WO2009101961A1 - 硬化性樹脂組成物および樹脂硬化物 - Google Patents

硬化性樹脂組成物および樹脂硬化物 Download PDF

Info

Publication number
WO2009101961A1
WO2009101961A1 PCT/JP2009/052280 JP2009052280W WO2009101961A1 WO 2009101961 A1 WO2009101961 A1 WO 2009101961A1 JP 2009052280 W JP2009052280 W JP 2009052280W WO 2009101961 A1 WO2009101961 A1 WO 2009101961A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
resin composition
cured
epoxy resin
curable resin
Prior art date
Application number
PCT/JP2009/052280
Other languages
English (en)
French (fr)
Inventor
Hajime Kishi
Yumi Kunimitsu
Jin Imade
Shinya Oshita
Yoshihiro Morishita
Mitsunori Asada
Original Assignee
Kuraray Co., Ltd.
Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd., Hyogo filed Critical Kuraray Co., Ltd.
Priority to CA2715384A priority Critical patent/CA2715384C/en
Priority to CN2009801051366A priority patent/CN101952365B/zh
Priority to JP2009553431A priority patent/JP5478266B2/ja
Priority to US12/867,797 priority patent/US8697811B2/en
Priority to EP09710464A priority patent/EP2253666B1/en
Publication of WO2009101961A1 publication Critical patent/WO2009101961A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a curable epoxy resin composition and a cured resin product obtained by curing the same. More specifically, the present invention provides a cured resin that provides a resin cured product having excellent fracture toughness and peel adhesion strength while also maintaining excellent heat resistance and elastic modulus inherent to an epoxy resin, and also excellent in shear bond strength.
  • the present invention relates to a conductive epoxy resin composition and a cured resin product comprising the same.
  • Epoxy resins are excellent in heat resistance, chemical resistance, corrosion resistance, electrical properties, etc., and have high elastic modulus, so they can be used as sealing materials for electrical and electronic materials, fiber reinforced composite materials for sports applications, aviation materials, etc. It is widely used in various applications such as representative matrix resins, electrical laminates such as printed circuit boards, automobile parts, civil engineering / architectural coatings, and structural adhesives.
  • epoxy resins are inferior in toughness, have the disadvantages of being brittle and easily chipped, and are not sufficient in terms of adhesion to various substrates, and their improvement is required.
  • reactive rubber and polymer particles having a core / shell structure are generally added in order to improve the toughness of a thermosetting resin composition mainly composed of an epoxy resin and make it difficult to break.
  • a thermosetting resin composition mainly composed of an epoxy resin and make it difficult to break.
  • CBN carboxyl terminal
  • ATBN random copolymer of butadiene and acrylonitrile having an amino terminal
  • polymer particles having a shell structure polymer particles composed of a polybutyl acrylate or polybutadiene rubber core and a polymethyl methacrylate shell are known (see Non-Patent Documents 1 and 2).
  • thermoplastic resin such as polycarbonate, polysulfone, polyethersulfone, polyetherimide, aromatic polyester and a curing agent for epoxy resin are blended with epoxy resin.
  • An epoxy resin composition for a prepared prepreg has been proposed (see Patent Document 1).
  • this epoxy resin composition has a high viscosity and is inferior in handleability and processability, and the cured resin obtained from this epoxy resin composition is not satisfactory in terms of heat resistance and solvent resistance.
  • incompatible parts and voids may occur in the cured resin.
  • Block copolymer, block copolymer composed of polybutadiene-polymethyl methacrylate, block copolymer composed of polymethyl methacrylate-polybutadiene-polymethyl methacrylate, or polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate See Patent Documents 2 to 4).
  • a block copolymer having a polybutadiene block (a block copolymer made of polystyrene-polybutadiene-polymethyl methacrylate, or a polybutadiene-polymethyl methacrylate).
  • a block copolymer polymethyl methacrylate-polybutadiene-polymethyl methacrylate block copolymer
  • the toughness and impact resistance of the epoxy resin are improved to some extent, but the polybutadiene block has unsaturation. Due to the double bond, the weather resistance of the cured resin obtained from the epoxy resin composition tends to be lowered.
  • the present inventors have prepared a block copolymer composed of polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate described in Patent Documents 2 to 4 described above together with an epoxy resin curing agent together with an epoxy resin.
  • a curable epoxy resin composition cured to produce a resin cured product, and its physical properties were examined, the epoxy resin cured product obtained from the epoxy resin composition blended with the block copolymer Is superior in weather resistance because the block copolymer does not have an unsaturated double bond, but it is more broken than the block copolymer consisting of polystyrene-polybutadiene-polymethyl methacrylate.
  • Non-Patent Documents 1 and 2 Compared to the case where polymer particles having a core / shell structure described in Non-Patent Documents 1 and 2 are added and the effect of improving toughness is low. Even, the effect of improving fracture toughness is equivalent or low, were found to not have a fracture toughness that may be fully satisfactory.
  • aromatic polyamines such as diaminodiphenyl sulfone are exclusively used as the curing agent for the epoxy resin. Destruction of a cured resin product obtained by curing an epoxy resin composition containing a block copolymer composed of polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate actually used in Examples of Reference 4 It is hard to say that the toughness is still sufficient.
  • the purpose of the present invention is to maintain excellent properties such as heat resistance and elastic modulus inherent to epoxy resins, and to have excellent fracture toughness, and is durable and durable even when subjected to external force, and is not easily destroyed.
  • a curable epoxy resin composition capable of forming a laminated structure or a composite structure having excellent strength by firmly adhering to various materials, and further forming a resin cured product having excellent weather resistance, solvent resistance, and the like. It is providing the epoxy resin hardened
  • the block copolymer has a methacrylic acid alkyl ester polymer block and an acrylic acid alkyl ester polymer block, and has a specific weight average molecular weight and a molecular weight distribution below (Mw / Mn).
  • Mw / Mn a specific weight average molecular weight and a molecular weight distribution below
  • the present inventors have said that the epoxy resin composition is firmly bonded to various materials, and the cured resin has a high peel adhesive strength and is excellent in shear adhesive strength, weather resistance, It was found that the solvent resistance and other properties are also excellent.
  • the present inventors when the bisphenol A type epoxy resin is used as the epoxy resin and the phenol novolac resin is used as the epoxy resin curing agent in the epoxy resin composition, the present inventors have obtained fracture toughness, peel adhesion strength, shear adhesion. It has been found that an epoxy resin composition can be obtained that gives a cured resin having further excellent properties such as strength.
  • the present inventors have excellent fracture toughness, peel adhesive strength and shear adhesive strength possessed by the cured resin of the epoxy resin composition in a microphase separation structure, that is, a cured epoxy resin matrix.
  • the acrylic acid alkyl ester polymer block (soft segment) in the specific acrylic block copolymer described above is dispersed in a micro spherical structure of uniform size or dispersed in a micro linear structure. It was found to be based on the microphase separation structure.
  • the present inventors further improve the fracture toughness and peel adhesion strength of the cured resin when dispersed in a micro linear structure among the dispersed states forming the micro phase separation structure described above.
  • the present inventors have found that a micro linear structure is formed depending on the composition and is oriented and dispersed in a predetermined direction. Moreover, it discovered that fracture toughness and peel adhesion strength were further improved when oriented and dispersed in a predetermined direction, and the present invention was completed based on these various findings.
  • the present invention (1) (i) A curable resin composition containing an epoxy resin (a), an epoxy resin curing agent (b), and an acrylic block copolymer (c); (Ii)
  • the acrylic block copolymer (c) is an acrylic block copolymer that satisfies the following requirements ( ⁇ ) to ( ⁇ ); ( ⁇ ) Block copolymer having one or more polymer blocks A mainly composed of structural units derived from alkyl methacrylate and one or more polymer blocks B mainly composed of structural units derived from alkyl acrylate Coalesce; ( ⁇ ) a weight average molecular weight (Mw) of 30,000 to 300,000; ( ⁇ ) molecular weight distribution [weight average molecular weight (Mw) / number average molecular weight (Mn)] is 1.5 or less; and ( ⁇ )
  • the content of the polymer block A is 3 to 60% by mass; (Iii) 1 to 70 parts by mass of the epoxy resin curing agent (b) and 1 to 50 parts by mass of the acrylic block copo
  • the curable resin composition according to (1) further comprising a curing accelerator; (3) The curable resin composition according to the above (1) or (2), wherein the epoxy resin (a) is a bisphenol A type epoxy resin; (4) The curable resin composition according to any one of (1) to (3), wherein the epoxy resin curing agent (b) is a phenol novolac resin; (5)
  • the acrylic block copolymer (c) comprises a triblock copolymer comprising a polymer block A, a polymer block B, a polymer block A and a diblock copolymer comprising a polymer block A and a polymer block B.
  • the present invention also provides: (8) The curable resin composition according to any one of (1) to (7), wherein the content of the polymer block A in the acrylic block copolymer (c) is 15 to 35% by mass; (9) When cured at a temperature of 20 ° C. to 250 ° C. for 1 to 24 hours, the polymer block B in the acrylic block copolymer (c) has a micro phase separation structure in the matrix made of the cured epoxy resin.
  • the polymer block B in the acrylic block copolymer (c) has a micro linear structure in the matrix made of the cured epoxy resin.
  • the polymer block B in the acrylic block copolymer (c) has a micro linear structure in a matrix made of a cured epoxy resin.
  • the present invention provides: (12) A cured resin obtained by curing the curable resin composition according to any one of (1) to (11); (13) In the cured epoxy resin matrix, the polymer block B in the acrylic block copolymer (c) has a microphase-separated structure dispersed in a microphase-separated structure. Cured resin; (14) In the cured epoxy resin matrix, the polymer block B in the acrylic block copolymer (c) has a micro phase separation structure in which a micro linear structure is dispersed. Cured resin; (15) A microphase-separated structure in which the polymer block B in the acrylic block copolymer (c) is oriented and dispersed in a predetermined direction in a cured epoxy resin matrix.
  • Cured resin of (14) above having (16) The resin curing according to any one of (12) to (15) above, wherein the fracture toughness value (K1c) according to a single edge notched bending (SENB) test based on ASTM D5045-91 is 1.6 MPa ⁇ m 1/2 or more. Thing; and (17) The resin cured product according to any one of the above (12) to (16), wherein the peel adhesion strength to the aluminum plate at a peel speed of 100 mm / min is 10 N / 25 mm or more based on JIS K 6854-3; It is.
  • K1c fracture toughness value
  • SENB single edge notched bending
  • the cured resin obtained by curing the curable resin composition of the present invention is excellent in fracture toughness while maintaining excellent properties such as excellent heat resistance and elastic modulus inherent to the epoxy resin, and has an external force. Durable, durable and durable even when received.
  • the cured resin obtained by curing the curable resin composition of the present invention is a laminated structure excellent in strength having high peel adhesive strength and high shear adhesive strength by firmly adhering to various materials. A composite structure can be produced, and further, weather resistance and solvent resistance are excellent.
  • the curable resin composition of the present invention takes advantage of the excellent properties described above, sealing materials for electrical and electronic materials, electrical laminates such as printed circuit boards, automobile parts, structural adhesives, electrical insulating materials, It can be effectively used for various applications including matrix resins typified by paints, civil engineering and building materials, sports applications and fiber reinforced composite materials such as aviation materials.
  • the curable resin composition of this invention is a curable resin composition which has an epoxy resin (a) as a main component.
  • an epoxy resin (a) constituting the main component any conventionally known epoxy resin can be used.
  • the epoxy resin (a) that can be used in the present invention include bisphenol type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, diphenylfluorene type epoxy resin.
  • aromatic, aliphatic ring-containing epoxy resins such as halogen, amino group or alkyl-substituted products, glycidyl ester type epoxy resins, naphthalene type epoxy resins, and heterocyclic epoxy resins, isocyanate-modified epoxy resins, diaryl sulfone types Epoxy resin, hydroquinone type epoxy resin, hydantoin type epoxy resin, resorcinol diglycidyl ether, triglycidyl-p-aminophenol, m-aminophenol triglycidyl ether Le, tetraglycidyl methylene dianiline, and (trihydroxy phenyl) methane triglycidyl ether, epoxy resins having two or more epoxy groups in the molecule, such as a tetraphenyl ethane tetraglycidyl ether (polyepoxy compounds).
  • one or more of the above-described epoxy resin such as
  • a bisphenol type epoxy resin is used in terms of handling properties of the curable resin composition, processability, heat resistance of the cured resin, fracture toughness, peel adhesion strength, and the like.
  • the bisphenol type epoxy resin include bisphenol A type epoxy resin obtained by reaction of bisphenol A and epichlorohydrin, bisphenol F type epoxy resin obtained by reaction of bisphenol F and epichlorohydrin, and bisphenol S and epi. Examples thereof include bisphenol S-type epoxy resins obtained by reaction of chlorohydrin, bisphenol AD-type epoxy resins obtained by reaction of bisphenol AD and epichlorohydrin, and halogen or alkyl-substituted products thereof.
  • bisphenol A type epoxy resin is more preferably used from the viewpoint that the handleability and processability of the curable resin composition and the heat resistance of the resin cured product are more excellent, and among them, bisphenol A type diglycidyl ether is more preferable. Further preferably used.
  • the kind of the epoxy resin curing agent (b) used in the curable resin composition of the present invention is not particularly limited, and any conventionally used curing agent for epoxy resins can be used.
  • the epoxy resin curing agent a compound having two or more active groups capable of reacting with an epoxy group at room temperature or a temperature higher than room temperature is generally used.
  • the active group include an amino group and an acid anhydride group. , Azido group, hydroxyl group and the like.
  • a polyphenol compound is preferably used as the epoxy resin curing agent (b) from the viewpoint of forming a cured resin that is well compatible with the acrylic block copolymer (c).
  • Novolak resin (PN) is preferably used.
  • Examples of the classification of the phenol novolac resin include phenol / formaldehyde type novolak and phenol / aralkyl type novolak.
  • phenol novolak resin examples include, for example, phenol novolak, bisphenol A novolak, cresol novolak, xylylene novolak, triphenylmethane novolak, biphenyl novolak, dicyclopentadiene phenol novolak, terpene phenol novolak, and biphenylenemethylene novolak.
  • phenol novolak, bisphenol A novolak and cresol novolak are preferably used.
  • the curable resin composition of this invention may contain the hardening accelerator (d) of an epoxy resin with the above-mentioned epoxy resin hardening
  • the curing accelerator (d) at that time include urea compounds [eg, 3- (3,4-dichlorophenyl) -1,1-dimethylurea], phosphorus compounds (eg, triphenylphosphine), organic A metal salt [for example, Co (III) acetylacetonate etc.], a tertiary amine, etc. can be mentioned, These 1 type (s) or 2 or more types can be used. Of these, phosphorus compounds are preferably used, and triphenylphosphine is more preferably used.
  • the curing accelerator (d) By using the curing accelerator (d) together with the epoxy resin curing agent (b), the curing temperature can be lowered and the curing time can be shortened. Furthermore, the epoxy resin curing agent (b) is dissolved in the epoxy resin (a). The effect that it becomes easy to do is acquired. However, the use of the curing accelerator (d) is not essential and may not be used.
  • the curable resin composition of the present invention contains an acrylic block copolymer (c) that satisfies the following requirements ( ⁇ ) to ( ⁇ ) as a third component. That is, in the present invention, ( ⁇ ) Block copolymer having one or more polymer blocks A mainly composed of structural units derived from alkyl methacrylate and one or more polymer blocks B mainly composed of structural units derived from alkyl acrylate Coalesce; ( ⁇ ) a weight average molecular weight (Mw) of 30,000 to 300,000; ( ⁇ ) molecular weight distribution [weight average molecular weight (Mw) / number average molecular weight (Mn)] is 1.5 or less; and ( ⁇ ) The content of the polymer block A is 3 to 60% by mass; It is necessary to use an acrylic block copolymer that satisfies the requirements ( ⁇ ) to ( ⁇ ).
  • polymer block A mainly composed of a structural unit derived from an alkyl methacrylate refers to “a structural unit derived from an alkyl methacrylate”.
  • a polymer block having a ratio of 80% by mass or more based on the mass of the block A or "a polymer block B mainly composed of a structural unit derived from an alkyl acrylate ester” means "alkyl acrylate ester""Polymer block having a structural unit derived from the above in a proportion of 80% by mass or more based on the mass of the polymer block B".
  • the polymer block A preferably has a proportion of structural units derived from alkyl methacrylate of 90% by mass or more, particularly 95 to 100% by mass.
  • the proportion of the structural unit derived from the alkyl acrylate is preferably 90% by mass or more, particularly preferably 95 to 100% by mass.
  • the acrylic block copolymer (c) may be any block copolymer having at least one polymer block A and at least one polymer block B.
  • the polymer block A is A and the polymer block.
  • examples of the acrylic block copolymer (c) used in the present invention include an AB type diblock copolymer; an ABA type , BAB type, ABC type, BAC type, BCAA type triblock copolymer; (AB) n type, (AB-) nA Type and (BA-) nB type linear polyblock copolymers (wherein n is an integer of 2 or more); (AB-) nX type (X represents a coupling residue) , (CBA-) nX type, (CAB-) nX type star block copolymers (wherein n is 2 or more) Integer); comb block copolymers and the like can be exemplified, can be used alone or in combination of two or more thereof.
  • an ABA type triblock copolymer and an AB type diblock copolymer are preferably used as the acrylic block copolymer (c).
  • the ABA type triblock copolymer is preferably used from the viewpoint of good dispersibility in the curable resin composition of the present invention and exhibiting high fracture toughness and adhesive strength when cured. .
  • the polymer block A having high compatibility with the epoxy resin is used.
  • alkyl methacrylates having 1 to 18 carbon atoms in the alkyl group such as ethylhexyl, n-octyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate and isobornyl methacrylate.
  • the polymer block A may be formed from only one kind of the aforementioned methacrylic acid alkyl ester, or may be formed from two or more kinds. Among them, the polymer block A is formed from methyl methacrylate, and particularly has high compatibility with the epoxy resin. Further, methyl methacrylate is easily and inexpensively available as a general-purpose compound, and is acrylic.
  • the block copolymer (c), and hence the cured resin obtained from the curable resin composition of the present invention containing the block copolymer (c), is preferable from the viewpoint of good weather resistance.
  • the polymer block A of the acrylic block copolymer (c) has a syndiotacticity of 60% by mass or more, more preferably 60 to 90% by mass, particularly 70 to 80% by mass. It is preferably formed from polymethyl methacrylate.
  • the resin cured product comprising the curable resin composition of the present invention has high fracture toughness while maintaining the excellent heat resistance inherent to the epoxy resin.
  • the glass transition temperature of the polymer block A is preferably 100 ° C. or higher, more preferably 100 ° C. to 130 ° C.
  • acrylic acid alkyl ester forming the “structural unit derived from an alkyl acrylate ester” constituting the polymer block B in the acrylic block copolymer examples include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, Alkyl groups such as n-butyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, lauryl acrylate, tridecyl acrylate, stearyl acrylate, etc. Examples thereof include alkyl acrylates having 1 to 18 carbon atoms.
  • the polymer block B may be formed from one kind of the above-mentioned acrylic acid alkyl ester, or may be formed from two or more kinds. Among them, the polymer block B is preferably formed from one or more of ethyl acrylate, butyl acrylate, octyl acrylate, and 2-ethylhexyl acrylate.
  • the glass transition temperature is ⁇ 20 ° C. or lower, preferably ⁇ 30 ° C. to ⁇ 60 ° C.
  • the acrylic block copolymer (c) is a microphase in the cured resin comprising the curable resin composition of the present invention.
  • the curable resin composition of the present invention can be obtained.
  • n-butyl acrylate and 2-ethylhexyl acrylate are readily available as general-purpose compounds at low cost, and polymers formed from one or both of these alkyl acrylate esters Since the block B clearly phase-separates with the polymer block A to form a curable resin composition that gives a resin cured product having excellent fracture toughness and adhesive strength, the polymer block B contains n-butyl acrylate and It is preferably formed from one or both of 2-ethylhexyl acrylate, in particular n-butyl acrylate.
  • the polymer block A in the acrylic block copolymer (c) does not impair the effects of the present invention (generally 20% by mass or less, preferably 10% by mass or less based on the mass of the polymer block A, More preferably, it may have a structural unit derived from a monomer other than the alkyl methacrylate, if necessary.
  • the polymer block B in the acrylic block copolymer (c) is within a range not impairing the effects of the present invention (generally, 20% by mass or less, preferably 10% by mass based on the mass of the polymer block B).
  • more preferably 5% by mass or less may have a structural unit derived from a monomer other than the alkyl acrylate ester, if necessary.
  • polymer block A and the polymer block B examples include, for example, acrylic acid alkyl ester (in the case of the polymer block A); methacrylic acid alkyl ester (in the case of the polymer block B).
  • the polymer block A and the polymer block B are common to methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2-hydroxy (meth) acrylate.
  • Polymer block A and polymer block B are one or more of the above-mentioned structural units. Can have.
  • the two or more polymer blocks A are the same [for example, molecular weight (weight (Average molecular weight and number average molecular weight), molecular structure (composition ratio, arrangement state, configuration, crystal structure, etc. of monomer units) may be exactly the same] or may be different [for example, When one or more of molecular weight (weight average molecular weight and number average molecular weight), molecular structure (composition ratio of monomer units, arrangement state, crystal structure, etc.) are different].
  • the two or more polymer blocks B are the same [for example, molecular weight (Weight average molecular weight and number average molecular weight), molecular structure (composition ratio of monomer units, arrangement state, crystal structure, etc.) may be exactly the same] or may be different [for example, molecular weight When one or more of (weight average molecular weight and number average molecular weight), molecular structure (composition ratio of monomer units, arrangement state, crystal structure, etc.) are different].
  • the acrylic block copolymer (c) a triblock copolymer consisting of polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate and polymethyl methacrylate-polyacrylic acid are used.
  • diblock copolymers composed of n-butyl are preferably used, and in particular, a triblock copolymer composed of polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate is more preferably used.
  • the polymethyl methacrylate block has a proportion of the structural unit derived from methyl methacrylate of 80% by mass based on the mass of the polymer block. More preferably, it is 90% by mass or more, particularly preferably 95 to 100% by mass, and the poly (n-butyl acrylate) block is derived from n-butyl acrylate based on the mass of the polymer block.
  • the proportion of structural units is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 95 to 100% by mass.
  • the weight average molecular weight (Mw) of the acrylic block copolymer (c) used in the present invention is 30,000 to 300,000 in terms of compatibility with the epoxy resin (a) and the effect of improving fracture toughness. [The above requirement ( ⁇ )] is preferably 50,000 to 200,000, more preferably 70,000 to 180,000, and still more preferably 80,000 to 170,000. If the weight average molecular weight (Mw) of the acrylic block copolymer (c) is too small (particularly smaller than 30,000), the effect of improving the fracture toughness, peel adhesion strength, etc. will be insufficient.
  • the weight average molecular weight (Mw) of the acrylic block copolymer (c) is too large (particularly greater than 300,000), the compatibility with the epoxy resin is lowered, and the viscosity of the curable resin composition is increased. Decrease in handleability, processability, and improvement in fracture toughness due to macrophase separation after curing.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of each polymer block constituting the acrylic block copolymer and the acrylic block copolymer in this specification are described in the following examples. They are the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by permeation chromatography (GPC).
  • the molecular weight distribution of the acrylic block copolymer (c) used in the present invention [ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) (Mw / Mn)] is obtained by curing the curable resin composition. From the point which makes the fracture toughness and peeling adhesive strength of the resin cured material obtained more excellent, it is 1.5 or less [the above requirement ( ⁇ )], preferably 1.4 or less. It is more preferably 3 or less, and still more preferably 1.2 or less.
  • a molecular weight distribution (Mw / Mn) having a molecular weight of 1.5 or less and a uniform molecular weight can provide the following effects. That is, (1) When the curable resin composition of the present invention is cured, the polymer block B in the acrylic block copolymer (c) is micro-sized in a matrix made of a cured epoxy resin. It becomes easy to form a resin cured product having a microphase separation structure dispersed in a spherical structure and / or a micro linear structure. By having such a microphase separation structure, the fracture toughness of the resin cured product and The shear adhesive strength is greatly improved along with the peel adhesive strength.
  • the resin toughness having a micro phase separation structure in which the polymer block B is dispersed in a micro linear structure has fracture toughness, peel adhesive strength and shear adhesive strength. Is further improved.
  • the polymer block B in the acrylic block copolymer (c) is dispersed in a micro linear structure in a matrix made of a cured epoxy resin.
  • the micro linear structure composed of the polymer block B is oriented in a predetermined direction (orientated in the predetermined direction) in the matrix composed of the epoxy resin.
  • the acrylic block copolymer (c) in the curable resin composition when the content of the acrylic block copolymer (c) in the curable resin composition is increased, the acrylic block copolymer can be obtained.
  • the polymer phase B in the polymer (c) has a micro linear structure and a micro phase separation structure dispersed in the matrix is more easily formed, and the fracture toughness, peel adhesion strength and shear adhesion strength are improved. A more excellent cured resin can be obtained.
  • An acrylic block copolymer (polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate, etc.) having a molecular weight distribution exceeding 1.5 as described in the above prior art (for example, Patent Document 4) is used.
  • the high molecular weight components may be coarsely separated during curing or the low molecular weight components may bleed out. Coarse separation reduces the mechanical strength, and bleed-out affects the adhesive interface and may reduce the adhesive strength.
  • the acrylic block copolymer (c) having a molecular weight distribution (Mw / Mn) of 1.5 or less since the acrylic block copolymer (c) having a molecular weight distribution (Mw / Mn) of 1.5 or less is used, the low molecular weight component and the high molecular weight component are small, and the curability is high.
  • the acrylic block copolymer (c) In the resin cured product of the resin composition, the acrylic block copolymer (c) is contained in the cured epoxy resin matrix while forming the specific microphase separation structure described in (1) above. Thus, there is no problem that the high molecular weight component of the acrylic block copolymer (c) is coarsely separated or the low molecular weight component bleeds out.
  • the content of the polymer block A is 3 to 60% by mass based on the mass of the acrylic block copolymer (c).
  • ( ⁇ )] is preferably 5 to 52% by mass, more preferably 10 to 45% by mass, and still more preferably 15 to 35% by mass.
  • the content of the polymer block B is 97 to 40% by mass based on the mass of the acrylic block copolymer (c).
  • the amount is preferably 95 to 48% by mass, more preferably 90 to 55% by mass, and still more preferably 85 to 65% by mass.
  • the compatibility with the epoxy resin (a) is improved and the curable resin composition is cured.
  • the fracture toughness of the cured resin is excellent.
  • the content ratio of the polymer block A is excessively increased (particularly exceeding 60% by mass)
  • the viscosity may be increased.
  • the handleability, processability, and the effect of improving fracture toughness due to macrophase separation after curing tend to occur.
  • the content rate of the polymer block A increases too much, the improvement effect of the fracture toughness in a resin cured material will become low.
  • the content ratio of the polymer block A in the acrylic block copolymer (c) is too small (particularly less than 3% by mass), the compatibility with the epoxy resin (a) becomes poor.
  • the method for producing the acrylic block copolymer (c) used in the present invention is not particularly limited, and any acrylic block copolymer that satisfies the above requirements ( ⁇ ) to ( ⁇ ) can be used.
  • the acrylic block copolymer (c) satisfying the requirements ( ⁇ ) to ( ⁇ ) can be produced by a method according to a known production method.
  • a method for obtaining a block copolymer having a narrow molecular weight distribution a method in which a monomer that forms a structural unit of a polymer is subjected to living polymerization is generally employed.
  • Examples of the living polymerization method include a method of polymerizing an organic rare earth metal complex as a polymerization initiator (see Patent Document 5), a mineral acid such as an alkali metal or alkaline earth metal salt using an organic alkali metal compound as a polymerization initiator.
  • a method of anionic polymerization in the presence of a salt see Patent Document 6
  • a method of anionic polymerization in the presence of an organoaluminum compound using an organic alkali metal compound as a polymerization initiator see Patent Document 7
  • an atom transfer radical polymerization method (ATRP) ) (See Non-Patent Document 3).
  • the deactivation of the homopolymer as a deactivation component is small due to a small deactivation during the polymerization, thereby obtaining the method.
  • the acrylic block copolymer (c) is added to the epoxy resin, there is little adverse effect on the excellent heat resistance and elastic modulus inherent to the epoxy resin.
  • the acrylic block copolymer (c) obtained by the method the molecular structure of the polymer block A is highly syndiotactic, and the glass transition temperature of the polymer block A is higher than that of the isotactic one. High heat resistance.
  • the acrylic block copolymer (c) used in the present invention is preferably produced by an anionic polymerization method using an organoaluminum compound as a promoter.
  • an organoaluminum compound which is preferably employed as a polymerization method for producing the acrylic block copolymer (c) used in the present invention, is, for example, an organolithium compound and the following general formula: AlR 1 R 2 R 3 Wherein R 1 , R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or an aryl which may have a substituent.
  • an organoaluminum compound represented by the formula an ether such as dimethyl ether, dimethoxyethane, diethoxyethane, 12-crown-4; triethylamine, N, N, N ′, N '-Tetramethylethylenediamine, N, N, N', N '', N ''-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, pyridine, 2,2'- It is carried out by polymerizing a methacrylic acid alkyl ester and an acrylic acid al
  • examples of the organic lithium compound include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, isobutyl lithium, tert-butyl lithium, and n-pentyl lithium.
  • Alkyllithium and alkyldilithium such as n-hexyllithium, tetramethylenedilithium, pentamethylenedilithium and hexamethylenedilithium; phenyllithium, m-tolyllithium, p-tolyllithium, xylyllithium, lithium naphthalene, etc.
  • Aralkyl lithium and aralkyl dilithium such as dilithium produced by the reaction of diisopropenylbenzene and butyllithium; lithium amides such as lithium dimethylamide, lithium diethylamide and lithium diisopropylamide; methoxylithium, ethoxylithium, n-propoxylithium, iso Propoxylithium, n-butoxylithium, sec-butoxylithium, tert-butoxylithium, pentyloxylithium, hexyloxylithium, heptyloxylithium, octyloxylithium, phenoxylithium, 4-methylphenoxylithium, benzyloxylithium, 4-methyl One or more lithium alkoxides such as
  • organoaluminum compound represented by the above general formula examples include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and tri-n-octylaluminum; dimethyl (2,6-di-tert-butyl) -4-methylphenoxy) aluminum, dimethyl (2,6-di-tert-butylphenoxy) aluminum, diethyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, diethyl (2,6-di-) dialkylphenoxyaluminum such as tert-butylphenoxy) aluminum, diisobutyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, diisobutyl (2,6-di-tert-butylphenoxy) aluminum Methylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, methylbis (2,6-di-
  • isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, isobutyl [2,2′-methylenebis (4- Methyl-6-tert-butylphenoxy)] aluminum and the like are particularly preferably used because they are easy to handle and the polymerization of the acrylate can proceed without deactivation under relatively mild temperature conditions.
  • an epoxy resin is used with respect to 100 parts by mass of the epoxy resin (a) in order to increase the adhesion strength to the adherend and to have an excellent fracture toughness of the resin cured product.
  • 1 to 70 parts by mass of the curing agent (b) and 1 to 50 parts by mass of the acrylic block copolymer (c) are contained.
  • the curable resin composition of the present invention preferably contains 5 to 60 parts by mass of the epoxy resin curing agent (b) with respect to 100 parts by mass of the epoxy resin (a), and preferably 35 to 60 parts by mass. It is more preferable to contain it in a proportion.
  • the curable resin composition of the present invention preferably contains 5 to 50 parts by mass of the acrylic block copolymer (c) with respect to 100 parts by mass of the epoxy resin (a). More preferably, it is contained at a rate of 45 parts by mass, more preferably at a rate of 10-40 parts by mass, even more preferably at a rate of 12-35 parts by mass, especially 15-30 parts by mass. It is preferable to contain by a ratio.
  • the curable resin composition of the present invention may or may not contain the curing accelerator (d).
  • the curing accelerator (d) when the curing accelerator (d) is contained, the curing temperature decreases, This leads to a shortening of the curing time and improves handling and processability. Therefore, 0.01 to 20 parts by mass, and further 0.1 to 0.1 parts by mass of the curing accelerator (d) with respect to 100 parts by mass of the epoxy resin. It is preferably contained in a proportion of ⁇ 10 parts by mass, particularly 0.2 to 5 parts by mass.
  • the curable resin composition of the present invention includes an epoxy resin (a), an epoxy resin curing agent (b), an acrylic block copolymer (c), and an optionally added curing accelerator (d).
  • Various additives may be contained as necessary within a range not impairing the effects of the invention. Examples of such additives include antifoaming agents, rheology modifiers, flame retardants, fillers, polymerization inhibitors, pigments, dyes, coupling agents, ion scavengers, release agents, and the like.
  • the curable resin composition of this invention may contain glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, etc. as a reinforced fiber as needed.
  • the method for preparing the curable resin composition of the present invention is not particularly limited, and the epoxy resin (a), the epoxy curing agent (b), the acrylic block copolymer (c), and a curing accelerator added as necessary. Any of the preparation methods capable of uniformly mixing (d) and other components can be adopted, and is not limited at all. For example, (1) When the epoxy resin (a) is introduced into the reactor, and the epoxy resin (a) is solid, it is heated to a liquid at an appropriate temperature, and the acrylic block copolymer (c) is added thereto.
  • the curable resin composition of the present invention maintains the excellent heat resistance and elastic modulus after curing inherent in the epoxy resin, and adheres firmly to various adherends, and further to fracture toughness. Forms a cured resin that is excellent, durable, hard to break, and excellent in durability. Therefore, the curable resin composition of the present invention takes advantage of these properties to seal electrical and electronic materials, electrical laminates such as printed boards, automobile parts, structural adhesives, electrical insulating materials, paints, It is suitably used as a civil engineering and building material, and also as a matrix resin typified by fiber reinforced composite materials such as sports applications and aviation materials.
  • any of the conventionally used curing methods for epoxy resin compositions can be employed.
  • any of a thermosetting method, an energy beam curing method (such as an electron beam curing method and an ultraviolet curing method), and a moisture curing method can be adopted.
  • the curable resin composition of the present invention is solid at room temperature, it is cured by a conventional molding method such as pulverization, tableting, transfer molding, compression molding), injection molding, etc. (Cured molded product) can be manufactured.
  • the curable resin composition of the present invention is liquid or varnished at room temperature
  • the curable resin composition of the present invention is poured into a mold (molding) or poured into a container (potting or the like).
  • it can be applied on the base material (lamination), impregnated into fibers (filaments), etc. (filament wiping, etc.) and then heated and cured.
  • a cured resin product can be obtained.
  • the curable resin composition in liquid or varnish form at room temperature can be cast, potted, contained, coated, impregnated into fibers, etc., and then heated and dried to be in a semi-cured state (B (Stage) can reduce tackiness and improve workability.
  • B Semi-cured state
  • the curable resin composition of the present invention having a varnish shape is applied to a carrier film using a coating apparatus such as a comma coater, a die coater, or a gravure coater, dried, and formed into a cured film shape. It can also be used, or it can be used after vacuum defoaming.
  • a coating apparatus such as a comma coater, a die coater, or a gravure coater
  • the curing temperature and curing time when curing the curable resin composition of the present invention may vary depending on the type of the epoxy resin (a) and the epoxy resin curing agent (b), and the curing temperature is, for example, 20 to 250. Conditions such as 0 ° C. and a curing time of 1 to 24 hours are employed.
  • the thermosetting of the curable resin composition is gradually performed in multiple stages, the surface of the cured resin becomes beautiful, and the microphase separation structure as described in (1) is easily formed in the cured resin. Become.
  • pre-curing is performed at a curing temperature of 20 to 160 ° C. and a curing time of 1 to 5 hours, and then a curing temperature of 130 to 250 ° C. and a curing time of 1 to 3 is performed.
  • a method of performing post-curing with time is preferably employed.
  • the cured resin product of the present invention obtained by curing the curable resin composition of the present invention can have a macrophase separation structure and a microphase separation structure, but the adhesion strength to the adherend and the resin cured product From the viewpoint of excellent fracture toughness, it is preferable to have a microphase separation structure.
  • the “macro phase separation structure” described in the present specification is a structure in which plural kinds of different polymer components are mixed in a macro size (usually 1 to 1000 ⁇ m) without being mutually compatible. Say.
  • microphase separation structure means that a plurality of different polymer components are not compatible with each other, and have a microscopic size [usually a spherical structure (in the case of a spherical structure or a granular structure).
  • the diameter (maximum diameter) of the granular structure is 1 to 500 nm, and when the linear structure is formed, the diameter (maximum diameter) of the linear structure is 1 to 500 nm].
  • the microphase-separated structure in the cured resin can be observed by a method described in the following Examples section using a scanning probe microscope, a scanning electron microscope, a transmission electron microscope, or the like.
  • the micro phase separation structure is a micro spherical structure, a micro lamellar structure, a micro linear structure, or a mixture of two or more thereof. It is possible to have a microphase separation structure.
  • the cured resin of the present invention has a micro phase separation structure dispersed in a micro spherical structure
  • the polymer block B in the acrylic block copolymer (c) has a micro spherical structure with a uniform size. It is preferable that it is uniformly dispersed in the matrix.
  • the resin cured product of the present invention is a “matrix made of a cured epoxy resin” among the above-described microphase separation structures. It is preferable that the polymer block B in the acrylic block copolymer (c) has a micro phase separation structure in which a micro linear structure is dispersed. In that case, “the polymer block B in the acrylic block copolymer (c) may be randomly dispersed in a matrix composed of a cured epoxy resin with a micro linear structure, The polymer block B in the acrylic block copolymer (c) may have a micro linear structure in the epoxy resin matrix. If it is dispersed in a state oriented in the direction of (i.e., arranged in a predetermined direction), the fracture toughness and peel adhesion strength of the cured resin are further improved.
  • the polymer block B in the acrylic block copolymer (c) becomes more microscopic in the resin cured product. It is easy to form a dispersed microphase separation structure with a linear structure. Moreover, the greater the content of the polymer block B in the acrylic block copolymer (c), the easier it is to form a micro phase separation structure in which the polymer block B is dispersed in a micro linear structure in the cured resin. .
  • an acrylic block copolymer (c) having a large weight average molecular weight (Mw) is used, it is smaller than when an acrylic block copolymer (c) having a small weight average molecular weight (Mw) is used.
  • Mw weight average molecular weight
  • a microphase-separated structure in which a linear structure is dispersed is easily formed clearly, and even when the content of the polymer block B is small, the weight block B may form a micro linear structure in the cured resin.
  • a resin cured product in which a polymer block B in the acrylic block copolymer (c) is dispersed in a matrix made of an epoxy resin having a micro linear structure is dispersed in a matrix made of an epoxy resin having a micro linear structure.
  • the content of the polymer block A (hard segment) in the acrylic block copolymer (c) also increases.
  • the smaller the amount the easier the micro linear structures made of the polymer block B are oriented in a predetermined direction (arranged in a predetermined direction) and dispersed in the matrix. From this point, when the content of the polymer block A (hard segment) in the acrylic block copolymer (c) is large, microphase separation in which micro linear structures are oriented and dispersed in a predetermined direction. In order to form the structure, it is generally necessary to increase the weight average molecular weight (Mw) of the acrylic block copolymer (c).
  • the micro linear structure composed of the polymer block B may be a continuous linear structure, an intermittent (discontinuous) linear structure, or a continuous linear structure.
  • the structure and the intermittent linear structure may be mixed.
  • the linear structure may be linear or curved.
  • the “micro linear structure” in this specification refers to the length of each linear structure in the micro linear structure composed of the polymer block B in the acrylic block copolymer (c).
  • the thickness is divided by the diameter of the same linear structure, it generally means that the value (length / diameter) is 3 or more.
  • the diameter of each micro linear structure is preferably 1 to 300 nm, more preferably 5 to 100 nm, and still more preferably 10 to 70 nm.
  • the above-described micro phase separation structure in the resin cured product of the present invention includes a scanning electron microscope (SEM), a transmission electron microscope (TEM), a scanning probe microscope (AFM), and the like. Can be observed.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • AFM scanning probe microscope
  • the oriented linear microphase separation as in the present invention when the oriented linear microphase separation as in the present invention is formed, it may appear as a spherical structure with only one cut surface. For observation, as shown in FIG. 1, it is preferable to perform observation with at least two orthogonal cross sections. And it is preferable to perform several observations on such two cut surfaces for the same sample.
  • the polymer block A in the acrylic block copolymer (c) is from the above-described micro linear structure composed of the polymer block B. It is presumed to be compatible with the epoxy resin matrix cured in a state of protruding outward.
  • the fracture toughness value of the cured resin of the present invention can be determined according to the use of the cured resin.
  • the resin cured product of the present invention has a fracture toughness value (K1c) calculated by a single edge notched bending (SENB) test based on ASTM D5045-91 from the point of exhibiting a high degree of fracture toughness of 1.6 MPa ⁇ m 1 / It is preferably 2 or more, more preferably 1.8 MPa ⁇ m 1/2 or more, still more preferably 2.1 MPa ⁇ m 1/2 or more, and 2.3 to 5.0 MPa ⁇ m 1 Particularly preferred is / 2 .
  • the adhesive strength of the cured resin of the present invention to the adherend may vary depending on the type of adherend, the application of the composite of the adherend and the cured resin, the usage form, etc.
  • the peel adhesive strength with respect to the aluminum plate at a peel rate of 100 mm / min according to a test based on JIS K 6854-3 is preferably 10 N / 25 mm or more, and more preferably 15 N / 25 mm or more. More preferred is 30 to 200 N / 25 mm.
  • the cured resin of the present invention can be suitably used as a structural adhesive layer or a sealing material layer.
  • a structural adhesive layer or a sealing material layer for example, many types of electronic circuit components, mainly transistors assembled together in an integrated circuit (IC) chip, and between electronic components such as resistors and capacitors, and a substrate It can be used as a structural adhesive layer or encapsulant layer used to protect and strengthen interconnects.
  • the curable resin composition of the present invention when used as an adhesive, it may be a one-pack type, a two-pack type, a hot-melt type or a solvent volatilization type. It can also be used in the form of a tape having a multilayer structure with a sheet or film.
  • the fiber reinforced composite material which is a resin cured material using the curable resin composition of the present invention as a matrix resin is suitably used for sports applications, aircraft applications, and general industrial applications.
  • primary structural material applications such as main wings, tail wings and floor beams
  • secondary structural material applications such as flaps, ailerons, cowls, fairings and interior materials
  • rocket motor cases and satellites It is suitably used for structural material applications.
  • it is suitably used for golf shafts, fishing rods, rackets such as tennis, badminton and squash, stick applications such as hockey, baseball and softball bat applications, bicycle frame applications, and ski pole applications.
  • structural materials for moving bodies such as automobiles, ships and rail vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, reinforcement bars, and repair reinforcements It is suitably used for civil engineering and building material applications such as materials.
  • the synthesized acrylic block copolymers (c-1), (c-2), (c-3), (c-4) and (c-5) and Comparative Examples 4, 5 and 7 Commercially available acrylic block copolymer [“Nanostrength” (registered trademark) M22 manufactured by Arkema Co., Ltd .; triblock copolymer comprising polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate; Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn), polymer block A (polymethyl methacrylate block) and polymer of “acrylic block copolymer (M22)” Content ratio of block B (polybutyl acrylate block), stereoregularity of polymer block A (rr), polymer block A and polymer block B
  • the glass transition temperature of the polyacrylic acid butyl block), polymerization conversion of each monomer was determined by the following method.
  • Weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution of acrylic block copolymer (measurement of molecular weight distribution (Mw / Mn) : Using the apparatus described below, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the acrylic block copolymer were determined by gel permeation chromatography (GPC) using the following method and conditions. While measuring, molecular weight distribution (Mw / Mn) was calculated
  • Apparatus Gel permeation chromatograph (HLC-8020) manufactured by Tosoh Corporation Column: Tosoh TSKgel GMHXL, G4000HXL and G5000HXL are connected in series Eluent: Tetrahydrofuran Eluent flow rate: 1.0 ml / min Column temperature: 40 ° C -Detection method: differential refractive index (RI) -Calibration curve: Created using standard polystyrene
  • (I-2) Content ratio of polymer block A in acrylic block copolymer Measurement of the content of each copolymer component in the acrylic block copolymer by proton nuclear magnetic resonance ( 1 H-NMR) spectroscopy using the following apparatus and method [apparatus and method] ⁇ Device: Nuclear magnetic resonance apparatus (JNM-LA400) manufactured by JEOL Ltd. -Solvent: deuterated chloroform-Signals near 3.6 ppm and 4.0 ppm in the 1 H-NMR spectrum indicate ester groups of methyl methacrylate units (-O- CH 3 ) and ester groups of n-butyl acrylate units, respectively. -O- CH 2 -CH 2 -CH 2 -CH 3 ), and the content of the copolymerization component was determined by the ratio of the integral values.
  • Stereoregularity of polymer block A (rr) The stereoregularity (rr) of the polymer block A (polymethyl methacrylate block) in the acrylic block copolymer was measured by carbon nuclear magnetic resonance ( 13 C-NMR) spectroscopy using the following apparatus and method. analyzed. [Apparatus and method] ⁇ Device: Nuclear magnetic resonance apparatus (JNM-LA400) manufactured by JEOL Ltd.
  • deuterated chloroform-Signals in the vicinity of 44.5 ppm, 44.8 ppm and 45.5 ppm in the 13 C-NMR spectrum are attributed to the quaternary carbon of the methyl methacrylate polymer block, and stereoregularity rr, mr , And mm, and the stereoregularity rr was determined by the ratio of the integral values.
  • the stereoregularity can also be obtained by 1 H-NMR method.
  • the acrylic block copolymer (c-1) obtained in the above (1) was subjected to 1 H-NMR measurement and GPC measurement by the above-described method.
  • the acrylic block copolymer (c-1) -1) is a triblock copolymer composed of polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate, and has a weight average molecular weight (Mw) of 161,000 and a number average molecular weight (Mn) of 126.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the molecular weight distribution (Mw / Mn) was 1.28.
  • each polymer block in the acrylic block copolymer (c-1) was 30.0% by mass of the methyl methacrylate polymer block (polymer block A), and the n-butyl acrylate polymer.
  • the block (polymer block B) was 70.0% by mass.
  • the glass transition temperature of each polymer block of the acrylic block copolymer (c-1) obtained in (1) above and the stereoregularity of the polymethyl methacrylate block (polymer block A) ( rr) was determined by the method described above and was as shown in Table 1 below.
  • the acrylic block copolymer (c-2) A triblock copolymer consisting of polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate, having a weight average molecular weight (Mw) of 63,000 and a number average molecular weight (Mn) of 50,000, The molecular weight distribution (Mw / Mn) was 1.26.
  • the content of each polymer block in the acrylic block copolymer (c-2) was 32.0% by mass of the methyl methacrylate polymer block (polymer block A), and the n-butyl acrylate polymer.
  • the acrylic block copolymer (c-3) was A triblock copolymer consisting of polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate, having a weight average molecular weight (Mw) of 132,000 and a number average molecular weight (Mn) of 101,000, The molecular weight distribution (Mw / Mn) was 1.31.
  • the content of each polymer block in the acrylic block copolymer (c-3) was 31.3% by mass of the methyl methacrylate polymer block (polymer block A), and the n-butyl acrylate polymer.
  • the block (polymer block B) was 68.7% by mass.
  • (3) The glass transition temperature of each polymer block of the acrylic block copolymer (c-3) obtained in (1) above and the stereoregularity of the polymethyl methacrylate block (polymer block A) ( rr) was determined by the method described above and was as shown in Table 1 below.
  • the acrylic block copolymer (c-4) obtained in the above (1) was subjected to 1 H-NMR measurement and GPC measurement.
  • the acrylic block copolymer (c-4) was A triblock copolymer consisting of polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate, having a weight average molecular weight (Mw) of 137,000 and a number average molecular weight (Mn) of 112,000, The molecular weight distribution (Mw / Mn) was 1.22.
  • each polymer block in the acrylic block copolymer (c-4) was 51.4% by mass of the methyl methacrylate polymer block (polymer block A), and the n-butyl acrylate polymer.
  • the block (polymer block B) was 48.6% by mass.
  • the glass transition temperature of each polymer block of the acrylic block copolymer (c-4) obtained in the above (1) and the stereoregularity of the polymethyl methacrylate block (polymer block A) ( rr) was determined by the method described above and was as shown in Table 1 below.
  • the acrylic block copolymer (c-5) obtained in the above (1) was subjected to 1 H-NMR measurement and GPC measurement.
  • the acrylic block copolymer (c-5) was A triblock copolymer comprising polymethyl methacrylate-poly (n-butyl acrylate) -polymethyl methacrylate, having a weight average molecular weight (Mw) of 73,000 and a number average molecular weight (Mn) of 65,000, The molecular weight distribution (Mw / Mn) was 1.12.
  • each polymer block in the acrylic block copolymer (c-5) was 23.0% by mass of the methyl methacrylate polymer block (polymer block A), and the n-butyl acrylate polymer.
  • the block (polymer block B) was 77.0% by mass.
  • the glass transition temperature of each polymer block of the acrylic block copolymer (c-5) obtained in the above (1) and the stereoregularity of the polymethyl methacrylate block (polymer block A) ( rr) was determined by the method described above and was as shown in Table 1 below.
  • thermosetting conditions as those employed in the following examples or comparative examples are employed to heat the curable resin composition on the aluminum plate.
  • a laminate comprising an aluminum plate / cured resin / aluminum plate was produced by curing and slowly cooled to room temperature (25 ° C.) over 12 hours, and used as a test piece for measuring peel adhesive strength. .
  • (3) Using the test piece obtained in (2) above, using a screw type universal tester ["screw type universal testing machine 210B" manufactured by Intesco Co., Ltd.] according to JIS K 6854-3. The peel adhesion strength was measured in the air under the conditions of a displacement speed of 100 mm / min and a temperature of 23 ° C.
  • thermosetting conditions as those used in the following examples or comparative examples are used to thermoset the curable resin composition on the steel plate.
  • a laminate composed of a steel plate / cured resin / steel plate was produced, and the product was slowly cooled to room temperature (25 ° C.) over 12 hours, and used as a test piece for measuring the shear bond strength.
  • (II-3) Fracture toughness value K1c A test piece having a length of 50 mm, a width of 12 mm, and a thickness of 6 mm was cut out from a cured resin product having a thickness of 6 mm produced in the following examples or comparative examples, and a screw type universal testing machine [Co., Ltd.] was used. Using the “screw type universal testing machine 210B” manufactured by Intesco], a “single edge notched bending (SENB) test” according to ASTM D 5045-91 is performed at a compression displacement of 10 mm / min in the atmosphere at a temperature of 23 ° C. The fracture toughness value K1c was determined at a speed.
  • a 0.25 mm thick cutter blade cooled with liquid nitrogen is applied to a groove formed by a saw to introduce cracks in the center of the test piece in the thickness direction, and the blade is struck with a hammer. Introduced sharp cracks.
  • the initial crack length (a) was averaged by measuring five points to 0.01 mm with a reading microscope with a magnification of 50 times.
  • the resulting crack length (a) was in the range of 5.4 to 6.6 mm.
  • (II-4) modulus of elasticity A test piece having a length of 40 mm, a width of 10 mm, and a thickness of 2 mm was cut out from a cured resin product having a thickness of 2 mm produced in the following examples or comparative examples, and a screw-type universal testing machine [Co., Ltd.] was used.
  • the elastic modulus was measured according to JIS K7171 using an Intesco “screw type universal testing machine 210B”]. At that time, the displacement rate was 3 mm / min, and the test was performed in a three-point bending mode with a span of 32 mm.
  • phase structure of cured resin (II-5a) Observation of phase structure by scanning probe microscope: The specimens for fracture toughness measurement obtained in the following examples or comparative examples were freeze-fractured in liquid nitrogen, and the frozen fracture surface was scanned with a scanning probe microscope [manufactured by SII Nanotechnology Co., Ltd., “Multifunctional SPM”. E-sweep "] was used, SI-DF20 was used as the DMF mode short hand, and the phase structure was observed at a resonance frequency of 1.0 Hz (magnification 50000 times).
  • the slice (a) having a thickness of 60 nm is taken and / or a specimen for measuring the same fracture toughness value is sliced perpendicularly to the length direction at a position of 5 mm from the end.
  • a section (b) having a length of 60 nm, and sectioning (a) and / or section (b) the cut surface of each section is placed in a petri dish together with a RuO 4 aqueous solution and subjected to electron staining by exposing to a gas phase.
  • a transmission electron microscope ““Transmission electron microscope H-800NA type” manufactured by Hitachi, Ltd.]
  • photographs were taken at an accelerating voltage of 100 kv (magnification 50000 times and 250,000 times), and both sections were taken.
  • Example 1 Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether [“JER828” manufactured by Japan Epoxy Resin Co., Ltd.] and 39.02 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container, and the container was placed at 200 ° C. Then, the contents were stirred for 30 minutes using a stirrer (“MAZELA NZ-1200” manufactured by Tokyo Rika Kikai Co., Ltd., 400 rpm). Next, the container was taken out from the oil bath, cooled to room temperature, heated to 100 ° C.
  • test piece (cured resin) for elastic modulus measurement The resin curable composition obtained in the above (1) was heated to 110 ° C. and degassed under reduced pressure for 20 minutes, and then a release agent [“Danfree GA-6010” manufactured by Daikin Industries, Ltd.] was added in advance.
  • phase structure of cured resin (Iv-1) Using the test piece for fracture toughness measurement obtained in (i) above, the phase structure of the frozen fracture surface was observed by the method (II-5a) using a scanning probe microscope. However, as shown in FIG. 2, the n-butyl acrylate block (polymer block B) in the acrylic block copolymer (c-1) has a micro linear structure in the cured epoxy resin matrix. And having a microphase separation structure dispersed.
  • the polyacrylic acid n in the resin cured product is obtained by photographing the poly (n-butyl acrylate) block portion, which is a soft component of the acrylic block copolymer (c-1), as a bright portion of the phase image.
  • the micro block in which the poly-n-butyl acrylate block (polymer block B) in the acrylic block copolymer (c-1) is dispersed in the cured epoxy resin matrix with a micro linear structure. It was confirmed to have a phase separation structure.
  • (Iv-3) Using the test piece for fracture toughness value measurement obtained in (i) above, using a transmission electron microscope, cut the cut surface of the section (a) by the method (II-5c) above. When photographed (magnification 50000 times and 250,000 times), the poly (n-butyl acrylate) block portion was observed as a dark portion, and the poly in the acrylic block copolymer (c-1) was found in the cured epoxy resin matrix.
  • the n-butyl acrylate block (polymer block B) had a micro phase separation structure in which a micro linear structure was dispersed. Ten points of the dark part (linear structure) of the obtained photograph (250,000 times) were arbitrarily selected, the diameter was measured, and the average value was taken. As shown in Table 2 below, .
  • the n-butyl polyacrylate block portion which is a soft component of the acrylic block copolymer (c-1), contains a phenol-formaldehyde type novolac resin, which is an epoxy resin curing agent, in an unreacted state.
  • the phenolic hydroxyl group of the phenol / formaldehyde type novolak resin is dyed with RuO 4 , so that the poly (n-butyl acrylate) block portion in the cured resin is observed as a dark portion.
  • Example 2 (1) Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 17.34 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container, and the container was placed at 200 ° C. The oil bath was immersed in the oil bath set to 1 and the contents were stirred for 30 minutes using a stirrer (same as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, heated to 100 ° C.
  • Example 3 (1) Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 39.02 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container. The oil bath was immersed in the oil bath set to 1 and the contents were stirred for 30 minutes using a stirrer (same as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, heated to 100 ° C.
  • Example 1 The same test piece for fracture toughness measurement prepared in step 1) was produced. Using this cured resin, the phase structure of the frozen fracture surface was photographed by the method of (II-5b) above using a scanning electron microscope (50000 times magnification), and an acrylic resin was cured in the cured epoxy resin matrix.
  • the poly (n-butyl acrylate) block (polymer block B) in the block copolymer (c-1) had a micro phase separation structure in which a micro linear structure was dispersed. Although the curing conditions were different from Example 1, a similar microphase separation structure was obtained.
  • Example 4 (1) Production of curable resin composition: 100 g of bisphenol A-type diglycidyl ether (the same as that used in Example 1) and 17.34 g of the acrylic block copolymer (c-2) produced in Synthesis Example 2 were placed in a container, and the container was placed at 200 ° C. The oil bath was immersed in the oil bath set to 1 and the contents were stirred for 30 minutes using a stirrer (same as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, heated to 100 ° C.
  • Example 5 Production of curable resin composition: 100 g of bisphenol A-type diglycidyl ether (the same as that used in Example 1) and 39.02 g of the acrylic block copolymer (c-2) produced in Synthesis Example 2 were placed in a container, and the container was placed at 200 ° C. The oil bath was immersed in the oil bath set to 1 and the contents were stirred for 30 minutes using a stirrer (same as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, heated to 100 ° C.
  • the poly (n-butyl acrylate) block portion which is a soft component of the acrylic block copolymer (c-2), contains a phenol-formaldehyde type novolak resin, which is an epoxy resin curing agent, in an unreacted state.
  • the phenolic hydroxyl group of the phenol / formaldehyde type novolak resin is dyed with RuO 4 so that the dispersion state of the poly (n-butyl acrylate) block portion in the resin cured product has a micro linear structure. It is observed (the dark linear structure portion in the photographs of FIGS. 4 and 5).
  • Ten points of the dark part (linear structure) of the obtained photograph (250,000 times) were arbitrarily selected, the diameter was measured, and the average value was taken. As shown in Table 2 below, .
  • test piece (laminate) for measuring peel adhesive strength The curable resin composition obtained in (1) above was heated to 100 ° C. and degassed under reduced pressure for 20 minutes, and then the same adherend as used in (iii) of (2) of Example 1 After coating on an aluminum plate for use and controlling the thickness of the adhesive layer (thickness before curing) to about 100 ⁇ m using a spacer, pre-curing is performed at 110 ° C. for 2 hours, and then at 150 ° C. for 1 Post-curing was performed for a period of time, followed by cooling at room temperature (25 ° C.) to prepare a laminate (test piece) for measuring peel adhesion strength.
  • test piece (laminate) for measuring peel adhesive strength The curable resin composition obtained in (1) above was heated to 120 ° C. and degassed under reduced pressure for 30 minutes, and then the same adherend as used in (iii) of (2) of Example 1 After coating on an aluminum plate for use and controlling the thickness of the adhesive layer (thickness before curing) to about 100 ⁇ m using a spacer, pre-curing is performed at 150 ° C. for 3 hours and then at 200 ° C. for 2 hours. Post-curing was performed for a period of time, followed by cooling at room temperature (25 ° C.) to prepare a laminate (test piece) for measuring peel adhesion strength.
  • the curable resin compositions of Examples 1 to 5 are acrylic blocks having an epoxy resin and an epoxy resin curing agent and a molecular weight distribution (Mw / Mn) of 1.5 or less.
  • Mw / Mn molecular weight distribution
  • the curable resin compositions of Examples 1 to 3 (curable epoxy resin composition not containing an acrylic block copolymer) and the curable resin composition of Comparative Example 4 [molecular weight distribution (Mw / Mn) from 1.5 Compared with a cured resin obtained by curing a curable epoxy resin composition containing a larger acrylic block copolymer (M22)], the peel adhesion strength is greatly improved. Moreover, the cured resin products obtained by curing the curable resin compositions of Examples 1-2 and 4-5 have higher fracture toughness values than the cured resin products obtained by curing the curable resin compositions of Comparative Examples 1-4. It is hard to break and is excellent in durability (in Example 3, measurement of fracture toughness value and elastic modulus was omitted).
  • the cured resin obtained from the curable resin compositions of Examples 1, 4 and 5 is obtained by curing the curable resin composition of Comparative Example 4 containing an acrylic block copolymer (M22).
  • the fracture toughness value is significantly higher than that of the cured resin, and the cured resins of Examples 1, 4 and 5 have excellent toughness comparable to that of engineering plastic polybutylene terephthalate. is doing.
  • the cured resin comprising the curable resin compositions of Examples 1 and 3 to 5 is a polymer of acrylic block copolymer (c-1) or (c-2).
  • Block B poly (n-butyl acrylate block)
  • Block B has a microphase separation structure in which a micro linear structure having a diameter of 10 nm to 100 nm is dispersed in a cured epoxy resin matrix. It is believed that the structure provides the high peel adhesion strength and fracture toughness values described above.
  • Example 6 (1) Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 17.34 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container, and the container was placed at 200 ° C. It was immersed in the oil bath set to, and the content was stirred for 30 minutes using the stirring apparatus (the same stirring apparatus as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, heated to 100 ° C.
  • the stirring apparatus the same stirring apparatus as Example 1, 400 rpm
  • a curable resin composition was prepared by mechanical stirring for 10 minutes (5 kPa, stirring conditions 2000 rpm).
  • the section (a) and the section (b) were collected from the test piece for fracture toughness measurement manufactured in the above (i) by the above-described method, and the above (II ⁇
  • the poly (n-butyl acrylate) block part was a micro-color with a uniform size as a dark part It had a microphase-separated structure dispersed in a matrix with a spherical structure.
  • Example 7 Production of curable resin composition: As the acrylic block copolymer (c), 17.34 g of the acrylic block copolymer (c-3) produced in Synthesis Example 3 was used instead of the acrylic block copolymer (c-1). The same steps and operations as in Example 6 (1) were performed to prepare a curable resin composition mixed by mechanical stirring.
  • the section (a) and the section (b) were collected from the test piece for fracture toughness measurement manufactured in the above (i) by the above-described method, and the above (II ⁇
  • the poly (n-butyl acrylate) block part was a micro-color with a uniform size as a dark part It had a microphase-separated structure dispersed in a matrix with a spherical structure.
  • Example 8 Production of curable resin composition: Except for using 17.34 g of the acrylic block copolymer (c-4) produced in Synthesis Example 4 instead of the acrylic block copolymer (c-1) as the acrylic block copolymer (c). The same steps and operations as in Example 6 (1) were performed to prepare a curable resin composition mixed by mechanical stirring.
  • Example 9 Production of curable resin composition: Except for using 17.34 g of the acrylic block copolymer (c-5) produced in Synthesis Example 5 instead of the acrylic block copolymer (c-1) as the acrylic block copolymer (c). The same process and operation as in Example 6 (1) were performed to prepare a curable resin composition mixed by mechanical stirring.
  • Example 6 (1) except that 17.34 g of a commercially available acrylic block copolymer (M22) was used in place of the acrylic block copolymer (c-1) as the acrylic block copolymer. A curable resin composition mixed by mechanical stirring was prepared.
  • the section (a) and the section (b) were collected from the test piece for fracture toughness measurement manufactured in the above (i) by the method described above, and the above (II ⁇
  • the poly (n-butyl acrylate) block part had a micro-spherical structure with dark parts.
  • the size of the microspherical structure was varied and uneven.
  • Ten dark-colored parts (micro spherical structures) of a photograph (250,000 times) obtained by photographing were arbitrarily selected, and the diameter (maximum diameter) was measured to obtain an average value. As shown in Table 4, the average diameter of the spherical structure was 31 nm.
  • test piece (laminate) for measuring shear bond strength A steel sheet (JIS G3141 SPCC-SB) 125 mm long x 25 mm wide x 1.6 mm thick is degreased with acetone and then UV treated [using “UVR-200G-SSII” manufactured by Sen Engineering Co., Ltd.] for 10 minutes.
  • a performed steel plate hereinafter referred to as “steel plate for adherend”.
  • the curable resin composition obtained in the above (1) is heated to 110 ° C. and degassed under reduced pressure for 20 minutes, and then applied onto the steel plate for adherend prepared above, and an adhesive layer using a spacer.
  • precuring was performed at 120 ° C. for 2 hours, followed by postcuring at 150 ° C. for 2 hours, and then at room temperature (25 C.) and cooled to prepare a laminate (test piece) for measuring shear bond strength. Using this test piece, the shear bond strength was measured by the method described above, and as shown in Table 5 below.
  • section (a) and the section (b) are collected from the test piece for fracture toughness value measurement manufactured in the above (i) by the method described above, and the above (II- When the cut surfaces of section (a) and section (b) were photographed by the method of 5c) (magnification 50000 times and 250,000 times), the respective components were uniformly mixed, and a phase separation structure was observed. I could't. (The results of Comparative Example 6 are described in both Table 4 and Table 5.)
  • the curable resin compositions of Examples 6 to 9 were an acrylic block copolymer having a molecular weight distribution (Mw / Mn) of 1.5 or less, together with an epoxy resin and an epoxy resin curing agent.
  • Mw / Mn molecular weight distribution
  • the curable resins of Examples 6 to 9 The resin cured product of the composition has significantly improved fracture toughness compared to the resin cured product of the curable resin composition of Comparative Example 6 (a curable epoxy resin composition that does not contain an acrylic block copolymer). And has excellent peel adhesion.
  • the curable resin composition of Example 6 [Molecular weight distribution (Mw / Mw / Mw) while having the same molecular weight and polymer block A content as the acrylic block copolymer (M22) used in Comparative Example 5).
  • the curable epoxy resin composition containing the acrylic block copolymer (c-4) having a Mn) of 1.5 or less] is used as the curable resin composition of Comparative Example 5 [Example 6].
  • Acrylic block copolymer (M22) having a molecular weight similar to that of the acrylic block copolymer (c-4) and the content of the polymer block A but having a molecular weight distribution (Mw / Mn) of more than 1.5 Compared to the curable epoxy resin composition containing], it has a remarkably superior peel adhesive strength.
  • Example 10 (1) Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 39.02 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container, and the container was placed at 200 ° C. It was immersed in the oil bath set to, and the content was stirred for 30 minutes using the stirring apparatus (same as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, heated to 100 ° C.
  • a curable resin composition was prepared by mechanical stirring for 10 minutes (5 kPa, stirring conditions 2000 rpm).
  • section (a) and the section (b) are collected from the test piece for fracture toughness value measurement manufactured in the above (i) by the method described above, and the above (II- When the cut surfaces of the section (a) and the section (b) were photographed by the method of 5c) (magnification 50000 times and 250,000 times), FIG. 6 (a) [section of the section (a)] and FIG.
  • the curable resin composition obtained in the above (1) is applied to a slide glass plate with a spatula, a cover glass is placed from above, heated in an oven at 120 ° C. for 1 minute, and then the cover glass is applied from above. Then, the sample for observation was prepared by heating for 1 minute in an oven at 120 ° C. and pressing by hand when it became soft.
  • Example 11 (1) Production of curable resin composition: Instead of the acrylic block copolymer (c-1), the same procedure as (1) in Example 10 was used except that 39.02 g of the acrylic block copolymer (c-2) produced in Synthesis Example 2 was used. Then, a curable resin composition mixed by mechanical stirring was prepared. (2) Production of cured resin and measurement of physical properties: (I) Using the curable resin composition obtained in (1) above, the same steps and operations as (i) and (ii) in (2) of Example 1 were performed, respectively, for measuring fracture toughness values.
  • Test pieces (length 50 mm ⁇ width 12 mm ⁇ thickness 6 mm) and elastic modulus measurement test pieces (length 40 mm ⁇ width 10 mm ⁇ thickness 2 mm) were prepared, and the fracture toughness value and elastic modulus were measured by the methods described above. Was measured, and the results were as shown in Table 5 below.
  • (Ii) Using the curable resin composition obtained in (1) above, the same steps and operations as (ii) in (2) of Comparative Example 6 were performed to produce a laminate (test piece). Using this test piece, the shear bond strength was measured by the method described above, and as shown in Table 5 below.
  • the section (a) and the section (b) are collected from the test piece for fracture toughness value measurement manufactured in the above (i) by the method described above, and the above (II-
  • the cut surfaces of the section (a) and the section (b) were photographed by the method of 5c) (magnification 50000 times and 250,000 times)
  • FIG. 7 (a) [section of the section (a)] and FIG. (B) [section of cut section (b)] the poly (n-butyl acrylate) block portion (the portion observed as a dark portion) in the acrylic block copolymer (c-2) is In addition, it had a micro phase separation structure in which a micro linear structure was randomly dispersed in the cured epoxy resin matrix.
  • Example 12 (1) Production of curable resin composition: Instead of the acrylic block copolymer (c-1), the same procedure as (1) in Example 10 was used except that 39.02 g of the acrylic block copolymer (c-3) produced in Synthesis Example 3 was used. Then, a curable resin composition mixed by mechanical stirring was prepared.
  • Test piece for measuring value (length 50 mm ⁇ width 12 mm ⁇ thickness 6 mm)
  • test piece for measuring elastic modulus (length 40 mm ⁇ width 10 mm ⁇ thickness 2 mm)
  • laminate for measuring peel adhesion strength (test When the fracture toughness value, the elastic modulus, and the peel adhesion strength were measured by the above-described method, they were as shown in Table 5 below.
  • the section (a) and the section (b) were collected from the test piece for fracture toughness measurement manufactured in the above (i) by the method described above, and the above (II ⁇
  • the cut surfaces of the section (a) and the section (b) were photographed by the method of 5c) (magnification 50000 times and 250,000 times)
  • the poly-n-butyl acrylate block in the acrylic block copolymer (M22) The portion had a microphase-separated structure that was randomly dispersed in the cured epoxy resin matrix to form a micro linear structure.
  • 10 points of the dark color part (linear structure) of the photograph (250,000 times) obtained by photographing were arbitrarily selected, the diameter was measured, and the average value was taken. Met.
  • Comparative Example 6 is also shown again for reference.
  • the curable resin compositions of Examples 10 to 12 have a weight average molecular weight (Mw) in the range of 30,000 to 300,000 together with the epoxy resin curing agent in the epoxy resin, and Obtained from the curable resin compositions of Examples 10 to 12 by blending the acrylic block copolymer (c-1), (c-2) or (c-3) having a molecular weight distribution of 1.5 or less.
  • the fracture toughness value is large, and even when subjected to external force, it is difficult to break and has excellent durability.
  • the cured resin products of the curable resin compositions of Examples 10 and 12 have a fine polymer block B in the acrylic block copolymer (c).
  • the fracture toughness value is further increased and the strength and durability are further improved.
  • the epoxy resin curing agent and the weight average molecular weight (Mw) are in the range of 30,000 to 300,000 and the molecular weight distribution is 1.5 or less.
  • the curable resin composition of the present invention in which an acrylic block copolymer is blended forms a cured resin that is excellent not only in fracture toughness and peel adhesive strength but also in shear adhesive strength.
  • Example 13 (1) Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 17.34 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container, and the container was placed at 200 ° C. The contents in the container were stirred for 30 minutes using a stirrer (same as Example 1, 400 rpm).
  • Example 14 (1) Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 39.02 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container. The contents in the container were stirred for 30 minutes using a stirrer (same as Example 1, 400 rpm). The container was then removed from the oil bath, cooled to room temperature, and then re-warmed in an oven to about 100 ° C. before 3.0 g of dichlorophenyldimethylurea (same as used in Example 12) and dicyandiamide (Example 12).
  • step 1) The same as used in step 1) in the order of 5.0 g, and using a stainless steel stir bar, mix thoroughly by hand until it becomes uniform (stir at 100 ° C. for about 10 minutes), A curable resin composition was prepared.
  • step 2) Production of cured resin and measurement of physical properties: Using the curable resin composition obtained in the above (1), the same steps and operations as (i) and (ii) of Example 14 (2) were performed, respectively, and a test piece for fracture toughness value measurement A laminate (test piece) for measuring the length (length 50 mm ⁇ width 12 mm ⁇ thickness 6 mm) and peel adhesive strength was prepared, and the fracture toughness value and peel adhesive strength were measured by the above-described methods. Table 6 shows the results.
  • Example 15 Production of curable resin composition: 100 g of bisphenol A type diglycidyl ether (the same as that used in Example 1) and 39.02 g of the acrylic block copolymer (c-1) produced in Synthesis Example 1 were placed in a container, and the container was placed at 200 ° C. The contents in the container were stirred for 30 minutes using a stirrer (same as in Example 1, 400 rpm) while immersed in an oil bath set to 1. Next, the container was taken out of the oil bath, cooled to room temperature, reheated to about 100 ° C.
  • the cured resin obtained by curing the curable resin composition of the present invention is excellent in fracture toughness while maintaining excellent properties such as excellent heat resistance and elastic modulus inherent to the epoxy resin, and has an external force. It is hard to break even if it is received, it is durable and excellent in durability, and it can be firmly bonded to various materials to make laminated structure and composite structure with excellent strength, and also for weather resistance and solvent resistance etc. Since it is excellent, the curable resin composition of the present invention includes an electrical / electronic material sealing material, an electrical laminate such as a printed circuit board, automobile parts, structural adhesives, electrical insulating materials, paints, civil engineering and building materials, It can be effectively used for various applications including matrix resins typified by fiber reinforced composite materials such as sports applications and aviation materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 エポキシ樹脂が本来有する優れた耐熱性や弾性率等を維持しながら、靭性に優れていて破損しにくく、他の材料に強固に接着し、更に耐候性や耐溶剤性等にも優れる硬化性エポキシ樹脂組成物の提供。 【解決手段】 エポキシ樹脂100部に対して、エポキシ樹脂硬化剤1~70部及びアクリル系ブロック共重合体1~50部を含有する硬化性樹脂組成物であって、前記アクリル系ブロック共重合体が、(α)メタクリル酸アルキルエステル由来の構造単位からなる重合体ブロックAを1個以上及びアクリル酸アルキルエステル由来の構造単位からなる重合体ブロックBを1個以上有し、重量平均分子量(Mw)が30,000~300,000で、分子量分布(Mw/Mn)が1.5以下で且つ重合体ブロックAの含有割合が3~60質量%である硬化性樹脂組成物並びにそれからなる樹脂硬化物。

Description

硬化性樹脂組成物および樹脂硬化物
 本発明は、硬化性エポキシ樹脂組成物およびそれを硬化してなる樹脂硬化物に関する。より詳細には、本発明は、エポキシ樹脂が本来有する優れた耐熱性と弾性率を維持しながら、破壊靭性および剥離接着強さに優れ、しかも剪断接着強さにも優れる樹脂硬化物を与える硬化性エポキシ樹脂組成物およびそれからなる樹脂硬化物に関する。
 エポキシ樹脂は、耐熱性、耐薬品性、耐食性、電気的特性などに優れ、高い弾性率を有することから、電気・電子材料の封止材、スポーツ用途や航空材料などの繊維強化複合材料などに代表されるマトリックス樹脂、プリント基板などの電気用積層板、自動車部品、土木・建築用塗料、構造接着剤などの種々の用途に広く用いられている。
 しかし、エポキシ樹脂は靭性に劣り、脆くて欠け易いという欠点を有し、また各種基材に対する接着性の点においても十分とは言えず、その向上が求められている。
 従来、エポキシ樹脂を主材とする熱硬化性樹脂組成物の靭性を向上させて破損しにくくするために、反応性ゴムや、コア/シェル構造を有する重合体粒子の添加が一般的に行われてきた。その際の反応性ゴムとしては、カルボキシル末端を有するブタジエンとアクリロニトリルのランダム共重合体(CTBN)やアミノ末端を有するブタジエンとアクリロニトリルのランダム共重合体(ATBN)などが知られており、またコア/シェル構造を有する重合体粒子としてはポリアクリル酸ブチルまたはポリブタジエンゴムのコアとポリメタクリル酸メチルのシェルからなる重合体粒子などが知られている(非特許文献1および2を参照)。
 しかしながら、これらの従来技術による場合は、十分な破壊靭性の向上効果を得るためには、エポキシ樹脂に反応性ゴムやコア/シェル構造を有する重合体粒子を多量に添加する必要があり、それによってエポキシ樹脂が本来有する優れた耐熱性や弾性率が低下するという問題がある。
 また、耐熱性および耐衝撃性に優れるプリプレグを得ることを目的として、エポキシ樹脂に、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、芳香族ポリエステルなどの熱可塑性樹脂とエポキシ樹脂用硬化剤を配合したプリプレグ用のエポキシ樹脂組成物が提案されている(特許文献1を参照)。
 しかし、このエポキシ樹脂組成物は粘度が高くて取り扱い性および工程性に劣り、しかもこのエポキシ樹脂組成物から得られる樹脂硬化物は、耐熱性や耐溶剤性の点で十分に満足のゆくものではなく、その上未相溶部分やボイドが樹脂硬化物に生ずることがある。
 さらに、エポキシ樹脂にブロック共重合体を配合してエポキシ樹脂の耐衝撃性や靭性を向上させることが提案されており、その際のブロック共重合体として、ポリスチレン-ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体、ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体、ポリメタクリル酸メチル-ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体またはポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルからなるブロック共重合体が挙げられている(特許文献2~4を参照)。
 しかしながら、エポキシ樹脂にブロック共重合体を配合する前記した従来技術において、ポリブタジエンブロックを有するブロック共重合体(ポリスチレン-ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体、ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体、ポリメタクリル酸メチル-ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体)を配合した場合には、エポキシ樹脂の靭性や耐衝撃性はある程度向上するものの、ポリブタジエンブロックが有する不飽和二重結合に起因して、エポキシ樹脂組成物から得られる樹脂硬化物の耐候性が低下したものになり易い。
 また、本発明者らが、エポキシ樹脂に、エポキシ樹脂硬化剤と共に前記した特許文献2~4に記載されているポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルからなるブロック共重合体を配合して硬化性エポキシ樹脂組成物を調製し、それを硬化して樹脂硬化物をつくり、その物性を調べたところ、当該ブロック共重合体を配合したエポキシ樹脂組成物から得られるエポキシ樹脂硬化物は、ブロック共重合体が不飽和二重結合を有していないために耐候性には優れているものの、ポリスチレン-ポリブタジエン-ポリメタクリル酸メチルからなるブロック共重合体を用いた場合に比べて破壊靭性の向上効果が低く、更には非特許文献1や2に記載されているコア/シェル構造を有する重合体粒子を添加した場合に比べても、破壊靭性の向上効果は同等以下であり、十分に満足し得る破壊靭性を有していないことが判明した。
 特に、特許文献4に記載されているエポキシ樹脂組成物では、エポキシ樹脂の硬化剤として、ジアミノジフェニルスルフォンなどの芳香族ポリアミンが専ら用いられているが、エポキシ樹脂に、ジアミノジフェニルスルフォン硬化剤と共に特許文献4の実施例などで実際に用いられているポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルからなるブロック共重合体を配合したエポキシ樹脂組成物を硬化してなる樹脂硬化物の破壊靭性は未だ十分であるとは言い難い。
 また、樹脂硬化物などでは、一般的には破壊靭性が向上すると、それに伴って剥離接着強さは向上し、その一方で剪断接着強さは低下する傾向があり、破壊靭性および剥離接着強さが向上しながら、剪断接着強さも向上した樹脂硬化物が求められていた。
特公平6-43508号公報 特表2003-535181号公報 WO2007/009957 特開2007-154160号公報 特開平6-93060号公報 特公平7-25859号公報 特開平11-335432号公報 P.Lovell,「Macromol.Symp.」,92,1995,p71-81 A.Maazouz et al. 「Polymer Material Science Engineering」,70,1994,p13-14 G.Moineau et al.「Macromol.Chem.Phys.」,201,2000,p.1108-1114 A.Bonnet et al.「International SAMPLE Symposium and Exhibition」,50,2005,p847-854 r.H.Hydro et al.「J.Polym.Sci.,Part B:Polym.Phys.」,45(12),2007,p.1470-1481
 本発明の目的は、エポキシ樹脂が本来有する優れた耐熱性や弾性率などの特性を維持しながら、破壊靭性に優れていて、外力を受けても破壊しにくくて丈夫で耐久性に優れ、しかも各種材料と強固に接着して強度に優れる積層構造物や複合構造物をつくることができ、更には耐候性や耐溶剤性などにも優れる樹脂硬化物を形成する硬化性エポキシ樹脂組成物およびそれからなるエポキシ樹脂硬化物を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねてきた。その結果、メタクリル酸アルキルエステル重合体ブロックとアクリル酸アルキルエステル重合体ブロックを有するブロック共重合体であって、しかも特定の重量平均分子量と特定以下の分子量分布(Mw/Mn)を有する分子量の揃った当該ブロック共重合体を、エポキシ樹脂中にエポキシ樹脂硬化剤と共に特定の割合で配合すると、硬化したときに、エポキシ樹脂が本来有する優れた耐熱性と弾性率を維持していて、しかも破壊靭性に優れる樹脂硬化物を形成するエポキシ樹脂組成物が得られることを見出した。
 さらに、本発明者らは、当該エポキシ樹脂組成物は、各種材料と強固に接着し、その樹脂硬化物は高い剥離接着強さを有し、しかも剪断接着強さにも優れること、耐候性や耐溶剤性などの特性にも優れることを見出した。
 また、本発明者らは、当該エポキシ樹脂組成物において、エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用いると、またエポキシ樹脂硬化剤としてフェノールノボラック樹脂を用いると、破壊靭性、剥離接着強さ、剪断接着強さなどの特性に一層優れる樹脂硬化物を与えるエポキシ樹脂組成物が得られることを見出した。
 そして、本発明者らは、当該エポキシ樹脂組成物の樹脂硬化物が有する優れた破壊靭性、剥離接着強さおよび剪断接着強さは、ミクロ相分離構造、すなわち、硬化したエポキシ樹脂マトリックス中に、前記した特定のアクリル系ブロック共重合体中のアクリル酸アルキルエステル重合体ブロック(ソフトセグメント)が、サイズの揃ったミクロな球状構造をなして分散しているかまたはミクロな線状構造をなして分散しているミクロ相分離構造に基づくものであることを見出した。
 さらに、本発明者らは、前記したミクロ相分離構造をなす分散状態のうちでも、ミクロな線状構造をなして分散していると樹脂硬化物の破壊靭性および剥離接着強さが一層向上すること、組成によってミクロな線状構造をなし且つ所定の方向に配向して分散していることを見出した。また、所定の方向に配向して分散していると破壊靭性および剥離接着強さが更に向上することを見出し、それらの種々の知見に基づいて本発明を完成した。
 すなわち、本発明は、
(1)(i) エポキシ樹脂(a)、エポキシ樹脂硬化剤(b)およびアクリル系ブロック共重合体(c)を含有する硬化性樹脂組成物であって;
(ii) アクリル系ブロック共重合体(c)が、下記の要件(α)~(δ)を満足するアクリル系ブロック共重合体であり;
 (α)メタクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックAを1個以上およびアクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックBを1個以上有するブロック共重合体である;
 (β)重量平均分子量(Mw)が30,000~300,000である;
 (γ)分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]が1.5以下である;および、
 (δ)重合体ブロックAの含有割合が3~60質量%である;
(iii) エポキシ樹脂(a)100質量部に対して、エポキシ樹脂硬化剤(b)を1~70質量部および前記アクリル系ブロック共重合体(c)を1~50質量部の割合で含有する;
ことを特徴とする硬化性樹脂組成物である。
 そして、本発明は、
(2) さらに、硬化促進剤を含有する前記(1)の硬化性樹脂組成物;
(3) エポキシ樹脂(a)が、ビスフェノールA型エポキシ樹脂である前記(1)または(2)の硬化性樹脂組成物;
(4) エポキシ樹脂硬化剤(b)が、フェノールノボラック樹脂である前記(1)~(3)のいずれかの硬化性樹脂組成物;
(5) アクリル系ブロック共重合体(c)が、重合体ブロックA-重合体ブロックB-重合体ブロックAからなるトリブロック共重合体および重合体ブロックA-重合体ブロックBからなるジブロック共重合体から選ばれる少なくとも1種から主としてなるアクリル系ブロック共重合体である前記(1)~(4)のいずれかの硬化性樹脂組成物;
(6) アクリル系ブロック共重合体(c)における重合体ブロックAが、ポリメタクリル酸メチルよりなる重合体ブロックである前記(1)~(5)のいずれかの硬化性樹脂組成物;および、
(7) アクリル系ブロック共重合体(c)における重合体ブロックBが、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチルおよびアクリル酸2-エチルヘキシルから選ばれる少なくとも1種のアクリル酸アルキルエステルの重合体からなる重合体ブロックである前記(1)~(6)のいずれか1項に記載の硬化性樹脂組成物;
である。
また、本発明は、
(8) アクリル系ブロック共重合体(c)における重合体ブロックAの含有割合が15~35質量%である前記(1)~(7)のいずれかの硬化性樹脂組成物;
(9) 温度20℃~250℃で1~24時間硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな相分離構造をなして分散しているミクロ相分離構造を有する樹脂硬化物を形成する、前記(1)~(8)のいずれかの硬化性樹脂組成物;
(10) 温度20℃~250℃で1~24時間硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして分散しているミクロ相分離構造を有する樹脂硬化物を形成する、前記(9)の硬化性樹脂組成物;および、
(11) 温度20℃~250℃で1~24時間硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして所定の方向に配向して分散しているミクロ相分離構造を有する樹脂硬化物を形成する、前記(10)の硬化性樹脂組成物;
である。
 さらに、本発明は、
(12) 前記(1)~(11)のいずれか1項に記載の硬化性樹脂組成物を硬化してなる樹脂硬化物;
(13) 硬化したエポキシ樹脂マトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな相分離構造をなして分散しているミクロ相分離構造を有する前記(12)の樹脂硬化物;
(14) 硬化したエポキシ樹脂マトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして分散しているミクロ相分離構造を有する前記(13)の樹脂硬化物;
(15) 硬化したエポキシ樹脂マトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして所定の方向に配向して分散しているミクロ相分離構造を有する前記(14)の樹脂硬化物;
(16) ASTM D5045―91に基づくSingle Edge Notched Bending(SENB)試験による破壊靭性値(K1c)が1.6MPa・m1/2以上である前記(12)~(15)のいずれかの樹脂硬化物;および、
(17) JIS K 6854-3に基づく、100mm/minの剥離速度でのアルミニウム板に対する剥離接着強さが10N/25mm以上である前記(12)~(16)のいずれかの樹脂硬化物;
である。
 本発明の硬化性樹脂組成物を硬化して得られる樹脂硬化物は、エポキシ樹脂が本来有する優れた耐熱性や弾性率などの特性を良好に維持しながら、破壊靭性に優れていて、外力を受けても破壊しにくくて丈夫で耐久性に優れている。
 しかも、本発明の硬化性樹脂組成物を硬化して得られる樹脂硬化物は、各種材料と強固に接着して、高い剥離接着強さおよび高い剪断接着強さを有する強度に優れる積層構造物や複合構造物をつくることができ、更には耐候性や耐溶剤性などにも優れている。
 そのため、本発明の硬化性樹脂組成物は、前記した優れた特性を活かして、電気・電子材料の封止材、プリント基板などの電気用積層板、自動車部品、構造接着剤、電気絶縁材料、塗料、土木建築材料、スポーツ用途や航空材料などの繊維強化複合材料などに代表されるマトリクス樹脂をはじめとして、種々の用途に有効に使用することができる。
透過型電子顕微鏡を用いて樹脂硬化物の相構造を観察するのに用いる試料[切片(a)および切片(b)]の採取方法について説明した図である。 実施例1の硬化性樹脂組成物を硬化して得られた樹脂硬化物の凍結破断面を、走査型プローブ顕微鏡を用いて撮影した写真である。 実施例1の硬化性樹脂組成物を硬化して得られた樹脂硬化物の凍結破断面を、走査型電子顕微鏡を用いて撮影した写真である。 実施例5の硬化性樹脂組成物を硬化して得られた樹脂硬化物の切断断面を、透過型電子顕微鏡を用いて撮影した写真である。 実施例5の硬化性樹脂組成物を硬化して得られた樹脂硬化物の切断断面を、透過型電子顕微鏡を用いて撮影した写真である。 実施例10の硬化性樹脂組成物を硬化して得られた樹脂硬化物から採取した切片(a)および切片(b)の切断断面を、透過型電子顕微鏡を用いて撮影した写真である。 実施例11の硬化性樹脂組成物を硬化して得られた樹脂硬化物から採取した切片(a)および切片(b)の切断断面を、透過型電子顕微鏡を用いて撮影した写真である。 実施例12の硬化性樹脂組成物を硬化して得られた樹脂硬化物から採取した切片(a)および切片(b)の切断断面を、透過型電子顕微鏡を用いて撮影した写真である。
発明を実施するための形態
 以下に本発明について詳細に説明する。
 本発明の硬化性樹脂組成物は、エポキシ樹脂(a)を主成分とする硬化性樹脂組成物である。
 主成分をなすエポキシ樹脂(a)としては、従来から知られているエポキシ樹脂のいずれもが使用できる。本発明で使用できるエポキシ樹脂(a)の例としては、ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルフルオレン型エポキシ樹脂およびこれらのハロゲン、アミノ基またはアルキル置換体、グリシジルエステル型エポキシ樹脂、ナフタレン型エポキシ樹脂、複素環式エポキシ樹脂などの芳香族環・脂肪族環含有型エポキシ樹脂、イソシアネート変性エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、レゾルシノールジグリシジルエーテル、トリグリシジル-p-アミノフェノール、m-アミノフェノールトリグリシジルエーテル、テトラグリシジルメチレンジアニリン、(トリヒドロキシフェニル)メタントリグリシジルエーテル、テトラフェニルエタンテトラグリシジルエーテルなどの分子中にエポキシ基を2個以上含有するエポキシ樹脂(ポリエポキシ化合物)を挙げることができる。
 本発明では、エポキシ樹脂(a)として前記したエポキシ樹脂(ポリエポキシ樹脂化合物)の1種または2種以上を用いることができる。
 そのうちでも、本発明では、エポキシ樹脂(a)として、ビスフェノール型エポキシ樹脂が、硬化性樹脂組成物の取り扱い性、工程性、樹脂硬化物の耐熱性、破壊靭性、剥離接着強さなどの点から好ましく用いられる。ビスフェノール型エポキシ樹脂の具体例としては、ビスフェノールAとエピクロロヒドリンの反応により得られるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロロヒドリンの反応により得られるビスフェノールF型エポキシ樹脂、ビスフェノールSとエピクロロヒドリンの反応により得られるビスフェノールS型エポキシ樹脂、ビスフェノールADとエピクロロヒドリンの反応により得られるビスフェノールAD型エポキシ樹脂、およびこれらのハロゲンあるいはアルキル置換体などを挙げることができる。そのうちでも、硬化性樹脂組成物の取り扱い性および工程性並びに樹脂硬化物の耐熱性がより優れたものとなる点から、ビスフェノールA型エポキシ樹脂がより好ましく用いられ、中でもビスフェノールA型ジグリシジルエーテルが更に好ましく用いられる。
 本発明の硬化性樹脂組成物で用いるエポキシ樹脂硬化剤(b)の種類は特に制限されず、従来から使用されているエポキシ樹脂用の硬化剤のいずれもが使用できる。
 エポキシ樹脂硬化剤としては、室温または室温以上の温度でエポキシ基と反応し得る活性基を2個以上有する化合物が一般に用いられており、当該活性基としては、例えば、アミノ基、酸無水物基、アジド基、水酸基などが挙げられる。
 本発明で用い得るエポキシ樹脂硬化剤(b)の具体例としては、フェノールノボラック樹脂やクレゾールノボラック樹脂などのポリフェノール化合物、ジシアンジアミド、ジアミノジフェニルメタンやジアミノジフェニルスルフォンの各種異性体、アミノ安息香酸エステル類、イミダゾール誘導体、脂肪族アミン、脂環族ポリアミン、芳香族ポリアミン、テトラメチルグアニジン、チオ尿素付加アミン、各種酸無水物(メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物など)、カルボン酸ヒドラジド、カルボン酸アミド、ポリメルカプタン、三フッ化ホウ素エチルアミン錯体のようなルイス酸錯体、シアネート基を有する樹脂、ベンゾオキサジン樹脂、アミンイミド、マイクロカプセル型硬化剤、イミダゾール型潜在性硬化剤などを挙げることができる。
 本発明では、エポキシ樹脂硬化剤(b)として、使用するエポキシ樹脂(a)の種類などに応じて、上記したエポキシ樹脂硬化剤のうちの1種または2種以上を使用することができる。
 そのうちでも、本発明では、アクリル系ブロック共重合体(c)と良好に相溶した樹脂硬化物を形成する点から、エポキシ樹脂硬化剤(b)として、ポリフェノール系化合物が好ましく用いられ、特にフェノールノボラック樹脂(PN)が好ましく用いられる。
 フェノールノボラック樹脂の分類としては、例えば、フェノール・ホルムアルデヒド型ノボラック、フェノール・アラルキル型ノボラックなどを挙げることができる。
 また、フェノールノボラック樹脂の具体例としては、例えば、フェノールノボラック、ビスフェノールAノボラック、クレゾールノボラック、キシリレンノボラック、トリフェニルメタンノボラック、ビフェニルノボラック、ジシクロペンタジエンフェノールノボラック、テルペンフェノールノボラック、ビフェニレンメチレンノボラックなどを挙げることができ、フェノールノボラック、ビスフェノールAノボラックおよびクレゾールノボラックの1種または2種以上が好適に用いられる。
 本発明の硬化性樹脂組成物は、上記したエポキシ樹脂硬化剤(b)と共に、必要に応じて、エポキシ樹脂の硬化促進剤(d)を含有してもよい。
 その際の硬化促進剤(d)の例としては、尿素化合物[例えば、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素など]、リン化合物(例えばトリフェニルフォスフィンなど)、有機金属塩[例えば、Co(III)アセチルアセトネートなど]、第3アミンなどを挙げることができ、これらの1種または2種以上を用いることができる。
 そのうちでもリン化合物が好ましく用いられ、トリフェニルフォスフィンがより好ましく用いられる。
 エポキシ樹脂硬化剤(b)と共に硬化促進剤(d)を用いることで、硬化温度を低下させると共に硬化時間を短縮することができ、さらにエポキシ樹脂(a)にエポキシ樹脂硬化剤(b)が溶解しやすくなるという効果などが得られる。
 しかしながら、硬化促進剤(d)の使用は必須ではなく、使用しなくてもよい。
 本発明の硬化性樹脂組成物は、第3の成分として、下記の要件(α)~(δ)を満足するアクリル系ブロック共重合体(c)を含有する。
 すなわち、本発明では、
 (α)メタクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックAを1個以上およびアクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックBを1個以上有するブロック共重合体である;
 (β)重量平均分子量(Mw)が30,000~300,000である;
 (γ)分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]が1.5以下である;および、
 (δ)重合体ブロックAの含有割合が3~60質量%である;
という要件(α)~(γ)を満足するアクリル系ブロック共重合体を用いることが必要である。
 本発明で用いるアクリル系ブロック共重合体(c)において、「メタクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックA」とは、「メタクリル酸アルキルエステルに由来する構造単位を重合体ブロックAの質量に基づいて80質量%以上の割合で有する重合体ブロック」をいい、または「アクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックB」とは、「アクリル酸アルキルエステルに由来する構造単位を重合体ブロックBの質量に基づいて80質量%以上の割合で有する重合体ブロック」をいう。
 本発明で用いるアクリル系ブロック共重合体(c)では、重合体ブロックAはメタクリル酸アルキルエステルに由来する構造単位の割合が90質量%以上、特に95~100質量%であることが好ましく、重合体ブロックBはアクリル酸アルキルエステルに由来する構造単位の割合が90質量%以上、特に95~100質量%であることが好ましい。
 アクリル系ブロック共重合体(c)は、重合体ブロックAを1個以上および重合体ブロックBを1個以上有するブロック共重合体であればいずれでもよく、重合体ブロックAをA、重合体ブロックBをB、その他の重合体ブロックをCで表すと、本発明で用いるアクリル系ブロック共重合体(c)の例としては、A-B型のジブロック共重合体;A-B-A型、B-A-B型、A-B-C型、B-A-C型、B-C-A型のトリブロック共重合体;(A-B)n型、(A-B-)nA型および(B-A-)nB型などの直鎖状ポリブロック共重合体(前記式中nは2以上の整数);(A-B-)nX型(Xはカップリング残基を表す)、(C-B-A-)nX型、(C-A-B-)nX型などの星型ブロック共重合体(前記式中nは2以上の整数);櫛型ブロック共重合体などを挙げることができ、これらの1種または2種以上を用いることができる。前記したブロック共重合体において、他の重合体ブロックCとしては芳香族ビニル重合体ブロック、(水添)共役ジエン重合体ブロックなどを挙げることができる。
 そのうちでも、本発明では、アクリル系ブロック共重合体(c)として、A-B-A型のトリブロック共重合体およびA-B型のジブロック共重合体の一方または両方が好ましく用いられ、特にA-B-A型のトリブロック共重合体が、本発明の硬化性樹脂組成物中での分散性がよく、硬化したときに高い破壊靭性と接着強さを発揮する観点から好ましく用いられる。
 アクリル系ブロック共重合体(c)中の重合体ブロックAを構成する「メタクリル酸アルキルエステルに由来する構造単位」を形成するメタクリル酸アルキルエステルとしては、エポキシ樹脂と相溶性の高い重合体ブロックAを形成するメタクリル酸アルキルエステルが好ましく、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸イソボルニルなどのアルキル基の炭素数が1~18のメタクリル酸アルキルエステルなどを挙げることができる。重合体ブロックAは、前記したメタクリル酸アルキルエステルの1種類のみから形成されていてもよいし、または2種以上から形成されていてもよい。
 そのうちでも、重合体ブロックAは、メタクリル酸メチルから形成されていることが、エポキシ樹脂との相溶性が特に高く、さらにメタクリル酸メチルが汎用の化合物として容易に且つ安価に入手でき、しかもアクリル系ブロック共重合体(c)、ひいてはそれを含有する本発明の硬化性樹脂組成物から得られる樹脂硬化物の耐候性が良好になる点から好ましい。
 また、耐熱性の観点からは、アクリル系ブロック共重合体(c)の重合体ブロックAが、シンジオタクティシティが60質量%以上、更には60~90質量%、特に70~80質量%のポリメタクリル酸メチルから形成されていることが好ましい。
 さらに、本発明の硬化性樹脂組成物よりなる樹脂硬化物が、エポキシ樹脂本来の優れた耐熱性を維持しながら高い破壊靭性を有するものになる点から、アクリル系ブロック共重合体(c)中の重合体ブロックAのガラス転移温度は、100℃以上であることが好ましく、100℃~130℃であることがより好ましい。
 アクリル系ブロック共重合体中の重合体ブロックBを構成する「アクリル酸アルキルエステルに由来する構造単位」を形成するアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ラウリル、アクリル酸トリデシル、アクリル酸ステアリルなどのアルキル基の炭素数が1~18のアクリル酸アルキルエステルなどを挙げることができる。重合体ブロックBは、前記したアクリル酸アルキルエステルの1種類から形成されていてもよいし、または2種以上から形成されていてもよい。
 そのうちでも、重合体ブロックBは、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチルおよびアクリル酸2-エチルヘキシルの1種または2種以上から形成されていることが好ましく、これにより、重合体ブロックBのガラス転移温度が-20℃以下、好ましくは-30℃~-60℃となって、アクリル系ブロック共重合体(c)が、本発明の硬化性樹脂組成物よりなる樹脂硬化物中でミクロ相分離構造を形成して、高い破壊靭性向上効果を発現し、エポキシ樹脂が本来有する優れた耐熱性と弾性率を維持しながら、優れた破壊靭性と剥離接着強さを有する樹脂硬化物を形成する本発明の硬化性樹脂組成物を得ることができる。
 上記したアクリル酸アルキルエステルのうちでも、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルは汎用化合物として容易に且つ安価に入手でき、しかもこれらのアクリル酸アルキルエステルの一方または両方から形成された重合体ブロックBは、重合体ブロックAと明確に相分離して、破壊靭性や接着強さに優れる樹脂硬化物を与える硬化性樹脂組成物を形成するので、重合体ブロックBはアクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルの一方または両方、特にアクリル酸n-ブチルから形成されていることが好ましい。
 アクリル系ブロック共重合体(c)における重合体ブロックAは、本発明の効果を損なわない範囲(一般的には重合体ブロックAの質量に基づいて20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下)で、必要に応じて、メタクリル酸アルキルエステル以外の単量体に由来する構造単位を有していてもよい。また、アクリル系ブロック共重合体(c)における重合体ブロックBは、本発明の効果を損なわない範囲(一般的には重合体ブロックBの質量に基づいて20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下)で、必要に応じて、アクリル酸アルキルエステル以外の単量体に由来する構造単位を有していてもよい。
 重合体ブロックAおよび重合体ブロックBが必要に応じて有することのできる構造単位としては、例えば、アクリル酸アルキルエステル(重合体ブロックAの場合);メタクリル酸アルキルエステル(重合体ブロックBの場合)の他、重合体ブロックAおよび重合体ブロックBに共通するものとして、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリルなどの官能基を有する(メタ)アクリル酸エステル;(メタ)アクリル酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸などのカルボキシル基を有する不飽和単量体或いはそれらのアミド類;スチレン、α-メチルスチレン、p-メチルスチレンなどの芳香族ビニル系単量体;ブタジエン、イソプレンなどの共役ジエン系単量体;エチレン、プロピレンなどのオレフィン系単量体;ε-カプロラクトン、バレロラクトンなどのラクトン単量体などに由来する構造単位を挙げることができ、重合体ブロックAおよび重合体ブロックBは前記した構造単位の1種または2種以上を有することができる。
 アクリル系ブロック共重合体(c)が、2個以上の重合体ブロックAを有するアクリル系ブロック共重合体である場合は、当該2個以上の重合体ブロックAは、同じ[例えば、分子量(重量平均分子量および数平均分子量)、分子構造(単量体単位の組成割合や配列状態、立体配置、結晶構造など)などが全く同じ]であってもよいし、または異なっていてもよい[例えば、分子量(重量平均分子量および数平均分子量)、分子構造(単量体単位の組成割合や配列状態、結晶構造など)などのうちの1つまたは2つ以上が異なっている場合]。また、アクリル系ブロック共重合体(c)が、2個以上の重合体ブロックBを有するアクリル系ブロック共重合体である場合は、当該2個以上の重合体ブロックBは、同じ[例えば、分子量(重量平均分子量および数平均分子量)、分子構造(単量体単位の組成割合や配列状態、結晶構造など)などが全く同じ]であってもよいし、または異なっていてもよい[例えば、分子量(重量平均分子量および数平均分子量)、分子構造(単量体単位の組成割合や配列状態、結晶構造など)などのうちの1つまたは2つ以上が異なっている場合]。
 そのうちでも、本発明では、アクリル系ブロック共重合体(c)として、ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体およびポリメタクリル酸メチル-ポリアクリル酸n-ブチルからなるジブロック共重合体の一方または両方が好ましく用いられ、特にポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体がより好ましく用いられる。その際に、当該トリブロック共重合体およびジブロック共重合体では、そのポリメタクリル酸メチルブロックは、当該重合体ブロックの質量に基づいて、メタクリル酸メチルに由来する構造単位の割合が80質量%以上、更には90質量%以上、特に95~100質量%であることが好ましく、またそのポリアクリル酸n-ブチルブロックは、当該重合体ブロックの質量に基づいて、アクリル酸n-ブチルに由来する構造単位の割合が80質量%以上、更には90質量%以上、特に95~100質量%であることが好ましい。
 本発明で用いるアクリル系ブロック共重合体(c)の重量平均分子量(Mw)は、エポキシ樹脂(a)との相溶性および破壊靭性の向上効果の点から、30,000~300,000であり[上記の要件(β)]、50,000~200,000であることが好ましく、70,000~180,000であることがより好ましく、80,000~170,000であることが更に好ましい。
 アクリル系ブロック共重合体(c)の重量平均分子量(Mw)が小さすぎると(特に30,000よりも小さいと)、破壊靭性や剥離接着強さなどの向上効果が不十分になる。一方、アクリル系ブロック共重合体(c)の重量平均分子量(Mw)が大きすぎると(特に300,000よりも大きいと)、エポキシ樹脂との相溶性の低下、硬化性樹脂組成物の粘度上昇による取り扱い性、工程性の低下、硬化後のマクロ相分離による破壊靭性の向上効果の低下などが生じ易くなる。
 なお、本明細書におけるアクリル系ブロック共重合体、アクリル系ブロック共重合体を構成する各重合体ブロックの重量平均分子量(Mw)および数平均分子量(Mn)は、以下の実施例に記載するゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)および数平均分子量(Mn)である。
 本発明で用いるアクリル系ブロック共重合体(c)の分子量分布[重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)]は、硬化性樹脂組成物を硬化して得られる樹脂硬化物の破壊靭性および剥離接着強さをより優れたものにする点から、1.5以下であり[上記の要件(γ)]、1.4以下であることが好ましく、1.3以下であることがより好ましく、1.2以下であることが更に好ましい。
 本発明では、アクリル系ブロック共重合体(c)として、分子量分布(Mw/Mn)が1.5以下であって、分子量の揃ったものを用いることにより、以下の効果を奏することができる。すなわち、
(1) 本発明の硬化性樹脂組成物を硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBが、サイズの揃ったミクロな球状構造および/またはミクロな線状構造をなして分散しているミクロ相分離構造を有する樹脂硬化物が形成され易くなり、そのようなミクロ相分離構造を有することによって樹脂硬化物の破壊靭性および剥離接着強さと共に剪断接着強さが大きく向上し、そのうちでも重合体ブロックBがミクロな線状構造で分散したミクロ相分離構造を有する樹脂硬化物では破壊靭性、剥離接着強さおよび剪断接着強さが一層向上する。
(2) 本発明の硬化性樹脂組成物のうち、アクリル系ブロック共重合体(c)中の重合体ブロックBが、硬化したエポキシ樹脂よりなるマトリックス中にミクロな線状構造をなして分散している樹脂硬化物を形成する硬化性樹脂組成物では、重合体ブロックBよりなる当該ミクロな線状構造が、エポキシ樹脂よりなるマトリックス中に、所定の方向に配向した状態(所定の方向に向いて配列した状態)で分散したミクロ相分離構造を形成し易く、それによって樹脂硬化物の破壊靭性、剥離接着強さおよび剪断接着強さがより一層大きく向上する。さらに、配向した状態を形成することにより破壊靭性、剥離接着強さ、剪断接着強さなどの物性にも異方性を示すことが考えられ、これらの樹脂硬化物を用いることで、ある方向に対し特に優れた物性を示すことが推定される。また、配向した状態の樹脂硬化物を、配向方向を交差させて積層させることで、多方向に対して強度に優れる積層構造物や複合構造物をつくることができる。
(3) 硬化性樹脂組成物やその樹脂硬化物を製造する際の工程や条件に多少変動があっても影響を受けること少なく、樹脂硬化物に上記(1)および(2)に記載した特定のミクロ相分離構造が円滑に形成される。
(4) アクリル系ブロック共重合体(c)における、エポキシ樹脂と相溶性の高い重合体ブロックAの含有割合を下げることができ(重合体ブロックBの含有割合を上げることができ)、それによって、樹脂硬化物中での上記(1)および(2)に記載した特定のミクロ相分離構造の形成が促進されて、破壊靭性の大きな向上効果を得ることができる;
(5) 硬化性樹脂組成物におけるアクリル系ブロック共重合体(c)の含有量が少なくてもまたは多くても、樹脂硬化物中に上記(1)に記載した特定のミクロ相分離構造が円滑に形成されて、破壊靭性に優れる樹脂硬化物を得ることができ、特に硬化性樹脂組成物中でのアクリル系ブロック共重合体(c)の含有量を多くした場合には、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなしてマトリックス中に分散したミクロ相分離構造が一層形成され易くなって、破壊靭性、剥離接着強さおよび剪断接着強さに一層優れる樹脂硬化物を得ることができる。
 上記した従来技術(例えば特許文献4)に記載されているような分子量分布が1.5を超えるアクリル系ブロック共重合体(ポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルなど)を用いた場合には、低分子量成分および高分子量成分が多く含まれるので、硬化時に高分子量成分が粗大分離したり、低分子量成分がブリードアウトしたりすることがある。粗大分離は力学強度を低下させ、ブリードアウトは接着界面に影響し接着力を低下させる場合がある。それに対して、本発明では、分子量分布(Mw/Mn)が1.5以下のアクリル系ブロック共重合体(c)を使用しているために、低分子量成分および高分子量成分が少なく、硬化性樹脂組成物の樹脂硬化物では、硬化したエポキシ樹脂マトリックス中に上記(1)に記載した特定のミクロ相分離構造を形成しながらアクリル系ブロック共重合体(c)が含有された状態になっていて、アクリル系ブロック共重合体(c)の高分子量成分が粗大分離したり、低分子量成分がブリードアウトするという問題を生じない。
 本発明で用いるアクリル系ブロック共重合体(c)では、重合体ブロックAの含有割合は、アクリル系ブロック共重合体(c)の質量に基づいて、3~60質量%であり[上記した要件(δ)]、5~52質量%であることが好ましく、10~45質量%であることがより好ましく、15~35質量%であることが更に好ましい。
 かかる点から、本発明で用いるアクリル系ブロック共重合体(c)では、重合体ブロックBの含有割合が、アクリル系ブロック共重合体(c)の質量に基づいて、97~40質量%であるようにするのがよく、95~48質量%であることが好ましく、90~55質量%であることがより好ましく、85~65質量%であることが更に好ましい。
 アクリル系ブロック共重合体(c)における重合体ブロックAの含有割合が前記範囲であることにより、エポキシ樹脂(a)との相溶性が良好になり、しかも硬化性樹脂組成物を硬化して得られる樹脂硬化物の破壊靭性が優れたものとなる。
 これに対して、重合体ブロックAの含有割合が多くなり過ぎると(特に60質量%を超えると)、粘度が高くなることがある。粘度上昇が起こると、取り扱い性、工程性の低下、硬化後のマクロ相分離による破壊靭性の向上効果の低下などが生じ易くなる。また、重合体ブロックAの含有割合が多くなり過ぎると、樹脂硬化物における破壊靭性の向上効果が低くなる。
 一方、アクリル系ブロック共重合体(c)における重合体ブロックAの含有割合が少なすぎると(特に3質量%未満であると)、エポキシ樹脂(a)との相溶性に劣るようになる。
 本発明で使用するアクリル系ブロック共重合体(c)の製造方法は特に制限されず、上記した要件(α)~(δ)を満足するアクリル系ブロック共重合体のいずれも使用可能である。要件(α)~(δ)を満足するアクリル系ブロック共重合体(c)は、公知の製法に準じた方法で製造することができる。
 分子量分布の狭いブロック共重合体を得る方法としては、重合体の構造単位を形成する単量体をリビング重合する方法が一般的に採用される。当該リビング重合方法としては、例えば、有機希土類金属錯体を重合開始剤として重合する方法(特許文献5参照)、有機アルカリ金属化合物を重合開始剤としアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でアニオン重合する方法(特許文献6参照)、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法(特許文献7参照)、原子移動ラジカル重合方法(ATRP)(非特許文献3参照)などを挙げることができる。
 上記した製造方法のうち、有機アルミニウム化合物を助触媒とするアニオン重合方法による場合は、重合途中の失活が少ないことによって失活成分であるホモポリマーの混入が少なく、それによって当該方法で得られるアクリル系ブロック共重合体(c)をエポキシ樹脂に添加した際に、エポキシ樹脂が本来有する優れた耐熱性と弾性率への悪影響が少ない。しかも、当該方法で得られるアクリル系ブロック共重合体(c)は、重合体ブロックAの分子構造が高シンジオタクチックとなって、重合体ブロックAのガラス転移温度がアイソタクチックのものよりも高いため、耐熱性に優れる。しかも、当該方法による場合は、比較的緩和な温度条件下でのリビング重合が可能であることから、アクリル系ブロック共重合体(c)を工業的に生産する場合に、環境への負荷(主に重合温度を制御するための冷凍機にかかる電力)が少なくて済むという利点がある。そのため、これらの点から、本発明で用いるアクリル系ブロック共重合体(c)は、有機アルミニウム化合物を助触媒とするアニオン重合方法によって製造されることが好ましい。
 本発明で用いるアクリル系ブロック共重合体(c)を製造するための重合方法として好ましく採用される、有機アルミニウム化合物の存在下での前記したアニオン重合は、例えば、有機リチウム化合物と、下記の一般式:

     AlR123

(式中、R1、R2およびR3はそれぞれ独立して置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基またはN,N-二置換アミノ基を表すか、またはR1が前記したいずれかの基を表し、R2およびR3は一緒になって置換基を有していてもよいアリーレンジオキシ基を表す。)
で表される有機アルミニウム化合物の存在下に、必要に応じて、反応系内に、ジメチルエーテル、ジメトキシエタン、ジエトキシエタン、12-クラウン-4などのエーテル;トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、ピリジン、2,2’-ジピリジルなどの含窒素化合物を更に存在させて、メタクリル酸アルキルエステルおよびアクリル酸アルキルエステルを重合させる合させることにより行なわれる。
 その際に、上記した有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、イソブチルリチウム、tert-ブチルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム、テトラメチレンジリチウム、ペンタメチレンジリチウム、ヘキサメチレンジリチウムなどのアルキルリチウムおよびアルキルジリチウム;フェニルリチウム、m-トリルリチウム、p-トリルリチウム、キシリルリチウム、リチウムナフタレンなどのアリールリチウムおよびアリールジリチウム;ベンジルリチウム、ジフェニルメチルリチウム、トリチルリチウム、1,1-ジフェニル-3-メチルペンチルリチウム、α-メチルスチリルリチウム、ジイソプロペニルベンゼンとブチルリチウムの反応により生成するジリチウムなどのアラルキルリチウムおよびアラルキルジリチウム;リチウムジメチルアミド、リチウムジエチルアミド、リチウムジイソプロピルアミドなどのリチウムアミド;メトキシリチウム、エトキシリチウム、n-プロポキシリチウム、イソプロポキシリチウム、n-ブトキシリチウム、sec-ブトキシリチウム、tert-ブトキシリチウム、ペンチルオキシリチウム、ヘキシルオキシリチウム、ヘプチルオキシリチウム、オクチルオキシリチウム、フェノキシリチウム、4-メチルフェノキシリチウム、ベンジルオキシリチウム、4-メチルベンジルオキシリチウムなどのリチウムアルコキシドの1種または2種以上を用いることができる。
 また、上記の一般式で表される有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどのトリアルキルアルミニウム;ジメチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジメチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、ジエチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジエチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、ジイソブチル(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、ジイソブチル(2,6-ジ-tert-ブチルフェノキシ)アルミニウムなどのジアルキルフェノキシアルミニウム;メチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、メチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、エチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、エチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、エチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、エチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、イソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソブチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウムなどのアルキルジフェノキシアルミニウム;メトキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、メトキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、メトキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、エトキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、エトキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、エトキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウム、イソプロポキシビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソプロポキシビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソプロポキシ〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウムなどのアルコキシジフェノキシアルミニウム;トリス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、トリス(2,6-ジフェニルフェノキシ)アルミニウムなどのトリフェノキシアルミニウムなどの1種または2種以上を用いることができる。そのうちでも、イソブチルビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)アルミニウム、イソブチルビス(2,6-ジ-tert-ブチルフェノキシ)アルミニウム、イソブチル〔2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノキシ)〕アルミニウムなどが、取り扱いが容易であり、しかも比較的緩和な温度条件下で失活なくアクリル酸エステルの重合を進行させることができる点から特に好ましく用いられる。
 本発明の硬化性樹脂組成物では、被着体に対する接着強さを高くし、樹脂硬化物の破壊靭性に優れたものとするために、エポキシ樹脂(a)100質量部に対して、エポキシ樹脂硬化剤(b)を1~70質量部およびアクリル系ブロック共重合体(c)を1~50質量部の割合で含有する。
 本発明の硬化性樹脂組成物は、エポキシ樹脂(a)100質量部に対して、エポキシ樹脂硬化剤(b)を5~60質量部の割合で含有することが好ましく、35~60質量部の割合で含有することがより好ましい。
 また、本発明の硬化性樹脂組成物は、エポキシ樹脂(a)100質量部に対して、アクリル系ブロック共重合体(c)を5~50質量部の割合で含有することが好ましく、7~45質量部の割合で含有することがより好ましく、10~40質量部の割合で含有することが更に好ましく、12~35質量部の割合で含有することが一層好ましく、特に15~30質量部の割合で含有することが好ましい。
 本発明の硬化性樹脂組成物は、硬化促進剤(d)を含有してもまたは含有していなくてもいずれでもよいが、硬化促進剤(d)を含有させると、硬化温度の低下や、硬化時間の短縮化につながり、取り扱い性、工程性を向上させることができるので、エポキシ樹脂100質量部に対して、硬化促進剤(d)を0.01~20質量部、更には0.1~10質量部、特に0.2~5質量部の割合で含有することが好ましい。
 本発明の硬化性樹脂組成物は、エポキシ樹脂(a)、エポキシ樹脂硬化剤(b)、アクリル系ブロック共重合体(c)および場合により添加される硬化促進剤(d)の他に、本発明の効果を損なわない範囲内で、必要に応じて、各種の添加剤を含有してもよい。そのような添加剤のとしては、例えば、消泡剤、レオロジー調整剤、難燃剤、充填材、重合防止剤、顔料、染料、カップリング剤、イオン補足剤、離型剤などが挙げられる。
 また、本発明の硬化性樹脂組成物は、必要に応じて、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などを強化繊維として含有してもよい。
 本発明の硬化性樹脂組成物の調製方法は特に限定されず、エポキシ樹脂(a)、エポキシ硬化剤(b)、アクリル系ブロック共重合体(c)および必要に応じて添加される硬化促進剤(d)やその他の成分を均一に混合できる調製法のいずれもが採用でき、何ら限定されない。例えば、(1)エポキシ樹脂(a)を反応器に導入し、エポキシ樹脂(a)が固体の場合は適当な温度で加熱して液体にし、そこにアクリル系ブロック共重合体(c)加えて完全に溶解させ、そこにエポキシ樹脂硬化剤(b)および必要に応じて硬化促進剤(d)を加えて液体状で均一に混合し、更に必要に応じて脱泡処理して硬化性樹脂組成物を調製する方法、(2)ミキサーなどを用いて、エポキシ樹脂(a)、エポキシ硬化剤(b)、アクリル系ブロック共重合体(c)および必要に応じて添加される硬化促進剤(d)やその他の成分を均一に混合した後、熱ロール、二軸押出機、ニーダーなどを使用して溶融混練して硬化性樹脂組成物を調製する方法、(3)エポキシ樹脂(a)、エポキシ硬化剤(b)、アクリル系ブロック共重合体(c)および必要に応じて添加される硬化促進剤(d)やその他の成分を、例えばメチルエチルケトン、アセトン、トルエンなどの溶剤に溶解してワニス状の硬化性樹脂組成物を調製する方法などを採用して本発明の硬化性樹脂組成物を調製することができる。その際に、エポキシ樹脂(a)とアクリル系ブロック共重合体(c)の混合物にエポキシ樹脂硬化剤(b)を加えると硬化反応が開始するので、エポキシ樹脂硬化剤(b)の添加した後の工程はできるだけ短時間で迅速に行なうことが好ましい。
 上記により得られる本発明の硬化性樹脂組成物は、エポキシ樹脂が本来有する硬化後の優れた耐熱性と弾性率を維持し、しかも各種被着体に対して強固に接着し、更に破壊靭性に優れていて丈夫で破損しにくくて耐久性に優れる樹脂硬化物を形成する。そのため、本発明の硬化性樹脂組成物は、それらの特性を活かして、電気・電子材料の封止材、プリント基板などの電気用積層板、自動車部品、構造接着剤、電気絶縁材料、塗料、土木建築材料、さらにはスポーツ用途や航空材料などの繊維強化複合材料などに代表されるマトリクス樹脂などとして好適に使用される。
 本発明の硬化性樹脂組成物を用いて樹脂硬化物を製造するに当たっては、従来から採用されているエポキシ樹脂組成物の硬化方法のいずれもが採用できる。
 本発明の硬化性樹脂組成物の硬化に当たっては、熱硬化法、エネルギー線硬化法(電子線硬化法、紫外線硬化法など)、湿気硬化法のいずれもが採用でき、そのうちでも、熱硬化法が好ましく採用される。
 本発明の硬化性樹脂組成物が常温で固体状である場合は、例えば、粉砕、打錠後に、トランスファー成形、コンプレッション成形)、インジェクション成形などの従来からの成形方法で硬化成形して樹脂硬化物(硬化した成形品)を製造することができる。
 また、本発明の硬化性樹脂組成物が常温で液状やワニス状を呈する場合は、例えば、本発明の硬化性樹脂組成物を、型に注いだり(成形)、容器に注いだり(ポッティングなど)、基材上に塗布したり(積層)、繊維(フィラメント)などに含浸させたり(フィラメントワイディングなど)するなどの適当な方法で施した後、加熱硬化させることによって、それぞれの用途などに応じた樹脂硬化物を得ることができる。
 常温で液状やワニス状の硬化性樹脂組成物は、必要であれば、注型、ポッティング、含、塗工、繊維への含浸などを行った後、加熱や乾燥を行って半硬化状態(Bステージ)にすると、タック性が低減して作業性を向上させることができる。また、ワニス状を呈する本発明の硬化性樹脂組成物は、コンマコーター、ダイコーター、グラビアコーターなどの塗工装置を使用してキャリアフィルムに塗工し、乾燥し、硬化させたフィルム状に成形することもできるし、真空脱泡して使用することもできる。
 本発明の硬化性樹脂組成物を硬化させる際の硬化温度および硬化時間は、エポキシ樹脂(a)やエポキシ樹脂硬化剤(b)の種類などに応じて異なり得るが、例えば、硬化温度20~250℃、硬化時間1~24時間の条件などが採用される。
 硬化性樹脂組成物の熱硬化を多段階で徐々に行なうと、樹脂硬化物の表面が美麗になり、しかも樹脂硬化物内に前記(1)に記載したようなミクロ相分離構造が形成され易くなる。
 例えば、硬化性樹脂組成物を2段階で熱硬化する場合には、硬化温度20~160℃および硬化時間1~5時間で予備硬化を行ない、次いで硬化温度130~250℃および硬化時間1~3時間で後硬化を行なう方法が好ましく採用される。
 本発明の硬化性樹脂組成物を硬化して得られる本発明の樹脂硬化物は、マクロ相分離構造およびミクロ相分離構造をとることができるが、被着体に対する接着強さおよび樹脂硬化物の破壊靭性が優れたものになる点から、ミクロ相分離構造を有することが好ましい。
 ここで、本明細書に記載する「マクロ相分離構造」とは、複数の種類の異なるポリマー成分が互いに相溶することなく、マクロな大きさ(通常、1~1000μm)で混在している構造をいう。一方、「ミクロ相分離構造」とは、複数の種類の異なるポリマー成分が、互いに相溶することなく、ミクロな大きさ[通常、径(球状構造または粒状構造をなしている場合は球状構造体または粒状構造体の直径(最大径)が1~500nm、線状構造をなしている場合は線状構造体の直径(最大径)が1~500nm]で混在している構造をいう。
 樹脂硬化物におけるミクロ相分離構造は、走査型プローブ顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡などを使用して、以下の実施例の項に記載する方法などにより観察することができる。
 本発明の樹脂硬化物がミクロ相分離構造を有する場合は、そのミクロ相分離構造は、ミクロな球状構造、ミクロなラメラ状構造、ミクロな線状構造、それらの2つ以上が混在したものなどのミクロ相分離構造などを有することができる。本発明の樹脂硬化物がミクロな球状構造をなして分散したミクロ相分離構造を有する場合は、アクリル系ブロック共重合体(c)中の重合体ブロックBがサイズの揃ったミクロな球状構造をなしてマトリックス中に均一に分散していることが好ましい。
 被着体に対する接着強さが大きく、しかも破壊靭性に優れた樹脂硬化物となることから、本発明の樹脂硬化物は、上記したミクロ相分離構造のうちでも、「硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして分散しているミクロ相分離構造」を有していることが好ましい。その場合に、「アクリル系ブロック共重合体(c)中の重合体ブロックBが、硬化したエポキシ樹脂よりなるマトリックス中に、ミクロな線状構造をなしてランダムに分散していてもよいし、所定の方向に向いて配向した状態で分散してもよい。特に、アクリル系ブロック共重合体(c)中の重合体ブロックBが、エポキシ樹脂マトリックス中に、ミクロな線状構造をなして所定の方向に配向した状態(所定の方向に向いて配列した状態)で分散していると、樹脂硬化物の破壊靭性および剥離接着強さが一層向上する。
 通常、本発明の硬化性樹脂組成物では、アクリル系ブロック共重合体(c)の含有量が多くなるほど、アクリル系ブロック共重合体(c)中の重合体ブロックBが樹脂硬化物中にミクロな線状構造をなして分散したミクロ相分離構造を形成し易い。
 また、アクリル系ブロック共重合体(c)における重合体ブロックBの含有量が多いほど、樹脂硬化物中で重合体ブロックBがミクロな線状構造なして分散したミクロ相分離構造を形成し易い。
 また、重量平均分子量(Mw)の大きいアクリル系ブロック共重合体(c)を使用すると、重量平均分子量(Mw)の小さいアクリル系ブロック共重合体(c)を使用する場合に比べて、ミクロな線状構造体が分散したミクロ相分離構造を明瞭に形成しやすく、重合体ブロックBの含有量が少ない場合でも、樹脂硬化物中で重量体ブロックBがミクロな線状構造をなす場合がある。
 また、本発明の樹脂硬化物のうち、アクリル系ブロック共重合体(c)中の重合体ブロックBが硬化したエポキシ樹脂よりなるマトリックス中にミクロな線状構造をなして分散してなる樹脂硬化物では、一般的に、アクリル系ブロック共重合体(c)の重量平均分子量(Mw)が大きくなるほど、またアクリル系ブロック共重合体(c)中の重合体ブロックA(ハードセグメント)の含有割合が少なくなるほど、重合体ブロックBよりなるミクロな線状構造体は、所定の方向に配向して(所定の方向に向いて配列して)マトリックス中に分散し易くなる。かかる点から、アクリル系ブロック共重合体(c)中の重合体ブロックA(ハードセグメント)の含有量が多い場合は、ミクロな線状構造体が所定の方向に配向して分散したミクロ相分離構造を形成するためには、一般にアクリル系ブロック共重合体(c)の重量平均分子量(Mw)を高くする必要がある。
 本発明の樹脂硬化物が、エポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして分散しているミクロ相分離構造を有する場合は、重合体ブロックBよりなるミクロな線状構造体は、連続した線状構造体であってもよいし、断続した(不連続の)線状構造体であってもよいし、または連続した線状構造体と断続した線状構造体が混在していてもよい。また、線状構造体は、直線的であっても湾曲していてもかまわない。
 ここで、本明細書における「ミクロな線状構造」とは、アクリル系ブロック共重合体(c)中の重合体ブロックBからなるミクロな線状構造体において、個々の線状構造体の長さを同じ線状構造体の直径で除したときに、その値(長さ/直径)が3以上である場合を一般に意味する。
 その際に、各ミクロな線状構造体の直径は、1~300nmであることが好ましく、5~100nmであることがより好ましく、10~70nmであることが更に好ましい。
 本発明の樹脂硬化物における前記したミクロな相分離構造は、以下の実施例に記載するように、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、走査型プローブ顕微鏡(AFM)などを使用して観察することができる。
 これらの顕微鏡を用いた観察では、本発明のような配向した線状のミクロ相分離を形成する場合、1つの切断面だけでは球状構造に見えることがあるので、線状のミクロ相分離構造の観察には、図1に示すように、少なくとも直交する2つの切断面での観察を行なうのがよい。そして、そのような2つの切断面での観察を、同じ試料について数箇所行なうことが好ましい。
 このようなミクロな相分離構造を有する本発明の樹脂硬化物では、アクリル系ブロック共重合体(c)中の重合体ブロックAは、重合体ブロックBよりなる前記したミクロな線状構造体から外方に突出した状態で硬化したエポキシ樹脂マトリックスと相溶しているものと推測される。
 本発明の樹脂硬化物の破壊靭性値は、樹脂硬化物の用途などに応じて決めることができる。本発明の樹脂硬化物は、高度な破壊靭性を発揮させる点から、ASTM D5045―91に基づくSingle Edge Notched Bending(SENB)試験にて算出した破壊靭性値(K1c)が1.6MPa・m1/2以上であることが好ましく、1.8MPa・m1/2以上であることがより好ましく、2.1MPa・m1/2以上であることが更に好ましく、2.3~5.0MPa・m1/2であることが特に好ましい。
 さらに、本発明の樹脂硬化物の被着体に対する接着強さは、被着体の種類、被着体と樹脂硬化物の複合体の用途、使用形態などに応じて異なり得るが、適度な剥離接着強さを発揮させる観点から、JIS K 6854-3に基づく試験による100mm/minの剥離速度でのアルミニウム板に対する剥離接着強さが10N/25mm以上であることが好ましく、15N/25mm以上であることがより好ましく、30~200N/25mmであることが更に好ましい。
 本発明の樹脂硬化物は、構造接着剤層や封止材層などとして好適に用いることができる。具体的には、例えば、電子回路部品の多数のタイプ、主に、集積回路(IC)チップ内に一緒に組み立てられるトランジスタ類、また、レジスタ類、キャパシタ類などの電子部品と基板との間の相互接続を保護し、強化するために使用される構造接着剤層や封止材層として用いることができる。
 本発明の硬化性樹脂組成物を接着剤として使用する場合は、一液型でもよいし、二液型でもよいし、ホットメルト型や溶剤揮散型でもかまわない。また、シートやフィルムなどと複層構造にしてテープ状にして用いることもできる。樹脂組成物未硬化時には位置決め可能な粘着剤として機能し、硬化時には接着剤として機能する、いわゆる粘接着剤として使用することもできる。具体的には、例えば、ネジ、ボルト、ナットなどの螺合面に塗布して螺着時における緩み止めや密封のために、また家電や電子機器の各部材間の接着、航空機、鉄道車両、自動車などの機械構造や車両構造などにおける種々の金属、複合材料、ポリマーなどの同種または異種材質間の接着などのために好適に用いられる。
 また、本発明の硬化性樹脂組成物をマトリックス樹脂として用いた樹脂硬化物である繊維強化複合材料は、スポーツ用途、航空機用途および一般産業用途に好適に用いられる。より具体的には、航空宇宙用途では、主翼、尾翼およびフロアビームなどの航空機一次構造材用途、フラップ、エルロン、カウル、フェアリングおよび内装材などの二次構造材用途、ロケットモーターケースおよび人工衛星構造材用途などに好適に用いられる。また、スポーツ用途では、ゴルフシャフト、釣り竿、テニス、バトミントンおよびスカッシュなどのラケット用途、ホッケーなどのスティック用途、野球やソフトボールのバット用途、自転車のフレーム用途、スキーポール用途などに好適に用いられる。さらに一般産業用途では、自動車、船舶および鉄道車両などの移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、補強筋、および補修補強材料などの土木・建築材料用途などに好適に用いられる。
 以下に実施例などを挙げて本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(I)アクリル系ブロック共重合体の合成
 以下の合成例1~4では、下記の実施例で用いたアクリル系ブロック共重合体(c-1)、(c-2)、(c-3)、(c-4)および(c-5)を合成した。
 アクリル系ブロック共重合体(c-1)、(c-2)、(c-3)、(c-4)および(c-5)の合成は、常法により乾燥精製した薬品を使用して、以下に示す合成例1~5に従って実施した。
 その際に、合成したアクリル系ブロック共重合体(c-1)、(c-2)、(c-3)、(c-4)および(c-5)並びに比較例4、5および7で用いた市販のアクリル系ブロック共重合体[アルケマ社製「ナノストレングス(Nanostrength)」(登録商標)M22;ポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体、以下「アクリル系ブロック共重合体(M22)」という]の重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)、重合体ブロックA(ポリメタクリル酸メチルブロック)および重合体ブロックB(ポリアクリル酸ブチルブロック)の含有割合、重合体ブロックAの立体規則性(rr)、重合体ブロックAと重合体ブロックB(ポリアクリル酸ブチルブロック)のガラス転移温度、各単量体の重合転化率は、以下の方法で求めた。
(I-1)アクリル系ブロック共重合体の重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(分子量分布(Mw/Mn)の測定
 以下に記載する装置を使用して、以下の方法および条件を採用して、ゲルパーミエーションクロマトグラフ(GPC)によりアクリル系ブロック共重合体の重量平均分子量(Mw)および数平均分子量(Mn)を測定すると共に、それにより得られた値から分子量分布(Mw/Mn)を求めた。
 [装置および測定条件]
  ・装置:東ソー(株)製ゲルパーミエーションクロマトグラフ(HLC-8020)
  ・カラム:東ソー(株)製TSKgel GMHXL、G4000HXLおよびG5000HXLを直列に連結
  ・溶離剤:テトラヒドロフラン
  ・溶離剤流量:1.0ml/分
  ・カラム温度:40℃
  ・検出方法:示差屈折率(RI)
  ・検量線:標準ポリスチレンを用いて作成
(I-2)アクリル系ブロック共重合体における重合体ブロックAの含有割合
 以下の装置および方法を採用して、プロトン核磁気共鳴(1H-NMR)分光法によってアクリル系ブロック共重合体における各共重合成分の含有量の測定
[装置および方法]
  ・装置:日本電子(株)製核磁気共鳴装置(JNM-LA400)
  ・溶媒:重クロロホルム
  ・1H-NMRスペクトルにおいて、3.6ppmおよび4.0ppm付近のシグナルは、それぞれメタクリル酸メチル単位のエステル基(-O-CH 3 )およびアクリル酸n-ブチル単位のエステル基-O-CH 2 -CH2-CH2-CH3)に帰属され、その積分値の比によって共重合成分の含有量を求めた。
(I-3)重合体ブロックAの立体規則性(rr)
 下記の装置および方法を採用して、カーボン核磁気共鳴(13C-NMR)分光法によって、アクリル系ブロック共重合体における重合体ブロックA(ポリメタクリル酸メチルブロック)の立体規則性(rr)を分析した。
 [装置および方法]
  ・装置:日本電子(株)製核磁気共鳴装置(JNM-LA400)
  ・溶媒:重クロロホルム
  ・13C-NMRスペクトルにおいて、44.5ppm、44.8ppmおよび45.5ppm付近のシグナルは、メタクリル酸メチル重合体ブロックの四級炭素に帰属され、それぞれ立体規則性rr、mr、およびmmに対応し、その積分値の比によって立体規則性rrを求めた。なお、立体規則性は1H-NMR法によっても求めることができる。本発明の実施例および比較例で用いたブロック共重合体では、1H-NMR法ではメタクリル酸メチル重合体由来のシグナルとアクリル酸n-ブチル重合体由来のシグナルとの分離が困難であったため、13C-NMR法による分析を採用した。
(I-4)アクリル系ブロック共重合体の各重合体ブロックのガラス転移温度(Tg)
 以下の装置および条件を採用して、DSC測定で得られた曲線において、外挿開始温度(Tgi)をガラス転移温度(Tg)とした。
 [装置および条件]
  ・DSC測定装置:メトラー社製「DSC-822」
  ・条件:昇温速度10℃/分
(I-5)仕込んだ単量体の重合転化率
 以下の装置および条件を採用して、ガスクロマトグラフィー(GC)によって仕込んだ単量体の重合転化率を測定した。
 [装置および条件]
  ・GC装置:島津製作所製ガスクロマトグラフ「GC-14A」
  ・カラム:GL Sciences Inc.製「INERT CAP 1」(df=0.4μm、0.25mmI.D.×60m)
  ・分析条件:injection 300℃、detecter 300℃、60℃(0分保持)→5℃/分→100℃(0分保持)→15℃/分→300℃(2分保持)
《合成例1》[アクリル系ブロック共重合体(c-1)の合成]
(1) 2Lの三口フラスコに三方コックを付け、内部を窒素で置換した後、室温にてトルエン868g、1,2-ジメトキシエタン43.4g、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム40.2mmolを含有するトルエン溶液60.0gを加え、さらにsec-ブチルリチウム2.05mmolを含有するシクロヘキサンとn-ヘキサンの混合溶液1.18gを加えた。続いて、これにメタクリル酸メチル46.8gを加えた。反応液は当初、黄色に呈色していたが、室温にて60分間攪拌後には無色となった。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。引き続き、重合液の内部温度を-30℃に冷却し、アクリル酸n-ブチル218gを2時間かけて滴下し、滴下終了後、-30℃にて5分間攪拌した。このときのアクリル酸n-ブチルの重合転化率は99.9%以上であった。さらに、これにメタクリル酸メチル46.8gを加え、一晩室温にて攪拌後、メタノ-ル3.50gを添加して重合反応を停止した。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。得られた反応液を6.4kgのメタノール中に注ぎ、白色沈澱物を析出させた。その後、濾過により白色沈殿物を回収し、乾燥させることによりトリブロック共重合体[アクリル系ブロック共重合体(c-1)]303gを得た。
(2) 上記(1)で得られたアクリル系ブロック共重合体(c-1)について、上記した方法で1H-NMR測定とGPC測定を行った結果、当該アクリル系ブロック共重合体(c-1)は、ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体であり、重量平均分子量(Mw)は161,000および数平均分子量(Mn)は126,000であり、分子量分布(Mw/Mn)は1.28であった。
 また、アクリル系ブロック共重合体(c-1)における各重合体ブロックの含有割合は、メタクリル酸メチル重合体ブロック(重合体ブロックA)が30.0質量%で、アクリル酸n-ブチル重合体ブロック(重合体ブロックB)が70.0質量%であった。
(3) また、上記(1)で得られたアクリル系ブロック共重合体(c-1)の各重合体ブロックのガラス転移温度およびポリメタクリル酸メチルブロック(重合体ブロックA)の立体規則性(rr)を上記した方法で求めたところ、下記の表1に示すとおりであった。
《合成例2》[アクリル系ブロック共重合体(c-2)の合成]
(1) 2Lの三口フラスコに三方コックを付け内部を窒素で置換した後、室温にてトルエン868g、1,2-ジメトキシエタン43.4g、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム40.2mmolを含有するトルエン溶液60.0gを加え、さらにsec-ブチルリチウム6.37mmolを含有するシクロヘキサンとn-ヘキサンの混合溶液3.68gを加えた。続いて、これにメタクリル酸メチル49.9gを加えた。反応液は当初、黄色に呈色していたが、室温にて60分間攪拌後には無色となった。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。引き続き、重合液の内部温度を-30℃に冷却し、アクリル酸n-ブチル212gを2時間かけて滴下し、滴下終了後、-30℃にて5分間攪拌した。このときのアクリル酸n-ブチルの重合転化率は99.9%以上であった。さらに、これにメタクリル酸メチル49.9gを加え、一晩室温にて攪拌後、メタノ-ル3.50gを添加して重合反応を停止した。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。得られた反応液を15kgのメタノール中に注ぎ、白色沈澱物を析出させた。その後、濾過により白色沈殿物を回収し、乾燥させることにより、トリブロック共重合体[アクリル系ブロック共重合体(c-2)]310gを得た。
(2) 上記(1)で得られたアクリル系ブロック共重合体(c-2)について、1H-NMR測定とGPC測定を行った結果、当該アクリル系ブロック共重合体(c-2)は、ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体であり、重量平均分子量(Mw)は63,000、数平均分子量(Mn)50,000であり、分子量分布(Mw/Mn)は1.26であった。また、アクリル系ブロック共重合体(c-2)における各重合体ブロックの含有割合は、メタクリル酸メチル重合体ブロック(重合体ブロックA)が32.0質量%で、アクリル酸n-ブチル重合体ブロック(重合体ブロックB)が68.0質量%であった。
(3) また、上記(1)で得られたアクリル系ブロック共重合体(c-2)の各重合体ブロックのガラス転移温度およびポリメタクリル酸メチルブロック(重合体ブロックA)の立体規則性(rr)を上記した方法で求めたところ、下記の表1に示すとおりであった。
《合成例3》[アクリル系ブロック共重合体(c-3)の合成]
(1) 2Lの三口フラスコに三方コックを付け内部を窒素で置換した後、室温にてトルエン868g、1,2-ジメトキシエタン43.4g、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム40.2mmolを含有するトルエン溶液60.0gを加え、さらにsec-ブチルリチウム3.06mmolを含有するシクロヘキサンとn-ヘキサンの混合溶液1.80gを加えた。続いて、これにメタクリル酸メチル50.3gを加えた。反応液は当初、黄色に呈色していたが、室温にて60分間攪拌後には無色となった。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。引き続き、重合液の内部温度を-30℃に冷却し、アクリル酸n-ブチル224gを2時間かけて滴下し、滴下終了後、-30℃にて5分間攪拌した。このときのアクリル酸n-ブチルの重合転化率は99.9%以上であった。さらに、これにメタクリル酸メチル50.3gを加え、一晩室温にて攪拌後、メタノ-ル3.50gを添加して重合反応を停止した。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。得られた反応液を15kgのメタノール中に注ぎ、白色沈澱物を析出させた。その後、濾過により白色沈殿物を回収し、乾燥させることにより、トリブロック共重合体[アクリル系ブロック共重合体(c-3)]320gを得た。
(2) 上記(1)で得られたアクリル系ブロック共重合体(c-3)について、1H-NMR測定とGPC測定を行った結果、当該アクリル系ブロック共重合体(c-3)は、ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体であり、重量平均分子量(Mw)は132,000、数平均分子量(Mn)101,000であり、分子量分布(Mw/Mn)は1.31であった。また、アクリル系ブロック共重合体(c-3)における各重合体ブロックの含有割合は、メタクリル酸メチル重合体ブロック(重合体ブロックA)が31.3質量%で、アクリル酸n-ブチル重合体ブロック(重合体ブロックB)が68.7質量%であった。
(3) また、上記(1)で得られたアクリル系ブロック共重合体(c-3)の各重合体ブロックのガラス転移温度およびポリメタクリル酸メチルブロック(重合体ブロックA)の立体規則性(rr)を上記した方法で求めたところ、下記の表1に示すとおりであった。
《合成例4》[アクリル系ブロック共重合体(c-4)の合成]
(1) 2Lの三口フラスコに三方コックを付け内部を窒素で置換した後、室温にてトルエン868g、1,2-ジメトキシエタン43.4g、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム40.2mmolを含有するトルエン溶液60.0gを加え、さらにsec-ブチルリチウム3.06mmolを含有するシクロヘキサンとn-ヘキサンの混合溶液1.80gを加えた。続いて、これにメタクリル酸メチル83.0gを加えた。反応液は当初、黄色に呈色していたが、室温にて60分間攪拌後には無色となった。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。引き続き、重合液の内部温度を-30℃に冷却し、アクリル酸n-ブチル158gを2時間かけて滴下し、滴下終了後、-30℃にて5分間攪拌した。このときのアクリル酸n-ブチルの重合転化率は99.9%以上であった。さらに、これにメタクリル酸メチル83.0gを加え、一晩室温にて攪拌後、メタノ-ル3.50gを添加して重合反応を停止した。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。得られた反応液を15kgのメタノール中に注ぎ、白色沈澱物を析出させた。その後、濾過により白色沈殿物を回収し、乾燥させることにより、トリブロック共重合体[アクリル系ブロック共重合体(c-4)]319gを得た。
(2) 上記(1)で得られたアクリル系ブロック共重合体(c-4)について、1H-NMR測定とGPC測定を行った結果、当該アクリル系ブロック共重合体(c-4)は、ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体であり、重量平均分子量(Mw)は137,000、数平均分子量(Mn)112,000であり、分子量分布(Mw/Mn)は1.22であった。また、アクリル系ブロック共重合体(c-4)における各重合体ブロックの含有割合は、メタクリル酸メチル重合体ブロック(重合体ブロックA)が51.4質量%で、アクリル酸n-ブチル重合体ブロック(重合体ブロックB)が48.6質量%であった。
(3) また、上記(1)で得られたアクリル系ブロック共重合体(c-4)の各重合体ブロックのガラス転移温度およびポリメタクリル酸メチルブロック(重合体ブロックA)の立体規則性(rr)を上記した方法で求めたところ、下記の表1に示すとおりであった。
《合成例5》[アクリル系ブロック共重合体(c-5)の合成]
(1) 2Lの三口フラスコに三方コックを付け内部を窒素で置換した後、室温にてトルエン868g、1,2-ジメトキシエタン43.4g、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム40.2mmolを含有するトルエン溶液60.0gを加え、さらにsec-ブチルリチウム5.00mmolを含有するシクロヘキサンとn-ヘキサンの混合溶液2.89gを加えた。続いて、これにメタクリル酸メチル35.9gを加えた。反応液は当初、黄色に呈色していたが、室温にて60分間攪拌後には無色となった。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。引き続き、重合液の内部温度を-30℃に冷却し、アクリル酸n-ブチル240gを2時間かけて滴下し、滴下終了後、-30℃にて5分間攪拌した。このときのアクリル酸n-ブチルの重合転化率は99.9%以上であった。さらに、これにメタクリル酸メチル35.9gを加え、一晩室温にて攪拌後、メタノ-ル3.50gを添加して重合反応を停止した。このときのメタクリル酸メチルの重合転化率は99.9%以上であった。得られた反応液を15kgのメタノール中に注ぎ、白色沈澱物を析出させた。その後、濾過により白色沈殿物を回収し、乾燥させることにより、トリブロック共重合体[アクリル系ブロック共重合体(c-5)]308gを得た。
(2) 上記(1)で得られたアクリル系ブロック共重合体(c-5)について、1H-NMR測定とGPC測定を行った結果、当該アクリル系ブロック共重合体(c-5)は、ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体であり、重量平均分子量(Mw)は73,000、数平均分子量(Mn)65,000であり、分子量分布(Mw/Mn)は1.12であった。また、アクリル系ブロック共重合体(c-5)における各重合体ブロックの含有割合は、メタクリル酸メチル重合体ブロック(重合体ブロックA)が23.0質量%で、アクリル酸n-ブチル重合体ブロック(重合体ブロックB)が77.0質量%であった。
(3) また、上記(1)で得られたアクリル系ブロック共重合体(c-5)の各重合体ブロックのガラス転移温度およびポリメタクリル酸メチルブロック(重合体ブロックA)の立体規則性(rr)を上記した方法で求めたところ、下記の表1に示すとおりであった。
 上記の合成例1~5で得られたアクリル系ブロック共重合体(c-1)、(c-2)、(c-3)、(c-4)および(c-5)の内容を、以下の表1に記載する。
 また、比較例4、5および7で使用した市販のアクリル系ブロック共重合体[アルケマ社「ナノストレングス(Nanostrength)」(登録商標)M22;ポリメタクリル酸メチル-ポリアクリル酸n-ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体][トリブロック共重合体(M22)]についても、合成例1~5におけるのと同様にして、重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)、各重合体ブロックの含有割合、各重合体ブロックのガラス転移温度およびポリメタクリル酸メチルブロック(重合体ブロックA)の立体規則性(rr)を求めたので、その結果を下記の表1に記載する。なお、“ナノストレングス(Nanostrength)”のミクロ相分離構造については非特許文献4および5に記載されている。
Figure JPOXMLDOC01-appb-T000001
(II)硬化性樹脂組成物および樹脂硬化物の製造並びに物性測定
 以下の実施例1~16および比較例1~7において、エポキシ樹脂を主成分とする硬化性樹脂組成物を製造し、それを熱硬化して樹脂硬化物を製造した。
 以下の実施例および比較例において、熱硬化して得られた樹脂硬化物の剥離接着強さ、破壊靭性値、弾性率の測定および相構造の観察は、以下の方法で行なった。
(II-1)剥離接着強さ
(1) 長さ200mm×幅25mm×厚み0.5mmのアルミニウム板(JIS H4000 A1050P)を使用し、このアルミニウム板をサンドペーパー(粒度100(WTCC-D))でサンディングして前処理し、次いでアセトンにて脱脂した後、UV処理[センエンジニアリング(株)製「UVR-200G-SSII」を使用]を10分間行って、被着体とした。
(2) 上記(1)の被着体に、以下の実施例または比較例で製造した硬化性樹脂組成物を塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御し、もう一枚の被着体で挟み込んだ後、以下の実施例または比較例で採用しているのと同じ熱硬化条件を採用して硬化性樹脂組成物をアルミニウム板上で熱硬化させてアルミニウム板/樹脂硬化物/アルミニウム板からなる積層体を製造し、それを室温(25℃)まで12時間かけて徐冷したものを剥離接着強さの測定用の試験片として用いた。
(3) 上記(2)で得られた試験片を用いて、JIS K 6854-3に準じて、ネジ式万能試験器[(株)インテスコ製「ネジ式万能試験機210B」]を使用して、変位速度は100mm/min、温度23℃の条件下に、大気中で剥離接着強さを測定した。
 剥離時のアルミニウム板における接着面を目視で確認して、樹脂硬化物がアルミニウム板との界面で破壊している場合の剥離モードを「界面」とし、樹脂硬化物がアルミニウム板との界面以外の箇所で破損している場合の剥離モードを「凝集」とした。界面での破壊と界面以外の箇所での破損の両方が生じている場合には、剥離モードを「凝集」とした。
(II-2)剪断接着強さ
(1) 長さ125mm×幅25mm×厚み1.6mmの鋼板(JIS G3141 SPCC-SB)を使用し、この鋼板をアセトンにて脱脂した後、UV処理[センエンジニアリング(株)製「UVR-200G-SSII」を使用]を10分間行って、被着体とした。
(2) 上記(1)の被着体に、以下の実施例または比較例で製造した硬化性樹脂組成物を塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約50μmに制御し、もう一枚の被着体で挟み込んだ後、以下の実施例または比較例で採用しているのと同じ熱硬化条件を採用して硬化性樹脂組成物を鋼板上で熱硬化させて鋼板/樹脂硬化物/鋼板からなる積層体を製造し、それを室温(25℃)まで12時間かけて徐冷したものを剪断接着強さの測定用の試験片として用いた。あて板として長さ40mm×幅25mm×厚み1.5mmのアルミニウム板(JIS H4000 A2017P)を用い、接着剤にて固定した。
(3) 上記(2)で得られた試験片を用いて、JIS K 6850に準じて、ネジ式万能試験機[(株)インテスコ製「ネジ式万能試験機210B」]を使用して、変位速度10mm/min、温度23℃の条件下に、大気中で剪断接着強さを測定した。
(II-3)破壊靭性値K1c
 以下の実施例または比較例で製造した厚さ6mmの樹脂硬化物から長さ50mm×幅12mm×厚さ6mmの試験片を切り出し、この試験片を用いて、ネジ式万能試験機[(株)インテスコ製「ネジ式万能試験機210B」]を使用して、ASTM D 5045-91に準じた「Single edge notched bending(SENB)試験」を、温度23℃の大気中で、10mm/minの圧縮変位速度で行なって、破壊靭性値K1cを求めた。
 その際に、前記した試験片の厚さ方向の中央部に亀裂導入のために鋸で形成した溝に、液体窒素で冷やした厚さ0.25mmのカッターの刃をあて、ハンマーで刃を叩き、鋭いき裂を導入した。初期き裂長さ(a)は倍率50倍の読み取り顕微鏡にて0.01mmまで5点測定して平均した。結果として生じた亀裂長さ(a)は5.4~6.6mmの範囲であった。
(II-4)弾性率
 以下の実施例または比較例で製造した厚さ2mmの樹脂硬化物から長さ40mm×幅10mm×厚さ2mmの試験片を切り出し、この試験片を用いて、ネジ式万能試験機[(株)インテスコ製「ネジ式万能試験機210B」]を使用して、JIS K7171に準じて弾性率を測定した。
 その際に、変位速度は3mm/minで、スパン間32mmの3点曲げモードにて試験を行った。
(II-5)樹脂硬化物の相構造の観察
(II-5a)走査型プローブ顕微鏡による相構造の観察:
 以下の実施例または比較例で得られた破壊靭性値測定用の試験片を、液体窒素中で凍結破断し、凍結破断面を走査型プローブ顕微鏡[SIIナノテクノロジー(株)製「多機能型SPM E-sweep」]を使用し、DMFモード短針はSI-DF20を使用し、共振周波数1.0Hzで相構造の観察を行なった(倍率50000倍)。
(II-5b)走査型電子顕微鏡による相構造の観察:
 以下の実施例または比較例で得られた破壊靭性値測定用の試験片を、液体窒素中で凍結破断し、凍結破断面を走査型電子顕微鏡[(株)キーエンス製「3Dリアルサーフィスビュー顕微鏡VE-9800」]を使用して撮影して(倍率50000倍)、相構造を観察した。
(II-5c)透過型電子顕微鏡による相構造の観察:
 以下の実施例または比較例で得られた破壊靭性値測定用の試験片を、ウルトラミクロトームを使用して、図1に示すように、長さ方向に沿って端部から2mmの位置で垂直方向にスライスして厚さが60nmの切片(a)を採取するか、および/または同じ破壊靭性値測定用の試験片を端部から5mmの位置で長さ方向に対して直角にスライスして厚さが60nmの切片(b)を採取し、切片(a)および/または切片(b)について、それぞれの切片の切断面をRuO4水溶液と共にシャーレに入れ、気相暴露することにより電子染色した後、それを透過型電子顕微鏡[(株)日立製作所製「透過型電子顕微鏡H-800NA型」]を使用して、加速電圧100kvで写真撮影して(倍率50000倍および250000倍)、両方の切片(a)および/または切片(b)の断面写真から、ミクロ相分離構造の観察(ミクロ相分離構造が球状または粒状構造であるか、或いは線状構造であるかの判定、ミクロ相分離構造体の直径の測定など)を行なった。
(II-5d)偏光顕微鏡による異方性の観察:
 以下の実施例または比較例で得られた樹脂硬化物から試料を切り出し、スライドガラスにエポキシ系常温硬化性樹脂(BUEHLER社製「エポシン」)で接着し、冷間埋込樹脂(丸本ストルアス株式会社製「No.105」)とM剤(硬化剤、「UN No.3103」)を用いて包埋し、50~70μm程度にまで研磨し、偏光顕微鏡(株式会社ニコン製「ECLIPSE E600W POL」)を使用して、クロスニコル状態での光の透過性を見ることにより異方性の有無を確認した(倍率50倍)。
《実施例1》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル[ジャパンエポキシレジン(株)製「JER828」]100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)39.02gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を攪拌装置(東京理化器械株式会社製「MAZELA NZ-1200」、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン[東京化成工業(株)製](硬化促進剤)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂[住友ベークライト(株)製「PR-HF-3」]55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合して(温度100℃で約10分間撹拌)、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i)破壊靭性値測定用の試験片(樹脂硬化物)の製造および測定:
 上記(1)で得られた硬化性樹脂組成物を110℃に加熱して20分減圧脱泡した後、それを予め離型剤[ダイキン工業(株)製「ダンフリーGA-6010」]を塗布して離型処理しておいたアルミニウム製の板(サイズ=長さ120mm×幅100mm)2枚でコの字型テフロン(登録商標)製スペーサー(厚さ6mm)を挟み込んで固定した型に上から流し込み、120℃で2時間予備硬化(Precure)を行い、次いで150℃で2時間の後硬化(Postcure)を行なって、板状の樹脂硬化物(サイズ=長さ90mm×幅85mm×厚さ6mm)を製造した。この樹脂硬化物を長さ50mm×幅12mm×厚さ6mmの短冊状に切り出し、これを試験片として用いて、上記した方法で破壊靭性値を測定したところ、下記の表2に示すとおりであった。
(ii)弾性率測定用の試験片(樹脂硬化物)の製造および測定:
 上記(1)で得られた樹脂硬化性組成物を110℃に加熱して20分減圧脱泡した後、それを予め離型剤[ダイキン工業(株)製「ダンフリーGA-6010」]を塗布して離型処理しておいたアルミニウム製の板(サイズ=長さ120mm×幅100mm)2枚でコの字型テフロン(登録商標)製スペーサー(厚さ2mm)を挟み込んで固定した型に上から流し込み、120℃で2時間予備硬化(Precure)を行い、次いで150℃で2時間の後硬化(Postcure)を行なって、板状の樹脂硬化物(サイズ=長さ90mm×幅85mm×厚さ2mm)を製造した。
 この樹脂硬化物から、長さ40mm×幅10mm×厚さ2mmの試験片を切り出して、上記した方法で弾性率を測定したところ、下記の表2に示すとおりであった。
(iii)剥離接着強さ測定用の試験片(積層体)の製造および測定:
 長さ200mm×幅25mm×厚み0.5mmのアルミニウム板(JIS H4000A1050P)をサンドペーパー[粒度100(WTCC-D)]でサンディングして前処理し、次いでアセトンにて脱脂した後、UV処理[センエンジニアリング(株)製「UVR-200G-SSII」を使用]を10分行なったアルミニウム板(以下「被着体用アルミニウム板」という)を準備した。
 上記(1)で得られた硬化性樹脂組成物を110℃に加熱して20分間減圧脱泡を行なった後、前記で準備した被着体用アルミニウム板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御した後、120℃で2時間予備硬化(Precure)を行い、次いで150℃で2時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剥離接着強さ測定用の積層体(試験片)を作製した。
 この試験片を用いて、上記した方法で剥離接着強さを測定したところ、下記の表2に示すとおりであった。
(iv)樹脂硬化物の相構造の観察:
(iv-1) 上記(i)で得られた破壊靭性値測定用の試験片を用い、走査型プローブ顕微鏡を使用して上記(II-5a)の方法で凍結破断面の相構造を観察したところ、図2に示すように、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c-1)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな線状構造をなして分散しているミクロ相分離構造を有していた。
[なお、アクリル系ブロック共重合体(c-1)の軟質成分であるポリアクリル酸n-ブチルブロック部分が位相像の明色部として撮影されることにより、樹脂硬化物でのポリアクリル酸n-ブチルブロック部分の分散状態がミクロな線状構造をなしていることが観察される(図2の写真における明色の線状構造部分)。]
(iv-2) 上記(i)で得られた破壊靭性値測定用の試験片を用い、走査型電子顕微鏡を使用して、上記(II-5b)の方法で凍結破断面の相構造を撮影したところ(倍率50000倍)、図3に示すように、線状構造をなして分散しているミクロ相分離構造を有しており、上記(iv-1)にて観察した像とよく一致することから、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c-1)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな線状構造をなして分散しているミクロ相分離構造を有していることを確認した。
(iv-3) 上記(i)で得られた破壊靭性値測定用の試験片を用い、透過型電子顕微鏡を使用して、上記(II-5c)の方法で切片(a)の切断面を写真撮影したところ(倍率50000倍および250000倍)、ポリアクリル酸n-ブチルブロック部分が濃色部として観察され、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c-1)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな線状構造をなして分散しているミクロ相分離構造を有していた。
 得られた写真(250000倍)の濃色部(線状構造体)の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表2に示すとおりであった。
[なお、アクリル系ブロック共重合体(c-1)の軟質成分であるポリアクリル酸n-ブチルブロック部分にエポキシ樹脂硬化剤であるフェノール・ホルムアルデヒド型ノボラック樹脂が未反応のまま含まれた状態になっていて、フェノール・ホルムアルデヒド型ノボラック樹脂のフェノール性水酸基がRuO4によって染色されることにより、樹脂硬化物中のポリアクリル酸n-ブチルブロック部分が濃色部として観察される。]
《実施例2》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したものと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)17.34gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表2に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片を用い、透過型電子顕微鏡を使用して上記(II-5c)の方法で、切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、ポリアクリル酸n-ブチルブロック部分が濃色部として均一なサイズの球状構造をなしてマトリックス中に分散したミクロ相分離構造をなす断面写真を得た。
 得られた写真(250000倍)の10点の濃色部(球状構造体)を任意に選択してその直径(最大径)を測定して平均値を採ったところ、下記の表2に示すように、球状構造体の平均直径は27nmであった。
《実施例3》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したものと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)39.02gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して十分に攪拌混合して、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i)剥離接着強さ測定用の試験片の製造および測定:
 上記(1)で得られた硬化性樹脂組成物を100℃に加熱して20分間減圧脱泡を行なった後、実施例1の(2)の(iii)で用いたのと同じ被着体用アルミニウム板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御した後、100℃で3時間予備硬化(Precure)を行い、次いで150℃で2時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剥離接着強さ測定用の積層体(試験片)を作製した。この試験片を用いて、上記した方法で剥離接着強さを測定したところ、下記の表2に示すとおりであった。
(ii)樹脂硬化物の相構造の観察:
 上記(1)で得られた硬化性樹脂組成物を100℃に加熱して20分間減圧脱泡を行なった後、それを実施例1の(2)の(i)で用いたのと同じ離型処理したアルミニウム製の板(サイズ=長さ120mm×幅100mm)2枚でコの字型テフロン(登録商標)製スペーサー(厚さ6mm)を挟み込んで固定した型に上から流し込み、100℃で3時間予備硬化(Precure)を行い、次いで150℃で2時間の後硬化(Postcure)を行なって、板状の樹脂硬化物(サイズ=長さ90mm×幅85mm×厚さ6mm)(実施例1で作製した破壊靭性測定用の試験片と同じもの)を製造した。
 この樹脂硬化物を用い、走査型電子顕微鏡を使用して、上記(II-5b)の方法で凍結破断面の相構造を撮影したところ(倍率50000倍)、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c-1)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな線状構造をなして分散しているミクロ相分離構造を有していた。実施例1とは硬化条件が異なるが、同様のミクロ相分離構造が得られた。
《実施例4》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したものと同じもの)100gおよび合成例2で製造したアクリル系ブロック共重合体(c-2)17.34gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表2に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片を用い、透過型電子顕微鏡を使用して、上記(II-5c)の方法で切片(a)の切断面を写真撮影したところ(倍率50000倍および250000倍)、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c-2)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな線状構造をなして分散しているミクロ相分離構造を有していた。
 得られた写真(250000倍)の濃色の線状構造体の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表2に示すとおりであった。
《実施例5》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したものと同じもの)100gおよび合成例2で製造したアクリル系ブロック共重合体(c-2)39.02gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表2に示すとおりであった。
(ii) 上記(i)で得られた破壊靭性値測定用の試験片を用い、透過型電子顕微鏡を使用して、上記(II-5c)の方法で切片(a)の切断面を写真撮影したところ(倍率50000倍および250000倍)、図4および図5に示すように、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(c-2)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな線状構造をなして分散しているミクロ相分離構造を有していた。
[なお、アクリル系ブロック共重合体(c-2)の軟質成分であるポリアクリル酸n-ブチルブロック部分にエポキシ樹脂硬化剤であるフェノール・ホルムアルデヒド型ノボラック樹脂が未反応のまま含まれた状態になっていて、フェノール・ホルムアルデヒド型ノボラック樹脂のフェノール性水酸基がRuO4によって染色されることにより、樹脂硬化物でのポリアクリル酸n-ブチルブロック部分の分散状態がミクロな線状構造をなしていることが観察される(図4および図5の写真における濃色の線状構造部分)。]
 得られた写真(250000倍)の濃色部(線状構造体)の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表2に示すとおりであった。
《比較例1》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gを容器に入れ、オーブンで約100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表3に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片を用い、走査型電子顕微鏡を使用して、上記(II-4b)の方法で凍結破断面を撮影して観察したところ(倍率50000倍)、各成分が均一に混ざっている状態になっていて、相分離構造が認められなかった。
《比較例2》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gを容器に入れ、オーブンで約100℃まで温めた後、ジクロロフェニルジメチルウレア[保土谷化学工業(株)製](硬化促進剤)3.0gおよびジシアンジアミド[ジャパンエポキシレジン(株)製「エピキュアDICY7」](エポキシ樹脂硬化剤)5.0gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i)破壊靭性値測定用の試験片(樹脂硬化物)の製造:
 上記(1)で得られた硬化性樹脂組成物を100℃に加熱して20分間減圧脱泡した後、実施例1の(2)の(i)で使用したのと同じ離型処理したアルミニウム製の板(サイズ=長さ120mm×幅100mm)2枚でコの字型テフロン(登録商標)製スペーサー(厚さ6mm)を挟み込んで固定した型に上から流し込み、110℃で2時間予備硬化(Precure)を行い、次いで150℃で1時間の後硬化(Postcure)を行なって、板状の樹脂硬化物(サイズ=長さ90mm×幅85mm×厚さ6mm)を製造した。この樹脂硬化物を長さ50mm×幅12mm×厚さ6mmの短冊状に切り出し、これを試験片として用いて、上記した方法で破壊靭性値を測定したところ、下記の表3に示すとおりであった。
(ii)剥離接着強さ測定用の試験片(積層体)の製造:
 上記(1)で得られた硬化性樹脂組成物を100℃に加熱して20分間減圧脱泡を行なった後、実施例1の(2)の(iii)で用いたのと同じ被着体用アルミニウム板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御したのち、110℃で2時間予備硬化(Precure)を行い、次いで150℃で1時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剥離接着強さの測定用の積層体(試験片)を作製した。この試験片を用いて、上記した方法で剥離接着強さを測定したところ、下記の表3に示すとおりであった。
(iii)樹脂硬化物の相構造の観察:
 上記(i)で製造した破壊靭性値測定用の試験片を用い、走査型電子顕微鏡を使用して、上記(II-5b)の方法で凍結破断綿を撮影して観察したところ(倍率50000倍)、各成分が均一に混ざっている状態になっていて、相分離構造が認められなかった。
《比較例3》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gを容器に入れ、オーブンで約100℃まで温めた後、ジアミノジフェニルスルフォン[住友化学工業(株)製「スミキュアS」、活性水素当量=62.08g/eq](エポキシ樹脂硬化剤)32.85gを加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i)破壊靭性値測定用の試験片(樹脂硬化物)の製造:
 上記(1)で得られた硬化性樹脂組成物を120℃に加熱して30分間減圧脱泡した後、実施例1の(2)の(i)で使用したのと同じ離型処理したアルミニウム製の板(サイズ=長さ120mm×幅100mm)2枚でコの字型テフロン(登録商標)製スペーサー(厚さ6mm)を挟み込んで固定した型に上から流し込み、150℃で3時間予備硬化(Precure)を行い、次いで200℃で2時間の後硬化(Postcure)を行なって、板状の樹脂硬化物(サイズ=長さ90mm×幅85mm×厚さ6mm)を製造した。この樹脂硬化物を長さ50mm×幅12mm×厚さ6mmの短冊状に切り出し、これを試験片として用いて、上記した方法で破壊靭性値を測定したところ、下記の表3に示すとおりであった。
(ii)剥離接着強さ測定用の試験片(積層体)の製造:
 上記(1)で得られた硬化性樹脂組成物を120℃に加熱して30分間減圧脱泡を行なった後、実施例1の(2)の(iii)で用いたのと同じ被着体用アルミニウム板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御したのち、150℃で3時間予備硬化(Precure)を行い、次いで200℃で2時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剥離接着強さの測定用の積層体(試験片)を作製した。この試験片を用いて、上記した方法でとして剥離接着強さを測定したところ、下記の表3に示すとおりであった。
(iii)樹脂硬化物の相構造の観察:
 上記(i)で製造した破壊靭性値測定用の試験片を用い、走査型電子顕微鏡を使用して、上記(II-5b)の方法で凍結破断面を撮影して観察したところ(倍率50000倍)、各成分が均一に混ざっている状態になっていて、相分離構造が認められなかった。
《比較例4》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gおよび市販のアクリル系ブロック共重合体(M22)[アルケマ社製「ナノストレングス(Nanostrength)」(登録商標)M22;ポリメタクリル酸メチル-ポリアクリル酸ブチル-ポリメタクリル酸メチルからなるトリブロック共重合体]17.34gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して容器内の内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加え、ステンレス製の撹拌棒を用いて、均一な状態になるまで手で十分に攪拌混合(温度100℃で約10分間撹拌)して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表3に示すとおりであった。
(ii) 上記(i)で得られた破壊靭性値測定用の試験片を用い、透過型電子顕微鏡を使用して、上記(II-5c)の方法で切片(a)および切片(b)の切断面を撮影して観察したところ(倍率50000倍および250000倍)、硬化したエポキシ樹脂マトリックス中にアクリル系ブロック共重合体(M22)中のポリアクリル酸n-ブチルブロック(重合体ブロックB)がミクロな球状構造をなして分散しているミクロ相分離構造を有していたが、球状構造体のサイズがまちまちで不揃いであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記の表2および表3にみるように、実施例1~5の硬化性樹脂組成物は、エポキシ樹脂およびエポキシ樹脂硬化剤と共に、分子量分布(Mw/Mn)が1.5以下のアクリル系ブロック共重合体(c-1)または(c-2)を本発明で規定する範囲内の量で含有していることにより、実施例1~5の硬化性樹脂組成物の樹脂硬化物は、比較例1~3の硬化性樹脂組成物(アクリル系ブロック共重合体を含有しない硬化性エポキシ樹脂組成物)および比較例4の硬化性樹脂組成物[分子量分布(Mw/Mn)が1.5よりも大きいアクリル系ブロック共重合体(M22)を含有する硬化性エポキシ樹脂組成物]を硬化した樹脂硬化物に比べて、剥離接着強さが大幅に向上している。
 しかも実施例1~2および4~5の硬化性樹脂組成物を硬化した樹脂硬化物は、比較例1~4の硬化性樹脂組成物を硬化した樹脂硬化物に比べて、破壊靭性値が高く、破損しにくく、耐久性に優れている(なお、実施例3では破壊靭性値および弾性率の測定を省略した)。
 特に、実施例1、4および5の硬化性樹脂組成物から得られた樹脂硬化物は、アクリル系ブロック共重合体(M22)を含有する比較例4の硬化性樹脂組成物を硬化してなる樹脂硬化物に比べて、破壊靭性値が大幅に高くなっており、実施例1、4および5の樹脂硬化物は、エンジニアリングプラスチックのポリブチレンテレフタレートなどと比較しても遜色ない優れた靭性を有している。
 樹脂硬化物の相構造についてみると、実施例1および3~5の硬化性樹脂組成物からなる樹脂硬化物では、アクリル系ブロック共重合体(c-1)または(c-2)の重合体ブロックB(ポリアクリル酸n-ブチルブロック)が、硬化したエポキシ樹脂マトリックス中に、直径10nm~100nmのミクロな線状構造をなして分散したミクロ相分離構造を有しており、当該ミクロ相分離構造が、前記した高い剥離接着強さおよび破壊靭性値をもたらしているものと考えられる。
《実施例6》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したものと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)17.34gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を、攪拌装置(実施例1と同じ撹拌装置、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加えて、撹拌装置(株式会社シンキー製「あわとり練太郎 ARV-310」)を使用して吸引脱泡しながら(吸引条件0.5kPa、撹拌条件2000rpm)10分間機械撹拌して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さを測定したところ、下記の表4に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、ポリアクリル酸n-ブチルブロック部分が濃色部としてサイズの揃ったミクロな球状構造をなしてマトリックス中に分散したミクロ相分離構造を有していた。撮影して得られた写真(250000倍)の10点の濃色部(ミクロな球状構造体)を任意に選択してその直径(最大径)を測定して平均値を採ったところ、下記の表4に示すように、球状構造体の平均直径は44nmであった。
《実施例7》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体(c)として、アクリル系ブロック共重合体(c-1)の代りに合成例3で製造したアクリル系ブロック共重合体(c-3)17.34gを用いた以外は、実施例6の(1)と同じ工程および操作を行なって、機械撹拌によって混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表4に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、ポリアクリル酸n-ブチルブロック部分が濃色部としてサイズの揃ったミクロな球状構造をなしてマトリックス中に分散したミクロ相分離構造を有していた。撮影して得られた写真(250000倍)の10点の濃色部(ミクロな球状構造体)を任意に選択してその直径(最大径)を測定して平均値を採ったところ、下記の表4に示すように、球状構造体の平均直径は44nmであった。
《実施例8》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体(c)として、アクリル系ブロック共重合体(c-1)の代りに合成例4で製造したアクリル系ブロック共重合体(c-4)17.34gを用いた以外は、実施例6の(1)と同じ工程および操作を行なって、機械撹拌によって混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値および剥離接着強さをそれぞれ測定したところ、下記の表4に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片を用い、走査型電子顕微鏡を使用して、上記(II-5b)の方法で凍結破断面の相構造を撮影して(倍率50000倍)、ミクロ相分離構造を有することを確認した。
《実施例9》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体(c)として、アクリル系ブロック共重合体(c-1)の代りに合成例5で製造したアクリル系ブロック共重合体(c-5)17.34gを用いた以外は、実施例6の(1)と同じ工程および操作を行なって、機械撹拌によって混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値および剥離接着強さをそれぞれ測定したところ、下記の表4に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片を用い、走査型電子顕微鏡を使用して、上記(II-5b)の方法で凍結破断面の相構造を撮影して(倍率50000倍)、ミクロ相分離構造を有することを確認した。
《比較例5》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体として、アクリル系ブロック共重合体(c-1)の代りに、市販のアクリル系ブロック共重合体(M22)17.34gを用いた以外は、実施例6の(1)と同じに行なって、機械撹拌によって混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表4に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、ポリアクリル酸n-ブチルブロック部分が濃色部としてミクロな球状構造をなしてマトリックス中に分散したミクロ相分離構造を有していたが、ミクロな球状構造体のサイズはまちまちで不揃いであった。撮影して得られた写真(250000倍)の10点の濃色部(ミクロな球状構造体)を任意に選択してその直径(最大径)を測定して平均値を採ったところ、下記の表4に示すように、球状構造体の平均直径は31nmであった。
《比較例6》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体を用いなかった以外は、実施例6の(1)と同じに行なって、機械撹拌によって混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)および(ii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)および弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)を作製して、上記した方法で破壊靭性値および弾性率を測定したところ、下記の表4に示すとおりであった。
(ii)剪断接着強さ測定用の試験片(積層体)の製造および測定:
 長さ125mm×幅25mm×厚み1.6mmの鋼板(JIS G3141 SPCC-SB)をアセトンにて脱脂した後、UV処理[センエンジニアリング(株)製「UVR-200G-SSII」を使用]を10分間行なった鋼板(以下「被着体用鋼板」という)を準備した。
 上記(1)で得られた硬化性樹脂組成物を110℃に加熱して20分間減圧脱泡を行なった後、前記で準備した被着体用鋼板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約50μmに制御した後、120℃で2時間予備硬化(Precure)を行い、次いで150℃で2時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剪断接着強さ測定用の積層体(試験片)を作製した。
 この試験片を用いて、上記した方法で剪断接着強さを測定したところ、下記の表5に示すとおりであった。
(iii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、各成分が均一に混ざっている状態になっていて、相分離構造が認められなかった。
(なお、比較例6の結果については、表4および表5の両方に記載している。)
Figure JPOXMLDOC01-appb-T000004
 上記の表4にみるように、実施例6~9の硬化性樹脂組成物は、エポキシ樹脂およびエポキシ樹脂硬化剤と共に、分子量分布(Mw/Mn)が1.5以下のアクリル系ブロック共重合体(c-1)、(c-3)、(c-4)または(c-5)を本発明で規定する範囲内の量で含有していることにより、実施例6~9の硬化性樹脂組成物の樹脂硬化物は、比較例6の硬化性樹脂組成物(アクリル系ブロック共重合体を含有しない硬化性エポキシ樹脂組成物)の樹脂硬化物に比べて、破壊靭性が大幅に向上しており、優れた剥離接着力も有する。
 更に、実施例6の硬化性樹脂組成物[比較例5で使用しているアクリル系ブロック共重合体(M22)と同様の分子量および重合体ブロックAの含有率を持ちながら、分子量分布(Mw/Mn)が1.5以下であるアクリル系ブロック共重合体(c-4)を含有する硬化性エポキシ樹脂組成物]は、比較例5の硬化性樹脂組成物[実施例6で使用しているアクリル系ブロック共重合体(c-4)と同様の分子量および重合体ブロックAの含有率を持ちながら、分子量分布(Mw/Mn)が1.5よりも大きいアクリル系ブロック共重合体(M22)を含有する硬化性エポキシ樹脂組成物]に比べて、格段に優れた剥離接着強さを有している。
《実施例10》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したものと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)39.02gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、その内容物を、攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却し、オーブンで100℃まで温めた後、トリフェニルフォスフィン(実施例1で使用したのと同じもの)0.5gおよびフェノール・ホルムアルデヒド型ノボラック樹脂(実施例1で使用したのと同じもの)55.56gの順に加えて、撹拌装置(株式会社シンキー製「あわとり練太郎 ARV-310」)を使用して吸引脱泡しながら(吸引条件0.5kPa、撹拌条件2000rpm)10分間機械撹拌して硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および破壊接着強さを測定したところ、下記の表5に示すとおりであった。
(ii) 上記(1)で得られた硬化性樹脂組成物を用いて、比較例6の(2)の(ii)と同じ工程および操作を行って、積層体(試験片)を作製した。この試験片を用いて、上記した方法で剪断接着強さを測定したところ、下記の表5に示すとおりであった。
(iii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、図6の(a)[切片(a)の切断面]および図6の(b)[切片(b)の切断面]にみるように、アクリル系ブロック共重合体(c-1)中のポリアクリル酸n-ブチルブロック部分(濃色部として観察される部分)が、硬化したエポキシ樹脂マトリックス中にミクロな線状構造をなして所定の方向に配向した状態で分散しているミクロ相分離構造を有していた。
 撮影して得られた写真(250000倍)の濃色部(線状構造体)の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表5に示すとおりであった。
(iv) 上記(i)で製造した破壊靭性値測定用の試験片から試料を切り出して、上記(II-5d)に記載した方法に従って、偏光顕微鏡を使用して観察したところ、異方性が観察された。このことから、ミクロな線状構造をなして所定の方向に配向した状態で分散しているミクロ相分離構造を有していると推定される。
 次に、上記(1)で得られた硬化性樹脂組成物をスライドガラス板にスパチュラで塗布し、上からカバーガラスをのせ、120℃のオーブン中で1分加熱した後、上からカバーガラスをのせ、120℃のオーブン中で1分加熱し柔らかくなったところで手で押し付けて観察用試料を作製した。顕微鏡用冷却加熱延伸観察ステージ(ジャパンハイテック株式会社製)を取り付けた偏光顕微鏡(株式会社ニコン製「ECLIPSE E600W POL)を用いてクロスニコル状態で観察した。5℃/分の昇温速度で120℃まで加熱し、その後は120℃一定として、クロスニコル状態での光の透過性を観察したところ(倍率100倍)、硬化過程で異方性が進行してゆくことがわかった。
《実施例11》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体(c-1)の代りに、合成例2で製造したアクリル系ブロック共重合体(c-2)39.02gを用いた以外は実施例10の(1)と同じにして、機械撹拌にて混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)および(ii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)および弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)を作製して、上記した方法で破壊靭性値および弾性率を測定したところ、下記の表5に示すとおりであった。
(ii) 上記(1)で得られた硬化性樹脂組成物を用いて、比較例6の(2)の(ii)と同じ工程および操作を行って、積層体(試験片)を作製した。この試験片を用いて、上記した方法で剪断接着強さを測定したところ、下記の表5に示すとおりであった。
(iii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で、切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、図7の(a)[切片(a)の切断面]および図7の(b)[切片(b)の切断面]にみるように、アクリル系ブロック共重合体(c-2)中のポリアクリル酸n-ブチルブロック部分(濃色部として観察される部分)が、硬化したエポキシ樹脂マトリックス中にミクロな線状構造をなしてランダムに分散しているミクロ相分離構造を有していた。
 撮影して得られた写真(250000倍)の濃色部(線状構造体)の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表5に示すとおりであった。
(iv) 上記(i)で製造した破壊靭性値測定用の試験片から試料を切り出して、上記(II-5d)に記載した方法に従って、偏光顕微鏡を使用して観察したところ、異方性(配向性)は観察されなかった。
《実施例12》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体(c-1)の代りに、合成例3で製造したアクリル系ブロック共重合体(c-3)39.02gを用いた以外は実施例10の(1)と同じにして、機械撹拌にて混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて、実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および破壊接着強さを測定したところ、下記の表5に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で、切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、図8の(a)[切片(a)の切断面]および図8の(b)[切片(b)の切断面]にみるように、アクリル系ブロック共重合体(c-3)中のポリアクリル酸n-ブチルブロック部分(濃色部として観察される部分)が、硬化したエポキシ樹脂マトリックス中にミクロな線状構造をなして所定の方向に配向した状態で分散しているミクロ相分離構造を有していた。
 撮影して得られた写真(250000倍)の濃色部(線状構造体)の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表5に示すとおりであった。
(iii) 上記(i)で製造した破壊靭性値測定用の試験片から試料を切り出して、上記(II-5d)に記載した方法に従って、偏光顕微鏡を使用して観察したところ、異方性が観察された。このことから、ミクロな線状構造をなして所定の方向に配向した状態で分散しているミクロ相分離構造を有していると推定される。
《比較例7》
(1)硬化性樹脂組成物の製造:
 アクリル系ブロック共重合体(c-1)の代りに、市販のアクリル系ブロック共重合体(M22)39.02gを用いた以外は実施例8の(1)と同じにして、機械撹拌にて混合した硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i) 上記(1)で得られた硬化性樹脂組成物を用いて実施例1の(2)の(i)、(ii)および(iii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)、弾性率測定用の試験片(長さ40mm×幅10mm×厚さ2mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値、弾性率および剥離接着強さをそれぞれ測定したところ、下記の表5に示すとおりであった。
(ii) また、上記(i)で製造した破壊靭性値測定用の試験片から上記した方法で切片(a)および切片(b)を採取し、透過型電子顕微鏡を使用して上記(II-5c)の方法で、切片(a)および切片(b)の切断面を写真撮影したところ(倍率50000倍および250000倍)、アクリル系ブロック共重合体(M22)中のポリアクリル酸n-ブチルブロック部分が、硬化したエポキシ樹脂マトリックス中にミクロな線状構造をなしてランダムに分散しているミクロ相分離構造を有していた。
 撮影して得られた写真(250000倍)の濃色部(線状構造体)の10点を任意に選択して直径を測定し、その平均値を採ったところ、下記の表5に示すとおりであった。
 下記の表5には、比較例6についても参考のために再度記載した。
Figure JPOXMLDOC01-appb-T000005
 上記の表5にみるように、実施例10~12の硬化性樹脂組成物は、エポキシ樹脂中に、エポキシ樹脂硬化剤と共に重量平均分子量(Mw)が30,000~300,000の範囲で且つ分子量分布が1.5以下のアクリル系ブロック共重合体(c-1)、(c-2)または(c-3)を配合したことにより、実施例10~12の硬化性樹脂組成物から得られる樹脂硬化物は、重量平均分子量(Mw)が30,000~300,000の範囲であるものの、分子量分布が1.5を超えているアクリル系ブロック共重合体(M22)を含有する比較例7の硬化性樹脂組成物から得られる樹脂硬化物に比べて、破壊靭性値が大きくて外力を受けても破損しにくく耐久性に優れている。
 実施例10~12の硬化性樹脂組成物のうちでも、実施例10および12の硬化性樹脂組成物の樹脂硬化物は、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造でしかも所定の方向に配向した状態でエポキシ樹脂よりなるマトリックス中に分散していることにより、破壊靭性値が一層大きく、強力、耐久性に一層優れている。
 また、実施例10および11の結果にみるように、エポキシ樹脂中に、エポキシ樹脂硬化剤と共に重量平均分子量(Mw)が30,000~300,000の範囲で且つ分子量分布が1.5以下のアクリル系ブロック共重合体を配合している本発明の硬化性樹脂組成物は、破壊靭性および剥離接着強さに優れるだけでなく、剪断接着強さにも優れる樹脂硬化物を形成する。
《実施例13》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)17.34gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して容器内の内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却した後、オーブンで約100℃まで再度温めた後、ジクロロフェニルジメチルウレア[保土谷化学工業(株)製](硬化促進剤)3.0gおよびジシアンジアミド[ジャパンエポキシレジン(株)製「エピキュアDICY7」]5.0gの順で加え、ステンレス製の撹拌棒を使用して、均一な状態になるまで手で十分に撹拌混合して(100℃で約10分間撹拌)、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i)破壊靭性値測定用の試験片(樹脂硬化物)の製造:
 上記(1)で得られた硬化性樹脂組成物を100℃に加熱して20分間減圧脱泡した後、実施例1の(2)の(i)で使用したのと同じ離型処理したアルミニウム製の型に流し込み、110℃で2時間予備硬化(Precure)を行い、次いで150℃で1時間の後硬化(Postcure)を行い、得られた樹脂硬化物を切り出し、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)を作製した。この試験片を用いて上記した方法で破壊靭性値を測定したところ、下記の表6に示すとおりであった。
(ii)剥離接着強さ測定用の試験片(積層体)の製造:
 上記(1)で得られた硬化性樹脂組成物を100℃に加熱して20分間減圧脱泡を行なった後、実施例1の(2)の(iii)で用いたのと同じ被着体用アルミニウム板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御したのち、110℃で2時間予備硬化(Precure)を行い、次いで150℃で1時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剥離接着強さの測定用の積層体(試験片)を作製した。この試験片を用いて、上記した方法でとして剥離接着強さを測定したところ、下記の表6に示すとおりであった。
《実施例14》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)39.02gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬して、容器内の内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却した後、オーブンで約100℃まで再度温めた後、ジクロロフェニルジメチルウレア(実施例12で使用したのと同じもの)3.0gおよびジシアンジアミド(実施例12で使用したのと同じもの)5.0gの順で加え、ステンレス製の撹拌棒を使用して、均一な状態になるまで手で十分に撹拌混合して(100℃で約10分間撹拌)、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
 上記(1)で得られた硬化性樹脂組成物を用いて、実施例14の(2)の(i)および(ii)と同じ工程および操作をそれぞれ行なって、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)および剥離接着強さ測定用の積層体(試験片)を作製して、上記した方法で破壊靭性値および剥離接着強さをそれぞれ測定したところ、下記の表6に示すとおりであった。
《実施例15》
(1)硬化性樹脂組成物の製造:
 ビスフェノールA型ジグリシジルエーテル(実施例1で使用したのと同じもの)100gおよび合成例1で製造したアクリル系ブロック共重合体(c-1)39.02gを容器に入れ、その容器を200℃に設定したオイルバスに浸漬した状態で容器内の内容物を攪拌装置(実施例1と同じ、400rpm)を用いて30分攪拌した。次いで、容器をオイルバスから取り出して室温まで冷却した後、オーブンで約100℃まで再度温めた後、ジアミノジフェニルスルホン(比較例3で使用したのと同じもの)(エポキシ樹脂硬化剤)32.85gを加え、ステンレス製の撹拌棒を使用して、均一な状態になるまで手で十分に撹拌混合して(100℃で約10分間撹拌)、硬化性樹脂組成物を調製した。
(2)樹脂硬化物の製造および物性の測定:
(i)破壊靭性値測定用の試験片(樹脂硬化物)の製造:
 上記(1)で得られた硬化性樹脂組成物を120℃に加熱して30分間減圧脱泡した後、実施例1の(2)の(i)で使用したのと同じ離型処理したアルミニウム製の型に流し込み、150℃で3時間予備硬化(Precure)を行い、次いで200℃で2時間の後硬化(Postcure)を行い、得られた樹脂硬化物を切り出し、破壊靭性値測定用の試験片(長さ50mm×幅12mm×厚さ6mm)を作製した。この試験片を用いて上記した方法で破壊靭性値を測定したところ、下記の表6に示すとおりであった。
(ii)剥離接着強さ測定用の試験片(積層体)の製造:
 上記(1)で得られた硬化性樹脂組成物を120℃に加熱して20分間減圧脱泡を行なった後、実施例1の(2)の(iii)で用いたのと同じ被着体用アルミニウム板上に塗布し、スペーサーを用いて接着層の厚さ(硬化前の厚さ)を約100μmに制御したのち、150℃で3時間予備硬化(Precure)を行い、次いで200℃で2時間の後硬化(Postcure)を行い、次いで室温(25℃)冷却して、剥離接着強さの測定用の積層体(試験片)を作製した。この試験片を用いて、上記した方法で剥離接着強さを測定したところ、下記の表6に示すとおりであった。
Figure JPOXMLDOC01-appb-T000006
 本発明の硬化性樹脂組成物を硬化して得られる樹脂硬化物は、エポキシ樹脂が本来有する優れた耐熱性や弾性率などの特性を良好に維持しながら、破壊靭性に優れていて、外力を受けても破壊しにくくて丈夫で耐久性に優れ、しかも各種材料と強固に接着して強度に優れる積層構造物や複合構造物をつくることができ、更には耐候性や耐溶剤性などにも優れているため、本発明の硬化性樹脂組成物は、電気・電子材料の封止材、プリント基板などの電気用積層板、自動車部品、構造接着剤、電気絶縁材料、塗料、土木建築材料、スポーツ用途や航空材料などの繊維強化複合材料などに代表されるマトリクス樹脂をはじめとして、種々の用途に有効に使用することができる。

Claims (17)

  1.  (i) エポキシ樹脂(a)、エポキシ樹脂硬化剤(b)およびアクリル系ブロック共重合体(c)を含有する硬化性樹脂組成物であって;
    (ii) アクリル系ブロック共重合体(c)が、下記の要件(α)~(δ)を満足するアクリル系ブロック共重合体であり;
     (α)メタクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックAを1個以上およびアクリル酸アルキルエステルに由来する構造単位を主体とする重合体ブロックBを1個以上有するブロック共重合体である;
     (β)重量平均分子量(Mw)が30,000~300,000である;
     (γ)分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]が1.5以下である;および、
     (δ)重合体ブロックAの含有割合が3~60質量%である;
    (iii) エポキシ樹脂(a)100質量部に対して、エポキシ樹脂硬化剤(b)を1~70質量部および前記アクリル系ブロック共重合体(c)を1~50質量部の割合で含有する;
    ことを特徴とする硬化性樹脂組成物。
  2.  さらに、硬化促進剤を含有する請求項1に記載の硬化性樹脂組成物。
  3.  エポキシ樹脂(a)が、ビスフェノールA型エポキシ樹脂である請求項1または2に記載の硬化性樹脂組成物。
  4.  エポキシ樹脂硬化剤(b)が、フェノールノボラック樹脂である請求項1~3のいずれか1項に記載の硬化性樹脂組成物。
  5.  アクリル系ブロック共重合体(c)が、重合体ブロックA-重合体ブロックB-重合体ブロックAからなるトリブロック共重合体および重合体ブロックA-重合体ブロックBからなるジブロック共重合体から選ばれる少なくとも1種から主としてなるアクリル系ブロック共重合体である請求項1~4のいずれか1項に記載の硬化性樹脂組成物。
  6.  アクリル系ブロック共重合体(c)における重合体ブロックAが、ポリメタクリル酸メチルよりなる重合体ブロックである請求項1~5のいずれか1項に記載の硬化性樹脂組成物。
  7.  アクリル系ブロック共重合体(c)における重合体ブロックBが、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチルおよびアクリル酸2-エチルヘキシルから選ばれる少なくとも1種のアクリル酸アルキルエステルの重合体からなる重合体ブロックである請求項1~6のいずれか1項に記載の硬化性樹脂組成物。
  8.  アクリル系ブロック共重合体(c)における重合体ブロックAの含有割合が15~35質量%である請求項1~7のいずれか1項に記載の硬化性樹脂組成物。
  9.  温度20℃~250℃で1~24時間硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな相分離構造をなして分散しているミクロ相分離構造を有する樹脂硬化物を形成する、請求項1~8のいずれか1項に記載の硬化性樹脂組成物。
  10.  温度20℃~250℃で1~24時間硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして分散しているミクロ相分離構造を有する樹脂硬化物を形成する、請求項9に記載の硬化性樹脂組成物。
  11.  温度20℃~250℃で1~24時間硬化したときに、硬化したエポキシ樹脂よりなるマトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして所定の方向に配向して分散しているミクロ相分離構造を有する樹脂硬化物を形成する、請求項10に記載の硬化性樹脂組成物。
  12.  請求項1~11のいずれか1項に記載の硬化性樹脂組成物を硬化してなる樹脂硬化物。
  13.  硬化したエポキシ樹脂マトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな相分離構造をなして分散しているミクロ相分離構造を有する請求項12に記載の樹脂硬化物。
  14.  硬化したエポキシ樹脂マトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして分散しているミクロ相分離構造を有する請求項13に記載の樹脂硬化物。
  15.  硬化したエポキシ樹脂マトリックス中に、アクリル系ブロック共重合体(c)中の重合体ブロックBがミクロな線状構造をなして所定の方向に配向して分散しているミクロ相分離構造を有する請求項14に記載の樹脂硬化物。
  16.  ASTM D5045―91に基づくSingle Edge Notched Bending(SENB)試験による破壊靭性値(K1c)が1.6MPa・m1/2以上である請求項12~15のいずれか1項に記載の樹脂硬化物。
  17.  JIS K 6854-3に基づく、100mm/minの剥離速度でのアルミニウム板に対する剥離接着強さが10N/25mm以上である請求項12~16のいずれか1項に記載の樹脂硬化物。
PCT/JP2009/052280 2008-02-15 2009-02-12 硬化性樹脂組成物および樹脂硬化物 WO2009101961A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2715384A CA2715384C (en) 2008-02-15 2009-02-12 Curable resin composition and cured resin
CN2009801051366A CN101952365B (zh) 2008-02-15 2009-02-12 固化性树脂组合物及树脂固化物
JP2009553431A JP5478266B2 (ja) 2008-02-15 2009-02-12 硬化性樹脂組成物および樹脂硬化物
US12/867,797 US8697811B2 (en) 2008-02-15 2009-02-12 Curable resin composition and cured resin
EP09710464A EP2253666B1 (en) 2008-02-15 2009-02-12 Curable resin composition and cured resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-034333 2008-02-15
JP2008034333 2008-02-15
JP2008185529 2008-07-17
JP2008-185529 2008-07-17

Publications (1)

Publication Number Publication Date
WO2009101961A1 true WO2009101961A1 (ja) 2009-08-20

Family

ID=40956991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052280 WO2009101961A1 (ja) 2008-02-15 2009-02-12 硬化性樹脂組成物および樹脂硬化物

Country Status (7)

Country Link
US (1) US8697811B2 (ja)
EP (1) EP2253666B1 (ja)
JP (1) JP5478266B2 (ja)
KR (1) KR101538193B1 (ja)
CN (1) CN101952365B (ja)
CA (1) CA2715384C (ja)
WO (1) WO2009101961A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935436A (zh) * 2010-07-09 2011-01-05 浙江大学 一种纳米结构环氧树脂固化物的制备方法和用途
JP2011074123A (ja) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2011133317A3 (en) * 2010-04-19 2012-04-19 Trillion Science,Inc. One part epoxy resin including a low profile additive
JP2013006974A (ja) * 2011-06-24 2013-01-10 Dainippon Printing Co Ltd 接着剤組成物およびそれを用いた接着シート
JP2013095839A (ja) * 2011-10-31 2013-05-20 Taiyo Ink Mfg Ltd 熱硬化性樹脂組成物及びその硬化物、並びにそれを用いたプリント配線板
WO2014054631A1 (ja) * 2012-10-02 2014-04-10 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
JP2014070221A (ja) * 2012-10-02 2014-04-21 Dainippon Printing Co Ltd 接着剤組成物およびそれを用いた接着シート
WO2014103040A1 (ja) * 2012-12-28 2014-07-03 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
WO2014142024A1 (ja) * 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2014214248A (ja) * 2013-04-26 2014-11-17 積水化学工業株式会社 フラン樹脂硬化物の製造方法
JP2015108156A (ja) * 2015-03-10 2015-06-11 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
JP2015140405A (ja) * 2014-01-29 2015-08-03 大日本印刷株式会社 粘着剤組成物およびそれを用いた粘着シート
JP2015522686A (ja) * 2012-07-06 2015-08-06 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 液体圧縮成型封止材料
JP2015168714A (ja) * 2014-03-05 2015-09-28 三菱瓦斯化学株式会社 樹脂構造体、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
KR20160099533A (ko) 2013-12-16 2016-08-22 나믹스 코포레이션 에폭시 수지 경화제, 에폭시 수지 조성물, 에폭시 수지 경화물, 및 에폭시 수지 경화제의 제조 방법
JP2017057331A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板及び配線板
JP2018035266A (ja) * 2016-08-31 2018-03-08 大塚化学株式会社 ブロック共重合体、および、これを含有する樹脂改質剤、エポキシ樹脂組成物
JP2019502780A (ja) * 2015-12-01 2019-01-31 スリーエム イノベイティブ プロパティズ カンパニー Bステージ化可能な接着剤組成物
WO2019049951A1 (ja) 2017-09-06 2019-03-14 三菱ケミカル株式会社 マクロモノマー共重合体、エポキシ樹脂組成物、接着剤、成形材料及び硬化物
WO2019093139A1 (ja) * 2017-11-08 2019-05-16 Dic株式会社 硬化性組成物及び繊維強化複合材料
JP2022003144A (ja) * 2016-05-13 2022-01-11 昭和電工マテリアルズ株式会社 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板、プリント配線板及び樹脂組成物の製造方法
WO2023276702A1 (ja) * 2021-06-29 2023-01-05 大塚化学株式会社 エポキシ樹脂改質剤、これを含有するエポキシ樹脂組成物、エポキシ樹脂組成物からなる接着剤、およびエポキシ樹脂組成物を硬化してなる樹脂硬化物
WO2023140154A1 (ja) * 2022-01-18 2023-07-27 パナソニックIpマネジメント株式会社 液状封止用樹脂組成物及び半導体装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492289B1 (en) * 2009-10-23 2020-03-18 Kuraray Noritake Dental Inc. Polymerizable composition and dental material
US8731797B2 (en) 2010-04-30 2014-05-20 Alstom Technology Ltd. Employing fuel properties to auto-tune a gas turbine engine
KR101425334B1 (ko) * 2011-03-25 2014-08-01 도레이 카부시키가이샤 프리프레그 및 섬유 강화 복합 재료
JP5907171B2 (ja) * 2011-09-08 2016-04-26 日立化成株式会社 樹脂組成物、樹脂シート、樹脂シート硬化物、樹脂付き金属箔及び放熱部材
KR101897823B1 (ko) * 2011-12-27 2018-09-13 주식회사 케이씨씨 에폭시 도료 조성물 및 이를 이용하여 형성된 방청 도막
JP2013175546A (ja) * 2012-02-24 2013-09-05 Dexerials Corp アンダーフィル材、及びそれを用いた半導体装置の製造方法
JP5644896B2 (ja) * 2012-07-04 2014-12-24 大日本印刷株式会社 粘接着層及び粘接着シート
CN105143376A (zh) * 2013-02-07 2015-12-09 兆科学公司 包括丙烯酸类嵌段共聚物的单组分环氧树脂
CN104559283A (zh) * 2014-12-02 2015-04-29 荣成复合材料有限公司 一种碳纤维复合材料阀门的制造方法
JP6940490B2 (ja) * 2016-04-27 2021-09-29 株式会社クラレ アクリル系熱可塑性樹脂組成物、成形体、フィルムとその製造方法、および積層体
FR3068980B1 (fr) * 2017-07-12 2020-10-02 Arkema France Composition d'adhesif epoxy comprenant un polymere a etapes multiples et un polymere (meth)acrylique, son procede de preparation et son utilisation
EP3695724A4 (en) * 2017-10-12 2021-06-09 Ibiden Co., Ltd. ANTIVIRAL SUBSTRATE, ANTIVIRAL COMPOSITION, METHOD FOR MANUFACTURING AN ANTIVIRAL SUBSTRATE, ANTIMICROBIAL SUBSTRATE, ANTIMICROBIAL COMPOSITION AND METHOD FOR MANUFACTURING ANTIMICROBIAL
JP6939525B2 (ja) 2017-12-25 2021-09-22 トヨタ自動車株式会社 高圧タンクの製造方法
CN109087726B (zh) * 2018-09-10 2023-10-03 合肥远发信息科技有限责任公司 一种铜基合金高频同轴电缆
CA3131675C (en) 2018-12-17 2024-04-16 Nippon Steel Corporation Adhesively-laminated core for stator, method of manufacturing same, and electric motor
WO2020129941A1 (ja) 2018-12-17 2020-06-25 日本製鉄株式会社 積層コア、積層コアの製造方法、および回転電機
CN113016119A (zh) 2018-12-17 2021-06-22 日本制铁株式会社 层叠铁芯及旋转电机
CN113196634B (zh) 2018-12-17 2024-10-18 日本制铁株式会社 层叠铁芯及旋转电机
CN113169595A (zh) 2018-12-17 2021-07-23 日本制铁株式会社 层叠铁芯、铁芯块、旋转电机及铁芯块的制造方法
EA202192072A1 (ru) 2018-12-17 2021-11-09 Ниппон Стил Корпорейшн Шихтованный сердечник и электродвигатель
WO2020129935A1 (ja) 2018-12-17 2020-06-25 日本製鉄株式会社 積層コアおよび回転電機
CA3131673C (en) * 2018-12-17 2024-02-20 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
EP3902126A4 (en) 2018-12-17 2022-11-30 Nippon Steel Corporation GLUED/LAMINATED CORE FOR STATOR AND ROTARY ELECTRIC MACHINE
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
EA202192066A1 (ru) 2018-12-17 2021-11-19 Ниппон Стил Корпорейшн Шихтованный сердечник и электродвигатель
CN110256254B (zh) * 2019-06-27 2022-09-20 万华化学集团股份有限公司 一种有机化合物及其制备方法和用途
CN112625553B (zh) * 2020-12-28 2022-02-01 陕西科技大学 一种潜伏型自固化树脂涂料组合物及其施工方法
CN115145112A (zh) * 2021-03-30 2022-10-04 太阳油墨(苏州)有限公司 光固化性热固化性树脂组合物、干膜、固化物和电子部件
DE102022105737A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit und verbesserten Schockeigenschaften
DE102022105738A1 (de) 2022-03-11 2023-09-14 Tesa Se Aushärtbare Klebemasse mit verbesserter Stanzbarkeit
CN114654829B (zh) * 2022-04-09 2023-11-17 江西鑫远基电子科技有限公司 一种高击穿电压的铝基覆铜板及其生产工艺
DE102022124903A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit definierter Färbung im ausgehärteten Zustand
DE102022124902A1 (de) 2022-09-28 2024-03-28 Tesa Se Kationisch härtbare Klebemasse mit Indikation der Haltefestigkeit
DE102022124904A1 (de) 2022-09-28 2024-03-28 Tesa Se Aushärtbare Haftklebemasse mit verbesserten Klebeeigenschaften

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693060A (ja) 1992-09-09 1994-04-05 Mitsubishi Petrochem Co Ltd メタクリル系ブロック共重合体およびその製造方法
JPH0643508B2 (ja) 1987-03-11 1994-06-08 東邦レーヨン株式会社 プリプレグ及びその製造方法
JPH0725859B2 (ja) 1989-07-10 1995-03-22 エルフ アトケム ソシエテ アノニム アクリル系三元共重合体と、その製造方法と、そのエラストマー製品製造への応用
JPH11335432A (ja) 1998-03-23 1999-12-07 Kuraray Co Ltd アクリル系ブロック共重合体の製造方法
JP2000169665A (ja) * 1998-12-08 2000-06-20 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2002060449A (ja) * 2000-08-11 2002-02-26 Kanegafuchi Chem Ind Co Ltd ブロック共重合体を含有する硬化性組成物
JP2002226590A (ja) * 2001-02-01 2002-08-14 Nippon Synthetic Chem Ind Co Ltd:The 水性液及びその用途
WO2002092696A1 (fr) * 2001-05-14 2002-11-21 Kaneka Corporation Composition de resine thermoplastique
JP2003535181A (ja) 2000-05-31 2003-11-25 アトフィナ 耐衝撃強度に優れた熱硬化性樹脂材料
WO2005073270A1 (ja) * 2004-01-30 2005-08-11 Kaneka Corporation 熱可塑性エラストマー組成物および成形品
JP2006124589A (ja) * 2004-10-29 2006-05-18 Kaneka Corp 熱可塑性エラストマー組成物
WO2007009957A1 (en) 2005-07-15 2007-01-25 Huntsman Advanced Materials (Switzerland) Gmbh Toughened compositon
JP2007154160A (ja) 2005-11-14 2007-06-21 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3751984T2 (de) * 1986-09-30 1997-04-17 Toho Rayon Kk Harzzusammensetzung auf der Basis von wärmehärtbaren Harzen und thermoplastischen Harzen
FR2655049B3 (fr) * 1989-11-27 1992-02-21 Norsolor Sa Polymeres comportant des motifs, derives de maleimides a resistance a la chaleur amelioree.
FR2679237B1 (fr) * 1991-07-19 1994-07-22 Atochem Systeme d'amorcage pour la polymerisation anionique de monomeres (meth) acryliques.
JP2786781B2 (ja) 1992-07-24 1998-08-13 シャープ株式会社 有機非線形光学材料
JP2729347B2 (ja) 1993-07-08 1998-03-18 第一工業製薬株式会社 トリス(トリブロモフェノキシ)−s−トリアジンの製造方法
ATE296851T1 (de) * 1996-02-21 2005-06-15 Toray Industries Verbundfaden und daraus hergestellte faserverstärkte verbundwerkstoffe
CA2265310C (en) * 1998-03-23 2007-12-18 Kuraray Co., Ltd. Preparation process of acrylic acid ester polymer
US20030236318A1 (en) * 2002-04-18 2003-12-25 Kuraray Co., Ltd. Curable resin composition, method for manufacture of laminate using the composition, transfer material, method for manufacture thereof and transferred product
US6887574B2 (en) * 2003-06-06 2005-05-03 Dow Global Technologies Inc. Curable flame retardant epoxy compositions
JP5051967B2 (ja) * 2004-04-23 2012-10-17 株式会社クラレ アクリル系ブロック共重合体組成物
US20090321117A1 (en) * 2005-12-22 2009-12-31 Ludovic Valette A curable epoxy resin composition having a mixed catalyst system and laminates made therefrom

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643508B2 (ja) 1987-03-11 1994-06-08 東邦レーヨン株式会社 プリプレグ及びその製造方法
JPH0725859B2 (ja) 1989-07-10 1995-03-22 エルフ アトケム ソシエテ アノニム アクリル系三元共重合体と、その製造方法と、そのエラストマー製品製造への応用
JPH0693060A (ja) 1992-09-09 1994-04-05 Mitsubishi Petrochem Co Ltd メタクリル系ブロック共重合体およびその製造方法
JPH11335432A (ja) 1998-03-23 1999-12-07 Kuraray Co Ltd アクリル系ブロック共重合体の製造方法
JP2000169665A (ja) * 1998-12-08 2000-06-20 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2003535181A (ja) 2000-05-31 2003-11-25 アトフィナ 耐衝撃強度に優れた熱硬化性樹脂材料
JP2002060449A (ja) * 2000-08-11 2002-02-26 Kanegafuchi Chem Ind Co Ltd ブロック共重合体を含有する硬化性組成物
JP2002226590A (ja) * 2001-02-01 2002-08-14 Nippon Synthetic Chem Ind Co Ltd:The 水性液及びその用途
WO2002092696A1 (fr) * 2001-05-14 2002-11-21 Kaneka Corporation Composition de resine thermoplastique
WO2005073270A1 (ja) * 2004-01-30 2005-08-11 Kaneka Corporation 熱可塑性エラストマー組成物および成形品
JP2006124589A (ja) * 2004-10-29 2006-05-18 Kaneka Corp 熱可塑性エラストマー組成物
WO2007009957A1 (en) 2005-07-15 2007-01-25 Huntsman Advanced Materials (Switzerland) Gmbh Toughened compositon
JP2007154160A (ja) 2005-11-14 2007-06-21 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. BONNET ET AL., INTERNATIONAL SAMPLE SYMPOSIUM AND EXHIBITION, vol. 50, 2005, pages 847 - 854
A. MAAZOUZ ET AL., POLYMER MATERIAL SCIENCE ENGINEERING, vol. 70, 1994, pages 13 - 14
G. MOINEAU ET AL., MACROMOL. CHEM. PHYS., vol. 201, 2000, pages 1108 - 1114
H. HYDRO ET AL., J. POLYM. SCI., PART B: POLYM. PHYS, vol. 45, no. 12, 2007, pages 1470 - 1481
P. LOVELL, MACROMOL. SYMP., vol. 92, 1995, pages 71 - 81
See also references of EP2253666A4 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074123A (ja) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2011133317A3 (en) * 2010-04-19 2012-04-19 Trillion Science,Inc. One part epoxy resin including a low profile additive
CN102869740A (zh) * 2010-04-19 2013-01-09 兆科学公司 含低分布型添加剂的单组分环氧树脂
JP2013527869A (ja) * 2010-04-19 2013-07-04 トリリオン サイエンス インク 低収縮接着剤含有一液型エポキシ樹脂
CN101935436A (zh) * 2010-07-09 2011-01-05 浙江大学 一种纳米结构环氧树脂固化物的制备方法和用途
JP2013006974A (ja) * 2011-06-24 2013-01-10 Dainippon Printing Co Ltd 接着剤組成物およびそれを用いた接着シート
JP2013095839A (ja) * 2011-10-31 2013-05-20 Taiyo Ink Mfg Ltd 熱硬化性樹脂組成物及びその硬化物、並びにそれを用いたプリント配線板
JP2015522686A (ja) * 2012-07-06 2015-08-06 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 液体圧縮成型封止材料
JP2014070221A (ja) * 2012-10-02 2014-04-21 Dainippon Printing Co Ltd 接着剤組成物およびそれを用いた接着シート
JP5717019B2 (ja) * 2012-10-02 2015-05-13 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
WO2014054631A1 (ja) * 2012-10-02 2014-04-10 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
JPWO2014054631A1 (ja) * 2012-10-02 2016-08-25 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
WO2014103040A1 (ja) * 2012-12-28 2014-07-03 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
KR101938450B1 (ko) * 2012-12-28 2019-01-14 다이니폰 인사츠 가부시키가이샤 접착제 조성물 및 그것을 사용한 접착 시트
US10066135B2 (en) 2012-12-28 2018-09-04 Dai Nippon Printing Co., Ltd. Adhesive composition and adhesive sheet using the same
KR20150100689A (ko) * 2012-12-28 2015-09-02 다이니폰 인사츠 가부시키가이샤 접착제 조성물 및 그것을 사용한 접착 시트
WO2014142024A1 (ja) * 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPWO2014142024A1 (ja) * 2013-03-11 2017-02-16 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US9783670B2 (en) 2013-03-11 2017-10-10 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2014214248A (ja) * 2013-04-26 2014-11-17 積水化学工業株式会社 フラン樹脂硬化物の製造方法
KR20160099533A (ko) 2013-12-16 2016-08-22 나믹스 코포레이션 에폭시 수지 경화제, 에폭시 수지 조성물, 에폭시 수지 경화물, 및 에폭시 수지 경화제의 제조 방법
US10800873B2 (en) 2013-12-16 2020-10-13 Namics Corporation Epoxy resin curing agents, epoxy resin compositions, epoxy resin cured products, and methods of producing epoxy resin curing agent
JP2015140405A (ja) * 2014-01-29 2015-08-03 大日本印刷株式会社 粘着剤組成物およびそれを用いた粘着シート
JP2015168714A (ja) * 2014-03-05 2015-09-28 三菱瓦斯化学株式会社 樹脂構造体、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
JP2015108156A (ja) * 2015-03-10 2015-06-11 大日本印刷株式会社 接着剤組成物およびそれを用いた接着シート
JP2017057331A (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板及び配線板
JP2019502780A (ja) * 2015-12-01 2019-01-31 スリーエム イノベイティブ プロパティズ カンパニー Bステージ化可能な接着剤組成物
JP7287432B2 (ja) 2016-05-13 2023-06-06 株式会社レゾナック 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板、プリント配線板及び樹脂組成物の製造方法
US11691389B2 (en) 2016-05-13 2023-07-04 Resonac Corporation Resin composition, prepreg, metal foil with resin, laminate, printed wiring board, and method for producing resin composition
JP2022003144A (ja) * 2016-05-13 2022-01-11 昭和電工マテリアルズ株式会社 樹脂組成物、プリプレグ、樹脂付き金属箔、積層板、プリント配線板及び樹脂組成物の製造方法
JP2018035266A (ja) * 2016-08-31 2018-03-08 大塚化学株式会社 ブロック共重合体、および、これを含有する樹脂改質剤、エポキシ樹脂組成物
WO2019049951A1 (ja) 2017-09-06 2019-03-14 三菱ケミカル株式会社 マクロモノマー共重合体、エポキシ樹脂組成物、接着剤、成形材料及び硬化物
KR20200033298A (ko) 2017-09-06 2020-03-27 미쯔비시 케미컬 주식회사 매크로 모노머 공중합체, 에폭시 수지 조성물, 접착제, 성형 재료 및 경화물
US11884813B2 (en) 2017-09-06 2024-01-30 Mitsubishi Chemical Corporation Macromonomer copolymer, epoxy resin composition, adhesive, molding material, and cured product
JPWO2019093139A1 (ja) * 2017-11-08 2019-11-14 Dic株式会社 硬化性組成物及び繊維強化複合材料
WO2019093139A1 (ja) * 2017-11-08 2019-05-16 Dic株式会社 硬化性組成物及び繊維強化複合材料
WO2023276702A1 (ja) * 2021-06-29 2023-01-05 大塚化学株式会社 エポキシ樹脂改質剤、これを含有するエポキシ樹脂組成物、エポキシ樹脂組成物からなる接着剤、およびエポキシ樹脂組成物を硬化してなる樹脂硬化物
WO2023140154A1 (ja) * 2022-01-18 2023-07-27 パナソニックIpマネジメント株式会社 液状封止用樹脂組成物及び半導体装置

Also Published As

Publication number Publication date
KR101538193B1 (ko) 2015-07-20
CA2715384A1 (en) 2009-08-20
JPWO2009101961A1 (ja) 2011-06-09
CA2715384C (en) 2016-02-09
CN101952365B (zh) 2013-07-31
JP5478266B2 (ja) 2014-04-23
EP2253666A4 (en) 2011-03-09
KR20100131442A (ko) 2010-12-15
EP2253666B1 (en) 2012-05-23
EP2253666A1 (en) 2010-11-24
US8697811B2 (en) 2014-04-15
US20110003947A1 (en) 2011-01-06
CN101952365A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5478266B2 (ja) 硬化性樹脂組成物および樹脂硬化物
US7767757B2 (en) Thermoset materials with improved impact resistance
AU2006271680B2 (en) Toughened compositon
KR101685775B1 (ko) 중합체 분체, 경화성 수지 조성물 및 그의 경화물
EP3127933B1 (en) Heat-curable epoxy resin composition
US20070078236A1 (en) Reactive thermosetting system with long storage life
US8492482B2 (en) Acrylic-based rubber modified thermoset composition
CN108699321B (zh) 强韧化环氧树脂组合物
KR20100019428A (ko) 에폭시 수지 조성물, 프리프레그, 섬유 강화 복합 재료
JP2023134435A (ja) 多段階ポリマーと(メタ)アクリルポリマーとを含むエポキシ接着剤組成物、その調製方法及びその使用
US20070100071A1 (en) Organic fibre based on an epoxy resin and a rheology-controlling agent and corresponding dry goods
EP3257898B1 (en) Epoxy resin composition
WO2017041201A1 (zh) 一种可固化热固性树脂组合物
US20090008826A1 (en) Method For Production Of Objects From Thermosetting Resins
JPH11116566A (ja) 環状カーボナート樹脂組成物及びその硬化物
TW200938581A (en) Elastomeric flexibilizer for thermosets
WO2010029096A1 (en) Epoxy-based composition containing copolymer
JP2018035266A (ja) ブロック共重合体、および、これを含有する樹脂改質剤、エポキシ樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105136.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2715384

Country of ref document: CA

Ref document number: 2009553431

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12867797

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009710464

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107019346

Country of ref document: KR

Kind code of ref document: A