WO2009104305A1 - 車両および二次電池の充電状態推定方法 - Google Patents

車両および二次電池の充電状態推定方法 Download PDF

Info

Publication number
WO2009104305A1
WO2009104305A1 PCT/JP2008/068837 JP2008068837W WO2009104305A1 WO 2009104305 A1 WO2009104305 A1 WO 2009104305A1 JP 2008068837 W JP2008068837 W JP 2008068837W WO 2009104305 A1 WO2009104305 A1 WO 2009104305A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
vehicle
secondary battery
current
Prior art date
Application number
PCT/JP2008/068837
Other languages
English (en)
French (fr)
Inventor
純太 泉
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP08872693.0A priority Critical patent/EP2246956B1/en
Priority to CN2008801270547A priority patent/CN101939892B/zh
Priority to US12/864,577 priority patent/US8509975B2/en
Publication of WO2009104305A1 publication Critical patent/WO2009104305A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • G01R31/3832Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration without measurement of battery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a vehicle and a secondary battery charge state estimation method, and more particularly to a vehicle including a secondary battery and a control device that performs charge / discharge control of the vehicle and a secondary battery charge state estimation method.
  • charging at home will reduce the number of trips to the gas station for refueling, which will be convenient for the driver, and it may be possible to meet the cost requirements by using inexpensive late-night power.
  • Patent Document 1 discloses such a hybrid vehicle that can be charged from the outside.
  • Patent Document 1 discloses such a hybrid vehicle that can be charged from the outside.
  • Japanese Patent No. 3016349 International Publication No. 99/61929 Pamphlet JP 2003-7353 A International Publication No. 98/56059 Pamphlet
  • a vehicle equipped with a battery such as a hybrid vehicle or an electric vehicle calculates a state of charge (SOC) of the battery and performs control so that the battery is not overcharged or discharged.
  • SOC state of charge
  • the SOC is sometimes referred to as a charge amount or a remaining capacity.
  • Patent Document 2 discloses an example of a method for estimating the SOC of a battery. This SOC estimation method takes into account the internal resistance and polarization of the battery so that the SOC can be accurately estimated even when charging and discharging are switched in a short cycle and repeated.
  • Vehicles that can be externally charged should be able to operate without using an engine (EV) without using an engine using electric power that has been externally charged in the battery.
  • EV engine
  • the fact that the external charging cannot be performed up to the upper limit value is disadvantageous because the EV travel distance is reduced.
  • An object of the present invention is to provide a vehicle that can take a large amount of charge or discharge and can effectively use a secondary battery.
  • the present invention is a vehicle, a chargeable / dischargeable secondary battery, a current sensor for detecting a current of the secondary battery, a charged state of the secondary battery, and a secondary battery based on the charged state.
  • a control device that controls charging and discharging of the secondary battery.
  • the control device estimates the open circuit voltage of the secondary battery and determines the charge state based on a value obtained by correcting the open circuit voltage based on polarization.
  • the control device determines the charging state based on the result of integrating the current detected by the current sensor.
  • the vehicle is configured to be capable of external charging in which the secondary battery is charged from outside the vehicle.
  • the second operation mode is selected during external charging.
  • the vehicle further includes an air conditioner capable of performing air conditioning before boarding upon receiving power supply from the secondary battery.
  • the second operation mode is selected during external charging and air conditioning before boarding.
  • the control device executes either external charging or pre-boarding air conditioning as a pre-processing and the other as a post-processing performed subsequent to the pre-processing, the control device sets the offset value of the current sensor before executing the pre-processing. The current detected by the current sensor is corrected using the offset value stored prior to the execution of the preprocessing.
  • the vehicle further includes an electric motor capable of executing a power running operation and a regenerative operation.
  • the first operation mode is selected when the vehicle travels where the power running operation and the regenerative operation can be repeated.
  • the present invention provides a method for estimating a charge state of a secondary battery capable of being charged and discharged, wherein the operation mode in the step of determining the operation mode in which the secondary battery is used and the step of determining are charged. And determining the state of charge based on a value obtained by correcting the open-circuit voltage based on the polarization, and determining the open-circuit voltage of the secondary battery in the first operation mode in which the discharge cycle is repeated. Determining the state of charge based on the result of integrating the current detected by the current sensor when the operation mode is the second operation mode in which one of charging and discharging continues in the step; Prepare.
  • the secondary battery is mounted on a vehicle.
  • the vehicle is configured to be capable of external charging in which the secondary battery is charged from the outside of the vehicle.
  • the step of determining determines that it is the second operation mode during external charging.
  • the vehicle further includes an air conditioner capable of performing air conditioning before boarding upon receiving power supply from the secondary battery.
  • the second operation mode is selected during external charging and air conditioning before boarding.
  • the offset value of the current sensor is stored before the pre-processing, and post-processing
  • the method further includes the step of correcting the current detected by the current sensor using the offset value stored before the preprocessing is executed at the time of executing.
  • the vehicle further includes an electric motor capable of executing a power running operation and a regenerative operation.
  • the step of determining determines that it is the first operation mode when the vehicle travels in which the power running operation and the regenerative operation can be repeated.
  • the battery since the amount of charge and discharge to the battery can be increased, the battery can be used effectively, and the distance traveled by the motor without using the engine can be increased.
  • FIG. 1 is a diagram illustrating a main configuration of a vehicle 1 according to an embodiment of the present invention. It is the figure which showed the relationship between the open circuit voltage OCV and SOC of a battery. It is a wave form diagram for explaining the time change of the battery voltage at the time of charge, and the battery voltage at the time of discharge. 5 is a flowchart illustrating SOC estimation processing and vehicle control performed in the present embodiment. It is a block diagram which shows the structure of the SOC estimation process which the control apparatus 30 performs. It is a wave form diagram for demonstrating an example when plug-in charge is performed immediately after boarding air conditioning based on the SOC calculation process of this Embodiment.
  • FIG. 1 is a diagram showing a main configuration of a vehicle 1 according to an embodiment of the present invention.
  • vehicle 1 includes batteries B1 and B2, boost converters 12-1 and 12-2, a smoothing capacitor CH, voltage sensors 10-1, 10-2 and 13, an inverter 14, Engine 4, motor generators MG ⁇ b> 1 and MG ⁇ b> 2, power split mechanism 3, and control device 30 are included.
  • vehicle 1 further includes a connector 6 that has a connector that can be connected to, for example, AC 100V or 200V commercial power supply 8, and is connected to positive line PL1 and negative line NL1.
  • the charger 6 converts alternating current into direct current, regulates the voltage, and applies the voltage to the battery.
  • other methods such as a method of connecting the neutral point of the stator coils of motor generators MG1 and MG2 to an AC power source and an AC / DC converter combined with boost converters 12-1 and 12-2 A method of functioning as may be used.
  • the smoothing capacitor CH smoothes the voltage boosted by the boost converters 12-1 and 12-2.
  • the voltage sensor 13 detects the inter-terminal voltage VH of the smoothing capacitor CH and outputs it to the control device 30.
  • the inverter 14 converts the DC voltage VH supplied from the boost converter 12-1 or 12-2 into a three-phase AC voltage and outputs it to the motor generators MG1 and MG2.
  • the power split mechanism 3 is a mechanism that is coupled to the engine 4 and the motor generators MG1 and MG2 and distributes power between them.
  • the power split mechanism 3 may be a planetary gear mechanism having three rotating shafts: a sun gear, a planetary carrier, and a ring gear. In the planetary gear mechanism, if rotation of two of the three rotation shafts is determined, rotation of the other one rotation shaft is forcibly determined. These three rotation shafts are connected to the rotation shafts of engine 4 and motor generators MG1, MG2, respectively.
  • the rotation shaft of motor generator MG2 is coupled to the wheels by a reduction gear and a differential gear (not shown). Further, a reduction gear for the rotation shaft of motor generator MG2 may be further incorporated in power split device 3.
  • Battery B1 has a positive electrode connected to positive electrode line PL1 and a negative electrode connected to negative electrode line NL1.
  • Voltage sensor 10-1 measures voltage Vb1 between the positive and negative electrodes of battery B1.
  • a current sensor 11-1 for detecting a current Ib1 flowing through the battery B1 is provided. Further, the state of charge SOC1 of the battery B1 is detected by the control device 30. Control device 30 calculates state of charge SOC1 using a method which will be described later with reference to FIGS.
  • Battery B2 has a positive electrode connected to positive electrode line PL2 and a negative electrode connected to negative electrode line NL2.
  • Voltage sensor 10-2 measures voltage Vb2 across the terminals of battery B2.
  • a current sensor 11-2 for detecting a current Ib2 flowing through the battery B2 is provided. Further, the charging state SOC2 of the battery B2 is detected by the control device 30.
  • Control device 30 calculates state of charge SOC2 using a method which will be described later with reference to FIGS.
  • a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large capacity capacitor such as an electric double layer capacitor can be used.
  • the battery B2 and the battery B1 can output the maximum power allowed for the electric load (inverter 14 and motor generator MG2) connected between the main positive bus MPL and the main negative bus MNL by using them simultaneously.
  • the chargeable capacity is set so that As a result, EV (Electric Vehicle) running without using the engine can run at maximum power.
  • the engine 4 can be used in addition to the battery B1, so that the maximum power can be traveled without using the battery B2.
  • a plurality of batteries B2 may be mounted so that when the power of the first battery is consumed, the EV driving can be continued by switching to the second and third batteries with a switch or the like.
  • the inverter 14 is connected to the main positive bus MPL and the main negative bus MNL. Inverter 14 receives the boosted voltage from boost converters 12-1 and 12-2, and drives motor generator MG1 to start engine 4, for example. Inverter 14 returns the electric power generated by motor generator MG1 by the power transmitted from engine 4 to boost converters 12-1 and 12-2. At this time, boost converters 12-1 and 12-2 are controlled by control device 30 so as to operate as voltage conversion circuits for converting voltage VH into voltages Vb1 and Vb2, respectively.
  • the inverter 14 converts the DC voltage output from the boost converters 12-1 and 12-2 into a three-phase AC voltage and outputs it to the motor generator MG2 that drives the wheels. Inverter 14 returns the electric power generated in motor generator MG2 to boost converters 12-1 and 12-2 in accordance with regenerative braking. At this time, boost converters 12-1 and 12-2 are controlled by control device 30 to operate as voltage conversion circuits for converting voltage VH into voltages Vb1 and Vb2, respectively.
  • Control device 30 receives each torque command value of motor generators MG1, MG2, motor current value and rotation speed, each value of voltages Vb1, Vb2, VH, and a start signal. Control device 30 then outputs a boost instruction, a step-down instruction, and an operation prohibition instruction to boost converters 12-1 and 12-2.
  • Control device 30 further provides a drive instruction for converting DC voltage VH, which is the output of boost converters 12-1 and 12-2, to AC voltage for driving motor generator MG1 to inverter 14, and motor generator MG1.
  • a regenerative instruction for converting the AC voltage generated in step S1 to the DC voltage Vh and returning it to the boost converters 12-1 and 12-2 is output.
  • control device 30 provides a drive instruction for converting a DC voltage into an AC voltage for driving motor generator MG2 for inverter 14 and a boost converter by converting the AC voltage generated by motor generator MG2 into a DC voltage.
  • a regeneration instruction for returning to the 12-1 and 12-2 sides is output.
  • Boost converter 12-1 includes chopper circuit 40-1, positive bus LN1A, negative bus LN1C, wiring LN1B, and smoothing capacitor C1.
  • Chopper circuit 40-1 includes transistors Q1A and Q1B, diodes D1A and D1B, and an inductor L1.
  • Transistor Q1B and diode D1B constitute an upper arm. Further, the lower arm is constituted by the transistor Q1A and the diode D1A.
  • Positive bus LN1A has one end connected to the collector of transistor Q1B and the other end connected to main positive bus MPL.
  • Negative bus LN1C has one end connected to negative electrode line NL1 and the other end connected to main negative bus MNL.
  • Transistors Q1A and Q1B are connected in series between negative bus LN1C and positive bus LN1A. Specifically, the emitter of transistor Q1A is connected to negative bus LN1C, the emitter of transistor Q1B is connected to the collector of transistor Q1A, and the collector of transistor Q1B is connected to positive bus LN1A. In the lower arm, the diode D1A is connected in parallel to the transistor Q1A. In the upper arm, the diode D1B is connected in parallel to the transistor Q1B.
  • the forward direction of the diode D1A is a direction from the bus LN1C toward the inductor L1.
  • the forward direction of the diode D1B is a direction from the inductor L1 toward the bus LN1A.
  • One end of the inductor L1 is connected to a connection node between the transistor Q1A and the transistor Q1B.
  • the wiring LN1B is connected between the positive electrode line PL1 and the other end of the inductor L1.
  • Smoothing capacitor C1 is connected between line LN1B and negative bus LN1C, and reduces the AC component included in the DC voltage between line LN1B and negative bus LN1C.
  • the positive electrode line PL1 and the negative electrode line NL1 are connected to the positive electrode and the negative electrode of the battery B1, respectively, by the system main relay SMR1.
  • Chopper circuit 40-1 boosts DC power (drive power) received from positive line PL1 and negative line NL1 in accordance with drive signal PWC1 provided from control device 30 to increase main positive bus MPL and main negative bus MNL.
  • drive power DC power
  • PWC1 drive signal
  • the voltages of the main positive bus MPL and the main negative bus MNL can be stepped down and supplied to the battery B1.
  • Boost converter 12-2 includes a chopper circuit 40-2, a positive bus LN2A, a negative bus LN2C, a wiring LN2B, and a smoothing capacitor C2.
  • Chopper circuit 40-2 includes transistors Q2A and Q2B, diodes D2A and D2B, and an inductor L2.
  • Transistor Q2B and diode D2B constitute an upper arm. Further, the lower arm is constituted by the transistor Q2A and the diode D2A.
  • Positive bus LN2A has one end connected to the collector of transistor Q2B and the other end connected to main positive bus MPL.
  • Negative bus LN2C has one end connected to negative electrode line NL2 and the other end connected to main negative bus MNL.
  • Transistors Q2A and Q2B are connected in series between negative bus LN2C and positive bus LN2A. Specifically, the emitter of transistor Q2A is connected to negative bus LN2C, the emitter of transistor Q2B is connected to the collector of transistor Q2A, and the collector of transistor Q2B is connected to positive bus LN2A. In the lower arm, the diode D2A is connected in parallel to the transistor Q2A. In the upper arm, the diode D2B is connected in parallel to the transistor Q2B.
  • the forward direction of diode D2A is the direction from bus LN2C to inductor L2.
  • the forward direction of the diode D2B is a direction from the inductor L2 toward the bus LN2A. Inductor L2 is connected to a connection node between transistor Q2A and transistor Q2B.
  • transistors Q1B, Q1A, Q2A, and Q2B may be power switching elements, and IGBT (Insulated Gate Bipolar Transistor) elements, power MOSFETs (Metal-Oxide Semiconductor Field-Effect Transistors), and the like can be used.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFETs Metal-Oxide Semiconductor Field-Effect Transistors
  • Wiring LN2B has one end connected to positive line PL2 and the other end connected to inductor L2.
  • Smoothing capacitor C2 is connected between wiring LN2B and negative bus LN2C, and reduces an AC component included in a DC voltage between wiring LN2B and negative bus LN2C.
  • the positive electrode line PL2 and the negative electrode line NL2 are connected to the positive electrode and the negative electrode of the battery B2 by the system main relay SMR2, respectively.
  • Chopper circuit 40-2 boosts DC power (drive power) received from positive line PL2 and negative line NL2 in accordance with drive signal PWC2 applied from control device 30 in FIG. It can be supplied to negative bus MNL, and the voltage of main positive bus MPL and main negative bus MNL can be stepped down and supplied to battery B2.
  • FIG. 2 is a diagram showing a relationship between the open circuit voltage (OCV) of the battery and the SOC.
  • This correlation is measured in advance and stored as a map. Then, the OCV can be measured by a voltage sensor, and the SOC can be estimated by referring to a map based on the OCV.
  • FIG. 3 is a waveform diagram for explaining temporal changes in battery voltage during charging and battery voltage during discharging.
  • the battery current IB indicates discharging in the positive direction and charging in the negative direction.
  • the open circuit voltage OCV increases as the state of charge SOC increases.
  • This open circuit voltage OCV cannot be directly measured during charging.
  • It is a closed circuit voltage CCV (Closed Circuit Voltage) that can be detected as a battery voltage VB by a voltage sensor during charging.
  • the closed circuit voltage CCV is obtained by adding the change ⁇ V1 due to the battery internal resistance and the change ⁇ V2 due to polarization to the open circuit voltage OCV.
  • the change ⁇ V1 can be obtained from the product of the charging current I and the internal resistance R. Since the internal resistance R of the battery has temperature dependence, the battery temperature may be measured and corrected based on the temperature.
  • the change ⁇ V2 tends to increase as the charging time increases. Therefore, the change ⁇ V2 gradually increases from time t1 to time t2.
  • the change ⁇ V1 becomes zero because no current flows.
  • the change ⁇ V2 does not immediately become zero, but approaches zero as time passes. Therefore, the battery voltage VB is higher than the open circuit voltage OCV for a while, and coincides with the open circuit voltage OCV after a certain amount of time has passed.
  • the voltage change ⁇ V2 caused by polarization changes depending on the time from the start of charging and discharging. Therefore, as will be described later with reference to battery model MB in FIG. 5, in the SOC estimation process applied when the vehicle is traveling, a voltage change ⁇ V2 due to polarization ⁇ V2 ( In FIG. 5, Vdyn) is determined, and using this, the open circuit voltage OCV is estimated from the closed circuit voltage CCV, and the SOC is finally estimated based on the estimated open circuit voltage OCV.
  • the voltage change ⁇ V2 (Vdyn in FIG. 5) is calculated based on a value that is matched during traveling in which charging and discharging are repeated.
  • FIG. 4 is a flowchart illustrating SOC estimation processing and vehicle control performed in the present embodiment.
  • control device 30 determines whether to perform pre-boarding air conditioning (also referred to as pre-air conditioning) to charge from the battery.
  • pre-boarding air conditioning also referred to as pre-air conditioning
  • Pre-boarding air conditioning is a function that starts air conditioning of a vehicle before the scheduled departure time when a scheduled departure time is specified, and comfortably heats the interior of the vehicle by heating or cooling at the scheduled departure time.
  • air conditioning before boarding may be performed in view of the performance of the battery.
  • the air conditioner since the air conditioner is operated without starting the engine, the battery is continuously discharged and the battery is not charged.
  • step S1 it is determined whether or not to execute pre-boarding air conditioning based on an instruction from a passenger such as a switch. If it is determined in step S1 that pre-boarding air conditioning is to be executed (YES in step S1), a series of pre-boarding air conditioning processing is executed in step S30.
  • step S30 first, the current zero control in step S2 is executed.
  • the case where the air conditioner 7 is operated using the power of the battery B1 will be described as an example.
  • the control device 30 sets the circuit state so that the battery current Ib1 becomes zero with the system main relay SMR1 opened.
  • step S3 the control device 30 stores the value detected by the current sensor 11-1 as an offset value. This offset value is stored in a nonvolatile memory or the like inside the control device 30.
  • the zero current control does not necessarily require the system main relay to be set to the OFF state, so that the battery current does not flow as in the state where the operation of the boost converter is stopped and the operation of the load such as the air conditioner is also stopped.
  • the state of the battery peripheral circuit may be set in
  • control device 30 measures open circuit voltage OCV using voltage sensor 10-1 in step S4. Then, based on the open circuit voltage OCV measured at this time, the initial value of the state of charge SOC is obtained using the map storing the correlation shown in FIG.
  • control device 30 sets the method of calculating the state of charge SOC to the current integration method.
  • the current value detected by the current sensor is corrected using the offset value stored in step S3 and used for integration.
  • air conditioning is performed in step S6 in a state where the SOC is calculated by this calculation method.
  • Pre-boarding air conditioning starts automatically when it approaches the scheduled departure time, such as 10 minutes before the scheduled departure time.
  • the air conditioning before boarding ends. Whether or not the driver gets in may be determined based on whether or not there is an operation of opening a door, operating an ignition switch, or changing a setting of an air conditioner. However, it may be possible to cancel the departure. Therefore, in order to prevent the battery from being discharged too much, the air conditioning before boarding is terminated even when the driver does not get in even after a predetermined time has elapsed since the scheduled departure time.
  • step S7 the control device 30 stores the discharge current integrated value. Thereafter, in step S22, control is transferred to a predetermined main routine.
  • step S1 determines whether or not plug-in charging is performed on the battery. For example, whether to execute plug-in charging is determined based on whether or not the power supply 8 is connected to the charger 6 of FIG.
  • step S8 If it is determined in step S8 that plug-in charging is performed, the process proceeds from step S8 to step S9. In step S9, it is determined whether or not the plug-in charging is performed immediately after the air conditioning before boarding.
  • Plug-in charging immediately after the pre-boarding air conditioning includes the case where the plug-in charging starts within a predetermined time after the completion of the pre-boarding air conditioning and the case where the pre-boarding air conditioning is executed during the plug-in charging and the battery is discharged. And the case where the plug-in charging is continued even after the pre-boarding air-conditioning is completed (when the power consumption of the air-conditioning is larger than the plug-in charging power).
  • the amount of discharge of the battery discharged during such pre-boarding air conditioning can always be charged immediately after that.
  • charging is performed by estimating the SOC by a conventional method, the estimated SOC becomes higher and the amount of charge may be insufficient even though the upper limit SOC is not yet reached. Therefore, the cruising distance with electric power by external charging is shortened.
  • the SOC of the battery can be reliably recovered to the state before discharging. In other words, there is no possibility that the battery will be overcharged even if charging is performed with the same amount of current as the amount of discharged current.
  • Charging with the same current amount as the discharged current amount can be realized by performing the estimation of the SOC at the time of air conditioning before boarding and at the time of plug-in charging by the same method, that is, only by current integration.
  • step S9 When it is determined in step S9 that the plug-in charging is performed immediately after the air conditioning before boarding, a series of plug-in charging processes shown in step S40 are executed. For example, if the time at which the air conditioning in step S6 is completed is stored, this determination can be made before a predetermined time has passed since that time.
  • step S10 the control device 30 is set to use the value stored in step S3 at the time of air conditioning before boarding for correction of the current value detected by the current sensor.
  • the reason is that it is immediately after boarding air conditioning, so that the offset correction value can be used as it is, and if the offset correction value is changed, it is necessary to charge the discharged amount accurately, but there is a risk that the charge amount will be shifted. It depends.
  • the initial value of the SOC is the same as the SOC at the end of S30, which is the previous process. This is because an influence of polarization remains in the battery immediately after discharging, and an error occurs if the open circuit voltage is measured and the SOC is obtained from the map of FIG.
  • control device 30 sets the method of calculating the state of charge SOC to the current integration method.
  • the current value detected by the current sensor is corrected using the offset value stored in step S3 and used for integration.
  • plug-in charging is executed in step S12 in a state where the SOC is calculated by this calculation method.
  • step S40 which is a subsequent process, in the case where the series of pre-boarding air conditioning in step S30 is a pre-process is completed.
  • step S9 if it is determined in step S9 that the plug-in charging is not performed immediately after the air conditioning before boarding, the process proceeds to step S13, and a normal plug-in charging process is executed.
  • step S13 the same zero current control as in step S2 is executed.
  • step S14 the control device 30 stores the value detected by the current sensor 11-1 as an offset value. This offset value is stored in a nonvolatile memory or the like inside the control device 30.
  • control device 30 measures open circuit voltage OCV using voltage sensor 10-1 in step S15. Then, based on the open circuit voltage OCV measured at this time, the initial value of the state of charge SOC is obtained using the map storing the correlation shown in FIG.
  • control device 30 sets the method of calculating the state of charge SOC to the current integration method.
  • the current value detected by the current sensor is corrected using the offset value stored in step S14 and used for integration.
  • plug-in charging is executed in step S17 in a state where the SOC is calculated by this calculation method.
  • Plug-in charging ends when charging progresses and the SOC reaches the upper management limit or when the connection to the external power supply is lost due to the plug being removed.
  • step S8 If it is determined in step S8 that plug-in charging is not performed, the process proceeds to step S18. For example, if the power supply 8 is not connected to the charger 6 of FIG. 1, the control device 30 recognizes that plug-in charging is not performed.
  • step S18 the control device 30 sets the circuit state so that the system main relays SMR1 and SMR2 are opened and the battery currents Ib1 and Ib2 become zero.
  • step S19 the control device 30 stores the values detected by the current sensors 11-1 and 11-2 as offset values. This offset value is stored in a nonvolatile memory or the like inside the control device 30.
  • control device 30 sets the SOC calculation method to an estimation method (referred to as an estimated OCV method) different from steps S5, S11, and S16.
  • an estimated OCV method it is possible to prevent errors from being accumulated when a battery usage method in which charging and discharging are repeated frequently reflecting not only current integration but also battery voltage and battery internal resistance is performed. Yes.
  • step S21 charge / discharge control during normal running is executed.
  • the power running / regenerative control of the motor and the power generation by the engine and the generator are controlled so that the estimated SOC always enters between the SOC management upper limit value and the management lower limit value determined from the point of battery life. Control is executed.
  • the ignition switch is turned OFF, the estimated value of the SOC of the battery at that time is stored in the nonvolatile memory. The stored estimated value may be used as an initial value of the next SOC.
  • step S22 the control is moved to the main routine.
  • control device 30 determines the current to be charged or discharged with respect to the initial value of SOC in steps S5, S11, and S16. Accumulate and estimate the SOC.
  • the estimated OCV method which is a different estimation method, is set in step S20. In this estimated OCV method, not only current integration, but also error accumulation is prevented when a battery usage method in which charging and discharging are repeated frequently by reflecting battery voltage and battery internal resistance is performed. It is out.
  • FIG. 5 is a block diagram showing a configuration of the SOC estimation process executed by control device 30.
  • the charge / discharge current of the battery is detected by current detection unit 110.
  • the battery voltage at that time is detected by the voltage detector 112.
  • the current detection unit 110 corresponds to the current sensors 11-1 and 11-2 in FIG.
  • the voltage detector 112 corresponds to the voltage sensors 10-1 and 10-2 in FIG.
  • the SOC is estimated using the battery model MB. Then, the selection setting of the selection unit 136 is set to the B side so that the estimated value of the SOC using the battery model MB is used.
  • the charge / discharge current value detected by the current detection unit 110 is integrated by the pseudo SOC estimation unit 114 and added to the previously determined initial value of the SOC of the battery to estimate the pseudo SOC which is a temporary value of the SOC.
  • the initial value of the SOC is 100% when fully charged, or the estimated SOC value stored in the nonvolatile memory inside the control device 30 at the end of the previous use can be read and used.
  • the electromotive force estimation unit 116 estimates the battery voltage corresponding to the pseudo SOC.
  • the battery voltage estimated by the electromotive force estimation unit 116 is an estimated value Voc of the open circuit voltage of the battery.
  • Such an open circuit voltage Voc is estimated as an open circuit voltage Voc corresponding to the pseudo SOC given from the pseudo SOC estimation unit 114 by obtaining a map of the SOC and the open circuit voltage as shown in FIG. be able to.
  • the voltage fluctuation estimation unit 118 estimates the voltage fluctuation due to the internal resistance of the battery from the charge / discharge current value of the battery detected by the current detection unit 110.
  • the voltage fluctuation estimation unit 118 estimates the fluctuation of the battery voltage due to the internal resistance by the following equation.
  • Vr ⁇ r ⁇ Ib
  • r represents the internal resistance
  • Ib represents the battery current value (discharge is positive).
  • Vr is a voltage fluctuation due to an internal resistance estimated by the voltage fluctuation estimation unit 118.
  • the internal resistance r of the battery is determined for each battery in advance.
  • the current value Ib is a charge / discharge current value detected by the current detection unit 110. This voltage variation Vr corresponds to ⁇ V1 in FIG.
  • the dynamic voltage fluctuation estimation unit 120 estimates the fluctuation of the battery voltage based on the change in the charging / discharging current of the battery. This dynamic voltage fluctuation is caused by the polarization of the battery.
  • the dynamic voltage fluctuation estimation unit 120 gives a dynamic voltage fluctuation Vdyn of the battery determined based on a usage pattern in which charging and discharging are frequently repeated. This voltage variation Vdyn corresponds to ⁇ V2 in FIG. For example, it is possible to measure the polarization voltage at a set time suitable for traveling with respect to the battery current Ib and define and use the voltage fluctuation Vdyn as a map for the current.
  • the pseudo SOC estimation unit 114, the electromotive force estimation unit 116, the voltage variation estimation unit 118, the dynamic voltage variation estimation unit 120, and the adder 122 described above constitute a battery model MB.
  • the estimated voltage Vest of the battery estimated by the battery model MB described above is compared with the actual measured voltage Vmes of the battery detected by the voltage detection unit 112 by the comparator 124, and the difference is input to the SOC correction amount calculation unit 126. Entered.
  • the SOC correction amount calculation unit 126 and the adder 128 perform the calculation of the following expression to calculate the estimated value of the battery SOC.
  • SOC SOCp + Kp ⁇ (Vmes ⁇ Vest) + Ki ⁇ ⁇ (Vmes ⁇ Vest) dt
  • SOCp indicates pseudo SOC
  • Kp and Ki indicate coefficients.
  • pseudo SOC (SOCp) is an output value of pseudo SOC estimation unit 114.
  • the SOC correction amount calculation unit 126 includes a component proportional to a difference (Vmes ⁇ Vest) between the estimated voltage Vest and the measured voltage Vmes obtained by the second and third terms of the above equation, that is, the comparator 124, and The component proportional to the integral value of the difference is calculated.
  • the coefficients Kp and Ki are previously determined from the battery characteristics.
  • Each of the components calculated by the SOC correction amount calculation unit 126 is added to the output value SOCp of the pseudo SOC estimation unit 114 by the adder 128 as shown in the above equation. Thereby, an estimated value of the SOC of the battery can be obtained.
  • the battery model MB is used to estimate the electromotive force of the battery from the pseudo SOC, and the fluctuation due to the internal resistance of the battery voltage and the dynamic voltage fluctuation due to the change in the charging / discharging current. And the voltage of the battery is estimated as the sum of these. That is, the battery voltage Vest is estimated from the battery model in consideration of the fluctuation of the state of the battery together with the pseudo SOC. Next, the pseudo SOC is corrected so that the estimated voltage Vest is equal to the actually measured battery voltage Vmes, and the battery SOC is estimated.
  • the pseudo SOC is corrected so that the estimated voltage Vest and the actually measured battery voltage Vmes are equal to each other. Even if the initial value includes a large error, it is possible to quickly converge to an accurate SOC estimation value.
  • the initial SOC detection unit 132 determines the initial SOC based on the battery voltage detected by the voltage detection unit 112. As described with reference to FIG. 3, since the influence of polarization remains immediately after the charging or discharging is stopped, the SOC previously estimated by the battery models MA, MB, etc. is taken over.
  • FIG. 2 shows that the battery voltage VB measured when the current zero control is executed is equal to the battery electromotive force after the time when the current is almost zero continues for a while after the charging or discharging is stopped. Obtain the SOC from the map.
  • the charging / discharging current value detected by the current detection unit 110 is integrated by the current integration processing unit 134 and added to the initial value of the SOC of the battery obtained by the initial SOC detection unit 132, and the SOC is estimated. .
  • the current detection unit 110 may be divided into detection units having different ranges, such as the current detection units 110A and 110B.
  • the high-resolution current detection unit 110A is used in the low measurement range
  • the low-resolution current detection unit in the measurement range capable of measuring a large current may be switched in conjunction with the selection setting of the selection unit 136 so that 110B is used. Referring to FIG.
  • sensors 11-1A and 11-2A having high accuracy at the same location, but sensors 11-1B and 11-1B capable of measuring a larger current, although less accurate. 11-2B may be provided and used properly. By doing so, more accurate SOC estimation can be executed.
  • FIG. 6 is a waveform diagram for explaining an example when plug-in charging is performed immediately after the air conditioning before boarding based on the SOC calculation processing of the present embodiment.
  • the battery current IB is a discharge current.
  • the integrated value k (Ah) of the battery current IB discharged from the time when the battery is charged up to the SOC management upper limit value Smax when pre-boarding air conditioning is completed may be stored.
  • the above processing corresponds to the processing from step S1 to steps S2 to S7 in FIG.
  • plug-in charging is executed.
  • the SOC increases as charging proceeds.
  • the battery current IB is integrated, and the SOC is estimated based on the value.
  • the plug-in charging ends.
  • the charging for the accumulated value k (Ah) of the stored battery current IB may be determined based on the accumulated value, and the charging may be stopped.
  • the above processing corresponds to the processing from step S1 to steps S10 to S12 in FIG.
  • the offset value of the current sensor is the same as that at the time of discharge and the current value is corrected, so that the integrated value is prevented from being distorted due to the difference in the offset value.
  • charging can be performed accurately up to the SOC management upper limit value, so the cruising distance of EV traveling can be extended.
  • the vehicle 1 includes a chargeable / dischargeable secondary battery (batteries B1, B2), a current sensor (11-1, 11-2) for detecting a current of the secondary battery, and a state of charge (SOC) of the secondary battery. And a control device 30 that controls charging / discharging of the secondary battery based on the state of charge.
  • control device 30 estimates the open circuit voltage (VOC) of the secondary battery and charges the state of charge (SOC) based on a value obtained by correcting the open circuit voltage based on polarization. ).
  • VOC open circuit voltage
  • SOC state of charge
  • the control device 30 is charged based on the result of integrating the currents detected by the current sensors (11-1, 11-2) ( SOC).
  • the vehicle 1 is equipped with a charger 6 that can be connected to the external power source shown in FIG. 1, and is configured to be able to charge the secondary batteries (batteries B1, B2) from the outside of the vehicle.
  • the second operation mode is selected during external charging.
  • the vehicle 1 further includes an air conditioner (air conditioner 7) capable of performing air conditioning before boarding upon receiving power supply from the secondary batteries (batteries B1 and B2).
  • the second operation mode is selected during external charging and air conditioning before boarding.
  • the control device 30 performs an offset value of the current sensor before the execution of the pre-processing. Is stored, and the current detected by the current sensor is corrected using the offset value stored before the preprocessing is executed when the postprocessing is executed.
  • vehicle 1 further includes electric motors (motor generators MG1, MG2) capable of executing a power running operation and a regenerative operation.
  • the first operation mode is selected when the vehicle travels where the power running operation and the regenerative operation can be repeated.
  • this invention is the charge state estimation method of the secondary battery (B1, B2) which can be charged / discharged in another situation, Comprising:
  • the operation mode in which a secondary battery is used is shown.
  • the operation mode is the first operation mode in which the cycle of charging and discharging is repeated (NO in step S1) in the determining step (S1, S8, S9) and the determining step (S1, S8, S9) NO in step S8), estimating the open circuit voltage of the secondary battery, determining the state of charge based on a value obtained by correcting the open circuit voltage based on polarization (S20), and determining steps (S1, S8, S9) Is detected by the current sensor when the operation mode is the second operation mode in which one of charging and discharging continues (YES in step S1 or YES in step S8).
  • a step (step S5, S11, S16) for determining the state of charge based on a result obtained by integrating the flow.
  • the secondary batteries are mounted on the vehicle 1.
  • Vehicle 1 is configured to be capable of external charging in which secondary batteries (batteries B1 and B2) are charged from outside the vehicle (8).
  • the step of determining determines that it is the second operation mode during external charging.
  • the vehicle further includes an air conditioner (air conditioner 7) capable of performing air conditioning before boarding upon receiving power supply from the secondary battery.
  • the second operation mode is selected during external charging and air conditioning before boarding.
  • the offset value of the current sensor before the pre-processing is executed. And correcting the current detected by the current sensor using the offset value stored before the preprocessing is executed when the postprocessing is executed.
  • FIG. 4 demonstrated the case where pre-boarding air conditioning (S30) was pre-processing and external charging was post-processing (S40), the reverse may be sufficient.
  • the current sensor offset value and the initial SOC are acquired and stored in place of step S10 at the time of external charging, and the offset value stored at the time of external charging and the external value are stored instead of the offset value storage at step S3 at the time of air conditioning before boarding. Continue to use the estimated SOC when charging is complete.
  • the vehicle further includes electric motors (motor generators MG1, MG2) capable of executing a power running operation and a regenerative operation.
  • the step of determining determines that it is the first operation mode when the vehicle travels in which the power running operation and the regenerative operation can be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 車両(1)は、充放電が可能なバッテリ(B1)と、バッテリの電流を検出する電流センサ(11-1)と、バッテリの充電状態を推定し、充電状態に基づいてバッテリの充放電を制御する制御装置(30)とを備える。制御装置(30)は、充電と放電のサイクルが繰返される第1の動作モードでは、バッテリの開路電圧を推定し、開路電圧を分極に基づいて補正した値に基づいて充電状態を決定する。制御装置(30)は、充電および放電のうちのいずれか一方が継続する第2の動作モードでは、電流センサで検出された電流を積算した結果に基づいて充電状態を決定する。これにより、充電量または放電量を多くとることができ、二次電池を有効活用可能な車両を提供することができる。

Description

車両および二次電池の充電状態推定方法
 この発明は、車両および二次電池の充電状態推定方法に関し、特に二次電池とその充放電制御を行なう制御装置とを備えた車両およびその二次電池の充電状態推定方法に関する。
 近年では、環境に配慮した自動車として、モータで車輪を駆動する電気自動車や車輪の駆動にモータとエンジンとを併用するハイブリッド自動車が注目されている。このようなハイブリッド自動車は車両に搭載する発電機をエンジンの動力で回転させて発電した電力でバッテリの充電やモータへの電力供給を行なうが、バッテリに外部から充電を可能とし家庭等で充電をすること(以下単に外部充電と称する)が可能な車両も検討されている。
 外部充電可能とすれば、家庭等において充電を行なうことにより燃料補給にガソリンスタンドに出向く回数が減り運転者にとって便利になるとともに、安価な深夜電力等の利用によりコスト面でも見合うことも考えられる。
 特許第3016349号公報(特許文献1)は、このような外部から充電可能なハイブリッド自動車を開示する。
特許第3016349号公報 国際公開第99/61929号パンフレット 特開2003-7353号公報 国際公開第98/56059号パンフレット
 ハイブリッド自動車や電気自動車等のバッテリを搭載する車両は、バッテリの充電状態(SOC:State Of Charge)を算出し、バッテリの過充電や過放電が発生しないように制御を行なっている。SOCは、充電量や残存容量等と称されることもある。
 たとえば、国際公開第99/61929号パンフレット(特許文献2)には、バッテリのSOCの推定方法の一例が開示されている。このSOCの推定方法は、充放電が短い周期で切り替わり、繰返されても正確にSOCを推定することができるように、電池の内部抵抗や分極を考慮している。
 しかしながら、外部充電実行時には、バッテリの放電は発生しないので充電のみが連続するような状態になる。このような従来のSOC推定方法を外部充電時にも適用すると、バッテリ電圧の分極による変化分が大きいので実際のSOCよりも高めに推定されてしまう。すると外部充電中に実際よりも早めにSOCの管理上限値に到達したと制御装置が認識し、外部充電を停止してしまう。
 外部充電可能な車両は、バッテリに外部充電しておいた電力を使用してエンジンを使用しないEV(Electric Vehicle)走行を行ない、なるべくガソリン等の燃料を使用しないで運用できるのが望ましいが、SOC上限値まできっちり外部充電できないのはEV走行距離が少なくなるので不利である。
 また、逆に、厳寒期の朝などにタイマー機能などによってバッテリの電力を使用して乗車前空調を実行するような場合は放電のみが続く状態になることが考えられる。このような場合には、従来のSOC推定方法を適用するとSOCが実際よりも低めに推定されてしまう。するとSOCが管理下限値に到達したと制御装置が認識し、早めに空調を停止してしまう場合が考えられる。
 この発明の目的は、充電量または放電量を多くとることができ、二次電池を有効活用可能な車両を提供することである。
 この発明は、要約すると、車両であって、充放電が可能な二次電池と、二次電池の電流を検出する電流センサと、二次電池の充電状態を推定し、充電状態に基づいて二次電池の充放電を制御する制御装置とを備える。制御装置は、充電と放電のサイクルが繰返される第1の動作モードでは、二次電池の開路電圧を推定し、開路電圧を分極に基づいて補正した値に基づいて充電状態を決定する。制御装置は、充電および放電のうちのいずれか一方が継続する第2の動作モードでは、電流センサで検出された電流を積算した結果に基づいて充電状態を決定する。
 好ましくは、車両は、二次電池に車両外部から充電を行なう外部充電が可能に構成される。第2の動作モードは、外部充電時に選択される。
 より好ましくは、車両は、二次電池から電力供給を受け乗車前空調を実行可能な空調装置をさらに備える。第2の動作モードは、外部充電および乗車前空調時に選択される。制御装置は、外部充電と乗車前空調のいずれか一方を前処理として実行し他方を前処理に引き続いて行なわれる後処理として実行した場合には、前処理の実行前に電流センサのオフセット値を記憶し、後処理の実行時には前処理の実行前に記憶されたオフセット値を用いて電流センサで検出された電流を補正する。
 好ましくは、車両は、力行動作と回生動作とが実行可能な電動機をさらに備える。第1の動作モードは、力行動作および回生動作を繰り返し行ない得る車両走行時に選択される。
 この発明は、他の局面では、充放電が可能な二次電池の充電状態推定方法であって、二次電池が使用される動作モードを判断するステップと、判断するステップにおいて動作モードが、充電と放電のサイクルが繰返される第1の動作モードである場合に、二次電池の開路電圧を推定し、開路電圧を分極に基づいて補正した値に基づいて充電状態を決定するステップと、判断するステップにおいて動作モードが、充電および放電のうちのいずれか一方が継続する第2の動作モードである場合に、電流センサで検出された電流を積算した結果に基づいて充電状態を決定するステップとを備える。
 好ましくは、二次電池は、車両に搭載される。車両は、二次電池に車両外部から充電を行なう外部充電が可能に構成される。判断するステップは、外部充電時に第2の動作モードであると判断する。
 より好ましくは、車両は、二次電池から電力供給を受け乗車前空調を実行可能な空調装置をさらに備える。第2の動作モードは、外部充電および乗車前空調時に選択される。外部充電と乗車前空調のいずれか一方を前処理として実行し他方を前処理に引き続いて行なわれる後処理として実行した場合に、前処理の実行前に電流センサのオフセット値を記憶し、後処理の実行時に前処理の実行前に記憶されたオフセット値を用いて電流センサで検出された電流を補正するステップをさらに備える。
 好ましくは、車両は、力行動作と回生動作とが実行可能な電動機をさらに備える。判断するステップは、力行動作および回生動作を繰り返し行ない得る車両走行時に第1の動作モードであると判断する。
 本発明によれば、バッテリへの充電量および放電量を多くすることができるので、バッテリを有効に活用でき、エンジンを使用せずモータで走行する距離を伸ばすことが可能となる。
本発明の実施の形態に係る車両1の主たる構成を示す図である。 バッテリの開路電圧OCVとSOCとの関係を示した図である。 充電時のバッテリ電圧および放電時のバッテリ電圧の時間的変化を説明するための波形図である。 本実施の形態で行なわれるSOCの推定処理および車両の制御を説明するフローチャートである。 制御装置30が実行するSOC推定処理の構成を示すブロック図である。 本実施の形態のSOC算出処理に基づいて、乗車前空調の直後にプラグイン充電が行なわれた場合の一例を説明するための波形図である。
符号の説明
 1 車両、3 動力分割機構、4 エンジン、6 充電器、7 エアコン、8 商用電源、10-1,10-2,13 電圧センサ、11-1,11-2 電流センサ、12-1,12-2 昇圧コンバータ、14 インバータ、30 制御装置、40-1,40-2 チョッパ回路、110 電流検出部、112 電圧検出部、114 疑似SOC推定部、116 起電力推定部、118 電圧変動推定部、120 動的電圧変動推定部、122,128 加算器、124 比較器、126 SOC修正量算出部、132 初期SOC検出部、134 電流積算処理部、136 選択部、B1,B2 バッテリ、C1,C2,CH 平滑コンデンサ、D1A,D1B,D2A,D2B ダイオード、L1,L2 インダクタ、LN1A,LN2A 正母線、LN1B,LN2B 配線、LN1C,LN2C 負母線、MA,MB 電池モデル、MG1,MG2 モータジェネレータ、MNL 主負母線、MPL 主正母線、NL1,NL2 負極線、PL1,PL2 正極線、Q1A,Q1B,Q2A,Q2B トランジスタ、SMR1,SMR2 システムメインリレー。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [車両の全体構成]
 図1は、本発明の実施の形態に係る車両1の主たる構成を示す図である。
 図1を参照して、車両1は、バッテリB1,B2と、昇圧コンバータ12-1,12-2と、平滑コンデンサCHと、電圧センサ10-1,10-2,13と、インバータ14と、エンジン4と、モータジェネレータMG1,MG2と、動力分割機構3と、制御装置30とを含む。
 この車両に搭載されるバッテリB1,B2は外部から充電が可能である。このために、車両1は、さらに、たとえばAC100Vまたは200Vの商用電源8に接続可能なコネクタを有し、正極線PL1および負極線NL1に接続される充電器6を含む。充電器6は、交流を直流に変換するとともに電圧を調圧してバッテリに与える。なお、外部充電可能とするために、他にも、モータジェネレータMG1,MG2のステータコイルの中性点を交流電源に接続する方式や昇圧コンバータ12-1,12-2を合わせて交流直流変換装置として機能させる方式を用いても良い。
 平滑コンデンサCHは、昇圧コンバータ12-1,12-2によって昇圧された電圧を平滑化する。電圧センサ13は、平滑コンデンサCHの端子間電圧VHを検知して制御装置30に出力する。
 インバータ14は、昇圧コンバータ12-1または12-2から与えられる直流電圧VHを三相交流電圧に変換してモータジェネレータMG1およびMG2に出力する。
 動力分割機構3は、エンジン4とモータジェネレータMG1,MG2に結合されてこれらの間で動力を分配する機構である。たとえば動力分割機構3としてはサンギヤ、プラネタリキャリヤ、リングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。遊星歯車機構では、3つの回転軸のうち2つの回転軸の回転が定まれば、他の1つの回転軸の回転は強制的に定まる。この3つの回転軸がエンジン4、モータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。なおモータジェネレータMG2の回転軸は、図示しない減速ギヤや差動ギヤによって車輪に結合されている。また動力分割機構3の内部にモータジェネレータMG2の回転軸に対する減速機をさらに組み込んでもよい。
 バッテリB1は、正極線PL1に正極が接続され、負極線NL1に負極が接続されている。電圧センサ10-1は、バッテリB1の正負極間の電圧Vb1を測定する。電圧センサ10-1とともにバッテリB1の充電状態SOC1を監視するために、バッテリB1に流れる電流Ib1を検知する電流センサ11-1が設けられている。また、バッテリB1の充電状態SOC1が制御装置30において検出されている。制御装置30は、後に図4、図5で説明する方法を用いて充電状態SOC1を算出する。
 バッテリB2は、正極線PL2に正極が接続され、負極線NL2に負極が接続されている。電圧センサ10-2は、バッテリB2の端子間の電圧Vb2を測定する。電圧センサ10-2とともにバッテリB2の充電状態SOC2を監視するために、バッテリB2に流れる電流Ib2を検知する電流センサ11-2が設けられている。また、バッテリB2の充電状態SOC2が制御装置30において検出されている。制御装置30は、後に図4、図5で説明する方法を用いて充電状態SOC2を算出する。
 バッテリB1,B2としては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。
 バッテリB2とバッテリB1とは、たとえば、同時使用することにより主正母線MPLと主負母線MNLとの間に接続される電気負荷(インバータ14およびモータジェネレータMG2)に許容された最大パワーを出力可能であるように蓄電可能容量が設定される。これによりエンジンを使用しないEV(Electric Vehicle)走行において最大パワーの走行が可能である。
 そしてバッテリB2の電力が消費されてしまったら、バッテリB1に加えてエンジン4を使用することによって、バッテリB2を使用しないでも最大パワーの走行を可能とすることができる。なお、バッテリB2を複数搭載して、1つめのバッテリの電力が消費されてしまったらスイッチ等で2つめ、3つめのバッテリにつなぎ替えるようにして、EV走行を継続可能な構成としても良い。
 インバータ14は、主正母線MPLと主負母線MNLに接続されている。インバータ14は、昇圧コンバータ12-1および12-2から昇圧された電圧を受けて、たとえばエンジン4を始動させるために、モータジェネレータMG1を駆動する。また、インバータ14は、エンジン4から伝達される動力によってモータジェネレータMG1で発電された電力を昇圧コンバータ12-1および12-2に戻す。このとき昇圧コンバータ12-1および12-2は、電圧VHを電圧Vb1,Vb2にそれぞれ変換する電圧変換回路として動作するように、制御装置30によって制御される。
 インバータ14は車輪を駆動するモータジェネレータMG2に対して昇圧コンバータ12-1および12-2の出力する直流電圧を三相交流電圧に変換して出力する。またインバータ14は、回生制動に伴い、モータジェネレータMG2において発電された電力を昇圧コンバータ12-1および12-2に戻す。このとき昇圧コンバータ12-1および12-2は、電圧VHを電圧Vb1,Vb2にそれぞれ変換する電圧変換回路として動作するように制御装置30によって制御される。
 制御装置30は、モータジェネレータMG1,MG2の各トルク指令値、モータ電流値および回転速度、電圧Vb1,Vb2,VHの各値、および起動信号を受ける。そして制御装置30は、昇圧コンバータ12-1,12-2に対して昇圧指示と降圧指示と動作禁止指示とを出力する。
 さらに、制御装置30は、インバータ14に対して昇圧コンバータ12-1,12-2の出力である直流電圧VHを、モータジェネレータMG1を駆動するための交流電圧に変換する駆動指示と、モータジェネレータMG1で発電された交流電圧を直流電圧Vhに変換して昇圧コンバータ12-1,12-2側に戻す回生指示とを出力する。
 同様に制御装置30は、インバータ14に対してモータジェネレータMG2を駆動するための交流電圧に直流電圧を変換する駆動指示と、モータジェネレータMG2で発電された交流電圧を直流電圧に変換して昇圧コンバータ12-1,12-2側に戻す回生指示とを出力する。
 昇圧コンバータ12-1は、チョッパ回路40-1と、正母線LN1Aと、負母線LN1Cと、配線LN1Bと、平滑コンデンサC1とを含む。チョッパ回路40-1は、トランジスタQ1A,Q1Bと、ダイオードD1A,D1Bと、インダクタL1とを含む。トランジスタQ1BおよびダイオードD1Bによって上アームが構成される。また、トランジスタQ1AおよびダイオードD1Aによって下アームが構成される。
 正母線LN1Aは、一方端がトランジスタQ1Bのコレクタに接続され、他方端が主正母線MPLに接続される。また、負母線LN1Cは、一方端が負極線NL1に接続され、他方端が主負母線MNLに接続される。
 トランジスタQ1A,Q1Bは、負母線LN1Cと正母線LN1Aとの間に直列に接続される。具体的には、トランジスタQ1Aのエミッタが負母線LN1Cに接続され、トランジスタQ1BのエミッタがトランジスタQ1Aのコレクタに接続され、トランジスタQ1Bのコレクタが正母線LN1Aに接続される。下アームにおいて、ダイオードD1Aは、トランジスタQ1Aに並列に接続される。上アームにおいて、ダイオードD1Bは、トランジスタQ1Bに並列に接続される。ダイオードD1Aの順方向は、母線LN1CからインダクタL1に向かう向きである。また、ダイオードD1Bの順方向は、インダクタL1から母線LN1Aに向かう向きである。インダクタL1の一方端は、トランジスタQ1AとトランジスタQ1Bとの接続ノードに接続される。
 配線LN1Bは、正極線PL1とインダクタL1の他方端との間に接続される。平滑コンデンサC1は、配線LN1Bと負母線LN1Cとの間に接続され、配線LN1Bおよび負母線LN1C間の直流電圧に含まれる交流成分を低減する。
 正極線PL1および負極線NL1は、システムメインリレーSMR1によって、バッテリB1の正極および負極にそれぞれ接続される。
 そして、チョッパ回路40-1は、制御装置30から与えられる駆動信号PWC1に応じて、正極線PL1および負極線NL1から受ける直流電力(駆動電力)を昇圧して主正母線MPLおよび主負母線MNLへ供給し、また、主正母線MPLおよび主負母線MNLの電圧を降圧してバッテリB1へ供給することができる。
 昇圧コンバータ12-2は、チョッパ回路40-2と、正母線LN2Aと、負母線LN2Cと、配線LN2Bと、平滑コンデンサC2とを含む。チョッパ回路40-2は、トランジスタQ2A,Q2Bと、ダイオードD2A,D2Bと、インダクタL2とを含む。トランジスタQ2BおよびダイオードD2Bによって上アームが構成される。また、トランジスタQ2AおよびダイオードD2Aによって下アームが構成される。
 正母線LN2Aは、一方端がトランジスタQ2Bのコレクタに接続され、他方端が主正母線MPLに接続される。また、負母線LN2Cは、一方端が負極線NL2に接続され、他方端が主負母線MNLに接続される。
 トランジスタQ2A,Q2Bは、負母線LN2Cと正母線LN2Aとの間に直列に接続される。具体的には、トランジスタQ2Aのエミッタが負母線LN2Cに接続され、トランジスタQ2BのエミッタがトランジスタQ2Aのコレクタに接続され、トランジスタQ2Bのコレクタが正母線LN2Aに接続される。下アームにおいて、ダイオードD2Aは、トランジスタQ2Aに並列に接続される。上アームにおいて、ダイオードD2Bは、トランジスタQ2Bに並列に接続される。ダイオードD2Aの順方向は、母線LN2CからインダクタL2に向かう向きである。また、ダイオードD2Bの順方向は、インダクタL2から母線LN2Aに向かう向きである。インダクタL2は、トランジスタQ2AとトランジスタQ2Bとの接続ノードに接続される。
 なお、トランジスタQ1B,Q1A,Q2A,Q2Bは、パワースイッチング素子であればよく、IGBT(Insulated Gate Bipolar Transistor)素子やパワーMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)等を用いることができる。
 配線LN2Bは、一方端が正極線PL2に接続され、他方端がインダクタL2に接続される。平滑コンデンサC2は、配線LN2Bと負母線LN2Cとの間に接続され、配線LN2Bおよび負母線LN2C間の直流電圧に含まれる交流成分を低減する。
 正極線PL2および負極線NL2は、システムメインリレーSMR2によって、バッテリB2の正極および負極にそれぞれ接続される。
 そして、チョッパ回路40-2は、図1の制御装置30から与えられる駆動信号PWC2に応じて、正極線PL2および負極線NL2から受ける直流電力(駆動電力)を昇圧して主正母線MPLおよび主負母線MNLへ供給し、また、主正母線MPLおよび主負母線MNLの電圧を降圧してバッテリB2へ供給することができる。
 [開路電圧と充電状態の説明]
 図2は、バッテリの開路電圧(OCV:Open-Circuit Voltage)とSOCとの関係を示した図である。
 バッテリのOCVは、SOCが増加すると高くなるという相関関係がある。たとえば、リチウムイオンバッテリは、OCV=3.0VでSOC=0%、OCV=4.1VでSOC=100%でその間は図2に示すような相関関係を有する。この相関を予め測定しておき、マップとして記憶しておく。そしてOCVを電圧センサで測定し、OCVに基づいてマップを参照してSOCを推定することができる。
 しかし、走行中や外部充電中は回路に電流を流す必要があるので、開路電圧は測定することができない。回路に電流を流している場合には、バッテリ電圧は、内部抵抗による電圧増減分および分極による電圧増減分の影響を受ける。
 図3は、充電時のバッテリ電圧および放電時のバッテリ電圧の時間的変化を説明するための波形図である。
 図3を参照して、時刻t1~t2ではバッテリに充電が行なわれ、時刻t2~t3ではバッテリに充放電が行なわれておらず、時刻t3以降バッテリから放電が行なわれる場合について説明する。
 まず、時刻t1においてバッテリに充電が開始される。バッテリ電流IBは、正の向きが放電、負の向きが充電を示す。充電が進むにつれて、開路電圧OCVは充電状態SOCの増加に伴って上昇する。この開路電圧OCVは、充電中は直接計測することはできない。充電中に電圧センサでバッテリ電圧VBとして検出できるのは閉路電圧CCV(Closed Circuit Voltage)である。この閉路電圧CCVは、開路電圧OCVにバッテリ内部抵抗による変化分ΔV1と分極による変化分ΔV2を加えたものである。
 変化分ΔV1については、充電電流Iと内部抵抗Rとの積で求めることができる。なおバッテリの内部抵抗Rは、温度依存性があるのでバッテリ温度を計測して温度に基づいて補正して用いても良い。
 変化分ΔV2については、充電時間が増加するにつれて増加する傾向がある。したがって、時刻t1~t2において変化分ΔV2は次第に増加している。
 時刻t2において充電が停止されると、変化分ΔV1については電流が流れなくなるのでゼロとなる。しかし、変化分ΔV2については直ちにゼロになることは無く、時間がたつにつれてゼロに近づいていく。したがって、バッテリ電圧VBは、しばらくの間は開路電圧OCVよりも高い値を示し、ある程度の時間が経過すると開路電圧OCVに一致する。
 時刻t3以降の放電時については、変化分ΔV1、ΔV2は逆方向すなわち測定電圧を下げる方向に現れる。放電時においても、ΔV1が内部抵抗と電流の積であること、およびΔV2は分極に起因するものであり時間とともに増加するものであることについては、充電時と同様であるので説明は繰返さない。図示していないが、放電が停止してバッテリ電流がゼロになると変化分ΔV1分は電圧が上昇するが変化分ΔV2は直ちにゼロにはならず、しばらく開路電圧OCVよりも低めの電圧が測定される。その後、時間がある程度経過すると測定される電圧が開路電圧OCVに一致するようになる。
 以上のように、分極によって生ずる電圧変化分ΔV2は、充電や放電の開始からの時間によって変化する。したがって、後に図5の電池モデルMBで説明するように、車両走行時に適用されるSOCの推定処理では、回生と力行の充放電のサイクルが繰返される走行パターンに合せて分極による電圧変化分ΔV2(図5ではVdyn)を決定し、これを用いて閉路電圧CCVから開路電圧OCVを推定し、推定された開路電圧OCVに基づいて最終的にSOCが推定される。
 すなわち、電圧変化分ΔV2(図5ではVdyn)は、充放電を繰返す走行時にマッチングさせた値に基づいて算出される。
 [SOCの推定処理]
 図4は、本実施の形態で行なわれるSOCの推定処理および車両の制御を説明するフローチャートである。
 図1、図4を参照して、制御装置30は、ステップS1において、乗車前空調(プレ空調とも称される)を実行してバッテリからの充電を行なうか否かを判断する。
 乗車前空調は、出発予定時刻を指定しておくとその出発予定時刻の前に車両の空調を開始し、出発予定時刻には暖房や冷房によって車室内を快適な温度する機能である。なお、バッテリは低温または高温では出力が低下するので、バッテリの性能を発揮する点においても乗車前空調を行なう場合もある。このような乗車前空調では、エンジンを起動しないでエアコンを作動させるので、バッテリからの放電が継続して行なわれ、バッテリへ充電が行なわれることは無い。
 ステップS1においては、スイッチ等の乗員からの指示に基づいて乗車前空調を実行するか否かが判断される。ステップS1において乗車前空調を実行すると判断された場合には(ステップS1でYES)、一連の乗車前空調処理がステップS30で実行される。
 ステップS30では、まずステップS2の電流ゼロ制御が実行される。バッテリB1の電力を用いてエアコン7を作動させる場合を例に説明すると、制御装置30は、システムメインリレーSMR1を開放状態としてバッテリ電流Ib1がゼロとなるように回路の状態を設定する。そして、ステップS3において、制御装置30は、電流センサ11-1の検出した値をオフセット値として記憶する。このオフセット値は、制御装置30の内部にある不揮発メモリなどに記憶される。なお、電流ゼロ制御は、必ずしもシステムメインリレーをオフ状態に設定しなくてもよく、昇圧コンバータの動作を停止させ、エアコンなどの負荷の動作も停止させた状態のようにバッテリ電流が流れないようにバッテリ周辺回路の状態を設定すればよい。
 またこのとき、電流がゼロであるから開路電圧OCVを計測することが可能である。したがって、制御装置30は、ステップS4において電圧センサ10-1を用いて開路電圧OCVを計測する。そして、このとき計測された開路電圧OCVに基づいて図2に示した相関関係を記憶したマップを用いて充電状態SOCの初期値を得る。
 続いて、ステップS5において、制御装置30は、充電状態SOCの算出方法を電流積算法に設定する。このとき電流センサの検出した電流値はステップS3で記憶しておいたオフセット値を用いて補正されて積算に使用される。その後、この算出方法でSOCが算出されるように設定された状態で、ステップS6において空調が実行される。
 乗車前空調は、出発予定時刻の10分前など出発予定時刻に近づいたことをもって自動的に開始される。また、運転者が車両に乗り込むと、乗車前空調は終了する。運転者の乗り込みの有無は、ドアを開いたり、イグニッションスイッチを操作したり空調装置の設定を変更したりする操作の有無で判断すればよい。ただし、出発を取りやめる場合も考えられる。したがって、バッテリが放電し過ぎないように、出発予定時刻になって所定時間経過しても運転者が乗り込んで来ない場合にも、乗車前空調を終了させる。
 乗車前空調が終了すると、ステップS7において、制御装置30は、放電電流積算値を記憶する。その後ステップS22において、制御は所定のメインルーチンに移される。
 一方、ステップS1で乗車前空調が実行されないと判断された場合、ステップS1からステップS8に処理が進む。ステップS8では、バッテリに対してプラグイン充電を行なうか否かが判断される。たとえば、図1の充電器6に電源8が接続されているか否かでプラグイン充電を実行するか否かが判断される。
 ステップS8においてプラグイン充電が実行されると判断された場合にはステップS8からステップS9に処理が進む。ステップS9では、乗車前空調直後のプラグイン充電であるか否かが判断される。
 乗車前空調直後のプラグイン充電には、乗車前空調が終了してから所定時間内にプラグイン充電が開始される場合と、プラグイン充電中に乗車前空調を実行がされてバッテリの放電が発生し(空調の消費電力がプラグイン充電電力よりも大きい場合)、乗車前空調が終了した後もプラグイン充電が継続される場合とが含まれる。
 このような乗車前空調時に放電したバッテリの放電量は、その直後であれば必ず充電することができる。SOCを従来の方法によって推定して充電を行なうと、まだ本当は上限SOCに至っていないのに、推定したSOCが高めになってしまい充電量が不足する場合がある。したがって、外部充電による電力での航続距離が短くなってしまう。
 本実施の形態では、放電した電流量(Ah:アンペアアワー)を積算しておいて充電を同量だけ行なうので、確実に放電前の状態までバッテリのSOCを回復させることができる。言い換えれば、放電した電流量と同じ電流量の充電を行なってもバッテリが過充電になる恐れが無い。放電した電流量と同じ電流量の充電は、乗車前空調時とプラグイン充電時のSOCの推定を同じ方法つまり電流積算のみで行なうことにより実現できる。
 ステップS9で乗車前空調直後のプラグイン充電であると判断された場合には、ステップS40で示される一連のプラグイン充電処理が実行される。この判断は、たとえば、ステップS6の空調が終了した時刻を記憶しておけば、その時刻から所定時間がまだ経過していないで判断することができる。
 まず、ステップS10において、制御装置30は、電流センサで検出される電流値の補正に、乗車前空調時のステップS3で記憶した値を使用するように設定する。その理由は、乗車前空調直後であるからオフセット補正値がそのまま使用できることと、オフセット補正値を変えると放電した量だけ正確に充電する必要があるのに充電量にずれが生じてしまう恐れがあることによる。また、SOCの初期値は、前工程であるS30の終了時点のSOCを引き継ぐ。放電直後であればバッテリに分極の影響が残っているので開路電圧を測定して図2のマップでSOCを得ると誤差が生じるからである。
 続いて、ステップS11において、制御装置30は、充電状態SOCの算出方法を電流積算法に設定する。このとき電流センサの検出した電流値はステップS3で記憶しておいたオフセット値を用いて補正されて積算に使用される。その後、この算出方法でSOCが算出されるように設定された状態で、ステップS12においてプラグイン充電が実行される。乗車前空調時と同じ方法で同じオフセット値を適用してSOCを算出することで、乗車前空調時に放電した積算電流値分の充電が実行できる。
 以上で、ステップS30の一連の乗車前空調を前工程とした場合の、後工程であるステップS40の一連のプラグイン充電処理が終了する。
 一方、ステップS9で乗車前空調直後のプラグイン充電でないと判断された場合には、ステップS13に処理が進み、通常のプラグイン充電処理が実行される。
 バッテリB1にプラグイン充電を実行する場合を例に説明する。ステップS13では、ステップS2と同様の電流ゼロ制御が実行される。そして、ステップS14において、制御装置30は、電流センサ11-1の検出した値をオフセット値として記憶する。このオフセット値は、制御装置30の内部にある不揮発メモリなどに記憶される。
 またこのとき、電流がゼロであるから開路電圧OCVを計測することが可能である。したがって、制御装置30は、ステップS15において電圧センサ10-1を用いて開路電圧OCVを計測する。そして、このとき計測された開路電圧OCVに基づいて図2に示した相関関係を記憶したマップを用いて充電状態SOCの初期値を得る。
 続いて、ステップS16において、制御装置30は、充電状態SOCの算出方法を電流積算法に設定する。このとき電流センサの検出した電流値はステップS14で記憶しておいたオフセット値を用いて補正されて積算に使用される。その後、この算出方法でSOCが算出されるように設定された状態で、ステップS17においてプラグイン充電が実行される。
 プラグイン充電は、充電が進行しSOCが管理上限値に達したり、プラグが抜かれるなどして外部電源との接続が無くなったりすると終了する。
 続いて、プラグイン充電や乗車前空調ではなく、通常の走行時に行なわれるSOC推定について説明する。ステップS8でプラグイン充電を行なわないと判断された場合には、ステップS18に処理が進む。たとえば、図1の充電器6に電源8が接続されていなければ、プラグイン充電を実行しないというように制御装置30が認識する。
 ステップS18では、制御装置30は、システムメインリレーSMR1,SMR2を開放状態としてバッテリ電流Ib1,Ib2がゼロとなるように回路の状態を設定する。そして、ステップS19において、制御装置30は、電流センサ11-1,11-2の検出した値をオフセット値として記憶する。このオフセット値は、制御装置30の内部にある不揮発メモリなどに記憶される。
 続いて、ステップS20において、制御装置30は、SOCの算出方法をステップS5,S11,S16とは異なる推定方法(推定OCV法と呼ぶことにする)に設定する。この推定OCV法では、電流積算だけでなく、バッテリ電圧やバッテリ内部抵抗を反映させて頻繁に充電と放電とを繰返すようなバッテリ使用法がなされた場合に誤差が積算されてしまうのを防いでいる。
 そして、ステップS21において、通常走行時の充放電制御が実行される。この場合には、バッテリ寿命の点から定められたバッテリのSOC管理上限値と管理下限値との間に推定されたSOCが常に入るようにモータの力行・回生制御やエンジンおよび発電機による発電の制御が実行される。そして、イグニッションスイッチがOFFとなった場合には、その時点でのバッテリのSOCの推定値を不揮発性メモリに格納する。この格納された推定値は、次回のSOCの初期値として使用される場合もある。
 ステップS7,S12,S17,S21のいずれかの処理が終了すると、ステップS22に処理が進み制御はメインルーチンに移される。
 以上説明したように、制御装置30は、充電または放電のいずれかしか実行されないことが分かっている場合には、ステップS5,S11,S16において、SOCの初期値に対して充電又は放電する電流を積算してSOCの推定を行なう。一方、走行時のように充電と放電のサイクルが頻繁に繰返される可能性のある場合には、ステップS20において異なる推定方法である推定OCV法に設定する。この推定OCV法では、電流積算だけでなく、バッテリ電圧やバッテリ内部抵抗を反映させて、頻繁に充電と放電とを繰返すようなバッテリ使用法がなされた場合に誤差が積算されてしまうのを防いでいる。
 制御装置30が行なうこのようなSOCの推定処理の切替えについて、ブロック図を用いて説明する。
 図5は、制御装置30が実行するSOC推定処理の構成を示すブロック図である。
 図5を参照して、バッテリの充放電電流は電流検出部110により検出される。また、そのときのバッテリ電圧は電圧検出部112により検出される。なお、電流検出部110は、図1の電流センサ11-1,11-2に対応する。電圧検出部112は、図1の電圧センサ10-1,10-2に対応する。
 車両の通常走行時には、電池モデルMBを用いたSOCの推定が行なわれる。そして、電池モデルMBを用いたSOCの推定値が使用されるように、選択部136の選択設定がB側に設定される。電流検出部110により検出された充放電電流値は、疑似SOC推定部114で積分され、あらかじめ求められていたバッテリのSOCの初期値に加算されてSOCの一応の値である疑似SOCが推定される。このSOCの初期値は、満充電時であれば100%であるが、または前回使用終了時に制御装置30の内部の不揮発性メモリに保存されていたSOC推定値を読み出して用いることができる。
 このようにして求めた疑似SOCに基づき、起電力推定部116により、その疑似SOCに対応するバッテリ電圧を推定する。この起電力推定部116によって推定されるバッテリ電圧は、バッテリの開路電圧の推定値Vocである。このような開路電圧Vocは、例えば、あらかじめ図2のようなSOCと開路電圧とのマップをバッテリ毎に求めておき、疑似SOC推定部114から与えられる疑似SOCに対応する開路電圧Vocとして推定することができる。
 また、電流検出部110によって検出されたバッテリの充放電電流値から、バッテリの内部抵抗による電圧変動が電圧変動推定部118により推定される。この電圧変動推定部118では、下に示す式により内部抵抗によるバッテリ電圧の変動を推定する。
Vr=-r×Ib
 ここでrは内部抵抗を示し、Ibはバッテリ電流値(放電が正)を示す。また、Vrは電圧変動推定部118によって推定される内部抵抗による電圧変動である。なお、バッテリの内部抵抗rは、あらかじめバッテリ毎に決定しておく。また、電流値Ibは、電流検出部110によって検出された充放電電流値である。この電圧変動分Vrは、図3のΔV1に対応するものである。
 さらに、動的電圧変動推定部120により、バッテリの充放電電流の変化に基づいたバッテリ電圧の変動が推定される。この動的電圧変動は、バッテリの分極によって生じるものである。動的電圧変動推定部120では、頻繁に充放電を繰返すような使用パターンに基づいて決定されたバッテリの動的な電圧変動Vdynを与える。この電圧変動分Vdynは、図3のΔV2に対応するものである。たとえば、バッテリ電流Ibに対して走行時に適合した設定時間における分極電圧を計測しておき電圧変動Vdynを電流に対するマップとして定義して用いることができる。
 次に、上述した起電力推定部116、電圧変動推定部118、動的電圧変動推定部120の出力値を加算器122で加算し、バッテリ電圧の推定値である推定電圧Vestを求める。すなわち、Vest=Voc+Vr+Vdynとなる。
 なお、以上に述べた疑似SOC推定部114、起電力推定部116、電圧変動推定部118、動的電圧変動推定部120、加算器122により、電池モデルMBが構成される。
 上述した電池モデルMBにより推定されたバッテリの推定電圧Vestは、比較器124で、電圧検出部112によって検出された実際のバッテリの測定電圧Vmesと比較され、その差がSOC修正量算出部126に入力される。SOC修正量算出部126および加算器128によって、下に示す式の演算が実行され、バッテリのSOCの推定値が算出される。
SOC=SOCp+Kp×(Vmes-Vest)+Ki×∫(Vmes-Vest)dt
 ここでSOCpは、疑似SOCを示し、Kp,Kiは係数を示す。上式において、疑似SOC(SOCp)は疑似SOC推定部114の出力値である。また、SOC修正量算出部126では、上式の第2項及び第3項すなわち比較器124によって求められた推定電圧Vestと測定電圧Vmesとの差(Vmes-Vest)に比例する成分と、この差の積分値に比例する成分とを算出する。ここで、係数Kp,Kiはそれぞれあらかじめバッテリ特性から決定しておく。SOC修正量算出部126によって算出された上記各成分は、上式に示されるように、加算器128により疑似SOC推定部114の出力値SOCpに加算される。これによりバッテリのSOCの推定値を得ることができる。
 このように通常走行時においては、電池モデルMBを使用し、疑似SOCからバッテリの起電力を推定するとともに、バッテリ電圧の内部抵抗による変動分と、充放電電流の変化による動的な電圧変動分とを推定し、これらの合計としてバッテリの電圧を推定する。すなわち、電池モデルにより、疑似SOCとともにバッテリの状態の変動を考慮してバッテリ電圧Vestを推定する。次に、この推定電圧Vestが実際に測定されたバッテリの電圧Vmesと等しくなるように疑似SOCを修正してバッテリのSOCを推定している。
 このように、走行時に用いられる電池モデルMBを使用すれば、推定電圧Vestと実際に測定されたバッテリの電圧Vmesとが等しくなるように疑似SOCを修正していくので、仮に最初に与えられるSOCの初期値が大きな誤差を含んでいても、速やかに正確なSOCの推定値に収束することができる。
 一方、充電または放電のいずれかしか実行されないことが分かっている場合たとえば、プラグイン充電時や乗車前空調の実行時のような場合には、電池モデルMAを用いたSOCの推定が行なわれる。そして、電池モデルMAを用いたSOCの推定値が使用されるように、選択部136の選択設定がA側に設定される。
 電池モデルMAにおいて、初期SOC検出部132は、電圧検出部112で検出されたバッテリ電圧に基づいて初期SOCを決定する。図3で説明したように充電または放電が停止された直後であれば分極の影響が残存しているので、それまでに電池モデルMA、MB等で推定されていたSOCを引き継ぐ。充電または放電が停止されてからしばらく電流がほぼゼロである時間が続いた後であれば、電流ゼロ制御が実行されたときに計測したバッテリ電圧VBは電池起電力に等しいので図2に示したマップからSOCを求める。
 そして、電流検出部110により検出された充放電電流値が、電流積算処理部134で積分され、初期SOC検出部132で求められていたバッテリのSOCの初期値に加算され、SOCが推定される。
 プラグイン充電時や乗車前空調の実行時のような場合は、充電または放電のいずれかしか実行されないし、車両走行時のモータ電流のような大電流が流れることも無い。したがってSOCの推定誤差も蓄積しにくいのでこのような電流積算法でSOCを推定すればよい。これにより分極による電圧変動分の拡大の影響を受けないので、SOC管理上限値まで正確にプラグイン充電を行なうことが可能となる。また乗車前空調でバッテリから使用した分の電力を確実にプラグイン充電で戻すことができる。このため、EV走行の航続距離を伸ばす点で有利となる。
 なお、プラグイン充電時や乗車前空調の実行時のような場合は、充電または放電のいずれかしか実行されないし、車両走行時のモータ電流のような大電流が流れることも無いので、図5の電流検出部110を電流検出部110A,110Bのようにレンジの異なる検出部に分けてもよい。そして、電池モデルMAを使用するときは、低計測レンジで高分解能の電流検出部110Aを使用し、電池モデルMBを使用するときは、大電流が計測可能な計測レンジで低分解能の電流検出部110Bを使用するように、選択部136の選択設定に連動させて電流検出部110A,110Bの使用を切替えも良い。図1でいえば電流センサ11-1,11-2に代えて、それぞれ同じ場所に精度の高いセンサ11-1A,11-2Aと精度は劣るがもっと大電流を計測可能なセンサ11-1B,11-2Bを設けて使い分ければよい。このようにすることでより一層正確なSOC推定が実行できる。
 図6は、本実施の形態のSOC算出処理に基づいて、乗車前空調の直後にプラグイン充電が行なわれた場合の一例を説明するための波形図である。
 図6を参照して、時刻t11までに既にプラグイン充電が実行されて、バッテリの充電状態SOCが管理上限値Smaxに達している状態であるとする。予め設定された時刻になったことに応じて、時刻t11において乗車前空調が開始される。このときバッテリ電流IBは放電電流である。
 時刻t11~t12の間は乗車前空調が実行される。その間、放電が進むことによりSOCは低下していく。そしてバッテリ電流IBの積算がされ、その値に基づいてSOCが推定される。出発予定時刻から所定時間が経過しても乗員が乗り込んでこないので、時刻t12で乗車前空調が終了する。また、好ましくは、乗車前空調が終了した時点で、SOC管理上限値Smaxまでバッテリが充電されていた時点から放電したバッテリ電流IBの積算値k(Ah)を記憶しておいても良い。
 以上の処理は、図4のステップS1からステップS2~S7の処理が実行されることに対応する。
 そして、時刻t12~t13は、バッテリ電流ゼロの状態が続く。その後、走行が実行されず、充電器に外部電源が接続されたままの状態が継続していれば、時刻t13において、放電された分の充電が開始される。
 時刻t13~t14では、プラグイン充電が実行される。その間、充電が進むことによりSOCは上昇していく。そしてバッテリ電流IBの積算がされ、その値に基づいてSOCが推定される。SOCが元通りの管理上限値Smaxに到達すると、プラグイン充電は終了する。また、好ましくは、記憶されていたバッテリ電流IBの積算値k(Ah)分の充電を同じく積算値で判断して充電を停止させても良い。
 以上の処理は、図4のステップS1からステップS10~S12の処理が実行されることに対応する。このとき、電流センサのオフセット値は、放電時と同じ値が使用され電流値が補正されるので、オフセット値の違いにより積算値に狂いが生じることが防止される。また、プラグイン充電において、正確にSOCの管理上限値まで充電ができるので、EV走行の航続距離を伸ばすことができる。
 最後に図1を参照して、本実施の形態について総括的に説明する。車両1は、充放電が可能な二次電池(バッテリB1,B2)と、二次電池の電流を検出する電流センサ(11-1,11-2)と、二次電池の充電状態(SOC)を推定し、充電状態に基づいて二次電池の充放電を制御する制御装置30とを備える。制御装置30は、充電と放電のサイクルが繰返される第1の動作モードでは、二次電池の開路電圧(VOC)を推定し、開路電圧を分極に基づいて補正した値に基づいて充電状態(SOC)を決定する。制御装置30は、充電および放電のうちのいずれか一方が継続する第2の動作モードでは、電流センサ(11-1,11-2)で検出された電流を積算した結果に基づいて充電状態(SOC)を決定する。
 好ましくは、車両1は、図1の外部電源に接続可能な充電器6を搭載しており、二次電池(バッテリB1,B2)に車両外部から充電を行なう外部充電が可能に構成される。第2の動作モードは、外部充電時に選択される。
 より好ましくは、車両1は、二次電池(バッテリB1,B2)から電力供給を受け乗車前空調を実行可能な空調装置(エアコン7)をさらに備える。第2の動作モードは、外部充電および乗車前空調時に選択される。制御装置30は、外部充電と乗車前空調のいずれか一方を前処理として実行し他方を前処理に引き続いて行なわれる後処理として実行した場合には、前処理の実行前に電流センサのオフセット値を記憶し、後処理の実行時には前処理の実行前に記憶されたオフセット値を用いて電流センサで検出された電流を補正する。
 好ましくは、車両1は、力行動作と回生動作とが実行可能な電動機(モータジェネレータMG1,MG2)をさらに備える。第1の動作モードは、力行動作および回生動作を繰り返し行ない得る車両走行時に選択される。
 また、図4に示すように、この発明は、他の局面では、充放電が可能な二次電池(B1,B2)の充電状態推定方法であって、二次電池が使用される動作モードを判断するステップ(S1,S8,S9)と、判断するステップ(S1,S8,S9)において動作モードが、充電と放電のサイクルが繰返される第1の動作モードである場合に(ステップS1でNO、ステップS8でNO)、二次電池の開路電圧を推定し、開路電圧を分極に基づいて補正した値に基づいて充電状態を決定するステップ(S20)と、判断するステップ(S1,S8,S9)において動作モードが、充電および放電のうちのいずれか一方が継続する第2の動作モードである場合に(ステップS1でYESまたはステップS8でYES)、電流センサで検出された電流を積算した結果に基づいて充電状態を決定するステップ(ステップS5,S11,S16)とを備える。
 好ましくは、二次電池(バッテリB1,B2)は、車両1に搭載される。車両1は、二次電池(バッテリB1,B2)に車両外部(8)から充電を行なう外部充電が可能に構成される。判断するステップは、外部充電時に第2の動作モードであると判断する。
 より好ましくは、車両は、二次電池から電力供給を受け乗車前空調を実行可能な空調装置(エアコン7)をさらに備える。第2の動作モードは、外部充電および乗車前空調時に選択される。外部充電(S40)と乗車前空調(S30)のいずれか一方を前処理として実行し他方を前処理に引き続いて行なわれる後処理として実行した場合に、前処理の実行前に電流センサのオフセット値を記憶し、後処理の実行時に前処理の実行前に記憶されたオフセット値を用いて電流センサで検出された電流を補正するステップをさらに備える。
 なお、図4では乗車前空調(S30)を前処理、外部充電を後処理(S40)とした場合を説明したが、逆であっても良い。その場合には外部充電時にステップS10に代えて電流センサオフセット値および初期SOCの取得と記憶が実行され、乗車前空調時にステップS3のオフセット値記憶に代えて外部充電時に記憶されたオフセット値および外部充電完了時に推定されたSOCを引き続き使用する。
 好ましくは、車両は、力行動作と回生動作とが実行可能な電動機(モータジェネレータMG1,MG2)をさらに備える。判断するステップは、力行動作および回生動作を繰り返し行ない得る車両走行時に第1の動作モードであると判断する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (8)

  1.  充放電が可能な二次電池(B1,B2)と、
     前記二次電池の電流を検出する電流センサ(11-1,11-2)と、
     前記二次電池の充電状態を推定し、前記充電状態に基づいて前記二次電池の充放電を制御する制御装置(30)とを備え、
     前記制御装置(30)は、充電と放電のサイクルが繰返される第1の動作モードでは、前記二次電池の開路電圧を推定し、前記開路電圧を分極に基づいて補正した値に基づいて前記充電状態を決定し、
     前記制御装置は、充電および放電のうちのいずれか一方が継続する第2の動作モードでは、前記電流センサ(11-1,11-2)で検出された電流を積算した結果に基づいて前記充電状態を決定する、車両。
  2.  前記車両は、前記二次電池に車両外部から充電を行なう外部充電が可能に構成され、
     前記第2の動作モードは、前記外部充電時に選択される、請求の範囲第1項に記載の車両。
  3.  前記二次電池から電力供給を受け乗車前空調を実行可能な空調装置(7)をさらに備え、
     前記第2の動作モードは、前記外部充電および前記乗車前空調時に選択され、
     前記制御装置(30)は、前記外部充電と前記乗車前空調のいずれか一方を前処理として実行し他方を前記前処理に引き続いて行なわれる後処理として実行した場合には、前記前処理の実行前に前記電流センサのオフセット値を記憶し、前記後処理の実行時には前記前処理の実行前に記憶された前記オフセット値を用いて前記電流センサで検出された電流を補正する、請求の範囲第2項に記載の車両。
  4.  力行動作と回生動作とが実行可能な電動機(MG1,MG2)をさらに備え、
     前記第1の動作モードは、前記力行動作および前記回生動作を繰り返し行ない得る車両走行時に選択される、請求の範囲第1項に記載の車両。
  5.  充放電が可能な二次電池(B1,B2)の充電状態推定方法であって、
     前記二次電池が使用される動作モードを判断するステップ(S1,S8,S9)と、
     前記判断するステップ(S1,S8,S9)において前記動作モードが、充電と放電のサイクルが繰返される第1の動作モードである場合に、前記二次電池の開路電圧を推定し、前記開路電圧を分極に基づいて補正した値に基づいて前記充電状態を決定するステップ(S20)と、
     前記判断するステップ(S1,S8,S9)において前記動作モードが、充電および放電のうちのいずれか一方が継続する第2の動作モードである場合に、前記電流センサで検出された電流を積算した結果に基づいて前記充電状態を決定するステップ(ステップS5,S11,S16)とを備える、二次電池の充電状態推定方法。
  6.  前記二次電池(B1,B2)は、車両(1)に搭載され、
     前記車両(1)は、前記二次電池(B1,B2)に車両外部から充電を行なう外部充電が可能に構成され、
     前記判断するステップは、前記外部充電時に前記第2の動作モードであると判断する、請求の範囲第5項に記載の二次電池の充電状態推定方法。
  7.  前記車両は、
     前記二次電池から電力供給を受け乗車前空調を実行可能な空調装置(7)をさらに備え、
     前記第2の動作モードは、前記外部充電および前記乗車前空調時に選択され、
     前記外部充電(S40)と前記乗車前空調(S30)のいずれか一方を前処理として実行し他方を前記前処理に引き続いて行なわれる後処理として実行した場合に、前記前処理の実行前に前記電流センサのオフセット値を記憶し、前記後処理の実行時に前記前処理の実行前に記憶された前記オフセット値を用いて前記電流センサで検出された電流を補正するステップをさらに備える、請求の範囲第6項に記載の二次電池の充電状態推定方法。
  8.  前記車両は、
     力行動作と回生動作とが実行可能な電動機(MG1,MG2)をさらに備え、
     前記判断するステップは、前記力行動作および前記回生動作を繰り返し行ない得る車両走行時に前記第1の動作モードであると判断する、請求の範囲第5項に記載の二次電池の充電状態推定方法。
PCT/JP2008/068837 2008-02-19 2008-10-17 車両および二次電池の充電状態推定方法 WO2009104305A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08872693.0A EP2246956B1 (en) 2008-02-19 2008-10-17 Vehicle and method for estimating charged state of secondary battery
CN2008801270547A CN101939892B (zh) 2008-02-19 2008-10-17 车辆、二次电池的充电状态推定方法以及车辆的控制方法
US12/864,577 US8509975B2 (en) 2008-02-19 2008-10-17 Vehicle, method of estimating state of charge of secondary battery, and method of controlling vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008037757A JP4893653B2 (ja) 2008-02-19 2008-02-19 車両、二次電池の充電状態推定方法および車両の制御方法
JP2008-037757 2008-02-19

Publications (1)

Publication Number Publication Date
WO2009104305A1 true WO2009104305A1 (ja) 2009-08-27

Family

ID=40985199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068837 WO2009104305A1 (ja) 2008-02-19 2008-10-17 車両および二次電池の充電状態推定方法

Country Status (5)

Country Link
US (1) US8509975B2 (ja)
EP (1) EP2246956B1 (ja)
JP (1) JP4893653B2 (ja)
CN (1) CN101939892B (ja)
WO (1) WO2009104305A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030401A1 (ja) 2009-09-09 2011-03-17 トヨタ自動車株式会社 車両用の電源システムおよびその制御方法
JP2011149726A (ja) * 2010-01-19 2011-08-04 Gs Yuasa Corp 充電状態測定装置
WO2011128750A3 (en) * 2010-04-14 2012-01-05 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
CN102576056A (zh) * 2010-10-15 2012-07-11 日本精工株式会社 电源状态诊断方法及装置
JP2015121444A (ja) * 2013-12-20 2015-07-02 トヨタ自動車株式会社 蓄電システム
US10090686B2 (en) 2013-12-06 2018-10-02 Toyota Jidosha Kabushiki Kaisha Electrical storage system
CN110441692A (zh) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 一种电池组电量交流测算方法、装置及存储介质
US20220314730A1 (en) * 2021-04-02 2022-10-06 Toyota Jidosha Kabushiki Kaisha Vehicle thermal management system

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967362B2 (ja) * 2006-02-09 2012-07-04 トヨタ自動車株式会社 二次電池の残存容量推定装置
US7741816B2 (en) * 2008-03-28 2010-06-22 Tesla Motors, Inc. System and method for battery preheating
JP4649682B2 (ja) * 2008-09-02 2011-03-16 株式会社豊田中央研究所 二次電池の状態推定装置
DE102009037725A1 (de) * 2009-08-17 2011-02-24 Li-Tec Battery Gmbh Energiespeichervorrichtung mit einer Energiespeichereinrichtung
JP5407758B2 (ja) * 2009-10-29 2014-02-05 トヨタ自動車株式会社 車両の電源装置
KR101132948B1 (ko) * 2010-05-13 2012-04-05 엘에스산전 주식회사 전기자동차 충방전 시스템, 충방전 장치, 충방전 방법
JP5267733B2 (ja) * 2010-08-30 2013-08-21 トヨタ自動車株式会社 蓄電装置の充電装置および充電方法
EP2639099A4 (en) * 2010-11-10 2014-08-13 Toyota Motor Co Ltd POWER SUPPLY SYSTEM FOR AN ELECTRIC VEHICLE, CONTROL PROCESS AND ELECTRIC VEHICLE
KR101194778B1 (ko) * 2010-12-22 2012-10-25 한국과학기술원 전기자동차의 공조제어 방법
JP5318128B2 (ja) * 2011-01-18 2013-10-16 カルソニックカンセイ株式会社 バッテリの充電率推定装置
WO2012101771A1 (ja) * 2011-01-26 2012-08-02 株式会社 日立製作所 電動車両用蓄電システム
JP5607569B2 (ja) * 2011-03-31 2014-10-15 トヨタ自動車株式会社 車両の充電装置およびそれを備える車両、ならびに電流センサのオフセット補正方法
CN103534897B (zh) * 2011-05-16 2016-11-09 日立汽车系统株式会社 电池控制装置
US8880253B2 (en) * 2011-06-28 2014-11-04 Ford Global Technologies, Llc Nonlinear adaptive observation approach to battery state of charge estimation
CN103119822B (zh) * 2011-09-21 2015-01-07 丰田自动车株式会社 蓄电系统以及蓄电系统的控制方法
CN103035966B (zh) * 2011-09-29 2015-06-03 联想(北京)有限公司 电池充放电控制方法及电子设备
JP5739788B2 (ja) * 2011-11-15 2015-06-24 株式会社東芝 充放電計画立案システムおよび充放電計画立案方法
FR2987451A1 (fr) 2012-02-29 2013-08-30 St Microelectronics Grenoble 2 Dispositif de mesure de la tension a vide d'une batterie
JP2013182779A (ja) * 2012-03-01 2013-09-12 Toyota Industries Corp 電池の状態制御方法及び装置
KR101486470B1 (ko) * 2012-03-16 2015-01-26 주식회사 엘지화학 배터리 상태 추정 장치 및 방법
US9653759B2 (en) * 2012-03-29 2017-05-16 The Boeing Company Method and apparatus for optimized battery life cycle management
KR101908412B1 (ko) 2012-03-29 2018-10-17 에스케이이노베이션 주식회사 배터리 관리 시스템 및 그 시스템의 soc 값 보정 방법
JP6155781B2 (ja) * 2012-05-10 2017-07-05 株式会社Gsユアサ 蓄電素子管理装置、及び、soc推定方法
KR101956384B1 (ko) 2012-05-21 2019-03-08 현대자동차주식회사 전기자동차의 주행가능거리 산출 방법
JP5673633B2 (ja) * 2012-06-01 2015-02-18 株式会社デンソー 車載充電制御装置
GB201216127D0 (en) * 2012-09-11 2012-10-24 Jaguar Cars A method for determining the change in a vehicle battery
EP2899058B1 (en) * 2012-09-19 2017-09-27 Nissan Motor Co., Ltd. Vehicle control system, vehicle information supply device, and vehicle information supply method
CN104684779B (zh) * 2012-10-02 2017-04-12 丰田自动车株式会社 车辆及车辆的控制方法
JP5929711B2 (ja) * 2012-11-02 2016-06-08 トヨタ自動車株式会社 充電システムおよび、電圧降下量の算出方法
US8903580B2 (en) * 2012-11-14 2014-12-02 GM Global Technology Operations LLC Hybrid vehicle with dynamically-allocated high-voltage electrical power
CN103841717A (zh) * 2012-11-21 2014-06-04 赵元雷 利用燃油汽车充电指示灯改制成的纯电动汽车dc-dc系统指示灯
DE112013005699B4 (de) * 2012-11-29 2023-03-23 Mitsubishi Electric Corporation Schätzvorrichtung für einen internen Zustand einer Batterie
EP2952919B1 (en) * 2012-12-04 2021-03-24 LG Chem, Ltd. Method and system with an apparatus for estimating a parameter of a secondary battery
JP2014115088A (ja) * 2012-12-06 2014-06-26 Sony Corp 電池残容量検出装置、電動車両および電力供給装置
JP5637339B1 (ja) 2012-12-26 2014-12-10 三菱自動車工業株式会社 電動車両を用いた電力供給装置
US9085238B2 (en) * 2013-01-11 2015-07-21 Johnson Controls Technology Company Energy storage control system and method
JP2014158414A (ja) * 2013-01-21 2014-08-28 Semiconductor Energy Lab Co Ltd 蓄電体を有する車両
JP6300000B2 (ja) * 2013-02-20 2018-03-28 株式会社Gsユアサ 充電状態推定装置、充電状態推定方法
JP6429631B2 (ja) * 2013-06-18 2018-11-28 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
EP2816366A1 (en) * 2013-06-18 2014-12-24 VITO NV (Vlaamse Instelling voor Technologisch Onderzoek NV) Monitoring charge stored in a battery
CN104297578B (zh) * 2013-07-15 2017-10-24 同济大学 基于滑模观测器的超级电容器组荷电状态估计方法
US9108524B2 (en) * 2013-10-22 2015-08-18 GM Global Technology Operations LLC Battery SOC estimation with automatic correction
FR3013166B1 (fr) * 2013-11-12 2015-12-18 Peugeot Citroen Automobiles Sa Dispositif et procede de recharge d’un stockeur d’energie electrique d’un vehicule automobile
JP6310938B2 (ja) * 2013-11-13 2018-04-11 ボルボ ラストバグナー アクチエボラグ 充放電システム
JP6187308B2 (ja) * 2014-02-19 2017-08-30 トヨタ自動車株式会社 充電制御装置
US9539912B2 (en) 2014-02-20 2017-01-10 Ford Global Technologies, Llc Battery capacity estimation using state of charge initialization-on-the-fly concept
US9718455B2 (en) 2014-02-20 2017-08-01 Ford Global Technologies, Llc Active battery parameter identification using conditional extended kalman filter
US9381825B2 (en) 2014-02-20 2016-07-05 Ford Global Technologies, Llc State of charge quality based cell balancing control
US9272634B2 (en) 2014-02-20 2016-03-01 Ford Global Technologies, Llc Active battery system estimation request generation
JP2015155859A (ja) * 2014-02-21 2015-08-27 ソニー株式会社 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法
JP6264147B2 (ja) * 2014-03-28 2018-01-24 株式会社Gsユアサ 蓄電素子の運転状態推定装置、運転状態推定方法及び蓄電システム
JP6287509B2 (ja) * 2014-04-08 2018-03-07 株式会社豊田自動織機 二次電池のsoc推定装置および推定方法
JP6245094B2 (ja) * 2014-06-30 2017-12-13 日立化成株式会社 電池システム
US10408880B2 (en) * 2014-08-19 2019-09-10 Fca Us Llc Techniques for robust battery state estimation
JP6256765B2 (ja) * 2014-09-10 2018-01-10 トヨタ自動車株式会社 充電状態推定方法
EP3001497A1 (de) * 2014-09-23 2016-03-30 HILTI Aktiengesellschaft Intelligentes Ladeende
KR102222075B1 (ko) * 2014-10-10 2021-03-04 삼성디스플레이 주식회사 유기 발광 다이오드의 품질 검사 방법 및 이를 수행하기 위한 유기 발광 다이오드의 품질 검사 장치
JP6426267B2 (ja) 2015-03-02 2018-11-21 日立オートモティブシステムズ株式会社 電池制御装置、および、車両システム
JP2016170063A (ja) * 2015-03-13 2016-09-23 住友重機械工業株式会社 作業機械
US9728995B2 (en) * 2015-04-08 2017-08-08 Intel Corporation Systems, methods and devices for adaptable battery charging
JP6376069B2 (ja) * 2015-07-30 2018-08-22 トヨタ自動車株式会社 車両の電源装置
JP6459868B2 (ja) * 2015-09-04 2019-01-30 トヨタ自動車株式会社 充電装置
US10259337B2 (en) * 2015-10-30 2019-04-16 Faraday & Future Inc. Electric vehicle battery charge and discharge management
JP6707843B2 (ja) 2015-11-17 2020-06-10 オムロン株式会社 バッテリ残量表示装置、バッテリシステムおよびバッテリ残量表示方法
JP6623725B2 (ja) * 2015-12-01 2019-12-25 オムロン株式会社 バッテリ残量推定システムおよびバッテリ残量推定方法
US9866060B2 (en) * 2015-12-21 2018-01-09 Mediatek Inc. Apparatus for performing hybrid power control in an electronic device to allow charging using any of high power adaptors corresponding to different voltages
JP6220904B2 (ja) * 2016-01-14 2017-10-25 本田技研工業株式会社 蓄電装置
CN108684209B (zh) 2016-01-29 2023-03-14 株式会社半导体能源研究所 电力控制系统
US10845417B2 (en) * 2016-01-29 2020-11-24 Vehicle Energy Japan, Inc. Battery state estimation device, battery control device, battery system, battery state estimation method
JP6481661B2 (ja) * 2016-06-10 2019-03-13 トヨタ自動車株式会社 電池システム
EP3518376B1 (en) 2016-09-23 2021-08-25 Furukawa Electric Co., Ltd. Secondary battery state detection device and secondary battery state detection method
CN108513616B (zh) * 2016-12-30 2020-03-10 华为技术有限公司 一种电池漏电流检测方法、装置和电路
KR102466380B1 (ko) * 2017-06-07 2022-11-14 현대자동차주식회사 차량용 직류 변환기 제어방법 및 시스템
DE102017210747A1 (de) * 2017-06-27 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Vorwärmen einer Batterie eines elektrisch betriebenen Kraftfahrzeugs sowie Ladevorrichtung
JP6879139B2 (ja) * 2017-09-14 2021-06-02 トヨタ自動車株式会社 電源システム
JP6759465B2 (ja) * 2017-09-26 2020-09-23 株式会社東芝 ハイブリッド車両
JP6881350B2 (ja) * 2018-02-28 2021-06-02 トヨタ自動車株式会社 スイッチトリラクタンスモータの制御装置
CO2018004101A1 (es) * 2018-04-17 2018-05-10 Pme Tech Sas Sistema renovable y autosostenible de corriente de corriente continua y método para la generación de energía eléctrica dc renovable y autosostenible
US10493863B1 (en) 2018-06-14 2019-12-03 Kitty Hawk Corporation Charge related processing for a personal transportation system with removable battery
US10703480B1 (en) 2018-06-14 2020-07-07 Kitty Hawk Corporation Modular personal transportation system
US10532815B1 (en) 2018-06-14 2020-01-14 Kitty Hawk Corporation Two vehicle transportation system
US10794940B2 (en) * 2018-07-02 2020-10-06 Lg Chem, Ltd. System for accurately determining an amount of electrical current flowing through a hall effect current sensor
KR102654911B1 (ko) * 2018-10-23 2024-04-03 현대자동차주식회사 파워 릴레이 어셈블리의 상태 판단 시스템
FR3091058A1 (fr) * 2018-12-20 2020-06-26 Orange Procédé et dispositif de commande de recharge et de décharge de batteries d’un ensemble desdites batteries avec recharge partielle d’une batterie
JP7169519B2 (ja) * 2018-12-26 2022-11-11 トヨタ自動車株式会社 電池容量推定方法、および電池容量推定システム
JP7337567B2 (ja) * 2019-07-02 2023-09-04 矢崎総業株式会社 電源装置
US11571983B2 (en) 2020-03-17 2023-02-07 Toyota Motor North America, Inc. Distance-based energy transfer from a transport
US11552507B2 (en) 2020-03-17 2023-01-10 Toyota Motor North America, Inc. Wirelessly notifying a transport to provide a portion of energy
US11685283B2 (en) 2020-03-17 2023-06-27 Toyota Motor North America, Inc. Transport-based energy allocation
US11618329B2 (en) 2020-03-17 2023-04-04 Toyota Motor North America, Inc. Executing an energy transfer directive for an idle transport
US11890952B2 (en) 2020-03-17 2024-02-06 Toyot Motor North America, Inc. Mobile transport for extracting and depositing energy
US11571984B2 (en) 2020-04-21 2023-02-07 Toyota Motor North America, Inc. Load effects on transport energy
US20230194615A1 (en) * 2021-12-17 2023-06-22 GM Global Technology Operations LLC Determination and utilization of over-predictive battery state of charge

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056059A1 (en) 1997-06-03 1998-12-10 Sony Corporation Method for detecting capacity of battery, battery package, and electronic equipment system
JPH11206028A (ja) * 1998-01-09 1999-07-30 Nissan Motor Co Ltd 電池の残存容量検出装置
WO1999061929A1 (en) 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
JP3016349B2 (ja) 1994-04-28 2000-03-06 三菱自動車工業株式会社 燃料使用制限式ハイブリッド電気自動車
JP2001091604A (ja) * 1999-09-24 2001-04-06 Honda Motor Co Ltd 蓄電装置の残容量検出装置
JP2003007353A (ja) 2001-06-20 2003-01-10 Nippon Soken Inc 鉛蓄電池の容量検出方法
JP2007195336A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両の電源装置
JP2007212298A (ja) * 2006-02-09 2007-08-23 Toyota Motor Corp 二次電池の残存容量推定装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212902A (ja) * 1993-12-02 1995-08-11 Nippondenso Co Ltd 電気自動車の空調装置制御システム
JP3378443B2 (ja) * 1996-08-08 2003-02-17 株式会社クボタ 小型電動車のバッテリー充電構造
JP3716619B2 (ja) * 1998-05-14 2005-11-16 日産自動車株式会社 電池の残容量計
JP2001063347A (ja) * 1999-08-26 2001-03-13 Denso Corp 車両用空調制御システム
US6845332B2 (en) * 2001-11-16 2005-01-18 Toyota Jidosha Kabushiki Kaisha State of charge calculation device and state of charge calculation method
JP4075762B2 (ja) * 2003-10-10 2008-04-16 トヨタ自動車株式会社 二次電池における残存容量の算出装置および算出方法
JP4583765B2 (ja) * 2004-01-14 2010-11-17 富士重工業株式会社 蓄電デバイスの残存容量演算装置
JP2005312224A (ja) * 2004-04-23 2005-11-04 Toyota Industries Corp バッテリ充電装置
KR100759706B1 (ko) * 2005-05-11 2007-09-17 주식회사 엘지화학 하이브리드 차량용 배터리의 충전상태 추정 방법
JP4830382B2 (ja) * 2005-07-19 2011-12-07 日産自動車株式会社 二次電池の充電率推定装置
JP4967282B2 (ja) * 2005-09-02 2012-07-04 トヨタ自動車株式会社 車両、車両の電源装置および電流検知装置
JP4984527B2 (ja) * 2005-12-27 2012-07-25 トヨタ自動車株式会社 二次電池の充電状態推定装置および充電状態推定方法
JP4589872B2 (ja) * 2006-01-04 2010-12-01 本田技研工業株式会社 電動車両の制御装置
CN100447378C (zh) 2006-02-22 2008-12-31 丰田自动车株式会社 车辆的控制装置
JP4745879B2 (ja) * 2006-04-06 2011-08-10 日立ビークルエナジー株式会社 ハイブリッド車両制御システム、ハイブリッド車両制御方法及び車両用蓄電池制御システム
JP4706648B2 (ja) 2007-03-06 2011-06-22 トヨタ自動車株式会社 電動車両、充電状態推定方法および充電状態推定方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4341712B2 (ja) * 2007-09-10 2009-10-07 トヨタ自動車株式会社 蓄電機構の充電制御装置および充電制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016349B2 (ja) 1994-04-28 2000-03-06 三菱自動車工業株式会社 燃料使用制限式ハイブリッド電気自動車
WO1998056059A1 (en) 1997-06-03 1998-12-10 Sony Corporation Method for detecting capacity of battery, battery package, and electronic equipment system
JPH11206028A (ja) * 1998-01-09 1999-07-30 Nissan Motor Co Ltd 電池の残存容量検出装置
WO1999061929A1 (en) 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
JP2001091604A (ja) * 1999-09-24 2001-04-06 Honda Motor Co Ltd 蓄電装置の残容量検出装置
JP2003007353A (ja) 2001-06-20 2003-01-10 Nippon Soken Inc 鉛蓄電池の容量検出方法
JP2007195336A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両の電源装置
JP2007212298A (ja) * 2006-02-09 2007-08-23 Toyota Motor Corp 二次電池の残存容量推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246956A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639413B2 (en) 2009-09-09 2014-01-28 Toyota Jidosha Kabushiki Kaisha Vehicle power supply system and method for controlling the same
WO2011030401A1 (ja) 2009-09-09 2011-03-17 トヨタ自動車株式会社 車両用の電源システムおよびその制御方法
EP2476574A1 (en) * 2009-09-09 2012-07-18 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle and method of controlling same
EP2476574A4 (en) * 2009-09-09 2013-08-07 Toyota Motor Co Ltd POWER SUPPLY SYSTEM FOR A VEHICLE AND CONTROL METHOD THEREFOR
JP2011149726A (ja) * 2010-01-19 2011-08-04 Gs Yuasa Corp 充電状態測定装置
WO2011128750A3 (en) * 2010-04-14 2012-01-05 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
CN102844220A (zh) * 2010-04-14 2012-12-26 丰田自动车株式会社 电源系统和装有电源系统的车辆
CN102576056A (zh) * 2010-10-15 2012-07-11 日本精工株式会社 电源状态诊断方法及装置
US10090686B2 (en) 2013-12-06 2018-10-02 Toyota Jidosha Kabushiki Kaisha Electrical storage system
JP2015121444A (ja) * 2013-12-20 2015-07-02 トヨタ自動車株式会社 蓄電システム
US10286806B2 (en) 2013-12-20 2019-05-14 Toyota Jidosha Kabushiki Kaisha Electrical storage system
DE112014005924B4 (de) 2013-12-20 2024-03-14 Toyota Jidosha Kabushiki Kaisha Elektrisches Speichersystem
CN110441692A (zh) * 2019-07-22 2019-11-12 南方电网科学研究院有限责任公司 一种电池组电量交流测算方法、装置及存储介质
US20220314730A1 (en) * 2021-04-02 2022-10-06 Toyota Jidosha Kabushiki Kaisha Vehicle thermal management system
US11897310B2 (en) * 2021-04-02 2024-02-13 Toyota Jidosha Kabushiki Kaisha Vehicle thermal management system

Also Published As

Publication number Publication date
US20100318252A1 (en) 2010-12-16
EP2246956A4 (en) 2015-04-08
US8509975B2 (en) 2013-08-13
EP2246956B1 (en) 2016-03-23
JP2009201197A (ja) 2009-09-03
CN101939892A (zh) 2011-01-05
EP2246956A1 (en) 2010-11-03
CN101939892B (zh) 2013-03-27
JP4893653B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4893653B2 (ja) 車両、二次電池の充電状態推定方法および車両の制御方法
JP5407758B2 (ja) 車両の電源装置
JP4706648B2 (ja) 電動車両、充電状態推定方法および充電状態推定方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4874874B2 (ja) 車両の電源装置
JP3571026B2 (ja) バッテリの充電状態を決定する疑似適応方法及びシステム
JP4544273B2 (ja) 車両用電源装置および車両用電源装置における蓄電装置の充電状態推定方法
JP5732766B2 (ja) 車両の制御装置および制御方法
JP4743082B2 (ja) 電源システムおよびそれを備えた車両
CN101743679B (zh) 车辆
JP5892182B2 (ja) 車両の電源装置
JP5413507B2 (ja) 車両用制御装置および車両用制御方法
WO2008041471A1 (fr) Véhicule hybride et procédé de commande de déplacement de véhicule hybride
WO2007018107A1 (ja) 車両の電源装置およびその制御方法
JP5783129B2 (ja) 電動車両
JP4983639B2 (ja) 電源システムおよびそれを備えた車両ならびに電源システムの出力制限制御方法
JP5884802B2 (ja) ハイブリッド車両の制御装置
JP4883012B2 (ja) 車両の電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127054.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12864577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008872693

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE