JP6759465B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP6759465B2
JP6759465B2 JP2019545421A JP2019545421A JP6759465B2 JP 6759465 B2 JP6759465 B2 JP 6759465B2 JP 2019545421 A JP2019545421 A JP 2019545421A JP 2019545421 A JP2019545421 A JP 2019545421A JP 6759465 B2 JP6759465 B2 JP 6759465B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
converter
voltage
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019545421A
Other languages
English (en)
Other versions
JPWO2019064345A1 (ja
Inventor
友樹 桑野
友樹 桑野
賢一 吉川
賢一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Publication of JPWO2019064345A1 publication Critical patent/JPWO2019064345A1/ja
Application granted granted Critical
Publication of JP6759465B2 publication Critical patent/JP6759465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明の実施形態は、ハイブリッド車両に関する。
バッテリ装置は、必要な充放電容量に応じて、複数の電池モジュールを直列および並列に接続して構成され得る。複数の電池モジュールのそれぞれは、例えば、複数の二次電池セルを含む組電池と、複数の二次電池セルのそれぞれについて電圧を検出する電池監視回路と、を備えている。
バッテリ装置は、携帯機器や移動体など、様々な電子機器に電源として搭載されている。例えばハイブリッド車両は、原動機から得られる動力(機械エネルギー)と電動機から得られる電気エネルギーとの少なくとも一方を利用して負荷を駆動することができる。ハイブリッド車両は、例えば2つのインバータを電気的に接続した直流リンクを備え、直流リンクにバッテリ装置を電気的に接続して構成することができる。原動機は、発電機およびインバータを介して直流リンクと電気的に接続している。電動機は、インバータを介して直流リンクと電気的に接続している。
また、電動機の駆動電圧は、直流リンクから供給される直流電圧を半導体電力スイッチでスイッチングし、任意の振幅、任意の周波数の交流電圧を発生させる電力変換器により供給される。一般的に、スイッチングによる高調波成分の発生を抑制することを目的に、電動機の駆動周波数より十分高いスイッチング周波数を設定し、パルス幅変調(PMW)によりスイッチのゲート信号が生成される。この場合、電力変換器により発生可能な交流電圧の振幅の上限は、直流リンクの線間電圧(直流電圧)の半分となる。
例えば、高調波成分の抑制を犠牲にして方形波に近い電圧波形を取ると、電力変換器の出力電圧の基本波成分の振幅をさらに大きくすることができる。電力変換器のこの駆動方法は、過変調駆動(同期多パルス駆動)、特に完全に方形波になった状態は1パルス駆動と称されることがある。インバータを過変調駆動および1パルス駆動することにより、直流リンクの線間電圧を変更することなく、駆動電圧を増加させることができ、電動機の高速駆動が可能となる。
特開2016−125932号公報
二次電池セルは、使用環境や充放電サイクル数などの影響により劣化が進むことが知られている。従来、二次電池セルの内部抵抗に基づいて劣化状態を推定することが提案されている。
複数の電池監視回路は検出した電圧の値を電池管理回路へ出力する。電池管理回路は、直列に接続した複数の組電池に流れる電流を検出可能である。例えば、複数の二次電池セルの閉回路電圧と組電池に流れる電流との値を用いて内部抵抗を演算する際に、開回路電圧を測定するタイミングと組電池に流れる電流を測定するタイミングとが同期していないと、内部抵抗の演算精度が低下する可能性がある。
バッテリ装置の充放電容量が大きくなると、電池管理回路が制御する電池モジュールの数が多くなり、電池管理回路は、複数の電池モジュールの複数の二次電池セルについて閉回路電圧の測定タイミングと、組電池に流れる電流の測定タイミングとを同期させることが困難であった。
本発明の実施形態は上記事情を鑑みて成されたものであって、二次電池セルの内部抵抗を精度よく演算するハイブリッド車両を提供することを目的とする。
本実施形態によるハイブリッド車両は、内燃機関と、第1電動機と、動力結合機構に接続した第2電動機と、前記内燃機関の動力を、前記第1電動機と前記動力結合機構とに分配する動力分割機構と、変調率に応じて、所定の変調率以上では一周期を1パルスで制御する1パルス駆動とし、前記所定の変調率未満では一周期を複数パルスで制御する過変調駆動又は非同期PWM駆動として、駆動方法を切り替えて、前記第1電動機を駆動可能なコンバータと、直流リンクを介して前記コンバータと接続し、前記第2電動機を駆動可能なインバータと、前記動力結合機構から供給されるエネルギーにより回転する車軸と、前記直流リンク間に接続し、複数の二次電池セルを含む組電池と、複数の前記二次電池セルそれぞれの電圧を検出可能な電池監視回路と、を備えた複数の電池モジュールと、複数の前記電池モジュールに流れる電流を検出する電流センサと、複数の前記電池監視回路を制御し、複数の前記電池モジュールに流れる電流の検出値と複数の前記二次電池セルの電圧の検出値とを取得可能な電池管理回路と、を備えた、バッテリ装置と、複数の前記二次電池セルの開回路電圧と、複数の前記電池モジュールの充電電流の値と、複数の前記二次電池セルの閉回路電圧と、を用いて複数の前記二次電池セルそれぞれの内部抵抗を演算する制御装置と、を備え、前記制御装置は、停車しているときに、複数の前記二次電池セルの前記開回路電圧を前記電池管理回路から取得し、前記第1電動機の励磁電流を下げて前記第1電動機の所定の回転数における変調率を低下させ前記コンバータを過変調駆動又は非同期PWM駆動させて、前記内燃機関から出力される動力を利用して複数の前記電池モジュールを充電したときの、複数の前記二次電池セルの前記閉回路電圧と、複数の前記電池モジュールの前記充電電流との値を、前記電池管理回路から取得する。
図1は、本実施形態のハイブリッド車両の一構成例を概略的に示すブロック図である。 図2は、動力分割機構の動作の一例を説明するための図である。 図3は、図1に示すバッテリ装置の一構成例を概略的に示す図である。 図4は、電池モジュールを充電しているときのバッテリ電流とバッテリ電圧との時間変化の一例を示す図である。 図5は、電池管理回路と電池監視回路との通信タイミングの一例を説明するための図である。 図6は、図1に示す発電機およびコンバータの動作の一例を説明するための図である。 図7は、実施形態のハイブリッド車両において、発電機回転数とコンバータの駆動方法との関係の一例を説明するための図である。 図8は、実施形態のハイブリッド車両において、二次電池セルの内部抵抗値を演算する動作の一例を説明するためのフローチャートである。
実施形態
以下に実施形態のハイブリッド車両について図面を参照して詳細に説明する。
図1は、本実施形態のハイブリッド車両の一構成例を概略的に示すブロック図である。
ハイブリッド車両は、内燃機関10と、動力分割機構20と、発電機(第1電動機)30と、コンバータ40と、インバータ50と、モータ(第2電動機)60と、動力結合機構70と、車軸80と、補機90と、車輪WLと、車両制御装置CTRと、バッテリ装置BTと、を備えている。
内燃機関10は、ガソリンエンジンやディーゼルエンジン等、ハイブリッド車両を駆動する機械エネルギーを生成する原動機である。
動力分割機構20は、内燃機関10で生成された機械エネルギーを、発電機30側に供給されるエネルギーと、車輪WL側(車軸80側)に供給されるエネルギーとに分配する三軸動力分割機構である。
動力分割機構20は、例えば遊星歯車(図示せず)であって、サンギアSと、サンギアSに外接したプラネタリアギアPと、プラネタリアギアPが内接したリングギアRと、プラネタリアギアPの軌道に沿って回転するプラネタリキャリアCと、を備えている。本実施形態では、プラネタリキャリアCは、内燃機関10で生成された機械エネルギーにより回転する。サンギアSの回転動力は発電機30へ伝達される。リングギアRの回転動力は車軸80と接続した動力結合機構70に伝達される。リングギアRの回転数(rpm)は車速に比例する。
図2は、動力分割機構の動作の一例を説明するための図である。
動力分割機構20の動作は、サンギアSとリングギアRとのギア比により決まる。この例では、サンギアSのギア数Zsとリングギアのギア数Zrとの比はZs:Zr=1:2である。例えば、車速がゼロであるときリングギアの回転数はゼロ(rpm)である。このとき、プラネタリアキャリアの回転数が1000(rpm)であれば、サンギアの回転数がプラネタリアキャリアの3倍の3000(rpm)となり、発電機30が高速域で動作することとなる。
発電機30は、動力分割機構20から供給される動力により交流電力を発電し、コンバータ40へ出力可能であり、コンバータ40から供給される交流電力により回転駆動される誘導電動機(IM)である。発電機30は、例えば回転数を検出する検出器(図示せず)を備えている。発電機30の回転数は、車両制御装置CTRに供給される。
コンバータ40は電力変換器であって、発電機30から出力された3相交流電力を直流電力に変換して直流リンクへ出力可能であって、直流リンクから供給される直流電力を3相交流電力に変換して発電機30へ出力可能である。コンバータ40は直流リンクを介してインバータ50、バッテリ装置BTおよび補機90と電気的に接続している。
コンバータ40は、車両制御装置CTRからモード切替指令とトルク指令とを受信する。コンバータ40は、モード切替指令にしたがって発電機30の励磁電流の値を調整可能である。コンバータ40は、トルク指令を実現するように発電機30を動作させる。
インバータ50は電力変換器であって、直流リンクから供給された直流電力を交流電力に変換してモータ60へ出力可能である。また、インバータ50は、モータ60から供給された交流電力を直流電力に変換して直流リンクへ出力可能である。インバータ50は車両制御装置CTRからトルク指令を受信する。インバータ50は、受信したトルク指令を実現するようにモータ60へ交流電力を出力する。
モータ60は、インバータ50から供給される交流電力により駆動される電動機であって、電気エネルギーを機械エネルギーに変換して動力結合機構70へ出力する。
動力結合機構70は、動力分割機構20のリングギアRから伝達された機械エネルギーと、インバータ50から供給された機械エネルギーとを合成したエネルギーを車軸80へ伝達する。車輪WLは車軸80を介して回転駆動される。
バッテリ装置BTは、直流リンクから供給される電力により充電可能であり、直流リンクへ電力を放電可能である。バッテリ装置BTは、遮断器(図示せず)を介して直流リンクと電気的に接続している。遮断器は例えば電磁接触器であって、車両制御回路CTRにより動作を制御される。
補機90は、例えば照明装置など、ハイブリッド車両内に搭載された負荷を含む。補機90は直流リンクを介してバッテリ装置BT、コンバータ40、および、インバータ50と接続し、直流リンクから供給されるエネルギーにより駆動される。補機90は、消費電力を検出して車両制御装置CTRへ出力する。
車両制御装置CTRは、外部から供給される牽引力指令に従って、内燃機関10、発電機30、コンバータ40、インバータ50、モータ60、および、バッテリ装置BTが互いに連係して動作するように制御する上位制御装置である。車両制御装置CTRは、例えば、CPU(central processing unit)やMPU(micro processing unit)などのプロセッサを少なくとも1つと、メモリとを備える演算回路である。
車両制御装置CTRは、例えばハイブリッド車両が停車しているときに、バッテリ装置BTに含まれる複数の二次電池セルの内部抵抗値を演算可能に構成されている。車両制御装置CTRは、複数の二次電池セルの内部抵抗値を利用して、例えば、バッテリ装置BTの劣化度を判断することが可能である。車両制御装置CTRは、メモリに記録されたプログラムを実行することにより、複数の二次電池セルの内部抵抗を演算する動作を行ってもよい。
図3は、図1に示すバッテリ装置の一構成例を概略的に示す図である。
バッテリ装置BTは、直流リンクに並列に接続した複数のバッテリバンクBK1〜BKnと、バッテリバンクBK1〜BKnに対応した複数の電池管理回路(BMU:battery management unit)CA1〜CAnと、を備えている。複数のバッテリバンクBK1〜BKnのそれぞれは、複数の電池モジュールMDL11〜MDLnmと、電流センサCSと、を備えている。
バッテリバンクBNK1〜BNKnのそれぞれに含まれる複数の電池モジュールMDL11〜MDLnmは、対応する電池管理回路CA1〜CAnにより動作を制御される。本実施形態では、バッテリバンクBNK1〜BNKnのそれぞれにおいて、m(正の整数)個の電池モジュールMDL11〜MDL1m、…、MDLn1〜MDLnmが直列に接続し、n(正の整数)個のバッテリバンクBNK1〜BNKnが並列に接続している。
電池モジュールMDL11〜MDLnmのそれぞれは、例えば、コンタクタ等の切替器(図示せず)を介して直流リンクと電気的に接続可能である。電池管理回路CA1〜CAnは、切替器を制御してバッテリバンクBK1〜BKnと直流リンクとの電気的接続を切替えることができる。
複数の電池モジュールMDL11〜MDLnmのそれぞれは、複数の二次電池セルを含む組電池と、電池監視回路(CMU:cell monitoring unit)CB11〜CBnmと、を備えている。
二次電池セルは、充電および放電可能な電池であって、例えば、リチウムイオン電池や、ニッケル水素電池である。
バッテリバンクBK1〜BKnのそれぞれに含まれる複数の電池監視回路CB11〜CBnmは、伝送ラインを介して共通の電池管理回路CA1〜CAnと通信可能に接続されている。本実施形態では、複数の電池監視回路CB11〜CBnmそれぞれは、対応する電池管理回路CA1〜CAnとシリアル通信を行うことができ、電池監視回路CB11〜CBnmと電池管理回路CA1〜CAnとは、例えばCAN(control area network)プロトコルに基づいて通信を行う。なお、電池監視回路CB11〜CBnmと電池管理回路CA1〜CAnとは、有線の通信手段により通信を行ってもよく、無線の通信手段により通信を行ってもよい。
電池監視回路CB11〜CBnmは、組電池に含まれる二次電池セルの電圧と、組電池の近傍の温度と、を検出する。電池監視回路CB11〜CBnmは、所定の通信周期(α[秒])で、検出した値を対応する電池管理回路CA1〜CAnへ出力可能である。また、電池監視回路CB11〜CBnmは、電池管理回路CA1〜CAnからの制御信号により動作を制御される。
電流センサCS1〜CSnは、複数のバッテリバンクBK1〜BKnそれぞれに含まれる複数の組電池に流れる電流を検出し、検出した電流の値を対応する電池管理回路CA1〜CAnへ供給する。
複数の電池管理回路CA1〜CAnは、伝送ラインを介して車両制御装置CTRと通信可能に接続されている。本実施形態では、電池管理回路CA1〜CAnと車両制御装置CTRとは、例えばCAN(control area network)プロトコルに基づいて通信を行う。なお、複数の電池管理回路CA1〜CAnと車両制御装置CTRとは、有線の通信手段により通信を行ってもよく、無線の通信手段により通信を行ってもよい。
複数の電池管理回路CA1〜CAnのそれぞれは、所定の周期で、電池監視回路CB11〜CBnmから受信した電圧値および温度値と、電流センサCS1〜CSnから受信した電流値と(バッテリ出力検出値)を車両制御装置CTRへ出力する。複数の電池管理回路CA1〜CAnは、車両制御装置CTRからの制御信号により動作を制御される。
車両制御装置CTRは、複数の電池管理回路CA1〜CAnから受信した電圧値と電流値とを用いて、複数の二次電池セルの内部抵抗値を演算することができる。車両制御装置CTRは、二次電池セルの開回路電圧(OCV:open circuit voltage)値Vocvと、閉回路電圧(CCV:close circuit voltage)値Vccvと、電流値Iとを取得し、二次電池セルの内部抵抗Rを演算する。二次電池セルの内部抵抗は、例えば下記式(1)により演算することができる。
R[Ω]=(Vccv−Vocv)/I…(1)
図4は、電池モジュールを充電しているときのバッテリ電流とバッテリ電圧との時間変化の一例を示す図である。
電池モジュールMDL11〜MDLnmが充電および放電されていない状態ではバッテリ電圧は開回路電圧Vocvであって、電池モジュールMDL11〜MDLnmの充電が開始され、組電池に充電電流が流れるとバッテリ電圧が閉回路電圧Vccvとなる。
電池モジュールMDL11〜MDLnmは直流リンクから供給される電流により充電することができる。
車両制御装置CTRは、内燃機関10の動力を発電機30とコンバータ40とで直流電力に変換して直流リンクを介してバッテリ装置BTへ供給することができる。このとき、車速をゼロとすると、内燃機関10から得られる動力は動力分割機構20を介して発電機30のみに供給され、発電機30を高速域で動作することとなる。
発電機30が高速域で動作するときには、コンバータ40は過変調駆動又は1パルス駆動を行う。過変調駆動は、例えば、コンバータ40の交流側の出力指令をキャリア周期に同期した非線形の複数の方形波とするものである。1パルス駆動は、例えば、コンバータ40の交流側の出力指令をキャリア周期に同期した1パルスの方形波とするものである。すなわち、1パルス駆動は、一周期を1パルスでコンバータ40を制御する駆動モードであり、過変調駆動と非同期PWM駆動は、一周期を複数パルスでコンバータ40を制御する駆動モードである。
過変調駆動又は1パルス駆動を行うと、バッテリ装置BTに対して充電電流および充電電流が一定となるように発電機30を制御しても、電池モジュールMDL11〜MDLnmの組電池に流れる電流に脈動が発生する。この電流の脈動は、例えば方形波がゼロクロスするときに、出力指令値と実際の出力電圧値との差が大きくなることにより生じるものであって電流に生じる脈動は、過変調駆動で動作するときよりも1パルス駆動で動作するときの方が大きくなる。
上記のように発電機30が高速域で動作しているとき、二次電池セルの電圧と電流とを検出するタイミングが同期している場合は、いずれの値にも同様に電流の脈動分による誤差が含まれるため、内部抵抗値の演算誤差が抑えられる。しかしながら、二次電池セル電圧と電流とを検出するタイミングの同期がとれていない場合、内部抵抗値の演算誤差が大きくなる可能性がある。
二次電池セル電圧と電流とを検出するタイミングの同期がとれず、例えば、バッテリ電流を検出したタイミングにて電流の脈動分Irippleが最大であり、二次電池セル電圧を検出したタイミングにて二次電池セル電圧の脈動分(=R(二次電池セルの内部抵抗)×Iripple)が最小であった場合、内部抵抗値の演算誤差が大きくなり、演算精度が低下してしまう。
図5は、電池管理回路と電池監視回路との通信タイミングの一例を説明するための図である。
電池監視回路CBn1〜CBnmのそれぞれは、周期的に複数の二次電池セルの電圧値を検出し電池管理回路CAnへ検出値を送信する。複数の電池監視回路CBn1〜CBnmが、複数の二次電池セルの電圧の検出値を電池管理回路CAnへ送信する周期はα(ms)であるとすると、電池管理回路CAnが対応する電池監視回路CBn1〜CBnm全てから検出値の受信を完了するまでに要する時間はm×α(ms)となる。
電池監視回路CBn1〜CBnmのそれぞれにおいて、複数の二次電池セルの電圧は略時間差なく検出することが可能である。しかしながら、共通の電池管理回路CAnへ二次電池セルの電圧値を送信する場合、電池監視回路CBn1〜CBnm間で、二次電池セルの電圧を検出するタイミングに通信周期分(最大で(m−1)α)の差が生じる。1つの電池管理回路CAnにより制御される電池モジュールMDLn1〜MDLnmの数が多くなると、二次電池セルの電圧を検出するタイミングと電流を検出するタイミングとを同期させることが困難であった。
本実施形態では、二次電池セルの内部抵抗値の演算精度が低下することを回避するために、二次電池セルの内部抵抗を演算する際に、二次電池セルの充電電流に脈動が生じることを抑制している。
図6は、図1に示す発電機およびコンバータの動作の一例を説明するための図である。
図6では、発電機の回転数と出力とを一定とし、発電機の励磁電流と発電機からコンバータへ出力される交流電圧の線間電圧実効値との関係の一例を示している。
なおこの例では、発電機30は、例えば誘導電動機(IM)である。線間電圧実効値は、コンバータ40から発電機30に印加される交流電圧の実効値である。変調率は、コンバータ40から発電機30へ出力可能な最大電圧を100%としたときの線間電圧実行値の比率であって、直流リンク間の直流電圧に対する線間電圧実効値の割合(%)である。
発電機30の励磁電流をゼロから大きくなるように変化させると、線間電圧実効値は一度低下して最小値となり、その後は励磁電流が大きいほど線間電圧実効値は大きくなる。線間電圧実効値の極小値よりも大きい領域では、励磁電流が小さくなると、発電機の回転数が同じであってもコンバータ40の変調率は小さくなる。
この例によれば、発電機30の回転数と出力とが一定であるときに、発電機30の励磁電流の大きさを調整することにより、コンバータ40の変調率を調整することが可能であることが分かる。
そこで、本実施形態のハイブリッド車両では、二次電池セルの内部抵抗を測定する際に、発電機30の励磁電流を通常時よりも小さくすることによりコンバータ40の変調率を調整し、コンバータ40が1パルス駆動で動作することを回避している。
図7は、実施形態のハイブリッド車両において、発電機回転数とコンバータの駆動方法との関係の一例を説明するための図である。
車両制御装置CTRは、二次電池セルの内部抵抗を測定するために複数の二次電池セルの閉回路電圧を検出するときには、通常時(二次電池セルの内部抵抗を測定するとき以外の期間)よりも発電機30の励磁電流を下げて、コンバータ40の変調率を小さくし、過変調駆動や非同期PWM駆動によりコンバータ40を駆動可能とする。
具体的には、車両制御装置CTRは、コンバータ40へモード切替指令を出力し、内部抵抗測定時と通常時とでコンバータ40の変調率を変えるために、内部抵抗測定時には通常時とは異なる励磁電流が発電機30に印加されるように制御する。
コンバータ40は、モード切替指令の値に従って発電機30の励磁電流の大きさを切替える。内部抵抗測定時の励磁電流と通常時の励磁電流との値は、それぞれ予めコンバータ40に設定された値でもよい。車両制御装置CTRにおいて、内部抵抗測定時における内燃機関10の速度指令を予め設定すると、ハイブリッド車両が停車しているとしたときの発電機30の回転数も予め設定可能である。発電機30が所定の回転数(例えばN(rpm))で動作するときに、過変調駆動或いは非同期PWM駆動によりコンバータ40が動作可能となるように、内部抵抗測定時の励磁電流を設定すればよい。
なお、発電機30の回転数と出力とが一定であるとき、励磁電流を小さくすると線間電圧実効値が小さくなり、コンバータ40に流れる電流が大きくなる。したがって、発電機30の励磁電流の下限値は、コンバータ40に流れる電流の上限(スイッチング素子の耐圧等)に基づいて設定してもよい。
発電機30の回転数と出力とが一定であるとき、発電機30の励磁電流を小さくすると、コンバータ40の変調率は小さくなる。このことから、内部抵抗測定時の励磁電流は、通常時の励磁電流よりも小さくなるように設定される。
車両制御装置CTRは、発電機30の回転数(rpm)に応じてコンバータ40のトルク指令の値を設定する。コンバータ40は、モード切替指令とトルク指令と直流リンク間の電圧とに基づいて変調率を演算し、変調率の値に応じて駆動方法を切替える。
図7に示す例では、コンバータ40は、変調率が75%未満において非同期PWM駆動により動作し、変調率が75%以上100%未満において過変調駆動により動作し、変調率が100%のときに1パルス駆動により動作する。
例えば、通常時に発電機30の回転数をN(rpm)としたとき、コンバータ40の変調率は100%であり、コンバータ40は1パルス駆動にて動作する。ハイブリッド車両が停車しているときに、発電機30の励磁電流を小さくし、発電機30の回転数をN(rpm)とすると、コンバータ40の変調率は75%以上100%未満となり、コンバータ40は過変調駆動により動作する。
図8は、実施形態のハイブリッド車両において、二次電池セルの内部抵抗値を演算する動作の一例を説明するためのフローチャートである。
この例では、車両制御装置CTRは、ハイブリッド車両が停止しているときに二次電池セルの内部抵抗値を演算する。
車両制御装置CTRは、バッテリ装置BTの複数の電池管理回路CA1〜CAnから、複数の電池モジュールMDL11〜MDLnmに含まれる二次電池セルの開回路電圧を取得する。(ステップS1)
車両制御装置CTRは、発電機30の励磁電流を通常時とは異なる値とする。具体的には、車両制御装置CTRは、モード切替指令によりコンバータ40を制御し、発電機30の励磁電流を通常時よりも小さくする。ここで、発電機30の励磁電流の大きさは、例えば、二次電池セルの内部抵抗値を演算する際の発電機30の回転数を予め設定し、設定した回転数にてコンバータ40が過変調駆動あるいは非同期PWM駆動となるように設定される。(ステップS2)
続いて車両制御装置CTRは、速度指令によりハイブリッド車両が所定の速度となるように内燃機関1を動作させる。このときハイブリッド車両は停車しているため、内燃機関10が動作したことによる動力は、動力分割機構20により発電機30へ供給される。(ステップS3)
内燃機関10から得られる動力により発電機30が回転する。車両制御装置CTRは、発電機30から回転数を取得し(或いは予め設定した回転数に基づいて)、回転数に対応したトルク指令を演算して、コンバータ40へ出力する。コンバータ40は、モード切替指令、トルク指令、および、直流リンク間電圧を用いて変調率を演算する。コンバータ40は、変調率に応じた駆動方法にて動作する。このとき、発電機30の励磁電流は通常時よりも小さいため、発電機30の回転数に対するコンバータ40の変調率は通常時よりも小さくなる。したがって、発電機30が高速で回転しているときでもコンバータ40を非同期PWM駆動又は過変調駆動により動作させることが可能となり、二次電池セルの内部抵抗値を演算するときに、コンバータ40が1パルス駆動により動作することを回避することができる。(ステップS4)
コンバータ40は、発電機30から供給された交流電力を直流電力に変換して直流リンクへ供給する。バッテリ装置BTは、直流リンクから供給される直流電力により充電される。(ステップS5)
車両制御装置CTRは、複数の電池管理回路CA1〜CAnのそれぞれに対して、複数の電池モジュールMDL11〜MDLnmに含まれる複数の二次電池セルの閉回路電圧と、複数の電池モジュールに流れる電流との値を要求する。
車両制御装置CTRからの要求に従い、複数の電池管理回路のそれぞれは、順次、複数の電池モジュールから複数の二次電池セルの閉回路電圧を取得し、複数の電池モジュールに流れる電流を取得して、車両制御装置CTRへ閉回路電圧値と、電流値とを出力する。(ステップS6)
このとき、各電池モジュールMDL1〜MDLnにおいて電池監視回路CB11〜CBnmは略同時に複数の二次電池セルの閉回路電圧を取得可能である。しかしながら、各電池管理回路CA1〜CAnは、対応する複数の電池監視回路CB11〜CBnmと順次通信を行い、対応する複数の電池監視回路CB11〜CBnmそれぞれから複数の二次電池セルの閉回路電圧を取得するため、通信周期分だけ閉回路電圧の取得するタイミングにズレが生じる。例えば二次電池セルの充電電流に生じるリプルが大きくなると、閉回路電圧を取得するタイミングにより電流リプルの大きさが変化し、複数の二次電池セルの内部抵抗値を正確に演算することができない。
これに対し、本実施形態のハイブリッド車両では、二次電池セルの内部抵抗値を演算する際には、コンバータ40が1パルス駆動により動作することを回避可能であり、二次電池セルの充電電流に生じるリプルを低く抑えることができる。これにより、二次電池セルの内部抵抗値の演算精度を向上させることができる。
車両制御装置CTRは、上記のように複数の電池管理回路CA1〜CAnから取得した複数の二次電池セルの閉回路電圧と、電池モジュールMDL1〜MDLnの電流と、バッテリ装置BTが充電されていないときに予め測定された複数の二次電池セルの開回路電圧と、を用いて、複数の二次電池セルの内部抵抗値を演算する。(ステップS7)
上記のように、本実施形態のハイブリッド車両によれば、二次電池セルの内部抵抗を精度よく演算することが可能となる。
なお、上述の実施形態において、発電機30は誘導電動機(IM)であるものとして説明したが、同期電動機(PM)であっても構わない。同期電動機を採用する場合には、励磁電流の向きは、回転子の磁力を打ち消す方向となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (3)

  1. 内燃機関と、
    第1電動機と、
    動力結合機構に接続した第2電動機と、
    前記内燃機関の動力を、前記第1電動機と前記動力結合機構とに分配する動力分割機構と、
    変調率に応じて、所定の変調率以上では一周期を1パルスで制御する1パルス駆動とし、前記所定の変調率未満では一周期を複数パルスで制御する過変調駆動又は非同期PWM駆動として、駆動方法を切り替えて、前記第1電動機を駆動可能なコンバータと、
    直流リンクを介して前記コンバータと接続し、前記第2電動機を駆動可能なインバータと、
    前記動力結合機構から供給されるエネルギーにより回転する車軸と、
    前記直流リンク間に接続し、複数の二次電池セルを含む組電池と、複数の前記二次電池セルそれぞれの電圧を検出可能な電池監視回路と、を備えた複数の電池モジュールと、複数の前記電池モジュールに流れる電流を検出する電流センサと、複数の前記電池監視回路を制御し、複数の前記電池モジュールに流れる電流の検出値と複数の前記二次電池セルの電圧の検出値とを取得可能な電池管理回路と、を備えた、バッテリ装置と、
    複数の前記二次電池セルの開回路電圧と、複数の前記電池モジュールの充電電流の値と、複数の前記二次電池セルの閉回路電圧と、を用いて複数の前記二次電池セルそれぞれの内部抵抗を演算する制御装置と、を備え、
    前記制御装置は、停車しているときに、複数の前記二次電池セルの前記開回路電圧を前記電池管理回路から取得し、前記第1電動機の励磁電流を下げて前記第1電動機の所定の回転数における変調率を低下させ前記コンバータを過変調駆動又は非同期PWM駆動させて、前記内燃機関から出力される動力を利用して複数の前記電池モジュールを充電したときの、複数の前記二次電池セルの前記閉回路電圧と、複数の前記電池モジュールの前記充電電流との値を、前記電池管理回路から取得する、ハイブリッド車両。
  2. 複数の前記電池モジュールの前記組電池は前記直流リンク間に直列に接続し、
    複数の前記電池監視回路は対応する共通の前記電池管理回路と通信可能に接続され、
    複数の前記電池監視回路は、所定の通信周期で、順次、共通の前記電池管理回路へ検出値を送信する、請求項1記載のハイブリッド車両。
  3. 前記制御装置は、複数の前記二次電池セルそれぞれの内部抵抗を演算するための、複数の前記二次電池セルの前記閉回路電圧と、複数の前記電池モジュールの前記充電電流との値を取得するときに、前記コンバータの駆動モードを、前記第1電動機を一周期1パルスで制御する1パルス駆動から、一周期を複数パルスで制御する過変調駆動又は非同期PWM駆動に切替える、請求項1又は請求項2記載のハイブリッド車両。
JP2019545421A 2017-09-26 2017-09-26 ハイブリッド車両 Active JP6759465B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034757 WO2019064345A1 (ja) 2017-09-26 2017-09-26 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JPWO2019064345A1 JPWO2019064345A1 (ja) 2020-02-27
JP6759465B2 true JP6759465B2 (ja) 2020-09-23

Family

ID=65901054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019545421A Active JP6759465B2 (ja) 2017-09-26 2017-09-26 ハイブリッド車両

Country Status (4)

Country Link
EP (1) EP3689693A4 (ja)
JP (1) JP6759465B2 (ja)
CN (1) CN110740897B (ja)
WO (1) WO2019064345A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279242A (ja) * 2003-03-17 2004-10-07 Toyota Motor Corp 二次電池の内部抵抗値の算出方法およびその方法を実現するためのプログラム
JP4569575B2 (ja) * 2007-01-16 2010-10-27 トヨタ自動車株式会社 二次電池の内部抵抗検出装置および検出方法
JP4264843B2 (ja) * 2007-03-30 2009-05-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP4893653B2 (ja) * 2008-02-19 2012-03-07 トヨタ自動車株式会社 車両、二次電池の充電状態推定方法および車両の制御方法
CN102246386B (zh) * 2008-12-09 2014-06-11 丰田自动车株式会社 车辆的电源系统
EP2579058A4 (en) * 2010-06-04 2015-01-07 Toyota Motor Co Ltd SECONDARY BATTERY, TEST DEVICE AND METHOD FOR A SECONDARY BATTERY AND BATTERY TEST SYSTEM
JP2013090401A (ja) * 2011-10-14 2013-05-13 Toyota Motor Corp 回転電機制御システム
DE102012209660A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Batteriesystem und zugehöriges Verfahren zur Ermittlung des Innenwiderstandes von Batteriezellen oder Batteriemodulen des Batteriesystems
JP6312508B2 (ja) * 2014-04-11 2018-04-18 日立オートモティブシステムズ株式会社 電池監視装置、電池システムおよび電動車両駆動装置
JP2015230235A (ja) * 2014-06-05 2015-12-21 株式会社日立製作所 蓄電制御装置

Also Published As

Publication number Publication date
EP3689693A1 (en) 2020-08-05
JPWO2019064345A1 (ja) 2020-02-27
WO2019064345A1 (ja) 2019-04-04
CN110740897A (zh) 2020-01-31
EP3689693A4 (en) 2021-06-09
CN110740897B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US8981722B2 (en) Cell control device and electricity storage device incorporating the same
CN110289649B (zh) 通过智能电池改善调制指数
US8368354B2 (en) Charge control device for vehicle and electric powered vehicle provided with same
US8648571B2 (en) Electric-powered vehicle, method for estimating state of charge, and computer-readable storage medium having program stored therein for causing computer to execute method for estimating state of charge
US9979209B2 (en) Battery management system for generating a periodic alternating voltage based on battery state of wear
EP2632021A1 (en) Battery system
EP2159099A1 (en) Vehicle power supply device and method for estimating charge state of accumulator in on-vehicle power supply device
US9987947B2 (en) Power supply apparatus of vehicle
WO2020218373A1 (ja) 電池監視装置
US10862174B2 (en) Secondary battery system and method of estimating deterioration state of secondary battery system
JP2003032805A (ja) 制御装置および動力出力装置並びにこれを搭載するハイブリッド自動車、制御装置の制御方法、動力出力装置の制御方法
CN104682813A (zh) 扭矩监控系统和方法
US9304173B2 (en) Determining the internal resistance of a battery cell of a traction battery that is connected to a controllable motor/generator
WO2015199841A1 (en) Sensorless control of switched reluctance machines for low speeds and standstill
JP2021097571A (ja) 車両
JP6759465B2 (ja) ハイブリッド車両
JP5741189B2 (ja) 車両の充電制御装置および充電制御方法
JP6658321B2 (ja) 電池システム
EP3677926A1 (en) Battery system and vehicle
JP2003018756A (ja) 二次電池の出力劣化演算装置および方法
US9276517B2 (en) Control device of AC motor
US20240146083A1 (en) Power Supply System
US20240133960A1 (en) Battery measurement method and apparatus
JP7119921B2 (ja) 電池制御装置
US20230302910A1 (en) Vehicle, vehicle control system, and vehicle control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6759465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150