modulus and the toughness of the cured product with a good balance.
  • amine-type epoxy resins examples include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, diglycidylaniline, diglycidyltoluidine, tetraglycidylxylylenediamine, halogens thereof, alkyl-substituted products, and hydrogenated products. Goods can be used.
  • tetraglycidyldiaminodiphenylmethane examples include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Tohto Kasei Co., Ltd.), and “jER (registered trademark)” 604 (Japan Epoxy Resin Co., Ltd.). ), “Araldide (registered trademark)” MY720, MY721 (manufactured by Huntsman Advanced Materials), etc. can be used.
  • TTRAD tetraglycidylxylylenediamine and hydrogenated products thereof
  • TETRAD registered trademark
  • TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Inc.
  • trifunctional aminophenol type epoxy resins are more preferred because of their low viscosity and good balance between the elastic modulus and toughness of the cured product.
  • [C] in the epoxy resin composition of the first embodiment of the present invention includes 15 to 40 parts by weight of a diglycidyl ether type epoxy resin having a molecular weight of 500 to 1200 out of 100 parts by weight of the total epoxy resin. It is necessary to include 20 to 35 parts by weight out of 100 parts by weight of the total epoxy resin. Since [C] is compatible with both [A] and [B] epoxy resins, the start of phase separation of the [A] rich phase and the [B] rich phase is delayed, so the phase separation structure is not coarsened. The curing reaction can be completed, and the phase separation structure period can be fixed at 5 ⁇ m or less. Therefore, excellent mechanical properties can be obtained.
  • the molecular weight of [C] when the molecular weight of [C] is less than 500, it is easily incorporated into any phase, so that the compatibilizing effect becomes insufficient, the phase separation structure becomes coarse or homogeneously compatible, and fiber reinforcement The impact resistance of the composite material becomes insufficient. Moreover, when the molecular weight exceeds 1200, it is easy to be taken into the [A] rich phase, and the effect of slowing the coarsening of the phase separation structure is small.
  • [C ′] in the epoxy resin composition of the second embodiment of the present invention includes 15 to 40 parts by weight of a diglycidyl ether type epoxy resin having a molecular weight of 300 to 1200 out of 100 parts by weight of the total epoxy resin.
  • the molecular weight is preferably 500 to 1200, and 20 to 35 parts by weight of [C ′] is preferably included in 100 parts by weight of the total epoxy resin. Since [C ′] is compatible with both [A ′] and [B ′] both epoxy resins, the start of phase separation of the [A ′] rich phase and the [B ′] rich phase is delayed.
  • the curing reaction can be completed before coarsening, and the phase separation structure period can be fixed at 5 ⁇ m or less. Therefore, excellent mechanical properties can be obtained.
  • the molecular weight of [C ′] is less than 300, it is easily taken into one of the phases, so that the compatibilizing effect becomes insufficient, and the phase separation structure becomes coarse or homogeneously compatible.
  • the impact resistance of the reinforced composite material becomes insufficient.
  • the molecular weight exceeds 1200, it is easy to be incorporated into the [A ′] rich phase, and the effect of slowing the coarsening of the phase separation structure is small.
  • [D ′] aromatic amine type epoxy resin curing agent is used as a curing agent, and “D ′” is compared with a normal epoxy resin curing agent, Since the reaction rate with the epoxy resin is slow, stable and fine phase separation can be obtained even in a region where the molecular weight of [C] is smaller.
  • the appropriate content of [C] or [C ′] is 15 to 40 depending on the type of the curing agent. It adjusts suitably within the range of a weight part.
  • [C] or [C ′] epoxy resin is not particularly limited as long as it is a diglycidyl ether type epoxy resin within a predetermined molecular weight range, but a bisphenol type epoxy resin can be particularly preferably used.
  • a bisphenol type epoxy resin can be particularly preferably used as the bisphenol type epoxy resin.
  • bisphenol A type, bisphenol F type, bisphenol AD type, bisphenol S type, or halogens, alkyl-substituted products, hydrogenated products, etc. of these bisphenol type epoxy resins are used.
  • the molecular weight is determined by GPC using a polystyrene standard sample as in [A] or [A ′].
  • Examples of commercially available products mainly composed of a diglycidyl ether type epoxy resin having a molecular weight of 1200 or less that can be suitably applied as the main component of [C] or [C ′] include the following.
  • Examples of commercially available bisphenol A type epoxy resins include jER825, jER826, jER827, jER828, jER834, jER1001, and jER1002 (above, “JER”: registered trademark manufactured by Japan Epoxy Resin Co., Ltd.).
  • brominated bisphenol A type epoxy resins examples include Epc152, Epc153 (above, Dainippon Ink Co., Ltd.), jER5050, jER5051 (above, Japan Epoxy Resin Co., Ltd.).
  • Commercial products of hydrogenated bisphenol A type epoxy resin include Denacol EX-252 (manufactured by Nagase ChemteX Corporation, “Denacol” is a registered trademark of the company), ST3000, ST5080, ST4000D (manufactured by Toto Kasei Co., Ltd.) Etc.
  • the content component of [C] or [C ′] is preferably a bisphenol A type epoxy resin or a bisphenol F type epoxy resin because of a good balance between heat resistance, elastic modulus, and toughness.
  • [D] or [D ′] epoxy resin curing agent in the epoxy resin composition of the present invention is a component necessary for curing the epoxy resin.
  • the curing agent is not particularly limited as long as it cures the epoxy resin, and may be a curing agent that undergoes an addition reaction such as amine or anhydride, or may be a curing catalyst that causes addition polymerization such as cationic polymerization or anionic polymerization. .
  • an aliphatic amine type epoxy resin curing agent excellent in mechanical properties and heat resistance in particular, dicyandiamide or a derivative thereof has an elastic modulus, Since it has an excellent balance of elongation and excellent storage stability of the resin composition, it can be suitably used mainly for sports applications.
  • Such dicyandiamide derivatives are obtained by bonding various compounds to dicyandiamide, and include reactants with epoxy resins, reactants with vinyl compounds and acrylic compounds.
  • the blending amount is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin in the epoxy resin composition from the viewpoint of heat resistance and mechanical properties. 2 to 8 parts by weight is more preferable. If it is less than 1 part by weight, the cured product has insufficient crosslinking density, so that the elastic modulus is insufficient and the mechanical properties may be inferior. When it exceeds 10 parts by weight, the crosslink density of the cured product becomes high, the plastic deformation ability becomes small, and the impact resistance may be inferior.
  • blending dicyandiamide or a derivative thereof as a powder into the resin as [D] is preferable from the viewpoint of storage stability at room temperature and viscosity stability during prepreg formation.
  • the average particle size is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less. When it exceeds 10 ⁇ m, for example, when used for prepreg applications, when impregnating the resin composition into the reinforcing fiber bundle by heating and pressing, dicyandiamide or a derivative thereof may not enter the reinforcing fiber bundle and may remain on the surface of the fiber bundle. is there.
  • Examples of commercially available dicyandiamide include DICY-7 and DICY-15 (manufactured by Japan Epoxy Resin Co., Ltd.).
  • Dicyandiamide may be used alone or in combination with a curing catalyst for dicyandiamide or a curing agent for other epoxy resins.
  • dicyandiamide curing catalysts to be combined include ureas, imidazoles, Lewis acid catalysts, and epoxy resin curing agents include aromatic amine curing agents, alicyclic amine curing agents, and acid anhydride curing agents.
  • Examples of commercially available ureas include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.), Omicure 24, Omicure 52, and Omicure 94 (above CVC Specialty Chemicals, Inc.).
  • Lewis acid catalysts include boron trifluoride / piperidine complex, boron trifluoride / monoethylamine complex, boron trifluoride / triethanolamine complex, boron trichloride / octylamine complex, etc. Is mentioned.
  • diaminodiphenyl sulfone or a derivative thereof has heat resistance in addition to elastic modulus and elongation. Therefore, it can be suitably used mainly for aircraft applications.
  • [D ′] aromatic amine type epoxy resin curing agent has a slow curing reaction with epoxy resin
  • [C ′] has a molecular weight of 300 to 1200, and a fine phase separation even at a lower molecular weight.
  • the structure can be formed stably.
  • a liquid such as a liquid aliphatic amine, a liquid alicyclic amine, or a liquid aromatic amine is used as a curing agent.
  • Amine curing agents can be applied.
  • [E] or [E ′] is used for the purpose of improving workability by adjusting viscoelasticity when uncured or improving the elastic modulus and heat resistance of the cured resin.
  • the epoxy resin may be added within a range that does not affect the phase separation structure.
  • [E] is an optional component other than [A] to [D] in the epoxy resin composition of the first embodiment.
  • [E ′] is an optional component other than [A ′] to [D ′] in the epoxy resin composition of the second embodiment.
  • [E] or [E '] may be added in combination of not only one type but also a plurality of types.
  • epoxy resin of [E] or [E ′] include, for example, bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, resorcinol type epoxy resin, phenol aralkyl type epoxy resin, dicyclopentadiene.
  • Type epoxy resin epoxy resin having biphenyl skeleton, urethane-modified epoxy resin, and the like.
  • phenol novolac type epoxy resins include “Epicoat (registered trademark)” 152, “Epicoat (registered trademark)” 154 (above, manufactured by Japan Epoxy Resin Co., Ltd.), “Epicron (registered trademark)” N-740, “Epicron (registered trademark)” N-770, “Epicron (registered trademark)” N-775 (manufactured by Dainippon Ink & Chemicals, Inc.), and the like.
  • cresol novolac type epoxy resins Commercial products of cresol novolac type epoxy resins include “Epicron (registered trademark)” N-660, “Epicron (registered trademark)” N-665, “Epicron (registered trademark)” N-670, “Epicron (registered trademark)” "N-673", “Epicron (registered trademark)” N-695 (above, manufactured by Dainippon Ink & Chemicals, Inc.), EOCN-1020, EOCN-102S, EOCN-104S (above, manufactured by Nippon Kayaku Co., Ltd.) ) And the like.
  • resorcinol type epoxy resin examples include “Denacol (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
  • dicyclopentadiene type epoxy resins include “Epicron (registered trademark)” HP7200, “Epicron (registered trademark)” HP7200L, “Epicron (registered trademark)” HP7200H (above, Dainippon Ink & Chemicals, Inc.) And Tactix 558 (manufactured by Huntsman Advanced Material), XD-1000-1L, XD-1000-2L (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • Examples of commercially available urethane and isocyanate-modified epoxy resins include AER4152 (produced by Asahi Kasei Epoxy Co., Ltd.) having an oxazolidone ring and ACR1348 (produced by Asahi Denka Co., Ltd.).
  • a molding method in which a low-viscosity liquid resin composition such as a resin transfer molding method is suitably used includes [E] or [E ′] as an aliphatic epoxy resin, an alicyclic epoxy resin, or the like.
  • a low viscosity epoxy resin is applicable.
  • the epoxy resin composition of the present invention has a heat-solubility that is soluble in epoxy resin in order to control viscoelasticity, improve tack and drape characteristics of prepreg, and improve mechanical properties such as impact resistance of fiber reinforced composite materials.
  • Organic particles such as plastic resins, rubber particles and thermoplastic resin particles, inorganic particles, and the like can be blended.
  • thermoplastic resin soluble in the epoxy resin a thermoplastic resin having a hydrogen-bonding functional group that can be expected to improve the adhesion between the resin and the reinforcing fiber is preferably used.
  • hydrogen bonding functional groups include alcoholic hydroxyl groups, amide bonds, sulfonyl groups, and the like.
  • thermoplastic resin having an alcoholic hydroxyl group examples include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resin, and thermoplastic resins having an amide bond such as polyamide, polyimide, polyvinyl pyrrolidone, and heat having a sulfonyl group.
  • plastic resin examples include polysulfone such as polyethersulfone.
  • Polyamide, polyimide and polysulfone may have a functional group such as an ether bond and a carbonyl group in the main chain.
  • the polyamide may have a substituent on the nitrogen atom of the amide group.
  • polyvinyl formal and polyethersulfone are excellent in compatibility with epoxy resins, and have a phase separation structure of an appropriate size between [A] and [B] or between [A ′] and [B ′]. Since it can mix
  • polyvinyl formal examples include “Denka Formal (registered trademark)” (manufactured by Denki Kagaku Kogyo Co., Ltd.) and “Vinylec (registered trademark)” (manufactured by Chisso Corporation).
  • the acrylic resin has high compatibility with the epoxy resin and is suitably used for controlling viscoelasticity.
  • Commercially available acrylic resins include “Dynar (registered trademark)” BR series (Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere (registered trademark)” M, M100, M500 (Matsumoto Yushi Seiyaku Co., Ltd.) ) And the like.
  • cross-linked rubber particles, and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like.
  • crosslinked rubber particles include FX501P (manufactured by Nippon Synthetic Rubber Industry Co., Ltd.) composed of a crosslinked product of carboxyl-modified butadiene-acrylonitrile copolymer, and CX-MN series (manufactured by Nippon Shokubai Co., Ltd.) composed of acrylic rubber fine particles.
  • YR-500 series (manufactured by Toto Kasei Co., Ltd.) can be used.
  • core-shell rubber particles include, for example, “Paraloid (registered trademark)” EXL-2655 (manufactured by Kureha Chemical Industry Co., Ltd.), acrylic ester / methacrylic ester consisting of butadiene / alkyl methacrylate / styrene copolymer.
  • STAPHYLOID (registered trademark) AC-3355 made of copolymer, TR-2122 (manufactured by Takeda Pharmaceutical Co., Ltd.), "PARALOID (registered trademark)” EXL made of butyl acrylate / methyl methacrylate copolymer -2611, EXL-3387 (manufactured by Rohm & Haas), “Kane Ace (registered trademark)” MX series (manufactured by Kaneka Corporation), and the like can be used.
  • thermoplastic resin particles polyamide particles or polyimide particles are preferably used, and as commercially available polyamide particles, SP-500 (manufactured by Toray Industries, Inc.), “Orgasol (registered trademark)” (manufactured by Arkema), etc. Can be used.
  • the organic particles such as rubber particles and thermoplastic resin particles are used in an amount of 0.1 to 30 parts by weight with respect to 100 parts by weight of the total epoxy resin from the viewpoint of achieving both the elastic modulus and toughness of the resulting cured resin. It is preferable to add 1 to 15 parts by weight.
  • a kneader, a planetary mixer, a three-roll extruder, a twin-screw extruder, or the like is preferably used.
  • the temperature of the epoxy resin mixture is raised to an arbitrary temperature of 130 to 180 ° C. while stirring, and the remaining components other than the curing agent and the curing catalyst are dissolved or dispersed in the epoxy resin mixture.
  • the temperature is preferably lowered to 100 ° C. or lower, more preferably 80 ° C. or lower, and a curing agent and a curing catalyst are added and kneaded and dispersed.
  • This method is preferably used because an epoxy resin composition having excellent storage stability can be obtained.
  • the epoxy resin composition of the present invention comprises a cured epoxy resin obtained by curing the epoxy resin composition, a prepreg for a fiber reinforced composite material using the cured epoxy resin and a cured product thereof, and a cured epoxy resin and a reinforced fiber substrate. It can be used as a reinforced fiber composite material combined.
  • a cured product obtained by curing the epoxy resin composition of the present invention at least [A] rich phase and [B] rich phase, or [A ′] rich phase and [B ′] rich phase.
  • An epoxy resin cured product having a phase separation structure having a structure period of 0.01 to 5 ⁇ m is provided.
  • it has a phase separation structure having at least a [A ′] rich phase and a [B ′] rich phase, An epoxy resin cured product having a structural period of 0.01 to 5 ⁇ m is provided.
  • the viscosity at 80 ° C. is preferably from 0.1 to 200 Pa ⁇ s, more preferably from the viewpoint of processability such as tack and drape. It is desirable to be in the range of 5 to 100 Pa ⁇ s, more preferably 1 to 50 Pa ⁇ s. If the viscosity at 80 ° C. is less than 0.1 Pa ⁇ s, the shape retention of the prepreg may be insufficient and cracking may occur, and a large amount of resin flow occurs during molding, resulting in variations in reinforcing fiber content. May occur. When the viscosity at 80 ° C. exceeds 200 Pa ⁇ s, the epoxy resin composition may be fainted in the film forming process, or an unimpregnated portion may be generated in the reinforcing fiber impregnation process.
  • the epoxy resin composition of the present invention when used as a prepreg for aircraft primary structural materials, preferably has a minimum viscosity of 0.05 to 20 Pa ⁇ s, more preferably 0.1 to 10 Pa ⁇ s. It is desirable to be in range. If the minimum viscosity is less than 0.05 Pa ⁇ s, the shape retention of the prepreg may be insufficient and cracking may occur, and a lot of resin flow will occur during molding, resulting in variations in reinforcing fiber content. There is a case. When the minimum viscosity exceeds 20 Pa ⁇ s, blurring may occur in the film forming process of the epoxy resin composition, or an unimpregnated part may occur in the impregnation process of the reinforcing fibers.
  • the viscosity here is determined by using a dynamic viscoelasticity measuring device (Rheometer RDA2: manufactured by Rheometrics), using a parallel plate with a diameter of 40 mm, simply raising the temperature at a rate of temperature increase of 2 ° C./min, and a frequency of 0.5 Hz.
  • Gap 1 mm refers to the complex viscoelastic modulus ⁇ * measured.
  • the curing temperature and curing time for obtaining a cured product are not particularly limited, depending on the curing agent and catalyst to be blended, cost and productivity, mechanical properties of the resulting cured product, It can be appropriately selected from the viewpoints of heat resistance, quality and the like.
  • a curing agent system combining dicyandiamide and DCMU is preferably cured at a temperature of 135 ° C. for 2 hours, and when diaminodiphenyl sulfone is used, it is preferably cured at a temperature of 180 ° C. for 2 hours. It is.
  • the sample for measuring the resin flexural modulus of the cured product was obtained by defoaming an uncured epoxy resin composition in a vacuum, and then in a mold set to a thickness of 2 mm by a 2 mm thick “Teflon (registered trademark)” spacer.
  • the plate-like cured product without voids is obtained by curing under the predetermined curing conditions, and this is cut into a width of 10 mm and a length of 60 mm with a diamond cutter.
  • the resin toughness measurement sample of the cured product is predetermined in a mold set to a thickness of 6 mm with a 6 mm thick “Teflon (registered trademark)” spacer after defoaming the uncured epoxy resin composition in vacuum.
  • a plate-like cured product without voids is obtained by curing under the curing conditions described above, cut into a width of 12.7 mm and a length of 150 mm with a diamond cutter, and produced by introducing a pre-crack of 5 to 7 mm from one end in the width direction. did.
  • the initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer.
  • the reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers from which a lightweight and highly rigid fiber-reinforced composite material can be obtained. Of these, carbon fibers having a tensile modulus of 100 to 900 GPa are preferable, and carbon fibers having a tensile modulus of 200 to 800 GPa are more preferable.
  • the form of the reinforcing fibers is not particularly limited, and for example, long fibers arranged in one direction, tows, woven fabrics, mats, knits, braids, short fibers chopped to a length of less than 10 mm, and the like are used.
  • long fibers refer to single fibers or fiber bundles that are substantially continuous for 10 mm or more.
  • a short fiber is a fiber bundle cut to a length of less than 10 mm.
  • an array in which reinforcing fiber bundles are aligned in a single direction is most suitable for applications that require a high specific strength and specific elastic modulus. Arrangements are also suitable for the present invention.
  • the prepreg of the present invention is obtained by impregnating a fiber base material with the epoxy resin composition of the present invention.
  • the impregnation method include a wet method in which the epoxy resin composition is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the viscosity and impregnation, and a hot melt method (dry method) in which the viscosity is reduced by heating and impregnation. it can.
  • the wet method is a method in which the reinforcing fiber is immersed in a solution of the epoxy resin composition and then lifted and the solvent is evaporated using an oven or the like.
  • the hot melt method directly applies the epoxy resin composition whose viscosity has been reduced by heating.
  • a method of impregnating reinforcing fibers, or a film in which an epoxy resin composition is once coated on a release paper or the like is prepared, and then the films are laminated from both sides or one side of the reinforcing fibers and heated and pressed to form reinforcing fibers. This is a method of impregnating a resin.
  • the hot melt method is preferable because substantially no solvent remains in the prepreg.
  • the prepreg preferably has a reinforcing fiber amount per unit area of 70 to 200 g / m 2 .
  • the fiber weight content is preferably 60 to 90% by weight, and is usually used in the range of 65 to 85% by weight.
  • the fiber weight content is less than 60% by weight, the ratio of the resin is too large to obtain the advantages of the fiber reinforced composite material having excellent specific strength and specific elastic modulus, and when the fiber reinforced composite material is molded, The amount of heat generated may be too high. On the other hand, if the fiber weight content exceeds 90% by weight, poor resin impregnation may occur, and the resulting composite material may have many voids.
  • the composite material according to the present invention is produced by a method of heat curing the resin while applying pressure to the shaped product and / or the laminated product.
  • a press molding method an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be used as appropriate.
  • the autoclave molding method is a method of laminating a prepreg on a tool plate of a predetermined shape, covering with a bagging film, pressurizing and heat-curing while degassing the inside of the laminate, and the fiber orientation can be precisely controlled, Further, since the generation of voids is small, a molded article having excellent mechanical properties and high quality can be obtained.
  • the wrapping tape method is a method of winding a prepreg on a mandrel or other core metal to form a tubular body made of a fiber reinforced composite material, and is a method suitable for producing a rod-shaped body such as a golf shaft or a fishing rod.
  • a prepreg is wound around a mandrel
  • a wrapping tape made of a thermoplastic film is wound around the outside of the prepreg for fixing and applying pressure, and the resin is heated and cured in an oven, and then a cored bar.
  • This is a method for extracting a tube to obtain a tubular body.
  • the internal pressure molding method is to set a preform in which a prepreg is wound on an internal pressure applying body such as a tube made of a thermoplastic resin in a mold, and then introduce a high pressure gas into the internal pressure applying body to apply pressure. At the same time, the mold is heated and molded.
  • This method is preferably used when molding a complicated shape such as a golf shaft, a bad, a racket such as tennis or badminton.
  • the fiber reinforced composite material using the cured product of the epoxy resin composition of the present invention as a matrix resin is suitably used for sports applications, general industrial applications, and aerospace applications. More specifically, in sports applications, it is suitably used for golf shafts, fishing rods, tennis and badminton racket applications, hockey stick applications, and ski pole applications. Furthermore, in general industrial applications, it is used as a structural material for moving bodies such as automobiles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, and repair and reinforcement materials. Preferably used. Suitable for aerospace applications such as aircraft primary structural materials such as main wings, tail wings and floor beams, secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite structural materials Used for.
  • aircraft primary structural materials such as main wings, tail wings and floor beams
  • secondary structural materials such as flaps, ailerons, cowls, fairings and interior materials, rocket motor cases and satellite
  • the tubular body made of fiber reinforced composite material obtained by curing the prepreg of the present invention into a tubular shape can be suitably used for golf shafts, fishing rods and the like.
  • [E ′] are also as shown in Table 1-1, Table 1-2, Table 2-1, and Table 2-2.
  • EEW represents the epoxy equivalent
  • the number of functional groups represents the average number of epoxy groups
  • Mn represents the number average molecular weight
  • SP represents the solubility parameter.
  • the epoxy equivalent, the average number of epoxy groups, etc. of each raw material used for preparing each epoxy resin composition are as shown below.
  • Triglycidyl-m-aminophenol (Sumiepoxy (registered trademark)" ELM120, epoxy equivalent: 118, trifunctional, manufactured by Sumitomo Chemical Co., Ltd.)
  • Triglycidyl-p-aminophenol (“Araldide (registered trademark)” MY0510, epoxy equivalent: 101, trifunctional, manufactured by Huntsman Advanced Materials)
  • Tetraglycidyldiaminodiphenylmethane ("Sumiepoxy (registered trademark)" ELM434, epoxy equivalent: 120, tetrafunctional, manufactured by Sumitomo Chemical Co., Ltd.) -Modified TEPIC (epoxy equivalent: 349, 2.6 functional) Dissolve 100 parts by weight of TEPIC-P (triglycidyl isocyanurate, epoxy equivalent: 106, trifunctional, manufactured by Nissan Chemical Co., Ltd.) in 3000 parts by weight of toluene, add 16 parts by weight of propionic
  • Viscosity measurement of epoxy resin composition The viscosity of the epoxy resin composition was measured using a dynamic viscoelasticity measuring device (Rheometer RDA2: manufactured by Rheometrics), using a parallel plate with a diameter of 40 mm, and a heating rate of 2 ° C. The temperature was simply raised at / min, the frequency was measured at 0.5 Hz, and the gap was 1 mm, and the lowest value of the complex viscosity was measured.
  • the initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer.
  • the toughness of the cured resin refers to the critical stress strength of deformation mode 1 (opening type).
  • phase separation structure of the cured product forms a two-phase continuous structure or a sea-island structure, and was measured as follows.
  • the phase structure period of the cured resin is as shown in the column of phase structure size ( ⁇ m).
  • a straight line of a predetermined length is drawn on the micrograph, the intersection of the straight line and the phase interface is extracted, the distance between adjacent intersections is measured, and the number average value of these is the structure period It was.
  • the predetermined length was set as follows based on a micrograph.
  • the number average value of the distance between the island phase and the island phase existing in a predetermined region is defined as the structure period.
  • the shortest distance between the island phase and the island phase was used when the island phase was an ellipse, an indeterminate shape, or a circle or ellipse with two or more layers.
  • the predetermined region was set as follows based on a micrograph.
  • phase separation structure periodic distance When the phase separation structure periodic distance is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m), a photograph is taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0 on the sample) .2 ⁇ m square area) 3 locations are selected, and in the same way, if the phase separation structure periodic distance is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m), photograph is taken at a magnification of 2,000 times.
  • the major axis of all the island phases existing in a predetermined region was measured, and the number average value of these was obtained as the island phase diameter.
  • the island phase is an ellipse, an indeterminate shape, or a circle or ellipse of two or more layers
  • the diameter of the outermost circle or the major axis of the ellipse was used.
  • the predetermined region was set as follows based on a micrograph. When the phase separation structure period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m), a photograph is taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0.
  • phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times. If you select 3 regions of 4mm square (2 ⁇ m square area on the sample) at random and the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m), take a photo at 200x magnification, Three areas of 4 mm square (20 ⁇ m square area on the sample) were randomly selected on the photograph. If the measured phase separation structure period was out of the expected order, the corresponding region was measured again at a magnification corresponding to the corresponding order and adopted.
  • the carbon fiber weight per unit area was 125 g / m 2 in the same procedure except that carbon fiber trading card M40SC-12K (manufactured by Toray Industries, Inc., tensile elastic modulus: 380 GPa, tensile strength: 4900 MPa) was used as the reinforcing fiber.
  • a unidirectional prepreg using M40SC having a fiber weight content of 75% was prepared.
  • a wrapping tape heat-resistant film tape
  • the width of the wrapping tape was 15 mm
  • the tension was 3.0 kg
  • the winding pitch (deviation amount during winding) was 1.0 mm
  • this was 2 ply lapping.
  • the Charpy impact test composite material tubular body obtained above was cut to a length of 60 mm to produce a test piece having an inner diameter of 6.3 mm and a length of 60 mm.
  • a Charpy impact test was performed by applying an impact from the side surface of the tubular body at a weight of 29.4 N ⁇ m.
  • E WR [(cos ⁇ -cos ⁇ ) ⁇ (cos ⁇ ′ ⁇ cos ⁇ ) ( ⁇ + ⁇ ) / ( ⁇ + ⁇ ′)]
  • J Absorbed energy
  • WR Moment around the rotation axis of the hammer (N ⁇ m)
  • Hammer lift angle (°)
  • ⁇ ' Swing angle when the hammer is swung from the lift angle ⁇ (°)
  • Hammer swing angle after test specimen breakage (°)
  • the unidirectional prepreg produced in the above (8) was laminated in a (+ 45 ° / 0 ° / ⁇ 45 ° / 90 °) 3s configuration in a quasi-isotropic manner with 24 plies, and the autoclave was heated to 2 ° C. at a temperature of 180 ° C.
  • the laminate was produced by molding at a temperature rising rate of 1.5 ° C./min for a time and under a pressure of 0.59 MPa.
  • a sample 150 mm long ⁇ 100 mm wide was cut out from this laminate, and a falling weight impact of 6.7 J / mm was applied to the center of the sample according to SACMA SRM 2R-94 to determine the compressive strength after impact.
  • the unidirectional prepreg produced by the above (8) was laminated in a (+ 45 ° / 0 ° / ⁇ 45 ° / 90 °) 2s configuration in a pseudo-isotropic manner with 16 plies, and was autoclaved at a temperature of 180 ° C.
  • the laminate was produced by molding at a temperature rising rate of 1.5 ° C./min for a time and under a pressure of 0.59 MPa.
  • a sample having a length of 305 mm ⁇ width of 25.4 mm was cut out from the laminate, and a hole having a diameter of 6.35 mm was drilled in the center to be processed into a perforated plate.
  • This perforated plate was immersed in warm water at a temperature of 72 ° C. for 2 weeks, and the compressive strength was determined in an atmosphere at a temperature of 82 ° C. according to SACMA SRM 3R-94.
  • Table 1-1 to Table 2-2 collectively show the results of measuring epoxy resin compositions, prepregs, and fiber-reinforced composite material tubular bodies for each Example and Comparative Example by the above method.
  • the bisphenol-type epoxy resins used in the examples and comparative examples were individually measured for molecular weights in advance, and in Examples 1 to 6, 8, 9 and Comparative Examples 1 to 8, the molecular weight was 500 to 500.
  • the contents of 1,200 and those having a molecular weight of 1500 or more were obtained, and the blending amount of each diglycidyl ether type epoxy resin was determined so as to be the ratio of the molecular weight of the present invention.
  • Example 1 As shown in Table 1-1, when [ER] is used as the main component [A], ELM120 is used as [B], and jER834 is used as the main component [C], a fine phase separation structure period is obtained. And the mechanical properties of the tubular body were good.
  • Example 2 Instead of jER1007, jER1009 ([A] is the main component) was used and the blending ratios shown in Table 1-1 were used, except that [A] was set near the upper limit of the specified range.
  • a thermosetting resin composition was prepared. As a result of a slight decrease in the resin elastic modulus compared with Example 1, the mechanical properties of the tubular body were also slightly decreased, but at a level with no problem.
  • Example 3 As another epoxy resin, a thermosetting resin composition was added in the same manner as in Example 2 except that jER154 was added and the mixing ratio shown in Table 1-1 was set, and [E] was set near the upper limit of the specified range. Was prepared. Compared to Example 2, the resin elastic modulus was improved but the toughness was reduced. As a result, the mechanical properties of the tubular body were also at the same level.
  • Example 4 jER4004P ([A] is the main component) is used instead of jER1007, YDF2001 ([C] is the main component) is used instead of jER834, and the mixture ratios shown in Table 1-1 are used.
  • [C] is the specified range
  • a thermosetting resin composition was prepared in the same manner as in Example 1 except that the lower limit was set. Since the phase separation structure period was larger than that in Example 1, the mechanical properties of the tubular body were slightly deteriorated, but at a level with no problem.
  • Example 5 A thermosetting resin composition was prepared in the same manner as in Example 4 except that a part of ELM120 was replaced with YDF2001 and the blending ratio shown in Table 1-1 was set, and [C] was set near the upper limit of the specified range. did. Compared to Example 3, it had an extremely fine phase separation structure period, and the mechanical properties of the tubular body were greatly improved.
  • thermosetting resin composition was prepared in the same manner as in Example 4 except that it was set to 1.9 and near the lower limit of the specified range. Compared to Example 5, the resin elastic modulus decreased and the mechanical properties of the tubular body slightly decreased, but were at a sufficient level.
  • Example 7 As [D], 4,4′-DDS is used in place of DICY-7, and DCMU99 is excluded to obtain the blending ratio shown in Table 1. (3) Flexural modulus of cured resin, (4) Resin Except that the curing temperature of the epoxy resin or prepreg in the measurement of the toughness (K IC ) of the cured product, (7) preparation of the composite material tubular body for Charpy impact test, etc. was 180 ° C. A thermosetting resin composition was prepared. Compared to Example 5, since the phase separation structure period was large and the resin toughness was also lowered, the mechanical properties of the tubular body were lowered, but at a level with no problem.
  • the post-impact compressive strength which is important for the aircraft primary structural material, showed a very high value, and the perforated plate compressive strength in a wet heat environment was at a level with no problem.
  • Example 8 As shown in Table 1-2, a TEPIC modified product was used as [B], DICY-7 was used as [D], and the difference in SP value between [A] and [B] was set high to 5.3. As a result, the phase separation structure was as large as 4 ⁇ m, but the mechanical properties of the tubular body were at an acceptable level.
  • Example 9 As a result of setting the contents of [A], [B], and [C] in the optimum region, a fine phase separation structure is obtained, the toughness is as very high as 1.8, and the mechanical properties of the tubular body are extremely high. It was good.
  • Example 11 As a result of replacing jER1007 in Example 10 with jER4004P, an appropriate phase separation structure was obtained, and the mechanical properties of the fiber-reinforced composite material plate were good.
  • Example 12 As a result of setting the curing agent to 3,3′-DDS, the content of [A ′] and [B ′] is set to the lower limit, and the content of [C ′] is set to the upper limit, an extremely fine phase separation structure is obtained.
  • the toughness was an acceptable level of 1.1, and the mechanical properties of the fiber-reinforced composite material flat plate were at a level with no problem.
  • Example 13 As a result of setting the curing agent to 3,3′-DDS and setting the content of [A ′], [B ′], and [C ′] in the optimum region, a fine phase separation structure is obtained, and the toughness is 1 The mechanical properties of the fiber-reinforced composite plate were very good.
  • thermosetting resin composition was prepared in the same manner as in Example 1 except that only 100 parts by weight of [B] ELM120 was used as the epoxy resin.
  • the cured resin was uniform without phase separation, and the resin elastic modulus was extremely high.
  • the resin toughness being lowered, the mechanical properties of the tubular body were greatly lowered and became insufficient.
  • thermosetting resin composition was prepared in the same manner as in Example 2 except that the epoxy resin whose main component was [C] was not used and the content ratio of [A] and [B] was changed. .
  • the mechanical properties of the tubular body were greatly reduced and became insufficient.
  • thermosetting resin composition was prepared in the same manner as in Example 2 except that jER834 was 50 parts by weight, jER1009 and ELM120 were both 25 parts by weight, and [C] was set in an area exceeding the specified range. .
  • the cured resin was uniform without phase separation, and the resin toughness was greatly reduced. As a result, the mechanical properties of the tubular body were greatly reduced and became insufficient.
  • thermosetting resin composition was prepared in the same manner as in Example 2 except that 10 parts by weight of jER1009, 70 parts by weight of ELM120, and [B] were set in a region exceeding the specified range.
  • the cured resin was uniform without phase separation, and the resin toughness was greatly reduced. As a result, the mechanical properties of the tubular body were greatly reduced and became insufficient.
  • thermosetting resin composition was prepared in the same manner as in Example 1 except that 40 parts by weight of jER828 was blended and [B] was set in a region below the specified range.
  • the cured resin was uniform without phase separation, the resin elastic modulus and resin toughness were lowered, and the mechanical properties of the tubular body became insufficient.
  • the epoxy resin composition of the present invention provides a cured product with excellent toughness while having a high room temperature elastic modulus, and therefore has excellent static strength characteristics even when combined with a reinforcing fiber having a particularly high tensile elastic modulus, and A fiber-reinforced composite material having excellent impact resistance can be obtained. This makes it possible to apply high-modulus fibers to applications and sites that have been difficult to apply until now, and further reduction in the weight of fiber-reinforced composite materials is expected in each direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、優れた静的強度特性と耐衝撃性などの性能を併せ持つ繊維強化複合材料およびこれを得るためのエポキシ樹脂組成物を提供することを目的とするものである。 下記[A]、[B]、[C]、[D]を、下記式(1)~(4)を満たす含有比で含むエポキシ樹脂組成物により上記目的を達成する。 [A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂 [B]構造ユニットとしてのSP値が[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂 [C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂 [D]エポキシ樹脂硬化剤  0.2 ≦A/(A+B+C+E)≦0.6  (1)  0.2 ≦B/(A+B+C+E)≦0.6  (2)  0.15≦C/(A+B+C+E)≦0.4  (3)  0≦E/(A+B+C+E)≦0.2     (4) (各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量)

Description

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
 本発明は、その硬化物がスポーツ用途、航空機用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好適に用いられるエポキシ樹脂組成物、これをマトリックス樹脂としたプリプレグおよび該プリプレグを硬化して得た繊維強化複合材料に関するものである。
 炭素繊維やアラミド繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度および比弾性率を利用して、航空機や自動車などの構造材料や、テニスラケット、ゴルフシャフト、釣り竿などのスポーツおよび一般産業用途などに広く利用されている。
 繊推強化複合材料の製造方法には、強化繊維に未硬化のマトリックス樹脂が含浸されたシート状中間材料であるプリプレグを用い、それを複数枚積層した後、加熱硬化させる方法や、モールド中に配置した強化繊維に液状の樹脂を流し込み加熱硬化させるレジン・トランスファー・モールディング法などが用いられている。
 これらの製造方法のうちプリプレグを用いる方法は、強化繊維の配向を厳密に制御でき、また積層構成の設計自由度が高いことから、高性能な繊維強化複合材料を得やすい利点がある。このプリプレグに用いられるマトリックス樹脂としては、耐熱性や生産性の観点から、主に熱硬化性樹脂が用いられ、中でも強化繊維との接着性などの力学特性の観点からエポキシ樹脂が好適に用いられる。
 エポキシ樹脂は、熱可塑性樹脂に比べて弾性率が高いが、靭性に劣るため、繊維強化複合材料の耐衝撃性が不十分であった。
 従来、エポキシ樹脂の靱性を向上させる方法としては、靱性に優れるゴム成分や熱可塑性樹脂を配合し、エポキシ樹脂と相分離構造を形成させる方法などが試されてきた。しかし、これらの方法では、弾性率、耐熱性の低下や、増粘によるプロセス性の悪化、ボイド発生等の品位低下といった問題があった。例えば、スチレン-ブタジエン-メタクリル酸メチルからなる共重合体や、ブタジエン-メタクリル酸メチルからなるブロック共重合体などのブロック共重合体を添加することにより、エポキシ樹脂の硬化過程で微細な相分離構造を安定して形成し、エポキシ樹脂の靭性を大きく向上させる方法が提案されている(特許文献1)。また、フェノキシ樹脂やポリエーテルスルホンの様な熱可塑性樹脂を大量に配合し、これらを相分離させることで、靭性を大きく向上でき、かつ最低粘度が大きく上昇するため、ハニカムパネルの面板用自己接着性プリプレグに用いた場合、ハニカムコアとの接合面に十分なフィレット(隅肉)が形成され高い自己接着性が得られると開示されている(特許文献2)。しかし、例えば、さらに高い力学特性および長期信頼性が求められる航空機一次構造材用プリプレグに用いる場合、熱可塑性樹脂の配合に伴う粘度上昇により、成形体にボイドや繊維配向の乱れが生じやすく、十分な性能が発現出来ない等、汎用性に劣るものであった。
 また、エポキシ樹脂は、様々なエポキシ樹脂を組み合わせることで、短所を補い合い、単一成分の樹脂に比べてバランスの取れた特性を発現することができるが、通常、相分離構造は形成しないため、靭性の向上は小さく、繊維強化複合材料の耐衝撃性はほとんど改善されなかった。例えば、エポキシ樹脂の中でも靭性の高いビスフェノールA型エポキシ樹脂に、弾性率の高いアミン型エポキシ樹脂を配合しても、靱性、弾性率は両成分の中間的な値となり、衝撃強度については改善が見られないことが課題であった。
例えば、特許文献3および特許文献4では、ビスフェノール型エポキシ樹脂に高弾性率なアミン型エポキシ樹脂を配合することで、繊維方向圧縮強度と相関関係の強い繊維方向曲げ強さや層間剪断強度に顕著な向上が見られているが、樹脂靱性や耐衝撃性に関しては十分な向上が見られなかった。
国際公開2006/077153号 特開2007-314753号公報 特開昭62-1717号公報 特開昭62-1719号公報
 本発明の目的は、かかる従来技術の欠点を改良し、優れた弾性率と靭性を併せ持つ硬化物を形成するエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いたプリプレグ、繊維強化複合材料を提供することにある。
 前記課題を解決するために、本発明は下記エポキシ樹脂組成物を提供する。
〔1〕下記[A]、[B]、[C]、[D]を、下記式(1)~(4)を満たす含有比で含むエポキシ樹脂組成物。
[A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂
[B]構造ユニットとしてのSP値が、[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂
[D]エポキシ樹脂硬化剤
 0.2 ≦A/(A+B+C+E)≦0.6  (1)
 0.2 ≦B/(A+B+C+E)≦0.6  (2)
 0.15≦C/(A+B+C+E)≦0.4  (3)
 0≦E/(A+B+C+E)≦0.2     (4)
(各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量)
〔2〕下記[A’]、[B’]、[C’]、[D’]を、下記式(1’)~(4’)を満たす含有比で含むエポキシ樹脂組成物。
[A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂
[B’]構造ユニットとしてのSP値が、[A’]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂
[D’]芳香族アミン型エポキシ樹脂硬化剤
 0.2 ≦A’/(A’+B’+C’+E’)≦0.6  (1’)
 0.2 ≦B’/(A’+B’+C’+E’)≦0.6  (2’)
 0.15≦C’/(A’+B’+C’+E’)≦0.4  (3’)
 0≦E’/(A’+B’+C’+E’)≦0.2     (4’)
(各式中、A’、B’、C’は、それぞれ[A’]、[B’]、[C’]の重量、E’は[A’]、[B’]、[C’]以外のエポキシ樹脂の重量)
〔3〕[B]がアミン型エポキシ樹脂である、上記〔1〕に記載のエポキシ樹脂組成物。
〔4〕[B’]がアミン型エポキシ樹脂である、上記〔2〕に記載のエポキシ樹脂組成物。
〔5〕[C’]の分子量が500~1200である、上記〔2〕または〔4〕に記載のエポキシ樹脂組成物。
〔6〕[D]がジシアンジアミドまたはその誘導体である、上記〔1〕または〔3〕に記載のエポキシ樹脂組成物。
〔7〕[D’]がジアミノジフェニルスルホンまたはその誘導体である、上記〔2〕、〔4〕または〔5〕に記載のエポキシ樹脂組成物。
〔8〕上記〔1〕から〔7〕のいずれか一項に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物。
〔9〕上記〔1〕または〔2〕に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する海島構造の相分離構造を有し、島相の径が0.01~5μmであるエポキシ樹脂硬化物。
〔10〕上記〔1〕から〔7〕のいずれか一項に記載のエポキシ樹脂組成物をマトリックスとした繊維強化複合材料用プリプレグ。
〔11〕上記〔10〕に記載のプリプレグを硬化させてなる繊維強化複合材料。
〔12〕上記〔8〕に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
〔13〕上記〔9〕に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
 なお、本明細書中[A]は、本発明のエポキシ樹脂組成物に含まれる含有成分(compornent)の1つを示す。同様に、[B]、[C]、[D]および[E]、並びに、[A’]、[B’]、[C’]、[D’]および[E’]は、それぞれ本発明のエポキシ樹脂組成物中に含まれる含有成分の1つを示す。
 本発明によれば、硬化時にエポキシ樹脂の微細な相分離構造が形成され、高弾性率、かつ靱性の高い硬化物を与えるエポキシ樹脂組成物を提供できる。また、得られた繊維強化複合材料は、優れた静的強度特性と耐衝撃性を併せ持つ。
 本発明のエポキシ樹脂組成物は、分子量の異なる2種のジグリシジルエーテル型エポキシ樹脂と、構造ユニットとしてのSP値が所定の値を満たすエポキシ樹脂と、所定の硬化剤とを含有する。本発明のエポキシ樹脂組成物の実施形態としては、次に示すような第1実施形態および第2実施形態が挙げられる。
 本発明の第1実施形態のエポキシ樹脂組成物は、含有成分として下記[A]、[B]、[C]および[D]を、下記式(1)~(4)を満たす含有比で含むエポキシ樹脂組成物である。
[A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂
[B]構造ユニットとしてのSP値が、[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂
[D]エポキシ樹脂硬化剤
 0.2 ≦A/(A+B+C+E)≦0.6  (1)
 0.2 ≦B/(A+B+C+E)≦0.6  (2)
 0.15≦C/(A+B+C+E)≦0.4  (3)
 0≦E/(A+B+C+E)≦0.2     (4)
(各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量)
 また、本発明の第2実施形態のエポキシ樹脂組成物は、含有成分として下記[A’]、[B’]、[C’]、および[D’]を、下記式(1’)~(4’)を満たす含有比で含むエポキシ樹脂組成物である。
[A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂
[B’]構造ユニットとしてのSP値が[A’]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
[C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂
[D’]芳香族アミン型エポキシ樹脂硬化剤
 0.2 ≦A’/(A’+B’+C’+E’)≦0.6  (1’)
 0.2 ≦B’/(A’+B’+C’+E’)≦0.6  (2’)
 0.15≦C’/(A’+B’+C’+E’)≦0.4  (3’)
 0≦E’/(A’+B’+C’+E’)≦0.2     (4’)
(各式中、A’、B’、C’は、それぞれ[A’]、[B’]、[C’]の重量、E’は[A’]、[B’]、[C’]以外のエポキシ樹脂の重量)
 第1実施形態のエポキシ樹脂組成物において、上記式(1)~(4)は、次のことを表している。即ち、第1実施形態のエポキシ樹脂組成物において、エポキシ樹脂としては[A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂、[B]の構造ユニットとしてのSP値が[A]の構造ユニットとしてのSP値よりも1.5~6.5高いエポキシ樹脂、[C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂を含むことが必須であり、[A]、[B]、[C]およびこれら以外のエポキシ樹脂[E](以降、全エポキシ樹脂と記す)100重量部のうち、[A]を20~60重量部、[B]を全エポキシ樹脂100重量部のうち20~60重量部、[C]を全エポキシ樹脂100重量部のうち15~40重量部含むことが必要である。また、[A]、[B]、[C]以外のエポキシ樹脂[E]は全エポキシ樹脂中100重量部のうち20重量部以下であることが必要である。
 第2実施形態のエポキシ樹脂組成物において、式(1’)~(4’)は、次のことを表している。即ち、本発明のエポキシ樹脂組成物において、硬化剤として、[D’]芳香族アミン型エポキシ樹脂硬化剤を用いた場合、エポキシ樹脂としては[A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂、[B’]構造ユニットとしてのSP値が[A’]の構造ユニットとしてのSP値よりも1.5~6.5高いエポキシ樹脂、[C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂を含むことが必須であり、[A’]、[B’]、[C’]およびこれら以外のエポキシ樹脂[E’](以降、全エポキシ樹脂と記す)100重量部のうち、[A’]を20~60重量部、[B’]を全エポキシ樹脂100重量部のうち20~60重量部、[C’]を全エポキシ樹脂100重量部のうち15~40重量部含むことが必要である。また、[A’]、[B’]、[C’]以外のエポキシ樹脂[E’]は全エポキシ樹脂中100重量部のうち20重量部以下であることが必要である。
 本発明者らは、前記特定の含有比を有する樹脂組成により、硬化反応前には均一相溶状態を呈しつつ、その硬化反応過程で複数種のエポキシ樹脂成分が相分離を引き起こし、それにより繊維強化複合材料の含浸成形性と、耐衝撃性を始めとする機械特性の両立を可能になることを見出した。そこで、鋭意検討の結果、上述の要件を満たすことにより、硬化反応過程でエポキシ樹脂同士の相分離が起こり、所望の特性を有する繊維強化複合材料が得られることを見出した。
 [E]は、上記の通り、[A]~[C]以外のエポキシ樹脂である。また、[E’]は、上記の通り、[A’]~[C’]以外のエポキシ樹脂である。[E]または[E’]としては、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ウレタン変性エポキシ樹脂などが挙げられる。好ましい範囲は、0~15重量部である。
 また、本発明の効果を損なわない範囲において、[A]~[E]、または、[A’]~[E’]以外に、その他の成分を含んでも構わない。その他の成分としては、エポキシ樹脂に可溶性の熱可塑性樹脂や、ゴム粒子及び熱可塑性樹脂粒子等の有機粒子や、無機粒子等が挙げられ、好ましい範囲としては、0~20重量部、さらに好ましくは0~15重量部である。
 かかるエポキシ樹脂組成物を硬化して得られる樹脂硬化物は、弾性率と靭性の双方の性質について両立したものとすることができる。エポキシ樹脂硬化物の実施形態としては、[A]リッチ相と、[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、相分離構造周期が0.01~5μmであるものが挙げられ、かかる相分離構造を有することに因り、弾性率と靭性の両立が可能となる。
 本発明の樹脂組成物においては[A]~[E]、または、[A’]~[E’]が均一に相溶しているが、成形時の硬化反応の過程で両者の分子量増加に伴い、[A]リッチ相と[B]リッチ相に相分離を起こす、いわゆる反応誘発型相分離により、上記[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相構造を形成する。本発明において相分離構造とは、異なる成分を主成分とする相が、0.01μm以上の構造周期を有する構造をいう。これに対し、分子レベルで均一に混合している状態を、相溶状態といい、本発明においては異なる成分を主成分とする相が0.01μm未満の相分離構造周期である場合は、相溶状態と見なすものとする。相分離構造を示すか否かは、電子顕微鏡、位相差光学顕微鏡、その他種々の方法によって判断することができる。
 本発明のエポキシ樹脂硬化物の好ましい一実施形態としては、[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物が挙げられる。ここで、相分離の構造周期は、次のように定義するものとする。なお、相分離構造には、両相連続構造と海島構造が有るのでそれぞれについて定義する。両相連続構造の場合、顕微鏡写真の上に所定の長さの直線を引き、その直線と相界面の交点を抽出し、隣り合う交点間の距離を測定し、これらの数平均値を構造周期とする。かかる所定の長さとは、顕微鏡写真を基に以下のようにして設定するものとする。構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上1μmの長さ)3本を選出したものをいい、同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上10μmの長さ)3本を選出したものをいい、相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上100μmの長さ)3本を選出したものをいうものとする。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する長さを再度測定し、これを採用する。海島構造の場合、顕微鏡写真上の所定の領域内に存在する島相と島相の距離の数平均値である。島相が楕円形、不定形、または、二層以上の円または楕円になっている場合であっても、島相と島相の最短距離を用いるものとする。
 本発明のエポキシ樹脂硬化物の好ましい他の実施形態としては、[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する海島構造の相分離構造を有し、島相の径が0.01~5μmであるエポキシ樹脂硬化物が挙げられる。ここで、島相の径とは、海島構造における島相の大きさを示すものであり、所定の領域における数平均値である。島相が楕円形のときは、長径をとり、不定形の場合は外接する円の直径を用いる。また、二層以上の円または楕円になっている場合には、最外層の円の直径または楕円の長径を用いるものとする。なお、海島構造の場合、所定の領域内に存在する全ての島相の長径を測定し、これらの数平均値を島相の径とする。
 [A]と[B]の含有比によっては、構造周期がエポキシ樹脂硬化物の特性の良否を反映せず、むしろ島相の径の方が特性を反映し好ましい場合がある。具体的には、[A]の含有量が少ない場合には、島相の径の方が特性を反映する傾向にある。[A’]と[B’]の含有比とこれらを含むエポキシ樹脂硬化物の特性についても同様の傾向が見られる。
 上記のように、相分離の構造周期および島相の径を測定する際には、所定の領域の顕微鏡写真を撮影する。かかる所定の領域とは、顕微鏡写真を基に以下のようにして設定するものとする。相分離構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上0.2μm四方の領域)3箇所を選出した領域をいう。同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上2μm四方の領域)3箇所を選出した領域をいう。さらに同様に、相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上20μm四方の領域)3箇所を選出した領域をいうものとする。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する領域を再度測定し、これを採用する。
 この樹脂硬化物の相分離構造は、樹脂硬化物の断面を走査型電子顕微鏡もしくは透過型電子顕微鏡により観察することができる。必要に応じて、オスミウムなどで染色しても良い。染色は、通常の方法で行うことができる。
 かかる構造周期および島相の径は、0.01~5μmの範囲にあることがより好ましく、さらに好ましくは0.01~1μmの範囲にあることが望ましい。構造周期が0.01μmに満たない場合、樹脂硬化物の靭性が不足する場合があり、構造周期が5μmを超える場合、繊維強化複合材料の、単糸間領域より相分離構造周期が大きくなり、繊維強化複合材料とした際に、十分な靭性向上効果が発揮できない場合がある。
 本発明のエポキシ樹脂組成物は、上記の条件を満たすように各含有成分を配合することで反応誘発型相分離するものであるが、本発明のエポキシ樹脂組成物の含有成分などの実施形態について、以下さらに詳細に説明する。
 第1実施形態のエポキシ樹脂組成物における[A]として、分子量が1500以上のジグリシジルエーテル型エポキシ樹脂を、全エポキシ樹脂100重量部のうち20~60重量部含むことが必要であり、全エポキシ樹脂100重量部のうち30~50重量部含むことが好ましい。20重量部に満たない場合、硬化物が相分離構造を形成することが難しく、靭性が不足する。60重量部を超える場合は、硬化物の弾性率が不足するとともに、耐熱性が不足し、繊維強化複合材料の成形時や使用時に歪みや変形を招く恐れがある。
 [A]の分子量は1500に満たない場合、硬化物が相分離構造を形成することが難しく、靭性が不足し、繊維強化複合材料の耐衝撃性が不足する。また、[A]の分子量は、5000以下であることが、樹脂組成物の強化繊維への含浸性、および繊維強化複合材料の耐熱性の観点から好ましい。[A]の分子量の上限は好ましくは5000以下である。靭性という観点からは[A]の分子量の上限は特に定める必要性は低いが、5000を超える場合は、硬化物の相分離構造が粗大となるとともに、耐熱性が不足し、繊維強化複合材料の耐衝撃性が不足するとともに、使用時に歪みや変形を招く恐れがある。また、[A]の分子量が5000を超える場合、樹脂組成物の最低粘度が高くなりすぎ、航空機1次構造材向けプリプレグに用いた場合、プリプレグ化工程で含浸不良が発生し、成形体にボイドが発生する等の問題が生じる傾向がある。
 本発明のエポキシ樹脂組成物の第2実施形態においては、硬化剤として[D’]芳香族アミン型エポキシ樹脂硬化剤を用いた場合、[A’]として分子量が1500~5000の範囲にあるジグリシジルエーテル型エポキシ樹脂を、全エポキシ樹脂100重量部のうち20~60重量部含むことが必要であり、全エポキシ樹脂100重量部のうち30~50重量部含むことが好ましい。20重量部に満たない場合、硬化物が相分離構造を形成することが難しく、靭性が不足する。60重量部を超える場合は、硬化物の弾性率が不足するとともに、耐熱性が不足し、繊維強化複合材料の成形時や使用時に歪みや変形を招く恐れがある。
 [A’]の分子量が1500に満たない場合、硬化物が相分離構造を形成することが難しく、靭性が不足する。一方、5000を超える場合は、硬化物の相分離構造が粗大となるとともに、耐熱性が不足し、繊維強化複合材料の耐衝撃性が不足するとともに、使用時に歪みや変形を招く恐れがある。また、[A’]の分子量が5000を超える場合、樹脂組成物の最低粘度が高くなりすぎ、航空機一次構造材向けプリプレグに用いた場合、プリプレグ化工程で含浸不良が発生し、成形体にボイドが発生する等の問題が生じる傾向がある。また、硬化剤として、[D’]芳香族アミン型エポキシ樹脂硬化剤を用いた場合には、通常のエポキシ樹脂硬化剤に比べ、エポキシ樹脂との反応速度が緩やかなため、[A’]の分子量が5000を超える領域では、相分離構造が粗大もしくは均一となり、安定した相分離構造が得られない。
 本発明で[A]または[A’]として用いられるエポキシ樹脂としては、それぞれ所定の分子量のジグリシジルエーテル型エポキシ樹脂であれば特に限定されるものではないが、とりわけビスフェノール型エポキシ樹脂が好適に使用できる。一般的に、エポキシ樹脂の市販品は、製造プロセス上、ある程度の分子量分布を有する。ここで、エポキシ樹脂の分子量は、ポリスチレン標準サンプルを用いて、GPC(Gel Permeation Chromatography)により求められる相対分子量を指す。かかるビスフェノール型エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型、もしくはこれらビスフェノール型エポキシ樹脂の芳香族環のハロゲン、アルキル置換体、芳香族環の水添品等が用いられる。また、これらを複数組み合わせて用いても構わない。上述の如く、一般的に、エポキシ樹脂の市販品は、ある程度の分子量分布を有するので、このようなエポキシ樹脂を原料として所定量の[A]または[A’]を含有する樹脂組成物を調製するためには、分子量が1500以上であるビスフェノール型エポキシが主成分であるエポキシ樹脂を原料として用いることが好ましい。ここで、エポキシ樹脂の分子量は、ポリスチレン標準サンプルを用いて、GPCにより求められる相対分子量を指す。
 かかるエポキシ樹脂の具体例として以下のものが挙げられる。
 ビスフェノールA型エポキシ樹脂の市販品としては、例えば、jER1004、jER1004F、jER1004AF、jER1005F、jER1007、jER1009(以上、ジャパンエポキシレジン(株)製、“jER”は同社の登録商標(以下同じ))などが挙げられる。
 臭素化ビスフェノールA型エポキシ樹脂の市販品としては、例えば、jER5057(以上、ジャパンエポキシレジン(株)製)などが挙げられる。
 水添ビスフェノールA型エポキシ樹脂の市販品としては、例えば、ST4100D、ST5100(以上東都化成(株)製)などが挙げられる。
 ビスフェノールF型エポキシ樹脂の市販品としては、例えば、jER4004P、jER4005P、jER4007P(以上ジャパンエポキシレジン(株)製)エポトートYDF2004(以上東都化成(株)製、“エポトート”は同社の登録商標)などが挙げられる。
 中でも、耐熱性と弾性率、靭性のバランスが良いことから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。
 本発明の第1実施形態のエポキシ樹脂組成物における[B]としては、その構造ユニットとしてのSP値が[A]の構造ユニットとしてのSP値よりも1.5~6.5高いエポキシ樹脂を、全エポキシ樹脂100重量部のうち20~60重量部含むことが必要であり、全エポキシ樹脂100重量部のうち30~50重量部含むことが好ましい。20重量部に満たない場合、硬化物の弾性率が不足すると共に、相分離構造を形成することが難しく、靭性が不足する。また、60重量部を超える場合、硬化物の伸度が不十分となり、靭性が不足する。
 また、本発明の第2実施形態のエポキシ樹脂組成物における[B’]としては、その構造ユニットとしてのSP値が[A’]の構造ユニットとしてのSP値よりも1.5~6.5高いエポキシ樹脂を、全エポキシ樹脂100重量部のうち20~60重量部含むことが必要であり、全エポキシ樹脂100重量部のうち30~50重量部含むことが好ましい。20重量部に満たない場合、硬化物の弾性率が不足すると共に、相分離構造を形成することが難しく、靭性が不足する。また、60重量部を超える場合、硬化物の伸度が不十分となり、靭性が不足する。
 ここで構造ユニットとは、エポキシ樹脂硬化剤との硬化反応を経て生成したエポキシ樹脂硬化物の中で、かかるエポキシ樹脂成分に由来する部分的化学構造のことである。例えば、化学式(I)のエポキシ樹脂成分の構造ユニットは、化学式(II)の通りである。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 かかるSP値は、一般に知られている溶解性パラメータのことであり、溶解性および相溶性の指標となる。蒸発熱等の物性からSP値を算出する方法と、分子構造からSP値を推算する方法がある。ここでは、Polym.Eng.Sci.,14(2),147-154(1974)に記載された、Fedorsの方法に基づき、分子構造から算出したSP値を用いるものとし、その単位は、(cal/cm1/2を用いることとする。
 [B]の構造ユニットとしてのSP値から[A]の構造ユニットとしてのSP値を引いた差の値が1.5以上高くない場合、その硬化物は相分離を形成しない均一構造となり、靭性が不足する。他方、[B]の構造ユニットとしてのSP値から[A]の構造ユニットとしてのSP値を引いた数値が6.5を越えて高い場合、硬化物の相分離構造が粗大なものとなり、樹脂組成物の調合時に両者が相溶せず、不均一な樹脂組成物となり、強化繊維への含浸性に悪影響を及ぼす場合がある。[B’]の構造ユニットとしてのSP値と[A’]の構造ユニットとしてのSP値との差に係る関係ついても上記と同様である。
 [B]または[B’]は、一般に知られているエポキシ樹脂の中でも、特に構造ユニットとしてのSP値が高い部類に属するものである。従って、極性の高い骨格を有するエポキシ樹脂、あるいは、エポキシ基を多く含む、すなわちエポキシ当量が高いものが好適に使用できる。
 具体的には、ウレタン変性エポキシ樹脂、イソシアヌレート環含有エポキシ樹脂等の高極性エポキシ樹脂、および、アミン型エポキシ樹脂、多官能ノボラック型エポキシ樹脂、脂肪族多官能エポキシ樹脂等のエポキシ当量の低いエポキシ樹脂が挙げられる。
 上記の具体例の中でも、[B]または[B’]としては、アミン型エポキシ樹脂が、樹脂組成物の均一相溶性と硬化物の相分離形成性に優れ、また弾性率や耐熱性に優れることから好ましい。また、アミン型エポキシ樹脂のうちでも、3官能アミン型エポキシ樹脂を用いることにより、硬化物における弾性率と靭性のバランス良く両立させやすい。
 かかるアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキル置換体、水添品などを使用することができる。前記テトラグリシジルジアミノジフェニルメタンとしては、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(東都化成(株)製)、“jER(登録商標)”604(ジャパンエポキシレジン(株)製)、“アラルダイド(登録商標)”MY720、MY721(ハンツマン・アドバンズド・マテリアルズ社製)等を使用することができる。トリグリシジルアミノフェノール又はトリグリシジルアミノクレゾールとしては、“スミエポキシ(登録商標)”ELM100、ELM120(住友化学工業(株)製)、“アラルダイド(登録商標)”MY0500、MY0510、MY0600(ハンツマン・アドバンズド・マテリアルズ社製)、“jER(登録商標)”630(ジャパンエポキシレジン(株)製)等を使用することができる。ジグリシジルアニリンとしては、GAN(日本化薬(株)製)等を使用することができる。ジグリシジルトルイジンとしては、GOT(日本化薬(株)製)等を使用することができる。テトラグリシジルキシリレンジアミンおよびその水素添加品として、“TETRAD(登録商標)”-X、“TETRAD(登録商標)”-C(三菱ガス化学(株)製)等を使用することができる。中でも3官能アミノフェノール型エポキシ樹脂が、低粘度で、かつ硬化物の弾性率と靭性のバランスが良く、より好ましい。
 本発明の第1実施形態のエポキシ樹脂組成物における[C]としては、分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂を、全エポキシ樹脂100重量部のうち15~40重量部含むことが必要であり、全エポキシ樹脂100重量部のうち20~35重量部含むことが好ましい。[C]は[A]、[B]両エポキシ樹脂どちらとも相溶するため、[A]リッチ相と[B]リッチ相の相分離開始を遅くするため、相分離構造が粗大化する前に硬化反応が終了するようにでき、相分離構造周期を5μm以下で固定することができる。そのために、優れた機械特性を得ることができる。
 ここで、[C]の分子量が500に満たない場合、いずれかの相に容易に取り込まれてしまうため、相溶化効果が不十分となり、相分離構造が粗大化もしくは均一相溶し、繊維強化複合材料の耐衝撃性が不十分となる。また、分子量が1200を超える場合、[A]リッチ相に取り込まれやすく、相分離構造の粗大化を遅くする効果が少ない。
 本発明の第2実施形態のエポキシ樹脂組成物における[C’]としては、分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂を、全エポキシ樹脂100重量部のうち15~40重量部含むことが必要であり、かかる分子量が500~1200であることが好ましく、また、[C’]を全エポキシ樹脂100重量部のうち20~35重量部含むことが好ましい。[C’]は[A’]、[B’]両エポキシ樹脂どちらとも相溶するため、[A’]リッチ相と[B’]リッチ相の相分離開始を遅くするため、相分離構造が粗大化する前に硬化反応が終了するようにでき、相分離構造周期を5μm以下で固定することができる。そのために、優れた機械特性を得ることができる。
 ここで、[C’]の分子量が300に満たない場合、いずれかの相に容易に取り込まれてしまうため、相溶化効果が不十分となり、相分離構造が粗大化もしくは均一相溶し、繊維強化複合材料の耐衝撃性が不十分となる。また、分子量が1200を超える場合、[A’]リッチ相に取り込まれやすく、相分離構造の粗大化を遅くする効果が少ない。
 本発明の第2実施形態のエポキシ樹脂組成物においては、硬化剤として、[D’]芳香族アミン型エポキシ樹脂硬化剤を用いており、「D’」は通常のエポキシ樹脂硬化剤に比べ、エポキシ樹脂との反応速度が緩やかなため、[C]の分子量がより小さい領域でも安定した微細な相分離が得られるものである。
 また、[C]または[C’]の含有量が15重量部に満たない場合、相分離構造周期を5μm以下にすることが難しく、繊維強化複合材料の、単糸間領域より相分離構造周期が大きくなり、繊維強化複合材料とした際に、十分な靭性向上効果が発揮できない。また、40重量部を超える場合も、相分離構造を0.01μm以上にすることが難しく、硬化物の靭性が不足するため、やはり繊維強化複合材料とした際に、十分な靭性向上効果が発揮できない。
 相分離構造周期は、相分離形成速度と硬化反応速度のバランスで決定されるものであるため、[C]または[C’]の適正含有量は、硬化剤の種類に応じて、15~40重量部の範囲内で適宜調整する。
 [C]または[C’]のエポキシ樹脂としては、所定の分子量の範囲にあるジグリシジルエーテル型エポキシ樹脂であれば特に限定されるものではないが、とりわけビスフェノール型エポキシ樹脂が好適に使用できる。かかるビスフェノール型エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型、もしくはこれらビスフェノール型エポキシ樹脂のハロゲン、アルキル置換体、水添品等が用いられる。なお、かかる分子量は[A]または[A’]と同じくポリスチレン標準サンプルを用いて、GPCにより求められる。
 [C]もしくは[C’]の主成分として好適に適用できる、分子量が1200以下のジグリシジルエーテル型エポキシ樹脂が主成分である市販品として、以下のものが挙げられる。ビスフェノールA型エポキシ樹脂の市販品としては、jER825、jER826、jER827、jER828、jER834、jER1001、jER1002(以上、ジャパンエポキシレジン(株)製、「jER」:登録商標)などが挙げられる。臭素化ビスフェノールA型エポキシ樹脂の市販品としては、Epc152、Epc153(以上、大日本インキ(株)製)、jER5050、jER5051(以上、ジャパンエポキシレジン(株)製)などが挙げられる。水添ビスフェノールA型エポキシ樹脂の市販品としては、デナコールEX-252(ナガセケムテックス(株)製、“デナコール”は同社の登録商標)、ST3000、ST5080、ST4000D(以上東都化成(株)製)などが挙げられる。ビスフェノールF型エポキシ樹脂の市販品としてはjER806、jER807、jER4002P(以上ジャパンエポキシレジン(株)製)エポトートYDF2001(以上東都化成(株)製、“エポトート”は同社の登録商標)などが挙げられる。
 [C]または[C’]の含有成分としては、上記のうちでも、耐熱性と弾性率、靭性のバランスが良いことから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。
 本発明のエポキシ樹脂組成物における[D]または[D’]のエポキシ樹脂硬化剤は、エポキシ樹脂を硬化させるために必要な成分である。エポキシ樹脂を硬化させるものであれば特に限定はなく、アミン、無水酸等の付加反応する硬化剤であってもよいし、カチオン重合、アニオン重合等の付加重合を引き起こす硬化触媒であってもよい。
 本発明の第1実施形態のエポキシ樹脂組成物における[D]エポキシ樹脂硬化剤としては、力学特性や耐熱性に優れる脂肪族アミン型エポキシ樹脂硬化剤、特に、ジシアンジアミドまたはその誘導体は、弾性率、伸度のバランスに優れ、また、樹脂組成物の保存安定性に優れることから、スポーツ用途を中心に好適に使用できる。
 かかるジシアンジアミドの誘導体は、ジシアンジアミドに各種化合物を結合させたものであり、エポキシ樹脂との反応物、ビニル化合物やアクリル化合物との反応物などが挙げられる。
 [D]としてジシアンジアミドまたはその誘導体を用いる場合、その配合量は、耐熱性や力学特性の観点から、エポキシ樹脂組成物中のエポキシ樹脂100重量部に対して1~10重量部とすることが好ましく、2~8重量部であればより好ましい。1重量部に満たない場合、硬化物の架橋密度が十分でないため、弾性率が不足し、機械特性に劣る場合がある。10重量部を超える場合、硬化物の架橋密度が高くなり、塑性変形能力が小さくなり、耐衝撃性に劣る場合がある。
 また、[D]としてジシアンジアミドまたはその誘導体を粉体として樹脂に配合することは、室温での保存安定性や、プリプレグ化時の粘度安定性の観点から好ましい。ジシアンジアミドまたはその誘導体を粉体として樹脂に配合する場合、その平均粒径は10μm以下であることが好ましく、さらに好ましくは、7μm以下である。10μmを超えると、例えばプリプレグ用途で使用する場合、加熱加圧により強化繊維束に樹脂組成物を含浸させる際、ジシアンジアミドまたはその誘導体が強化繊維束中に入り込まず、繊維束表層に取り残される場合がある。
 ジシアンジアミドの市販品としては、DICY-7、DICY-15(以上ジャパンエポキシレジン(株)製)などが挙げられる。
 ジシアンジアミドは、単独で用いても良いし、ジシアンジアミドの硬化触媒や、その他のエポキシ樹脂の硬化剤と組み合わせて用いても良い。組み合わせるジシアンジアミドの硬化触媒としては、ウレア類、イミダゾール類、ルイス酸触媒などが挙げられ、エポキシ樹脂硬化剤としては、芳香族アミン硬化剤や、脂環式アミン硬化剤、酸無水物硬化剤などが挙げられる。ウレア類の市販品としては、DCMU99(保土ヶ谷化学(株)製)、Omicure24、Omicure52、Omicure94(以上CVC SpecialtyChemicals,Inc.製)などが挙げられる。イミダゾール類の市販品としては、2MZ、2PZ、2E4MZ(以上、四国化成(株)製)などが挙げられる。ルイス酸触媒としては、三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・トリエタノールアミン錯体、三塩化ホウ素・オクチルアミン錯体などの、ハロゲン化ホウ素と塩基の錯体が挙げられる。
 本発明の第2実施形態のエポキシ樹脂組成物における[D’]の芳香族アミン型エポキシ樹脂硬化剤としては、ジアミノジフェニルスルホンまたはその誘導体は、弾性率、伸度に加え耐熱性が得られることから、航空機用途を中心に好適に使用できる。
 一般に、[D’]芳香族アミン型エポキシ樹脂硬化剤は、エポキシ樹脂との硬化反応が緩やかであり、[C’]の分子量が300~1200と、より低分子量であっても微細な相分離構造を安定して形成することが出来る。
 また、レジン・トランスファー・モールディング法などの低粘度な液状樹脂組成物が好適に使用される成形法においては、硬化剤として、液状脂肪族アミン、液状脂環式アミン、液状芳香族アミン等の液状アミン硬化剤を適用可能である。
 また、本発明のエポキシ樹脂組成物には未硬化時の粘弾性を調整して作業性を向上させたり、樹脂硬化物の弾性率や耐熱性を向上させる目的で、[E]または[E’]のエポキシ樹脂を、相分離構造に影響しない範囲で添加してもよい。上記の通り、[E]は、第1実施形態のエポキシ樹脂組成物における[A]~[D]以外の任意の含有成分である。また、[E’]は、第2実施形態のエポキシ樹脂組成物における[A’]~[D’]の以外の任意の含有成分である。[E]または[E’]は、1種類だけでなく、複数種組み合わせて添加しても良い。[E]または[E’]のエポキシ樹脂として具体的には、例えば、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ウレタン変性エポキシ樹脂などが挙げられる。
 フェノールノボラック型エポキシ樹脂の市販品としては“エピコート(登録商標)”152、“エピコート(登録商標)”154(以上、ジャパンエポキシレジン(株)製)、“エピクロン(登録商標)”N-740、“エピクロン(登録商標)”N-770、“エピクロン(登録商標)”N-775(以上、大日本インキ化学工業(株)製)などが挙げられる。
 クレゾールノボラック型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”N-660、“エピクロン(登録商標)”N-665、“エピクロン(登録商標)”N-670、“エピクロン(登録商標)”N-673、“エピクロン(登録商標)”N-695(以上、大日本インキ化学工業(株)製)、EOCN-1020、EOCN-102S、EOCN-104S(以上、日本化薬(株)製)などが挙げられる。
 レゾルシノール型エポキシ樹脂の具体例としては、“デナコール(登録商標)”EX-201(ナガセケムテックス(株)製)などが挙げられる。
 ジシクロペンタジエン型エポキシ樹脂の市販品としては“エピクロン(登録商標)”HP7200、“エピクロン(登録商標)”HP7200L、“エピクロン(登録商標)”HP7200H(以上、大日本インキ化学工業(株)製)、Tactix558(ハンツマン・アドバンスト・マテリアル社製)、XD-1000-1L、XD-1000-2L(以上、日本化薬(株)製)などが挙げられる。
 ビフェニル骨格を有するエポキシ樹脂の市販品としては、“エピコート(登録商標)”YX4000H、“エピコート(登録商標)”YX4000、“エピコート(登録商標)”YL6616(以上、ジャパンエポキシレジン(株)製)、NC-3000(日本化薬(株)製)などが挙げられる。
 ウレタンおよびイソシアネート変性エポキシ樹脂の市販品としては、オキサゾリドン環を有するAER4152(旭化成エポキシ(株)製)やACR1348(旭電化(株)製)などが挙げられる。
 また、レジン・トランスファー・モールディング法などの低粘度な液状樹脂組成物が好適に使用される成形法には、[E]または[E’]として、脂肪族エポキシ樹脂や脂環式エポキシ樹脂等の低粘度エポキシ樹脂を適用可能である。
 また、本発明のエポキシ樹脂組成物には粘弾性を制御しプリプレグのタックやドレープ特性を改良したり、繊維強化複合材料の耐衝撃性などの力学特性を改良するため、エポキシ樹脂に可溶性の熱可塑性樹脂や、ゴム粒子及び熱可塑性樹脂粒子等の有機粒子や、無機粒子等を配合することができる。
 エポキシ樹脂に可溶性の熱可塑性樹脂としては、樹脂と強化繊維との接着性改善効果が期待できる水素結合性の官能基を有する熱可塑性樹脂が好ましく用いられる。
 水素結合性官能基としては、アルコール性水酸基、アミド結合、スルホニル基などを挙げることができる。
 アルコール性水酸基を有する熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂、アミド結合を有する熱可塑性樹脂としては、ポリアミド、ポリイミド、ポリビニルピロリドン、スルホニル基を有する熱可塑性樹脂としては、ポリエーテルスルホン等のポリスルホンを挙げることができる。ポリアミド、ポリイミドおよびポリスルホンは主鎖にエーテル結合、カルボニル基などの官能基を有してもよい。ポリアミドは、アミド基の窒素原子に置換基を有してもよい。
 特に、ポリビニルホルマールとポリエーテルスルホンは、エポキシ樹脂との相溶性に優れ、[A]と[B]の間、または[A’]と[B’]の間で適正なサイズの相分離構造を確保しつつ配合できることから好適に使用できる。ポリビニルホルマールの市販品として、“デンカホルマール(登録商標)”(電気化学工業株式会社製)、“ビニレック(登録商標)”(チッソ(株)製)などが挙げられる。また、ポリエーテルスルホンの市販品として、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES4700P、“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P(以上、住友化学(株)製)などが挙げられる。
 エポキシ樹脂に可溶で、水素結合性官能基を有する熱可塑性樹脂の市販品としては、ポリビニルアセタール樹脂として、デンカブチラールおよび“デンカホルマール(登録商標)”(電気化学工業株式会社製)、“ビニレック(登録商標)”(チッソ(株)製)、フェノキシ樹脂として、“UCAR(登録商標)”PKHP(ユニオンカーバイド社製)、ポリアミド樹脂として“マクロメルト(登録商標)”(ヘンケル白水株式会社製)、“アミラン(登録商標)”CM4000(東レ株式会社製)、ポリイミドとして“ウルテム(登録商標)”(ジェネラル・エレクトリック社製)、“Matrimid(登録商標)”5218(チバ社製)、ポリスルホンとして“Victrex(登録商標)”(三井化学株式会社製)、“UDEL(登録商標)”(ユニオンカーバイド社製)、ポリビニルピロリドンとして、“ルビスコール(登録商標)”(ビーエーエスエフジャパン(株)製)を挙げることができる。
 また、アクリル系樹脂はエポキシ樹脂との相溶性が高く、粘弾性制御のために好適に用いられる。アクリル樹脂の市販品としては、“ダイヤナール(登録商標)”BRシリーズ(三菱レイヨン(株)製)、“マツモトマイクロスフェアー(登録商標)”M,M100,M500(松本油脂製薬(株)製)などを挙げることができる。
 ゴム粒子としては、架橋ゴム粒子、及び架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。
 架橋ゴム粒子の市販品としては、カルボキシル変性のブタジエン-アクリロニトリル共重合体の架橋物からなるFX501P(日本合成ゴム工業社製)、アクリルゴム微粒子からなるCX-MNシリーズ(日本触媒(株)製)、YR-500シリーズ(東都化成(株)製)等を使用することができる。
 コアシェルゴム粒子の市販品としては、例えば、ブタジエン・メタクリル酸アルキル・スチレン共重合物からなる“パラロイド(登録商標)”EXL-2655(呉羽化学工業(株)製)、アクリル酸エステル・メタクリル酸エステル共重合体からなる“スタフィロイド(登録商標)”AC-3355、TR-2122(武田薬品工業(株)製)、アクリル酸ブチル・メタクリル酸メチル共重合物からなる“PARALOID(登録商標)”EXL-2611、EXL-3387(Rohm&Haas社製)、“カネエース(登録商標)”MXシリーズ(カネカ(株)製)等を使用することができる。
 熱可塑性樹脂粒子としては、ポリアミド粒子やポリイミド粒子が好ましく用いられ、ポリアミド粒子の市販品として、SP-500(東レ(株)製)、“オルガソール(登録商標)”(アルケマ社製)等を使用することができる。
 本発明では、ゴム粒子及び熱可塑性樹脂粒子等の有機粒子は、得られる樹脂硬化物の弾性率と靱性を両立させる点から、全エポキシ樹脂100重量部に対して、0.1~30重量部が好ましく、1~15重量部配合するのがさらに好ましい。
 本発明のエポキシ樹脂組成物の調製には、ニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機などが好ましく用いられる。エポキシ樹脂成分を投入、混練後、撹拌しながらエポキシ樹脂混合物の温度を130~180℃の任意の温度まで上昇させ、硬化剤と硬化触媒以外の残りの成分をエポキシ樹脂混合物に溶解もしくは分散させる。その後、撹拌しながら好ましくは100℃以下、より好ましくは80℃以下の温度まで下げて硬化剤ならびに硬化触媒を添加し混練、分散させる。この方法は、保存安定性に優れるエポキシ樹脂組成物を得ることができるため好ましく用いられる。
 上記本発明のエポキシ樹脂組成物は、これを硬化して得られるエポキシ樹脂硬化物、これをマトリックスとする繊維強化複合材料用プリプレグおよびその硬化物、並びに、エポキシ樹脂硬化物と強化繊維基材を組み合わせてなる強化繊維複合材料などとして利用し得る。
 本発明のエポキシ樹脂組成物を硬化することにより得られる硬化物の好ましい実施形態として、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物が提供される。また、本発明のエポキシ樹脂組成物を硬化することにより得られる硬化物の好ましい他の実施形態として、少なくとも[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物が提供される。上記でも既に説明したとおり、このような相分離構造を有することにより、これまで両立が困難であった弾性率と靭性との双方について、優れた性質を発揮するエポキシ樹脂硬化物とすることができる。
 本発明のエポキシ樹脂組成物をプリプレグのマトリックス樹脂として用いる場合、タックやドレープなどのプロセス性の観点から、80℃における粘度が0.1~200Pa・sであることが好ましく、より好ましくは0.5~100Pa・s、さらに好ましくは1~50Pa・sの範囲にあることが望ましい。80℃における粘度が0.1Pa・sに満たない場合、プリプレグの形状保持性が不十分となり割れが発生する場合があり、また成形時の樹脂フローが多く発生し、強化繊維含有量にばらつきを生じたりする場合がある。80℃における粘度が200Pa・sを超える場合、エポキシ樹脂組成物のフィルム化工程でかすれを生じたり、強化繊維への含浸工程で未含浸部分が発生する場合がある。
 また、特に、航空機1次構造材用プリプレグに用いる場合、本発明のエポキシ樹脂組成物の最低粘度は0.05~20Pa・sであることが好ましく、より好ましくは0.1~10Pa・sの範囲にあることが望ましい。最低粘度が0.05Pa・sに満たない場合、プリプレグの形状保持性が不十分となり割れが発生する場合があり、また成形時の樹脂フローが多く発生し、強化繊維含有量にばらつきを生じたりする場合がある。最低粘度が20Pa・sを超える場合、エポキシ樹脂組成物のフィルム化工程でかすれを生じたり、強化繊維への含浸工程で未含浸部分が発生する場合がある。
 ここでいう粘度は、動的粘弾性測定装置(レオメーターRDA2:レオメトリックス社製)を用い、直径40mmのパラレルプレートを用い、昇温速度2℃/minで単純昇温し、周波数0.5Hz、Gap 1mmで測定を行った複素粘弾性率ηのことを指している。
 本発明のエポキシ樹脂組成物から、硬化物を得るための硬化温度や硬化時間は特に限定されず、配合する硬化剤や触媒に応じて、コストや生産性、また得られる硬化物の力学特性、耐熱性、品位等の観点から適宜選択できる。例えば、ジシアンジアミドとDCMUを組み合わせた硬化剤系では、135℃の温度で2時間硬化させるのが好適であり、ジアミノジフェニルスルホンを用いた場合には、180℃の温度で2時間硬化させるのが好適である。
 ここで、硬化物の樹脂曲げ弾性率測定は、次のようにして得たサンプルを用い、万能試験機(インストロン社製)を用い、スパン間長さを32mm、クロスヘッドスピードを2.5mm/分とし、JIS K7171(1994)に従って3点曲げにより測定し、サンプル数n=5の平均値として得るものとする。硬化物の樹脂曲げ弾性率測定サンプルは、未硬化のエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で所定の硬化条件で硬化させることでボイドのない板状硬化物を得、これをダイヤモンドカッターにより幅10mm、長さ60mmに切り出す。
 また、硬化物の樹脂靭性測定は、次のようにして得たサンプルを用い、万能試験機(インストロン社製)を用い、ASTM D5045(1999)に従って測定し、サンプル数n=5の平均値として得るものとする。硬化物の樹脂靭性測定サンプルは、未硬化のエポキシ樹脂組成物を真空中で脱泡した後、6mm厚の“テフロン(登録商標)”製スペーサーにより厚み6mmになるように設定したモールド中で所定の硬化条件で硬化させることでボイドのない板状硬化物を得、これをダイヤモンドカッターにより幅12.7mm、長さ150mmに切り出し、幅方向の片端から5~7mmの予亀裂を導入して作製した。試験片への初期の予亀裂の導入は、液体窒素温度まで冷やした剃刀の刃を試験片にあてハンマーで剃刀に衝撃を加えることで行った。
 本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。中でも、引張弾性率が100~900GPaの炭素繊維が好ましく、より好ましくは200~800GPaの炭素繊維であることが望ましい。
 このような高弾性率の炭素繊維を本発明のエポキシ樹脂組成物と組み合わせた場合に、本発明の効果が特に顕著に現れる傾向がある。
 強化繊維の形態は特に限定されるものではなく、たとえば、一方向に引き揃えた長繊維、トウ、織物、マット、ニット、組み紐、10mm未満の長さにチョップした短繊維などが用いられる。ここでいう、長繊維とは実質的に10mm以上連続な単繊維もしくは繊維束のことをさす。また、短繊維とは10mm未満の長さに切断された繊維束である。また、特に、比強度、比弾性率が高いことを要求される用途には強化繊維束が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も本発明には適している。
 本発明のプリプレグは、前記本発明のエポキシ樹脂組成物を繊維基材に含浸させてなるものである。含浸させる方法としてはエポキシ樹脂組成物をメチルエチルケトン、メタノール等の溶媒に溶解して低粘度化し、含浸させるウェット法と、加熱により低粘度化し、含浸させるホットメルト法(ドライ法)等を挙げることができる。
 ウェット法は、強化繊維をエポキシ樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法であり、ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、又は一旦エポキシ樹脂組成物を離型紙等の上にコーティングしたフィルムを作製しておき、次いで強化繊維の両側又は片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。ホットメルト法によれば、プリプレグ中に残留する溶媒が実質上皆無となるため好ましい。
 プリプレグは、単位面積あたりの強化繊維量が70~200g/mであることが好ましい。かかる強化繊維量が70g/m未満では、繊維強化複合材料成形の際に所定の厚みを得るために積層枚数を多くする必要があり、作業が繁雑となることがある。一方で、強化繊維量が200g/mを超えると、プリプレグのドレープ性が悪くなる傾向にある。また、繊維重量含有率は、好ましくは60~90重量%であり、通常は65~85重量%の範囲で使用される。繊維重量含有率が60重量%未満では、樹脂の比率が多すぎて、比強度と比弾性率に優れる繊維強化複合材料の利点が得られなかったり、繊維強化複合材料の成形の際、硬化時の発熱量が高くなりすぎることがある。また、繊維重量含有率が90重量%を超えると、樹脂の含浸不良が生じ、得られる複合材料はボイドの多いものとなる恐れがある。
 プリプレグを賦形および/または積層後、賦形物および/または積層物に圧力を付与しながら樹脂を加熱硬化させる方法等により、本発明にかかる複合材料が作製される。
 ここで熱及び圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等を適宜使用することができる。
 オートクレーブ成形法は、所定の形状のツール版にプリプレグを積層して、バッギングフィルムで覆い、積層物内を脱気しながら加圧、加熱硬化させる方法であり、繊維配向が精密に制御でき、またボイドの発生が少ないため、力学特性に優れ、また高品位な成形体が得られる。
 ラッピングテープ法は、マンドレル等の芯金にプリプレグを捲回して、繊維強化複合材料製の管状体を成形する方法であり、ゴルフシャフト、釣り竿等の棒状体を作製する際に好適な方法である。より具体的には、マンドレルにプリプレグを捲回し、プリプレグの固定及び圧力付与のため、プリプレグの外側に熱可塑性フィルムからなるラッピングテープを捲回し、オーブン中で樹脂を加熱硬化させた後、芯金を抜き取って管状体を得る方法である。
 また、内圧成型法は、熱可塑性樹脂製のチューブ等の内圧付与体にプリプレグを捲回したプリフォームを金型中にセットし、次いで内圧付与体に高圧の気体を導入して圧力を付与すると同時に金型を加熱せしめ、成形する方法である。本方法は、ゴルフシャフト、バッド、テニスやバドミントン等のラケットの如き複雑な形状物を成形する際に好ましく用いられる。
 本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として用いた繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好適に用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット用途、ホッケー等のスティック用途、およびスキーポール用途に好適に用いられる。さらに一般産業用途では、自動車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、および補修補強材料等に好適に用いられる。航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、フラップ、エルロン、カウル、フェアリングおよび内装材等の二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途等に好適に用いられる。
 本発明のプリプレグを管状に硬化させてなる繊維強化複合材料製管状体は、ゴルフシャフト、釣り竿などに好適に用いることができる。
 以下、本発明を実施例により、さらに詳細に説明する。各種物性の測定は次の方法によった。なお、これらの物性は、特に断わりのない限り、温度23℃、相対湿度50%の環境で測定した。
 (1)エポキシ樹脂組成物の調製
 ニーダー中に、硬化剤および硬化促進剤以外の成分を所定量加え、混練しつつ、160℃まで昇温し、160℃、1時間混練することで、透明な粘調液を得た。80℃まで混練しつつ降温させた後、硬化剤および硬化促進剤を所定量添加え、混練しエポキシ樹脂組成物を得た。各実施例、比較例の原料配合比は、表1-1、表1-2、表2-1および表2-2に示す通りである。また得られたエポキシ樹脂組成物における[A]、[B]、[C]、「D」および[E]、並びに、[A’]、[B’]、[C’]、[D’]および[E’]の含有量も表1-1、表1-2、表2-1および表2-2に示す通りである。各表中、EEWはエポキシ当量を、官能基数は平均エポキシ基数を、Mnは数平均分子量を、SPは溶解度パラメーターを示す。
 各エポキシ樹脂組成物を調製するために用いた各原料のエポキシ当量、平均エポキシ基数等は以下に示す通りである。
<ジグリシジルエーテル型エポキシ樹脂>
・ビスフェノールF型エポキシ樹脂(“エピクロン(登録商標)”Epc830、エポキシ当量:170、2官能、大日本インキ(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”828、エポキシ当量:189、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”834、エポキシ当量:250、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールF型エポキシ樹脂(“エポトート(登録商標)”YDF2001、エポキシ当量:475、2官能、東都化成(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4004P、エポキシ当量:880、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1007、エポキシ当量:1975、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4007P、エポキシ当量:2270、2官能、ジャパンエポキシレジン(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1009、エポキシ当量:2850、2官能、ジャパンエポキシレジン(株)製)
 <その他のエポキシ樹脂>
・トリグリシジル-m-アミノフェノール(“スミエポキシ(登録商標)”ELM120、エポキシ当量:118、3官能、住友化学工業(株)製)
・トリグリシジル-p-アミノフェノール(“アラルダイド(登録商標)”MY0510、エポキシ当量:101、3官能、ハンツマン・アドバンズド・マテリアルズ社製)
・テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434、エポキシ当量:120、4官能、住友化学工業(株)製)
・TEPIC変性品(エポキシ当量:349、2.6官能)
 TEPIC-P(トリグリシジルイソシアヌレート、エポキシ当量:106、3官能、日産化学(株)製)100重量部をトルエン3000重量部に溶解し、プロピオン酸無水物16重量部を加え、120℃にて撹拌し、完全に反応させた後、トルエンを除去して得た。
・フェノールノボラック型エポキシ樹脂(“jER(登録商標)”154、エポキシ当量:178、6.5官能、ジャパンエポキシレジン(株)製)
・トリフェノールメタン型エポキシ樹脂(TMH574、エポキシ当量:214、3官能、住友化学工業(株)製)
・トリグリシジルイソシアヌレート(TEPIC-P、エポキシ当量:106、3官能、日産化学(株)製)
 <硬化剤>
・ジシアンジアミド(硬化剤、DICY-7、ジャパンエポキシレジン(株)製)
・4,4’-DDS(硬化剤、4,4’-ジアミノジフェニルスルホン、スミキュアS、住友化学工業(株)製)
・3,3’-DDS(硬化剤、3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製))
 <その他の成分>
・“ビニレック(登録商標)”K(ポリビニルホルマール、チッソ(株)製)
・DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、硬化促進剤、保土ヶ谷化学工業(株)製)
・PES(ポリエーテルスルホン“スミカエクセル(登録商標)”PES5003P(住友化学(株)製)
 (2)分子量測定
 エポキシ樹脂をTHFに、濃度0.1mg/mlで溶解させ、HLC-8220GPC(東ソー株式会社製)、検出器としてUV-8000(254nm)を用いて、ポリスチレン標準サンプルを用いて、相対分子量測定を行った。カラムにはTSK-G4000H(東ソー株式会社製)を用い、流速1.0ml/min、温度40℃にて測定した。面積比から含まれるエポキシ樹脂分子量の重量比を算出した。
 (3)各エポキシ樹脂原料の構造ユニットとしてのSP値計算
 各エポキシ樹脂原料の硬化物を想定した場合の構造ユニットについて、Polym.Eng.Sci.,14(2),147-154(1974)に記載された、Fedorsの方法に基づき、分子構造からSP値を算出した。その単位は、(cal/cm1/2を用いた。
 (4)エポキシ樹脂組成物の粘度測定
 エポキシ樹脂組成物の粘度は、動的粘弾性測定装置(レオメーターRDA2:レオメトリックス社製)を用い、直径40mmのパラレルプレートを用い、昇温速度2℃/minで単純昇温し、周波数0.5Hz、Gap 1mmで測定を行い、複素粘性率の最低値を測定した。
 (5)エポキシ樹脂硬化物の曲げ弾性率
 未硬化の樹脂組成物を真空中で脱泡した後、2mm厚のテフロン(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で特に断らない限り、135℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパン間長さを32mm、クロスヘッドスピードを2.5mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、曲げ弾性率を得た。サンプル数n=5とし、その平均値で比較した。
 (6)エポキシ樹脂硬化物の靱性(KIC)の測定
 未硬化のエポキシ樹脂組成物を真空中で脱泡した後、6mm厚のテフロン(登録商標)製スペーサーにより厚み6mmになるように設定したモールド中で特に断らない限り、135℃の温度で2時間硬化させ、厚さ6mmの樹脂硬化物を得た。この樹脂硬化物を12.7×150mmでカットし、試験片を得た。インストロン万能試験機(インストロン社製)を用い、ASTM D5045(1999)に従って、試験片の加工実験をおこなった。試験片への初期の予亀裂の導入は、液体窒素温度まで冷やした剃刀の刃を試験片にあてハンマーで剃刀に衝撃を加えることで行った。ここでいう、樹脂硬化物の靱性とは、変形モード1(開口型)の臨界応力強度のことをさしている。
 (7)構造周期の測定
 上記(6)で得られた樹脂硬化物を染色後、薄切片化し、透過型電子顕微鏡(TEM)を用いて下記の条件で透過電子像を取得した。染色剤は、モルホロジーに十分なコントラストが付くよう、OsOとRuOを樹脂組成に応じて使い分けた。
・装置:H-7100透過型電子顕微鏡(日立製作所(株)製)
・加速電圧:100kV
・倍率:10,000倍
 これにより、[A]リッチ相と[B]リッチ相の構造周期を観察した。[A]と[B]の種類や比率により、硬化物の相分離構造は、両相連続構造や海島構造を形成するのでそれぞれについて以下のように測定した。表1-1~表2-2の各表において、樹脂硬化物の相構造周期は相構造サイズ(μm)欄に示されるとおりである。
 両相連続構造の場合、顕微鏡写真の上に所定の長さの直線を引き、その直線と相界面の交点を抽出し、隣り合う交点間の距離を測定し、これらの数平均値を構造周期とした。かかる所定の長さとは、顕微鏡写真を基に以下のようにして設定した。構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上1μmの長さ)3本を選出し、同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上10μmの長さ)3本を選出し、相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに20mmの長さ(サンプル上100μmの長さ)3本を選出した。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する長さを再度測定し、これを採用した。
 海島構造の場合、所定の領域内に存在する島相と島相の距離の数平均値を構造周期とした。島相が楕円形、不定形、または、二層以上の円または楕円になっている場合は、島相と島相の最短距離を用いた。かかる所定の領域とは、顕微鏡写真を基に以下のようにして設定した。相分離構造周期距離が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上0.2μm四方の領域)3箇所を選出し、同様にして、相分離構造周期距離が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上2μm四方の領域)3箇所を選出し、相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上20μm四方の領域)3箇所を選出した。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する領域を再度測定し、これを採用した。
 また、海島構造の場合、所定の領域内に存在する全ての島相の長径を測定し、これらの数平均値を求め、島相の径とした。島相が楕円形、不定形、または、二層以上の円または楕円になっている場合は、最外層の円の直径または楕円の長径を用いた。かかる所定の領域とは、顕微鏡写真を基に以下のようにして設定した。相分離構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上0.2μm四方の領域)3箇所を選出し、同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上2μm四方の領域)3箇所を選出し、相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上でランダムに4mm四方の領域(サンプル上20μm四方の領域)3箇所を選出した。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて対応する領域を再度測定し、これを採用した。
 (8)複合材料製管状体のシャルピー衝撃試験
 実施例1~13、および比較例1~12について、以下の手順で試験を行った。
<プリプレグの作製>
 上記(1)に従って作製したエポキシ樹脂組成物を、リバースロールコーターを使用し離型紙状に塗布し、樹脂フィルムを作製した。次に、シート状に一方向に整列させた炭素繊維“トレカ(登録商標)”T800HB-12K(東レ(株)製、引張弾性率:294GPa、引張強度:5490MPa)に樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧して樹脂組成物を含浸させ、単位面積辺りの炭素繊維重量125g/m、繊維重量含有率75%の、T800HB使い一方向プリプレグを作製した。
 さらに、補強繊維として炭素繊維トレカM40SC-12K(東レ(株)製、引張弾性率:380GPa、引張強度:4900MPa)を使用した以外は同一の手順で、単位面積辺りの炭素繊維重量125g/m、繊維重量含有率75%のM40SC使い一方向プリプレグを作製した。
<シャルピー衝撃試験用複合材料製管状体の作製>
 次の(a)~(e)の操作により、M40SC使い一方向プリプレグを、繊維方向が円筒軸方向に対して45°および-45°になるよう、各3plyを交互に積層し、さらにT800H使い一方向プリプレグを、繊維方向が円筒軸方向に対して平行になるよう、3plyを積層し、内径が6.3mmの複合材料製管状体を作製した。マンドレルは、直径6.3mm、長さ1000mmのステンレス製丸棒を使用した。
 (a)上記(8)に従い作製したM40SC使い一方向プリプレグから、縦68mm×横800mmの長方形形状(長辺の方向に対して繊維軸方向が45度となるように)に2枚切り出した。この2枚のプリプレグの繊維の方向をお互いに交差するように、かつ短辺方向に16mm(マンドレル半周分)ずらして張り合わせた。
 (b)離型処理したマンドレルに張り合わせたプリプレグの長方形形状の長辺とマンドレル軸方向が同一方向になるように、マンドレルを捲回した。
 (c)その上に、上記(8)に従い作製したT800HB使い一方向プリプレグを縦80mm×横800mmの長方形形状(長辺方向が繊維軸方向となる)に切り出したものを、その繊維の方向がマンドレル軸の方向と同一になるように、マンドレルに捲回した。
 (d)さらに、その上から、ラッピングテープ(耐熱性フィルムテープ)を巻きつけて捲回物を覆い、硬化炉中、特に断らない限り、130℃で90分間、加熱成形した。なお、ラッピングテープの幅は15mm、張力は3.0kg、巻き付けピッチ(巻き付け時のずれ量)は1.0mmとし、これを2plyラッピングした。
 (e)この後、マンドレルを抜き取り、ラッピングテープを除去して複合材料製管状体を得た。
<複合材料製管状体のシャルピー衝撃試験>
 上記で得たシャルピー衝撃試験用複合材料製管状体を長さ60mmに切断し、内径6.3mm、長さ60mmの試験片を作製した。秤量29.4N・mで管状体の側面から衝撃を与えてシャルピー衝撃試験を行った。振り上がり角から、下記の式:
 E=WR[(cosβ-cosα)-(cosα’-cosα)(α+β)/(α+α’)]
    E:吸収エネルギー(J)
    WR:ハンマーの回転軸の周りのモーメント(N・m)
    α:ハンマーの持ち上げ角度(°)
    α’:ハンマーの持ち上げ角αから空振りさせたときの振り上がり角(°)
    β:試験片破断後のハンマーの振り上がり角(°)
に従って衝撃の吸収エネルギーを計算した。
 なお、試験片にはノッチ(切り欠き)は導入していない。測定数はn=5で行い平均値で比較した。
 (9)繊維強化複合材料の衝撃後圧縮強度と湿熱環境下での有孔板圧縮強度の試験
 実施例7、10~13、および比較例9~12について、以下の手順で試験を行った。
<プリプレグの作製>
 上記(1)で作製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、シート状に一方向に配列させた東レ(株)製、炭素繊維“トレカ(登録商標)”T800G-24K-31E(繊維数24000本、引張強度5.9GPa、引張弾性率290GPa、引張伸度2.0%)に、樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧により樹脂を含浸させ、炭素繊維の目付が190g/m2、マトリックス樹脂の重量分率が35.5%の一方向プリプレグを作製した。
<繊維強化複合材料の作成と衝撃後圧縮強度>
 上記(8)により作製した一方向プリプレグを、(+45°/0°/-45°/90°)3s構成で、擬似等方的に24プライ積層し、オートクレーブにて、180℃の温度で2時間、0.59MPaの圧力下、昇温速度1.5℃/分で成型して積層体を作製した。この積層体から、縦150mm×横100mmのサンプルを切り出し、SACMA SRM 2R-94に従い、サンプルの中心部に6.7J/mmの落錘衝撃を与え、衝撃後圧縮強度を求めた。
<繊維強化複合材料の作成と湿熱環境下での有孔板圧縮強度>
 上記(8)により作製した一方向プリプレグを、(+45°/0°/-45°/90°)2s構成で、擬似等方的に16プライ積層し、オートクレーブにて、180℃の温度で2時間、0.59MPaの圧力下、昇温速度1.5℃/分で成型して積層体を作製した。この積層体から、縦305mm×横25.4mmのサンプルを切り出し、中央部に直径6.35mmの孔を穿孔して有孔板に加工した。この有孔板を72℃の温度の温水中に2週間浸漬し、SACMA SRM 3R-94に従い、82℃の温度の雰囲気下で圧縮強度を求めた。
 上記方法により各実施例、比較例についてエポキシ樹脂組成物、プリプレグおよび繊維強化複合材料管状体を作製し、特性を測った結果を表1-1から表2-2にまとめて示す。なお、本実施例および比較例に用いた各ビスフェノール型エポキシ樹脂は、予め個別に分子量測定を実施し、実施例1~6,8,9、および比較例1~8については、分子量が500~1200のものの含有量と分子量が1500以上のものの含有量を得ておき、本発明の分子量の比率となるように各ジグリシジルエーテル型エポキシ樹脂の配合量を決定し、実施例7,10~13、および比較例9~12については、分子量が300~1200のものの含有量と分子量が1500~5000のものの含有量を得ておき、本発明の分子量の比率となるように各ジグリシジルエーテル型エポキシ樹脂の配合量を決定した。また、実施例7,10~13、および比較例9~12については、(5)樹脂硬化物の曲げ弾性率、(6)樹脂硬化物の靱性(KIC)の測定におけるエポキシ樹脂組成物またはプリプレグの硬化温度を、135℃から180℃に変更した。
 (実施例1)
 表1-1に示す通り、[A]が主成分であるjER1007を用い、[B]として、ELM120を用い、[C]が主成分であるjER834を用いた場合、微細な相分離構造周期を有し、管状体の力学特性は良好であった。
 (実施例2)
 jER1007に代えて、jER1009([A]が主成分)を用い、表1-1に示す配合比率とし、[A]を規定範囲の上限付近に設定したこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。実施例1に比べて樹脂弾性率がやや低下した結果、管状体の力学特性もやや低下したが問題ないレベルであった。
 (実施例3)
 その他のエポキシ樹脂として、jER154を追加し、表1-1に示す配合比率とし、[E]を規定範囲の上限付近に設定したこと以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。実施例2に比べて、樹脂弾性率が向上したが靭性は低下した結果、管状体の力学特性も同レベルであった。
 (実施例4)
 jER1007に代えて、jER4004P([A]が主成分)を用い、jER834に代えて、YDF2001([C]が主成分)を用い、表1-1に示す配合比率とし、[C]を規定範囲の下限に設定したこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。実施例1に比べて大きな相分離構造周期となったため、管状体の力学特性がやや低下したが問題ないレベルであった。
 (実施例5)
 ELM120の一部をYDF2001に置き換え、表1-1に示す配合比率とし、[C]を規定範囲の上限付近に設定したこと以外は、実施例4と同様にして熱硬化性樹脂組成物を調製した。実施例3に比べて、極めて微細な相分離構造周期を有し、管状体の力学特性も大きく向上した。
 (実施例6)
 jER4004Pに代えて、jER4007Pを用い、[B]として、ELM434を用い、その他の成分として、jER828を用い、表1-1に示す配合比率とし、[A]と[B]のSP値の差を1.9と、規定範囲の下限付近に設定したこと以外は、実施例4と同様にして熱硬化性樹脂組成物を調製した。実施例5に比べて、樹脂弾性率が低下し、管状体の力学特性がやや低下したが十分なレベルであった。
 (実施例7)
 [D]として、DICY-7に代えて、4,4’-DDSを用い、DCMU99を除き、表1に示す配合比率とすると共に、(3)樹脂硬化物の曲げ弾性率、(4)樹脂硬化物の靱性(KIC)の測定、(7)シャルピー衝撃試験用複合材料製管状体の作製等におけるエポキシ樹脂またはプリプレグの硬化温度を180℃としたこと以外は、実施例5と同様にして熱硬化性樹脂組成物を調製した。実施例5に比べて、大きな相分離構造周期となり樹脂靭性も低下したため、管状体の力学特性が低下したが問題ないレベルであった。また、繊維強化複合材料平板の力学特性において、航空機1次構造材にとって重要な衝撃後圧縮強度は非常に高い値を示し、湿熱環境下有孔板圧縮強度も問題ないレベルであった。
 (実施例8)
 表1-2に示すとおり、[B]としてTEPIC変性品を、[D]としてDICY-7を使用し、[A]と[B]のSP値の差を5.3と、高めに設定した結果、相分離構造が4μmと大きめとなったが、管状体の力学特性は許容できるレベルであった。
 (実施例9)
 [A]、[B]、[C]の含有量等を最適な領域に設定した結果、微細な相分離構造が得られ、靭性が1.8と非常に高く、管状体の力学特性は極めて良好であった。
 (実施例10)
 硬化剤を3,3’-DDSとし、ジグリシジルエーテル型エポキシ樹脂としてjER828とjER1007を組み合わせた結果、相分離構造が3μmとやや大きめとなったが、繊維強化複合材料平板の力学特性はいずれも比較的良好であった。
 (実施例11)
 実施例10のjER1007をjER4004Pに置き換えた結果、適正な相分離構造が得られ、繊維強化複合材料平板の力学特性は良好であった。
 (実施例12)
 硬化剤を3,3’-DDSとし、[A’]、[B’]の含有量を下限に、[C’]の含有量を上限近くに設定した結果、非常に微細な相分離構造となり、靭性が1.1と許容できるレベルであり、繊維強化複合材料平板の力学特性も問題ないレベルであった。
 (実施例13)
 硬化剤を3,3’-DDSとし、[A’]、[B’]、[C’]の含有量等を最適な領域に設定した結果、微細な相分離構造が得られ、靭性が1.4と非常に高く、繊維強化複合材料平板の力学特性は極めて良好であった。
 (比較例1)
 表2-1に示すとおり、エポキシ樹脂として、[B]のELM120のみを100重量部用いたこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率は極めて高いが、樹脂靭性が低下した結果、管状体の力学特性が大きく低下し、不十分となった。
 (比較例2)
 [C]が主成分であるエポキシ樹脂を用いなかったこと、及び、[A]、[B]の含有比率を変更した以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。相分離構造周期が粗大となり、樹脂靭性が大きく低下した結果、管状体の力学特性が大きく低下し、不十分となった。
 (比較例3)
 jER834を50重量部とし、jER1009と、ELM120をともに25重量部とし、[C]を規定範囲を上回る領域に設定したこと以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下した結果、管状体の力学特性が大きく低下し、不十分となった。
 (比較例4)
 jER1009を10重量部、ELM120を70重量部とし、[B]を規定範囲を上回る領域に設定したこと以外は、実施例2と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下した結果、管状体の力学特性が大きく低下し、不十分となった。
 (比較例5)
 ELM120を配合しない代わりに、jER828を40重量部配合し、[B]を規定範囲を下回る領域に設定したこと以外は、実施例1と同様にして熱硬化性樹脂組成物を調製した。樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率と樹脂靭性が低下し、管状体の力学特性が不十分となった。
 (比較例6)
 表2-2に示すとおり、[A]としてjER4004Pを用いた場合に、SP値の差が1.0と、規定範囲の下限である1.5を下回るTMH574を[B]に代えて使用した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下し、管状体の力学特性が不十分なものとなった。
 (比較例7)
 ジグリシジルエーテル型エポキシ樹脂としてjER828とjER4004Pを組み合わせ、[C]を規定範囲を下回る領域に設定した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率と樹脂靭性が大きく低下し、管状体の力学特性が不十分となった。
 (比較例8)
 ジグリシジルエーテル型エポキシ樹脂としてjER828とjER1009を組み合わせ、[C]を4重量部と適正範囲外に設定した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂弾性率と樹脂靭性が大きく低下し、管状体の力学特性が不十分となった。
 (比較例9)
 硬化剤を3,3’-DDSとし、また[A]としてjER4004Pを用いた場合に、SP値の差が8.3と、規定範囲の上限である6.5を上回るTEPIC-Pを[B]に代えて使用した結果、相分離構造周期が粗大となり、樹脂靭性が低下し、繊維強化複合材料平板の衝撃後圧縮強度が全く不十分なものとなった。
 (比較例10)
 実施例10のjER1007をjER1009に置き換えた結果、樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下し、繊維強化複合材料平板の衝撃後圧縮強度が全く不十分となった。
 (比較例11)
 ポリエーテルスルホンを配合しないこと以外は、特許文献1の実施例1と同等の樹脂組成にて樹脂組成物を調製した結果、樹脂硬化物は相分離せず均一なものとなり、樹脂靭性が大きく低下し、繊維強化複合材料平板の衝撃後圧縮強度が全く不十分となった。
 (比較例12)
 特許文献1の実施例1と同等の樹脂組成にて樹脂組成物を調製した結果、最低粘度が適正範囲を大きく上回り、成形体内部にボイドが多数発生したため、繊維強化複合材料平板の衝撃後圧縮強度、湿熱環境下有孔板圧縮強度とも不十分となった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明のエポキシ樹脂組成物は、高い室温弾性率を有しながら、靭性に優れた硬化物を与えるため、特に引張弾性率の高い強化繊維を組み合わせた場合でも、静的強度特性に優れ、かつ耐衝撃性に優れた繊維強化複合材料を得ることが出来る。これにより、これまで適用が難しかった用途、部位への高弾性率繊維の適用が可能となり、各方面で繊維強化複合材料の更なる軽量化が進展することが期待される。

Claims (13)

  1.  下記[A]、[B]、[C]、[D]を、下記式(1)~(4)を満たす含有比で含むエポキシ樹脂組成物。
    [A]分子量が1500以上であるジグリシジルエーテル型エポキシ樹脂
    [B]構造ユニットとしてのSP値が、[A]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
    [C]分子量が500~1200であるジグリシジルエーテル型エポキシ樹脂
    [D]エポキシ樹脂硬化剤
     0.2 ≦A/(A+B+C+E)≦0.6  (1)
     0.2 ≦B/(A+B+C+E)≦0.6  (2)
     0.15≦C/(A+B+C+E)≦0.4  (3)
     0≦E/(A+B+C+E)≦0.2     (4)
    (各式中、A、B、Cは、それぞれ[A]、[B]、[C]の重量、Eは[A]、[B]、[C]以外のエポキシ樹脂の重量)
  2.  下記[A’]、[B’]、[C’]、[D’]を、下記式(1’)~(4’)を満たす含有比で含むエポキシ樹脂組成物。
    [A’]分子量が1500~5000であるジグリシジルエーテル型エポキシ樹脂
    [B’]構造ユニットとしてのSP値が、[A’]の構造ユニットとしてのSP値より1.5~6.5高いエポキシ樹脂
    [C’]分子量が300~1200であるジグリシジルエーテル型エポキシ樹脂
    [D’]芳香族アミン型エポキシ樹脂硬化剤
     0.2 ≦A’/(A’+B’+C’+E’)≦0.6  (1’)
     0.2 ≦B’/(A’+B’+C’+E’)≦0.6  (2’)
     0.15≦C’/(A’+B’+C’+E’)≦0.4  (3’)
     0≦E’/(A’+B’+C’+E’)≦0.2     (4’)
    (各式中、A’、B’、C’は、それぞれ[A’]、[B’]、[C’]の重量、E’は[A’]、[B’]、[C’]以外のエポキシ樹脂の重量)
  3.  [B]がアミン型エポキシ樹脂である請求項1に記載のエポキシ樹脂組成物。
  4.  [B’]がアミン型エポキシ樹脂である請求項2に記載のエポキシ樹脂組成物。
  5.  [C’]の分子量が500~1200である請求項2または4記載のエポキシ樹脂組成物。
  6.  [D]がジシアンジアミドまたはその誘導体である請求項1または3記載のエポキシ樹脂組成物。
  7.  [D’]がジアミノジフェニルスルホンまたはその誘導体である請求項2または4に記載のエポキシ樹脂組成物。
  8.  請求項1または2に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する相分離構造を有し、その構造周期が0.01~5μmであるエポキシ樹脂硬化物。
  9.  請求項1または2に記載のエポキシ樹脂組成物を、硬化したエポキシ樹脂硬化物であって、少なくとも[A]リッチ相と[B]リッチ相、または、[A’]リッチ相と[B’]リッチ相を有する海島構造の相分離構造を有し、島相の径が0.01~5μmであるエポキシ樹脂硬化物。
  10.  請求項1または2のいずれか一項に記載のエポキシ樹脂組成物をマトリックスとした繊維強化複合材料用プリプレグ。
  11.  請求項10に記載のプリプレグを硬化させてなる繊維強化複合材料。
  12.  請求項8に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
  13.  請求項9に記載のエポキシ樹脂硬化物と、強化繊維基材を組み合わせてなる繊維強化複合材料。
PCT/JP2009/053500 2008-02-26 2009-02-26 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 WO2009107697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/919,285 US8309631B2 (en) 2008-02-26 2009-02-26 Epoxy resin composition, prepreg, and fiber reinforced composite material
CN2009801049690A CN101945916B (zh) 2008-02-26 2009-02-26 环氧树脂组合物、预浸料及纤维增强复合材料
JP2009532075A JP5321464B2 (ja) 2008-02-26 2009-02-26 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
EP09714886.0A EP2248838B1 (en) 2008-02-26 2009-02-26 Epoxy resin composition, prepreg, abd fiber-reinforced composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008043904 2008-02-26
JP2008-043904 2008-02-26

Publications (1)

Publication Number Publication Date
WO2009107697A1 true WO2009107697A1 (ja) 2009-09-03

Family

ID=41016085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053500 WO2009107697A1 (ja) 2008-02-26 2009-02-26 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Country Status (7)

Country Link
US (1) US8309631B2 (ja)
EP (1) EP2248838B1 (ja)
JP (1) JP5321464B2 (ja)
KR (1) KR101555395B1 (ja)
CN (1) CN101945916B (ja)
TW (1) TWI435887B (ja)
WO (1) WO2009107697A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110184091A1 (en) * 2008-09-29 2011-07-28 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2011157491A (ja) * 2010-02-02 2011-08-18 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
JP2012056980A (ja) * 2010-09-06 2012-03-22 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
WO2012043453A1 (ja) 2010-09-28 2012-04-05 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US20120164463A1 (en) * 2010-12-24 2012-06-28 Guangdong Shengyi Sci.Tech Co., Ltd Cyanate ester resin composition, and prepreg and laminate made therefrom
JP2012131849A (ja) * 2010-12-20 2012-07-12 Toray Ind Inc エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
KR101227900B1 (ko) 2010-10-28 2013-02-06 주식회사 유니테크 기계적, 전기적 특성이 우수한 신규의 복합 재료 조성물
US20130280536A1 (en) * 2010-12-23 2013-10-24 Sika Technology Ag Heat-curing sealant compositions having fast skin formation and high tensile strength
DE102013224762A1 (de) 2012-12-04 2014-06-05 Honda Motor Co., Ltd. Verfahren zur beurteilung von dispersionsgraden von gemischten epoxidharzen
WO2014142024A1 (ja) 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2015001909A1 (ja) * 2013-07-02 2015-01-08 ダンロップスポーツ株式会社 ゴルフクラブシャフト
JP2015516497A (ja) * 2012-05-18 2015-06-11 ヘクセル コンポジッツ、リミテッド 速硬性エポキシ樹脂及びそれらから得られたプリプレグ
JP2016148020A (ja) * 2015-02-09 2016-08-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016148021A (ja) * 2015-02-09 2016-08-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016148022A (ja) * 2015-02-09 2016-08-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR20160127023A (ko) 2014-02-25 2016-11-02 도레이 카부시키가이샤 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그
JP6066026B1 (ja) * 2015-09-17 2017-01-25 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2017020004A (ja) * 2015-07-09 2017-01-26 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2017047225A1 (ja) * 2015-09-17 2017-03-23 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2018024773A (ja) * 2016-08-10 2018-02-15 住友ベークライト株式会社 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法
JP2019001151A (ja) * 2017-05-01 2019-01-10 ザ・ボーイング・カンパニーThe Boeing Company 熱可塑性薄膜フィルム被覆と共に硬化された複合材料
JP2019157057A (ja) * 2018-03-16 2019-09-19 三菱ケミカル株式会社 硬化性樹脂組成物、並びにこれを用いたプリプレグ、フィルム及び繊維強化プラスチック
WO2019244829A1 (ja) * 2018-06-18 2019-12-26 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPWO2019111747A1 (ja) * 2017-12-04 2020-11-19 東レ株式会社 プリプレグおよび繊維強化複合材料
JP2021001245A (ja) * 2019-06-20 2021-01-07 三菱ケミカル株式会社 繊維強化エポキシ樹脂複合材及び繊維強化プラスチック
WO2021177089A1 (ja) * 2020-03-06 2021-09-10 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2022196624A1 (ja) * 2021-03-15 2022-09-22 三菱ケミカル株式会社 樹脂組成物、プリプレグおよび繊維強化プラスチック
WO2023153435A1 (ja) * 2022-02-08 2023-08-17 三菱ケミカル株式会社 プリプレグ、炭素繊維強化プラスチック、およびプリプレグの製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380161B (zh) * 2011-02-16 2016-04-20 三菱丽阳株式会社 获得纤维强化复合材料的制造方法及其所使用的环氧树脂组合物
JP5780917B2 (ja) 2011-10-25 2015-09-16 キヤノン株式会社 インクジェット記録ヘッド用配線保護封止剤、並びに、それを用いたインクジェット記録ヘッド及びその製造方法
WO2014050264A1 (ja) * 2012-09-28 2014-04-03 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP5655976B1 (ja) * 2013-01-28 2015-01-21 東レ株式会社 プリプレグ、繊維強化複合材料および熱可塑性樹脂粒子
CN103660310B (zh) * 2013-11-26 2017-01-04 上海复合材料科技有限公司 光固化的热塑性纤维增强环氧基复合材料及其制备方法
JP5888349B2 (ja) * 2014-01-29 2016-03-22 大日本印刷株式会社 粘着剤組成物およびそれを用いた粘着シート
EP3208309B1 (en) * 2014-10-16 2020-11-25 Mitsubishi Chemical Corporation Resin composition and press-molded article of same
EP3456779B1 (en) * 2016-05-13 2023-03-01 Showa Denko Materials Co., Ltd. Prepreg, metal foil with resin, laminate and printed wiring board
JP6878076B2 (ja) * 2017-03-24 2021-05-26 日鉄ケミカル&マテリアル株式会社 オキサゾリドン環含有エポキシ樹脂組成物、その製造方法、硬化性樹脂組成物、及び硬化物
CN107589507A (zh) * 2017-11-01 2018-01-16 江苏永鼎股份有限公司 一种用于轻型全介质架空光缆中的玻璃纤维增强塑料圆杆
JP7095732B2 (ja) * 2018-02-22 2022-07-05 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体
EP3766926A4 (en) * 2018-03-20 2022-01-26 Toray Industries, Inc. PREPREG AND FIBER REINFORCED COMPOSITE MATERIAL
CN111868137B (zh) * 2018-03-28 2023-08-15 积水化学工业株式会社 环氧树脂组合物
CN111410817A (zh) * 2019-12-26 2020-07-14 北京理工大学 一种环氧树脂组合物、制备方法及其在热熔预浸料中的应用
CN114410065B (zh) * 2022-01-21 2022-09-30 深圳市郎搏万先进材料有限公司 一种环氧树脂组合物及碳纤维预浸料、碳纤维复合材料

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621717A (ja) 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
JPS621719A (ja) 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
JPH07278412A (ja) * 1994-02-17 1995-10-24 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化プラスチック
JP2004027043A (ja) * 2002-06-26 2004-01-29 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料
JP2005225982A (ja) * 2004-02-13 2005-08-25 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2005082982A1 (ja) * 2004-02-27 2005-09-09 Toray Industries, Inc. 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP2006052385A (ja) * 2004-07-13 2006-02-23 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料
JP2006077202A (ja) * 2004-09-13 2006-03-23 Toray Ind Inc 難燃性プリプレグ
WO2006077153A2 (en) 2005-01-20 2006-07-27 Arkema France Thermoset materials with improved impact resistance
JP2006233188A (ja) * 2005-01-31 2006-09-07 Toray Ind Inc 複合材料用プリプレグ、および複合材料
JP2007314753A (ja) 2006-04-25 2007-12-06 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2008094961A (ja) * 2006-10-12 2008-04-24 Toray Ind Inc ベンゾオキサジン樹脂組成物
WO2008143044A1 (ja) * 2007-05-16 2008-11-27 Toray Industries, Inc. エポキシ樹脂組成物、プリプレグ、繊維強化複合材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216246A (en) * 1977-05-14 1980-08-05 Hitachi Chemical Company, Ltd. Method of improving adhesion between insulating substrates and metal deposits electrolessly plated thereon, and method of making additive printed circuit boards
JPH07288412A (ja) * 1994-04-19 1995-10-31 Kyocera Corp アンテナ
US6756414B2 (en) * 1999-07-30 2004-06-29 Sanyo Chemical Industries, Ltd. Polymer polyol composition, process for producing the same, and process for producing polyurethane resin
JP4416965B2 (ja) * 2000-06-26 2010-02-17 株式会社リコー 静電荷像現像用カラートナー及び定着方法、トナー容器、画像形成装置
JP2002126620A (ja) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd 多層塗膜形成方法及び多層塗膜
KR100679361B1 (ko) * 2001-01-25 2007-02-05 산요가세이고교 가부시키가이샤 경화성 수지재료로된 경화성 필름 및 절연체
TW200415219A (en) * 2002-11-08 2004-08-16 Nippon Paint Co Ltd Process for forming cured gradient coating film and multi-layered coating film containing the same
US7208228B2 (en) * 2003-04-23 2007-04-24 Toray Composites (America), Inc. Epoxy resin for fiber reinforced composite materials
US7166322B2 (en) * 2003-08-08 2007-01-23 Toyoda Gosei Co., Ltd. Optical waveguide and method for producing the same
US7838577B2 (en) * 2007-07-19 2010-11-23 Sekisui Chemical Co., Ltd. Adhesive for electronic component
US8574669B2 (en) * 2008-05-21 2013-11-05 Toray Industries, Inc. Method for producing polymer fine particle comprising contacting an emulsion with a poor solvent
CN104119645B (zh) * 2008-09-29 2016-10-26 东丽株式会社 环氧树脂组合物、预浸料坯及纤维增强复合材料

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621717A (ja) 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
JPS621719A (ja) 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
JPH07278412A (ja) * 1994-02-17 1995-10-24 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化プラスチック
JP2004027043A (ja) * 2002-06-26 2004-01-29 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物及び繊維強化複合材料
JP2005225982A (ja) * 2004-02-13 2005-08-25 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2005082982A1 (ja) * 2004-02-27 2005-09-09 Toray Industries, Inc. 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP2006052385A (ja) * 2004-07-13 2006-02-23 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料
JP2006077202A (ja) * 2004-09-13 2006-03-23 Toray Ind Inc 難燃性プリプレグ
WO2006077153A2 (en) 2005-01-20 2006-07-27 Arkema France Thermoset materials with improved impact resistance
JP2006233188A (ja) * 2005-01-31 2006-09-07 Toray Ind Inc 複合材料用プリプレグ、および複合材料
JP2007314753A (ja) 2006-04-25 2007-12-06 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2008094961A (ja) * 2006-10-12 2008-04-24 Toray Ind Inc ベンゾオキサジン樹脂組成物
WO2008143044A1 (ja) * 2007-05-16 2008-11-27 Toray Industries, Inc. エポキシ樹脂組成物、プリプレグ、繊維強化複合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FEDORS, POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154
POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154
See also references of EP2248838A4

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658736B2 (en) * 2008-09-29 2014-02-25 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
US20110184091A1 (en) * 2008-09-29 2011-07-28 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
US9243139B2 (en) 2008-09-29 2016-01-26 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2011157491A (ja) * 2010-02-02 2011-08-18 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
JP2012056980A (ja) * 2010-09-06 2012-03-22 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
US9738782B2 (en) 2010-09-28 2017-08-22 Toray Industries, Inc. EPOXY resin composition, prepreg and fiber-reinforced composite materials
WO2012043453A1 (ja) 2010-09-28 2012-04-05 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR101227900B1 (ko) 2010-10-28 2013-02-06 주식회사 유니테크 기계적, 전기적 특성이 우수한 신규의 복합 재료 조성물
JP2012131849A (ja) * 2010-12-20 2012-07-12 Toray Ind Inc エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
US20130280536A1 (en) * 2010-12-23 2013-10-24 Sika Technology Ag Heat-curing sealant compositions having fast skin formation and high tensile strength
US9512341B2 (en) * 2010-12-23 2016-12-06 Sika Technology Ag Heat-curing sealant compositions having fast skin formation and high tensile strength
US20120164463A1 (en) * 2010-12-24 2012-06-28 Guangdong Shengyi Sci.Tech Co., Ltd Cyanate ester resin composition, and prepreg and laminate made therefrom
JP2015516497A (ja) * 2012-05-18 2015-06-11 ヘクセル コンポジッツ、リミテッド 速硬性エポキシ樹脂及びそれらから得られたプリプレグ
DE102013224762A1 (de) 2012-12-04 2014-06-05 Honda Motor Co., Ltd. Verfahren zur beurteilung von dispersionsgraden von gemischten epoxidharzen
US9335212B2 (en) 2012-12-04 2016-05-10 Honda Motor Co., Ltd. Method of evaluating dispersion degrees of mixed epoxy resins
DE102013224762B4 (de) 2012-12-04 2022-05-05 Honda Motor Co., Ltd. Verfahren zur beurteilung von dispersionsgraden von gemischten epoxidharzen
WO2014142024A1 (ja) 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US9783670B2 (en) 2013-03-11 2017-10-10 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2015009099A (ja) * 2013-07-02 2015-01-19 ダンロップスポーツ株式会社 ゴルフクラブシャフト
WO2015001909A1 (ja) * 2013-07-02 2015-01-08 ダンロップスポーツ株式会社 ゴルフクラブシャフト
US9717963B2 (en) 2013-07-02 2017-08-01 Dunlop Sports Co. Ltd. Golf club shaft
KR20160127023A (ko) 2014-02-25 2016-11-02 도레이 카부시키가이샤 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그
JP2016148022A (ja) * 2015-02-09 2016-08-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016148021A (ja) * 2015-02-09 2016-08-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016148020A (ja) * 2015-02-09 2016-08-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2017020004A (ja) * 2015-07-09 2017-01-26 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6066026B1 (ja) * 2015-09-17 2017-01-25 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR101878128B1 (ko) * 2015-09-17 2018-07-12 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
US10316159B2 (en) 2015-09-17 2019-06-11 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber reinforced material
WO2017047225A1 (ja) * 2015-09-17 2017-03-23 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2018024773A (ja) * 2016-08-10 2018-02-15 住友ベークライト株式会社 車載モジュール基板用樹脂組成物、車載モジュール基板および車載用プリント基板の製造方法
JP2019001151A (ja) * 2017-05-01 2019-01-10 ザ・ボーイング・カンパニーThe Boeing Company 熱可塑性薄膜フィルム被覆と共に硬化された複合材料
JP7290398B2 (ja) 2017-05-01 2023-06-13 ザ・ボーイング・カンパニー 熱可塑性薄膜フィルム被覆と共に硬化された複合材料
JPWO2019111747A1 (ja) * 2017-12-04 2020-11-19 東レ株式会社 プリプレグおよび繊維強化複合材料
JP7159875B2 (ja) 2017-12-04 2022-10-25 東レ株式会社 プリプレグおよび繊維強化複合材料
JP2019157057A (ja) * 2018-03-16 2019-09-19 三菱ケミカル株式会社 硬化性樹脂組成物、並びにこれを用いたプリプレグ、フィルム及び繊維強化プラスチック
WO2019244829A1 (ja) * 2018-06-18 2019-12-26 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US11912859B2 (en) 2018-06-18 2024-02-27 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7290109B2 (ja) 2018-06-18 2023-06-13 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPWO2019244829A1 (ja) * 2018-06-18 2021-05-06 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2021001245A (ja) * 2019-06-20 2021-01-07 三菱ケミカル株式会社 繊維強化エポキシ樹脂複合材及び繊維強化プラスチック
WO2021177089A1 (ja) * 2020-03-06 2021-09-10 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2022196624A1 (ja) * 2021-03-15 2022-09-22 三菱ケミカル株式会社 樹脂組成物、プリプレグおよび繊維強化プラスチック
WO2023153435A1 (ja) * 2022-02-08 2023-08-17 三菱ケミカル株式会社 プリプレグ、炭素繊維強化プラスチック、およびプリプレグの製造方法

Also Published As

Publication number Publication date
US8309631B2 (en) 2012-11-13
JP5321464B2 (ja) 2013-10-23
EP2248838A4 (en) 2016-01-27
CN101945916A (zh) 2011-01-12
US20110009528A1 (en) 2011-01-13
KR101555395B1 (ko) 2015-09-23
TWI435887B (zh) 2014-05-01
EP2248838B1 (en) 2017-04-26
KR20100133963A (ko) 2010-12-22
EP2248838A1 (en) 2010-11-10
TW200948844A (en) 2009-12-01
CN101945916B (zh) 2012-07-25
JPWO2009107697A1 (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5321464B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US9738782B2 (en) EPOXY resin composition, prepreg and fiber-reinforced composite materials
JP5444713B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料
EP2886586B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP5747763B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5564870B2 (ja) エポキシ樹脂組成物、プリプレグ、および繊維強化複合材料
JP5747762B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2012039456A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5347630B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料
WO2013099862A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2008007682A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2010059225A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2014167103A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016132709A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5811883B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5573650B2 (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2012056981A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグ、および繊維強化複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104969.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009532075

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714886

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12919285

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107018968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009714886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009714886

Country of ref document: EP