JP7259614B2 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
JP7259614B2
JP7259614B2 JP2019133548A JP2019133548A JP7259614B2 JP 7259614 B2 JP7259614 B2 JP 7259614B2 JP 2019133548 A JP2019133548 A JP 2019133548A JP 2019133548 A JP2019133548 A JP 2019133548A JP 7259614 B2 JP7259614 B2 JP 7259614B2
Authority
JP
Japan
Prior art keywords
signal
battery
electrical path
terminal
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019133548A
Other languages
English (en)
Other versions
JP2021018133A (ja
Inventor
将且 堀口
昌明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019133548A priority Critical patent/JP7259614B2/ja
Priority to US16/925,437 priority patent/US11630156B2/en
Priority to DE102020118931.1A priority patent/DE102020118931A1/de
Priority to CN202010694235.0A priority patent/CN112242730B/zh
Publication of JP2021018133A publication Critical patent/JP2021018133A/ja
Application granted granted Critical
Publication of JP7259614B2 publication Critical patent/JP7259614B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、電池監視装置に関するものである。
従来から、蓄電池の状態を監視するため、蓄電池の複素インピーダンスを測定することが行われていた(例えば、特許文献1)。特許文献1に記載の発明では、パワーコントローラにより、蓄電池に対して矩形波信号を印加して、その応答信号に基づいて複素インピーダンス特性を算出していた。そして、この複素インピーダンス特性を基に、蓄電池の劣化状態などを判別していた。
特許第6226261号公報
ところで、この複素インピーダンス測定法を、車載の蓄電池の複素インピーダンス測定法として採用する場合、次のような問題が生じる。すなわち、パワーコントローラ等、蓄電池に信号を印加する装置を必要としていたため、電池監視装置の大型化やコスト増という問題を招いていた。また、電力を入出力する端子の他に、信号を蓄電池に出力するための端子や、電圧を測定する端子、応答信号を測定する端子など、端子数が多くなり、組み立てる際、端子を接続するための工数が多くなるという問題があった。特に車載の蓄電池の場合、複数の蓄電池から構成されている組電池であることが多いため、端子を接続するための工数が多くなるのは問題だった。
本発明は、上記課題に鑑みてなされたものであり、その目的は、小型化、かつ、製造しやすい電池監視装置を提供することにある。
上記課題を解決するための手段は、電解質と複数の電極とを含む蓄電池の状態を監視する電池監視装置において、第1電気経路と接続されており、前記第1電気経路を介して、前記蓄電池から駆動電力が供給される電源供給部と、第2電気経路と接続されており、前記第2電気経路を介して、前記蓄電池の端子間電圧を入力する電圧測定部と、第3電気経路と接続されており、前記第3電気経路を介して、所定の交流信号を出力させる信号制御部と、第4電気経路と接続されており、前記第4電気経路を介して、前記交流信号に対する前記蓄電池の応答信号を入力する応答信号入力部と、前記応答信号に基づいて前記蓄電池の複素インピーダンスを算出する演算部と、を備え、前記信号制御部は、監視対象である前記蓄電池を電源として、所定の交流信号を出力させるように構成されており、前記第1電気経路、前記第2電気経路、前記第3電気経路、及び前記第4電気経路のうち少なくとも1の電気経路は、途中で他のいずれか1又は複数の電気経路と合流し、合流した電気経路は、前記蓄電池に接続されている電池監視装置。
上記構成によれば、信号制御部は、監視対象とする蓄電池を電源として、所定の交流信号を出力させる。このため、交流信号を蓄電池に入力するための外部電源が必要なくなり、部品点数削減、小型化、低コスト化を実現することが可能となる。
ところで、車載の蓄電池には、一般的に保護素子やフィルタ回路などの周辺回路が接続されており、蓄電池に交流信号を入力しても、当該周辺回路に電流の一部が漏れてしまう。このため、蓄電池に交流信号を入力し、その応答信号に基づいて複素インピーダンスを算出する場合、応答信号に誤差が生じ、複素インピーダンスの検出精度が低下するという問題があった。
しかしながら、上記構成では、蓄電池を電源として、所定の交流信号を出力させるため、電流モジュレーション回路と蓄電池とで閉回路を実現できる。よって、蓄電池から周辺回路への電流の漏れをなくすことができ、誤差を抑制することができる。
また、第1電気経路~第4電気経路のうち少なくとも1の電気経路は、途中で他のいずれか1又は複数の電気経路と合流している。このため、蓄電池の電源端子に接続される電気経路の本数を少なくすることができ、組み立てる際に接続工数を少なくすることができる。
電源システムの概略構成図。 電池監視装置の構成図。 複素インピーダンス算出処理のフローチャート。 電池セルと電池監視装置との接続態様を示す模式図。 接続位置を示す図。 第2実施形態の電池監視装置の構成図。 第2実施形態の複素インピーダンス算出処理のフローチャート。 第3実施形態の電池監視装置の構成図。 第3実施形態の複素インピーダンス算出処理のフローチャート。 第4実施形態の電池監視装置の構成図。 第4実施形態における電池セルと電池監視装置との接続態様を示す模式図。 第5実施形態の電池監視装置の構成図。 第5実施形態における電池セルと電池監視装置との接続態様を示す模式図。 第6実施形態の電池監視装置の構成図。 別例の電池監視装置の構成図。 別例の複素インピーダンス算出処理のフローチャート。 別例の電池セルと電池監視装置との接続態様を示す模式図。 別例の回路基板を示す模式図。
(第1実施形態)
以下、「電池監視装置」を車両(例えば、ハイブリッド車や電気自動車)の電源システムに適用した第1実施形態について、図面を参照しつつ説明する。
図1に示すように、電源システム10は、回転電機としてのモータ20と、モータ20に対して3相電流を流す電力変換器としてのインバータ30と、充放電可能な組電池40と、組電池40の状態を監視する電池監視装置50と、モータ20などを制御するECU60と、を備えている。
モータ20は、車載主機であり、図示しない駆動輪と動力伝達可能とされている。本実施形態では、モータ20として、3相の永久磁石同期モータを用いている。
インバータ30は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、各相巻線において通電電流が調整される。
インバータ30には、図示しないインバータ制御装置が設けられており、インバータ制御装置は、モータ20における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ30における各スイッチのオンオフにより通電制御を実施する。これにより、インバータ制御装置は、組電池40からインバータ30を介してモータ20に電力を供給し、モータ20を力行駆動させる。また、インバータ制御装置は、駆動輪からの動力に基づいてモータ20を発電させ、インバータ30を介して、発電電力を変換して組電池40に供給し、組電池40を充電させる。
組電池40は、インバータ30を介して、モータ20に電気的に接続されている。組電池40は、例えば百V以上となる端子間電圧を有し、複数の電池モジュール41が直列接続されて構成されている。電池モジュール41は、複数の電池セル42が直列接続されて構成されている。電池セル42として、例えば、リチウムイオン蓄電池や、ニッケル水素蓄電池を用いることができる。各電池セル42は、電解質と複数の電極とを有する蓄電池である。
組電池40の正極側電源端子に接続される正極側電源経路L1には、インバータ30等の電気負荷の正極側端子が接続されている。同様に、組電池40の負極側電源端子に接続される負極側電源経路L2には、インバータ30等の電気負荷の負極側端子が接続されている。なお、正極側電源経路L1及び負極側電源経路L2には、それぞれリレースイッチSMR(システムメインリレースイッチ)が設けられており、リレースイッチSMRにより、通電及び通電遮断が切り替え可能に構成されている。
電池監視装置50は、各電池セル42の蓄電状態(SOC)及び劣化状態(SOH)などを監視する装置である。第1実施形態において電池監視装置50は、電池セル42毎に設けられている。電池監視装置50は、ECU60に接続されており、各電池セル42の状態などを出力する。電池監視装置50の構成については、後述する。
ECU60は、各種情報に基づいて、インバータ制御装置に対して力行駆動及び発電の要求を行う。各種情報には、例えば、アクセル及びブレーキの操作情報、車速、組電池40の状態などが含まれる。
次に、電池監視装置50について詳しく説明する。図2に示すように、第1実施形態では、電池セル42毎に電池監視装置50が設けられている。
電池監視装置50は、ASIC部50aと、フィルタ部55と、電流モジュレーション回路56と、を備えている。ASIC部50aは、安定化電源供給部51と、入出力部52と、演算部としてのマイコン部53と、通信部54と、を備えている。
安定化電源供給部51は、電池セル42の電源ラインに接続されており、電池セル42から供給された電力を入出力部52、マイコン部53、及び通信部54に対して供給している。入出力部52、マイコン部53、及び通信部54は、この電力に基づいて駆動する。安定化電源供給部51の正極側端子51a及び負極側端子51bは、駆動電力が供給される電源供給部として機能する。
入出力部52は、監視対象とする電池セル42に対して接続されている。具体的に説明すると、入出力部52は、電池セル42から直流電圧(端子間電圧)を入力(測定)可能な直流電圧入力端子57を有する。電池セル42と直流電圧入力端子57との間には、フィルタ部55が設けられている。すなわち、直流電圧入力端子57の正極側端子57aと、負極側端子57bとの間には、フィルタ回路としてのRCフィルタ55a、及び保護素子としてのツェナーダイオード55bなどが設けられている。つまり、電池セル42に対して、RCフィルタ55aやツェナーダイオード55bなどが並列に接続されている。本実施形態において、直流電圧入力端子57の正極側端子57aと負極側端子57bが、電池セル42の端子間電圧を入力する電圧測定部として機能する。
また、入出力部52は、電池セル42の端子間において、電池セル42の内部複素インピーダンス情報を反映した応答信号(電圧変動)を入力するための応答信号入力端子58を有する。このため、応答信号入力端子58の正極側端子58aと負極側端子58bは、応答信号を入力する応答信号入力部として機能する。
また、入出力部52は、信号制御部としての電流モジュレーション回路56に接続されており、電流モジュレーション回路56に対して、電池セル42から出力させる正弦波信号(交流信号)を指示する指示信号を出力する指示信号出力端子59aを有する。また、入出力部52は、フィードバック信号入力端子59bを有する。フィードバック信号入力端子59bは、電流モジュレーション回路56を介して、電池セル42から実際に出力される(流れる)電流信号を、フィードバック信号として入力する。
また、入出力部52は、マイコン部53に接続されており、直流電圧入力端子57が入力した直流電圧や、応答信号入力端子58が入力した応答信号、フィードバック信号入力端子59bが入力したフィードバック信号などをマイコン部53に対して出力するように構成されている。なお、入出力部52は、内部にAD変換器を有しており、入力したアナログ信号をデジタル信号に変換してマイコン部53に出力するように構成されている。
また、入出力部52は、マイコン部53から指示信号を入力するように構成されており、指示信号出力端子59aから、電流モジュレーション回路56に対して指示信号を出力するように構成されている。なお、入出力部52は、内部にDA変換器を有しており、マイコン部53から入力したデジタル信号をアナログ信号に変換して、電流モジュレーション回路56に対して指示信号を出力するように構成されている。また、電流モジュレーション回路56に指示信号により指示される正弦波信号は、直流バイアスがかけられており、正弦波信号が負の電流(電池セル42に対して逆流)とならないようになっている。
電流モジュレーション回路56は、監視対象である電池セル42を電源として、所定の交流信号(正弦波信号)を出力させる回路である。具体的に説明すると、電流モジュレーション回路56は、スイッチ部としての半導体スイッチ素子56a(例えば、MOSFET)と、半導体スイッチ素子56aに直列に接続された抵抗56bとを有する。半導体スイッチ素子56aのドレイン端子は、電池セル42の正極側電源端子71aに接続され、半導体スイッチ素子56aのソース端子は、抵抗56bの一端に直列に接続されている。また、抵抗56bの他端は、電池セル42の負極側電源端子71bに接続されている。半導体スイッチ素子56aは、ドレイン端子とソース端子との間において通電量を調整可能に構成されている。
なお、電池セル42の正極側電源端子71a及び負極側電源端子71bは、それぞれ電極(正極又は負極)に繋がっている。そして、応答信号入力端子58は、正極側電源端子71a及び負極側電源端子71bの接続可能な部分のうち、最も電極に近い箇所に接続されることが望ましい。また、直流電圧入力端子57の接続箇所も同様に、最も電極に近い箇所、又は応答信号入力端子58の接続箇所の次に近い箇所であることが望ましい。これにより、主電流又は均等化電流による電圧低下の影響を最低限にすることができる。
また、電流モジュレーション回路56には、抵抗56bの両端に接続された電流検出部としての電流検出アンプ56cが設けられている。電流検出アンプ56cは、抵抗56bに流れる信号(電流信号)を検出し、検出信号をフィードバック信号として、入出力部52のフィードバック信号入力端子59bに出力するように構成されている。
また、電流モジュレーション回路56には、フィードバック回路56dが設けられている。フィードバック回路56dは、入出力部52の指示信号出力端子59aから、指示信号を入力するとともに、電流検出アンプ56cからフィードバック信号を入力するように構成されている。そして、指示信号とフィードバック信号とを比較し、その結果を半導体スイッチ素子56aのゲート端子に出力するように構成されている。
半導体スイッチ素子56aは、フィードバック回路56dからの信号に基づいて、指示信号により指示された正弦波信号(所定の交流信号)を電池セル42から出力させるように、ゲート・ソース間に印加する電圧を調整して、ドレイン・ソース間の電流量を調整する。なお、指示信号により指示される波形と、実際に抵抗56bに流れる波形との間に誤差が生じている場合、半導体スイッチ素子56aは、フィードバック回路56dからの信号に基づいて、その誤差が補正されるように、電流量を調整する。これにより、抵抗56bに流れる正弦波信号が安定化する。
次に、電池セル42の複素インピーダンスの算出方法について説明する。電池監視装置50は、所定周期ごとに、図3に示す複素インピーダンス算出処理を実行する。
複素インピーダンス算出処理において、マイコン部53は、最初に複素インピーダンスの測定周波数を設定する(ステップS101)。測定周波数は、予め決められた測定範囲内の周波数の中から設定される。
次にマイコン部53は、測定周波数に基づいて、正弦波信号(所定の交流信号)の周波数を決定し、入出力部52に対して、当該正弦波信号の出力を指示する指示信号を出力する(ステップS102)。
入出力部52は、指示信号を入力すると、DA変換器により、アナログ信号に変換し、電流モジュレーション回路56に出力する。電流モジュレーション回路56は、指示信号に基づいて、電池セル42を電源として正弦波信号を出力させる。具体的には、半導体スイッチ素子56aは、フィードバック回路56dを介して入力された信号に基づき、指示信号により指示された正弦波信号を電池セル42から出力させるように、電流量を調整する。これにより、電池セル42から正弦波信号が出力される。
電池セル42から正弦波信号を出力させると、すなわち、電池セル42に外乱を与えると、電池セル42の端子間に電池セル42の内部複素インピーダンス情報を反映した電圧変動が生じる。入出力部52は、応答信号入力端子58を介して、その電圧変動を入力し、応答信号としてマイコン部53に出力する。その際、AD変換器により、デジタル信号に変換して出力する。
ステップS102の実行後、マイコン部53は、入出力部52から応答信号を入力する(ステップS103)。また、マイコン部53は、電流モジュレーション回路56の抵抗56bに流れる信号(つまり、電池セル42から出力される信号)を電流信号として取得する(ステップS104)。具体的には、マイコン部53は、電流検出アンプ56cから出力されたフィードバック信号(検出信号)を、入出力部52を介して、電流信号として入力する。なお、フィードバック信号の代わりに、電流モジュレーション回路56に指示した指示信号に比例した値を電流信号としてもよい。
次に、マイコン部53は、応答信号及び電流信号に基づいて、複素インピーダンスを算出する(ステップS105)。つまり、マイコン部53は、応答信号の振幅、電流信号との位相差等に基づいて複素インピーダンスの実部、虚部、絶対値、位相のすべて若しくはいずれかを算出する。マイコン部53は、通信部54を介して、算出結果をECU60に出力する(ステップS106)。そして、算出処理を終了する。
この算出処理は、測定範囲内の複数の周波数についての複素インピーダンスが算出されるまで繰り返し実行される。ECU60は、算出結果に基づいて、例えば、複素インピーダンス平面プロット(コールコールプロット)を作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握する。
なお、コールコールプロット全体を必ずしも作成する必要はなく、その一部に着目してもよい。例えば、走行時、一定の時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOC、SOH及び電池温度等の走行時における変化を把握してもよい。または、1日毎、1周ごと、若しくは1年ごとといった時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOH等の変化を把握してもよい。
ところで、電池セル42の状態を監視するためには、様々な信号を入出力する必要がある。このため、従来においては、1つの電源端子に対して、各信号の電気経路を複数接続する必要があり、組み付ける際に接続工数が増えるという問題があった。そこで、第1実施形態では、電気経路を工夫し、電源端子に接続する電気経路の数を減らすように構成した。以下、詳しく説明する。
図4は、電池セル42と電池監視装置50の接続態様を示す模式図である。
図4に示すように、電池セル42は、薄型の直方体形状に形成されており、長手方向両端に、電源端子71が設けられている。電池セル42は、平面が重なるように、短手方向に積層されている。その際、隣接する電池セル42とは、正極側電源端子71aと負極側電源端子71bとが互い違いとなるように配置されている。
そして、各電池セル42が、直列に接続されるように、電池セル42の正極側電源端子71aは、隣接する一方側の電池セル42の負極側電源端子71bにバスバー73を介して接続されている。そして、電池セル42の負極側電源端子71bは、隣接する他方側の電池セル42の正極側電源端子71aにバスバー73を介して接続されている。
バスバー73は、導電性の材料で構成されており、隣接する電源端子71が届く程度、例えば、短手方向における電池セル42の厚さ寸法の2倍程度の長さを有する薄板状に形成されている。このバスバー73は、電池セル42の長手方向において、電源端子71の外側端部(外側半分)を覆うように各電源端子71に対して接続(溶接等)されている。
そして、正極側電源端子71aと、負極側電源端子71bとの間には、平板状の回路基板72が設けられている。回路基板72は、PCB(プリント基板)や、FPC(フレキシブルプリント回路基板)であり、回路基板72上に配置された回路素子の周りを、導電性金属の電気経路が張り巡らされている。
回路基板72には、回路素子としては、例えば、ASIC部50aと、フィルタ部55と、電流モジュレーション回路56等が配置(固定)されている。なお、図4では、図示の都合上、ASIC部50aと、電流モジュレーション回路56のみを図示している。
ASIC部50aにおいて、直流電圧入力端子57の正極側端子57aは、第2A電気経路82aに接続されている。回路基板72上において、この第2A電気経路82aは、直流電圧入力端子57の正極側端子57aから電池セル42の正極側電源端子71aに向かって、直線状に延びるように形成されている。そして、正極側電源端子71aに第2A電気経路82aの端部が溶接などにより接続されている。
また、ASIC部50aにおいて、直流電圧入力端子57の負極側端子57bは、第2B電気経路82bに接続されている。回路基板72上において、この第2B電気経路82bは、直流電圧入力端子57の負極側端子57bから電池セル42の負極側電源端子71bに向かって、直線状に延びるように形成されている。そして、負極側電源端子71bに第2B電気経路82bの端部が溶接などにより接続されている。以下、第2A電気経路82aと、第2B電気経路82bとをまとめて、第2電気経路82と示す場合がある。
また、ASIC部50aにおいて、応答信号入力端子58の正極側端子58aは、第4A電気経路84aに接続されている。回路基板72上において、この第4A電気経路84aは、応答信号入力端子58の正極側端子58aから電池セル42の正極側電源端子71aに向かって、直線状に延びるように形成されている。そして、正極側電源端子71aに第4A電気経路84aの端部が溶接などにより接続されている。
また、ASIC部50aにおいて、応答信号入力端子58の負極側端子58bは、第4B電気経路84bに接続されている。回路基板72上において、この第4B電気経路84bは、応答信号入力端子58の負極側端子58bから電池セル42の負極側電源端子71bに向かって、直線状に延びるように形成されている。そして、負極側電源端子71bに第4B電気経路84bの端部が溶接などにより接続されている。以下、第4A電気経路84aと、第4B電気経路84bとをまとめて、第4電気経路84と示す場合がある。
また、ASIC部50aにおいて、安定化電源供給部51の正極側端子51aは、第1A電気経路81aに接続されている。また、ASIC部50aにおいて、安定化電源供給部51の負極側端子51bは、第1B電気経路81bに接続されている。以下、第1A電気経路81aと、第1B電気経路81bとをまとめて、第1電気経路81と示す場合がある。
また、電流モジュレーション回路56の正極側端子56eは、第3A電気経路83aに接続されている。なお、電流モジュレーション回路56の正極側端子56eは、電流モジュレーション回路56の内部において、半導体スイッチ素子56aのドレイン端子に接続されている。
また、電流モジュレーション回路56の負極側端子56fは、第3B電気経路83bに接続されている。なお、電流モジュレーション回路56の負極側端子56fは、電流モジュレーション回路56の内部において、抵抗56bを介して、半導体スイッチ素子56aのソース端子に接続されている。以下、第3A電気経路83aと、第3B電気経路83bとをまとめて、第3電気経路83と示す場合がある。
ここで、第1電気経路81は、電池セル42から駆動電力が供給される経路(電源ライン)である。一方で、第3電気経路83は、定電流制御がされた交流信号が流れる経路である。交流信号は、直流電圧に比較して、微弱な信号であり、その電流変動により、第1電気経路81を流れる駆動電力に対してほとんど影響を与えるものではない。
そこで、第1実施形態において、第1電気経路81は、途中で第3電気経路83と合流し(まとめられ)、第5電気経路85とされている。合流した第5電気経路85は、電池セル42の電源端子71に接続されている。より詳しくは、第1A電気経路81aは、途中で第3A電気経路83aと合流し、第5A電気経路85aとされている。そして、合流した第5A電気経路85aの端部は、電池セル42の正極側電源端子71aに接続されている。同様に、第1B電気経路81bは、途中で第3B電気経路83bと合流し、第5B電気経路85bとされる。そして、合流した第5B電気経路85bの端部は、電池セル42の負極側電源端子71bに接続されている。
また、第1電気経路81は、途中で第3電気経路83の側へ屈曲するようにして、第3電気経路83に合流するようになっている。すなわち、第3電気経路83と第5電気経路85は直線状になるように設けられている。このため、いずれの箇所においても電気経路82,84,85と電源端子71との接続箇所が同じ位置となるように統一されている。
なお、各電気経路82,84,85は、電源端子71に対して、バスバー73を介さずに、直接接続されている。具体的には、各電気経路82,84,85の電池セル側端部は、電池セル42の長手方向において、電源端子71の内側端部(内側半分)のいずれかの部分に接続(溶接等)されている。
第1実施形態の電池監視装置50は、以下の効果を有する。
第1電気経路81を、途中で第3電気経路83と合流させて、第5電気経路85とした。これにより、電池セル42の電源端子71に接続しなくてはならない電気経路の数を少なくすることができ、組み立てる際、接続する工数を減らすことができる。
また、駆動電力が供給される第1電気経路81と、微弱な交流信号が流れる第3電気経路83とを合流させた。交流信号による電流変動は、駆動電力に影響を与えるほどの大きさでないため、駆動電力に影響を与えることない。また、交流信号は、定電流制御が行われているため、駆動電力が流れていても影響を受けない。したがって、互いに影響を与えることなく、第1電気経路81と、第3電気経路83とを途中で合流させることができる。
一方で、第2電気経路82は、第1電気経路81及び第3電気経路83とは別にして設けられている。これにより、第2電気経路82において、合流に伴って経路長が伸びることを抑制することができる。このため、直流電圧入力端子57は、余分な抵抗成分を介すことなく、第2電気経路82を通じて直流電圧を入力することができ、正確に直流電圧を測定することができる。また、第1電気経路81に流れる駆動電力は、その電圧変動が大きくなる傾向があるため、これとは別にすることにより、誤差の少ない正確な直流電圧を測定することができる。
また、第4電気経路84は、第1電気経路81及び第3電気経路83とは別にして設けられている。これにより、第4電気経路84において、合流に伴って経路長が伸びることを抑制することができる。このため、応答信号入力端子58は、余分なインピーダンス成分を介すことなく、第4電気経路84を通じて応答信号を入力することができ、正確な応答信号を入力することができる。また、応答信号は、極めて微弱な信号であるため、応答信号に比較して変動が大きい駆動電力が流れる第1電気経路81と別にすることにより、誤差の少ない正確な応答信号を測定(入力)することができる。
第4電気経路84の電池セル側端部は、バスバー73を介さずに電源端子71に対して直接接続されている。このため、バスバー73に基づく余分なインピーダンス成分を取り除いて、応答信号を入力することができ、測定誤差を少なくすることができる。
第1電気経路81は、途中で第3電気経路83の側へ屈曲するようにして、第3電気経路83に合流するようになっている。つまり、いずれの箇所においても電気経路82,84,85と電源端子71との接続箇所が同じ位置となるように統一されている。このため、複数の電池セル42に対して電気経路82,84,85を接続する際、接続を容易に行うことができる。
電流モジュレーション回路56は、監視対象とする電池セル42を電源として、正弦波信号(所定の交流信号)を出力させる。このため、正弦波信号を電池セル42に入力するための外部電源が必要なくなり、部品点数削減、小型化、低コスト化を実現することが可能となる。
ところで、車載の蓄電池には、一般的に保護素子やフィルタ回路などの周辺回路が接続されており、蓄電池に交流信号を入力しても、当該周辺回路に電流の一部が漏れてしまう。例えば、第1実施形態においても、電池セル42には、RCフィルタ55aやツェナーダイオード55bが接続されており、電池セル42に交流信号を入力しても、電流の一部がそれらの回路に漏れる。このため、電池セル42に交流信号を入力し、その応答信号に基づいて複素インピーダンスを算出する場合、漏れ電流の影響により応答信号に誤差が生じ、複素インピーダンスの検出精度が低下するという問題があった。
しかしながら、上記第1実施形態の電池監視装置50では、電池セル42を電源として、正弦波信号を出力させるため、電流モジュレーション回路56と電池セル42とで閉回路を実現できる。よって、電池セル42からの電流の漏れをなくすことができ、応答信号の誤差を抑制することができる。
抵抗56bに実際に流れる信号と、電池セル42から出力させるべき正弦波信号との間に誤差が生じる場合がある。この場合、応答信号の誤差要因となる。そこで、フィードバック回路56dを備えて、半導体スイッチ素子56aに対して指示を行う際、フィードバック信号(検出信号)と指示信号との比較に基づいてフィードバックを行うこととした。これにより、指示した正弦波信号を電池セル42から安定して、正確に出力させることができる。
また、指示信号により、電流モジュレーション回路56に対して正弦波信号の波形を指示する場合、指示信号をデジタル信号からアナログ信号に変換する。この変換する際に、誤差が生じる。入出力部52と電流モジュレーション回路56との間に、フィルタ回路等を設けることにより、指示信号の波形を滑らかにして、この誤差を抑制することができるが、フィルタ回路を設けることは大型化やコスト増につながる。
また、車載の電池セル42は、一般的に大容量であるため、複素インピーダンスを算出する場合、測定周波数の測定範囲は広くなる傾向にある。したがって、その分フィルタ回路も大型化する可能性がある。そこで、上記フィードバックを行うこととし、信号変換時における指示信号の波形の誤差を抑制した。これにより、入出力部52と電流モジュレーション回路56との間において、フィルタ回路を省略することができる。
電流モジュレーション回路56は、抵抗56bに流れる信号を検出し、検出信号をフィードバック信号として、入出力部52を介して、マイコン部53に出力するように構成されている。そして、マイコン部53は、フィードバック信号を電流信号として利用して、複素インピーダンスを算出する。これにより、抵抗56bに実際に流れる信号と、出力させるべき正弦波信号(マイコン部53により指示された信号)との間に誤差(位相ずれなど)が生じた場合であっても、フィードバック信号、つまり、抵抗56bに実際に流れる信号を利用するため、複素インピーダンスの算出精度を向上させることができる。
また、上記のようにフィードバック信号により補正するため、入出力部52と電流モジュレーション回路56との間において、フィルタ回路を省略することができ、電池監視装置50を小型化することができる。
応答信号入力端子58は、電池セル42の電源端子71a,71bにおいて、接続可能な部分のうち、電極に最も近い部分に接続されている。これにより、電池セル42の電源端子71a,71bが有するインピーダンス成分の影響を抑制して、複素インピーダンスの算出精度をより向上させることができる。より詳しく説明すると、図5に示すように、電池セル42の電源端子71a,71bは、インピーダンス成分を有する。このため、応答信号入力端子58を接続する場合、図5(a)よりも図5(b)に示すように、電極により近い部分に接続することが望ましい。これにより、複素インピーダンスの算出精度をより向上させることができる。なお、図5(b)に示すように、応答信号入力端子58の接続箇所は、電流モジュレーション回路56との接続箇所よりも電極に近いことが望ましい。
(第2実施形態)
次に、第2実施形態の電池監視装置50について説明する。第2実施形態の電池監視装置50は、いわゆる2位相ロックイン検出を実施する。以下、詳しく説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
図6に示すように、電池監視装置50のASIC部50aには、電池セル42の端子間における直流電圧を測定する差動アンプ151が設けられている。差動アンプ151は、直流電圧入力端子57に接続されており、直流電圧を測定し、出力するように構成されている。
また、電池監視装置50のASIC部50aには、正弦波信号の出力時における電池セル42の電圧変動を、応答信号入力端子58を介して入力する増幅器としてのプリアンプ152が設けられている。プリアンプ152は、応答信号入力端子58を介して入力した電圧変動を増幅し、応答信号として出力する。すなわち、応答信号の振幅は、電池セル42の電圧に比較して微弱な信号であることから、応答信号の検出精度を向上させるため、プリアンプ152が設けられている。なお、第2実施形態では、プリアンプ152は、1段であったが、多段にしてもよい。
また、図6に示すように、電池セル42の正極側電源端子71aと応答信号入力端子58の正極側端子58a(プリアンプ152の正極側端子)との間には、直流成分をカットするためのコンデンサC1が設けられている。これにより、電池セル42の電圧変動のうち、直流成分(内部複素インピーダンス情報に関係ない部分)を除くことができ、応答信号の検出精度を向上させることができる。
また、ASIC部50aには、差動アンプ151から出力される直流電圧と、プリアンプ152から出力される応答信号とを切り替える信号切替部153が設けられている。信号切替部153には、AD変換器154が接続されており、切り替えられた信号(アナログ信号)が、デジタル信号に変換されて出力されるように構成されている。
AD変換器154は、第2実施形態における演算部としてのシグナルプロセッシング部155に接続されており、直流電圧を入力するように構成されている。また、AD変換器154は、第1乗算器156及び第2乗算器157に接続されており、応答信号をそれぞれ入力するように構成されている。
第1乗算器156には、後述する発振回路158が接続されており、第1の参照信号が入力されるようになっている。第1乗算器156は、第1の参照信号と、応答信号を乗算して、応答信号の実部に比例した値を算出し、ローパスフィルタ159を介して、応答信号の実部に比例した値をシグナルプロセッシング部155に出力するようになっている。なお、図6では、応答信号の実部をRe|Vr|と示す。
第2乗算器157には、位相シフト回路160を介して、発振回路158に接続されており、第2の参照信号が入力される。第2の参照信号は、第1の参照信号の位相を90度(π/2)進ませた信号である。位相シフト回路160は、発振回路158から入力した正弦波信号(第1の参照信号)の位相を進ませ、第2の参照信号として出力する。
第2乗算器157は、第2の参照信号と、応答信号を乗算して、応答信号の虚部に比例した値を算出し、ローパスフィルタ161を介して、応答信号の虚部に比例した値をシグナルプロセッシング部155に出力するようになっている。なお、図6では、応答信号の虚部をIm|Vr|と示す。
発振回路158は、設定された正弦波信号を出力する回路であり、波形指示部として機能する。発振回路158は、前述したように、第1乗算器156及び位相シフト回路160に対して、正弦波信号を第1の参照信号として出力する。また、発振回路158は、DA変換器162を介して、指示信号出力端子59aに接続されており、正弦波信号を指示信号として出力する。
フィードバック信号入力端子59bは、AD変換器163を介して、シグナルプロセッシング部155に接続されている。シグナルプロセッシング部155は、AD変換器163を介して、フィードバック信号入力端子59bからフィードバック信号(検出信号)を入力する。
シグナルプロセッシング部155は、応答信号の実部に比例した値及び応答信号の虚部に比例した値を入力し、それらの値に基づいて、複素インピーダンスの実部及び虚部を算出する。その際、シグナルプロセッシング部155は、入力したフィードバック信号を用いて、実際に流れる信号の振幅と、参照信号との位相ずれを加味して、複素インピーダンスの実部及び虚部を算出(補正)する。
また、シグナルプロセッシング部155は、複素インピーダンスの絶対値と位相を算出する。詳しく説明すると、2位相ロックイン検出により、応答信号の実部と虚部がわかるため、応答信号の位相をθvとすると、複素平面の極座標表示では|Vr|e^jθvのように示すことができる。同様に、電流は、|I|e^jθiに示すように表すことができる。これから複素インピーダンスの極座標表示を|Z|e^jθzとすると、V=ZIから数式(1)のように表すことができる。また、「j」は、j^2=-1を満たす虚数単位である。
Figure 0007259614000001
よって、複素インピーダンスの絶対値は|Z|=|Vr|/|I|、位相はθv-θiから求めることができる。そして、シグナルプロセッシング部155は、通信部54を介して、ECU60に算出結果を出力する。なお、図6では、複素インピーダンスの絶対値を|Z|と示し、その位相をarg(Z)と示す。
次に、第2実施形態における複素インピーダンス算出処理について図7に基づいて説明する。複素インピーダンス算出処理は、電池監視装置50により所定周期ごとに実行される。
複素インピーダンス算出処理において、発振回路158は、最初に複素インピーダンスの測定周波数を設定する(ステップS201)。測定周波数は、予め決められた測定範囲内の周波数の中から設定される。第2実施形態において、測定周波数は、例えば、シグナルプロセッシング部155により決定される。
次に、信号切替部153は、プリアンプ152からの応答信号が出力されるように切替を行う(ステップS202)。切り替えの指示は、例えば、シグナルプロセッシング部155により行われる。
次に発振回路158は、測定周波数に基づいて、正弦波信号(所定の交流信号)の周波数を決定し、DA変換器162を介して、指示信号出力端子59aから電流モジュレーション回路56に対して、当該正弦波信号の出力を指示する指示信号を出力する(ステップS203)。なお、指示信号の出力指示は、例えば、シグナルプロセッシング部155により行われる。DA変換器162によりアナログ信号に変換される際、電池セル42の電圧を考慮して、適切なオフセット値(直流バイアス)が設定されて、変換される。オフセット値(直流バイアス)の設定は、例えば、シグナルプロセッシング部155により行われる。オフセット値(直流バイアス)の設定は、電池セル42の直流電圧に基づき、行われることが望ましい。なお、電池セル42の直流電圧は、差動アンプ151により測定すればよい。
電流モジュレーション回路56は、指示信号に基づいて、電池セル42を電源として正弦波信号を出力させる(ステップS204)。これにより、電池セル42から正弦波信号が出力される。
電池セル42から正弦波信号を出力させると、電池セル42の端子間に電池セル42の内部複素インピーダンス情報を反映した電圧変動が生じる。プリアンプ152は、応答信号入力端子58を介して、その電圧変動を入力し、応答信号として出力する(ステップS205)。
なお、応答信号入力端子58に入力される際、電圧変動の直流成分はコンデンサC1によりカットされ、電圧変動の特徴部分だけ取り出される。また、プリアンプ152は、直流成分がカットされた微弱な電圧変動を増幅させて、応答信号として出力する。その際、AD変換器154は、信号切替部153を介して入力された応答信号を、デジタル信号に変換し、出力する。コンデンサC1によりカットされる直流成分の大きさは、電池セル42の直流電圧に基づき、調整されることが望ましい。同様に、電圧変動をどれだけ増幅させるかは、電池セル42の直流電圧に基づき、調整されることが望ましい。
第1乗算器156は、発振回路158から入力した正弦波信号を第1の参照信号とし、AD変換器154から入力した応答信号を乗算して、応答信号の実部に比例した値を算出する(ステップS206)。同様に、第2乗算器157は、位相シフト回路160から入力した第2の参照信号と、応答信号を乗算して、応答信号の虚部に比例した値を算出する。
これらの値は、ローパスフィルタ159及びローパスフィルタ161を介して、シグナルプロセッシング部155に入力される。なお、ローパスフィルタ159及びローパスフィルタ161を通過する際、直流成分(DC成分)以外の信号は減衰し、除去される。
シグナルプロセッシング部155は、フィードバック信号入力端子59bからフィードバック信号(検出信号)を入力する(ステップS207)。フィードバック信号は、シグナルプロセッシング部155に入力される際、AD変換器163により、デジタル信号に変換される。
シグナルプロセッシング部155は、フィードバック信号、及びローパスフィルタ159,161から入力された信号(実部及び虚部の比例値)に基づいて、複素インピーダンスの実部、虚部、絶対値、及び位相のうちすべて若しくはいずれかを算出する(ステップS208)。フィードバック信号は、実際に電池セル42から流れる電流(つまり、フィードバック信号)と参照信号に比例する値との振幅又は位相のずれを補正するために利用される。
その後、シグナルプロセッシング部155は、通信部54を介して、算出結果をECU60に出力する(ステップS209)。そして、算出処理を終了する。
この算出処理は、測定範囲内の複数の周波数についての複素インピーダンスが算出されるまで繰り返し実行される。ECU60は、算出結果に基づいて、複素インピーダンス平面プロット(コールコールプロット)を作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握する。
なお、コールコールプロット全体を必ずしも作成する必要はなく、その一部に着目してもよい。例えば、走行時、一定の時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOC、SOH及び電池温度等の走行時における変化を把握してもよい。または、1日毎、1周ごと、若しくは1年ごとといった時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOH等の変化を把握してもよい。
なお、第2実施形態において、電池セル42と電池監視装置50の接続態様は、第1実施形態と同様であり、また、回路基板72に設けられた電気経路81~85も同様であるため、説明を省略する。
第2実施形態の電池監視装置50では、以下の効果を有する。
シグナルプロセッシング部155は、応答信号入力端子58から入力した応答信号と第1の参照信号とを掛け合わせた値に基づいて、応答信号の実部に比例した値を算出する。また、シグナルプロセッシング部155は、正弦波信号の位相をシフトさせた信号を第2の参照信号とし、応答信号と第2の参照信号とを掛け合わせた値に基づいて、応答信号の虚部に比例した値を算出する。そして、これらの値に基づいて、複素インピーダンスを算出する。このように、いわゆるロックイン検出を行うことにより、応答信号から、発振回路158が指示する正弦波信号の周波数と同一の周波成分のみを抽出することができる。このため、ホワイトノイズやピンクノイズに強くなり、高精度に複素インピーダンスを算出することができる。特に車両に採用する場合、ノイズが多くなるため、好適に複素インピーダンスを算出することができる。また、ノイズに強くなるため、電池セル42から出力させる電流(正弦波信号)を小さくすることが可能となる。このため、消費電力や電池セル42や半導体スイッチ素子56aの温度上昇を抑制することができる。
また、シグナルプロセッシング部155は、電流モジュレーション回路56により電池セル42から実際に流れる電流を検出したフィードバック信号(検出信号)を入力し、参照信号に比例する値との振幅及び位相のずれを補正している。これにより、複素インピーダンスの算出精度を向上させることができる。
また、振幅及び位相のずれを補正しているため、指示信号をアナログ信号に変換する際、誤差が生じても、その誤差をフィードバック信号による補正により抑制することができる。このため、電流モジュレーション回路56と、DA変換器162との間にフィルタ回路などを設ける必要がなくなり、小型化することができる。
(第3実施形態)
次に、第3実施形態の電池監視装置50について説明する。第3実施形態の電池監視装置50は、信号解析において、高速フーリエ変換(FFT)を実施する。以下、詳しく説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
図8に示すように、電池監視装置50のASIC部50aには、高速フーリエ変換を実施する演算部としてのシグナルプロセッシング部201を備える。シグナルプロセッシング部201は、AD変換器154を介して、電池セル42の直流電圧の測定値を入力するように構成されている。また、シグナルプロセッシング部201は、AD変換器154を介して、応答信号を入力するように構成されている。また、シグナルプロセッシング部201は、AD変換器163を介して、フィードバック信号を入力するように構成されている。また、シグナルプロセッシング部201は、発振回路158に接続されており、正弦波信号の周波数を設定可能に構成されている。
シグナルプロセッシング部201は、入力した応答信号(電圧信号)、及びフィードバック信号(電流信号)を高速フーリエ変換によりそれぞれ変換するように構成されている。そして、シグナルプロセッシング部201は、変換後の値に基づいて、複素インピーダンスの実部、虚部、絶対値、位相を算出する。そして、シグナルプロセッシング部201は、通信部54を介して、ECU60に算出結果を出力する。
次に、第3実施形態における複素インピーダンス算出処理について図9に基づいて説明する。複素インピーダンス算出処理は、電池監視装置50により所定周期ごとに実行される。第3実施形態の複素インピーダンス算出処理において、ステップS301~ステップS305は、第2実施形態の複素インピーダンス算出処理におけるステップS201~ステップS205と同様である。なお、測定周波数の設定、切り替えの指示、指示信号の出力指示、オフセット値の設定等は、例えば、シグナルプロセッシング部201により行われる。
シグナルプロセッシング部201は、入力したAD変換器154から入力した応答信号に対して、高速フーリエ変換を実施する(ステップS306)。これにより、測定周波数に対する応答信号の振幅情報を得ることができる。
また、シグナルプロセッシング部201は、フィードバック信号入力端子59bからフィードバック信号を入力する(ステップS307)。フィードバック信号は、シグナルプロセッシング部155に入力される際、AD変換器163により、デジタル信号に変換される。
シグナルプロセッシング部201は、フィードバック信号に対して、高速フーリエ変換を実施する(ステップS308)。これにより、測定周波数に対するフィードバック信号の振幅情報を得ることができる。
シグナルプロセッシング部201は、ステップS306で取得した測定周波数に対する応答信号の振幅情報と、ステップS308で取得した測定周波数に対するフィードバック信号の振幅情報とに基づいて、複素インピーダンスの実部、虚部、絶対値、及び位相のうちすべて若しくはいずれかを算出する(ステップS309)。その後、シグナルプロセッシング部201は、通信部54を介して、算出結果をECU60に出力する(ステップS310)。そして、算出処理を終了する。
この算出処理は、測定範囲内の複数の周波数についての複素インピーダンスが算出されるまで繰り返し実行される。ECU60は、算出結果に基づいて、複素インピーダンス平面プロット(コールコールプロット)を作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握する。
なお、コールコールプロット全体を必ずしも作成する必要はなく、その一部に着目してもよい。例えば、走行時、一定の時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOC、SOH及び電池温度等の走行時における変化を把握してもよい。または、1日毎、1周ごと、若しくは1年ごとといった時間間隔で特定周波数の複素インピーダンスを測定し、当該特定周波数の複素インピーダンスの時間変化に基づいて、SOH等の変化を把握してもよい。
なお、第3実施形態において、電池セル42と電池監視装置50の接続態様は、第1実施形態と同様であり、また、回路基板72に設けられた電気経路81~85も同様であるため、説明を省略する。
第3実施形態の電池監視装置50では、以下の効果を有する。
応答信号及びフィードバック信号をそれぞれフーリエ変換して、測定周波数の振幅情報及び位相情報を得るとともに、測定周波数の高調波の振幅情報及び位相情報を得る。測定周波数とその高調波についてそれぞれ電圧と電流の振幅及び始動の情報を得ることができるため、複数の周波数に対する複素インピーダンスを一度に算出することが可能となる。
また、シグナルプロセッシング部201は、電流モジュレーション回路56により電池セル42から実際に流れる電流を検出したフィードバック信号(検出信号)を入力し、当該信号をフーリエ変換している。このため、振幅及び位相のずれを補正することができ、複素インピーダンスの算出精度を向上させることができる。
(第4実施形態)
第1実施形態では、電池セル42毎に電池監視装置50を設けたが、複数の電池セル42ごと(例えば、電池モジュール41ごと、組電池40ごと)に、電池監視装置50を設けてもよい。その際、電池監視装置50の機能の一部を共通化してもよい。以下、第4実施形態の電池監視装置50について説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
図10に示すように、安定化電源供給部301、通信部54及びマイコン部53を共通化している。この場合、負電極の電位が電池セル42ごとに異なる場合がある。このため、各電池セル42の情報を伝達する際に利用される各電気信号の基準電位が異なる場合がある。そこで、基準電位の差を考慮してマイコン部53へ各電気信号を入力する機能を設けて、演算する必要がある。異なる基準電位間の信号伝達手段としては、コンデンサやトランス、電波、光を用いる方法がある。
図10に示すように、安定化電源供給部301は、組電池40(又は電池モジュール41)の端子間電圧が供給されるように構成されている。つまり、安定化電源供給部301は、組電池40(又は電池モジュール41)を構成する電池セル42のうち、直列方向において正極側端部に配置されている電池セル42の正極側電源端子71aと、負極側端部に配置されている電池セル42の負極側電源端子71bと、に接続されている。したがって、第4実施形態では、組電池40(又は電池モジュール41)を構成する電池セル42のうち、直列方向において両端の電池セル42のみが、電気経路が異なるようになっている。
具体的には、図11に示すように、直列方向において正極側端部(図11において上側端部)の電池セル42の正極側電源端子71aは、第5A電気経路85aに接続されている。第5A電気経路85aは、途中で第1A電気経路81aと第3A電気経路83aに分岐する。図11において一点鎖線で示す第1A電気経路81aは、安定化電源供給部301の正極側端子301aに接続されており、第3A電気経路83aは、電流モジュレーション回路56の正極側端子56eに接続されている。
そして、直列方向において正極側端部の電池セル42の負極側電源端子71bには、第5B電気経路85bは接続されていない。その代わりに、電流モジュレーション回路56の負極側端子56fが、第3B電気経路83bを介して、負極側電源端子71bに接続されている。なお、第2電気経路82及び第4電気経路84は、それぞれ独立してASIC部50aに接続されている。
一方、直列方向において負極側端部(図11において下側端部)の電池セル42の負極側電源端子71bは、第5B電気経路85bに接続されている。第5B電気経路85bは、途中で第1B電気経路81bと第3B電気経路83bに分岐する。一点鎖線で示す第1B電気経路81bは、安定化電源供給部301の負極側端子301bに接続されており、第3B電気経路83bは、電流モジュレーション回路56の負極側端子56fに接続されている。
そして、直列方向において負極側端部の電池セル42の正極側電源端子71aには、第5A電気経路85aは接続されていない。その代わりに、電流モジュレーション回路56の正極側端子56eが、第3A電気経路83aを介して、正極側電源端子71aに接続されている。なお、第2電気経路82及び第4電気経路84は、それぞれ独立してASIC部50aに接続されている。
直列方向において両端部以外の電池セル42は、第1電気経路81が設けられていない。そして、直列方向において両端部以外の電池セル42の正極側電源端子71aには、第3A電気経路83aが接続され、負極側電源端子71bには、第3B電気経路83bが接続されている。なお、第2電気経路82及び第4電気経路84は、それぞれ独立してASIC部50aに接続されている。
以上により、どの電池セル42の電源端子71においても、電気経路82~85との接続箇所がそれぞれ3カ所となっている。また、同じ個所において電気経路82~85と電源端子71とが接続されるように、第1電気経路81が第3電気経路83の側へ屈曲して、第3電気経路83に合流している。このため、いずれの電池セル42においても接続箇所が同じとなり、作業がしやすくなる。
(第5実施形態)
第2実施形態では、電池セル42毎に電池監視装置50を設けたが、複数の電池セル42ごと(例えば、電池モジュール41ごと、組電池40ごと)に、電池監視装置50を設けてもよい。その際、電池監視装置50の機能の一部を共通化してもよい。以下、第5実施形態の電池監視装置50について説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
図12に示すように、第5実施形態では、安定化電源供給部301、通信部54、差動アンプ151、プリアンプ152、信号切替部153、AD変換器154,163、シグナルプロセッシング部155、第1乗算器156、第2乗算器157、ローパスフィルタ159,161、発振回路158、位相シフト回路160、DA変換器162、フィードバック回路56d、電流検出アンプ56cを共通化している。そして、この場合、直流電圧、応答信号、指示信号などの各種信号をマルチプレクサ302~304のような多重化装置により、信号の切替を可能に構成している。マルチプレクサ302~304は、例えばシグナルプロセッシング部155により制御される。
第5実施形態における電池セル42と電池監視装置50の接続態様について説明する。
図13に示すように、第5実施形態では、バスバー73を介して、各電源端子71は、それぞれ電気経路と接続されるように構成されている。なお、説明の都合上、第2電気経路82及び第4電気経路84の図示は、省略しているが、第2実施形態と同様に設けられている。
そして、第5実施形態では、隣接する電池セル42の第3電気経路83が合流するように構成されている。詳しく説明すると、図13に示すように、電池セル42は、正極側電源端子71aと負極側電源端子71bが、互い違いとなるように積層されている。そして、各バスバー73は、隣接する正極側電源端子71aと負極側電源端子71bとを接続するように構成されている。
ここで説明の都合上、図13において、上から順番に、第1の電池セル421、第2の電池セル422、第3の電池セル423、第4の電池セル424と示す。また、第1の電池セル421に正弦波信号を出力させる電流モジュレーション回路56を、第1の電流モジュレーション回路561と示す。同様に、第2の電池セル422に正弦波信号を出力させる電流モジュレーション回路56を、第2の電流モジュレーション回路562と示す。第3の電池セル423に正弦波信号を出力させる電流モジュレーション回路56を、第3の電流モジュレーション回路563と示す。第4の電池セル424に正弦波信号を出力させる電流モジュレーション回路56を、第4の電流モジュレーション回路564と示す。
図13に示すように、第1の電池セル421の負極側電源端子71bは、バスバー73を介して、第2の電池セル422の負極側電源端子71bと接続されている。第2の電池セル422の正極側電源端子71aも同様に、バスバー73を介して、第3の電池セル423の負極側電源端子71bと接続されている。以降、同様に接続されている。
そして、第1の電流モジュレーション回路561の負極側端子56fには、第3B電気経路83bが接続されている。この第3B電気経路83bは、途中で、第2の電流モジュレーション回路562の正極側端子56eに接続されている第3A電気経路83aの側へ屈曲し、当該第3A電気経路83aに合流するようになっている。合流した電気経路は、バスバー73に接続されている。
すなわち、第1の電流モジュレーション回路561からの第3B電気経路83bは、バスバー73を介して、第1の電池セル421の負極側電源端子71bに接続されていることとなる。同様に、第2の電流モジュレーション回路562からの第3A電気経路83aは、バスバー73を介して、第2の電池セル422の正極側電源端子71aに接続されていることとなる。
そして、第5実施形態では、マルチプレクサ302~304により、監視対象とする電池セル42毎に、信号の入出力を切り替え可能に構成されている。例えば、第1の電池セル421を監視対象とする場合には、第1の電池セル421だけから交流信号を出力させ、第1の電池セル421の応答信号のみを入力可能とすべく、マルチプレクサ302~304を切り替えるように制御されている。他の電池セル42を対象とする場合も同様である。
このため、隣接する電池セル42の第3電気経路83を合流させても、電流モジュレーション回路56により、電池セル42から交流信号を出力させる際に、他の電池セル42からの影響を受けることがない。
第5実施形態の構成にすれば、隣接する電池セル42の第3電気経路83を合流させるため、さらに電源端子71と電気経路との接続箇所を減らすことが可能となる。
なお、第5実施形態において、第3電気経路83は、第2電気経路82や第4電気経路84と合流させることは好ましくない。電源端子71までの経路が長くなり、余分な抵抗成分(インピーダンス成分)の影響を受け、誤差が生じるからである。
また、第1電気経路81は、上記第4実施形態と同様に、途中で第3電気経路83に合流させてもよいし、第1電気経路81と第3電気経路83とを独立して設けてもよい。また、第5実施形態において、第1実施形態と同様に、電池セル42毎に駆動電力が供給されていてもよい。この場合、第1実施形態と同様に、第1電気経路81と第3電気経路83とを合流させてもよい。
(第6実施形態)
第3実施形態では、電池セル42毎に電池監視装置50を設けたが、複数の電池セル42ごと(例えば、電池モジュール41ごと、組電池40ごと)に、電池監視装置50を設けてもよい。その際、電池監視装置50の機能の一部を共通化してもよい。以下、第6実施形態の電池監視装置50について説明する。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
図14に示すように、第6実施形態では、安定化電源供給部301、通信部54、差動アンプ151、プリアンプ152、信号切替部153、AD変換器154,163、シグナルプロセッシング部201、発振回路158、DA変換器162、フィードバック回路56d、電流検出アンプ56cを共通化している。
そして、この場合、直流電圧、応答信号、指示信号等の各種信号をマルチプレクサ302~304のような多重化装置により、信号の切替を可能に構成している。マルチプレクサ302~304は、例えばシグナルプロセッシング部201により制御される。
第6実施形態における電池セル42と電池監視装置50の接続態様は、第4実施形態又は第5実施形態と同様であるため、説明を省略する。
(他の実施形態)
上記実施形態を以下のように変更してもよい。
・上記実施形態において、複数の電池セル42を直列に接続した高電位側と低電位側をそれぞれ電源の正極、負極として用いる部分と、個々の電池セル42の両極をそれぞれ電源の正極、負極として用いる部分とで分け、いずれか一方のみを共通化してもよい。例えば、図15に示すように、通信部54、AD変換器154,163、シグナルプロセッシング部155、201、発振回路158、位相シフト回路160、DA変換器162を共通化してもよい。なお、図15では、第1乗算器156、第2乗算器157、ローパスフィルタ159,161の図示を省略しているが、ロックイン検出を行うシグナルプロセッシング部155を採用する場合、それらも共通化することとなる。
なお、共通化した部分には、第1電源401から電力が供給され、第1電源401には、複数の電池セル42から電力供給される。一方、共通化していない部分には、第2電源402から電力が供給され、第2電源402には、各電池セル42から電力供給される。ちなみに、第1電源401の出力電圧と、第2電源402の出力電圧は異なる。
この場合、直流電圧、応答信号、指示信号等の各種信号をマルチプレクサ302~304のような多重化装置により、信号の切替を可能に構成すればよい。
・上記実施形態において、各電池セル42の蓄電状態や電圧を均等化する均等化処理を電池監視装置50に実施させてもよい。均等化処理とは、各電池セル42の蓄電状態を揃えるように、他の電池セル42に比較して蓄電状態が高い一部の電池セル42を放電させる処理である。これにより、各電池セル42の蓄電状態を揃え、電池セル42のうち一部が過充電となることを抑制することができる。そして、電池監視装置50が、均等化処理を実施する場合、電流モジュレーション回路56を利用して、電池セル42を放電させてもよい。この場合、電池監視装置50が放電制御部として機能する。
具体的に説明すると、第1実施形態において、マイコン部53は、各電池セル42の蓄電状態に基づいてECU60等から放電指示を受けた場合、若しくは、電池セル42の蓄電状態又は電圧が所定値以上となった場合、電流モジュレーション回路56に指示信号を出力し、電池セル42から正弦波信号や矩形波といった周期関数若しくは直流信号を出力させる。そして、マイコン部53は、放電指示が終了するまで、若しくは電池セル42の蓄電状態又は電圧が所定値よりも小さくなるまで、信号の出力を継続させる。これにより、均等化処理を実施する。第2実施形態~第6実施形態でも同様に、マイコン部53又はシグナルプロセッシング部155,201が、均等化処理を実施してもよい。
そして、均等化処理のために、電池セル42から放電させる際、正弦波信号を出力させて、複素インピーダンスを算出してもよい。これにより、消費電力を抑制することができる。なお、均等化処理のために出力させる電流は、電力消費を抑制するため、及び装置の小型化のため、一般的には微弱な電流とされている。このため、第2実施形態のように微弱な電流でもロックイン検出により、複素インピーダンスを精度よく算出することができる電池監視装置50において均等化処理を実施させることが好ましい。
・上記実施形態において、フィルタ部55は、素子のみにより構成されていなくてもよい。例えば、配線、コネクタ接触部、プリント基板のパターン配線やベタパターン間により、又はこれらの構成と素子とが混在する構成であってもよい。
・上記実施形態において、電流モジュレーション回路56と、入出力部52(又はDA変換器162)との間に、フィルタ回路を設けてもよい。これにより、指示信号をアナログ信号に変換する際の誤差を抑制することができる。
・上記実施形態において、差動アンプ151、プリアンプ152、信号切替部153、AD変換器154,163、シグナルプロセッシング部155、第1乗算器156、第2乗算器157、ローパスフィルタ159,161、発振回路158、位相シフト回路160、DA変換器162、フィードバック回路56d、及び電流検出アンプ56cの一部又は全部は、ソフトウェアにより実現してもよい。
・上記第2実施形態及び第3実施形態において、コンデンサC1がなくてもよい。
・上記実施形態において、フィードバック回路56dがなくてもよい。また、電流検出アンプ56cにより抵抗56bに流れる電流を検出しなくてもよい。また、マイコン部53、シグナルプロセッシング部155,201は、フィードバック信号を入力しなくてもよい。
・上記実施形態において、直流電圧を検出したが、検出しなくてもよい。
・上記第2実施形態、第3実施形態、第5実施形態又は第6実施形態において、信号切替部153を設けなくてもよい。この場合、直流電圧の測定結果がシグナルプロセッシング部155,201に入力されればよい。
・上記第2実施形態、第3実施形態、第5実施形態又は第6実施形態において、フィードバック信号も信号切替部153により切り替えの対象としてもよい。これにより、AD変換器154,163を共通化することができる。
・上記実施形態の電池監視装置50を、車両として、HEV,EV,PHV,補機電池、電動飛行機、電動バイク、電動船舶に採用してもよい。
・上記実施形態において、電池セル42は、並列に接続されていてもよい。
・上記第2実施形態、第3実施形態、第5実施形態又は第6実施形態において、AD変換時におけるエイリアシングを防止するため、フィルタ回路をプリアンプ152の前後、又はAD変換器154の直前に設けてもよい。
・上記実施形態において、電池モジュール41単位で、状態を監視してもよい。このとき、電池モジュール41ごとに通信部54を設ける場合、各通信部54からECU60への通信は電位基準の異なる絶縁通信となることがある。例えば、絶縁トランスやコンデンサを用いて絶縁通信を行う場合がある。
・上記第2実施形態又は第5実施形態において、フィードバック信号をロックイン検出してもよい。図16に基づいて、具体的に説明すると、複素インピーダンス算出処理は、電池監視装置50により所定周期ごとに実行される。
複素インピーダンス算出処理において、発振回路158は、最初に複素インピーダンスの測定周波数を設定する(ステップS401)。測定周波数は、予め決められた測定範囲内の周波数の中から設定される。別例において、測定周波数は、例えば、シグナルプロセッシング部155により決定される。
次に発振回路158は、測定周波数に基づいて、正弦波信号(所定の交流信号)の周波数を決定し、DA変換器162を介して、指示信号出力端子59aから電流モジュレーション回路56に対して、当該正弦波信号の出力を指示する指示信号を出力する(ステップS402)。電流モジュレーション回路56は、指示信号に基づいて、電池セル42を電源として正弦波信号を出力させる。これにより、電池セル42から正弦波信号が出力される。
次に、シグナルプロセッシング部155は、フィードバック信号を2位相ロックイン検出により、測定する(ステップS403)。具体的には、シグナルプロセッシング部155は、発振回路158が指示した正弦波信号(参照信号)と、入力したフィードバック信号と乗算する。また、発振回路158が指示した正弦波信号の位相を90度ずらした信号と、入力したフィードバック信号と乗算する。シグナルプロセッシング部155は、これらの乗算結果から、フィードバック信号の振幅と位相値を算出する。
シグナルプロセッシング部155は、次に、算出した振幅と振幅補正値との差が振幅基準値以内であるか否かを判定する(ステップS404)。振幅補正値は、出力されることが期待される正弦波信号の振幅を示すものである。
この判定結果が否定の場合、シグナルプロセッシング部155は、ステップS403による測定回数(フィードバック信号の測定回数)が所定回数以上であるか否かを判定する(ステップS405)。この判定結果が否定の場合、シグナルプロセッシング部155は、測定回数を1加算して、ステップS403を再実行する。
一方、ステップS405の判定結果が肯定の場合、シグナルプロセッシング部155は、測定したフィードバック信号の振幅の平均を算出し、平均値を振幅補正値として書き換える(ステップS406)。また、測定回数をクリアする。
ステップS404の判定結果が肯定の場合、又はステップS406の実行後、シグナルプロセッシング部155は、ステップS403にて算出した位相値と位相補正値との差が位相基準値以内であるか否かを判定する(ステップS407)。位相補正値は、出力されることが期待される正弦波信号の位相を示すものである。
この判定結果が肯定の場合、シグナルプロセッシング部155は、ステップS403による測定回数(フィードバック信号の測定回数)が所定回数以上であるか否かを判定する(ステップS408)。この判定結果が否定の場合、シグナルプロセッシング部155は、測定回数を1加算して、ステップS403を再実行する。
一方、ステップS408の判定結果が肯定の場合、シグナルプロセッシング部155は、測定したフィードバック信号の位相の平均を算出し、平均値を位相補正値として書き換える(ステップS409)。また、測定回数をクリアする。
次に、シグナルプロセッシング部155は、応答信号を2位相ロックイン検出により測定する(ステップS410)。この処理は、第2実施形態のステップS202,S205,S206等と同様であるので説明を省略する。
シグナルプロセッシング部155は、フィードバック信号及びローパスフィルタ159,161から入力された信号(実部及び虚部の比例値)に基づいて、複素インピーダンスの実部、虚部、絶対値、及び位相のうちすべて若しくはいずれかを算出する(ステップS411)。フィードバック信号は、振幅補正値及び位相補正値により定められ、実際に電池セル42から流れる電流(つまり、フィードバック信号)と参照信号に比例する値との振幅又は位相のずれを補正するために利用される。
その後、シグナルプロセッシング部155は、通信部54を介して、算出結果をECU60に出力する(ステップS412)。そして、算出処理を終了する。
以上のより、フィードバック信号を2位相ロックイン検出により測定するため、ノイズが存在する環境下にあっても、電池セル42から実際に出力される電流信号を精度よく測定することができる。そして、このフィードバック信号を複素インピーダンス算出時の補正に利用するため、複素インピーダンスの算出精度を向上させることができる。
・上記実施形態において、電池セル42から出力させる電流信号は、正弦波信号に限らない。例えば、交流信号であれば、矩形波や三角波等の信号であっても構わない。
・上記実施形態において、ECU60は、複数のECUにより構成されていてもよい。例えば、機能ごとに複数のECUを設けてもよく、また、制御対象ごとに複数のECUを設けてもよい。例えば、電池用ECUと、インバータ制御用ECUとに分けてもよい。
・上記実施形態において、ロックイン検出を行う場合、発振回路158が指示する正弦波信号を参照信号(第1の参照信号)としたが、検出信号(フィードバック信号)を参照信号としてもよい。また、2位相ロックイン検出を行う場合、検出信号(フィードバック信号)の位相をずらして第2の参照信号とすればよい。
・上記実施形態において、電池セル42(電池モジュール41、組電池40)は、指示に基づいて正弦波信号を出力している際に(応答信号の出力時)、周辺回路の電源として用いられてもよい。逆に、電池セル42(電池モジュール41、組電池40)は、指示に基づいて正弦波信号を出力している際に(応答信号の出力時)、周辺回路の電源として用いられないように構成してもよい。
・上記実施形態において、図17に示すように、第2電気経路82と第4電気経路84とを合流させて第6電気経路86とし、第6電気経路86を電源端子71に接続されてもよい。これにより、電源端子71に接続させる電気経路の数をより少なくすることができる。なお、応答信号と、直流電圧は、同時入力されることはないため、第2電気経路82と第4電気経路84とを合流させることが可能となっている。
・上記実施形態において、図18に示すように、各電気経路に沿って回路基板72から電源端子71側へ突出する突出部72aを設けてもよい。そして、複数の電池セル42に対してそれぞれ回路基板72を設ける場合、同一形状の回路基板72を設け、電気経路のみを変更することが望ましい。これにより、製造する際の手間を少なくすることができる。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
42…電池セル、50…電池監視装置、53…マイコン部、56…電流モジュレーション回路、57,57a,57b…直流電圧入力端子、58,58a,58b…応答信号入力端子、81…第1電気経路、82…第2電気経路、83…第3電気経路、84…第4電気経路。

Claims (8)

  1. 電解質と複数の電極とを含む蓄電池の状態を監視する電池監視装置(50)において、
    第1電気経路(81)と接続されており、前記第1電気経路を介して、前記蓄電池から駆動電力が供給される電源供給部(51a,51b)と、
    第2電気経路(82)と接続されており、前記第2電気経路を介して、前記蓄電池の端子間電圧を入力する電圧測定部(57a,57b)と、
    第3電気経路(83)と接続されており、前記第3電気経路を介して、所定の交流信号を出力させる信号制御部(56)と、
    第4電気経路(84)と接続されており、前記第4電気経路を介して、前記交流信号に対する前記蓄電池の応答信号を入力する応答信号入力部(58a,58b)と、
    前記応答信号に基づいて前記蓄電池の複素インピーダンスを算出する演算部(53,155,201)と、を備え、
    前記信号制御部は、監視対象である前記蓄電池を電源として、所定の交流信号を出力させるように構成されており、
    前記第1電気経路は、途中で前記第3電気経路に合流して第5電気経路となり、当該第5電気経路は、前記蓄電池に接続されている電池監視装置。
  2. 前記第2電気経路は、前記第1電気経路及び前記第3電気経路とは、別に設けられている請求項1に記載の電池監視装置。
  3. 前記第4電気経路は、前記第1電気経路及び前記第3電気経路とは、別に設けられている請求項1又は2に記載の電池監視装置。
  4. 前記蓄電池の電極は、電源端子に繋がっており、
    前記第4電気経路は、前記蓄電池の前記電源端子に接続されており、前記第4電気経路と前記電源端子との接続箇所は、他の電気経路と前記電源端子との接続箇所に比較して電極と前記電源端子との接続箇所最も近い部分である請求項1~のうちいずれか1項に記載の電池監視装置。
  5. 前記蓄電池の電極は、電源端子に繋がっており、
    前記蓄電池は、複数設けられ、前記各蓄電池の電源端子は、互いにバスバー(73)を介して接続されることにより、組電池が構成されており、
    前記第4電気経路は、前記バスバーを介さずに前記電源端子に対して直接接続されている請求項1~のうちいずれか1項に記載の電池監視装置。
  6. 前記第2電気経路は、途中で前記第4電気経路に合流して第6電気経路となり、当該第6電気経路は、前記蓄電池に接続されている請求項1~のうちいずれか1項に記載の電池監視装置。
  7. 前記蓄電池の電極は、電源端子に繋がっており、
    前記蓄電池は、複数設けられ、前記各蓄電池の電源端子は、互いにバスバー(73)を介して直列に接続されることにより、組電池が構成されており、
    前記電池監視装置は、前記組電池を構成する各蓄電池をそれぞれ監視するように、少なくとも前記電圧測定部と、前記信号制御部と、前記応答信号入力部と、を蓄電池ごとに備える一方、前記電源供給部は、前記組電池に対して1つ設けられおり、
    当該電源供給部の正極側端子に接続されている第1電気経路は、直列方向において前記組電池の正極側端部に位置する前記蓄電池の正極側電源端子に接続されている第3電気経路と合流するように構成されており、
    当該電源供給部の負極側端子に接続されている第1電気経路は、直列方向において前記組電池の負極側端部に位置する前記蓄電池の負極側電源端子に接続されている第3電気経路と合流するように構成されている請求項1~のうちいずれか1項に記載の電池監視装置。
  8. 前記蓄電池の電極は、電源端子に繋がっており、
    前記蓄電池は、複数設けられ、前記蓄電池のうち、第1の蓄電池の正極側電源端子と、前記第1の蓄電池に隣接する第2の蓄電池の負極側電源端子とが、バスバーにより直列に接続されている場合、当該第1の蓄電池に対応する信号制御部の正極側端子と接続されている第3電気経路と、当該第2の蓄電池に対応する信号制御部の負極側端子と接続されている第3電気経路は、途中で合流して、当該バスバーに接続されている請求項1~のうちいずれか1項に記載の電池監視装置。
JP2019133548A 2019-07-19 2019-07-19 電池監視装置 Active JP7259614B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019133548A JP7259614B2 (ja) 2019-07-19 2019-07-19 電池監視装置
US16/925,437 US11630156B2 (en) 2019-07-19 2020-07-10 Battery monitoring apparatus
DE102020118931.1A DE102020118931A1 (de) 2019-07-19 2020-07-17 Batterieüberwachungsvorrichtung
CN202010694235.0A CN112242730B (zh) 2019-07-19 2020-07-17 电池监视装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133548A JP7259614B2 (ja) 2019-07-19 2019-07-19 電池監視装置

Publications (2)

Publication Number Publication Date
JP2021018133A JP2021018133A (ja) 2021-02-15
JP7259614B2 true JP7259614B2 (ja) 2023-04-18

Family

ID=74093423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133548A Active JP7259614B2 (ja) 2019-07-19 2019-07-19 電池監視装置

Country Status (4)

Country Link
US (1) US11630156B2 (ja)
JP (1) JP7259614B2 (ja)
CN (1) CN112242730B (ja)
DE (1) DE102020118931A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564238B (zh) * 2018-06-28 2023-03-28 宁德时代新能源科技股份有限公司 电池组管理系统及其控制方法
JP7205410B2 (ja) * 2019-07-26 2023-01-17 株式会社デンソー 電池監視装置
KR102254776B1 (ko) * 2019-10-14 2021-05-24 주식회사 민테크 고정밀 임피던스 측정 장치
IL273496A (en) * 2020-03-22 2021-09-30 Irp Nexus Group Ltd A system and application for managing a battery array
DE102022121923A1 (de) 2022-08-30 2024-02-29 Cariad Se Erfassen einer elektrischen zellenspannung einer einzelnen batteriezelle einer reihenschaltung von batteriezellen
DE102022121920A1 (de) 2022-08-30 2024-02-29 Cariad Se Erfassen einer elektrischen Zellenspannung einer einzelnen Batteriezelle einer Reihenschaltung von Batteriezellen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018069A (ja) 2019-07-17 2021-02-15 株式会社デンソー 電池監視装置
JP7172838B2 (ja) 2019-04-26 2022-11-16 株式会社デンソー 電池監視装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339252B2 (ja) * 1995-06-14 2002-10-28 松下電器産業株式会社 組電池の監視装置
US5945803A (en) * 1998-06-09 1999-08-31 Black & Decker Inc. Apparatus for determining battery pack temperature and identity
JP4241714B2 (ja) * 2005-11-17 2009-03-18 パナソニック電工株式会社 電動工具用の電池パック
JP5181765B2 (ja) * 2008-03-25 2013-04-10 マツダ株式会社 バッテリ監視装置及びその監視装置を用いたバッテリ制御装置
JP5471079B2 (ja) * 2009-06-30 2014-04-16 株式会社豊田中央研究所 電力制御装置
FR2976738B1 (fr) * 2011-06-14 2013-07-19 Commissariat Energie Atomique Systeme de batteries d'accumulateurs a supervision simplifiee
JP5717599B2 (ja) * 2011-09-29 2015-05-13 株式会社東芝 蓄電池装置及び蓄電池装置の点検保守方法
KR101539693B1 (ko) * 2012-10-04 2015-07-27 주식회사 엘지화학 멀티 bms 기동 장치
JP6226261B2 (ja) 2012-12-27 2017-11-08 学校法人早稲田大学 電気化学システム
JP6056581B2 (ja) * 2013-03-20 2017-01-11 株式会社デンソー 組電池の異常検出装置
DE102013012615A1 (de) * 2013-07-24 2015-01-29 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Schaltungsmodul zum Trennen von Teilnetzen eines Mehrspannungsbordnetzes
JP2015042013A (ja) * 2013-08-20 2015-03-02 株式会社デンソー 充電装置
JP2015198541A (ja) * 2014-04-02 2015-11-09 株式会社日本自動車部品総合研究所 電力変換装置
JP2016127656A (ja) * 2014-12-26 2016-07-11 ムネカタ株式会社 環境発電素子で発生した電力を蓄電する蓄電装置
EP3270171B1 (en) * 2015-03-11 2022-07-20 Hitachi Astemo, Ltd. Battery managing device, battery monitoring circuit, control system
JP6665757B2 (ja) * 2016-11-08 2020-03-13 株式会社デンソー 電源制御装置、及び電池ユニット
JP7039869B2 (ja) * 2017-07-06 2022-03-23 富士通株式会社 制御回路、センサデバイス及び電池残量測定方法
JP6806002B2 (ja) 2017-08-24 2020-12-23 トヨタ自動車株式会社 温度推定装置
DE102019103144B4 (de) * 2019-02-08 2020-10-15 Infineon Technologies Ag Einrichtung und Verfahren zur Überwachung der Zuverlässigkeit einer Zellenimpedanzmessung einer Batteriezelle
JP7226147B2 (ja) * 2019-07-04 2023-02-21 株式会社デンソー 電池監視装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172838B2 (ja) 2019-04-26 2022-11-16 株式会社デンソー 電池監視装置
JP2021018069A (ja) 2019-07-17 2021-02-15 株式会社デンソー 電池監視装置

Also Published As

Publication number Publication date
CN112242730A (zh) 2021-01-19
DE102020118931A1 (de) 2021-01-21
US11630156B2 (en) 2023-04-18
JP2021018133A (ja) 2021-02-15
US20210018567A1 (en) 2021-01-21
CN112242730B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
JP7259614B2 (ja) 電池監視装置
JP7172838B2 (ja) 電池監視装置
JP7205410B2 (ja) 電池監視装置
JP7226147B2 (ja) 電池監視装置
US9132733B2 (en) Insulation failure diagnosis apparatus and method of diagnosing insulation failure
WO2021149774A1 (ja) 電池測定装置
JP7552776B2 (ja) 電池監視装置
JP2021117221A (ja) 電池測定装置
JP7111075B2 (ja) 電池監視装置
JP7192697B2 (ja) 電池監視装置
WO2021085347A1 (ja) 電池監視装置
WO2023276577A1 (ja) 電池測定装置及び電池測定方法
JP7517256B2 (ja) 電池測定装置及び電池状態測定方法
WO2020003850A1 (ja) 集積回路、電池監視装置、及び、電池監視システム
WO2023276546A1 (ja) 電池測定装置及び電池測定方法
JP2022007515A (ja) 電池診断システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7259614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151