WO2020218373A1 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
WO2020218373A1
WO2020218373A1 PCT/JP2020/017386 JP2020017386W WO2020218373A1 WO 2020218373 A1 WO2020218373 A1 WO 2020218373A1 JP 2020017386 W JP2020017386 W JP 2020017386W WO 2020218373 A1 WO2020218373 A1 WO 2020218373A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
battery
monitoring device
response signal
Prior art date
Application number
PCT/JP2020/017386
Other languages
English (en)
French (fr)
Inventor
昌明 北川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080029798.6A priority Critical patent/CN113711420B/zh
Priority to DE112020002115.7T priority patent/DE112020002115T5/de
Publication of WO2020218373A1 publication Critical patent/WO2020218373A1/ja
Priority to US17/510,851 priority patent/US20220045544A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery monitoring device.
  • Patent Document 1 the complex impedance of the storage battery has been measured (for example, Patent Document 1).
  • a square wave signal is applied to the storage battery by the power controller, and the complex impedance characteristic is calculated based on the response signal. Then, based on this complex impedance characteristic, the deterioration state of the storage battery and the like were determined.
  • this complex impedance measurement method when adopted as a complex impedance measurement method for an in-vehicle storage battery, the following problems occur. That is, since a device such as a power controller that applies a signal to the storage battery is required, there are problems such as an increase in size and cost of the battery monitoring device.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a battery monitoring device that can be miniaturized.
  • a means for solving the above problem is to input a signal control unit that outputs a predetermined AC signal and a response signal of the storage battery to the AC signal in a battery monitoring device that monitors the state of the storage battery including an electrolyte and a plurality of electrodes.
  • a response signal input unit and a calculation unit that calculates the complex impedance of the storage battery based on the response signal are provided, and the signal control unit outputs a predetermined AC signal using the storage battery as a monitoring target as a power source.
  • the signal control unit outputs a predetermined AC signal using the storage battery to be monitored as a power source. Therefore, an external power source for inputting an AC signal to the storage battery is not required, and it is possible to reduce the number of parts, reduce the size, and reduce the cost.
  • peripheral circuits such as protection elements and filter circuits are generally connected to the in-vehicle storage battery, and even if an AC signal is input to the storage battery, a part of the current leaks to the peripheral circuit. Therefore, when an AC signal is input to the storage battery and the complex impedance is calculated based on the response signal, there is a problem that an error occurs in the response signal and the detection accuracy of the complex impedance is lowered.
  • FIG. 1 is a schematic configuration diagram of a power supply system.
  • FIG. 2 is a configuration diagram of the battery monitoring device.
  • FIG. 3 is a flowchart of the complex impedance calculation process.
  • FIG. 4 is a diagram showing a connection position.
  • FIG. 5 is a configuration diagram of the battery monitoring device of the second embodiment.
  • FIG. 6 is a flowchart of the complex impedance calculation process of the second embodiment.
  • FIG. 7 is a configuration diagram of the battery monitoring device of the third embodiment.
  • FIG. 8 is a flowchart of the complex impedance calculation process of the third embodiment.
  • FIG. 9 is a configuration diagram of another example battery monitoring device.
  • FIG. 10 is a configuration diagram of another example battery monitoring device.
  • FIG. 11 is a configuration diagram of another example battery monitoring device.
  • FIG. 12 is a configuration diagram of another example battery monitoring device.
  • FIG. 13 is a flowchart of another example of complex impedance calculation processing.
  • the power supply system 10 includes a motor 20 as a rotary electric machine, an inverter 30 as a power converter for passing a three-phase current to the motor 20, a rechargeable battery 40, and a battery. It includes a battery monitoring device 50 that monitors the state of 40, and an ECU 60 that controls a motor 20 and the like.
  • the motor 20 is an in-vehicle main engine and is capable of transmitting power to drive wheels (not shown).
  • a three-phase permanent magnet synchronous motor is used as the motor 20.
  • the inverter 30 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases of the phase windings, and the energizing current is generated in each phase winding by turning on / off the switch (semiconductor switching element) provided in each arm. It will be adjusted.
  • the inverter 30 is provided with an inverter control device (not shown), and the inverter control device controls energization by turning on / off each switch in the inverter 30 based on various detection information in the motor 20 and demands for power running drive and power generation. To carry out. As a result, the inverter control device supplies electric power from the assembled battery 40 to the motor 20 via the inverter 30 to drive the motor 20 by power running. Further, the inverter control device generates electric power based on the power from the drive wheels, converts the generated electric power through the inverter 30 and supplies the generated electric power to the assembled battery 40 to charge the assembled battery 40.
  • the assembled battery 40 is electrically connected to the motor 20 via the inverter 30.
  • the assembled battery 40 has a terminal-to-terminal voltage of, for example, 100 V or more, and is configured by connecting a plurality of battery modules 41 in series.
  • the battery module 41 is configured by connecting a plurality of battery cells 42 in series.
  • As the battery cell 42 for example, a lithium ion storage battery or a nickel hydrogen storage battery can be used.
  • Each battery cell 42 is a storage battery having an electrolyte and a plurality of electrodes.
  • the positive electrode side terminal of the electric load such as the inverter 30 is connected to the positive electrode side power supply path L1 connected to the positive electrode side power supply terminal of the assembled battery 40.
  • the negative electrode side terminal of the electric load such as the inverter 30 is connected to the negative electrode side power supply path L2 connected to the negative electrode side power supply terminal of the assembled battery 40.
  • a relay switch SMR (system main relay switch) is provided in each of the positive electrode side power supply path L1 and the negative electrode side power supply path L2, and the relay switch SMR can switch between energization and energization cutoff.
  • the battery monitoring device 50 is a device that monitors the storage state (SOC), deterioration state (SOH), and the like of each battery cell 42.
  • the battery monitoring device 50 is provided for each battery cell 42.
  • the battery monitoring device 50 is connected to the ECU 60 and outputs the state of each battery cell 42 and the like. The configuration of the battery monitoring device 50 will be described later.
  • the ECU 60 requests power running drive and power generation from the inverter control device based on various information.
  • the various information includes, for example, accelerator and brake operation information, vehicle speed, and the state of the assembled battery 40.
  • the battery monitoring device 50 As shown in FIG. 2, in the first embodiment, the battery monitoring device 50 is provided for each battery cell 42.
  • the battery monitoring device 50 includes an ASIC unit 50a, a filter unit 55, and a current modulation circuit 56.
  • the ASIC unit 50a includes a stabilized power supply unit 51, an input / output unit 52, a microcomputer unit 53 as a calculation unit, and a communication unit 54.
  • the stabilized power supply unit 51 is connected to the power supply line of the battery cell 42, and supplies the power supplied from the battery cell 42 to the input / output unit 52, the microcomputer unit 53, and the communication unit 54.
  • the input / output unit 52, the microcomputer unit 53, and the communication unit 54 are driven based on this electric power.
  • the input / output unit 52 is connected to the battery cell 42 to be monitored. Specifically, the input / output unit 52 has a DC voltage input terminal 57 capable of inputting (measuring) a DC voltage from the battery cell 42.
  • a filter unit 55 is provided between the battery cell 42 and the DC voltage input terminal 57. That is, an RC filter 55a as a filter circuit, a Zener diode 55b as a protective element, and the like are provided between the positive electrode side terminal 57a of the DC voltage input terminal 57 and the negative electrode side terminal 57b. That is, the RC filter 55a, the Zener diode 55b, and the like are connected in parallel to the battery cell 42.
  • the input / output unit 52 has a response signal input terminal 58 for inputting a response signal (voltage fluctuation) reflecting the internal complex impedance information of the battery cell 42 between the terminals of the battery cell 42. Therefore, the input / output unit 52 functions as a response signal input unit.
  • the input / output unit 52 is connected to a current modulation circuit 56 as a signal control unit, and outputs an instruction signal for instructing the current modulation circuit 56 of a sine wave signal (AC signal) to be output from the battery cell 42. It has an instruction signal output terminal 59a for output. Further, the input / output unit 52 has a feedback signal input terminal 59b. The feedback signal input terminal 59b inputs a current signal actually output (flowing) from the battery cell 42 as a feedback signal via the current modulation circuit 56.
  • the input / output unit 52 is connected to the microcomputer unit 53, and the DC voltage input by the DC voltage input terminal 57, the response signal input by the response signal input terminal 58, and the feedback signal input by the feedback signal input terminal 59b. Etc. are configured to be output to the microcomputer unit 53.
  • the input / output unit 52 has an AD converter inside, and is configured to convert the input analog signal into a digital signal and output it to the microcomputer unit 53.
  • the input / output unit 52 is configured to input an instruction signal from the microcomputer unit 53, and is configured to output an instruction signal from the instruction signal output terminal 59a to the current modulation circuit 56.
  • the input / output unit 52 has a DA converter inside, and is configured to convert a digital signal input from the microcomputer unit 53 into an analog signal and output an instruction signal to the current modulation circuit 56. Has been done. Further, the sine wave signal instructed by the instruction signal to the current modulation circuit 56 is DC biased so that the sine wave signal does not become a negative current (backflow to the battery cell 42).
  • the current modulation circuit 56 is a circuit that outputs a predetermined AC signal (sine wave signal) using the battery cell 42 to be monitored as a power source. More specifically, the current modulation circuit 56 has a semiconductor switch element 56a (for example, MOSFET) as a switch unit and a resistor 56b connected in series with the semiconductor switch element 56a.
  • the drain terminal of the semiconductor switch element 56a is connected to the positive electrode terminal of the battery cell 42, and the source terminal of the semiconductor switch element 56a is connected in series with one end of the resistor 56b.
  • the other end of the resistor 56b is connected to the negative electrode terminal of the battery cell 42.
  • the semiconductor switch element 56a is configured so that the amount of energization can be adjusted between the drain terminal and the source terminal.
  • the positive electrode terminal and the negative electrode terminal of the battery cell 42 are connected to electrodes (positive electrode or negative electrode), respectively. Then, it is desirable that the response signal input terminal 58 is connected to the portion closest to the electrode among the connectable portions of the positive electrode terminal and the negative electrode terminal. Similarly, it is desirable that the connection point of the DC voltage input terminal 57 is the place closest to the electrode or the place next to the connection point of the response signal input terminal 58. As a result, the influence of the voltage drop due to the main current or the equalizing current can be minimized.
  • the current modulation circuit 56 is provided with a current detection amplifier 56c as a current detection unit connected to both ends of the resistor 56b.
  • the current detection amplifier 56c is configured to detect a signal (current signal) flowing through the resistor 56b and output the detection signal as a feedback signal to the feedback signal input terminal 59b of the input / output unit 52.
  • the current modulation circuit 56 is provided with a feedback circuit 56d.
  • the feedback circuit 56d is configured to input an instruction signal from the instruction signal output terminal 59a of the input / output unit 52 and to input a feedback signal from the current detection amplifier 56c. Then, the instruction signal and the feedback signal are compared, and the result is output to the gate terminal of the semiconductor switch element 56a.
  • the semiconductor switch element 56a applies a voltage applied between the gate and the source so as to output a sine wave signal (a predetermined AC signal) instructed by the instruction signal from the battery cell 42 based on the signal from the feedback circuit 56d. Adjust to adjust the amount of current between the drain and source. When an error occurs between the waveform indicated by the instruction signal and the waveform actually flowing through the resistor 56b, the semiconductor switch element 56a corrects the error based on the signal from the feedback circuit 56d. Adjust the amount of current so that. As a result, the sinusoidal signal flowing through the resistor 56b is stabilized.
  • a sine wave signal a predetermined AC signal
  • the battery monitoring device 50 executes the complex impedance calculation process shown in FIG. 3 at predetermined intervals.
  • the microcomputer unit 53 first sets the measurement frequency of the complex impedance (step S101).
  • the measurement frequency is set from the frequencies within the predetermined measurement range.
  • the microcomputer unit 53 determines the frequency of the sine wave signal (predetermined AC signal) based on the measurement frequency, and outputs an instruction signal instructing the input / output unit 52 to output the sine wave signal. (Step S102).
  • the input / output unit 52 When the input / output unit 52 inputs the instruction signal, it is converted into an analog signal by the DA converter and output to the current modulation circuit 56.
  • the current modulation circuit 56 uses the battery cell 42 as a power source to output a sine wave signal based on the instruction signal.
  • the semiconductor switch element 56a adjusts the amount of current so that the sine wave signal instructed by the instruction signal is output from the battery cell 42 based on the signal input via the feedback circuit 56d. As a result, a sine wave signal is output from the battery cell 42.
  • a sine wave signal is output from the battery cell 42, that is, when a disturbance is applied to the battery cell 42, a voltage fluctuation reflecting the internal complex impedance information of the battery cell 42 occurs between the terminals of the battery cell 42.
  • the input / output unit 52 inputs the voltage fluctuation via the response signal input terminal 58, and outputs the response signal to the microcomputer unit 53. At that time, it is converted into a digital signal by an AD converter and output.
  • the microcomputer unit 53 After executing step S102, the microcomputer unit 53 inputs a response signal from the input / output unit 52 (step S103). Further, the microcomputer unit 53 acquires a signal flowing through the resistor 56b of the current modulation circuit 56 (that is, a signal output from the battery cell 42) as a current signal (step S104). Specifically, the microcomputer unit 53 inputs the feedback signal (detection signal) output from the current detection amplifier 56c as a current signal via the input / output unit 52. Instead of the feedback signal, a value proportional to the instruction signal instructed to the current modulation circuit 56 may be used as the current signal.
  • the microcomputer unit 53 calculates the complex impedance based on the response signal and the current signal (step S105). That is, the microcomputer unit 53 calculates all or any of the real part, the imaginary part, the absolute value, and the phase of the complex impedance based on the amplitude of the response signal, the phase difference from the current signal, and the like.
  • the microcomputer unit 53 outputs the calculation result to the ECU 60 via the communication unit 54 (step S106). Then, the calculation process is completed.
  • This calculation process is repeatedly executed until complex impedances for a plurality of frequencies within the measurement range are calculated.
  • the ECU 60 creates, for example, a complex impedance plane plot (call call plot) to grasp the characteristics of the electrodes and the electrolyte. For example, the storage state (SOC) and deterioration state (SOH) are grasped.
  • SOC storage state
  • SOH deterioration state
  • the complex impedance of a specific frequency may be measured at regular time intervals during traveling, and changes in SOC, SOH, battery temperature, etc. during traveling may be grasped based on the time change of the complex impedance of the specific frequency. ..
  • the complex impedance of a specific frequency may be measured at time intervals such as daily, weekly, or yearly, and changes in SOH or the like may be grasped based on the time change of the complex impedance of the specific frequency.
  • the battery monitoring device 50 of the first embodiment has the following effects.
  • the current modulation circuit 56 uses the battery cell 42 to be monitored as a power source to output a sine wave signal (a predetermined AC signal). Therefore, an external power source for inputting the sine wave signal to the battery cell 42 is not required, and it is possible to reduce the number of parts, reduce the size, and reduce the cost.
  • peripheral circuits such as protection elements and filter circuits are generally connected to the in-vehicle storage battery, and even if an AC signal is input to the storage battery, a part of the current leaks to the peripheral circuit.
  • the RC filter 55a and the Zener diode 55b are connected to the battery cell 42, and even if an AC signal is input to the battery cell 42, a part of the current leaks to those circuits. .. Therefore, when an AC signal is input to the battery cell 42 and the complex impedance is calculated based on the response signal, there is a problem that an error occurs in the response signal due to the influence of the leakage current and the detection accuracy of the complex impedance is lowered. It was.
  • the battery cell 42 is used as a power source to output a sine wave signal, a closed circuit can be realized by the current modulation circuit 56 and the battery cell 42. Therefore, the leakage of the current from the battery cell 42 can be eliminated, and the error of the response signal can be suppressed.
  • the instruction signal is converted from the digital signal to the analog signal. An error occurs during this conversion.
  • a filter circuit or the like between the input / output unit 52 and the current modulation circuit 56, the waveform of the instruction signal can be smoothed and this error can be suppressed.
  • providing the filter circuit may increase the size. It leads to an increase in cost.
  • the filter circuit may be enlarged accordingly. Therefore, the above feedback was performed to suppress the error of the waveform of the instruction signal at the time of signal conversion. As a result, the filter circuit can be omitted between the input / output unit 52 and the current modulation circuit 56.
  • the current modulation circuit 56 is configured to detect a signal flowing through the resistor 56b and output the detected signal as a feedback signal to the microcomputer unit 53 via the input / output unit 52. Then, the microcomputer unit 53 uses the feedback signal as a current signal to calculate the complex impedance. As a result, even if an error (phase shift, etc.) occurs between the signal actually flowing through the resistor 56b and the sine wave signal to be output (the signal instructed by the microcomputer unit 53), the feedback signal, That is, since the signal actually flowing through the resistor 56b is used, the calculation accuracy of the complex impedance can be improved.
  • the filter circuit can be omitted between the input / output unit 52 and the current modulation circuit 56, and the battery monitoring device 50 can be miniaturized.
  • the response signal input terminal 58 is connected to the terminal of the battery cell 42 that is closest to the electrode among the connectable parts.
  • the influence of the impedance component possessed by the terminals of the battery cell 42 can be suppressed, and the calculation accuracy of the complex impedance can be further improved.
  • the terminal 42a of the battery cell 42 has an impedance component. Therefore, when connecting the response signal input terminal 58, it is desirable to connect it to a portion closer to the electrode as shown in FIG. 4 (b) rather than FIG. 4 (a). Thereby, the calculation accuracy of the complex impedance can be further improved.
  • FIG. 4B it is desirable that the connection point of the response signal input terminal 58 is closer to the electrode than the connection point of the current modulation circuit 56.
  • the battery monitoring device 50 of the second embodiment carries out so-called two-phase lock-in detection.
  • the details will be described below.
  • the parts that are the same or equal to each other in each embodiment are designated by the same reference numerals, and the description thereof will be incorporated for the parts having the same reference numerals.
  • the ASIC unit 50a of the battery monitoring device 50 is provided with a differential amplifier 151 for measuring the DC voltage between the terminals of the battery cell 42.
  • the differential amplifier 151 is connected to the DC voltage input terminal 57, and is configured to measure and output the DC voltage.
  • the ASIC unit 50a of the battery monitoring device 50 is provided with a preamplifier 152 as an amplifier that inputs the voltage fluctuation of the battery cell 42 at the time of outputting the sine wave signal via the response signal input terminal 58.
  • the preamplifier 152 amplifies the voltage fluctuation input via the response signal input terminal 58 and outputs it as a response signal. That is, since the amplitude of the response signal is a weak signal as compared with the voltage of the battery cell 42, the preamplifier 152 is provided in order to improve the detection accuracy of the response signal.
  • the preamplifier 152 has one stage, but it may have multiple stages.
  • a capacitor C1 for cutting a DC component is provided between the positive electrode terminal of the battery cell 42 and the response signal input terminal 58 on the positive electrode side (the positive electrode side terminal side of the preamplifier 152). Has been done.
  • the DC component (the portion not related to the internal complex impedance information) can be removed from the voltage fluctuation of the battery cell 42, and the detection accuracy of the response signal can be improved.
  • the ASIC unit 50a is provided with a signal switching unit 153 that switches between the DC voltage output from the differential amplifier 151 and the response signal output from the preamplifier 152.
  • An AD converter 154 is connected to the signal switching unit 153, and the switched signal (analog signal) is converted into a digital signal and output.
  • the AD converter 154 is connected to the signal processing unit 155 as the calculation unit in the second embodiment, and is configured to input a DC voltage. Further, the AD converter 154 is connected to the first multiplier 156 and the second multiplier 157, and is configured to input a response signal, respectively.
  • An oscillation circuit 158 which will be described later, is connected to the first multiplier 156 so that a first reference signal is input.
  • the first multiplier 156 multiplies the first reference signal by the response signal to calculate a value proportional to the real part of the response signal, and passes through the low-pass filter 159 to calculate a value proportional to the real part of the response signal. Is output to the signal processing unit 155.
  • the real part of the response signal is shown as Re
  • the second multiplier 157 is connected to the oscillation circuit 158 via the phase shift circuit 160, and a second reference signal is input.
  • the second reference signal is a signal obtained by advancing the phase of the first reference signal by 90 degrees ( ⁇ / 2).
  • the phase shift circuit 160 advances the phase of the sine wave signal (first reference signal) input from the oscillation circuit 158 and outputs it as a second reference signal.
  • the second multiplier 157 multiplies the second reference signal by the response signal to calculate a value proportional to the imaginary part of the response signal, and passes through the low-pass filter 161 to calculate a value proportional to the imaginary part of the response signal. Is output to the signal processing unit 155.
  • the imaginary part of the response signal is shown as Im
  • the oscillation circuit 158 is a circuit that outputs a set sine wave signal, and functions as a waveform indicator. As described above, the oscillator circuit 158 outputs a sine wave signal as the first reference signal to the first multiplier 156 and the phase shift circuit 160. Further, the oscillation circuit 158 is connected to the instruction signal output terminal 59a via the DA converter 162, and outputs a sine wave signal as an instruction signal.
  • the feedback signal input terminal 59b is connected to the signal processing unit 155 via the AD converter 163.
  • the signal processing unit 155 inputs a feedback signal (detection signal) from the feedback signal input terminal 59b via the AD converter 163.
  • the signal processing unit 155 inputs a value proportional to the real part of the response signal and a value proportional to the imaginary part of the response signal, and calculates the real part and the imaginary part of the complex impedance based on those values. At that time, the signal processing unit 155 calculates (corrects) the real part and the imaginary part of the complex impedance by using the input feedback signal and adding the amplitude of the signal actually flowing and the phase shift from the reference signal. ..
  • the signal processing unit 155 calculates the absolute value and phase of the complex impedance.
  • the phase of the response signal is ⁇ v, it can be indicated as
  • the current can be expressed as shown in
  • the absolute value of the complex impedance can be obtained from
  • the absolute value of the complex impedance is indicated by
  • the complex impedance calculation process is executed by the battery monitoring device 50 at predetermined intervals.
  • the oscillation circuit 158 first sets the measurement frequency of the complex impedance (step S201).
  • the measurement frequency is set from the frequencies within the predetermined measurement range.
  • the measurement frequency is determined by, for example, the signal processing unit 155.
  • the signal switching unit 153 switches so that the response signal from the preamplifier 152 is output (step S202).
  • the switching instruction is given by, for example, the signal processing unit 155.
  • the oscillation circuit 158 determines the frequency of the sine wave signal (predetermined AC signal) based on the measurement frequency, and from the instruction signal output terminal 59a to the current modulation circuit 56 via the DA converter 162.
  • An instruction signal instructing the output of the sine wave signal is output (step S203).
  • the output instruction of the instruction signal is given by, for example, the signal processing unit 155.
  • an appropriate offset value (DC bias) is set in consideration of the voltage of the battery cell 42, and the signal is converted.
  • the offset value (DC bias) is set by, for example, the signal processing unit 155. It is desirable that the offset value (DC bias) is set based on the DC voltage of the battery cell 42.
  • the DC voltage of the battery cell 42 may be measured by the differential amplifier 151.
  • the current modulation circuit 56 outputs a sine wave signal using the battery cell 42 as a power source based on the instruction signal (step S204). As a result, a sine wave signal is output from the battery cell 42.
  • a voltage fluctuation that reflects the internal complex impedance information of the battery cell 42 occurs between the terminals of the battery cell 42.
  • the preamplifier 152 inputs the voltage fluctuation thereof via the response signal input terminal 58 and outputs it as a response signal (step S205).
  • the DC component of the voltage fluctuation is cut by the capacitor C1, and only the characteristic portion of the voltage fluctuation is taken out. Further, the preamplifier 152 amplifies a weak voltage fluctuation in which the DC component is cut, and outputs it as a response signal. At that time, the AD converter 154 converts the response signal input via the signal switching unit 153 into a digital signal and outputs it. It is desirable that the magnitude of the DC component cut by the capacitor C1 is adjusted based on the DC voltage of the battery cell 42. Similarly, how much the voltage fluctuation is amplified is preferably adjusted based on the DC voltage of the battery cell 42.
  • the first multiplier 156 uses the sine wave signal input from the oscillation circuit 158 as the first reference signal, multiplies the response signal input from the AD converter 154, and calculates a value proportional to the real part of the response signal. (Step S206). Similarly, the second multiplier 157 multiplies the second reference signal input from the phase shift circuit 160 with the response signal to calculate a value proportional to the imaginary part of the response signal.
  • the signal processing unit 155 inputs a feedback signal (detection signal) from the feedback signal input terminal 59b (step S207).
  • a feedback signal detection signal
  • the feedback signal is input to the signal processing unit 155, it is converted into a digital signal by the AD converter 163.
  • the signal processing unit 155 is of the real part, the imaginary part, the absolute value, and the phase of the complex impedance based on the feedback signal and the signal (proportional value of the real part and the imaginary part) input from the low-pass filters 159 and 161. Calculate all or either (step S208).
  • the feedback signal is used to correct the amplitude or phase shift between the current actually flowing from the battery cell 42 (that is, the feedback signal) and the value proportional to the reference signal.
  • the signal processing unit 155 outputs the calculation result to the ECU 60 via the communication unit 54 (step S209). Then, the calculation process is completed.
  • This calculation process is repeatedly executed until complex impedances for a plurality of frequencies within the measurement range are calculated.
  • the ECU 60 creates a complex impedance plane plot (call call plot) based on the calculation result, and grasps the characteristics of the electrodes, the electrolyte, and the like. For example, the storage state (SOC) and deterioration state (SOH) are grasped.
  • the complex impedance of a specific frequency may be measured at regular time intervals during traveling, and changes in SOC, SOH, battery temperature, etc. during traveling may be grasped based on the time change of the complex impedance of the specific frequency. ..
  • the complex impedance of a specific frequency may be measured at time intervals such as daily, weekly, or yearly, and changes in SOH or the like may be grasped based on the time change of the complex impedance of the specific frequency.
  • the battery monitoring device 50 of the second embodiment has the following effects.
  • the signal processing unit 155 calculates a value proportional to the actual part of the response signal based on the value obtained by multiplying the response signal input from the response signal input terminal 58 and the first reference signal. Further, the signal processing unit 155 uses a signal obtained by shifting the phase of the sine wave signal as the second reference signal, and sets the imaginary part of the response signal based on the value obtained by multiplying the response signal and the second reference signal. Calculate a proportional value. Then, the complex impedance is calculated based on these values. By performing so-called lock-in detection in this way, it is possible to extract only the frequency component having the same frequency as the frequency of the sinusoidal signal indicated by the oscillation circuit 158 from the response signal.
  • the complex impedance can be calculated with high accuracy.
  • noise increases, so that the complex impedance can be preferably calculated.
  • the current (sine wave signal) output from the battery cell 42 can be reduced. Therefore, it is possible to suppress the power consumption and the temperature rise of the battery cell 42 and the semiconductor switch element 56a.
  • the signal processing unit 155 inputs a feedback signal (detection signal) that detects the current actually flowing from the battery cell 42 by the current modulation circuit 56, and corrects the amplitude and phase deviation from the value proportional to the reference signal. ing. Thereby, the calculation accuracy of the complex impedance can be improved.
  • a feedback signal detection signal
  • the amplitude and phase shift are corrected, even if an error occurs when converting the instruction signal into an analog signal, the error can be suppressed by the correction by the feedback signal. Therefore, it is not necessary to provide a filter circuit or the like between the current modulation circuit 56 and the DA converter 162, and the size can be reduced.
  • the battery monitoring device 50 of the third embodiment performs a fast Fourier transform (FFT) in the signal analysis.
  • FFT fast Fourier transform
  • the ASIC unit 50a of the battery monitoring device 50 includes a signal processing unit 201 as an arithmetic unit that performs a fast Fourier transform.
  • the signal processing unit 201 is configured to input the measured value of the DC voltage of the battery cell 42 via the AD converter 154. Further, the signal processing unit 201 is configured to input a response signal via the AD converter 154. Further, the signal processing unit 201 is configured to input a feedback signal via the AD converter 163. Further, the signal processing unit 201 is connected to the oscillation circuit 158 and is configured so that the frequency of the sine wave signal can be set.
  • the signal processing unit 201 is configured to convert the input response signal (voltage signal) and feedback signal (current signal) by fast Fourier transform, respectively. Then, the signal processing unit 201 calculates the real part, the imaginary part, the absolute value, and the phase of the complex impedance based on the converted value. Then, the signal processing unit 201 outputs the calculation result to the ECU 60 via the communication unit 54.
  • the complex impedance calculation process in the third embodiment is executed by the battery monitoring device 50 at predetermined intervals.
  • steps S301 to S305 are the same as steps S201 to S205 in the complex impedance calculation process of the second embodiment.
  • the measurement frequency setting, switching instruction, instruction signal output instruction, offset value setting, and the like are performed by, for example, the signal processing unit 201.
  • the signal processing unit 201 performs a fast Fourier transform on the response signal input from the input AD converter 154 (step S306). Thereby, the amplitude information of the response signal with respect to the measurement frequency can be obtained.
  • the signal processing unit 201 inputs a feedback signal from the feedback signal input terminal 59b (step S307).
  • the feedback signal is input to the signal processing unit 155, it is converted into a digital signal by the AD converter 163.
  • the signal processing unit 201 performs a fast Fourier transform on the feedback signal (step S308). Thereby, the amplitude information of the feedback signal with respect to the measurement frequency can be obtained.
  • the signal processing unit 201 has the real part, the imaginary part, and the absolute value of the complex impedance based on the amplitude information of the response signal with respect to the measurement frequency acquired in step S306 and the amplitude information of the feedback signal with respect to the measurement frequency acquired in step S308. , And all or any of the phases (step S309). After that, the signal processing unit 201 outputs the calculation result to the ECU 60 via the communication unit 54 (step S310). Then, the calculation process is completed.
  • This calculation process is repeatedly executed until complex impedances for a plurality of frequencies within the measurement range are calculated.
  • the ECU 60 creates a complex impedance plane plot (call call plot) based on the calculation result, and grasps the characteristics of the electrodes, the electrolyte, and the like. For example, the storage state (SOC) and deterioration state (SOH) are grasped.
  • the complex impedance of a specific frequency may be measured at regular time intervals during traveling, and changes in SOC, SOH, battery temperature, etc. during traveling may be grasped based on the time change of the complex impedance of the specific frequency. ..
  • the complex impedance of a specific frequency may be measured at time intervals such as daily, weekly, or yearly, and changes in SOH or the like may be grasped based on the time change of the complex impedance of the specific frequency.
  • the battery monitoring device 50 of the third embodiment has the following effects.
  • the response signal and feedback signal are Fourier transformed respectively to obtain amplitude information and phase information of the measurement frequency, and amplitude information and phase information of harmonics of the measurement frequency. Since voltage and current amplitudes and starting information can be obtained for the measurement frequency and its harmonics, respectively, it is possible to calculate the complex impedance for a plurality of frequencies at once.
  • the signal processing unit 201 inputs a feedback signal (detection signal) that detects the current actually flowing from the battery cell 42 by the current modulation circuit 56, and Fourier transforms the signal. Therefore, the deviation of the amplitude and the phase can be corrected, and the calculation accuracy of the complex impedance can be improved.
  • a feedback signal detection signal
  • the battery monitoring device 50 is provided for each battery cell 42, but the battery monitoring device 50 may be provided for each of the plurality of battery cells 42 (for example, for each battery module 41 and for each assembled battery 40). .. At that time, a part of the functions of the battery monitoring device 50 may be shared.
  • the stabilized power supply unit 301, the communication unit 54, and the microcomputer unit 53 may be shared.
  • the potential of the negative electrode may differ for each battery cell 42. Therefore, the reference potential of each electric signal used when transmitting the information of each battery cell 42 may be different. Therefore, it is necessary to provide a function of inputting each electric signal to the microcomputer unit 53 in consideration of the difference in the reference potential and perform the calculation.
  • a signal transmission means between different reference potentials there is a method using a capacitor, a transformer, a radio wave, or light.
  • a stabilized power supply unit 301 for example, as shown in FIG. 10, a stabilized power supply unit 301, a communication unit 54, a differential amplifier 151, a preamplifier 152, a signal switching unit 153, an AD converter 154, 163, a signal processing unit 155, and a first multiplication.
  • the device 156, the second multiplier 157, the low-pass filters 159, 161, the oscillation circuit 158, the phase shift circuit 160, the DA converter 162, the feedback circuit 56d, and the current detection amplifier 56c may be shared.
  • various signals such as DC voltage, response signal, and instruction signal may be configured to be switchable by a multiplexing device such as multiplexers 302 to 304.
  • a stabilized power supply unit 301 for example, as shown in FIG. 11, a stabilized power supply unit 301, a communication unit 54, a differential amplifier 151, a preamplifier 152, a signal switching unit 153, an AD converter 154, 163, a signal processing unit 201, and an oscillation circuit.
  • the 158, the DA converter 162, the feedback circuit 56d, and the current detection amplifier 56c may be shared.
  • various signals such as DC voltage, response signal, and instruction signal may be configured to be switchable by a multiplexing device such as multiplexers 302 to 304.
  • a portion in which the high potential side and the low potential side in which a plurality of battery cells 42 are connected in series are used as the positive and negative electrodes of the power supply, respectively, and a portion in which both electrodes of the individual battery cells 42 are used as the positive and negative electrodes of the power supply, respectively. It may be divided and only one of them may be shared.
  • the communication unit 54, the AD converters 154 and 163, the signal processing units 155 and 201, the oscillation circuit 158, the phase shift circuit 160, and the DA converter 162 may be shared.
  • the first multiplier 156, the second multiplier 157, and the low-pass filters 159 and 161 are not shown in FIG. 12, when the signal processing unit 155 that performs lock-in detection is adopted, they are also shared. Will be done.
  • power is supplied to the common part from the first power supply 401, and power is supplied to the first power supply 401 from a plurality of battery cells 42.
  • power is supplied from the second power supply 402 to the parts that are not shared, and power is supplied to the second power supply 402 from each battery cell 42.
  • the output voltage of the first power supply 401 and the output voltage of the second power supply 402 are different.
  • various signals such as DC voltage, response signal, and instruction signal may be configured to be switchable by a multiplexing device such as multiplexers 302 to 304.
  • the battery monitoring device 50 of FIGS. 9 to 11 may be provided with a plurality of power sources as in the battery monitoring device 50 of FIG.
  • the battery monitoring device 50 may perform an equalization process for equalizing the storage state and voltage of each battery cell 42.
  • the equalization process is a process of discharging a part of the battery cells 42 having a higher electricity storage state than the other battery cells 42 so that the electricity storage states of the battery cells 42 are aligned. As a result, it is possible to align the storage states of the battery cells 42 and prevent a part of the battery cells 42 from being overcharged.
  • the battery monitoring device 50 when the battery monitoring device 50 performs the equalization process, the battery cell 42 may be discharged by using the current modulation circuit 56. In this case, the battery monitoring device 50 functions as a discharge control unit.
  • the microcomputer unit 53 receives a discharge instruction from the ECU 60 or the like based on the electricity storage state of each battery cell 42, or the electricity storage state or voltage of the battery cell 42 is a predetermined value.
  • an instruction signal is output to the current modulation circuit 56, and a periodic function such as a sine wave signal or a rectangular wave or a DC signal is output from the battery cell 42.
  • the microcomputer unit 53 continues to output the signal until the discharge instruction is completed or the storage state or voltage of the battery cell 42 becomes smaller than a predetermined value.
  • the signal processing units 155 and 201 may carry out the equalization process.
  • the battery monitoring device 50 shown in FIGS. 9 to 12 may also be subjected to the equalization process in the same manner.
  • a sine wave signal may be output to calculate the complex impedance.
  • the current output for the equalization process is generally a weak current in order to suppress power consumption and to reduce the size of the device. Therefore, it is preferable to perform the equalization process in the battery monitoring device 50 capable of accurately calculating the complex impedance by lock-in detection even with a weak current as in the second embodiment.
  • the filter unit 55 does not have to be composed of only elements.
  • the wiring, the connector contact portion, the pattern wiring of the printed circuit board, or between the solid patterns, or a configuration in which these configurations and elements are mixed may be used.
  • a filter circuit may be provided between the current modulation circuit 56 and the input / output unit 52 (or DA converter 162). As a result, it is possible to suppress an error in converting the instruction signal into an analog signal.
  • the circuit 158, the phase shift circuit 160, the DA converter 162, the feedback circuit 56d, and a part or all of the current detection amplifier 56c may be realized by software.
  • the capacitor C1 may not be provided.
  • the feedback circuit 56d may not be provided. Further, the current detection amplifier 56c does not have to detect the current flowing through the resistor 56b. Further, the microcomputer unit 53 and the signal processing units 155 and 201 do not have to input the feedback signal.
  • the DC voltage is detected, but it is not necessary to detect it.
  • the signal switching unit 153 may not be provided.
  • the feedback signal may also be switched by the signal switching unit 153.
  • the AD converters 154 and 163 can be shared.
  • the battery monitoring device 50 of the above embodiment may be adopted as a vehicle for HEVs, EVs, PHVs, auxiliary batteries, electric airplanes, electric motorcycles, and electric ships.
  • the battery cells 42 may be connected in parallel.
  • the filter circuit may be provided before and after the preamplifier 152 or immediately before the AD converter 154 in order to prevent aliasing during AD conversion.
  • the state may be monitored in 41 units of the battery module.
  • the communication from each communication unit 54 to the ECU 60 may be an isolated communication having a different potential reference.
  • isolation communication may be performed using an isolation transformer or a capacitor.
  • the feedback signal may be detected as lock-in. More specifically, based on FIG. 13, the complex impedance calculation process is executed by the battery monitoring device 50 at predetermined intervals.
  • the oscillation circuit 158 first sets the measurement frequency of the complex impedance (step S401).
  • the measurement frequency is set from the frequencies within the predetermined measurement range.
  • the measurement frequency is determined, for example, by the signal processing unit 155.
  • the oscillation circuit 158 determines the frequency of the sine wave signal (predetermined AC signal) based on the measurement frequency, and from the instruction signal output terminal 59a to the current modulation circuit 56 via the DA converter 162.
  • An instruction signal instructing the output of the sine wave signal is output (step S402).
  • the current modulation circuit 56 uses the battery cell 42 as a power source to output a sine wave signal based on the instruction signal. As a result, a sine wave signal is output from the battery cell 42.
  • the signal processing unit 155 measures the feedback signal by two-phase lock-in detection (step S403). Specifically, the signal processing unit 155 multiplies the sine wave signal (reference signal) instructed by the oscillation circuit 158 with the input feedback signal. Further, the signal whose phase of the sine wave signal instructed by the oscillation circuit 158 is shifted by 90 degrees is multiplied by the input feedback signal. The signal processing unit 155 calculates the amplitude and phase value of the feedback signal from these multiplication results.
  • the signal processing unit 155 determines whether or not the difference between the calculated amplitude and the amplitude correction value is within the amplitude reference value (step S404).
  • the amplitude correction value indicates the amplitude of the sinusoidal signal expected to be output.
  • step S403 determines whether or not the number of measurements (the number of feedback signal measurements) in step S403 is equal to or greater than a predetermined number (step S405). If this determination result is negative, the signal processing unit 155 adds 1 to the number of measurements and re-executes step S403.
  • step S405 determines whether the amplitudes of the measured feedback signals are rewritten. It also clears the number of measurements.
  • step S404 determines whether or not the difference between the phase value calculated in step S403 and the phase correction value is within the phase reference value.
  • the phase correction value indicates the phase of the sinusoidal signal that is expected to be output.
  • the signal processing unit 155 determines whether or not the number of measurements (the number of feedback signal measurements) in step S403 is equal to or greater than a predetermined number (step S408). If this determination result is negative, the signal processing unit 155 adds 1 to the number of measurements and re-executes step S403.
  • step S408 determines whether the determination result in step S408 is affirmative. If the determination result in step S408 is affirmative, the signal processing unit 155 calculates the average phase of the measured feedback signal and rewrites the average value as the phase correction value (step S409). It also clears the number of measurements.
  • the signal processing unit 155 measures the response signal by two-phase lock-in detection (step S410). Since this process is the same as steps S202, S205, S206 and the like of the second embodiment, the description thereof will be omitted.
  • the signal processing unit 155 is based on the feedback signal and the signal (proportional value of the real part and the imaginary part) input from the low-pass filters 159 and 161. Alternatively, either is calculated (step S411).
  • the feedback signal is determined by the amplitude correction value and the phase correction value, and is used to correct the amplitude or phase shift between the current actually flowing from the battery cell 42 (that is, the feedback signal) and the value proportional to the reference signal. To.
  • the signal processing unit 155 outputs the calculation result to the ECU 60 via the communication unit 54 (step S412). Then, the calculation process is completed.
  • the feedback signal is measured by the two-phase lock-in detection, the current signal actually output from the battery cell 42 can be measured accurately even in an environment where noise exists. Then, since this feedback signal is used for correction at the time of calculating the complex impedance, the calculation accuracy of the complex impedance can be improved.
  • the current signal output from the battery cell 42 is not limited to the sine wave signal.
  • it is an AC signal, it may be a signal such as a rectangular wave or a triangular wave.
  • the ECU 60 may be composed of a plurality of ECUs.
  • a plurality of ECUs may be provided for each function, or a plurality of ECUs may be provided for each control target.
  • it may be divided into a battery ECU and an inverter control ECU.
  • the sine wave signal indicated by the oscillation circuit 158 is used as a reference signal (first reference signal), but the detection signal (feedback signal) may be used as a reference signal. Further, when performing two-phase lock-in detection, the phase of the detection signal (feedback signal) may be shifted to be the second reference signal.
  • the battery cell 42 (battery module 41, assembled battery 40) is used as a power source for peripheral circuits when a sine wave signal is output based on an instruction (when a response signal is output). May be good.
  • the battery cell 42 (battery module 41, assembled battery 40) is configured so as not to be used as a power source for peripheral circuits when outputting a sine wave signal based on an instruction (when outputting a response signal). You may.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電解質と複数の電極とを含む蓄電池の状態を監視する電池監視装置(50)は、所定の交流信号を出力させる信号制御部(56)と、前記交流信号に対する前記蓄電池の応答信号を入力する応答信号入力部(52)と、前記応答信号に基づいて前記蓄電池の複素インピーダンスを算出する演算部(53)と、を備える。前記信号制御部は、監視対象である前記蓄電池を電源として、所定の交流信号を出力させる。

Description

電池監視装置 関連出願の相互参照
 本出願は、2019年4月26日に出願された日本出願番号2019-086141号に基づくもので、ここにその記載内容を援用する。
 本開示は、電池監視装置に関するものである。
 従来から、蓄電池の状態を監視するため、蓄電池の複素インピーダンスを測定することが行われていた(例えば、特許文献1)。特許文献1に記載の開示では、パワーコントローラにより、蓄電池に対して矩形波信号を印加して、その応答信号に基づいて複素インピーダンス特性を算出していた。そして、この複素インピーダンス特性を基に、蓄電池の劣化状態などを判別していた。
特許第6226261号公報
 ところで、この複素インピーダンス測定法を、車載の蓄電池の複素インピーダンス測定法として採用する場合、次のような問題が生じる。すなわち、パワーコントローラ等、蓄電池に信号を印加する装置を必要としていたため、電池監視装置の大型化やコスト増という問題を招いていた。
 本開示は、上記課題に鑑みてなされたものであり、その目的は、小型化することができる電池監視装置を提供することにある。
 上記課題を解決する手段は、電解質と複数の電極とを含む蓄電池の状態を監視する電池監視装置において、所定の交流信号を出力させる信号制御部と、前記交流信号に対する前記蓄電池の応答信号を入力する応答信号入力部と、前記応答信号に基づいて前記蓄電池の複素インピーダンスを算出する演算部と、を備え、前記信号制御部は、監視対象である前記蓄電池を電源として、所定の交流信号を出力させる。
 上記構成によれば、信号制御部は、監視対象とする蓄電池を電源として、所定の交流信号を出力させる。このため、交流信号を蓄電池に入力するための外部電源が必要なくなり、部品点数削減、小型化、低コスト化を実現することが可能となる。
 ところで、車載の蓄電池には、一般的に保護素子やフィルタ回路などの周辺回路が接続されており、蓄電池に交流信号を入力しても、当該周辺回路に電流の一部が漏れてしまう。このため、蓄電池に交流信号を入力し、その応答信号に基づいて複素インピーダンスを算出する場合、応答信号に誤差が生じ、複素インピーダンスの検出精度が低下するという問題があった。
 しかしながら、上記構成では、蓄電池を電源として、所定の交流信号を出力させるため、電流モジュレーション回路と蓄電池とで閉回路を実現できる。よって、蓄電池から周辺回路への電流の漏れをなくすことができ、誤差を抑制することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電源システムの概略構成図であり、 図2は、電池監視装置の構成図であり、 図3は、複素インピーダンス算出処理のフローチャートであり、 図4は、接続位置を示す図であり、 図5は、第2実施形態の電池監視装置の構成図であり、 図6は、第2実施形態の複素インピーダンス算出処理のフローチャートであり、 図7は、第3実施形態の電池監視装置の構成図であり、 図8は、第3実施形態の複素インピーダンス算出処理のフローチャートであり、 図9は、別例の電池監視装置の構成図であり、 図10は、別例の電池監視装置の構成図であり、 図11は、別例の電池監視装置の構成図であり、 図12は、別例の電池監視装置の構成図であり、 図13は、別例の複素インピーダンス算出処理のフローチャートである。
 (第1実施形態)
 以下、「電池監視装置」を車両(例えば、ハイブリッド車や電気自動車)の電源システムに適用した第1実施形態について、図面を参照しつつ説明する。
 図1に示すように、電源システム10は、回転電機としてのモータ20と、モータ20に対して3相電流を流す電力変換器としてのインバータ30と、充放電可能な組電池40と、組電池40の状態を監視する電池監視装置50と、モータ20などを制御するECU60と、を備えている。
 モータ20は、車載主機であり、図示しない駆動輪と動力伝達可能とされている。本実施形態では、モータ20として、3相の永久磁石同期モータを用いている。
 インバータ30は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、各相巻線において通電電流が調整される。
 インバータ30には、図示しないインバータ制御装置が設けられており、インバータ制御装置は、モータ20における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ30における各スイッチのオンオフにより通電制御を実施する。これにより、インバータ制御装置は、組電池40からインバータ30を介してモータ20に電力を供給し、モータ20を力行駆動させる。また、インバータ制御装置は、駆動輪からの動力に基づいてモータ20を発電させ、インバータ30を介して、発電電力を変換して組電池40に供給し、組電池40を充電させる。
 組電池40は、インバータ30を介して、モータ20に電気的に接続されている。組電池40は、例えば百V以上となる端子間電圧を有し、複数の電池モジュール41が直列接続されて構成されている。電池モジュール41は、複数の電池セル42が直列接続されて構成されている。電池セル42として、例えば、リチウムイオン蓄電池や、ニッケル水素蓄電池を用いることができる。各電池セル42は、電解質と複数の電極とを有する蓄電池である。
 組電池40の正極側電源端子に接続される正極側電源経路L1には、インバータ30等の電気負荷の正極側端子が接続されている。同様に、組電池40の負極側電源端子に接続される負極側電源経路L2には、インバータ30等の電気負荷の負極側端子が接続されている。なお、正極側電源経路L1及び負極側電源経路L2には、それぞれリレースイッチSMR(システムメインリレースイッチ)が設けられており、リレースイッチSMRにより、通電及び通電遮断が切り替え可能に構成されている。
 電池監視装置50は、各電池セル42の蓄電状態(SOC)及び劣化状態(SOH)などを監視する装置である。第1実施形態において電池監視装置50は、電池セル42毎に設けられている。電池監視装置50は、ECU60に接続されており、各電池セル42の状態などを出力する。電池監視装置50の構成については、後述する。
 ECU60は、各種情報に基づいて、インバータ制御装置に対して力行駆動及び発電の要求を行う。各種情報には、例えば、アクセル及びブレーキの操作情報、車速、組電池40の状態などが含まれる。
 次に、電池監視装置50について詳しく説明する。図2に示すように、第1実施形態では、電池セル42毎に電池監視装置50が設けられている。
 電池監視装置50は、ASIC部50aと、フィルタ部55と、電流モジュレーション回路56と、を備えている。ASIC部50aは、安定化電源供給部51と、入出力部52と、演算部としてのマイコン部53と、通信部54と、を備えている。
 安定化電源供給部51は、電池セル42の電源ラインに接続されており、電池セル42から供給された電力を入出力部52、マイコン部53、及び通信部54に対して供給している。入出力部52、マイコン部53、及び通信部54は、この電力に基づいて駆動する。
 入出力部52は、監視対象とする電池セル42に対して接続されている。具体的に説明すると、入出力部52は、電池セル42から直流電圧を入力(測定)可能な直流電圧入力端子57を有する。電池セル42と直流電圧入力端子57との間には、フィルタ部55が設けられている。すなわち、直流電圧入力端子57の正極側端子57aと、負極側端子57bとの間には、フィルタ回路としてのRCフィルタ55a、及び保護素子としてのツェナーダイオード55bなどが設けられている。つまり、電池セル42に対して、RCフィルタ55aやツェナーダイオード55bなどが並列に接続されている。
 また、入出力部52は、電池セル42の端子間において、電池セル42の内部複素インピーダンス情報を反映した応答信号(電圧変動)を入力するための応答信号入力端子58を有する。このため、入出力部52は、応答信号入力部として機能する。
 また、入出力部52は、信号制御部としての電流モジュレーション回路56に接続されており、電流モジュレーション回路56に対して、電池セル42から出力させる正弦波信号(交流信号)を指示する指示信号を出力する指示信号出力端子59aを有する。また、入出力部52は、フィードバック信号入力端子59bを有する。フィードバック信号入力端子59bは、電流モジュレーション回路56を介して、電池セル42から実際に出力される(流れる)電流信号を、フィードバック信号として入力する。
 また、入出力部52は、マイコン部53に接続されており、直流電圧入力端子57が入力した直流電圧や、応答信号入力端子58が入力した応答信号、フィードバック信号入力端子59bが入力したフィードバック信号などをマイコン部53に対して出力するように構成されている。なお、入出力部52は、内部にAD変換器を有しており、入力したアナログ信号をデジタル信号に変換してマイコン部53に出力するように構成されている。
 また、入出力部52は、マイコン部53から指示信号を入力するように構成されており、指示信号出力端子59aから、電流モジュレーション回路56に対して指示信号を出力するように構成されている。なお、入出力部52は、内部にDA変換器を有しており、マイコン部53から入力したデジタル信号をアナログ信号に変換して、電流モジュレーション回路56に対して指示信号を出力するように構成されている。また、電流モジュレーション回路56に指示信号により指示される正弦波信号は、直流バイアスがかけられており、正弦波信号が負の電流(電池セル42に対して逆流)とならないようになっている。
 電流モジュレーション回路56は、監視対象である電池セル42を電源として、所定の交流信号(正弦波信号)を出力させる回路である。具体的に説明すると、電流モジュレーション回路56は、スイッチ部としての半導体スイッチ素子56a(例えば、MOSFET)と、半導体スイッチ素子56aに直列に接続された抵抗56bとを有する。半導体スイッチ素子56aのドレイン端子は、電池セル42の正極端子に接続され、半導体スイッチ素子56aのソース端子は、抵抗56bの一端に直列に接続されている。また、抵抗56bの他端は、電池セル42の負極端子に接続されている。半導体スイッチ素子56aは、ドレイン端子とソース端子との間において通電量を調整可能に構成されている。
 なお、電池セル42の正極端子及び負極端子は、それぞれ電極(正極又は負極)に繋がっている。そして、応答信号入力端子58は、正極端子及び負極端子の接続可能な部分のうち、最も電極に近い箇所に接続されることが望ましい。また、直流電圧入力端子57の接続箇所も同様に、最も電極に近い箇所、又は応答信号入力端子58の接続箇所の次に近い箇所であることが望ましい。これにより、主電流又は均等化電流による電圧低下の影響を最低限にすることができる。
 また、電流モジュレーション回路56には、抵抗56bの両端に接続された電流検出部としての電流検出アンプ56cが設けられている。電流検出アンプ56cは、抵抗56bに流れる信号(電流信号)を検出し、検出信号をフィードバック信号として、入出力部52のフィードバック信号入力端子59bに出力するように構成されている。
 また、電流モジュレーション回路56には、フィードバック回路56dが設けられている。フィードバック回路56dは、入出力部52の指示信号出力端子59aから、指示信号を入力するとともに、電流検出アンプ56cからフィードバック信号を入力するように構成されている。そして、指示信号とフィードバック信号とを比較し、その結果を半導体スイッチ素子56aのゲート端子に出力するように構成されている。
 半導体スイッチ素子56aは、フィードバック回路56dからの信号に基づいて、指示信号により指示された正弦波信号(所定の交流信号)を電池セル42から出力させるように、ゲート・ソース間に印加する電圧を調整して、ドレイン・ソース間の電流量を調整する。なお、指示信号により指示される波形と、実際に抵抗56bに流れる波形との間に誤差が生じている場合、半導体スイッチ素子56aは、フィードバック回路56dからの信号に基づいて、その誤差が補正されるように、電流量を調整する。これにより、抵抗56bに流れる正弦波信号が安定化する。
 次に、電池セル42の複素インピーダンスの算出方法について説明する。電池監視装置50は、所定周期ごとに、図3に示す複素インピーダンス算出処理を実行する。
 複素インピーダンス算出処理において、マイコン部53は、最初に複素インピーダンスの測定周波数を設定する(ステップS101)。測定周波数は、予め決められた測定範囲内の周波数の中から設定される。
 次にマイコン部53は、測定周波数に基づいて、正弦波信号(所定の交流信号)の周波数を決定し、入出力部52に対して、当該正弦波信号の出力を指示する指示信号を出力する(ステップS102)。
 入出力部52は、指示信号を入力すると、DA変換器により、アナログ信号に変換し、電流モジュレーション回路56に出力する。電流モジュレーション回路56は、指示信号に基づいて、電池セル42を電源として正弦波信号を出力させる。具体的には、半導体スイッチ素子56aは、フィードバック回路56dを介して入力された信号に基づき、指示信号により指示された正弦波信号を電池セル42から出力させるように、電流量を調整する。これにより、電池セル42から正弦波信号が出力される。
 電池セル42から正弦波信号を出力させると、すなわち、電池セル42に外乱を与えると、電池セル42の端子間に電池セル42の内部複素インピーダンス情報を反映した電圧変動が生じる。入出力部52は、応答信号入力端子58を介して、その電圧変動を入力し、応答信号としてマイコン部53に出力する。その際、AD変換器により、デジタル信号に変換して出力する。
 ステップS102の実行後、マイコン部53は、入出力部52から応答信号を入力する(ステップS103)。また、マイコン部53は、電流モジュレーション回路56の抵抗56bに流れる信号(つまり、電池セル42から出力される信号)を電流信号として取得する(ステップS104)。具体的には、マイコン部53は、電流検出アンプ56cから出力されたフィードバック信号(検出信号)を、入出力部52を介して、電流信号として入力する。なお、フィードバック信号の代わりに、電流モジュレーション回路56に指示した指示信号に比例した値を電流信号としてもよい。
 次に、マイコン部53は、応答信号及び電流信号に基づいて、複素インピーダンスを算出する(ステップS105)。つまり、マイコン部53は、応答信号の振幅、電流信号との位相差等に基づいて複素インピーダンスの実部、虚部、絶対値、位相のすべて若しくはいずれかを算出する。マイコン部53は、通信部54を介して、算出結果をECU60に出力する(ステップS106)。そして、算出処理を終了する。
 この算出処理は、測定範囲内の複数の周波数についての複素インピーダンスが算出されるまで繰り返し実行される。ECU60は、算出結果に基づいて、例えば、複素インピーダンス平面プロット(コールコールプロット)を作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握する。
 なお、コールコールプロット全体を必ずしも作成する必要はなく、その一部に着目してもよい。例えば、走行時、一定の時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOC、SOH及び電池温度等の走行時における変化を把握してもよい。または、1日毎、1周ごと、若しくは1年ごとといった時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOH等の変化を把握してもよい。
 第1実施形態の電池監視装置50は、以下の効果を有する。
 電流モジュレーション回路56は、監視対象とする電池セル42を電源として、正弦波信号(所定の交流信号)を出力させる。このため、正弦波信号を電池セル42に入力するための外部電源が必要なくなり、部品点数削減、小型化、低コスト化を実現することが可能となる。
 ところで、車載の蓄電池には、一般的に保護素子やフィルタ回路などの周辺回路が接続されており、蓄電池に交流信号を入力しても、当該周辺回路に電流の一部が漏れてしまう。例えば、第1実施形態においても、電池セル42には、RCフィルタ55aやツェナーダイオード55bが接続されており、電池セル42に交流信号を入力しても、電流の一部がそれらの回路に漏れる。このため、電池セル42に交流信号を入力し、その応答信号に基づいて複素インピーダンスを算出する場合、漏れ電流の影響により応答信号に誤差が生じ、複素インピーダンスの検出精度が低下するという問題があった。
 しかしながら、上記第1実施形態の電池監視装置50では、電池セル42を電源として、正弦波信号を出力させるため、電流モジュレーション回路56と電池セル42とで閉回路を実現できる。よって、電池セル42からの電流の漏れをなくすことができ、応答信号の誤差を抑制することができる。
 抵抗56bに実際に流れる信号と、電池セル42から出力させるべき正弦波信号との間に誤差が生じる場合がある。この場合、応答信号の誤差要因となる。そこで、フィードバック回路56dを備えて、半導体スイッチ素子56aに対して指示を行う際、フィードバック信号(検出信号)と指示信号との比較に基づいてフィードバックを行うこととした。これにより、指示した正弦波信号を電池セル42から安定して、正確に出力させることができる。
 また、指示信号により、電流モジュレーション回路56に対して正弦波信号の波形を指示する場合、指示信号をデジタル信号からアナログ信号に変換する。この変換する際に、誤差が生じる。入出力部52と電流モジュレーション回路56との間に、フィルタ回路等を設けることにより、指示信号の波形を滑らかにして、この誤差を抑制することができるが、フィルタ回路を設けることは大型化やコスト増につながる。
 また、車載の電池セル42は、一般的に大容量であるため、複素インピーダンスを算出する場合、測定周波数の測定範囲は広くなる傾向にある。したがって、その分フィルタ回路も大型化する可能性がある。そこで、上記フィードバックを行うこととし、信号変換時における指示信号の波形の誤差を抑制した。これにより、入出力部52と電流モジュレーション回路56との間において、フィルタ回路を省略することができる。
 電流モジュレーション回路56は、抵抗56bに流れる信号を検出し、検出信号をフィードバック信号として、入出力部52を介して、マイコン部53に出力するように構成されている。そして、マイコン部53は、フィードバック信号を電流信号として利用して、複素インピーダンスを算出する。これにより、抵抗56bに実際に流れる信号と、出力させるべき正弦波信号(マイコン部53により指示された信号)との間に誤差(位相ずれなど)が生じた場合であっても、フィードバック信号、つまり、抵抗56bに実際に流れる信号を利用するため、複素インピーダンスの算出精度を向上させることができる。
 また、上記のようにフィードバック信号により補正するため、入出力部52と電流モジュレーション回路56との間において、フィルタ回路を省略することができ、電池監視装置50を小型化することができる。
 応答信号入力端子58は、電池セル42の端子において、接続可能な部分のうち、電極に最も近い部分に接続されている。これにより、電池セル42の端子が有するインピーダンス成分の影響を抑制して、複素インピーダンスの算出精度をより向上させることができる。より詳しく説明すると、図4に示すように、電池セル42の端子42aは、インピーダンス成分を有する。このため、応答信号入力端子58を接続する場合、図4(a)よりも図4(b)に示すように、電極により近い部分に接続することが望ましい。これにより、複素インピーダンスの算出精度をより向上させることができる。なお、図4(b)に示すように、応答信号入力端子58の接続箇所は、電流モジュレーション回路56の接続箇所よりも電極に近いことが望ましい。
 (第2実施形態)
 次に、第2実施形態の電池監視装置50について説明する。第2実施形態の電池監視装置50は、いわゆる2位相ロックイン検出を実施する。以下、詳しく説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 図5に示すように、電池監視装置50のASIC部50aには、電池セル42の端子間における直流電圧を測定する差動アンプ151が設けられている。差動アンプ151は、直流電圧入力端子57に接続されており、直流電圧を測定し、出力するように構成されている。
 また、電池監視装置50のASIC部50aには、正弦波信号の出力時における電池セル42の電圧変動を、応答信号入力端子58を介して入力する増幅器としてのプリアンプ152が設けられている。プリアンプ152は、応答信号入力端子58を介して入力した電圧変動を増幅し、応答信号として出力する。すなわち、応答信号の振幅は、電池セル42の電圧に比較して微弱な信号であることから、応答信号の検出精度を向上させるため、プリアンプ152が設けられている。なお、第2実施形態では、プリアンプ152は、1段であったが、多段にしてもよい。
 また、図5に示すように、電池セル42の正極端子と正極側の応答信号入力端子58(プリアンプ152の正極側端子側)との間には、直流成分をカットするためのコンデンサC1が設けられている。これにより、電池セル42の電圧変動のうち、直流成分(内部複素インピーダンス情報に関係ない部分)を除くことができ、応答信号の検出精度を向上させることができる。
 また、ASIC部50aには、差動アンプ151から出力される直流電圧と、プリアンプ152から出力される応答信号とを切り替える信号切替部153が設けられている。信号切替部153には、AD変換器154が接続されており、切り替えられた信号(アナログ信号)が、デジタル信号に変換されて出力されるように構成されている。
 AD変換器154は、第2実施形態における演算部としてのシグナルプロセッシング部155に接続されており、直流電圧を入力するように構成されている。また、AD変換器154は、第1乗算器156及び第2乗算器157に接続されており、応答信号をそれぞれ入力するように構成されている。
 第1乗算器156には、後述する発振回路158が接続されており、第1の参照信号が入力されるようになっている。第1乗算器156は、第1の参照信号と、応答信号を乗算して、応答信号の実部に比例した値を算出し、ローパスフィルタ159を介して、応答信号の実部に比例した値をシグナルプロセッシング部155に出力するようになっている。なお、図5では、応答信号の実部をRe|Vr|と示す。
 第2乗算器157には、位相シフト回路160を介して、発振回路158に接続されており、第2の参照信号が入力される。第2の参照信号は、第1の参照信号の位相を90度(π/2)進ませた信号である。位相シフト回路160は、発振回路158から入力した正弦波信号(第1の参照信号)の位相を進ませ、第2の参照信号として出力する。
 第2乗算器157は、第2の参照信号と、応答信号を乗算して、応答信号の虚部に比例した値を算出し、ローパスフィルタ161を介して、応答信号の虚部に比例した値をシグナルプロセッシング部155に出力するようになっている。なお、図5では、応答信号の虚部をIm|Vr|と示す。
 発振回路158は、設定された正弦波信号を出力する回路であり、波形指示部として機能する。発振回路158は、前述したように、第1乗算器156及び位相シフト回路160に対して、正弦波信号を第1の参照信号として出力する。また、発振回路158は、DA変換器162を介して、指示信号出力端子59aに接続されており、正弦波信号を指示信号として出力する。
 フィードバック信号入力端子59bは、AD変換器163を介して、シグナルプロセッシング部155に接続されている。シグナルプロセッシング部155は、AD変換器163を介して、フィードバック信号入力端子59bからフィードバック信号(検出信号)を入力する。
 シグナルプロセッシング部155は、応答信号の実部に比例した値及び応答信号の虚部に比例した値を入力し、それらの値に基づいて、複素インピーダンスの実部及び虚部を算出する。その際、シグナルプロセッシング部155は、入力したフィードバック信号を用いて、実際に流れる信号の振幅と、参照信号との位相ずれを加味して、複素インピーダンスの実部及び虚部を算出(補正)する。
 また、シグナルプロセッシング部155は、複素インピーダンスの絶対値と位相を算出する。詳しく説明すると、2位相ロックイン検出により、応答信号の実部と虚部がわかるため、応答信号の位相をθvとすると、複素平面の極座標表示では|Vr|e^jθvのように示すことができる。同様に、電流は、|I|e^jθiに示すように表すことができる。これから複素インピーダンスの極座標表示を|Z|e^jθzとすると、V=ZIから数式(1)のように表すことができる。また、「j」は、j^2=-1を満たす虚数単位である。
Figure JPOXMLDOC01-appb-M000001
 よって、複素インピーダンスの絶対値は|Z|=|Vr|/|I|、位相はθv-θiから求めることができる。そして、シグナルプロセッシング部155は、通信部54を介して、ECU60に算出結果を出力する。なお、図5では、複素インピーダンスの絶対値を|Z|と示し、その位相をarg(Z)と示す。
 次に、第2実施形態における複素インピーダンス算出処理について図6に基づいて説明する。複素インピーダンス算出処理は、電池監視装置50により所定周期ごとに実行される。
 複素インピーダンス算出処理において、発振回路158は、最初に複素インピーダンスの測定周波数を設定する(ステップS201)。測定周波数は、予め決められた測定範囲内の周波数の中から設定される。第2実施形態において、測定周波数は、例えば、シグナルプロセッシング部155により決定される。
 次に、信号切替部153は、プリアンプ152からの応答信号が出力されるように切替を行う(ステップS202)。切り替えの指示は、例えば、シグナルプロセッシング部155により行われる。
 次に発振回路158は、測定周波数に基づいて、正弦波信号(所定の交流信号)の周波数を決定し、DA変換器162を介して、指示信号出力端子59aから電流モジュレーション回路56に対して、当該正弦波信号の出力を指示する指示信号を出力する(ステップS203)。なお、指示信号の出力指示は、例えば、シグナルプロセッシング部155により行われる。DA変換器162によりアナログ信号に変換される際、電池セル42の電圧を考慮して、適切なオフセット値(直流バイアス)が設定されて、変換される。オフセット値(直流バイアス)の設定は、例えば、シグナルプロセッシング部155により行われる。オフセット値(直流バイアス)の設定は、電池セル42の直流電圧に基づき、行われることが望ましい。なお、電池セル42の直流電圧は、差動アンプ151により測定すればよい。
 電流モジュレーション回路56は、指示信号に基づいて、電池セル42を電源として正弦波信号を出力させる(ステップS204)。これにより、電池セル42から正弦波信号が出力される。
 電池セル42から正弦波信号を出力させると、電池セル42の端子間に電池セル42の内部複素インピーダンス情報を反映した電圧変動が生じる。プリアンプ152は、応答信号入力端子58を介して、その電圧変動を入力し、応答信号として出力する(ステップS205)。
 なお、応答信号入力端子58に入力される際、電圧変動の直流成分はコンデンサC1によりカットされ、電圧変動の特徴部分だけ取り出される。また、プリアンプ152は、直流成分がカットされた微弱な電圧変動を増幅させて、応答信号として出力する。その際、AD変換器154は、信号切替部153を介して入力された応答信号を、デジタル信号に変換し、出力する。コンデンサC1によりカットされる直流成分の大きさは、電池セル42の直流電圧に基づき、調整されることが望ましい。同様に、電圧変動をどれだけ増幅させるかは、電池セル42の直流電圧に基づき、調整されることが望ましい。
 第1乗算器156は、発振回路158から入力した正弦波信号を第1の参照信号とし、AD変換器154から入力した応答信号を乗算して、応答信号の実部に比例した値を算出する(ステップS206)。同様に、第2乗算器157は、位相シフト回路160から入力した第2の参照信号と、応答信号を乗算して、応答信号の虚部に比例した値を算出する。
 これらの値は、ローパスフィルタ159及びローパスフィルタ161を介して、シグナルプロセッシング部155に入力される。なお、ローパスフィルタ159及びローパスフィルタ161を通過する際、直流成分(DC成分)以外の信号は減衰し、除去される。
 シグナルプロセッシング部155は、フィードバック信号入力端子59bからフィードバック信号(検出信号)を入力する(ステップS207)。フィードバック信号は、シグナルプロセッシング部155に入力される際、AD変換器163により、デジタル信号に変換される。
 シグナルプロセッシング部155は、フィードバック信号、及びローパスフィルタ159,161から入力された信号(実部及び虚部の比例値)に基づいて、複素インピーダンスの実部、虚部、絶対値、及び位相のうちすべて若しくはいずれかを算出する(ステップS208)。フィードバック信号は、実際に電池セル42から流れる電流(つまり、フィードバック信号)と参照信号に比例する値との振幅又は位相のずれを補正するために利用される。
 その後、シグナルプロセッシング部155は、通信部54を介して、算出結果をECU60に出力する(ステップS209)。そして、算出処理を終了する。
 この算出処理は、測定範囲内の複数の周波数についての複素インピーダンスが算出されるまで繰り返し実行される。ECU60は、算出結果に基づいて、複素インピーダンス平面プロット(コールコールプロット)を作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握する。
 なお、コールコールプロット全体を必ずしも作成する必要はなく、その一部に着目してもよい。例えば、走行時、一定の時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOC、SOH及び電池温度等の走行時における変化を把握してもよい。または、1日毎、1周ごと、若しくは1年ごとといった時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOH等の変化を把握してもよい。
 第2実施形態の電池監視装置50では、以下の効果を有する。
 シグナルプロセッシング部155は、応答信号入力端子58から入力した応答信号と第1の参照信号とを掛け合わせた値に基づいて、応答信号の実部に比例した値を算出する。また、シグナルプロセッシング部155は、正弦波信号の位相をシフトさせた信号を第2の参照信号とし、応答信号と第2の参照信号とを掛け合わせた値に基づいて、応答信号の虚部に比例した値を算出する。そして、これらの値に基づいて、複素インピーダンスを算出する。このように、いわゆるロックイン検出を行うことにより、応答信号から、発振回路158が指示する正弦波信号の周波数と同一の周波成分のみを抽出することができる。このため、ホワイトノイズやピンクノイズに強くなり、高精度に複素インピーダンスを算出することができる。特に車両に採用する場合、ノイズが多くなるため、好適に複素インピーダンスを算出することができる。また、ノイズに強くなるため、電池セル42から出力させる電流(正弦波信号)を小さくすることが可能となる。このため、消費電力や電池セル42や半導体スイッチ素子56aの温度上昇を抑制することができる。
 また、シグナルプロセッシング部155は、電流モジュレーション回路56により電池セル42から実際に流れる電流を検出したフィードバック信号(検出信号)を入力し、参照信号に比例する値との振幅及び位相のずれを補正している。これにより、複素インピーダンスの算出精度を向上させることができる。
 また、振幅及び位相のずれを補正しているため、指示信号をアナログ信号に変換する際、誤差が生じても、その誤差をフィードバック信号による補正により抑制することができる。このため、電流モジュレーション回路56と、DA変換器162との間にフィルタ回路などを設ける必要がなくなり、小型化することができる。
 (第3実施形態)
 次に、第3実施形態の電池監視装置50について説明する。第3実施形態の電池監視装置50は、信号解析において、高速フーリエ変換(FFT)を実施する。以下、詳しく説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 図7に示すように、電池監視装置50のASIC部50aには、高速フーリエ変換を実施する演算部としてのシグナルプロセッシング部201を備える。シグナルプロセッシング部201は、AD変換器154を介して、電池セル42の直流電圧の測定値を入力するように構成されている。また、シグナルプロセッシング部201は、AD変換器154を介して、応答信号を入力するように構成されている。また、シグナルプロセッシング部201は、AD変換器163を介して、フィードバック信号を入力するように構成されている。また、シグナルプロセッシング部201は、発振回路158に接続されており、正弦波信号の周波数を設定可能に構成されている。
 シグナルプロセッシング部201は、入力した応答信号(電圧信号)、及びフィードバック信号(電流信号)を高速フーリエ変換によりそれぞれ変換するように構成されている。そして、シグナルプロセッシング部201は、変換後の値に基づいて、複素インピーダンスの実部、虚部、絶対値、位相を算出する。そして、シグナルプロセッシング部201は、通信部54を介して、ECU60に算出結果を出力する。
 次に、第3実施形態における複素インピーダンス算出処理について図8に基づいて説明する。複素インピーダンス算出処理は、電池監視装置50により所定周期ごとに実行される。第3実施形態の複素インピーダンス算出処理において、ステップS301~ステップS305は、第2実施形態の複素インピーダンス算出処理におけるステップS201~ステップS205と同様である。なお、測定周波数の設定、切り替えの指示、指示信号の出力指示、オフセット値の設定等は、例えば、シグナルプロセッシング部201により行われる。
 シグナルプロセッシング部201は、入力したAD変換器154から入力した応答信号に対して、高速フーリエ変換を実施する(ステップS306)。これにより、測定周波数に対する応答信号の振幅情報を得ることができる。
 また、シグナルプロセッシング部201は、フィードバック信号入力端子59bからフィードバック信号を入力する(ステップS307)。フィードバック信号は、シグナルプロセッシング部155に入力される際、AD変換器163により、デジタル信号に変換される。
 シグナルプロセッシング部201は、フィードバック信号に対して、高速フーリエ変換を実施する(ステップS308)。これにより、測定周波数に対するフィードバック信号の振幅情報を得ることができる。
 シグナルプロセッシング部201は、ステップS306で取得した測定周波数に対する応答信号の振幅情報と、ステップS308で取得した測定周波数に対するフィードバック信号の振幅情報とに基づいて、複素インピーダンスの実部、虚部、絶対値、及び位相のうちすべて若しくはいずれかを算出する(ステップS309)。その後、シグナルプロセッシング部201は、通信部54を介して、算出結果をECU60に出力する(ステップS310)。そして、算出処理を終了する。
 この算出処理は、測定範囲内の複数の周波数についての複素インピーダンスが算出されるまで繰り返し実行される。ECU60は、算出結果に基づいて、複素インピーダンス平面プロット(コールコールプロット)を作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握する。
 なお、コールコールプロット全体を必ずしも作成する必要はなく、その一部に着目してもよい。例えば、走行時、一定の時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOC、SOH及び電池温度等の走行時における変化を把握してもよい。または、1日毎、1周ごと、若しくは1年ごとといった時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOH等の変化を把握してもよい。
 第3実施形態の電池監視装置50では、以下の効果を有する。
 応答信号及びフィードバック信号をそれぞれフーリエ変換して、測定周波数の振幅情報及び位相情報を得るとともに、測定周波数の高調波の振幅情報及び位相情報を得る。測定周波数とその高調波についてそれぞれ電圧と電流の振幅及び始動の情報を得ることができるため、複数の周波数に対する複素インピーダンスを一度に算出することが可能となる。
 また、シグナルプロセッシング部201は、電流モジュレーション回路56により電池セル42から実際に流れる電流を検出したフィードバック信号(検出信号)を入力し、当該信号をフーリエ変換している。このため、振幅及び位相のずれを補正することができ、複素インピーダンスの算出精度を向上させることができる。
 (他の実施形態)
 ・上記実施形態では、電池セル42毎に電池監視装置50を設けたが、複数の電池セル42ごと(例えば、電池モジュール41ごと、組電池40ごと)に、電池監視装置50を設けてもよい。その際、電池監視装置50の機能の一部を共通化してもよい。
 例えば、図9に示すように、安定化電源供給部301、通信部54及びマイコン部53を共通化してもよい。この場合、負電極の電位が電池セル42ごとに異なる場合がある。このため、各電池セル42の情報を伝達する際に利用される各電気信号の基準電位が異なる場合がある。そこで、基準電位の差を考慮してマイコン部53へ各電気信号を入力する機能を設けて、演算する必要がある。異なる基準電位間の信号伝達手段としては、コンデンサやトランス、電波、光を用いる方法がある。
 また、例えば、図10に示すように、安定化電源供給部301、通信部54、差動アンプ151、プリアンプ152、信号切替部153、AD変換器154,163、シグナルプロセッシング部155、第1乗算器156、第2乗算器157、ローパスフィルタ159,161、発振回路158、位相シフト回路160、DA変換器162、フィードバック回路56d、電流検出アンプ56cを共通化してもよい。
 この場合、直流電圧、応答信号、指示信号などの各種信号をマルチプレクサ302~304のような多重化装置により、信号の切替を可能に構成すればよい。
 同様に、例えば、図11に示すように、安定化電源供給部301、通信部54、差動アンプ151、プリアンプ152、信号切替部153、AD変換器154,163、シグナルプロセッシング部201、発振回路158、DA変換器162、フィードバック回路56d、電流検出アンプ56cを共通化してもよい。
 この場合、直流電圧、応答信号、指示信号等の各種信号をマルチプレクサ302~304のような多重化装置により、信号の切替を可能に構成すればよい。
 また、複数の電池セル42を直列に接続した高電位側と低電位側をそれぞれ電源の正極、負極として用いる部分と、個々の電池セル42の両極をそれぞれ電源の正極、負極として用いる部分とで分け、いずれか一方のみを共通化してもよい。例えば、図12に示すように、通信部54、AD変換器154,163、シグナルプロセッシング部155、201、発振回路158、位相シフト回路160、DA変換器162を共通化してもよい。なお、図12では、第1乗算器156、第2乗算器157、ローパスフィルタ159,161の図示を省略しているが、ロックイン検出を行うシグナルプロセッシング部155を採用する場合、それらも共通化することとなる。
 なお、共通化した部分には、第1電源401から電力が供給され、第1電源401には、複数の電池セル42から電力供給される。一方、共通化していない部分には、第2電源402から電力が供給され、第2電源402には、各電池セル42から電力供給される。ちなみに、第1電源401の出力電圧と、第2電源402の出力電圧は異なる。
 この場合、直流電圧、応答信号、指示信号等の各種信号をマルチプレクサ302~304のような多重化装置により、信号の切替を可能に構成すればよい。
 なお、図9~図11の電池監視装置50においても図12の電池監視装置50と同様に、複数の電源を設けてもよい。
 ・上記実施形態において、各電池セル42の蓄電状態や電圧を均等化する均等化処理を電池監視装置50に実施させてもよい。均等化処理とは、各電池セル42の蓄電状態を揃えるように、他の電池セル42に比較して蓄電状態が高い一部の電池セル42を放電させる処理である。これにより、各電池セル42の蓄電状態を揃え、電池セル42のうち一部が過充電となることを抑制することができる。そして、電池監視装置50が、均等化処理を実施する場合、電流モジュレーション回路56を利用して、電池セル42を放電させてもよい。この場合、電池監視装置50が放電制御部として機能する。
 具体的に説明すると、第1実施形態において、マイコン部53は、各電池セル42の蓄電状態に基づいてECU60等から放電指示を受けた場合、若しくは、電池セル42の蓄電状態又は電圧が所定値以上となった場合、電流モジュレーション回路56に指示信号を出力し、電池セル42から正弦波信号や矩形波といった周期関数若しくは直流信号を出力させる。そして、マイコン部53は、放電指示が終了するまで、若しくは電池セル42の蓄電状態又は電圧が所定値よりも小さくなるまで、信号の出力を継続させる。これにより、均等化処理を実施する。第2実施形態又は第3実施形態でも同様に、シグナルプロセッシング部155,201が、均等化処理を実施してもよい。また、図9~図12に示す電池監視装置50においても、同様に、均等化処理を実施してもよい。
 そして、均等化処理のために、電池セル42から放電させる際、正弦波信号を出力させて、複素インピーダンスを算出してもよい。これにより、消費電力を抑制することができる。なお、均等化処理のために出力させる電流は、電力消費を抑制するため、及び装置の小型化のため、一般的には微弱な電流とされている。このため、第2実施形態のように微弱な電流でもロックイン検出により、複素インピーダンスを精度よく算出することができる電池監視装置50において均等化処理を実施させることが好ましい。
 ・上記実施形態において、フィルタ部55は、素子のみにより構成されていなくてもよい。例えば、配線、コネクタ接触部、プリント基板のパターン配線やベタパターン間により、又はこれらの構成と素子とが混在する構成であってもよい。
 ・上記実施形態において、電流モジュレーション回路56と、入出力部52(又はDA変換器162)との間に、フィルタ回路を設けてもよい。これにより、指示信号をアナログ信号に変換する際の誤差を抑制することができる。
 ・上記実施形態において、差動アンプ151、プリアンプ152、信号切替部153、AD変換器154,163、シグナルプロセッシング部155、第1乗算器156、第2乗算器157、ローパスフィルタ159,161、発振回路158、位相シフト回路160、DA変換器162、フィードバック回路56d、及び電流検出アンプ56cの一部又は全部は、ソフトウェアにより実現してもよい。
 ・上記第2実施形態及び第3実施形態において、コンデンサC1がなくてもよい。
 ・上記実施形態において、フィードバック回路56dがなくてもよい。また、電流検出アンプ56cにより抵抗56bに流れる電流を検出しなくてもよい。また、マイコン部53、シグナルプロセッシング部155,201は、フィードバック信号を入力しなくてもよい。
 ・上記実施形態において、直流電圧を検出したが、検出しなくてもよい。
 ・上記第2実施形態又は第3実施形態において、信号切替部153を設けなくてもよい。
 ・上記第2実施形態又は第3実施形態において、フィードバック信号も信号切替部153により切り替えの対象としてもよい。これにより、AD変換器154,163を共通化することができる。
 ・上記実施形態の電池監視装置50を、車両として、HEV,EV,PHV,補機電池、電動飛行機、電動バイク、電動船舶に採用してもよい。
 ・上記実施形態において、電池セル42は、並列に接続されていてもよい。
 ・上記第2実施形態又は第3実施形態において、AD変換時におけるエイリアシングを防止するため、フィルタ回路をプリアンプ152の前後、又はAD変換器154の直前に設けてもよい。
 ・上記実施形態において、電池モジュール41単位で、状態を監視してもよい。このとき、電池モジュール41ごとに通信部54を設ける場合、各通信部54からECU60への通信は電位基準の異なる絶縁通信となることがある。例えば、絶縁トランスやコンデンサを用いて絶縁通信を行う場合がある。
 ・上記実施形態において、フィードバック信号をロックイン検出してもよい。図13に基づいて、具体的に説明すると、複素インピーダンス算出処理は、電池監視装置50により所定周期ごとに実行される。
 複素インピーダンス算出処理において、発振回路158は、最初に複素インピーダンスの測定周波数を設定する(ステップS401)。測定周波数は、予め決められた測定範囲内の周波数の中から設定される。別例において、測定周波数は、例えば、シグナルプロセッシング部155により決定される。
 次に発振回路158は、測定周波数に基づいて、正弦波信号(所定の交流信号)の周波数を決定し、DA変換器162を介して、指示信号出力端子59aから電流モジュレーション回路56に対して、当該正弦波信号の出力を指示する指示信号を出力する(ステップS402)。電流モジュレーション回路56は、指示信号に基づいて、電池セル42を電源として正弦波信号を出力させる。これにより、電池セル42から正弦波信号が出力される。
 次に、シグナルプロセッシング部155は、フィードバック信号を2位相ロックイン検出により、測定する(ステップS403)。具体的には、シグナルプロセッシング部155は、発振回路158が指示した正弦波信号(参照信号)と、入力したフィードバック信号と乗算する。また、発振回路158が指示した正弦波信号の位相を90度ずらした信号と、入力したフィードバック信号と乗算する。シグナルプロセッシング部155は、これらの乗算結果から、フィードバック信号の振幅と位相値を算出する。
 シグナルプロセッシング部155は、次に、算出した振幅と振幅補正値との差が振幅基準値以内であるか否かを判定する(ステップS404)。振幅補正値は、出力されることが期待される正弦波信号の振幅を示すものである。
 この判定結果が否定の場合、シグナルプロセッシング部155は、ステップS403による測定回数(フィードバック信号の測定回数)が所定回数以上であるか否かを判定する(ステップS405)。この判定結果が否定の場合、シグナルプロセッシング部155は、測定回数を1加算して、ステップS403を再実行する。
 一方、ステップS405の判定結果が肯定の場合、シグナルプロセッシング部155は、測定したフィードバック信号の振幅の平均を算出し、平均値を振幅補正値として書き換える(ステップS406)。また、測定回数をクリアする。
 ステップS404の判定結果が肯定の場合、又はステップS406の実行後、シグナルプロセッシング部155は、ステップS403にて算出した位相値と位相補正値との差が位相基準値以内であるか否かを判定する(ステップS407)。位相補正値は、出力されることが期待される正弦波信号の位相を示すものである。
 この判定結果が肯定の場合、シグナルプロセッシング部155は、ステップS403による測定回数(フィードバック信号の測定回数)が所定回数以上であるか否かを判定する(ステップS408)。この判定結果が否定の場合、シグナルプロセッシング部155は、測定回数を1加算して、ステップS403を再実行する。
 一方、ステップS408の判定結果が肯定の場合、シグナルプロセッシング部155は、測定したフィードバック信号の位相の平均を算出し、平均値を位相補正値として書き換える(ステップS409)。また、測定回数をクリアする。
 次に、シグナルプロセッシング部155は、応答信号を2位相ロックイン検出により測定する(ステップS410)。この処理は、第2実施形態のステップS202,S205,S206等と同様であるので説明を省略する。
 シグナルプロセッシング部155は、フィードバック信号及びローパスフィルタ159,161から入力された信号(実部及び虚部の比例値)に基づいて、複素インピーダンスの実部、虚部、絶対値、及び位相のうちすべて若しくはいずれかを算出する(ステップS411)。フィードバック信号は、振幅補正値及び位相補正値により定められ、実際に電池セル42から流れる電流(つまり、フィードバック信号)と参照信号に比例する値との振幅又は位相のずれを補正するために利用される。
 その後、シグナルプロセッシング部155は、通信部54を介して、算出結果をECU60に出力する(ステップS412)。そして、算出処理を終了する。
 以上のより、フィードバック信号を2位相ロックイン検出により測定するため、ノイズが存在する環境下にあっても、電池セル42から実際に出力される電流信号を精度よく測定することができる。そして、このフィードバック信号を複素インピーダンス算出時の補正に利用するため、複素インピーダンスの算出精度を向上させることができる。
 ・上記実施形態において、電池セル42から出力させる電流信号は、正弦波信号に限らない。例えば、交流信号であれば、矩形波や三角波等の信号であっても構わない。
 ・上記実施形態において、ECU60は、複数のECUにより構成されていてもよい。例えば、機能ごとに複数のECUを設けてもよく、また、制御対象ごとに複数のECUを設けてもよい。例えば、電池用ECUと、インバータ制御用ECUとに分けてもよい。
 ・上記実施形態において、ロックイン検出を行う場合、発振回路158が指示する正弦波信号を参照信号(第1の参照信号)としたが、検出信号(フィードバック信号)を参照信号としてもよい。また、2位相ロックイン検出を行う場合、検出信号(フィードバック信号)の位相をずらして第2の参照信号とすればよい。
 ・上記実施形態において、電池セル42(電池モジュール41、組電池40)は、指示に基づいて正弦波信号を出力している際に(応答信号の出力時)、周辺回路の電源として用いられてもよい。逆に、電池セル42(電池モジュール41、組電池40)は、指示に基づいて正弦波信号を出力している際に(応答信号の出力時)、周辺回路の電源として用いられないように構成してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (12)

  1.  電解質と複数の電極とを含む蓄電池の状態を監視する電池監視装置(50)において、
     所定の交流信号を出力させる信号制御部(56)と、
     前記交流信号に対する前記蓄電池の応答信号を入力する応答信号入力部(52)と、
     前記応答信号に基づいて前記蓄電池の複素インピーダンスを算出する演算部(53)と、を備え、
     前記信号制御部は、監視対象である前記蓄電池を電源として、所定の交流信号を出力させる電池監視装置。
  2.  前記信号制御部は、指示に基づいて通電量を調整するスイッチ部(56a)と、当該スイッチ部に直列に接続された抵抗(56b)と、前記抵抗に流れる電流を検出する電流検出部(56c)と、前記スイッチ部に対して指示を行う指示部(56d)と、を有し、
     前記指示部は、前記電流検出部により検出された検出信号と前記交流信号との比較に基づいて前記スイッチ部に対して、指示を行う請求項1に記載の電池監視装置。
  3.  前記信号制御部は、指示に基づいて通電量を調整するスイッチ部(56a)と、当該スイッチ部に直列に接続された抵抗(56b)と、前記抵抗に流れる電流を検出する電流検出部(56c)と、を有し、
     前記演算部は、前記応答信号と、前記電流検出部により検出された検出信号に基づいて複素インピーダンスを算出する請求項1又は2に記載の電池監視装置。
  4.  前記応答信号入力部は、前記蓄電池の端子において、接続可能な部分のうち、電極に最も近い部分に接続されている請求項1~3のうちいずれか1項に記載の電池監視装置。
  5.  前記蓄電池は、複数備えられ、
     前記各蓄電池の蓄電状態を取得し、蓄電状態が均等化するように前記蓄電池を放電させる放電制御部(53)を備え、
     前記放電制御部は、前記蓄電池から放電させるように前記信号制御部に指示する請求項1~4のうちいずれか1項に記載の電池監視装置。
  6.  前記演算部は、前記放電制御部から放電指示が行われている場合、複素インピーダンスを算出する請求項5に記載の電池監視装置。
  7.  前記信号制御部に対して前記交流信号の波形を指示する波形指示部(158)を有し、
     前記演算部は、前記波形指示部が指示する前記交流信号を第1の参照信号とし、前記応答信号入力部から入力した応答信号と前記第1の参照信号とを掛け合わせた値に基づいて、前記応答信号の実部を算出し、
     前記波形指示部が指示する前記交流信号の位相をシフトさせた信号を第2の参照信号とし、前記応答信号入力部から入力した応答信号と前記第2の参照信号とを掛け合わせた値に基づいて、前記応答信号の虚部を算出する請求項1~6のうちいずれか1項に記載の電池監視装置。
  8.  前記演算部は、前記応答信号及び前記交流信号をフーリエ変換して、複素インピーダンスを算出する請求項1~6のうちいずれか1項に記載の電池監視装置。
  9.  前記信号制御部は、指示に基づいて通電量を調整するスイッチ部(56a)と、当該スイッチ部に直列に接続された抵抗(56b)と、前記抵抗に流れる電流を検出する電流検出部(56c)と、を有し、
     前記演算部は、前記応答信号及び前記電流検出部により検出された検出信号をフーリエ変換して、複素インピーダンスを算出する請求項1~6のうちいずれか1項に記載の電池監視装置。
  10.  前記応答信号入力部は、コンデンサ(C1)を介して前記蓄電池の電圧変動が入力されるように構成されているとともに、増幅器を1段又は複数段有しており、前記増幅器を介して、入力した前記蓄電池の電圧変動を増幅して、応答信号として出力する請求項1~9のうちいずれか1項に記載の電池監視装置。
  11.  前記蓄電池には、フィルタ回路(55a)及び保護素子(55b)のうち少なくともいずれか一方が接続されている請求項1~10のうちいずれか1項に記載の電池監視装置。
  12.  前記蓄電池は、複数備えられ、
     1の前記演算部により複数の前記蓄電池の状態を監視する請求項1~11のうちいずれか1項に記載の電池監視装置。
PCT/JP2020/017386 2019-04-26 2020-04-22 電池監視装置 WO2020218373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080029798.6A CN113711420B (zh) 2019-04-26 2020-04-22 电池监控装置
DE112020002115.7T DE112020002115T5 (de) 2019-04-26 2020-04-22 Batterieüberwachungsgerät
US17/510,851 US20220045544A1 (en) 2019-04-26 2021-10-26 Battery monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086141 2019-04-26
JP2019086141A JP7172838B2 (ja) 2019-04-26 2019-04-26 電池監視装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/510,851 Continuation US20220045544A1 (en) 2019-04-26 2021-10-26 Battery monitoring device

Publications (1)

Publication Number Publication Date
WO2020218373A1 true WO2020218373A1 (ja) 2020-10-29

Family

ID=72942501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017386 WO2020218373A1 (ja) 2019-04-26 2020-04-22 電池監視装置

Country Status (5)

Country Link
US (1) US20220045544A1 (ja)
JP (1) JP7172838B2 (ja)
CN (1) CN113711420B (ja)
DE (1) DE112020002115T5 (ja)
WO (1) WO2020218373A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050033A1 (ja) * 2020-09-04 2022-03-10 株式会社デンソー 電池監視システム
WO2023047978A1 (ja) * 2021-09-24 2023-03-30 国立研究開発法人産業技術総合研究所 組電池および評価方法
US11630156B2 (en) 2019-07-19 2023-04-18 Denso Corporation Battery monitoring apparatus
US11750002B2 (en) 2019-07-26 2023-09-05 Denso Corporation Battery monitoring apparatus
US11835588B2 (en) 2019-07-17 2023-12-05 Denso Corporation Battery monitoring system and method and transportation system with battery monitoring system
JP7461392B2 (ja) 2022-01-26 2024-04-03 プライムプラネットエナジー&ソリューションズ株式会社 処理装置、および算出システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261799A1 (ja) * 2019-06-27 2020-12-30 ヌヴォトンテクノロジージャパン株式会社 電池管理回路、電池管理システムおよび電池管理ネットワーク
JP7226147B2 (ja) 2019-07-04 2023-02-21 株式会社デンソー 電池監視装置
DE102021207106A1 (de) 2021-07-06 2023-01-12 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Überwachen eines elektrischen Speichers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502177A (ja) * 1995-09-08 2000-02-22 マデイル テクノロジイズ インコーポレイテッド バッテリの状態、配線と接続部の抵抗、電気システムの総合的な品質、及び電流等の電気システムの測定のための装置及び方法
WO2002035677A1 (en) * 2000-10-25 2002-05-02 Kerry D Nufer A battery monitoring system
JP2006214941A (ja) * 2005-02-04 2006-08-17 Kri Inc コンクリート含有成分測定装置および測定方法
US20120306504A1 (en) * 2011-06-01 2012-12-06 Johannes Petrus Maria Van Lammeren Battery impedance detection system, apparatus and method
JP2014102127A (ja) * 2012-11-19 2014-06-05 Denso Corp 電池監視装置
JP2019015599A (ja) * 2017-07-06 2019-01-31 富士通株式会社 制御回路、センサデバイス及び電池残量測定方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT299376B (de) * 1969-07-26 1972-06-12 Bbc Brown Boveri & Cie Einrichtung zur Überprüfung des Ladezustandes eines Akkumulators
DE2855809C2 (de) * 1978-12-22 1980-06-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Einrichtung zur automatischen Überwachung des Ladezustandes einer netzunabhängigen Stromversorgung und der Luftfeuchte im Antwortgerät einer Anlage zur Standortbestimmung von Verkehrseinrichtungen
US5684382A (en) * 1996-07-19 1997-11-04 Compaq Computer Corporation Control of computer AC adapter output voltage via battery pack feedback
US6002238A (en) * 1998-09-11 1999-12-14 Champlin; Keith S. Method and apparatus for measuring complex impedance of cells and batteries
CN101639523B (zh) * 2003-06-27 2011-07-27 古河电气工业株式会社 二次电池的内部阻抗测量方法及装置、恶化判断装置、电源系统
KR200344389Y1 (ko) * 2003-12-04 2004-03-11 주식회사 파워트론 고입력 동상전압형 차동증폭기를 이용한 축전지셀전압측정 회로
EP1933158B1 (en) * 2005-09-16 2018-04-25 The Furukawa Electric Co., Ltd. Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
CN201122849Y (zh) * 2007-12-05 2008-09-24 沈阳东软医疗系统有限公司 监护仪内部dc-dc单元的动态监控装置
JP5181765B2 (ja) * 2008-03-25 2013-04-10 マツダ株式会社 バッテリ監視装置及びその監視装置を用いたバッテリ制御装置
JP5470073B2 (ja) * 2010-02-05 2014-04-16 日立ビークルエナジー株式会社 電池制御装置および電池システム
US9128165B2 (en) * 2011-05-04 2015-09-08 Datang Nxp Semiconductors Co., Ltd. Battery cell impedance measurement method and apparatus
JP2012254008A (ja) * 2011-05-31 2012-12-20 Sensata Technologies Inc 電力発生器モジュールの接続性制御
US9575135B2 (en) * 2011-06-01 2017-02-21 Datang Nxp Semiconductors Co., Ltd. Battery monitoring circuit, apparatus and method
JP5403437B2 (ja) * 2011-07-29 2014-01-29 横河電機株式会社 電池監視装置
CN103001313B (zh) * 2011-09-08 2015-07-22 联正电子(深圳)有限公司 一种离线式不间断电源系统
JP2013228244A (ja) * 2012-04-25 2013-11-07 Toshiba Corp 電池残量の監視機能を有する二次電池システム
EP2919028B1 (en) * 2012-11-12 2018-06-20 Alps Electric Co., Ltd. Storage-device-state detection method
JP6226261B2 (ja) * 2012-12-27 2017-11-08 学校法人早稲田大学 電気化学システム
JP6171846B2 (ja) * 2013-10-28 2017-08-02 日産自動車株式会社 燃料電池の電力調整システム
WO2015145615A1 (ja) * 2014-03-26 2015-10-01 日産自動車株式会社 インピーダンス測定装置及びインピーダンス測定方法
JP6312508B2 (ja) * 2014-04-11 2018-04-18 日立オートモティブシステムズ株式会社 電池監視装置、電池システムおよび電動車両駆動装置
JP6627732B2 (ja) * 2016-12-07 2020-01-08 株式会社デンソー 電源回路装置
US10855095B2 (en) * 2017-10-12 2020-12-01 Infineon Technologies Ag Battery impedance detection using voltage and current measurements
JP7002297B2 (ja) 2017-11-10 2022-02-10 日本ピラー工業株式会社 ガスケット
JP7226147B2 (ja) * 2019-07-04 2023-02-21 株式会社デンソー 電池監視装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502177A (ja) * 1995-09-08 2000-02-22 マデイル テクノロジイズ インコーポレイテッド バッテリの状態、配線と接続部の抵抗、電気システムの総合的な品質、及び電流等の電気システムの測定のための装置及び方法
WO2002035677A1 (en) * 2000-10-25 2002-05-02 Kerry D Nufer A battery monitoring system
JP2006214941A (ja) * 2005-02-04 2006-08-17 Kri Inc コンクリート含有成分測定装置および測定方法
US20120306504A1 (en) * 2011-06-01 2012-12-06 Johannes Petrus Maria Van Lammeren Battery impedance detection system, apparatus and method
JP2014102127A (ja) * 2012-11-19 2014-06-05 Denso Corp 電池監視装置
JP2019015599A (ja) * 2017-07-06 2019-01-31 富士通株式会社 制御回路、センサデバイス及び電池残量測定方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835588B2 (en) 2019-07-17 2023-12-05 Denso Corporation Battery monitoring system and method and transportation system with battery monitoring system
US11630156B2 (en) 2019-07-19 2023-04-18 Denso Corporation Battery monitoring apparatus
US11750002B2 (en) 2019-07-26 2023-09-05 Denso Corporation Battery monitoring apparatus
WO2022050033A1 (ja) * 2020-09-04 2022-03-10 株式会社デンソー 電池監視システム
WO2023047978A1 (ja) * 2021-09-24 2023-03-30 国立研究開発法人産業技術総合研究所 組電池および評価方法
JP7461392B2 (ja) 2022-01-26 2024-04-03 プライムプラネットエナジー&ソリューションズ株式会社 処理装置、および算出システム

Also Published As

Publication number Publication date
US20220045544A1 (en) 2022-02-10
JP7172838B2 (ja) 2022-11-16
CN113711420A (zh) 2021-11-26
JP2020180949A (ja) 2020-11-05
CN113711420B (zh) 2024-03-15
DE112020002115T5 (de) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2020218373A1 (ja) 電池監視装置
JP7259614B2 (ja) 電池監視装置
JP7552776B2 (ja) 電池監視装置
JP7205410B2 (ja) 電池監視装置
JP7226147B2 (ja) 電池監視装置
CN112198367B (zh) 绝缘电阻测量设备
CN115004043A (zh) 电池测定装置
JP7192697B2 (ja) 電池監視装置
WO2021085347A1 (ja) 電池監視装置
JP7111075B2 (ja) 電池監視装置
WO2023276546A1 (ja) 電池測定装置及び電池測定方法
WO2023276577A1 (ja) 電池測定装置及び電池測定方法
WO2021261239A1 (ja) 電池診断システム
CN117597590A (zh) 电池测定装置
CN117460960A (zh) 电池测定装置和电池状态测定方法
KR20200031989A (ko) 3상 전력 전자 시스템의 소비 전력을 측정하기 위한 방법 및 3상 전력 전자 시스템의 소비 전력을 측정하기 위한 회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795632

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20795632

Country of ref document: EP

Kind code of ref document: A1