WO2017041201A1 - 一种可固化热固性树脂组合物 - Google Patents

一种可固化热固性树脂组合物 Download PDF

Info

Publication number
WO2017041201A1
WO2017041201A1 PCT/CN2015/000652 CN2015000652W WO2017041201A1 WO 2017041201 A1 WO2017041201 A1 WO 2017041201A1 CN 2015000652 W CN2015000652 W CN 2015000652W WO 2017041201 A1 WO2017041201 A1 WO 2017041201A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
copolymer
thermosetting resin
resin composition
curable thermosetting
Prior art date
Application number
PCT/CN2015/000652
Other languages
English (en)
French (fr)
Inventor
刘伟
肖瑞敏
王璐
Original Assignee
常州百思通复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州百思通复合材料有限公司 filed Critical 常州百思通复合材料有限公司
Priority to US15/555,085 priority Critical patent/US9963530B2/en
Publication of WO2017041201A1 publication Critical patent/WO2017041201A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • C08F222/08Maleic anhydride with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a polymer compound and its preparation, and more particularly to a curable thermosetting resin composition comprising a multicomponent copolymer and an epoxy resin.
  • a curable thermosetting resin composition comprising an epoxy resin and a curing agent thereof is widely used in the fields of composite materials, coatings and the like.
  • glass transition temperature, dielectric constant and dielectric loss factor, and flame retardancy are very important technical indicators.
  • a sufficiently high glass transition temperature allows the material to be effectively used in high temperature environments, and low dielectric constant and dielectric loss factor can contribute to current carrying.
  • the area is separated from other areas; for microwave-transparent products such as mobile communication radomes, low dielectric constant and dielectric loss factor can effectively increase the wave-transmission rate.
  • a material such as SMA (styrene-maleic anhydride copolymer), cyanate ester, styrene-maleic anhydride-maleimide terpolymer is added.
  • Chinese Patent No. CN 103842433A discloses an epoxy resin composition containing a terpolymer of styrene, maleic anhydride or maleimide, which can effectively lower the dielectric constant and increase the glass transition temperature.
  • the requirements for flame retardancy are generally achieved by introducing halogen or phosphorus.
  • a halogen-containing epoxy resin is used, and a phosphorus-containing polyphenylene ether resin is added.
  • the object of the present invention is to solve the above problems and to provide a multi-component copolymer which is added to an epoxy resin-based thermosetting resin to form a curable thermosetting resin composition to satisfy a high glass transition temperature and a low temperature. Dielectric constant and dielectric loss factor, high flame retardancy requirements.
  • a technical solution for achieving the object of the present invention is to provide a multicomponent copolymer which is a ternary or tetrabasic copolymer composed of structural unit (I) and structural unit (II), structural unit (III) and structural unit (IV). , wherein the structural unit (I), the structural unit (II), and the structural unit (III) are essential structural units;
  • the structural unit (I) is:
  • the structural unit (II) is:
  • the structural unit (III) is:
  • the structural unit (IV) is:
  • each of m, n, r and s is independently a natural number indicating the mole fraction of the corresponding constituent unit in the copolymer, and each R is independently a hydrogen, an aromatic group or an aliphatic group, and each AR is independently Aromatic group.
  • the structural unit (I) mainly introduces phosphorus element, imparts flame retardancy to the cured product, and improves the interfacial properties and bonding properties of the composite material; the structural unit (II) mainly imparts low dielectric properties to the cured product; and the structural unit (III) is copolymerized.
  • the active functional group capable of reacting with the epoxy resin is introduced; the structural unit IV mainly imparts a high glass transition temperature to the cured product.
  • the structural unit (I), the structural unit (II), and the structural unit (III) are essential units of the present invention; the copolymer containing only the structural unit (II) and the structural unit (III) contains only the structural unit (II),
  • the copolymer of structural unit (III) and structural unit (IV), which is a special form of the copolymer discussed above, is disclosed in the prior art and is therefore not included in the present invention.
  • the curable thermosetting resin composition of the present invention further comprises an epoxy resin.
  • the weight ratio of the multicomponent copolymer to the epoxy resin in the composition is from 5 to 100:100, preferably 5:100, 10:100, 15:100, 22:100, 25:100, 30:100, 40:100, 50 : 100, 60: 100, 70: 100, 80: 100, 90: 100, 100: 100.
  • the epoxy resin is one of an aromatic epoxy compound, an alicyclic epoxy compound, an aliphatic epoxy compound, or a combination thereof.
  • the cured product of the curable thermosetting resin composition has a glass transition temperature of at least 120 ° C; at a frequency of 1 GHz and above, a dielectric constant of 3.1 or less and a dielectric loss factor of 0.01 or less.
  • the present invention also relates to a composite material comprising a reinforcing component and the above curable thermosetting resin composition.
  • the reinforcing components are glass fibers, quartz fibers, basalt fibers, aramid fibers, and other fibers useful in composite reinforcements, and combinations thereof.
  • the invention has a positive effect: the invention creatively introduces a "phosphorus" element into a ternary or quaternary copolymer which can be cross-linked with an epoxy resin, and is mixed with a component such as an epoxy resin to form a composition, and at the same time It meets the requirements of high glass transition temperature, low dielectric constant and dissipation factor and certain flame retardancy. It can be widely used in printed circuit boards, high voltage insulators, mobile communication base station radomes, etc. Performance in composite materials.
  • the "phosphate” functional group can also react with reinforcing materials such as glass fibers to act as a "coupling agent" to enhance the interfacial adhesion properties of the composite.
  • the phosphate ester can form a chemical bond with the metal to increase the adhesion of the composite to the metal.
  • Embodiments of the present invention provide a curable thermosetting resin composition.
  • the curable thermosetting resin composition of the present invention contains a multicomponent copolymer, an epoxy resin, and other components.
  • the multicomponent copolymer is a phosphate modified styrene, maleic anhydride, N-phenylmaleimide copolymer.
  • the curable thermosetting resin composition of the present invention provides a cured product having suitable thermal properties, electrical properties, and flame retardancy properties. This suitable thermal property is primarily the glass transition temperature, which includes dielectric constant and dielectric loss factor.
  • the cured product of the curable thermosetting resin composition of the present invention can be used for electrically insulating packages, composite materials, electrically insulating laminates, adhesives, Prepregs and coatings.
  • the multicomponent copolymer has the following three or four structural units:
  • the structural unit (I) is:
  • the structural unit (II) is:
  • the structural unit (III) is:
  • the structural unit (IV) is:
  • each of m, n, r and s is independently a natural number indicating the mole fraction of the corresponding constituent unit in the copolymer, and each R is independently a hydrogen, an aromatic group or an aliphatic group, and each AR is independently Aromatic group.
  • the structural unit (I), the structural unit (II), and the structural unit (III) are mandatory units.
  • structural unit (I) comprises from 0.1 to 60% by weight of the copolymer, preferably 0.5%, 1%, 3%, 5.5%, 10%, 11%, 15%, 20%, 40% by weight 50wt%, 60wt% molar ratio of structural unit (II) to structural unit (III) is 1:1-20:1, preferably 1:1, 2:1, 3:1, 4:1, 5:1 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20: 1.
  • the structural unit (IV) accounts for 0-60% by weight of the copolymer, preferably 0, 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight, 10% by weight, 11 wt%, 12 wt%, 15 wt%, 18 wt%, 20 wt%, 25 wt%, 30 wt%, 36 wt%, 45 wt%, 50 wt%, 55 wt%, 58 wt%, 60 wt%.
  • the above multicomponent copolymers can be prepared by radical polymerization using monomers corresponding to the respective structural units.
  • Monomers which may be used in the structural unit (I) include, but are not limited to, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyethylene glycol (meth) acrylate, ( Methyl)polypropylene glycol ester phosphate, etc.
  • the main monomers used are generally a mixture of hydroxyethyl methacrylate monoester as a main component, such as SIPOMER PAM-100 of SOLVAY Co., Ltd., P-1M of Kyoritsu Shrine , P-2M, Guangzhou Jingde Chemical PM1000, PM1500, etc.
  • the monomers which can be used for the structural unit (II) include, but are not limited to, styrene, ⁇ -methylstyrene, vinyltoluene, divinylbenzene, etc., and the main monomer used is styrene.
  • the monomer which can be used for the structural unit (III) is maleic anhydride.
  • Monomers which may be used in structural unit (IV) include, but are not limited to, N-phenylmaleimide.
  • the above monomers are mixed and dissolved in a suitable solvent (such as methyl ethyl ketone) in a desired molar ratio, and placed in a reaction apparatus.
  • a suitable solvent such as methyl ethyl ketone
  • another method for preparing the above multi-component copolymer is to replace the monomer used in the structural unit (I) with the hydroxy-functional acrylic monomer, first with the structural unit (II), the structural unit (III), The monomer corresponding to one or more unit structures in the structural unit (IV) is copolymerized, and after the polymerization is completed, the copolymerized product, that is, the polymer having a side chain hydroxyl group, and P 2 O 5 , pyrophosphoric acid, polyphosphoric acid, One of the phosphorus oxychlorides is reacted to form a phosphate ester, which is then purified and the solvent is removed to obtain a product curing agent.
  • the curable thermoset resin composition comprises an epoxy resin.
  • the epoxy resin is one of an aromatic epoxy compound, an alicyclic epoxy compound, an aliphatic epoxy compound, or a combination thereof.
  • aromatic epoxy compounds include, but are not limited to, glycidyl ether compounds of polyhydric phenols and combinations thereof.
  • the alicyclic epoxy compound include, but are not limited to, a polyglycidyl ether of a polyol having at least one alicyclic ring, or an epoxidation of a compound including a cyclohexene ring or a cyclopentene ring with an oxidizing agent.
  • a compound comprising cyclohexene oxide or cyclopentene oxide is included.
  • Examples of the aliphatic epoxy compound include, but are not limited to, a polyglycidyl ether of an aliphatic polyhydric alcohol or an oxyalkylene adduct thereof, a polyglycidyl ester of an aliphatic long-chain polybasic acid, and a glycidyl acrylate. Or a homopolymer of a vinyl polymerization synthesis of glycidyl methacrylate, and a copolymer synthesized by vinyl polymerization of glycidyl acrylate or glycidyl methacrylate and other vinyl monomers.
  • the curable thermosetting resin composition can include a solvent.
  • the solvent may be selected from the group consisting of methyl ethyl ketone (MEK), toluene, xylene, N,N-dimethylformamide (DMF), propylene glycol methyl ether (PM), cyclohexanone, propylene glycol methyl ether acetate. Ester (DOWANOLTM PMA) and mixtures thereof.
  • the solvent is added in an amount of 30 to 60 wt%, preferably 30 wt%, 35 wt%, 38 wt%, 40 wt%, 44 wt%, 49 wt%, 50 wt%, 53 wt% of the total weight of the curable thermosetting resin composition. %, 55 wt%, 57 wt%, 60 wt%.
  • the curable thermosetting resin composition can include a catalyst.
  • catalysts include, but are not limited to, tris-(dimethylaminomethyl)phenol (DMP-30), 2-methylimidazole (2MI), 2-phenylimidazole (2PI), 2-ethyl-4-methylimidazole (2E4MI), 1-benzyl-2-phenylimidazole (1B2PZ), boric acid, triphenylphosphine (TPP), tetraphenylphosphonium-tetraphenylboronic acid Salt (TPP-k) and combinations thereof.
  • the catalyst is added in an amount of from 0.01 to 2.0% by weight, preferably 0.05% by weight, 0.1% by weight, 0.4% by weight, 0.7% by weight, 1.0% by weight of the solid component of the curable thermosetting resin composition. %, 1.4 wt%, 1.5 wt%, 2.0 wt%.
  • the curable thermosetting resin composition can include a curing agent.
  • the curing agent is capable of reacting with an epoxide group of the epoxy compound, and may be selected from the group consisting of a phenol resin, an amine, an acid anhydride, a carboxylic acid, a phenol, a mercaptan, and combinations thereof.
  • the curing agent is added in an amount of from 1 to 90% by weight, preferably 10% by weight, 20% by weight, 30% by weight, 40% by weight, 50% by weight, 60% by weight, based on the weight of the solid component of the curable thermosetting resin composition. 70 wt%, 80 wt%, 90 wt%.
  • the curable thermosetting resin composition can include an additive.
  • the additive can be selected from the group consisting of dyes, pigments, colorants, antioxidants, heat stabilizers, light stabilizers, plasticizers, lubricants, flow modifiers, drip inhibitors, flame retardants, anti-blocking agents, mold release agents , toughening agent, low profile additive, stress release additive, and combinations thereof.
  • the cured product formed from the curable thermoset resin composition of the present invention as discussed herein can have a glass transition temperature of at least 120 °C.
  • the cured product formed from the curable thermosetting resin composition of the present invention as discussed herein can have a dielectric constant of less than 3.1 and a dielectric loss factor of less than 0.01 at a frequency of 1 GHz.
  • Embodiments of the present invention provide composite materials comprising a reinforcing component and a curable thermosetting resin composition as discussed herein.
  • the above composite material is obtained by reinforcing the curable thermosetting resin composition using a reinforcing material.
  • Such reinforcing materials include, but are not limited to, glass fibers, quartz fibers, basalt fibers, aramid fibers, and other fibers useful in composite reinforcements, and combinations thereof.
  • the multicomponent copolymers (P1-1, P1-2, P1-3) obtained in Synthesis Examples 1-3, the commercially available styrene and maleic anhydride copolymer (Sartomer SMA4000), and a ring were mixed.
  • Oxygen resin (Nantong Xingchen Synthetic Material Co., Ltd. DIC 850S), curing agent (MeTHPA), catalyst (air chemistry K54), after heating and curing, the dielectric constant is tested according to the following method. Mass loss factor, glass transition temperature, oxygen index.
  • a dielectric constant and a dielectric loss factor at a frequency of 1 GHz were measured using a HP4291B dielectric constant measuring device (manufactured by Hewllet. Packerd).
  • the glass transition temperature was measured using a DSC 4000 (manufactured by PerkinElmer Co., Ltd.) at a temperature rising rate of 10 K/min and a test temperature range of 30 to 180 °C.
  • the oxygen index is tested according to the standard method of "GB/T 2406.2-2009 Plastics - Determination of Combustion Behavior by Oxygen Index Method, Part 2: Room Temperature Test".
  • the copper clad laminate was immersed in a copper etching solution, the copper foil was removed to obtain a test substrate, and a dielectric constant and a dielectric loss factor at a frequency of 1 GHz were measured using a HP4291B dielectric constant measuring device (manufactured by Hewllet. Packerd).
  • the copper clad laminate was immersed in a copper etching solution, the copper foil was removed to obtain a test substrate, and the glass transition was tested using a DSC 4000 (manufactured by PerkinElmer) at a temperature rising rate of 10 K/min and a test temperature range of 30-180 ° C. temperature.
  • the copper clad laminate is immersed in a copper etching solution, the copper foil is removed to obtain a test substrate, and an oxygen index tester is used according to "GB/T 2406.2-2009 Plastics - Determination of Combustion Behavior by Oxygen Index Method, Part 2: Room Temperature Test” Standard Method, test its oxygen index.
  • the copper clad laminate was immersed in a copper etching solution to form a copper foil having a width of 1 cm to obtain a test substrate, and the peel strength was measured using a tensile force meter.
  • Example 1 The comparison of Examples 1 and 2 illustrates the multicomponent copolymers (P1-1, P1-2) prepared by the two different methods of Example 1-2, the properties of which are substantially the same.
  • P1-3 multicomponent copolymer
  • Example 3 shows that, in the multicomponent copolymer, the structural unit (I) is added, and the phosphorus element is introduced into the system to increase the oxygen index of the cured product, so that the cured product has a certain flame retardancy.

Abstract

本发明涉及一种可固化热固性树脂组合物,含有通式(I)(II)(III)(IV)表示的单体的多元共聚物、环氧树脂、固化剂等组份。本发明创造性的将磷元素引入了可与环氧树脂发生交联反应的三元或四元共聚物中,与环氧树脂等组份混合形成组合物,同时满足其固化产物具有较高玻璃化转变温度、较低介电常数和介质损耗因数和一定阻燃性的要求,可广泛应用于印刷线路板、高压绝缘子、移动通信基站天线罩等需要低介电性能的复合材料中。上述多元共聚物,其制备方法有两种,一种为对应单体直接共聚法,另一种为先用含羟基单体共聚再磷酸酯化法。

Description

一种可固化热固性树脂组合物 技术领域
本发明涉及高分子化合物及其制备,特别涉及包含有一种多元共聚物、环氧树脂的可固化热固性树脂组合物。
背景技术
包含环氧树脂及其固化剂的可固化热固性树脂组合物,广泛的应用于复合材料、涂料等领域。在电绝缘复合材料、透波复合材料等应用领域,玻璃化转变温度、介电常数和介质损耗因数、阻燃性是非常关键的技术指标。例如,针对层压复合材料板、PCB板等电绝缘制品,足够高的玻璃化转变温度可使该材料有效用于高温环境中,低的介电常数和介质损耗因数能够有助于将载流区域与其他区域分隔开;针对移动通信天线罩等透波制品,低的介电常数和介质损耗因数可有效的增加其透波率。
为了实现高玻璃化转变温度、低介电常数和介质损耗因数的目的,之前的方法都是在可固化热固性树脂组合物中添加各种材料。例如,添加SMA(苯乙烯-马来酸酐共聚物)、氰酸酯、苯乙烯-马来酸酐-马来酰亚胺的三元共聚物等材料来实现。中国发明专利CN 103842433A公开了一种含有苯乙烯、马来酸酐、马来酰亚胺的三元共聚物的环氧树脂组合物,可有效降低介电常数,提高玻璃化转变温度。另外,对于阻燃性的要求,一般依靠引入卤素、磷元素来实现。例如,选用含有卤素的环氧树脂,添加含磷的聚苯醚树脂来实现。
现有方法仍不能通过添加一种物质,来满足高玻璃化转变温度、低介电常数和介质损耗因数、阻燃性三方面的要求。此外,加入不含有能够与环氧树脂反应的活性官能团的非活性添加物,一般又会降低组合物的其它性能。
发明内容
本发明的目的是:解决上述问题,提供一种多元共聚物,将其添加到以环氧树脂为主的热固性树脂中组成一种可固化热固性树脂组合物,来满足高玻璃化转变温度、低介电常数和介质损耗因数、高阻燃性三方面的要求。
实现本发明目的的技术方案是:提供一种多元共聚物,其为结构单元(I)与结构单元(II)、结构单元(III)、结构单元(IV)组成的三元或四元共聚物,其中结构单元(I)、结构单元(II)、结构单元(III)为必备结构单元;
所述结构单元(I)为:
Figure PCTCN2015000652-appb-000001
所述结构单元(II)为:
Figure PCTCN2015000652-appb-000002
所述结构单元(III)为:
Figure PCTCN2015000652-appb-000003
所述结构单元(IV)为:
Figure PCTCN2015000652-appb-000004
其中各m、n、r和s独立地是表示相应的组成单元在该共聚物中的摩尔分数的自然数,各R独立地是氢、芳香族基团或脂肪族基团,各AR独立地是芳香族基团。
结构单元(I)主要引入磷元素,赋予固化物阻燃性,同时提高复合材料的界面性能、粘接性能;结构单元(II)主要赋予固化物低介电性能;结构单元(III)为共聚物引入可与环氧树脂反应的活性官能团;结构单元IV主要赋予固化物高玻璃化转变温度。通过4种结构单元的灵活搭配,可获取期望的固化物性能。
结构单元(I)、结构单元(II)、结构单元(III)是本发明的必备单元;只含有结构单元(II)、结构单元(III)的共聚物,只含有结构单元(II)、结构单元(III)、结构单元(IV)的共聚物,是上面讨论的共聚物的特殊形式,已有专利公开,因此不在本发明之列。
本发明所述可固化热固性树脂组合物,还包含有环氧树脂。组合物中多元共聚物与环氧树脂的重量比为5-100∶100,优选5∶100、10∶100、15∶100、22∶100、25∶100、30∶100、40∶100、50∶100、60∶100、70∶100、80∶100、90∶100、100∶100。所述环氧树脂为芳香族环氧化合物、脂环族环氧化合物、脂肪族环氧化合物之一或其组合。该可固化热固性树脂组合物固化产物的玻璃化转变温度至少为120℃;在1GHZ及以上频率下,介电常数为3.1或更小,介质损耗因数为0.01或更小。
本发明还涉及一种复合材料,其包括增强组分和上述可固化热固性树脂组合物。所述增强组分为玻璃纤维、石英纤维、玄武岩纤维、芳纶纤维及其它可用于复合材料增强体的纤维及其组合。
本发明具有积极的效果:本发明创造性的将“磷”元素引入了可与环氧树脂发生交联反应的三元或四元共聚物中,与环氧树脂等组份混合形成组合物,同时满足其固化产物具有较高玻璃化转变温度、较低介电常数和耗散因和一定阻燃性的要求,可广泛应用于印刷线路板、高压绝缘子、移动通信基站天线罩等需要低介电性能的复合材料中。
而且,“磷酸酯”官能团还能够与增强材料如玻璃纤维反应,起到“偶联剂”的作用,增强复合材料的界面粘接性能。另外,磷酸酯还可以和金属形成化学键,增加复合材料与金属的粘结性。
上面的发明内容并不在意于描述本发明的各个所述实施方案或每种实施方式。本说明书后面更特别地示例了实施方案的实例。在本申请全文中的几处,通过实例的列举提供了引导,该实例能够以各种组合进行使用。在各实例中,所列出的名单仅用作代表性的组,并不应当被解释为穷举。
具体实施方式
下面详细说明本发明。
本发明的实施方案提供了一种可固化热固性树脂组合物。对于各种实施方案,本发明的可固化热固性树脂组合物含有多元共聚物、环氧树脂及其它组分。如本申请所讨论的,该多元共聚物是采用磷酸酯改性的苯乙烯、马来酸酐、N-苯基马来酰亚胺共聚物。本发明的可固化热固性树脂组合物提供了具有适合的热性能、电性能、阻燃性能的固化产物。该适合的热性能主要为玻璃化转变温度,该适合的电性能包括介电常数和介质损耗因数。本发明的可固化热固性树脂组合物的固化产物能够用于电绝缘封装件、复合材料、电绝缘层压件、粘合剂、 预浸料和涂料。
对于各种实施方案,该多元共聚物具有以下三种或四种结构单元:
所述结构单元(I)为:
Figure PCTCN2015000652-appb-000005
所述结构单元(II)为:
Figure PCTCN2015000652-appb-000006
所述结构单元(III)为:
Figure PCTCN2015000652-appb-000007
所述结构单元(IV)为:
Figure PCTCN2015000652-appb-000008
其中各m、n、r和s独立地是表示相应的组成单元在该共聚物中的摩尔分数的自然数,各R独立地是氢、芳香族基团或脂肪族基团,各AR独立地是芳香族基团。结构单元(I)、结构单元(II)、结构单元(III)为必备单元。
对于各种实施方案,结构单元(I)占该共聚物的0.1-60wt%,优选0.5wt%、1wt%、3wt%、5.5wt%、10wt%、11wt%、15wt%、20wt%、40wt%、50wt%、60wt%结构单元(II)与结构单元(III)的摩尔比为1∶1-20∶1,优选1∶1、2∶1、3∶1、4∶1、5∶1、6∶1、7∶1、8∶1、9∶1、10∶1、11∶1、12∶1、15∶1、16∶1、17∶1、18∶1、19∶1、20∶1,结构单元(IV)占该共聚物的0-60wt%,优选0、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、15wt%、18wt%、20wt%、25wt%、30wt%、36wt%、45wt%、50wt%、55wt%、58wt%、60wt%。
对于各种实施方案,上述多元共聚物,可以使用各自结构单元对应的单体,通过自由基聚合的方式来制备。结构单元(I)可以使用的单体包括但不限于(甲基)丙烯酸羟乙酯磷酸酯、(甲基)丙烯酸羟丙酯磷酸酯、(甲基)丙烯酸聚乙二醇酯磷酸酯、(甲基)丙烯酸聚丙二醇酯磷酸酯等,主要使用的单体一般为以甲基丙烯酸羟乙酯磷酸单酯为主要成分的混合物,如SOLVAY公司的SIPOMER PAM-100、日本共荣社P-1M、P-2M、广州精德化学PM1000、PM1500等。结构单元(II)可以使用的单体包括但不限于苯乙烯、α-甲基苯乙烯、乙烯基甲苯、二乙烯基苯等,主要使用的单体为苯乙烯。结构单元(III)可以使用的单体为顺丁烯二酸酐。结构单元(IV)可以使用的单体包括但不限于N-苯基马来酰亚胺。
将上述单体按需要的摩尔比混合溶解到适当的溶剂(如丁酮)中,置于反应装置内,添 加合适的引发剂、链转移剂,加热,搅拌均匀,控制温度,进行自由基聚合反应。聚合结束后,提纯,减压蒸馏除去溶剂,得到产物。
对于各种实施方案,上述多元共聚物的另一种制备方法为:将含有羟基官能团的丙烯酸单体替代结构单元(I)所用单体,先与结构单元(II)、结构单元(III)、结构单元(IV)中一个或多个单元结构所对应的单体进行共聚反应,聚合完成后,再将共聚产物即含有侧链羟基的聚合物与P2O5、焦磷酸、多聚磷酸、三氯氧磷之一反应,生成磷酸酯,然后提纯、除去溶剂,得到产物固化剂。
对于一种或多种实施方案,该可固化热固性树脂组合物包括环氧树脂。所述环氧树脂为芳香族环氧化合物、脂环族环氧化合物、脂肪族环氧化合物之一或其组合。芳香族环氧化合物的实例包括但不限于多元酚的缩水甘油基醚化合物及其组合。脂环族环氧化合物的实例包括但不限于:具有至少一个脂环的多元醇的多缩水甘油基醚、或通过用氧化剂对包括环己烯环或环戊烯环的化合物的环氧化得到的包括氧化环己烯或氧化环戊烯的化合物。脂肪族环氧化合物的实例包括但不限于:脂肪族多元醇或其氧化亚烷基加合物的多缩水甘油基醚、脂肪族长链多元酸的多缩水甘油基酯、通过缩水甘油基丙烯酸酯或缩水甘油基甲基丙烯酸酯的乙烯基聚合合成的均聚物、和通过缩水甘油基丙烯酸酯或缩水甘油基甲基丙烯酸酯和其他乙烯基单体的乙烯基聚合合成的共聚物。
对于各种实施方案,该可固化热固性树脂组合物能够包括溶剂。该溶剂可选自甲基乙基酮(MEK)、甲苯、二甲苯、N,N-二甲基甲酰胺(DMF)、丙二醇甲基醚(PM)、环己酮、丙二醇甲基醚乙酸酯(DOWANOLTM PMA)及其混合物。对于各种实施方案,该溶剂的添加量为该可固化热固性树脂组合物总重量的30-60wt%优选,30wt%、35wt%、38wt%、40wt%、44wt%、49wt%、50wt%、53wt%、55wt%、57wt%、60wt%。
对于各种实施方案,该可固化热固性树脂组合物能够包括催化剂。该催化剂的实例包括但不限于三-(二甲胺基甲基)苯酚(DMP-30)、2-甲基咪唑(2MI)、2-苯基咪唑(2PI)、 2-乙基-4-甲基咪唑(2E4MI)、1-苯甲基-2-苯基咪唑(1B2PZ)、硼酸、三苯基膦(TPP)、四苯基磷鎓-四苯基硼酸盐(TPP-k)及其组合。对于各种实施方案,该催化剂的添加量为该可固化热固性树脂组合物的固体组分重量的0.01-2.0wt%,优选0.05wt%、0.1wt%、0.4wt%、0.7wt%、1.0wt%、1.4wt%、1.5wt%、2.0wt%。
对于各种实施方案,该可固化热固性树脂组合物能够包括固化剂。该固化剂能够与环氧化合物的环氧化物基团反应,可选自酚醛树脂、胺、酸酐、羧酸、酚、硫醇及其组合。对于各种实施方案,该固化剂的添加量为该可固化热固性树脂组合物的固体组分重量的1-90wt%,优选10wt%、20wt%、30wt%、40wt%、50wt%、60wt%、70wt%、80wt%、90wt%。
对于一种或多种实施方案,该可固化热固性树脂组合物能够包括添加剂。该添加剂能够选自染料、颜料、着色剂、抗氧化剂、热稳定剂、光稳定剂、增塑剂、润滑剂、流动改性剂、阻滴剂、阻燃剂、抗粘连剂、脱模剂、增韧剂、低光滑度添加剂(low profile additive)、应力释放添加剂及其组合。
对于各种实施方案,由如本申请所讨论的本发明的可固化热固性树脂组合物形成的固化产物能够具有至少120℃的玻璃化转变温度。
对于各种实施方案,由如本申请所讨论的本发明的可固化热固性树脂组合物形成的固化产物在1GHz的频率下,能够具有小于3.1的介电常数,小于0.01的介质损耗因数。
本发明的实施方案提供了包括增强组分和如本申请所讨论的可固化热固性树脂组合物的复合材料。上述复合材料,是通过使用增强材料增强该可固化热固性树脂组合物得到。该增强材料包括但不限于包括但不限于:玻璃纤维、石英纤维、玄武岩纤维、芳纶纤维及其它可用于复合材料增强体的纤维及其组合。
实施例
下面,通过实施例进一步详细说明本发明。本发明实施例部分所述“份”,如非特殊说明, 表示质量份数。
合成例1:多元共聚物(P1-1)的合成
在500ml四口烧瓶中加入83.3g苯乙烯、34.6gN-苯基马来酰亚胺、19.6g顺丁烯二酸酐、再加入1.375g引发剂BPO和适量链转移剂、200g溶剂丁酮、13.75g PAM-100,加热,搅拌均匀,控制反应温度在80℃,反应6-8小时。将反应物减压蒸馏,除去溶剂,得到四元共聚物(P1-1)。
合成例2:多元共聚物(P1-2)的合成
在500ml四口烧瓶中加入83.3g苯乙烯、34.6gN-苯基马来酰亚胺、19.6g顺丁烯二酸酐、8.5g甲基丙烯酸羟乙酯、再加入1.375g引发剂BPO和适量链转移剂、200g溶剂丁酮,加热,搅拌均匀,控制反应温度在80℃,反应6-8小时。再加入4.6g P205,维持反应温度,再反应3-4小时。降温到60℃,加入适量去离子水,水解1小时。最后将反应物减压蒸馏,除去溶剂,得到四元共聚物(P1-2)。
合成例3:多元共聚物(P1-3)的合成
在500ml四口烧瓶中加入83.3g苯乙烯、19.6g顺丁烯二酸酐、再加入1.375g引发剂BPO和适量链转移剂、200g溶剂丁酮、13.75g PAM-100,加热,搅拌均匀,控制反应温度在80℃,反应6-8小时。将反应物减压蒸馏,除去溶剂,得到三元共聚物(P1-3)。
实施例1、2、3、对比例1、2
按表1所示配比,混合由合成例1-3得到的多元共聚物(P1-1、P1-2、P1-3)、外购苯乙烯与马来酸酐共聚物(Sartomer SMA4000)、环氧树脂(南通星辰合成材料有限公司DIC 850S)、固化剂(MeTHPA)、催化剂(空气化学K54),加热固化后,按以下方法测试其介电常数、介 质损耗因数、玻璃化转变温度、氧指数。
(1)介电常数及介质损耗因数的测试
对于固化后的纯树脂浇注板,使用HP4291B介电常数测量装置(Hewllet.Packerd公司生产),测定频率1GHz下的介电常数和介质损耗因数。
(2)玻璃化温度的测定
对于固化后的纯树脂浇注板,使用DSC 4000(PerkinElmer公司生产),按10K/min的升温速率,测试温度范围30-180℃的条件下,测试其玻璃化转变温度。
(3)氧指数的测定
对于固化后的纯树脂浇注板,使用氧指数测试仪,按照《GB/T 2406.2-2009塑料——用氧指数法测定燃烧行为,第二部分:室温试验》标准方法,测试其氧指数。
表1
Figure PCTCN2015000652-appb-000009
实施例4、对比例3
通过在通用预浸料配方中,分别添加除纤维外组分重量20wt%的多元共聚物(P1-1)和 苯乙烯-顺丁烯二酸酐二元共聚物(Sartomer SMA4000),制成纤维含量45wt%的改性预浸料2-1、2-2。然后分别将4张预浸料重叠,在上下面各放置一张铜箔,在压力0.25MPa,温度185℃下,压制90分钟,制成覆铜板,按以下方法测试其介电常数、介质损耗因数、玻璃化转变温度、氧指数、剥离强度。
(1)介电常数及介质损耗因数的测试
将覆铜板浸渍在铜蚀刻液中,除去铜箔得到测试基板,使用HP4291B介电常数测量装置(Hewllet.Packerd公司生产),测定频率1GHz下的介电常数和介质损耗因数。
(2)玻璃化温度的测定
将覆铜板浸渍在铜蚀刻液中,除去铜箔得到测试基板,使用DSC 4000(PerkinElmer公司生产),按10K/min的升温速率,测试温度范围30-180℃的条件下,测试其玻璃化转变温度。
(3)氧指数的测定
将覆铜板浸渍在铜蚀刻液中,除去铜箔得到测试基板,使用氧指数测试仪,按照《GB/T 2406.2-2009塑料——用氧指数法测定燃烧行为,第二部分:室温试验》标准方法,测试其氧指数。
(4)剥离强度的测试
将覆铜板浸渍在铜蚀刻液中,形成1cm宽的铜箔,得到测试基板,使用拉力计测定剥离强度。
表2
Figure PCTCN2015000652-appb-000010
Figure PCTCN2015000652-appb-000011
实施例1、2的对比
实施例1、2的对比,说明采用实施例1-2两种不同方法制备的多元共聚物(P1-1、P1-2),其性能是基本一致的。
实施例1、2与实施例3的对比
实施例1、2与实施例3的对比,说明,在多元共聚物中,添加以N-苯基马来酰亚胺为代表的结构单元(IV),在维持其它性能基本不变的前提下,有利于提高固化物的耐热特性。
实施例1、2与对比例1的对比
实施例1、2与对比例1的对比,说明,通过添加本发明所述多元共聚物(P1-1、P1-2)后,热固性树脂固化物的介电常数、介质损耗明显降低;玻璃化转变温度提高,具有更好的耐热性能;氧指数提高,具有一定的阻燃性。
实施例3与对比例1的对比
实施例3与对比例1的对比,说明,通过添加本发明所述多元共聚物(P1-3)后,热固性树脂固化物的介电常数、介质损耗明显降低;玻璃化转变温度基本不变;氧指数提高,具有一定的阻燃性。
实施例1、2与对比例2的对比
实施例1、2与对比例2的对比,说明添加本发明所述多元共聚物(P1-1、P1-2),比添加苯乙烯-顺丁烯二酸酐二元共聚物,热固性树脂固化物的介电常数、介质损耗基本相当;玻璃化转变温度提高,具有更好的耐热性能;氧指数提高,具有一定的阻燃性。
实施例3与对比例2的对比
实施例3与对比例2的对比,说明,在多元共聚物中,添加结构单元(I),将磷元素引入体系中,可提高固化物的氧指数,使固化物具有一定的阻燃性。
实施例4与对比例3的对比
实施例3与对比例2的对比,说明,添加本发明所述多元共聚物(P1-1),比添加苯乙烯-顺丁烯二酸酐二元共聚物,热固性树脂固化物的介电常数、介质损耗基本相当;玻璃化转变温度提高,具有更好的耐热性能;氧指数提高,具有一定的阻燃性;剥离强度提高,与铜箔具有更好的粘接性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种可固化热固性树脂组合物,其特征在于含有但不限于下述(1)多元共聚物和(2)环氧树脂,
    所述(1)多元共聚物,由结构单元(I)与结构单元(II)、结构单元(III)、结构单元(IV)组成的三元或四元共聚物,其中结构单元(I)、结构单元(II)、结构单元(III)为必备结构单元;
    所述结构单元(I)为:
    Figure PCTCN2015000652-appb-100001
    所述结构单元(II)为:
    Figure PCTCN2015000652-appb-100002
    所述结构单元(III)为:
    Figure PCTCN2015000652-appb-100003
    所述结构单元(IV)为:
    Figure PCTCN2015000652-appb-100004
    其中m、n、r和s是表示相应组成单元在该共聚物中的摩尔分数的自然数,R是氢、芳香族基团或脂肪族基团之一,AR是芳香族基团。
    所述(2)环氧树脂为芳香族环氧化合物、脂环族环氧化合物、脂肪族环氧化合物之一或其组合。
  2. 根据权利要求1所述的可固化热固性树脂组合物,其特征在于:所述组合物中多元共聚物结构单元(I)占该共聚物的0.1-60wt%,结构单元(II)与结构单元(III)的摩尔比为1∶1-20∶1,结构单元(IV)占该共聚物的0-60wt%。
  3. 根据权利要求1所述的可固化热固性树脂组合物,其特征在于:所述多元共聚物可与环氧树脂同时固化。
  4. 根据权利要求1所述的可固化热固性树脂组合物,其特征在于:所述组合物中多元共聚物与环氧树脂的重量比为5-100∶100。
  5. 根据权利要求1所述的可固化热固性树脂组合物,其特征在于:该可固化热固性树脂组合物固化产物的玻璃化转变温度至少为120℃;1GHZ以上频率下介电常数为3.1或更小,介质损耗因数为0.01或更小。
  6. 一种复合材料,其特征在于:包括增强组分和权利要求1~5任一所述的可固化热固性树脂组合物。
  7. 根据权利要求6所述的复合材料,其特征在于:所述增强组分是玻璃纤维、石英纤维、玄武岩纤维、芳纶纤维之一或其它可用于复合材料增强体的纤维。
  8. 一种如权利要求1~5任一所述可固化热固性树脂组合物所用多元共聚物的制备方法,其特征在于:将结构单元(I)对应的单体与结构单元(II)、结构单元(III)、结构单元(IV)所对应单体中的两个或三个结构单元进行共聚反应,得到三元或四元共聚物;
    所述结构单元(I)所对应的单体为(甲基)丙烯酸羟乙酯磷酸酯、(甲基)丙烯酸羟丙酯磷酸酯、(甲基)丙烯酸聚乙二醇酯磷酸酯、(甲基)丙烯酸聚丙二醇酯磷酸酯中一种或多种;
    所述结构单元(II)所对应的单体为苯乙烯、α-甲基苯乙烯、乙烯基甲苯、二乙烯基苯中一种或多种;
    所述结构单元(III)所对应的单体为顺丁烯二酸酐;
    所述结构单元(IV)所对应的单体为N-苯基马来酰亚胺。
  9. 一种如权利要求1~5任一所述可固化热固性树脂组合物所用多元共聚物的制备方法,其特征在于:将含有羟基官能团的丙烯酸单体替代结构单元(I)所用单体,先与结构单元(II)、结构单元(III)、结构单元(IV)所对应单体中的两个或三个进行共聚反应,聚合完成后,再将共聚产物即含有侧链羟基的聚合物与P2O5、焦磷酸、多聚磷酸、三氯氧磷之一反应,生成磷酸酯,然后提纯、除去溶剂,得到产物。
PCT/CN2015/000652 2015-09-08 2015-09-21 一种可固化热固性树脂组合物 WO2017041201A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/555,085 US9963530B2 (en) 2015-09-08 2015-09-21 Curable thermosetting resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510568002.5A CN106496393B (zh) 2015-09-08 2015-09-08 一种可固化热固性树脂组合物
CN201510568002.5 2015-09-08

Publications (1)

Publication Number Publication Date
WO2017041201A1 true WO2017041201A1 (zh) 2017-03-16

Family

ID=58240467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000652 WO2017041201A1 (zh) 2015-09-08 2015-09-21 一种可固化热固性树脂组合物

Country Status (3)

Country Link
US (1) US9963530B2 (zh)
CN (1) CN106496393B (zh)
WO (1) WO2017041201A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11485874B2 (en) 2019-06-27 2022-11-01 Prc-Desoto International, Inc. Addition polymer for electrodepositable coating compositions
US11274167B2 (en) 2019-06-27 2022-03-15 Prc-Desoto International, Inc. Carbamate functional monomers and polymers and use thereof
US11313048B2 (en) 2019-06-27 2022-04-26 Prc-Desoto International, Inc. Addition polymer for electrodepositable coating compositions
CN112812214A (zh) * 2020-12-31 2021-05-18 山东大学 烯烃-马来酰亚胺-苯并噁嗪共聚物、交联树脂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699724A1 (en) * 1994-08-31 1996-03-06 Dsm N.V. Use of an aqueous resin composition in the preparation of can coatings
JP2001019744A (ja) * 1999-06-30 2001-01-23 Ind Technol Res Inst エポキシ樹脂に使用するための硬化剤
WO2013000151A1 (en) * 2011-06-30 2013-01-03 Dow Global Technologies Llc Curable compositions
CN104650281A (zh) * 2014-12-26 2015-05-27 北京鼎材科技有限公司 一种彩色滤光片用碱溶性树脂聚合物及光敏性树脂组合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175481A (ja) * 1983-03-25 1984-10-04 Kanegafuchi Chem Ind Co Ltd 新規エポキシ樹脂およびその製造方法
JP2001200013A (ja) * 2000-01-18 2001-07-24 Fuji Photo Film Co Ltd 連鎖移動基含有共重合体およびそれを含有する感光性樹脂組成物
KR100854238B1 (ko) * 2005-04-22 2008-08-25 주식회사 엘지화학 알칼리 가용성 수지 및 이를 포함하는 감광성 수지 조성물
US8076052B2 (en) * 2008-01-10 2011-12-13 Eastman Kodak Company Positive-working imageable elements with chemical resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699724A1 (en) * 1994-08-31 1996-03-06 Dsm N.V. Use of an aqueous resin composition in the preparation of can coatings
JP2001019744A (ja) * 1999-06-30 2001-01-23 Ind Technol Res Inst エポキシ樹脂に使用するための硬化剤
WO2013000151A1 (en) * 2011-06-30 2013-01-03 Dow Global Technologies Llc Curable compositions
CN104650281A (zh) * 2014-12-26 2015-05-27 北京鼎材科技有限公司 一种彩色滤光片用碱溶性树脂聚合物及光敏性树脂组合物

Also Published As

Publication number Publication date
US20180051112A1 (en) 2018-02-22
CN106496393B (zh) 2018-09-07
CN106496393A (zh) 2017-03-15
US9963530B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
EP2726548B1 (en) Curable compositions
CN103304949B (zh) 一种热固性树脂组合物及使用其制作的半固化片及层压板
EP3066148B1 (en) Ultra low loss dielectric thermosetting resin compositions and high preformance laminates manufactured therefrom
TW201506081A (zh) 低介電樹脂組合物及應用其之銅箔基板及印刷電路板
TWI606076B (zh) 寡聚物、包含其之組成物及複合材料
CN103554811B (zh) 一种热固性树脂组合物及使用其制作的半固化片及层压板
JP7394930B2 (ja) リン酸化無水物含有エポキシ樹脂
WO2017041201A1 (zh) 一种可固化热固性树脂组合物
CN103289283A (zh) 热固性树脂组合物及使用其制作的半固化片及层压板
KR20130062915A (ko) 강인화제로서 폴리(프로필렌 옥사이드) 폴리올을 포함하는 에폭시 수지 조성물
TW201215624A (en) Copolymers
CN111978726B (zh) 一种热固性树脂组合物及其制备方法和用途
JP5813222B2 (ja) 硬化性組成物
TW202024157A (zh) 樹脂組合物及由其製成的製品
CN104497480A (zh) 一种耐高温磷氮型无溶剂环氧基体树脂及其制备方法
JP6231067B2 (ja) 硬化性組成物
TW201509982A (zh) 可固化組成物
JP2020023651A (ja) 熱硬化性樹脂組成物、樹脂成型体、および繊維強化樹脂複合体
JP2016500381A (ja) エポキシ系のための硬化剤化合物
JP7295826B2 (ja) エポキシ樹脂組成物
JPH10182812A (ja) ノルボルナン環状カーボナート樹脂組成物及び硬化物
WO2023161771A1 (en) Color stable epoxy compositions
TW202311337A (zh) 改質環氧樹脂、樹脂組成物、硬化物、電氣電子電路用積層板、及改質環氧樹脂的製造方法
TW200927789A (en) Prepolymer and thermosetting resin composition made therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15555085

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903308

Country of ref document: EP

Kind code of ref document: A1