WO2021085347A1 - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
WO2021085347A1
WO2021085347A1 PCT/JP2020/040005 JP2020040005W WO2021085347A1 WO 2021085347 A1 WO2021085347 A1 WO 2021085347A1 JP 2020040005 W JP2020040005 W JP 2020040005W WO 2021085347 A1 WO2021085347 A1 WO 2021085347A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
alternating current
phase
amplitude
Prior art date
Application number
PCT/JP2020/040005
Other languages
English (en)
French (fr)
Inventor
溝口 朝道
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080076684.7A priority Critical patent/CN114616478A/zh
Publication of WO2021085347A1 publication Critical patent/WO2021085347A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery monitoring device.
  • Patent Document 2 a sinusoidal current (alternating current) is passed from an oscillator to a storage battery, the response signal (voltage fluctuation) is detected by a lock-in amplifier, and the complex impedance characteristic is calculated based on the detection result. It was. Then, based on this complex impedance characteristic, the deterioration state of the storage battery and the like were determined.
  • the response signal generated from the storage battery may become noise. That is, when the response signal propagates as external noise, radio noise may occur. Then, noise may cause other devices to malfunction.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a battery monitoring device capable of suppressing noise.
  • the means for solving the above problems is applied to an assembled battery in which a plurality of battery cells including an electrolyte and a plurality of electrodes are connected in series, and in a battery monitoring device that monitors the state of each battery cell, the above-mentioned means.
  • a current generator that causes an AC current to flow through each battery cell
  • a voltage acquisition unit that acquires the voltage fluctuation of each battery cell when the AC current flows, an AC current that flows through each battery cell, and the above.
  • each of the battery cells is provided with a current control unit that specifies the amplitude and phase of the AC current, and the current control unit is such that the total value of the voltage fluctuations of the battery cells is equal to or less than the threshold value.
  • the current control unit Based on the impedance and phase difference of each battery cell calculated by the calculation unit, at least one of the amplitude and phase of the AC current to be passed for each battery cell is specified, and the specified AC current of the specified AC current is specified. At least one of the amplitude and the phase is specified for each battery cell.
  • the amplitude of the alternating current to be passed for each battery cell based on the impedance and phase difference of each battery cell calculated by the calculation unit so that the total value of the voltage fluctuation of each battery cell is equal to or less than the threshold value. And at least one of the phases is specified. Therefore, it is possible to suppress the voltage fluctuation in the entire assembled battery and suppress the noise without providing a circuit for suppressing noise such as a filter.
  • FIG. 1 is a schematic configuration diagram of a power supply system.
  • FIG. 2 is a configuration diagram of the battery monitoring device.
  • FIG. 3 is a configuration diagram of the impedance detection unit.
  • FIG. 4 is a vector diagram showing conventional AC current and voltage fluctuation.
  • FIG. 5 is a vector diagram showing alternating current and voltage fluctuation.
  • FIG. 6 is a flowchart showing the flow of impedance detection processing.
  • FIG. 7 is a vector diagram showing alternating current and voltage fluctuation in the second embodiment.
  • FIG. 8 is a vector diagram showing alternating current and voltage fluctuation in the third embodiment.
  • FIG. 1 is a schematic configuration diagram of a power supply system.
  • FIG. 2 is a configuration diagram of the battery monitoring device.
  • FIG. 3 is a configuration diagram of the impedance detection unit.
  • FIG. 4 is a vector diagram showing conventional AC current and voltage fluctuation.
  • FIG. 5 is a vector diagram showing alternating current and voltage fluctuation.
  • FIG. 6 is a flow
  • FIG. 9 is a flowchart showing the flow of the designated value setting process in the third embodiment.
  • FIG. 10 is a vector diagram showing alternating current and voltage fluctuation in the fourth embodiment.
  • FIG. 11 is a diagram showing voltage fluctuations in the fourth embodiment.
  • FIG. 12 is a flowchart showing the flow of the designated value setting process in the fourth embodiment.
  • FIG. 13 is a vector diagram showing alternating current and voltage fluctuation in the fifth embodiment.
  • FIG. 14 is a diagram showing voltage fluctuations in the fifth embodiment.
  • FIG. 15 is a flowchart showing the flow of impedance detection processing according to the fifth embodiment.
  • the power supply system 10 includes a motor 20 as a rotary electric machine, an inverter 30 as a power converter for passing a three-phase current to the motor 20, a rechargeable battery 40, and a battery. It includes a battery monitoring device 50 that monitors the state of 40, and an ECU 100 that controls a motor 20 and the like.
  • the motor 20 is capable of transmitting power to a drive wheel (not shown).
  • a three-phase permanent magnet synchronous motor is used as the motor 20.
  • the inverter 30 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and in each phase winding by turning on / off a switch (semiconductor switching element such as an IGBT) provided in each arm. The energizing current is adjusted.
  • the inverter 30 is provided with an inverter control device (not shown), and the inverter control device controls energization by turning on / off each switch in the inverter 30 based on various detection information in the motor 20 and demands for power running drive and power generation. To carry out. As a result, the inverter control device supplies electric power from the assembled battery 40 to the motor 20 via the inverter 30 to drive the motor 20 by power running. Further, the inverter control device generates electricity based on the power from the drive wheels, converts the generated electric power through the inverter 30, and supplies the generated electric power to the assembled battery 40 to charge the assembled battery 40.
  • the assembled battery 40 is electrically connected to the motor 20 via the inverter 30.
  • the assembled battery 40 has a terminal-to-terminal voltage of, for example, 100 V or more, and is configured by connecting a plurality of battery modules 41 in series.
  • the battery module 41 is configured by connecting a plurality of battery cells 42 in series.
  • the battery cell 42 for example, a lithium ion storage battery or a nickel hydrogen storage battery can be used.
  • Each battery cell 42 is a storage battery having an electrolyte and a plurality of electrodes.
  • the battery module 41 is configured by connecting six battery cells 42 in series.
  • the positive electrode side terminal of the electric load such as the inverter 30 is connected to the positive electrode side power supply path L1 connected to the positive electrode side power supply terminal of the assembled battery 40.
  • the negative electrode side terminal of the electric load such as the inverter 30 is connected to the negative electrode side power supply path L2 connected to the negative electrode side power supply terminal of the assembled battery 40.
  • a relay switch SMR (system main relay switch) is provided in each of the positive electrode side power supply path L1 and the negative electrode side power supply path L2, and the relay switch SMR can switch between energization and energization cutoff.
  • the battery monitoring device 50 is a device that monitors the storage state (SOC), deterioration state (SOH), and the like of each battery cell 42.
  • the battery monitoring device 50 is connected to the ECU 100 and outputs the state of each battery cell 42 and the like. The configuration of the battery monitoring device 50 will be described later.
  • the ECU 100 requests power running drive and power generation from the inverter control device based on various information.
  • the various information includes, for example, accelerator and brake operation information, vehicle speed, and the state of the assembled battery 40.
  • the battery monitoring device 50 is provided with an impedance detection unit 60 for each battery cell 42. Further, the battery monitoring device 50 is provided with a control device 90 as a current control unit that inputs information on each battery cell 42 from each impedance detection unit 60 and gives instructions to each impedance detection unit 60.
  • the impedance detection unit 60 includes an arithmetic unit 61 as an arithmetic unit, a current generation unit, and a lock-in amplifier 62 as a voltage acquisition unit.
  • the arithmetic unit 61 has a function of giving an instruction to the lock-in amplifier 62 according to an instruction from the control device 90 and acquiring various information of the battery cell 42 to be monitored via the lock-in amplifier 62. Further, the arithmetic unit 61 has a function of performing an arithmetic operation based on various acquired information, a function of outputting the arithmetic operation result to the control device 90, and the like. The detailed configuration of the arithmetic unit 61 will be described later.
  • the lock-in amplifier 62 includes an oscillation circuit 71, a DA converter 72, an AD converter 73, a current modulation circuit 74, a differential amplifier circuit 75, an AD converter 76, a phase shift circuit 77, a first multiplier 78, and a first integrator.
  • a device 79, a first filter 80, a second multiplier 81, a second integrator 82, and a second filter 83 are provided.
  • the oscillation circuit 71 is a circuit that is connected to the arithmetic unit 61 and outputs a sine wave signal set according to an instruction from the arithmetic unit 61.
  • the oscillation circuit 71 is connected to the first multiplier 78 and the phase shift circuit 77, and outputs a sinusoidal signal to the first multiplier 78 and the phase shift circuit 77 as a first reference signal. Further, the oscillation circuit 71 is connected to the current modulation circuit 74 via the DA converter 72, and outputs a sine wave signal to the current modulation circuit 74 as an instruction signal.
  • the current modulation circuit 74 is a circuit that flows (outputs) a predetermined alternating current (sine wave signal) using the battery cell 42 to be monitored as a power source.
  • the current modulation circuit 74 has a semiconductor switch element 74a (for example, MOSFET) and a resistor 74b connected in series with the semiconductor switch element 74a.
  • the drain terminal of the semiconductor switch element 74a is connected to the positive electrode terminal of the battery cell 42, and the source terminal of the semiconductor switch element 74a is connected in series with one end of the resistor 74b.
  • the other end of the resistor 74b is connected to the negative electrode terminal of the battery cell 42.
  • the semiconductor switch element 74a is configured so that the amount of energization can be adjusted between the drain terminal and the source terminal.
  • the current modulation circuit 74 is provided with a current detection amplifier 74c connected to both ends of the resistor 74b.
  • the current detection amplifier 74c is configured to detect the current flowing through the resistor 74b and output it as a feedback signal. This feedback signal is converted into a digital signal (feedback signal If) via the AD converter 73 and output to the arithmetic unit 61.
  • the current modulation circuit 74 is provided with a feedback circuit 74d.
  • the feedback circuit 74d is configured to input an instruction signal from the oscillation circuit 71 via the DA converter 72 and to input a feedback signal from the current detection amplifier 74c. Then, the instruction signal and the feedback signal are compared, and the result is output to the gate terminal of the semiconductor switch element 74a.
  • the semiconductor switch element 74a adjusts the voltage applied between the gate and the source so that the alternating current (sine wave signal) indicated by the instruction signal is output from the battery cell 42 based on the signal from the feedback circuit 74d. To adjust the amount of current between the drain and source. When an error occurs between the waveform indicated by the instruction signal and the current waveform actually flowing through the resistor 74b, the semiconductor switch element 74a corrects the error based on the signal from the feedback circuit 74d. Adjust the amount of current so that it is done. As a result, the alternating current (sine wave signal) flowing through the resistor 74b (that is, the battery cell 42) is stabilized.
  • the differential amplifier circuit 75 is connected to the battery cell 42 to be monitored.
  • the differential amplifier circuit 75 has a function of inputting, amplifying, and outputting a voltage fluctuation reflecting the internal complex impedance information of the battery cell 42 between the terminals of the battery cell 42 when an alternating current flows through the battery cell 42.
  • the differential amplifier circuit 75 is connected to the AD converter 76, and the input voltage fluctuation (response signal) is output to the first multiplier 78 and the second multiplier 81, respectively, via the AD converter 76. It is configured to do.
  • the first multiplier 78 multiplies the first reference signal input from the oscillation circuit 71 with the voltage fluctuation (response signal) and outputs it to the first integrator 79.
  • the first integrator 79 averages the values input from the first multiplier 78 and outputs them to the arithmetic unit 61 via the first filter 80, which is a low-pass filter.
  • the value output from the first filter 80 to the arithmetic unit 61 is a value corresponding to the actual part of the voltage fluctuation.
  • the second multiplier 81 is connected to the oscillation circuit 71 via the phase shift circuit 77, and a second reference signal is input.
  • the second reference signal is a signal obtained by advancing the phase of the first reference signal by 90 degrees ( ⁇ / 2).
  • the phase shift circuit 77 advances the phase of the sine wave signal (first reference signal) input from the oscillation circuit 71, and outputs it as a second reference signal.
  • the second multiplier 81 multiplies the second reference signal by the voltage fluctuation (response signal) and outputs it to the second integrator 82.
  • the second integrator 82 averages the values input from the second multiplier 81 and outputs them to the arithmetic unit 61 via the second filter 83, which is a low-pass filter.
  • the value input to the arithmetic unit 61 via the second filter 83 is a value corresponding to the imaginary portion of the voltage fluctuation.
  • the arithmetic unit 61 is a microcomputer or the like composed of a CPU, a memory (RAM, ROM), and the like, and is configured to be able to execute various arithmetic processes. For example, the arithmetic unit 61 acquires Re_Vi and Im_Vi from the filters 80 and 83, and based on their values and the amplitude Is of the alternating current, the impedance Zi (more specifically, more specifically, according to the equations (11) to (13)). Absolute value
  • the arithmetic unit 61 outputs the calculated impedance Zi and the phase difference ⁇ i to the control device 90.
  • the control device 90 stores these. Further, the control device 90 scans the frequency of the alternating current output from the battery cell 42 (measurement frequency fs) within a predetermined measurement range, so that the impedance Zi and the phase difference ⁇ i (frequency characteristics of complex impedance) at a plurality of frequencies are scanned. ) Is obtained. Then, the control device 90 creates a call-call plot based on the calculation results thereof, and grasps the characteristics of the electrodes, the electrolyte, and the like.
  • the storage state (SOC) and deterioration state (SOH) are grasped, and the result is output to the ECU 100.
  • the arithmetic unit 61 is configured to be able to acquire the voltage between terminals (DC voltage) of the battery cell 42.
  • the impedance Zi of the battery cell 42 is calculated based on the voltage fluctuation of the battery cell 42.
  • the voltage fluctuation of each battery cell 42 is a weak fluctuation individually.
  • the assembled battery 40 is configured by connecting a plurality of battery cells 42 in series. Therefore, voltage fluctuations are superimposed, resulting in large voltage fluctuations, which may cause noise.
  • the voltage fluctuation of the battery cell 42 when an alternating current flows may be referred to as a voltage fluctuation Vi.
  • the voltage fluctuation Vi is represented by a vector.
  • FIG. 4 for the sake of brevity, the case where the battery cells 42 constituting the assembled battery 40 are two, the first battery cell 42a and the second battery cell 42b, will be described. Further, the deterioration state and the storage state of the first battery cell 42a and the second battery cell 42b will be described as being different. Further, in FIG. 4, it is assumed that the same alternating current is output from the first battery cell 42a and the second battery cell 42b.
  • the amplitude specified values Is1 and Is2 of the alternating current output from the first battery cell 42a and the second battery cell 42b are both set to "Ia”.
  • the phases of the alternating currents output from the first battery cell 42a and the second battery cell 42b are both set to zero (reference).
  • the battery states are different, so that the voltage fluctuation V1 of the first battery cell 42a and the second battery cell 42b
  • the amplitude (magnitude) is different from that of the voltage fluctuation V2 of. That is, since the impedances Z1 and Z2 of the first battery cell 42a and the second battery cell 42b are different, the magnitudes of the voltage fluctuations V1 and V2 proportional to the impedances Z1 and Z2 are also different.
  • phase difference ⁇ 1 of the voltage fluctuation V1 of the first battery cell 42a with respect to the alternating current and the phase difference ⁇ 2 of the voltage fluctuation V2 of the second battery cell 42b with respect to the alternating current are different in magnitude.
  • the total Vt (total of vector values) of the voltage fluctuation V1 and the voltage fluctuation V2 does not become zero, and in some cases, becomes larger than the respective voltage fluctuations V1 and V2. Therefore, if alternating current is output from each battery cell 42 at the same time, large noise may be generated from the assembled battery 40.
  • the control device 90 is based on the calculated impedance Zi and phase difference ⁇ i of each battery cell 42 so that the total value of the voltage fluctuation Vi of each battery cell 42 is equal to or less than the threshold value.
  • the amplitude specified value Isi and the phase specified value ⁇ si of the alternating current to be passed through each battery cell 42 are specified (calculated). Then, the control device 90 specifies the specified amplitude designation value Isi and the phase designation value ⁇ si for each battery cell 42.
  • the control device 90 specifies the specified values (amplitude specified value Isi and phase specified value ⁇ si) will be described.
  • the battery cells 42 constituting the assembled battery 40 are divided into one or a plurality of groups. At that time, each group should include at least two or more battery cells 42. In addition, it may be grouped in advance.
  • control device 90 cancels each other's voltage fluctuation Vis of each battery cell 42 included in each group, and the amplitude specified value Isi of the alternating current to be output from each battery cell 42 so that the total value becomes close to zero. And the phase designation value ⁇ si is determined.
  • the amplitude specified value Isi of the alternating current is determined based on the impedance Zi of each battery cell 42 so that the amplitudes of the voltage fluctuation Vis of the battery cells 42 included in the group are all the same. That is, the impedance Zi is in a proportional relationship with the voltage fluctuation Vi. Therefore, when one of the battery cells 42 included in the group is used as a reference and the specified value Isi of the amplitude of the alternating current output from the reference battery cell 42 is set to "Ia", the impedance Za of the reference battery cell 42 is used.
  • the inverse ratio of the impedance Zb of the target battery cell 42 is taken, that is, if Ia ⁇ (Za / Zb) is calculated, the specified value Ib of the amplitude of the alternating current to be output from the target battery cell 42 is calculated. Can be identified.
  • phase shift of each voltage fluctuation Vi in each battery cell 42 in the group is the same.
  • the phase designation value ⁇ si is determined so as to be (equally spaced). That is, as described above, the phase difference ⁇ i indicates the phase difference between the voltage fluctuation Vi and the alternating current. Therefore, 360 ° is divided by the number of battery cells 42 included in the group, and the phase designation value ⁇ si is determined so that the phase of each voltage fluctuation Vi is shifted by the calculated value.
  • the target battery cell 42 is set in consideration of the phase difference ⁇ a of the voltage fluctuation Va in the reference battery cell 42, the phase difference ⁇ b of the voltage fluctuation Vb in the target battery cell 42, and the calculated phase shift.
  • the phase specification value ⁇ sb of the alternating current to be output is determined.
  • the above-mentioned determination mode will be specifically described with reference to FIG.
  • the impedance of the first battery cell 42a calculated last time (that is, the latest) is set to "Z1", and the phase difference ⁇ i is set to " ⁇ 1".
  • the impedance of the second battery cell 42b calculated last time (that is, the latest) is set to "Z2”, and the phase difference ⁇ i is set to " ⁇ 2".
  • the amplitude designated value Isi of the alternating current output from the first battery cell 42a is set to "Is1", and the phase designated value ⁇ si is set to " ⁇ s1".
  • the amplitude designated value Isi of the alternating current output from the second battery cell 42b is set to "Is2”, and the phase designated value ⁇ si is set to " ⁇ s2”.
  • the voltage fluctuation Vi, the alternating current, and the impedance Zi are represented by vectors on the complex plane with reference to the alternating current flowing through the first battery cell 42a.
  • the amplitude of the alternating current to be output from the second battery cell 42b according to the following equation (14).
  • the specified value Is2 can be specified.
  • the voltage fluctuation V1 and the voltage fluctuation V2 Must be 180 ° out of phase. That is, it is necessary that the phases of the voltage fluctuations V1 and V2 are out of phase by the value specified by dividing 360 ° by the number of battery cells “2”.
  • the phase designation value ⁇ s2 of the alternating current to be output from the second battery cell 42b can be specified by the following equation (15).
  • the phase designation value ⁇ s1 of the alternating current output from the first battery cell 42a is set to “0”.
  • the impedance detection process is configured to be executed at a predetermined timing (for example, when the system is started).
  • the battery module 41 to be monitored by the battery monitoring device 50 is assumed to be composed of six battery cells 42, and will be referred to as the first battery cell 42a to the sixth battery cell 42f below. In some cases. Then, the first battery cell 42a to the sixth battery cell 42f are divided into three groups G1, G2, and G3.
  • the group G1 includes the first battery cell 42a and the second battery cell 42b
  • the group G2 includes the first battery cell 42a and the second battery cell 42b.
  • the third battery cell 42c and the fourth battery cell 42d are included
  • the group G3 includes the fifth battery cell 42e and the sixth battery cell 42f.
  • the amplitude specified values Isi of the alternating current output from the first battery cells 42a to the sixth battery cells 42f may be indicated as the amplitude specified values Is1 to Is6, respectively, and the phase specified values ⁇ si may be indicated as the phase specified values ⁇ s1 to ⁇ s6, respectively. is there.
  • the impedances Zi of the first battery cells 42a to the sixth battery cells 42f may be indicated as impedances Z1 to Z6, respectively, and the phase difference ⁇ i may be indicated as the phase differences ⁇ 1 to ⁇ 6, respectively.
  • the control device 90 sets initial values as the amplitude specified value Isi and the phase specified value ⁇ si of the alternating current output from each battery cell 42 (step S101).
  • the initial value may be any value, but it is preferable that the initial value is set so that the possibility of noise suppression is high.
  • a designated value is set as an initial value so that an alternating current having the same amplitude and opposite phase is output from the paired battery cells 42 in the groups G1 to G3.
  • the same value "Ic” is set as the initial value of the amplitude specified values Is1 to Is6 of the alternating current output from the first battery cell 42a to the sixth battery cell 42f.
  • “Ic” is an arbitrary value.
  • 0 ° is set as the initial value of the phase designation values ⁇ s1, ⁇ s3, and ⁇ s5 of the alternating current output from the first battery cell 42a, the third battery cell 42c, and the fifth battery cell 42e, respectively.
  • 180 ° is set as the initial value of the phase designation values ⁇ s2, ⁇ s4, and ⁇ s6 of the alternating current output from the second battery cell 42b, the fourth battery cell 42d, and the sixth battery cell 42f, respectively.
  • control device 90 sets an initial value as the frequency of the alternating current (measurement frequency fs) (step S102).
  • the measurement frequency fs is configured to be determined from within a predetermined measurement range, and the initial value in the present embodiment is the smallest value in the measurement range.
  • control device 90 outputs (instructs) the amplitude specified values Is1 to Is6, the phase specified values ⁇ s1 to ⁇ s6, and the measurement frequency fs to the impedance detection units 60 of the first battery cells 42a to the sixth battery cells 42f, respectively. ), And instructed to detect the impedance (step S103).
  • the control device 90 sets the initial values set in step S101 as the amplitude specified values Is1 to Is6 and the phase specified values ⁇ s1 to ⁇ s6, respectively. Output. Similarly, when the impedance detection process is started and the first step S103 is executed, the control device 90 outputs the initial value set in step S102 as the measurement frequency fs.
  • the control device 90 when the second and subsequent steps S103 are executed, the control device 90 outputs the values set in step S105, which will be described later, as the amplitude specified values Is1 to Is6 and the phase specified values ⁇ s1 to ⁇ s6, respectively. Similarly, when the second and subsequent steps S103 are executed, the control device 90 outputs the values set in step S107, which will be described later, as the measurement frequency fs.
  • the impedance detection units 60 When the amplitude specified values Is1 to Is6, the phase specified values ⁇ s1 to ⁇ s6, and the measurement frequency fs are output, the impedance detection units 60 each output the first battery cell 42a to the sixth battery cell 42f based on the specified values. Outputs alternating current from.
  • each impedance detection unit 60 inputs the voltage fluctuations V1 to V6 of the first battery cells 42a to the sixth battery cells 42f based on the alternating current, respectively, and as described above based on the voltage fluctuations V1 to V6, the impedance Z1 ⁇ Z6 and the phase differences ⁇ 1 to ⁇ 6 are calculated and output to the control device 90.
  • the control device 90 inputs (acquires) the calculation results (impedance Z1 to Z6 and phase difference ⁇ 1 to ⁇ 6) (step S104). After that, the control device 90 proceeds to step S105 to execute the designated value setting process. That is, the control device 90 is based on the calculated impedances Z1 to Z6 and the phase difference ⁇ 1 to ⁇ 6 of the battery cells 42 so that the total value of the voltage fluctuations V1 to V6 of the battery cells 42 is equal to or less than the threshold value.
  • the amplitude designated values Is1 to Is6 and the phase designated values ⁇ s1 to ⁇ s6 of the alternating current to be passed through each battery cell 42 are specified (calculated) (step S105).
  • the amplitude specified value Is and the phase specified value ⁇ s are specified based on the following mathematical formulas (16) to (27).
  • "Id” is an arbitrary value, and may be the same value as the initial value or may be different.
  • Is1 Id ... (16)
  • Is2 Is1 ⁇ Z1 / Z2 ... (17)
  • Is3 Id ... (18)
  • Is4 Is3 ⁇ Z3 / Z4 ... (19)
  • Is5 Id ... (20)
  • ⁇ s2 ⁇ 1 + 180 ° - ⁇ 2 ... (23)
  • ⁇ s3 0 ° ...
  • ⁇ s4 ⁇ 3 + 180 ° - ⁇ 4 ...
  • ⁇ s5 0 ° ... (26)
  • ⁇ s6 ⁇ 5 + 180 ° - ⁇ 6 ...
  • the amplitude specified values Is1 to Is6 and the phase specified values ⁇ s1 to ⁇ s6 set in step S105 are output in the next step S103 when the impedance detection process is not completed. Then, the control device 90 determines whether or not all the frequencies within the measurement range have been scanned as the measurement frequency fs (step S106). Specifically, by determining whether or not the measurement frequency fs matches the maximum value of the measurement range, it is determined whether or not all the frequencies within the measurement range have been scanned.
  • step S106 the control device 90 updates the measurement frequency fs (step S107) and executes the process of step S103 again.
  • the update method is arbitrary, but for example, a predetermined value may be added to the measurement frequency fs to set a new measurement frequency fs. If the predetermined value to be added is large, the impedance or the like may change significantly. Therefore, it is desirable that the change width of the measurement frequency fs is as small as possible.
  • the battery monitoring device 50 of the first embodiment has the following effects.
  • the first battery cell 42a included in the group G1 is used as a reference, and the amplitude specified value Isi of the alternating current output from the reference first battery cell 42a is set as "Id". Then, the inverse number of the impedance Z1 of the reference first battery cell 42a and the impedance Z2 of the second battery cell 42b included in the group G1 so that the amplitudes of the voltage fluctuations V1 and V2 of the battery cells 42 are the same. By taking the ratio, the amplitude specified value Is2 of the alternating current to be output from the second battery cell 42b was specified.
  • step S105 based on the impedances Z1 to Z6 of each battery cell 42 acquired in the previous step S104 (that is, the latest), in step S105, the first battery is described by the mathematical formulas (16) and (17).
  • the specified amplitude value Is1 of the cell 42a and the specified amplitude Is2 of the second battery cell 42b were specified.
  • the other groups G2 and G3 were also specified in the same manner.
  • phase designation values ⁇ s1 and ⁇ s2 were determined so that the phase shifts of the voltage fluctuations V1 and V2 in the first battery cell 42a and the second battery cell 42b in the group G1 were the same (equally spaced). Specifically, based on the (that is, the latest) phase difference ⁇ 1 to ⁇ 6 input in the previous step S104, the phase of the first battery cell 42a is calculated by the mathematical formulas (22) and (23) in the step S105. The designated value ⁇ s1 and the phase designated value ⁇ s2 of the second battery cell 42b were specified. The other groups G2 and G3 were also specified in the same manner.
  • the same value "Ic" was set as the initial value of the amplitude specified values Is1 to Is6 of the alternating current output from the first battery cells 42a to the sixth battery cells 42f.
  • the phase designation values ⁇ s1 and ⁇ s2 are set so that the alternating current output from the first battery cell 42a and the alternating current output from the second battery cell 42b paired with the first battery cell 42a are in opposite phases.
  • the initial value was set.
  • the other initial values of the phase designation values ⁇ s3 to ⁇ s6 were also set in the same manner. As a result, it is possible to suppress the generation of noise as much as possible even in a situation where the impedance Zi and the phase difference ⁇ i are not detected.
  • the measurement frequency fs was updated to increase by a predetermined value. This makes it possible to suppress noise as compared with the case where the measurement frequency fs is randomly determined within the measurement range.
  • the number of battery cells 42 included in the group is two, but it may be three.
  • the second embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment.
  • the same configurations as those described in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the determination mode in the second embodiment will be specifically described with reference to FIG. 7.
  • the first battery cell 42a to the sixth battery cell 42f are divided into two groups G1 and G2, and the group G1 includes the first battery cell 42a, the second battery cell 42b, and the third battery cell 42b. It will be described as assuming that the battery cell 42c is included.
  • the group G2 will be described as including the fourth battery cell 42d, the fifth battery cell 42e, and the sixth battery cell 42f. Since the determination mode in the group G2 is the same as that in the group G1, the determination mode in the group G1 will be mainly described, and the determination mode in the group G2 will be omitted.
  • the impedances Zi of the first battery cells 42a to the third battery cells 42c acquired (input) in the previous step S104 are set to “Z1” to “Z3”, respectively.
  • the phase difference ⁇ i acquired (input) in the previous step S104 is set to “ ⁇ 1” to “ ⁇ 3”, respectively.
  • the voltage fluctuation Vi, the alternating current, and the impedance Zi are represented by vectors on the complex plane with reference to the alternating current output from the first battery cell 42a.
  • Is1 Id ... (30)
  • Is2 Is1 ⁇ Z1 / Z2 ... (31)
  • Is3 Is1 ⁇ Z1 / Z3 ... (32)
  • the phase designation value ⁇ s2 of the alternating current to be output from the second battery cell 42b is specified by the following equations (33) and (34). be able to.
  • the phase designation value ⁇ s3 of the alternating current to be output from the third battery cell 42c can be specified by the following equations (34) and (35).
  • the equalization processing of each battery cell 42 is simultaneously executed by changing the amplitude of the alternating current output from each battery cell 42 according to the state of each battery cell 42. ing.
  • the equalization process is a process of discharging a part of the battery cells 42 having a higher electricity storage state as compared with the other battery cells 42 so that the electricity storage states of the battery cells 42 are aligned.
  • the first battery cell 42a to the sixth battery cell 42f are divided into two groups G1 and G2, and the group G1 includes the first battery cell 42a, the second battery cell 42b, and the third battery cell. It will be described assuming that 42c is included. Then, the group G2 will be described as including the fourth battery cell 42d, the fifth battery cell 42e, and the sixth battery cell 42f. Since the determination mode in the group G2 is the same as that in the group G1, the determination mode in the group G1 will be mainly described, and the determination mode in the group G2 will be omitted. Further, the control device 90 of the third embodiment is configured to be able to acquire the electricity storage state of the battery cell 42, and functions as a state detection unit.
  • the impedances Zi of the first battery cells 42a to the third battery cells 42c acquired (input) in the previous step S104 are set to “Z1” to “Z3”, respectively, and the phase difference ⁇ i Are " ⁇ 1" to " ⁇ 3", respectively.
  • the voltage fluctuation Vi, the alternating current, and the impedance Zi are represented by vectors in FIG. 8 with reference to the alternating current output from the first battery cell 42a.
  • FIG. 9 shows the designated value setting process in step S105 in the third embodiment.
  • the control device 90 determines whether or not equalization processing is required for each of the groups G1 and G2 (step S301). For example, when the storage state of any of the battery cells 42 in the groups G1 and G2 is equal to or higher than a predetermined value, it is determined that equalization processing is necessary.
  • control device 90 determines the amplitude designation values Is1 to Is6 so that the voltage fluctuations Vi are equal, and the phase is shifted by a predetermined angle, as in the second embodiment.
  • the phase designation values ⁇ s1 to ⁇ s6 are determined (step S302).
  • step S301 determines whether the determination result in step S301 is affirmative. That is, the battery cells 42 to be discharged are specified in the groups G1 and G2.
  • control device 90 determines that the amplitude specified values Is1 to Is6 of the alternating current output from the battery cell 42 having the highest storage state are made larger than those of the other battery cells 42 (step S304).
  • the amplitude designation values Is1 to Is3 are determined by the following formulas (41) to (43). ..
  • "Id" is an arbitrary number.
  • Z1 / Z2 and Z1 / Z3 do not become 2 or more. Therefore, the amplitude specified value Is1 becomes larger than the other amplitude specified values Is2 and Is3.
  • Is1 2 ⁇ Id ... (41)
  • Is2 Id ⁇ Z1 / Z2 ...
  • Is3 Id ⁇ Z1 / Z3 ... (43)
  • the case where the first battery cell 42a is specified as the battery cell 42 to be discharged has been illustrated, but the same applies to the case where the second battery cell 42b and the third battery cell 42c are discharged. Further, in the group G2 as well, the amplitude specified value Isi is determined in the same manner.
  • the control device 90 sets the amplitude specified values Is1 to Is6 determined in step S303 and the impedance Z1 acquired in the previous step S104 so that the total value of the voltage fluctuation Vi of each battery cell 42 becomes equal to or less than the threshold value.
  • the phase designation values ⁇ s1 to ⁇ s6 are calculated based on Z6 and the phase differences ⁇ 1 to ⁇ 6 (step S305). That is, the control device 90 determines the phase designation values ⁇ s1 to ⁇ s6 so that the voltage fluctuations V1 to V6 cancel each other out.
  • step S303 of the third embodiment as described above, when the first battery cell 42a is specified as the battery cell 42 to be discharged, the voltage fluctuation V1 is twice that of the other voltage fluctuations V2 and V3.
  • the phase difference between the voltage fluctuation V1 and the voltage fluctuation V2 is 150 °
  • the phase difference between the voltage fluctuation V1 and the voltage fluctuation V3 is 210 °
  • the phase designation values ⁇ s1 to ⁇ s3 may be determined so that the phase difference between the voltage fluctuation V2 and the voltage fluctuation V3 is 60 °. That is, the phase designation values ⁇ s1 to ⁇ s3 of the alternating current may be determined as shown in the following equations (44) to (46).
  • the phase designation value ⁇ si is determined in the same manner.
  • step S105 the designated value setting process in step S105 is completed.
  • the total Vt of the voltage fluctuation V1, the voltage fluctuation V2, and the voltage fluctuation V3 can be brought close to zero, and noise can be suppressed.
  • the amplitude of the alternating current output from the first battery cell 42a is larger than that of the second battery cell 42b and the third battery cell 42c. Therefore, the discharge amount of the first battery cell 42a can be made larger than that of the second battery cell 42b and the third battery cell 42c to equalize the discharge amount. As a result, it is possible to align the storage states of the battery cells 42 and prevent a part of the battery cells 42 from being overcharged.
  • the impedance is detected while equalizing, the discharge current from the battery cell 42 is not wasted and the power consumption can be suppressed.
  • the specified value of the amplitude of the alternating current output from the first battery cell 42a (the battery cell 42 to be discharged most) is arbitrary as long as it is larger than the amplitude of the other alternating currents. You may change it. In this case, it is necessary to appropriately determine the phase designation value ⁇ s so that the total value of the voltage fluctuation Vi is equal to or less than the threshold value (for example, zero).
  • the amplitude specified value of the alternating current output from the battery cell 42 having the highest electricity storage state is made larger than the other amplitude specified values.
  • the amplitude specified value of the alternating current output from the plurality of battery cells 42 may be larger than the other amplitude specified values.
  • the amplitude specified values Is1 and Is2 of the alternating current output from the first battery cell 42a and the second battery cell 42b may be higher than the amplitude specified value Is3. In this case, it is necessary to appropriately determine the phase designation value ⁇ si so that the total value of the voltage fluctuation Vi is equal to or less than the threshold value (for example, zero).
  • the amplitude of the alternating current output from each battery cell 42 will be different.
  • the amplitude specified values Is1 and Is2 are calculated based on the mathematical formulas (16) and (17)
  • the impedances Z1 and Z2 are different, the amplitude specified values Is1 and Is2 are also different.
  • the amount of discharge differs for each battery cell 42, which may cause variations in the storage state of each battery cell 42.
  • the phase is specified so that the total value of the voltage fluctuation Vi is equal to or less than the threshold value (for example, zero).
  • the value ⁇ si is to be determined.
  • the first battery cell 42a to the sixth battery cell 42f are divided into two groups G1 and G2, and the group G1 includes the first battery cell 42a, the second battery cell 42b, and the third battery cell 42b. It will be described as assuming that the battery cell 42c is included. Then, the group G2 will be described as including the fourth battery cell 42d, the fifth battery cell 42e, and the sixth battery cell 42f. Since the determination mode in the group G2 is the same as that in the group G1, the determination mode in the group G1 will be mainly described, and the determination mode in the group G2 will be omitted.
  • the impedances Zi of the first battery cells 42a to the third battery cells 42c acquired (input) in the previous step S104 are set to “Z1” to “Z3”, respectively, and the phase difference ⁇ i Are " ⁇ 1" to " ⁇ 3", respectively.
  • the voltage fluctuation Vi, the alternating current, and the impedance Zi are represented by vectors in FIG. 10 with reference to the alternating current output from the first battery cell 42a.
  • the amplitude specified values Is1 to Is3 of the alternating current output from each battery cell 42 are the same, the amplitudes of the voltage fluctuations V1 to V3 differ due to the difference in impedances Z1 to Z3.
  • the phase difference ⁇ 12 between the voltage fluctuation V1 and the voltage fluctuation V2 the phase difference ⁇ 23 between the voltage fluctuation V2 and the voltage fluctuation V3, and the phase difference ⁇ 31 between the voltage fluctuation V3 and the voltage fluctuation V1 should be appropriately changed.
  • the voltage fluctuations V1 to V3 can be cyclically (arranged in a cyclical manner) as shown in FIG.
  • the end point of the voltage fluctuation V1 and the start point of the voltage fluctuation V2 are matched, the end point of the voltage fluctuation V2 and the start point of the voltage fluctuation V3 are matched, and the end point of the voltage fluctuation V3 and the start point of the voltage fluctuation V1 are matched. Can be matched.
  • phase differences ⁇ 12, ⁇ 23, and ⁇ 31 can be adjusted by appropriately setting the phase designation values ⁇ si in consideration of the phase differences ⁇ 1 to ⁇ 3.
  • the designated value setting process in step S105 in the fourth embodiment adopting this principle will be described with reference to FIG.
  • control device 90 sets arbitrary same values (for example, Id) as the amplitude specified values Is1 to Is3 of the alternating current to be passed through each battery cell 42 (step S401).
  • control device 90 changes the voltage of each battery cell 42 based on the latest impedances Z1 to Z3 of each battery cell 42 acquired in step S104 and the specified amplitude values Is1 to Is3 set in step S401.
  • the magnitudes (absolute value, scalar value) of V1 to V3 are calculated (step S402).
  • the control device 90 calculates the phase difference ⁇ 12 between the voltage fluctuation V1 and the voltage fluctuation V2 and the phase difference ⁇ 31 between the voltage fluctuation V3 and the voltage fluctuation V1 based on the mathematical expressions (51) and (52). (Step S403).
  • V1 to V3 are values calculated in step S402.
  • control device 90 uses the mathematical formulas (53) to (55) to calculate the phase differences ⁇ 12 and ⁇ 31 in step S403 and the latest phase differences ⁇ 1 to ⁇ 3 acquired in step S104, based on the phase designation values. Calculate ⁇ s1 to ⁇ s3 (step S404). Then, the designated value setting process in step S105 is completed.
  • the total value (total vector value) of the voltage fluctuations V1 to V3 can be brought close to zero, and noise can be suppressed.
  • the amplitude of the alternating current output from each battery cell 42 can be made the same, and the amount of discharge can be made the same for each battery cell 42. That is, when the impedance is detected, it is possible to suppress the variation in the storage state of each battery cell 42.
  • the amplitude specified value Is is always the same, but if equalization processing is required, the amplitude specified value Isi may be different. Even in this case, if the phase designation value ⁇ si is appropriately set, the total value of the voltage fluctuations can be suppressed to the threshold value or less (for example, zero).
  • the first battery cell 42a to the sixth battery cell 42f are divided into two groups G1 and G2, and the group G1 includes the first battery cell 42a, the second battery cell 42b, and the third battery cell 42b. It will be described as assuming that the battery cell 42c is included. Then, the group G2 will be described as including the fourth battery cell 42d, the fifth battery cell 42e, and the sixth battery cell 42f. Since the determination mode in the group G2 is the same as that in the group G1, the determination mode in the group G1 will be mainly described, and the determination mode in the group G2 will be omitted.
  • the impedances Zi of the latest first battery cells 42a to third battery cells 42c acquired (input) in the previous step S104 are set to "Z1" to "Z3", respectively. Let the phase difference ⁇ i be “ ⁇ 1” to “ ⁇ 3”, respectively. Further, the voltage fluctuation Vi, the alternating current, and the impedance Zi are represented by vectors in FIG. 13 with reference to the alternating current output from the first battery cell 42a.
  • the voltage fluctuations V1 to V3 can be cyclically (arranged cyclically) as shown in FIG. That is, the end point of the voltage fluctuation V1 and the start point of the voltage fluctuation V2 are matched, the end point of the voltage fluctuation V2 and the start point of the voltage fluctuation V3 are matched, and the end point of the voltage fluctuation V3 and the start point of the voltage fluctuation V1 are matched. Can be matched.
  • phase differences ⁇ 12, ⁇ 23, and ⁇ 31 can be adjusted by appropriately setting the phase designation values ⁇ si in consideration of the phase differences ⁇ 1 to ⁇ 3.
  • control device 90 is configured to be able to acquire the voltage fluctuation Vi together with the impedance Zi from the impedance detection unit 60.
  • the control device 90 sets an initial value as the measurement frequency fs in the same manner as in step S102 of the first embodiment (step S501).
  • the control device 90 sets the amplitude specified values Is1 to Is3 of the alternating current to be output from each battery cell 42 (step S502).
  • the control device 90 sets all the same values as the amplitude designation values Is1 to Is3 of the alternating current.
  • the amplitude specified value Isi of the alternating current output from the battery cell 42 to be discharged is set to be larger than the other amplitude specified values Isi.
  • control device 90 determines whether or not the initial value is set for the measurement frequency fs (step S503). That is, it is determined whether or not the impedance Z1 to Z3 and the like are detected for the first time after the impedance detection process is started.
  • step S503 If the determination result in step S503 is affirmative, the control device 90 proceeds to the process of step S504, and the alternating current flowing through the first battery cells 42a to the third battery cells 42c is based on the equations (61) to (62). The phase differences ⁇ 12 and ⁇ 31 are calculated so that Is1 to Is3 are cyclic (step S504).
  • the alternating current flowing through the first battery cells 42a to the third battery cells 42c has substantially the same phase as the voltage fluctuations V1 to V3, it can be calculated in the same manner as when the voltage fluctuations V1 to V3 are cyclically changed. .. Further, in the equations (61) to (62), since it is the first time to use the amplitude specified value Isi set in step S502, the voltage fluctuations V1 to V3 are not acquired in step S508 described later. Is.
  • step S503 determines whether the determination result in step S503 is negative. If the determination result in step S503 is negative, the control device 90 shifts to the process of step S505 and calculates the phase differences ⁇ 12 and ⁇ 31 based on the equations (63) to (64) (step S505). In the equations (63) to (64), the voltage fluctuations V1 to V3 use the latest voltage fluctuations V1 to V3 acquired in the previous step S508.
  • the control device 90 calculates the phase designation values ⁇ s1 to ⁇ s3 based on the equations (65) to (67) (step S506). More specifically, the phase designation values ⁇ s1 to ⁇ s3 are calculated so that the sum (vector value) of the voltage fluctuation V2 and the voltage fluctuation V3 has the opposite phase to the voltage fluctuation V1. In the equations (65) to (67), the phase differences ⁇ 12 and ⁇ 31 calculated in step S504 or step S505 are used.
  • the impedance detection units 60 When the amplitude specified values Is1 to Is3, the phase specified values ⁇ s1 to ⁇ s3, and the measurement frequency fs are output, the impedance detection units 60 each output the first battery cell 42a to the third battery cell 42c based on the specified values. Outputs alternating current from.
  • each impedance detection unit 60 inputs the voltage fluctuations V1 to V3 of the first battery cells 42a to the third battery cells 42c based on the alternating current, respectively, and as described above based on the voltage fluctuation Vi, the impedances Z1 to Z3 And the phase differences ⁇ 1 to ⁇ 3 are calculated and output to the control device 90. Further, each impedance detection unit 60 outputs voltage fluctuations V1 to V3 to the control device 90.
  • the control device 90 inputs the calculation results (voltage fluctuations V1 to V3, impedances Z1 to Z3, and phase differences ⁇ 1 to ⁇ 3) (step S508). Then, the control device 90 determines whether or not all the frequencies within the measurement range have been scanned as the measurement frequency fs (step S509). If the determination result is affirmative, the control device 90 ends the impedance measurement process. On the other hand, when the determination result in step S509 is negative, the control device 90 updates the measurement frequency fs (step S510) in the same manner as in step S107 of the first embodiment, and executes the process of step S502 again. To do.
  • the battery monitoring device 50 of the fifth embodiment has the following effects.
  • the impedance Zi and the phase difference ⁇ i can be detected while keeping the discharge amount of each battery cell 42 the same. At that time, noise can be suppressed by setting the total voltage fluctuation Vi to be equal to or less than the threshold value.
  • the impedance Zi and the phase difference ⁇ i are increased while making the amplitude specified value Isi of the alternating current output from the battery cell 42 that needs to be discharged larger than that of the other battery cells 42. Can be detected. At that time as well, noise can be suppressed by setting the total voltage fluctuation Vi to be equal to or less than the threshold value.
  • the battery monitoring device 50 outputs an alternating current from the battery cell 42, but an alternating current may be applied to the battery cell 42 from another power source (external power source or the like).
  • the control device 90 updates the measurement frequency fs, but the measurement frequency fs may be set based on an instruction from an external device such as the ECU 100.
  • the amplitude specified value Isi and the phase specified value ⁇ si are specified by using the latest impedance Zi and the phase difference ⁇ i, but the latest impedance Zi and the phase difference ⁇ i do not have to be used. However, it is desirable that the values are as close as possible to the latest impedance Zi and phase difference ⁇ i.
  • the threshold value of the total value of the voltage fluctuation is an arbitrary number, and may be appropriately set according to the allowable value of noise. For example, it may be zero.
  • the battery cells have been described in a maximum of three groups, but they may be divided into four or more groups.
  • Is1 when Is1 is made extremely large in order to further improve the equalization ability, it becomes "
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

複数の電池セル(42)が直列接続された組電池(40)に対して適用され、各電池セルの状態を監視する電池監視装置(50)は、各電池セルに交流電流をそれぞれ流させ、交流電流が流れたときにおける各電池セルの電圧変動(Vi)をそれぞれ取得する電圧取得部(62)と、交流電流及び電圧変動に基づいて、インピーダンス(Zi)、及び位相差(θi)を各電池セルごとにそれぞれ算出する演算部(61)と、各電池セルごとに交流電流の振幅(Isi)及び位相(θsi)を指定する電流制御部(90)と、を備える。電流制御部は、電圧変動の合計値(Vt)が閾値以下となるように、算出されたインピーダンス及び位相差に基づいて、交流電流の振幅及び位相のうち少なくともいずれか一方を特定し、指定する。

Description

電池監視装置 関連出願の相互参照
 本出願は、2019年10月30日に出願された日本出願番号2019-197376号に基づくもので、ここにその記載内容を援用する。
 本開示は、電池監視装置に関するものである。
 従来から、蓄電池の状態を監視するため、蓄電池の複素インピーダンスを測定することが行われていた(例えば、特許文献1、特許文献2)。特許文献1に記載の開示では、パワーコントローラにより、蓄電池に対して矩形波信号(交流電流)を印加して、その応答信号(電圧変動)をフーリエ変換し、得られた結果から、複素インピーダンス特性を算出していた。そして、この複素インピーダンス特性を基に、蓄電池の劣化状態などを判別していた。
 また、特許文献2では、発振器から正弦波電流(交流電流)を蓄電池に流し、その応答信号(電圧変動)をロックインアンプにより検出し、その検出結果に基づいて、複素インピーダンス特性を算出していた。そして、この複素インピーダンス特性を基に、蓄電池の劣化状態などを判別していた。
特許第6226261号公報 特開2018-190502号公報
 ところで、蓄電池から発生する応答信号は、ノイズとなる可能性がある。すなわち、応答信号が外部ノイズとして伝搬すると、ラジオノイズが発生する場合がある。そして、ノイズにより、他の機器が誤作動する可能性がある。
 本開示は、上記課題に鑑みてなされたものであり、その目的は、ノイズを抑制することができる電池監視装置を提供することにある。
 上記課題を解決するための手段は、電解質と複数の電極とを含む複数の電池セルが直列接続された組電池に対して適用され、前記各電池セルの状態を監視する電池監視装置において、前記各電池セルに交流電流をそれぞれ流させる電流発生部と、前記交流電流が流れたときにおける前記各電池セルの電圧変動をそれぞれ取得する電圧取得部と、前記各電池セルに流れた交流電流及び前記電圧取得部により取得された電圧変動に基づいて、前記電池セルのインピーダンス、及び前記交流電流と前記電圧変動との位相差を前記各電池セルごとにそれぞれ算出する演算部と、前記電流発生部に対して、前記各電池セルごとに前記交流電流の振幅及び位相を指定する電流制御部と、を備え、前記電流制御部は、前記各電池セルの電圧変動の合計値が閾値以下となるように、前記演算部により算出された前記各電池セルのインピーダンス及び位相差に基づいて、前記各電池セルごとに流させる交流電流の振幅及び位相のうち少なくともいずれか一方を特定し、特定した交流電流の振幅及び位相のうち少なくともいずれか一方を各電池セルに対して指定する。
 上記構成では、各電池セルの電圧変動の合計値が閾値以下となるように、演算部により算出された各電池セルのインピーダンス及び位相差に基づいて、各電池セルごとに流させる交流電流の振幅及び位相のうち少なくともいずれか一方を特定する。このため、フィルタなどのノイズ抑制用の回路を設けなくても、組電池全体における電圧変動を抑え、ノイズを抑制することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電源システムの概略構成図であり、 図2は、電池監視装置の構成図であり、 図3は、インピーダンス検出部の構成図であり、 図4は、従来における交流電流と電圧変動を示すベクトル図であり、 図5は、交流電流と電圧変動を示すベクトル図であり、 図6は、インピーダンス検出処理の流れを示すフローチャートであり、 図7は、第2実施形態における交流電流と電圧変動を示すベクトル図であり、 図8は、第3実施形態における交流電流と電圧変動を示すベクトル図であり、 図9は、第3実施形態における指定値設定処理の流れを示すフローチャートであり、 図10は、第4実施形態における交流電流と電圧変動を示すベクトル図であり、 図11は、第4実施形態における電圧変動を示す図であり、 図12は、第4実施形態における指定値設定処理の流れを示すフローチャートであり、 図13は、第5実施形態における交流電流と電圧変動を示すベクトル図であり、 図14は、第5実施形態における電圧変動を示す図であり、 図15は、第5実施形態におけるインピーダンス検出処理の流れを示すフローチャートである。
 (第1実施形態)
 以下、「電池監視装置」を車両(例えば、ハイブリッド車や電気自動車)の電源システムに適用した第1実施形態について、図面を参照しつつ説明する。
 図1に示すように、電源システム10は、回転電機としてのモータ20と、モータ20に対して3相電流を流す電力変換器としてのインバータ30と、充放電可能な組電池40と、組電池40の状態を監視する電池監視装置50と、モータ20などを制御するECU100と、を備えている。
 モータ20は、図示しない駆動輪と動力伝達可能とされている。本実施形態では、モータ20として、3相の永久磁石同期モータを用いている。
 インバータ30は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(IGBT等の半導体スイッチング素子)のオンオフにより、各相巻線において通電電流が調整される。
 インバータ30には、図示しないインバータ制御装置が設けられており、インバータ制御装置は、モータ20における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ30における各スイッチのオンオフにより通電制御を実施する。これにより、インバータ制御装置は、組電池40からインバータ30を介してモータ20に電力を供給し、モータ20を力行駆動させる。また、インバータ制御装置は、駆動輪からの動力に基づいてモータ20を発電させ、インバータ30を介して、発電電力を変換して組電池40に供給し、組電池40を充電させる。
 組電池40は、インバータ30を介して、モータ20に電気的に接続されている。組電池40は、例えば百V以上となる端子間電圧を有し、複数の電池モジュール41が直列接続されて構成されている。電池モジュール41は、複数の電池セル42が直列接続されて構成されている。電池セル42として、例えば、リチウムイオン蓄電池や、ニッケル水素蓄電池を用いることができる。各電池セル42は、電解質と複数の電極とを有する蓄電池である。本実施形態において、電池モジュール41は、6つの電池セル42が直列接続されて構成されている。
 組電池40の正極側電源端子に接続される正極側電源経路L1には、インバータ30等の電気負荷の正極側端子が接続されている。同様に、組電池40の負極側電源端子に接続される負極側電源経路L2には、インバータ30等の電気負荷の負極側端子が接続されている。なお、正極側電源経路L1及び負極側電源経路L2には、それぞれリレースイッチSMR(システムメインリレースイッチ)が設けられており、リレースイッチSMRにより、通電及び通電遮断が切り替え可能に構成されている。
 電池監視装置50は、各電池セル42の蓄電状態(SOC)及び劣化状態(SOH)などを監視する装置である。電池監視装置50は、ECU100に接続されており、各電池セル42の状態などを出力する。電池監視装置50の構成については、後述する。
 ECU100は、各種情報に基づいて、インバータ制御装置に対して力行駆動及び発電の要求を行う。各種情報には、例えば、アクセル及びブレーキの操作情報、車速、組電池40の状態などが含まれる。
 次に、電池監視装置50について詳しく説明する。図2に示すように、第1実施形態では、電池監視装置50には、電池セル42毎にインピーダンス検出部60が設けられている。また、電池監視装置50は、各インピーダンス検出部60から各電池セル42の情報を入力するとともに、各インピーダンス検出部60に対して指示する電流制御部としての制御装置90が設けられている。
 図3に基づいて、インピーダンス検出部60について説明する。インピーダンス検出部60は、演算部としての演算装置61と、電流発生部及び電圧取得部としてのロックインアンプ62と、を備えている。演算装置61は、制御装置90からの指示に従い、ロックインアンプ62に対して指示を行い、ロックインアンプ62を介して、監視対象となる電池セル42の各種情報を取得する機能を有する。また、演算装置61は、取得した各種情報に基づいて演算を行う機能や、演算結果を制御装置90に対して出力する機能等を有する。演算装置61の詳しい構成は後述する。
 次に、ロックインアンプ62について説明する。ロックインアンプ62は、発振回路71、DA変換器72、AD変換器73、電流モジュレーション回路74、差動増幅回路75、AD変換器76、位相シフト回路77、第1掛算器78、第1積分器79、第1フィルタ80、第2掛算器81、第2積分器82、及び第2フィルタ83を備える。
 発振回路71は、演算装置61に接続されており、演算装置61からの指示に従って設定された正弦波信号を出力する回路である。発振回路71は、第1掛算器78及び位相シフト回路77に接続されており、第1掛算器78及び位相シフト回路77に対して、正弦波信号を第1の参照信号として出力する。また、発振回路71は、DA変換器72を介して、電流モジュレーション回路74に接続されており、電流モジュレーション回路74に正弦波信号を指示信号として出力する。
 電流モジュレーション回路74は、監視対象である電池セル42を電源として、所定の交流電流(正弦波信号)を流させる(出力させる)回路である。具体的に説明すると、電流モジュレーション回路74は、半導体スイッチ素子74a(例えば、MOSFET)と、半導体スイッチ素子74aに直列に接続された抵抗74bとを有する。半導体スイッチ素子74aのドレイン端子は、電池セル42の正極端子に接続され、半導体スイッチ素子74aのソース端子は、抵抗74bの一端に直列に接続されている。また、抵抗74bの他端は、電池セル42の負極端子に接続されている。半導体スイッチ素子74aは、ドレイン端子とソース端子との間において通電量を調整可能に構成されている。
 また、電流モジュレーション回路74には、抵抗74bの両端に接続された電流検出アンプ74cが設けられている。電流検出アンプ74cは、抵抗74bに流れる電流を検出し、フィードバック信号として出力するように構成されている。このフィードバック信号は、AD変換器73を介して、デジタル信号(フィードバック信号If)に変換されて、演算装置61に出力される。
 また、電流モジュレーション回路74には、フィードバック回路74dが設けられている。フィードバック回路74dは、発振回路71からDA変換器72を介して指示信号を入力するとともに、電流検出アンプ74cからフィードバック信号を入力するように構成されている。そして、指示信号とフィードバック信号とを比較し、その結果を半導体スイッチ素子74aのゲート端子に出力するように構成されている。
 半導体スイッチ素子74aは、フィードバック回路74dからの信号に基づいて、指示信号により指示された交流電流(正弦波信号)を電池セル42から出力させるように、ゲート・ソース間に印加する電圧を調整して、ドレイン・ソース間の電流量を調整する。なお、指示信号により指示される波形と、実際に抵抗74bに流れる電流波形との間に誤差が生じている場合、半導体スイッチ素子74aは、フィードバック回路74dからの信号に基づいて、その誤差が補正されるように、電流量を調整する。これにより、抵抗74b(つまり、電池セル42)に流れる交流電流(正弦波信号)が安定化する。
 差動増幅回路75は、監視対象とする電池セル42に対して接続されている。差動増幅回路75は、電池セル42に交流電流が流れた場合に、電池セル42の端子間において、電池セル42の内部複素インピーダンス情報を反映した電圧変動を入力し、増幅して出力する機能を有する。また、差動増幅回路75は、AD変換器76に接続されており、AD変換器76を介して、入力した電圧変動(応答信号)を第1掛算器78及び第2掛算器81にそれぞれ出力するように構成されている。
 第1掛算器78は、発振回路71から入力した第1の参照信号と、電圧変動(応答信号)を乗算して、第1積分器79に出力する。第1積分器79は、第1掛算器78から入力した値を平均化し、ローパスフィルタである第1フィルタ80を介して演算装置61に出力する。第1フィルタ80から演算装置61に出力される値は、電圧変動の実部に対応する値となっている。なお、電圧変動の実部に対応する値をRe_Vi(i=1,2・・・6)と示す。
 第2掛算器81には、位相シフト回路77を介して、発振回路71に接続されており、第2の参照信号が入力される。第2の参照信号は、第1の参照信号の位相を90度(π/2)進ませた信号である。位相シフト回路77は、発振回路71から入力した正弦波信号(第1の参照信号)の位相を進ませ、第2の参照信号として出力する。
 第2掛算器81は、第2の参照信号と、電圧変動(応答信号)を乗算して、第2積分器82に出力する。第2積分器82は、第2掛算器81から入力した値を平均化し、ローパスフィルタである第2フィルタ83を介して演算装置61に出力する。第2フィルタ83を介して、演算装置61に入力される値は、電圧変動の虚部に対応する値となっている。なお、電圧変動の虚部に対応する値をIm_Vi(i=1,2・・・6)と示す。
 演算装置61は、CPUやメモリ(RAM,ROM)等から構成されるマイコンなどであり、各種演算処理を実行可能に構成されている。例えば、演算装置61は、フィルタ80,83から、Re_Vi及びIm_Viを取得し、それらの値及び交流電流の振幅Isに基づいて、数式(11)~(13)により、インピーダンスZi(より詳しくは、絶対値|Zi|)及び位相差θiを算出する。なお、位相差θiは、交流電流の位相と電圧変動(応答信号)の位相との位相差のことである。また、本実施形態において、交流電流の振幅Isは、演算装置61からロックインアンプ62への指示(振幅指定値Isi)に基づくものであるが、フィードバック信号Ifに基づくものであってもよい。
Figure JPOXMLDOC01-appb-M000001
 演算装置61は、算出したインピーダンスZi及び位相差θiを制御装置90に出力する。制御装置90は、これらを記憶する。また、制御装置90は、電池セル42から出力させる交流電流の周波数(測定周波数fs)を所定の測定範囲内で走査させることで、複数の周波数におけるインピーダンスZi及び位相差θi(複素インピーダンスの周波数特性)を取得する。そして、制御装置90は、それらの算出結果に基づいて、コールコールプロットを作成し、電極及び電解質などの特性を把握する。例えば、蓄電状態(SOC)や劣化状態(SOH)を把握し、結果をECU100に出力する。なお、図示及び詳細な説明は省略するが、演算装置61は、電池セル42の端子間電圧(直流電圧)を取得可能に構成されている。
 上述したように、電池セル42のインピーダンスZiは、電池セル42の電圧変動に基づいて算出される。そして、各電池セル42の電圧変動は、個々ではそれぞれ微弱な変動である。しかしながら、組電池40は、複数の電池セル42が直列に接続されて構成されているものである。このため、電圧変動が重畳し、大きな電圧変動となり、ノイズとなる可能性がある。
 ここで、電圧変動が重畳する様子について図4に基づいて説明する。以下では、交流電流が流れたときにおける電池セル42の電圧変動を、電圧変動Viと示す場合がある。なお、図4では、電圧変動Viをベクトルで表現する。また、図4においては、単純化して説明するため、組電池40を構成する電池セル42が、第1電池セル42aと、第2電池セル42bの2つである場合を想定して説明する。また、第1電池セル42a及び第2電池セル42bの劣化状態や蓄電状態は異なるものとして説明する。また、図4では、第1電池セル42a及び第2電池セル42bから同じ交流電流が出力されるものとする。具体的には、第1電池セル42a及び第2電池セル42bから出力される交流電流の振幅指定値Is1,Is2を共に「Ia」とする。同様に、第1電池セル42a及び第2電池セル42bから出力される交流電流の位相を共にゼロとする(基準とする)。
 図4に示すように、同じ交流電流が第1電池セル42a及び第2電池セル42bから出力されても、電池状態が異なるため、第1電池セル42aの電圧変動V1と、第2電池セル42bの電圧変動V2とは、振幅(大きさ)が異なる。つまり、第1電池セル42aと第2電池セル42bのインピーダンスZ1,Z2が異なるため、それに比例する電圧変動V1,V2の大きさも異なる。同様の理由から、交流電流に対する第1電池セル42aの電圧変動V1の位相差θ1と、交流電流に対する第2電池セル42bの電圧変動V2の位相差θ2とは、大きさが異なる。
 このため、電圧変動V1と電圧変動V2の合計Vt(ベクトル値の合計)は、ゼロとはならず、場合によっては、各電圧変動V1,V2よりも大きくなる。したがって、各電池セル42から同時期に交流電流が出力されると、組電池40から大きなノイズが発生する可能性がある。
 ところで、各電池セル42のインピーダンスZi及び位相差θiは、蓄電状態(SOC)や劣化状態(SOH)などに依存し、測定周波数が変わらなければ、これらは短期間で大きく変動するものではないことがわかっている。そこで、第1実施形態において、制御装置90は、各電池セル42の電圧変動Viの合計値が閾値以下となるように、算出された各電池セル42のインピーダンスZi及び位相差θiに基づいて、各電池セル42に流させる交流電流の振幅指定値Isi及び位相指定値θsiを特定(算出)するようにしている。そして、制御装置90は、電池セル42ごとに、特定した振幅指定値Isi及び位相指定値θsiを指定することとしている。
 具体的に制御装置90がどのように指定値(振幅指定値Isi及び位相指定値θsi)を特定しているかについて説明する。まず、組電池40(より詳しくは電池モジュール41)を構成する電池セル42を1又は複数のグループに分ける。その際、各グループには、少なくとも2以上の複数の電池セル42が含まれるようにする。なお、予めグループ分けがされていてもよい。
 そして、制御装置90は、各グループに含まれる各電池セル42の電圧変動Viが互いに打ち消し合って合計値がゼロに近くなるように、各電池セル42から出力させるべき交流電流の振幅指定値Isi及び位相指定値θsiを決定する。
 本実施形態では、グループ内に含まれる電池セル42の電圧変動Viの振幅が全て同じとなるように、各電池セル42のインピーダンスZiに基づいて、交流電流の振幅指定値Isiを決定する。すなわち、インピーダンスZiは、電圧変動Viと比例関係にある。このため、グループに含まれるいずれかの電池セル42を基準とし、基準とする電池セル42から出力させる交流電流の振幅指定値Isiを「Ia」とする場合、基準とする電池セル42のインピーダンスZaと、対象となる電池セル42のインピーダンスZbとの逆数比率をとれば、つまり、Ia×(Za/Zb)を算出すれば、対象となる電池セル42から出力させるべき交流電流の振幅指定値Ibを特定することが可能となる。
 そして、本実施形態のように、グループ内に含まれる電池セル42の電圧変動Viの振幅が全て同じとする場合には、グループ内の各電池セル42における各電圧変動Viの位相のずれが同じ(等間隔)となるように位相指定値θsiを決定する。すなわち、上述したように、位相差θiは、電圧変動Viと交流電流との位相差を示すものである。このため、グループに含まれる電池セル42の数で360°を除算し、算出された値ずつ各電圧変動Viの位相がずれるように、位相指定値θsiを決定する。すなわち、基準とする電池セル42における電圧変動Vaの位相差θa、対象とする電池セル42における電圧変動Vbの位相差θb、及び算出された位相ずれを考慮して、対象とする電池セル42に出力させる交流電流の位相指定値θsbを決定する。
 ここで、図5に基づいて、上述した決定態様を具体的に説明する。図5では、グループ内に、第1電池セル42aと第2電池セル42bの2つの電池セル42が含まれているものとして説明する。また、前回算出された(つまり、最新の)第1電池セル42aのインピーダンスを「Z1」とし、位相差θiを「θ1」とする。同様に、前回算出された(つまり、最新の)第2電池セル42bのインピーダンスを「Z2」とし、位相差θiを「θ2」とする。また、第1電池セル42aから出力させる交流電流の振幅指定値Isiを「Is1」、位相指定値θsiを「θs1」とする。また、第2電池セル42bから出力させる交流電流の振幅指定値Isiを「Is2」、位相指定値θsiを「θs2」とする。また、図5では、第1電池セル42aに流れる交流電流を基準として、電圧変動Vi、交流電流、及びインピーダンスZiを複素平面上においてベクトルで表現する。
 まず、第1電池セル42aの電圧変動V1と、第2電池セル42bの電圧変動V2を等しくするためには、下記の式(14)により、第2電池セル42bから出力させるべき交流電流の振幅指定値Is2を特定することができる。
 Is2=Is1×Z1/Z2・・・(14)
 そして、第1電池セル42aの電圧変動V1の振幅と、第2電池セル42bの電圧変動V2の振幅とを同じにする場合において、電圧変動を互いに打ち消すためには、電圧変動V1と電圧変動V2とが180°位相がずれている必要がある。つまり、360°を、電池セルの数「2」により除算して特定した値だけ、電圧変動V1,V2の位相がずれている必要がある。
 このため、第1電池セル42aから出力させる交流電流を基準とすると、第2電池セル42bから出力させるべき交流電流の位相指定値θs2は、下記の式(15)により特定することができる。なお、第1電池セル42aから出力させる交流電流の位相指定値θs1を「0」とする。
 θs2=θ1+180°-θ2・・・(15)
 次に、図6に基づいて、本実施形態における制御装置90によるインピーダンス検出処理について説明する。インピーダンス検出処理は、所定のタイミング(例えば、システム始動時など)で実行されるように構成されている。なお、本実施形態では、電池監視装置50が監視対象とする電池モジュール41は、6つの電池セル42から構成されているものとし、以下では、第1電池セル42a~第6電池セル42fと示す場合がある。そして、第1電池セル42a~第6電池セル42fを3つのグループG1,G2,G3に分けるものとし、グループG1には、第1電池セル42aと第2電池セル42bが含まれ、グループG2には、第3電池セル42cと第4電池セル42dが含まれ、グループG3には、第5電池セル42eと第6電池セル42fが含まれるものとして説明する。
 また、第1電池セル42a~第6電池セル42fから出力させる交流電流の振幅指定値Isiをそれぞれ振幅指定値Is1~Is6と示し、位相指定値θsiをそれぞれ位相指定値θs1~θs6と示す場合がある。また、第1電池セル42a~第6電池セル42fのインピーダンスZiをそれぞれインピーダンスZ1~Z6と示し、位相差θiをそれぞれ位相差θ1~θ6と示す場合がある。
 インピーダンス検出処理を開始すると、制御装置90は、各電池セル42から出力させる交流電流の振幅指定値Isi及び位相指定値θsiとして初期値を設定する(ステップS101)。初期値は任意の値でよいが、ノイズ抑制の可能性が高くなるように初期値が設定されていることが好ましい。例えば、グループG1~G3内でペアとなる電池セル42から同じ振幅であって逆相となる交流電流が出力されるような指定値が初期値として設定されていることが望ましい。
 具体的には、第1電池セル42a~第6電池セル42fから出力させる交流電流の振幅指定値Is1~Is6の初期値として、それぞれ同じ値「Ic」が設定される。なお、「Ic」は、任意の値である。また、第1電池セル42a、第3電池セル42c、及び第5電池セル42eから出力させる交流電流の位相指定値θs1,θs3,θs5の初期値として、それぞれ0°が設定される。第2電池セル42b、第4電池セル42d、及び第6電池セル42fから出力させる交流電流の位相指定値θs2,θs4,θs6の初期値として、それぞれ180°が設定される。
 また、制御装置90は、交流電流の周波数(測定周波数fs)として初期値を設定する(ステップS102)。測定周波数fsは、所定の測定範囲内から決定されるように構成されており、本実施形態における初期値は、測定範囲のうちもっとも小さい値とされている。
 そして、制御装置90は、第1電池セル42a~第6電池セル42fの各インピーダンス検出部60に対して、振幅指定値Is1~Is6、位相指定値θs1~θs6及び測定周波数fsをそれぞれ出力(指示)して、インピーダンスの検出を指示する(ステップS103)。
 なお、インピーダンス検出処理が開始して、最初のステップS103が実行される場合、制御装置90は、振幅指定値Is1~Is6及び位相指定値θs1~θs6として、ステップS101で設定された初期値をそれぞれ出力する。同様に、インピーダンス検出処理が開始して、最初のステップS103が実行される場合、制御装置90は、測定周波数fsとして、ステップS102で設定された初期値をそれぞれ出力する。
 一方、2回目以降のステップS103が実行される場合、制御装置90は、振幅指定値Is1~Is6及び位相指定値θs1~θs6として、後述するステップS105で設定された値をそれぞれ出力する。同様に、2回目以降のステップS103が実行される場合、制御装置90は、測定周波数fsとして、後述するステップS107で設定された値をそれぞれ出力する。
 振幅指定値Is1~Is6、位相指定値θs1~θs6及び測定周波数fsがそれぞれ出力されると、各インピーダンス検出部60は、それらの指定値に基づいて、第1電池セル42a~第6電池セル42fから交流電流を出力させる。
 そして、各インピーダンス検出部60は、交流電流に基づく第1電池セル42a~第6電池セル42fの電圧変動V1~V6をそれぞれ入力し、電圧変動V1~V6に基づいて前述したように、インピーダンスZ1~Z6及び位相差θ1~θ6を算出し、制御装置90に対して出力する。
 制御装置90は、算出結果(インピーダンスZ1~Z6及び位相差θ1~θ6)を入力(取得)する(ステップS104)。その後、制御装置90は、ステップS105に移行して指定値設定処理を実行する。すなわち、制御装置90は、各電池セル42の電圧変動V1~V6の合計値が閾値以下となるように、算出された各電池セル42のインピーダンスZ1~Z6及び位相差θ1~θ6に基づいて、各電池セル42に流させる交流電流の振幅指定値Is1~Is6及び位相指定値θs1~θs6を特定(算出)する(ステップS105)。
 具体的には、以下の数式(16)~(27)に基づいて振幅指定値Is及び位相指定値θsを特定する。なお、数式(16)~(21)において、「Id」は、任意の値であり、初期値と同じ値であっても、異なっていてもよい。
 Is1=Id・・・(16)
 Is2=Is1×Z1/Z2・・・(17)
 Is3=Id・・・(18)
 Is4=Is3×Z3/Z4・・・(19)
 Is5=Id・・・(20)
 Is6=Is5×Z5/Z6・・・(21)
 θs1=0°・・・(22)
 θs2=θ1+180°-θ2・・・(23)
 θs3=0°・・・(24)
 θs4=θ3+180°-θ4・・・(25)
 θs5=0°・・・(26)
 θs6=θ5+180°-θ6・・・(27)
 ステップS105で設定された振幅指定値Is1~Is6及び位相指定値θs1~θs6は、インピーダンス検出処理が終了されなかった場合、次回のステップS103で出力される。そして、制御装置90は、測定周波数fsとして、測定範囲内の周波数をすべて走査したか否かを判定する(ステップS106)。具体的には、測定周波数fsが、測定範囲の最大値と一致したか否かを判定することにより、測定範囲内の周波数をすべて走査したか否かを判定する。
 この判定結果が肯定の場合には、制御装置90は、インピーダンス測定処理を終了する。一方、ステップS106の判定結果が否定の場合には、制御装置90は、測定周波数fsを更新して(ステップS107)、再びステップS103の処理を実行する。更新方法は任意であるが、例えば、測定周波数fsに所定値を加算して、新たな測定周波数fsを設定すればよい。なお、加算する所定値が大きい場合、インピーダンスなどが大きく変更する場合があるため、測定周波数fsの変更幅はなるべく小さいほうが望ましい。
 以上、第1実施形態の電池監視装置50は、以下の効果を有する。
 各電池セル42の電圧変動Viの合計値がゼロとなるように、演算装置61により算出された各電池セル42のインピーダンスZi及び位相差θiに基づいて、各電池セル42ごとに流させる交流電流の振幅指定値Isi及び位相指定値θsiを特定した。
 より詳しくは、グループG1に含まれる第1電池セル42aを基準とし、基準とする第1電池セル42aから出力させる交流電流の振幅指定値Isiを「Id」とする。そして、各電池セル42の電圧変動V1、V2の振幅が同じとなるように、基準とする第1電池セル42aのインピーダンスZ1と、グループG1に含まれる第2電池セル42bのインピーダンスZ2との逆数比率をとることにより、第2電池セル42bから出力させるべき交流電流の振幅指定値Is2を特定した。
 具体的には、前回のステップS104において取得された(つまり、最新の)各電池セル42のインピーダンスZ1~Z6に基づいて、ステップS105において、数式(16)及び数式(17)により、第1電池セル42aの振幅指定値Is1及び第2電池セル42bの振幅指定値Is2を特定した。なお、他のグループG2,G3も同様に特定した。
 そして、グループG1内の第1電池セル42a、第2電池セル42bにおける各電圧変動V1,V2の位相のずれが同じ(等間隔)となるように位相指定値θs1,θs2を決定した。具体的には、前回のステップS104において入力された(つまり、最新の)位相差θ1~θ6に基づいて、ステップS105において、数式(22)及び数式(23)により、第1電池セル42aの位相指定値θs1及び第2電池セル42bの位相指定値θs2を特定した。なお、他のグループG2,G3も同様に特定した。
 以上により、フィルタなどのノイズ抑制用の回路を設けなくても、組電池40全体における電圧変動を抑え、ノイズを抑制することができる。
 また、第1電池セル42a~第6電池セル42fから出力させる交流電流の振幅指定値Is1~Is6の初期値として、それぞれ同じ値「Ic」を設定した。また、第1電池セル42aから出力させる交流電流と、当該第1電池セル42aとペアとなる第2電池セル42bから出力させる交流電流とが逆相となるように、位相指定値θs1,θs2の初期値を設定した。他の位相指定値θs3~θs6の各初期値も同様に設定した。これにより、インピーダンスZi及び位相差θiが検出されていない状況であっても、ノイズの発生を極力抑制することが可能となる。
 測定周波数fsを所定値ずつ増加するように更新した。これにより、測定周波数fsを測定範囲内でランダムに決定する場合に比較して、ノイズを抑制することが可能となる。
 (第2実施形態)
 第1実施形態では、グループに含まれる電池セル42の数を2つとしたが、3つとしてもよい。以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第2実施形態において、第1実施形態で説明した構成と同一の構成については、同一の符号を付し、説明を省略する。
 図7に基づいて、第2実施形態における決定態様を具体的に説明する。なお、第2実施形態では、第1電池セル42a~第6電池セル42fを2つのグループG1,G2に分けるものとし、グループG1には、第1電池セル42aと第2電池セル42bと第3電池セル42cが含まれるものとして説明する。そして、グループG2には、第4電池セル42dと第5電池セル42eと第6電池セル42fが含まれるものとして説明する。なお、グループG2における決定態様は、グループG1と同様であるため、グループG1における決定態様を中心に説明し、グループG2における決定態様は、省略する。
 図7では、前回のステップS104にて取得(入力)された第1電池セル42a~第3電池セル42cのインピーダンスZiをそれぞれ「Z1」~「Z3」とする。同様に、前回のステップS104にて取得(入力)された位相差θiをそれぞれ「θ1」~「θ3」とする。また、図7では、第1電池セル42aから出力される交流電流を基準として、電圧変動Vi、交流電流、及びインピーダンスZiを複素平面上においてベクトルで表現する。
 まず、第1電池セル42aの電圧変動V1と、第2電池セル42bの電圧変動V2と、第3電池セル42cの電圧変動V3と、を等しくするために、下記の式(30)、(31)により、第2電池セル42bから出力させるべき交流電流の振幅指定値Is2を特定することができる。同様に、下記の式(30)、(32)により、第3電池セル42cから出力させるべき交流電流の振幅指定値Is3を特定することができる。なお、下記、式(30)において、「Id」は任意の数である。
 Is1=Id・・・(30)
 Is2=Is1×Z1/Z2・・・(31)
 Is3=Is1×Z1/Z3・・・(32)
 そして、グループG1内における各電圧変動V1~V3の振幅を同じにする場合において、各電圧変動V1~V3を互いに打ち消すためには、電圧変動V1と電圧変動V2と電圧変動V3とがそれぞれ同じ角度(120°)位相がずれている必要がある。つまり、360°を、グループG1内の電池セル42の数「3」により除算して特定した値だけ、電圧変動V1,V2,V3の位相がずれている必要がある。
 このため、第1電池セル42aから出力させる交流電流を基準とした場合、第2電池セル42bから出力させるべき交流電流の位相指定値θs2は、下記の式(33)、(34)により特定することができる。同様に、第3電池セル42cから出力させるべき交流電流の位相指定値θs3は、下記の式(34)、(35)により特定することができる。
 θs1=0°・・・(33)
 θs2=θ1+120°-θ2・・・(34)
 θs3=θ1+240°-θ3・・・(35)
 このように設定することにより、図7に示すように、電圧変動V1と電圧変動V2と電圧変動V3との合計Vtをゼロに近づけ、ノイズを抑制することが可能となる。以上により、組電池40やグループを構成する電池セル42の数が偶数及び奇数のいずれであっても、ノイズを抑制することが可能となる。
 (第3実施形態)
 以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第3実施形態において、第1実施形態で説明した構成と同一の構成については、同一の符号を付し、説明を省略する。
 第3実施形態では、各電池セル42の状態に応じて、各電池セル42から出力させる交流電流の振幅をそれぞれ変更することにより、各電池セル42の均等化処理を同時に実行するように構成されている。均等化処理とは、各電池セル42の蓄電状態を揃えるように、他の電池セル42に比較して蓄電状態が高い一部の電池セル42をより多く放電させる処理である。
 第3実施形態では、第1電池セル42a~第6電池セル42fを2つのグループG1,G2に分けるものとし、グループG1には、第1電池セル42aと第2電池セル42bと第3電池セル42cが含まれるものとして説明する。そして、グループG2には、第4電池セル42dと第5電池セル42eと第6電池セル42fが含まれるものとして説明する。なお、グループG2における決定態様は、グループG1と同様であるため、グループG1における決定態様を中心に説明し、グループG2における決定態様は、省略する。また、第3実施形態の制御装置90は、電池セル42の蓄電状態を取得可能に構成されており、状態検出部として機能する。
 また、第2実施形態と同様に、前回のステップS104にて取得(入力)された第1電池セル42a~第3電池セル42cのインピーダンスZiをそれぞれ「Z1」~「Z3」とし、位相差θiをそれぞれ「θ1」~「θ3」とする。また、第1電池セル42aから出力される交流電流を基準として、電圧変動Vi、交流電流、及びインピーダンスZiを図8においてベクトルで表現する。
 第3実施形態におけるステップS105の指定値設定処理を図9に示す。制御装置90は、グループG1,G2ごとに均等化処理が必要であるか否かを判定する(ステップS301)。例えば、グループG1,G2内のいずれかの電池セル42の蓄電状態が予め決められた値以上である場合には、均等化処理が必要であると判定する。
 この判定結果が否定の場合、制御装置90は、第2実施形態と同様に、各電圧変動Viを等しくするように、振幅指定値Is1~Is6を決定し、また、所定角度ずつ位相がずれるように、位相指定値θs1~θs6を決定する(ステップS302)。
 一方、ステップS301の判定結果が肯定の場合、制御装置90は、グループG1,G2内で最も蓄電状態が高い電池セル42を特定する(ステップS303)。つまり、グループG1,G2内で放電させるべき電池セル42を特定する。
 そして、制御装置90は、最も蓄電状態が高い電池セル42から出力させる交流電流の振幅指定値Is1~Is6を、他の電池セル42に比較して大きくするように決定する(ステップS304)。
 例えば、第3実施形態におけるステップS303において、放電させる電池セル42として、第1電池セル42aが特定された場合、下記の式(41)~(43)により、振幅指定値Is1~Is3を決定する。式(41)において、「Id」は任意の数である。また、通常の電池セル42において、Z1/Z2及びZ1/Z3は、2以上となることはない。このため、振幅指定値Is1が他の振幅指定値Is2,Is3よりも大きくなる。
 Is1=2×Id・・・(41)
 Is2=Id×Z1/Z2・・・(42)
 Is3=Id×Z1/Z3・・・(43)
 なお、放電させる電池セル42として、第1電池セル42aが特定された場合について例示したが、第2電池セル42b,第3電池セル42cを放電させる場合についても同様である。また、グループG2も同様にして振幅指定値Isiが決定される。
 そして、制御装置90は、各電池セル42の電圧変動Viの合計値が閾値以下となるように、ステップS303で決定された振幅指定値Is1~Is6、前回のステップS104にて取得されたインピーダンスZ1~Z6及び位相差θ1~θ6に基づいて、位相指定値θs1~θs6を算出する(ステップS305)。つまり、制御装置90は、各電圧変動V1~V6が互いに打ち消されるように、位相指定値θs1~θs6を決定する。
 第3実施形態におけるステップS303において、前述したように、放電させる電池セル42として、第1電池セル42aが特定された場合、電圧変動V1は、他の電圧変動V2,V3の2倍となる。
 このため、各電圧変動V1~V3が互いに打ち消されるためには、電圧変動V1と電圧変動V2との位相差が150°となり、かつ、電圧変動V1と電圧変動V3との位相差が210°となり、かつ、電圧変動V2と電圧変動V3との位相差が60°となるように位相指定値θs1~θs3を決定すればよい。すなわち、交流電流の位相指定値θs1~θs3は、下記の式(44)~(46)に示すように決定すればよい。
 θs1=0°・・・(44)
 θs2=θ1+150°-θ2・・・(45)
 θs3=θ1+210°-θ3・・・(46)
 なお、放電させる電池セル42として、第1電池セル42aが特定された場合について例示したが、第2電池セル42b,第3電池セル42cを放電させる場合についても同様である。また、グループG2も同様にして位相指定値θsiが決定される。
 そして、ステップS105の指定値設定処理を終了する。このように設定することにより、図8に示すように、電圧変動V1と電圧変動V2と電圧変動V3との合計Vtをゼロに近づけ、ノイズを抑制することが可能となる。また、第1電池セル42aから出力させる交流電流の振幅は、第2電池セル42b及び第3電池セル42cよりも大きくなる。このため、第1電池セル42aの放電量を、第2電池セル42b及び第3電池セル42cよりも多くして、均等化させることが可能となる。これにより、各電池セル42の蓄電状態を揃え、電池セル42のうち一部が過充電となることを抑制することができる。
 また、均等化させるとともに、インピーダンスを検出しているため、電池セル42からの放電電流が無駄とならず、消費電力を抑えることができる。
 なお、上記第3実施形態において、第1電池セル42a(最も放電させるべき電池セル42)から出力させる交流電流の振幅指定値は、他の交流電流の振幅よりも大きくなるのであれば、任意に変更してもよい。この場合、電圧変動Viの合計値が閾値以下(例えばゼロ)となるように、適宜、位相指定値θsを決定する必要がある。
 また、第3実施形態では、最も蓄電状態が高い電池セル42から出力させる交流電流の振幅指定値を他の振幅指定値よりも大きくした。この別例として、複数の電池セル42から出力させる交流電流の振幅指定値を他の振幅指定値よりも大きくしてもよい。例えば、第3実施形態において、第1電池セル42a及び第2電池セル42bから出力させる交流電流の振幅指定値Is1,Is2を振幅指定値Is3よりも高くしてもよい。この場合、電圧変動Viの合計値が閾値以下(例えばゼロ)となるように、適宜、位相指定値θsiを決定する必要がある。
 (第4実施形態)
 以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第4実施形態において、第1実施形態で説明した構成と同一の構成については、同一の符号を付し、説明を省略する。
 第1実施形態~第3実施形態では、インピーダンスZiが電池セル42ごとに異なると、各電池セル42から出力させる交流電流の振幅が異なることとなる。例えば、数式(16)及び(17)に基づいて振幅指定値Is1,Is2が算出される場合、インピーダンスZ1,Z2が異なれば、振幅指定値Is1,Is2も異なることとなる。この場合、電池セル42ごとに放電量が異なることとなり、各電池セル42の蓄電状態にばらつきが生じる原因となりうる。
 そこで、第4実施形態では、各電池セル42から出力させる交流電流の振幅指定値Isを同じにしたうえで、電圧変動Viの合計値が閾値以下(例えば、ゼロ)となるように、位相指定値θsiを決定することとしている。
 まず、原理について図10及び図11に基づいて説明する。なお、第4実施形態では、第1電池セル42a~第6電池セル42fを2つのグループG1,G2に分けるものとし、グループG1には、第1電池セル42aと第2電池セル42bと第3電池セル42cが含まれるものとして説明する。そして、グループG2には、第4電池セル42dと第5電池セル42eと第6電池セル42fが含まれるものとして説明する。なお、グループG2における決定態様は、グループG1と同様であるため、グループG1における決定態様を中心に説明し、グループG2における決定態様は、省略する。
 また、第2実施形態と同様に、前回のステップS104にて取得(入力)された第1電池セル42a~第3電池セル42cのインピーダンスZiをそれぞれ「Z1」~「Z3」とし、位相差θiをそれぞれ「θ1」~「θ3」とする。また、第1電池セル42aから出力される交流電流を基準として、電圧変動Vi、交流電流、及びインピーダンスZiを図10においてベクトルで表現する。
 図10に示すように、各電池セル42から出力させる交流電流の振幅指定値Is1~Is3を同じにした場合、インピーダンスZ1~Z3の違いにより、電圧変動V1~V3の振幅が異なることとなる。しかしながら、電圧変動V1と電圧変動V2との位相差θ12と、電圧変動V2と電圧変動V3との位相差θ23と、電圧変動V3と電圧変動V1との位相差θ31と、を適切に変更することにより、図11に示すように電圧変動V1~V3をサイクリックさせる(循環的に配置する)ことができる。つまり、電圧変動V1の終点と電圧変動V2の始点とを一致させ、かつ、電圧変動V2の終点と電圧変動V3の始点とを一致させ、かつ、電圧変動V3の終点と電圧変動V1の始点とを一致させることが可能となる。
 このように電圧変動V1~V3をサイクリックさせた場合、電圧変動V1~V3(ベクトル値)の合計は、ゼロとなり、電圧変動V1~V3を互いに打ち消すことが可能となる。そして、各位相差θ12,θ23,θ31は、各位相差θ1~θ3を考慮して、位相指定値θsiを適切に設定することにより、調整可能である。以下、この原理を採用した第4実施形態におけるステップS105の指定値設定処理について図12に基づいて説明する。
 制御装置90は、ステップS104の処理を終了すると、各電池セル42に流させる交流電流の振幅指定値Is1~Is3として任意の同じ値(例えば、Id)を設定する(ステップS401)。
 次に、制御装置90は、ステップS104において取得された最新の各電池セル42のインピーダンスZ1~Z3と、ステップS401において設定された振幅指定値Is1~Is3に基づいて、各電池セル42の電圧変動V1~V3の大きさ(絶対値、スカラー値)を算出する(ステップS402)。
 次に、制御装置90は、数式(51),(52)に基づいて、電圧変動V1と電圧変動V2との位相差θ12と、電圧変動V3と電圧変動V1との位相差θ31と、を算出する(ステップS403)。なお、数式(51),(52)において、V1~V3は、ステップS402で算出された値である。
Figure JPOXMLDOC01-appb-M000002
 そして、制御装置90は、数式(53)~(55)により、ステップS403で算出された位相差θ12,θ31と、ステップS104で取得された最新の位相差θ1~θ3に基づいて、位相指定値θs1~θs3を算出する(ステップS404)。そして、ステップS105の指定値設定処理を終了する。
 θs1=0・・・(53)
 θs2=θ1+(180°-θ12)-θ2・・・(54)
 θs3=θ1+(180°+θ31)-θ3・・・(55)
 以上のように構成したことにより、電圧変動V1~V3の合計値(ベクトル合計値)をゼロに近づけて、ノイズを抑制することができる。それとともに、各電池セル42から出力させる交流電流の振幅を同じにし、電池セル42ごとに放電量を同じにすることができる。つまり、インピーダンスを検出する際、各電池セル42の蓄電状態にばらつきが生じることを抑制することができる。
 (第5実施形態)
 以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第5実施形態において、第1実施形態で説明した構成と同一の構成については、同一の符号を付し、説明を省略する。
 第4実施形態では、振幅指定値Isを常に同一としたが、均等化処理が必要である場合には、振幅指定値Isiを異ならせてもよい。この場合であっても、位相指定値θsiを適切に設定すれば、電圧変動の合計値を閾値以下(例えばゼロ)に抑制することができる。
 原理について図13及び図14に基づいて説明する。なお、第5実施形態では、第1電池セル42a~第6電池セル42fを2つのグループG1,G2に分けるものとし、グループG1には、第1電池セル42aと第2電池セル42bと第3電池セル42cが含まれるものとして説明する。そして、グループG2には、第4電池セル42dと第5電池セル42eと第6電池セル42fが含まれるものとして説明する。なお、グループG2における決定態様は、グループG1と同様であるため、グループG1における決定態様を中心に説明し、グループG2における決定態様は、省略する。
 また、第2実施形態と同様に、前回のステップS104にて取得(入力)された最新の第1電池セル42a~第3電池セル42cのインピーダンスZiをそれぞれ「Z1」~「Z3」とし、位相差θiをそれぞれ「θ1」~「θ3」とする。また、第1電池セル42aから出力される交流電流を基準として、電圧変動Vi、交流電流、及びインピーダンスZiを図13においてベクトルで表現する。
 図13に示すように、各電池セル42から出力させる交流電流の振幅指定値Is1の大きさを他の振幅指定値Is2,Is3よりも大きくした場合であっても、位相差θ12,θ23,θ31を適切に変更することにより、図14に示すように電圧変動V1~V3をサイクリックさせる(循環的に配置する)ことができる。つまり、電圧変動V1の終点と電圧変動V2の始点とを一致させ、かつ、電圧変動V2の終点と電圧変動V3の始点とを一致させ、かつ、電圧変動V3の終点と電圧変動V1の始点とを一致させることが可能となる。
 このように電圧変動V1~V3をサイクリックさせた場合、電圧変動V1~V3(ベクトル値)の合計は、ゼロとなり、電圧変動を打ち消すことが可能となる。そして、各位相差θ12,θ23,θ31は、各位相差θ1~θ3を考慮して、位相指定値θsiを適切に設定することにより、調整可能である。
 以下、この原理を採用した第5実施形態における電池監視装置50の構成、及び第5実施形態におけるインピーダンス検出処理について説明する。第5実施形態において、制御装置90は、インピーダンス検出部60からインピーダンスZiとともに、電圧変動Viを取得可能に構成されている。
 次に、図15に基づいてインピーダンス検出処理について説明する。インピーダンス検出処理を開始すると、制御装置90は、第1実施形態のステップS102と同様にして、測定周波数fsとして初期値を設定する(ステップS501)。
 次に、制御装置90は、各電池セル42から出力させる交流電流の振幅指定値Is1~Is3を設定する(ステップS502)。ステップS502において、均等化処理が必要でないと判定された場合には、制御装置90は、交流電流の振幅指定値Is1~Is3としてすべて同じ値を設定する。その一方、均等化処理が必要であると判定した場合には、放電させるべき電池セル42から出力させる交流電流の振幅指定値Isiを他の振幅指定値Isiよりも大きく設定する。
 次に、制御装置90は、測定周波数fsに初期値が設定されているか否かを判定する(ステップS503)。すなわち、インピーダンス検出処理が開始されてから、初めてのインピーダンスZ1~Z3等の検出であるか否かを判定する。
 ステップS503の判定結果が肯定の場合、制御装置90は、ステップS504の処理へ移行し、式(61)~(62)に基づいて、第1電池セル42a~第3電池セル42cを流れる交流電流Is1~Is3がサイクリックとなるように、位相差θ12,θ31を算出する(ステップS504)。
 なお、第1電池セル42a~第3電池セル42cを流れる交流電流は、電圧変動V1~V3とほぼ同位相となるため、電圧変動V1~V3をサイクリックさせた場合と同様に算出可能である。また、式(61)~(62)において、ステップS502で設定された振幅指定値Isiを利用するのは、初回であるため、後述するステップS508において、電圧変動V1~V3が取得されていないからである。
Figure JPOXMLDOC01-appb-M000003
 一方、ステップS503の判定結果が否定の場合、制御装置90は、ステップS505の処理へ移行し、式(63)~(64)に基づいて、位相差θ12,θ31を算出する(ステップS505)。なお、式(63)~(64)において、電圧変動V1~V3は、前回のステップS508で取得された最新の電圧変動V1~V3を利用する。
Figure JPOXMLDOC01-appb-M000004
 次に、制御装置90は、式(65)~(67)に基づいて、位相指定値θs1~θs3を算出する(ステップS506)。より詳しくは、電圧変動V2と電圧変動V3の合計(ベクトル値)が電圧変動V1と逆相となるように、位相指定値θs1~θs3を算出する。なお、式(65)~(67)では、ステップS504またはステップS505で算出された位相差θ12,θ31を利用する。
 θs1=0・・・(65)
 θs2=θ1+(180°-θ12)-θ2・・・(66)
 θs3=θ1+(180°+θ31)-θ3・・・(67)
 そして、制御装置90は、第1電池セル42a~第3電池セル42cの各インピーダンス検出部60に対して、振幅指定値Is1~Is3、位相指定値θs1~θs3及び測定周波数fsをそれぞれ指示し、インピーダンスZ1~Z3等の検出を指示する(ステップS507)。
 振幅指定値Is1~Is3、位相指定値θs1~θs3及び測定周波数fsがそれぞれ出力されると、各インピーダンス検出部60は、それらの指定値に基づいて、第1電池セル42a~第3電池セル42cから交流電流を出力させる。
 そして、各インピーダンス検出部60は、交流電流に基づく第1電池セル42a~第3電池セル42cの電圧変動V1~V3をそれぞれ入力し、電圧変動Viに基づいて前述したように、インピーダンスZ1~Z3及び位相差θ1~θ3を算出し、制御装置90に対して出力する。また、各インピーダンス検出部60は、電圧変動V1~V3を、制御装置90に対して出力する。
 制御装置90は、算出結果(電圧変動V1~V3,インピーダンスZ1~Z3及び位相差θ1~θ3)を入力する(ステップS508)。そして、制御装置90は、測定周波数fsとして、測定範囲内の周波数をすべて走査したか否かを判定する(ステップS509)。この判定結果が肯定の場合には、制御装置90は、インピーダンス測定処理を終了する。一方、ステップS509の判定結果が否定の場合には、制御装置90は、第1実施形態のステップS107と同様にして、測定周波数fsを更新して(ステップS510)、再びステップS502の処理を実行する。
 以上、第5実施形態の電池監視装置50は、以下の効果を有する。
 これにより、均等化処理が必要でない場合には、各電池セル42の放電量を同じにしつつ、インピーダンスZi及び位相差θiを検出することができる。その際、電圧変動Viの合計を閾値以下として、ノイズを抑制することができる。
 また、均等化処理が必要である場合には、放電が必要な電池セル42から出力させる交流電流の振幅指定値Isiを、他の電池セル42よりも大きくしつつ、インピーダンスZi及び位相差θiを検出することができる。その際にも、電圧変動Viの合計を閾値以下として、ノイズを抑制することができる。
 (他の実施形態)
 なお、本開示は上記実施形態に限定されるものではなく、本開示の要旨の範囲内において種々の変形実施が可能である。なお、以下では、各実施形態で互いに同一又は均等である部分には同一符号を付しており、同一符号の部分についてはその説明を援用する。
 ・上記実施形態では、電池監視装置50は、電池セル42から交流電流を出力させていたが、他の電源(外部電源など)から電池セル42に対して交流電流を印加してもよい。
 ・上記実施形態では、制御装置90が測定周波数fsを更新したが、ECU100などの外部装置からの指示に基づいて、測定周波数fsを設定してもよい。
 ・上記実施形態では、最新のインピーダンスZi及び位相差θiを利用して、振幅指定値Isi及び位相指定値θsiを特定したが、最新のインピーダンスZi及び位相差θiでなくてもよい。ただし、極力最新のインピーダンスZi及び位相差θiに近い値であることが望ましい。
 ・上記実施形態において、電圧変動の合計値の閾値は、任意の数であり、ノイズの許容値に応じて適宜設定されればよい。例えば、ゼロでもよい。
 ・上記実施形態では、電池セルを最大3つのグループで説明したが4つ以上のグループで分けてもよい。例えば、第5実施形態において、均等化能力をさらに向上するためにIs1を極端に大きくしていくと、図14において「|V1|>|V2|+|V3|」となり、サイクリックに配置できなくなる場合があるが、4つ以上のグループとすることでそれを可能とできる。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (4)

  1.  電解質と複数の電極とを含む複数の電池セル(42)が直列接続された組電池(40)に対して適用され、前記各電池セルの状態を監視する電池監視装置(50)において、
     前記各電池セルに交流電流をそれぞれ流させる電流発生部(62)と、
     前記交流電流が流れたときにおける前記各電池セルの電圧変動(Vi)をそれぞれ取得する電圧取得部(62)と、
     前記各電池セルに流れた交流電流及び前記電圧取得部により取得された電圧変動に基づいて、前記電池セルのインピーダンス(Zi)、及び前記交流電流と前記電圧変動との位相差(θi)を前記各電池セルごとにそれぞれ算出する演算部(61)と、
     前記電流発生部に対して、前記各電池セルごとに前記交流電流の振幅(Isi)及び位相(θsi)を指定する電流制御部(90)と、を備え、
     前記電流制御部は、前記各電池セルの電圧変動の合計値(Vt)が閾値以下となるように、前記演算部により算出された前記各電池セルのインピーダンス及び位相差に基づいて、前記各電池セルごとに流させる交流電流の振幅及び位相のうち少なくともいずれか一方を特定し、特定した交流電流の振幅及び位相のうち少なくともいずれか一方を各電池セルに対して指定する電池監視装置。
  2.  前記電流制御部は、
     前記演算部により算出された各電池セルの前記インピーダンスに基づいて、前記各電池セルの電圧変動の大きさが同一となるように、前記各電池セルから出力させる交流電流の振幅を決定するとともに、
     前記演算部により算出された各電池セルの前記位相差に基づいて、前記各電池セルの電圧変動の位相ずれが等間隔となるように、前記各電池セルから出力させる交流電流の位相を決定する請求項1に記載の電池監視装置。
  3.  前記組電池は、3つ以上の前記電池セルから構成され、
     前記各電池セルの蓄電状態を検出する状態検出部(90)を備え、
     前記電流発生部は、前記各電池セルから交流電流を出力させるように構成されており、
     前記電流制御部は、
     前記状態検出部により検出された蓄電状態に基づいて、前記各電池セルごとに出力させる交流電流の振幅を決定する一方、
     前記各電池セルの電圧変動の合計値が閾値以下となるように、決定された前記交流電流の振幅、前記演算部により算出された前記各電池セルのインピーダンス及び位相差に基づいて、前記各電池セルごとに出力させる前記交流電流の位相を算出し、算出した前記交流電流の位相を各電池セルに対して指定する請求項1に記載の電池監視装置。
  4.  前記組電池は、3つ以上の前記電池セルから構成され、
     前記電流発生部は、前記各電池セルから交流電流を出力させるように構成されており、
     前記電流制御部は、
     各電池セルごとに流させる交流電流の振幅を同一に決定し、
     前記各電池セルの電圧変動の合計値が閾値以下となるように、前記演算部により算出された前記各電池セルのインピーダンス及び位相差に基づいて、前記各電池セルごとに出力させる前記交流電流の位相を算出し、算出した前記交流電流の位相を前記各電池セルに対して指定する請求項1に記載の電池監視装置。
PCT/JP2020/040005 2019-10-30 2020-10-23 電池監視装置 WO2021085347A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080076684.7A CN114616478A (zh) 2019-10-30 2020-10-23 电池监视装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-197376 2019-10-30
JP2019197376A JP7167898B2 (ja) 2019-10-30 2019-10-30 電池監視装置

Publications (1)

Publication Number Publication Date
WO2021085347A1 true WO2021085347A1 (ja) 2021-05-06

Family

ID=75713344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040005 WO2021085347A1 (ja) 2019-10-30 2020-10-23 電池監視装置

Country Status (3)

Country Link
JP (1) JP7167898B2 (ja)
CN (1) CN114616478A (ja)
WO (1) WO2021085347A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215438A1 (ja) * 2021-04-05 2022-10-13 株式会社デンソー 電池測定システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179017A (ja) * 1994-12-26 1996-07-12 Bridgestone Corp 電池インピーダンスのモニタ装置
JP2012181037A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 劣化推定装置、劣化推定方法、及びプログラム
JP2013537638A (ja) * 2010-08-27 2013-10-03 インペリアル イノヴェイションズ リミテッド 電気自動車、ハイブリッド電気自動車、および他の用途でのバッテリ監視
JP2018055957A (ja) * 2016-09-29 2018-04-05 清水建設株式会社 電力管理装置、電力管理方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179017A (ja) * 1994-12-26 1996-07-12 Bridgestone Corp 電池インピーダンスのモニタ装置
JP2013537638A (ja) * 2010-08-27 2013-10-03 インペリアル イノヴェイションズ リミテッド 電気自動車、ハイブリッド電気自動車、および他の用途でのバッテリ監視
JP2012181037A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 劣化推定装置、劣化推定方法、及びプログラム
JP2018055957A (ja) * 2016-09-29 2018-04-05 清水建設株式会社 電力管理装置、電力管理方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215438A1 (ja) * 2021-04-05 2022-10-13 株式会社デンソー 電池測定システム

Also Published As

Publication number Publication date
JP2021072196A (ja) 2021-05-06
JP7167898B2 (ja) 2022-11-09
CN114616478A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2020218373A1 (ja) 電池監視装置
US11644512B2 (en) Battery monitoring device
US11630156B2 (en) Battery monitoring apparatus
JP5985775B1 (ja) 単独運転検出装置及び単独運転検出方法
JP7552776B2 (ja) 電池監視装置
JP7205410B2 (ja) 電池監視装置
WO2021085347A1 (ja) 電池監視装置
CN103404019B (zh) 用于在考虑电流振荡的同时控制多相电动机的系统和方法
JP7192697B2 (ja) 電池監視装置
WO2023276546A1 (ja) 電池測定装置及び電池測定方法
WO2023276577A1 (ja) 電池測定装置及び電池測定方法
JP2017060243A (ja) 誘導加熱装置とその出力電力制御方法。
JP7111075B2 (ja) 電池監視装置
JP2023154277A (ja) パワーユニット
WO2023276547A1 (ja) 電池測定装置
WO2022259800A1 (ja) 電池測定装置及び電池状態測定方法
CN112180263B (zh) 电池监视装置
JP2019102136A (ja) 燃料電池システム
WO2022215438A1 (ja) 電池測定システム
WO2023053352A1 (ja) 電気装置
JP2022185373A (ja) 電流検出装置およびモータ制御装置
JP2023070938A (ja) 電源装置
CN118091455A (zh) 电池阻抗谱的获取方法及储能系统
JP5460394B2 (ja) 交流電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880772

Country of ref document: EP

Kind code of ref document: A1