WO2009054227A1 - 透明導電性積層体およびタッチパネル - Google Patents

透明導電性積層体およびタッチパネル Download PDF

Info

Publication number
WO2009054227A1
WO2009054227A1 PCT/JP2008/067590 JP2008067590W WO2009054227A1 WO 2009054227 A1 WO2009054227 A1 WO 2009054227A1 JP 2008067590 W JP2008067590 W JP 2008067590W WO 2009054227 A1 WO2009054227 A1 WO 2009054227A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
cured resin
resin layer
conductive laminate
Prior art date
Application number
PCT/JP2008/067590
Other languages
English (en)
French (fr)
Inventor
Haruhiko Ito
Koichi Ueda
Kazuhito Kobayashi
Hidefumi Kusuda
Original Assignee
Teijin Limited
Nippon Paint Co., Ltd.
Nippon Bee Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited, Nippon Paint Co., Ltd., Nippon Bee Chemical Co., Ltd. filed Critical Teijin Limited
Priority to US12/739,673 priority Critical patent/US8512847B2/en
Priority to CN200880113304.1A priority patent/CN101874275B/zh
Priority to KR1020147037168A priority patent/KR20150013914A/ko
Priority to KR1020107008735A priority patent/KR101521317B1/ko
Priority to EP08841112.9A priority patent/EP2211355B1/en
Publication of WO2009054227A1 publication Critical patent/WO2009054227A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing

Definitions

  • the present invention relates to a transparent conductive laminate. More specifically, the present invention relates to a transparent conductive laminate having irregularities on its surface without containing fine particles in a hard resin layer, and a latch panel using the transparent conductive laminate.
  • the evening panel includes an optical method, an ultrasonic method, a capacitance method, and a resistive film method.
  • the resistance membrane method has been rapidly spreading in recent years because of its simple structure and good price / performance ratio.
  • a resistive film type panel is an electronic component constructed by holding two films or sheets having a transparent conductive layer on opposite sides at regular intervals.
  • a movable electrode substrate viewing side electrode substrate
  • the position is detected by the detection circuit when pressed with a pen or finger, bent, brought into contact with the fixed electrode substrate (the electrode substrate on the opposite side) and conducted, and a given input is made.
  • an interference fringe force S called Newton ring may appear around the pressing portion.
  • a Newton ring may appear in a portion where the distance between the movable electrode substrate and the fixed electrode substrate is narrow due to the stagnation of the movable electrode substrate. The visibility of the display deteriorates due to the occurrence of Newton rings.
  • a coating layer containing a predetermined amount of filler having an average primary particle size of 1 to 4 is used as a method for reducing Newton's rings that occur between the two transparent electrode substrates that make up such a resistive film type sandwich panel.
  • a method of forming a transparent conductive layer on a plastic film is disclosed (see Patent Document 1).
  • the average secondary particle size is 1.
  • a method of forming a protrusion coating layer (coating layer having protrusions) containing silica particles of 1.0 to 3.0 m on a plastic film is disclosed (see Patent Document 2).
  • the Newton ring prevention layer (anti-neutral ring layer) formed by such a method can suppress flickering on a high-definition display.
  • Particles with an average particle size of 1 to 15 / im and fine particles with an average particle size of 5 to 50 nm were added for the purpose of matting.
  • fine particles of 5 to 50 nm are far below the wavelength of visible light, so no haze is generated even if fine particles of this size are added to the resin that serves as the binder.
  • the haze is increased by adding fine particles of 5 to 50 nm, and therefore it is presumed that the fine particles form secondary aggregates. It can be seen that the flicker is controlled by the rise of this gap, that is, matting.
  • the anti-Newton ring layer formed by such a method has a problem in that the visibility of the display deteriorates because the haze becomes extremely high.
  • Patent Documents 1 to 3 disclose a method of forming an anti-Newton ring layer for preventing Newton rings generated by the gap between the movable electrode substrate and the fixed electrode substrate of the evening panel.
  • the anti-Yeuton ring layer formed by these methods forms irregularities by containing inorganic or organic fine particles.
  • protrusions formed by inorganic or organic fine particles contained in the anti-Newton ring layer of the movable electrode substrate destroyed the dot spacer formed on the fixed electrode substrate, and Scatter in the panel.
  • the scattered dot spacers prevent the conduction between the movable electrode substrate and the fixed electrode substrate, and also damage the transparent conductive layer of the movable electrode substrate and the fixed electrode substrate. There is also a problem of lowering.
  • Patent Document 4 discloses an antiglare film material that does not contain fine particles, there is no disclosure about application to a transparent conductive laminate.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-3 2 3 9 3 1
  • Patent Document 2 Japanese Patent Laid-Open No. 2 00 3-7 3 0 5 6
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2 0 0 1-8 4 8 3 9
  • Patent Document 4 W0 2 0 0 5/0 7 3 7 6 3 Pamphlet Disclosure of Invention
  • the present invention is a laminate in which a polymer film, a cured resin layer 11 and a transparent conductive layer are laminated in this order, and the cured resin layer-1 is formed by phase separation of two components. It has irregularities, does not contain fine particles to give strong irregularities, and the arithmetic average roughness (Ra) of cured resin layer—1 according to JISB 0601—1994 is 0.05 m or more and less than 0.5 m A transparent conductive laminate characterized by a ten-point average roughness (Rz) force SO.
  • the first component is an unsaturated double bond-containing acryl copolymer
  • the second component is a polyfunctional unsaturated double bond-containing monomer. It is preferable. Further, it is preferable that the SP value (SP 1) of the first component and the SP value (SP2) of the second component satisfy S P 1 ⁇ SP 2.
  • the transparent conductive laminate of the present invention has a cured resin layer-2 on the opposite side of the surface of the polymer film on which the transparent conductive layer is formed, and the cured resin layer 1 has two components separated in phase.
  • the arithmetic mean roughness (R a) of cured resin layer 1 of JISB 0601-1994 is 0.05 m or more. It is preferably less than 50 m, and a ten-point average roughness (Rz) according to JISB 0601—1982 of 0.5 / xm or more and less than 2.0.
  • the first component is an unsaturated double bond acrylic copolymer
  • the second component is a monomer containing a polyfunctional unsaturated double bond. And are preferred.
  • the SP value (SP 1) of the first component and the SP value (SP 2) of the second component satisfy SP 1 ⁇ SP 2.
  • the second component in the cured resin layer 1 2 A trifunctional or higher polyfunctional unsaturated double bond-containing monomer having 3 to 6 mole equivalents of an alkylene oxide unit having 2 to 4 carbon atoms in one monomer molecule Re-polyfunctional unsaturated double bond-containing monomer, 2 to 40 layers in the cured resin layer 1 It is preferable to contain the amount%.
  • the transparent conductive laminate of the present invention preferably has a haze defined by JISK 7136 of 2% or more and less than 20%.
  • the transparent conductive laminate of the present invention preferably has a metal oxide layer having a thickness of 0.5 nm or more and less than 5 nm between the cured resin layer 11 and the transparent conductive layer.
  • the transparent conductive layer preferably has a film thickness of 5 nm or more and 50 nm or less and is crystalline.
  • the transparent conductive laminate of the present invention has a refractive index of 1.2 to 1.55 and a film thickness of 0.05 / xm or more and 0.5 zm or less between the cured resin layer 1 and the transparent conductive layer. It is preferable to have a cured resin layer 13.
  • the transparent conductive laminate of the present invention has a refractive index of 1.2 to 1.55 and a film thickness of 0.05 m or more and 0.5 m or less between the cured resin layer-1 and the metal oxide layer. It is preferable to have a certain cured resin layer-3.
  • the transparent conductive laminate of the present invention has an optical interference layer composed of a low refractive index layer and a high refractive index layer between the cured resin layer 11 and the transparent conductive layer, and the low refractive index layer is a transparent conductive layer. It is preferably in contact with the layer.
  • the transparent conductive laminate of the present invention has an optical interference layer composed of a low refractive index layer and a high refractive index layer between the cured resin layer 11 and the metal oxide layer, and the low refractive index layer is transparent. It is preferable to be in contact with the conductive layer.
  • the present invention includes an evening panel having the transparent conductive laminate. Further, the present invention provides an at least one transparent electrode substrate in a sandwich panel in which two transparent electrode substrates each having a transparent conductive layer provided on at least one side are arranged so that the transparent conductive layers face each other. An evening panel using the transparent conductive laminate is included.
  • FIG. 1 is an example of the layer structure of the transparent conductive laminate of the present invention.
  • FIG. 2 is an example of the layer structure of the transparent conductive laminate of the present invention.
  • FIG. 3 is an example of the layer structure of the transparent conductive laminate of the present invention.
  • FIG. 4 is an example of the layer structure of the transparent conductive laminate of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the cured resin layer 11 has irregularities formed by phase separation of two components.
  • the cured resin layer—1 does not contain fine particles for imparting irregularities.
  • the unevenness is caused by the phase separation of the two due to the difference in physical properties of the first component and the second component, resulting in random unevenness on the surface. It is formed.
  • the first component is preferably a curable polymer excellent in transparency, and more preferably a thermosetting polymer or an ionizing radiation curable polymer.
  • a curable polymer excellent in transparency and more preferably a thermosetting polymer or an ionizing radiation curable polymer.
  • the polymer known ones can be used.
  • the polymers described in WO 2 0 0 5 X 0 7 3 7 6 3 pamphlet can be mentioned.
  • an unsaturated double bond-containing acrylic copolymer (hereinafter sometimes referred to as a copolymer (1-1)) is preferable.
  • the copolymer (1-1) for example, a resin obtained by polymerizing or copolymerizing a polymerizable unsaturated monomer having an acid group such as a (meth) acrylic monomer, or polymerizing or polymerizing a polymerizable unsaturated monomer having this acid group.
  • a copolymer obtained by reacting a polymerizable unsaturated monomer having a group with a monomer having another ethylenically unsaturated double bond and an isocyanate group isocyanate group.
  • an unsaturated double bond-containing acryl copolymer for example, a polymerizable unsaturated monomer having an acid group and another polymerizable unsaturated monomer are copolymerized and then obtained. And a method for reacting the acid group of the obtained copolymer with the epoxy group of the epoxy group-containing ethylenically unsaturated monomer.
  • Examples of the polymerizable unsaturated monomer having an acid group include acrylic acid, methacrylic acid, crotonic acid, 2- (meth) acryloyloxychetyl succinic acid, 2- Monocarboxylic acids such as (meth) acryloyloxychetylphthalic acid and 2_ (meth) acryloyloxychetylhexahydrophthalic acid, dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid and itaconic acid Acids, acid anhydrides such as maleic anhydride and itaconic anhydride and monoesters of dicarboxylic acids such as monoethyl maleate, monoethyl fumarate and monoethyl itaconate, or their ⁇ -haloalkyls, alkoxy, halogens, Substituted derivatives substituted by nitro or cyan, o-, m-, p-vinylbenzoic
  • polymerizable unsaturated monomers such as styrene or styrene ⁇ -, ⁇ -, m-, p-alkyl, alkoxy, halogen, octaalkyl, nitro, cyano, amide, ester substituted
  • olefins such as butadiene, isoprene, neoprene, o-, m-, p-hydroxystyrene or their alkyls, alkoxys, halogens, octacylalkyls, nitros, cyanos, amides, esters or carboxys Derivatives, vinyl hydroquinone,
  • Vinyl pyroganol 5—Vinyl pyroganol
  • 6 Vehicle pyrogallol
  • 1 Polyhydroxyvinylphenols such as vinyl phlorogricinol, methyl methacrylate, ethyl, n-propyl, i-propyl, n-butyl, sec -Butyl, ter-butyl, pentyl, neopentyl, isoamylhexyl, cyclohexyl, adamantyl, allyl, propargyl, phenyl, naphthyl, anthracenyl, anthraquinonyl, piperonyl, salicyl, cyclohexyl, benzyl, phenethyl, cresyl Glycidyl, isopolonyl, triphenylmethyl, dicyclobenzyl, cumyl, 3- (N, N-dimethylamino) prop
  • Epoxy-containing ethylenically unsaturated monomers include, for example, glycidyl (meth) acrylate, / 3-methyldaricidyl (meth) acrylate, and 3,4-epoxycyclohexanyl (meth) acrylate, 4-hydroxy propyl acrylate relay glycidyl ether Etc.
  • Glycidyl (meth) acrylate is preferably used because it is a composition that exhibits well-balanced curability and storage stability.
  • an epoxy group-containing ethylenically unsaturated monomer and another polymerizable unsaturated monomer are copolymerized, and then obtained. And a method of reacting an epoxy group of the copolymer with an acid group of a polymerizable unsaturated monomer having an acid group.
  • the weight average molecular weight of the unsaturated double bond-containing acrylic copolymer used as the first component is a force S of preferably from 500 to 100, 0 0, preferably 1, 0 0 0 More preferably, it is ⁇ 50, 0 0 0.
  • the weight average molecular weight in this specification means the weight average molecular weight in terms of polystyrene.
  • one type of unsaturated double bond-containing acrylic copolymer may be used alone, or two or more types may be used in combination.
  • the second component may be any monomer that undergoes phase separation when mixed with the copolymer (1-1).
  • the monomer known monomers can be used.
  • the monomers described in WO 2 0 075 No. 0 7 3 7 63 Pamphlet can be mentioned.
  • a polyfunctional unsaturated double bond-containing monomer (hereinafter sometimes referred to as monomer (1-2)) is preferable.
  • the monomer (1-2) include a dealcoholization reaction product of a polyvalent alcohol and (meth) acrylate. Specifically, Pen Yu Erisri! Rutri acrylate, zipen evening erisuri! ⁇ One hexa Evening) acrylate, dipen evening erythrene] Rupen evening (meta) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylol propane ester (meth) acrylate, neopentyl alcoholic acid (meth) acrylate, etc. .
  • acrylate monomers having a polyethylene glycol skeleton such as polyethylene glycol # 200 diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) can also be used.
  • One of these monofunctional unsaturated double bond-containing monomers may be used alone, or two or more thereof may be used in combination.
  • the first component is an unsaturated double bond-containing acryl copolymer
  • the second component is a polyfunctional unsaturated double bond-containing monomer. Force S is preferred.
  • the first component and the second component preferably have a difference in solubility parameter value (SP value) of each component.
  • the first component is a copolymer (1-1)
  • the SP value (SP 1) of the first component and the SP value (SP2) of the second component satisfy SP KSP 2.
  • the difference is preferably 0.5 or more.
  • the transparent conductive laminate of the present invention when used for a touch panel, there is no flicker. It is preferable because the haze is low and its sliding durability and end pushing durability are dramatically improved.
  • the transparent conductive laminate of the present invention has an arithmetic average roughness (Ra) according to JIS B0601-1994 of the cured resin layer 11 of 0.05 111 or more and less than 0.5 m.
  • the ten point average roughness (Rz) force of cured resin layer-1 according to JIS B0601-1982 is 0.5 m or more and less than 2 m.
  • the Ra range is 0. It is preferably from 1 01 to less than 0.4 m, particularly preferably from 0.1 111 to less than 0.35 m. Further, the range of 2 is preferably 0.7 m or more and less than 1.5 m, particularly preferably 0.7 II m or more and less than 1.3 m.
  • the thickness of the cured resin layer 11 is preferably 10 m or less. If the thickness exceeds 10 im, the flexibility may be insufficient, and the sliding durability and end-pressing durability may be poor when used for evening panels.
  • the thickness of the cured resin layer_1 is preferably 8 // m or less, and particularly preferably 6 / im or less.
  • the cured resin layer 1 is formed by applying a coating liquid containing the first component and the second component on the substrate, drying it as necessary, and then curing it by ionizing radiation irradiation or heat treatment. can do.
  • the coating solution must contain an organic solvent.
  • known coating methods such as doctor knife, barco overnight, gravure roll coater, curtain coater, knife coater, and spinco overnight. Examples include a method using a machine, a spray method, and a dipping method.
  • the cured resin layer-1 may have the same composition or may be different from each other.
  • the polymer film used in the present invention is not particularly limited as long as it is a film composed of a transparent organic polymer.
  • the organic polymer include polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, and polydiarylate, polycarbonate resins, polyethersulfone resins, polysulfone resins, polyarylate resins, Examples include acrylic resin, cellulose acetate resin, and cycloolefin polymer. These may be used as homopolymers or copolymers. In addition, the above organic polymer may be used alone or blended.
  • These polymer films are produced by a general melt extrusion method or solution casting method. Although it is preferably formed, it is also preferable to increase the mechanical strength or the optical function by subjecting the formed polymer film to uniaxial stretching or biaxial stretching as necessary.
  • the thickness of the polymer film is increased from the viewpoint of maintaining flexibility and flatness for operating the evening panel as a switch. It is preferable that it is 75 to 400 m.
  • the thickness of the polymer film is preferably 0.1 to 4.0 mm from the viewpoint of strength for maintaining flatness.
  • the polymer film may be composed of one layer or may be composed of a laminate of two or more layers. Also, by bonding the transparent conductive laminate of the present invention having a thickness of 50 to 400 m to another plastic sheet, the total thickness of the fixed electrode substrate is 0.1 to 4.0. It is also possible to use it with a configuration of mm.
  • the fixed electrode substrate is the polymer film, plastic sheet, glass substrate, or laminate of polymer film and glass substrate. Or you may use what formed the transparent conductive layer on the laminated body of a polymer film and a plastic sheet. From the standpoint of strength and weight of the evening panel, the total thickness of the fixed electrode substrate is preferably 0.1 to 4.0 mm.
  • a new type of touch panel in which only the polarizing plate or a polarizing plate and a retardation film are laminated on the input side surface of the touch panel, that is, the user side surface.
  • the advantage of this configuration is that the reflectance of extraneous light inside the Yuchi panel is reduced to less than half by the optical action of the polarizing plate or the polarizing plate and the retardation film, and the contrast of the display with the Yuchi panel installed. Is to improve.
  • the refractive index in the slow axis direction of the polymer film is nx
  • the refractive index in the fast axis direction is ny
  • the in-plane retardation value of the high molecular film is represented by a value at a wavelength of 590 nm measured using a spectroscopic ellipsometer (M-150 manufactured by JASCO Corporation).
  • the power is preferably 150 nm, and more preferably in the range of 200 to +100 nm in order to obtain excellent viewing angle characteristics of the evening panel.
  • Examples of the resin constituting the polymer film having excellent optical isotropy include, for example, polystrength Ponate, amorphous polyarylene, polyether sulfone, polysulfone, triacetyl cellulose, diacetyl cellulose, cyclohexane.
  • Ionizing radiation curable resins such as thermoplastic resins such as olefin polymers and their modified products or copolymers with different materials, thermosetting resins such as epoxy resins, and acrylic resins.
  • polycarbonate amorphous polyarylate, polyethersulfone, polysulfone, cycloolefin polymer and copolymers with these modified or different materials Is most preferable.
  • examples of the polycarbonate include bisphenol A, 1,1-di (4-phenol) cyclohexylidene, 3,3,5-trimethyl-1,1-di (4-phenol) cyclohexylidene.
  • Average molecular weight is about 15,000 ⁇
  • Polycarbonate forces in the range of 1 0 0, 0 0 0 are preferably used.
  • examples of the polycarbonate include “Panlite (registered trademark)” manufactured by Teijin Chemicals Ltd. and “Apec HT (registered trademark)” manufactured by Bayer.
  • Amorphous polyarylates include “Elmec (registered trademark)” manufactured by Kanechi Co., Ltd., “U polymer (registered trademark)” manufactured by Tunica Corporation, and “Isaril (registered trademark)” manufactured by Isonova. Illustrated.
  • cycloolefin polymer examples include “Zeonor (registered trademark)” manufactured by Nippon Zeon Co., Ltd. and “Arton (registered trademark)” manufactured by JSR Corporation.
  • molding methods for these resins include melt extrusion methods, solution casting methods, and injection molding methods. From the viewpoint of obtaining excellent optical isotropy, however, solution casting methods and melting methods are particularly preferred. It is preferable to perform the molding using an extrusion method.
  • the transparent conductive layer is not particularly limited as long as it is a transparent layer excellent in conductivity.
  • components constituting the transparent conductive layer include silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide. Of these, indium oxide and / or tin oxide strength S is particularly preferred.
  • the transparent conductive layer is preferably a crystalline layer containing indium oxide as a main component, and in particular, a layer made of crystalline ITO (IndiumTinOxide) is preferably used.
  • ITO IndiumTinOxide
  • the crystal grain size does not need to have an upper limit.
  • the power S is preferably 0 0 0 nm or less. If the crystal grain size exceeds 3,000 nm, the writing durability deteriorates, which is not preferable.
  • the crystal grain size is defined as the largest of the diagonal lines or diameters in each region of polygonal or oval microcrystals observed under a transmission electron microscope (TEM).
  • indium oxide means indium oxide containing tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, etc. as a dopant, or silicon as a dopant in addition to silicon.
  • the “crystalline layer” means 50% or more, preferably 75% or more, more preferably 95% or more, particularly preferably almost 100% of the layer made of indium oxide containing a dopant in the crystalline phase. Means occupied.
  • the transparent conductive layer is a crystalline layer, the adhesion between the cured resin layer-1 and the transparent conductive layer and the environmental reliability are excellent. As a result, when the transparent conductive laminate of the present invention is used for a touch panel, the environmental reliability and the writing durability of the touch panel are improved.
  • the transparent conductive layer can be formed by a known method, such as a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser single deposition method, etc.
  • a known method such as a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulse laser single deposition method, etc.
  • Physical formation methods hereinafter referred to as PVD
  • PVD Physical formation methods
  • CVD chemical 1 vapor deposition
  • sol-gel method sol-gel method
  • a method for forming the transparent conductive layer include a method using a known coating machine such as a doctor knife, a bar coater, a gravure film, a curtain film, a knife coating, a knife coating, a spin coating, etc. Spray method, dipping method, etc. are used.
  • a conductive coating agent composed of a conductive material component such as a nanowire made of conductive metal, metal oxide, carbon or the like and a cured resin component as a binder is used.
  • the thickness of the transparent conductive layer is preferably 5 to 50 nm from the viewpoint of transparency and conductivity. That's right. More preferably, it is 5-30 nm. If the thickness of the transparent conductive layer is less than 5 nm, the stability of the resistance value tends to be inferior, and if it exceeds 50 nm, the surface resistance value decreases, which is not preferable for use in the evening panel. Surface resistance is 10 to 2,000 Q / U ( ⁇ / sq) at a thickness of 5 to 50 nm, more preferably 140 to 1,000 ⁇ / ⁇ ( ⁇ / sq). It is preferable to use a transparent conductive layer. The thickness of the transparent conductive layer is preferably 5 nm or more and 50 nm or less, and is preferably crystalline.
  • this cured resin layer 12 is a layer that has irregularities formed by phase separation of two components and does not contain fine particles for imparting irregularities.
  • the S P value (S P 1) of the first component and the S P value (S P 2) of the second component that form the cured resin layer 1 satisfy S P 1 ⁇ S P 2.
  • Hardened resin layer—2 is: The arithmetic average roughness (Ra) defined in accordance with TIS B 060 1-1 944 is 0.05 m or more and less than 0.5 m, J I S B 060 1— 1 98
  • Ten-point average roughness (Rz) force defined in accordance with 2 is in the range of 0.5 m or more and less than 2.0 m.
  • Ra and Rz are within this range, when the transparent conductive laminate is used in an evening panel, the antiglare property and the fingerprint wiping property are improved, and the flicker is reduced. If Ra is 0.5 O ⁇ m or more, flickering and fingerprint wiping may be reduced, and the visibility of the display installed under the touch panel may be reduced. On the other hand, if Ra is less than 0.05 m, the antiglare property decreases. If Rz is 2.0 m or more, flickering and fingerprint wiping may be reduced, and the visibility of the display installed under the evening panel may be reduced. When Rz is less than 0.5, the antiglare property decreases.
  • the range of Ra is preferably 0.110 111 or more and less than 0.40 m, particularly preferably 0.110 111 or more and less than 0.35 m.
  • Ma the range of 2 is preferably 0.7 m or more and less than 1.5 m, particularly preferably 0.7 m or more and less than 1.3 m.
  • the first component of the cured resin layer 1-2 is an acrylic copolymer (copolymer (2-1)) selected from the unsaturated double bond acrylic copolymer (copolymer (1-1)) described above. is there.
  • the first component (copolymer (2-1)) of the cured resin layer 1-2 is composed of the first component copolymer (1-1) of the cured resin layer 1-1.
  • the same or different types and compositions may be used.
  • the second component of the cured resin layer 1-2 has 3 to 6 mole equivalents of an alkylene oxide unit having 2 to 4 carbon atoms in the monomer molecule among the above-mentioned monomers containing polyfunctional unsaturated double bonds.
  • RI which is preferably a monofunctional unsaturated double bond-containing monomer (hereinafter sometimes referred to as monomer (2-2)).
  • the transparent conductive laminate of the present invention When used as a movable electrode substrate of an evening panel, weather resistance (light resistance) may be required. In that case, the monomer (2-2) is preferred as the second component in the cured resin layer 12.
  • the monomer (2-2) can be prepared, for example, by introducing an alkylene oxide skeleton having 2 to 4 carbon atoms into a trihydric or higher polyhydric alcohol and reacting (meth) acrylate with this. .
  • Examples of the monomer (2-2) include a monomer represented by the following formula (A).
  • n, m and p are each independently an integer of 2 to 4.
  • x, y and z are each independently an integer of 0 to 3, provided that the sum of x, y and is 3 to 6.
  • R 1 is an alkyl group having 1 to 3 carbon atoms which may have a hydroxyl group.
  • R 2 , R 3 and R 4 are each independently hydrogen or a methyl group.
  • Monomers (2-2) include, for example, triethylene glycol-trimethylolpropane tri (meth) acrylate, tripropylene glycol monotrimethylolpropane tri (meth) acrylate, hexaethyleneglycol mono-root trimethylolpropane tri (meth) acrylate, hexapropylene glycol One trimethylolpropane tri (meth) acrylate, and the like.
  • weather resistance (light resistance) can be further imparted to the cured resin layer 1-2.
  • a transparent conductive laminate in which a curable resin layer having weather resistance (light resistance) is formed on the surface opposite to the surface on which the layer is formed can be obtained.
  • the monomer (2-2) in combination with another polyfunctional unsaturated double bond-containing monomer.
  • another polyfunctional unsaturated double bond-containing monomer By using other monofunctional unsaturated double bond-containing monomers together, the hardness of the cured resin layer 12 can be ensured.
  • a monomer containing a polyfunctional unsaturated double bond other than the monomer (2-2) for example, a trifunctional or higher polyfunctional non-functional compound, which is a dealcoholization reaction product of a polyhydric alcohol and (meth) acrylate. And a saturated double bond-containing monomer.
  • Penyu erythritol tri (meth) acrylate Penyu erythritol tetra (meth) acrylate, Dipenyu erythritol hexa (meth) acrylate, dipentaerythritol! ⁇
  • One-lpenene (meth) acrylate trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, neopentyldaricoldi (meth) acrylate, and the like.
  • the monomer (2-2) is preferably contained in an amount of 2 to 40% by weight in the cured resin layer 12.
  • the weather resistance of the cured resin layer (Light resistance) The improvement effect may be insufficient.
  • the monomer (2-2) exceeds 40% by weight the surface hardness of the cured resin layer 12 may be lowered.
  • the thickness of the cured resin layer 12 is preferably 10 or less. If the thickness exceeds 10, the flexibility S is insufficient, and the sliding durability and end-pressing durability may be poor when used for evening panels.
  • the thickness of the cured resin layer 11 is preferably 8 ⁇ or less, particularly preferably 6 m or less.
  • the cured resin layer 1-2 is formed by applying a coating liquid containing the first component and the second component on the substrate, drying it as necessary, and then curing it by ionizing radiation irradiation, heat treatment, etc. can do.
  • the coating liquid preferably contains an organic solvent.
  • a coating method a method using a known coating machine such as a doctor knife, a barco overnight, a gravure roll night, a curtain core, a knife core, a spinco overnight, a spray method, Examples include an immersion method.
  • the haze defined by JISK 7 1 3 6 is preferably 2% or more and less than 18%, more preferably 3% It is more than 15% and particularly preferably 3% or more and less than 10%. If the haze is 18% or more, the visibility of the display installed under the evening panel may be deteriorated. If the haze is less than 2%, the anti-glare property is lowered.
  • the transparent conductive laminate of the present invention may further have a metal oxide layer having a thickness of 0.5 nm or more and less than 5 nm between the cured resin layer 11 and the transparent conductive layer.
  • the adhesion between the layers is greatly improved.
  • An evening panel using such a transparent conductive laminate further improves the writing durability required for the evening panel in recent years, compared to the case without a metal oxide layer.
  • the thickness of the metal oxide layer is 5. O nm or more, the endurance durability required for the evening panel cannot be improved because the metal oxide layer starts to exhibit mechanical properties as a continuum.
  • the thickness of the metal oxide layer is less than 0.5 nm, it is difficult to control the thickness, and it is difficult to fully develop the adhesion between the cured resin layer 11 and the transparent conductive layer. Na Therefore, the improvement in writing durability required for evening panels may be insufficient.
  • components constituting the metal oxide layer include metal oxides such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide.
  • metal oxide layers can be formed by a known method, such as DC magnetron sputtering method, RF magnetron sputtering method, ion plating method, vacuum deposition method, pulse laser single deposition method, etc.
  • Physical formation methods (hereinafter referred to as P VD) can be used, but it is possible to increase industrial productivity by forming a metal oxide layer with a uniform thickness over a large area. Focusing on the DC magnetron sputtering method is desirable.
  • chemical formation such as Chemica 1 Vapor Deposition (hereinafter referred to as CVD), sol-gel method, etc. From the viewpoint of force / thickness control, the sputtering method is still desirable.
  • the evening get used for the sputtering method is preferably a metal target, and the reactive sputtering method is widely used. This is because the element oxide used as the metal oxide layer is often an insulator, and the DC magneto sputtering method is often not applicable in the case of a metal oxide layer. In recent years, power sources have been developed that simultaneously discharge two force swords and suppress the formation of insulators on the target, making it possible to apply a pseudo RF magnetron sputtering method. .
  • the transparent conductive laminate of the present invention can have a cured resin layer 13 between the cured resin layer 11 and the transparent conductive layer. Further, a cured resin layer 13 can be provided between the cured resin layer 11 and the metal oxide layer.
  • the cured resin layer 13 improves the adhesion between the layers.
  • the curable resin used to form the cured resin layer 3 include an ionizing radiation curable resin and a thermosetting resin.
  • monomers that give ionizing radiation curable resins include polyol acrylate, polyester acrylate, urethane acrylate, epoxy acrylate, modified styrene acrylate, melamine acrylate, and silicon-containing acrylate. And monofunctional and polyfunctional acrylates such as
  • Specific monomers include, for example, trimethylolpropane trimethacrylate, trimethylolpropane ethylene oxide modified acrylate, trimethylolpropane propylene oxide modified acrylate, isocyanuric acid alkylene oxide modified acrylate, pentaerythritol triacrylate, Dipentaerythritol hexaacrylate, dimethylol tricyclodecane diacrylate, tripropylene glycol triacrylate, diethylene glycol diacrylate, 1,6-monohexanediol diacrylate, epoxy-modified acrylate, urethane-modified acrylate, epoxy-modified acrylate And polyfunctional monomers such as These may be used alone or in combination with several kinds.
  • an appropriate amount of a hydrolyzate of various alkoxysilanes may be added.
  • the resin layer is polymerized by ionizing radiation.
  • an appropriate amount of a known photopolymerization initiator is added.
  • an appropriate amount of a photosensitizer may be added as necessary.
  • Examples of the photopolymerization initiator include acetophenone, benzophenone, benzoin, benzoylbenzoate, and thixanthones.
  • Examples of the photosensitizer include tritylamine and tri-n-butylphosphine.
  • Thermosetting resins include organosilane-based thermosetting resins that use silane compounds such as methyltriethoxysilane and phenyltriethoxysilane as monomers, and melamine-based resins that use methylated melamine melamine as a monomer.
  • examples include thermosetting resins, isocyanate-based thermosetting resins, phenol-based thermosetting resins, and epoxy-based thermosetting resins. These thermosetting resins can be used alone or in combination. Moreover, it is also possible to mix a thermoplastic resin as needed. When the resin layer is crosslinked by heat, an appropriate amount of a known reaction accelerator or curing agent is added.
  • reaction accelerator examples include triethylenediamine, dibutyltin dilaurate, benzylmethylamine, pyridine and the like.
  • curing agent examples thereof include methylhexahydrophthalic anhydride, 4,4′-diaminodiphenyl methane, 4,4, -diamino-3,3, mono-jetyl diphenyl methacrylate, diaminodiphenyl sulfone and the like.
  • the cured resin layer 1 contains silicon oxide ultrafine particles with an average primary particle size of 100 nm or less. Can be made. Further, when an organic compound containing silicon atoms and silicon oxide ultrafine particles having an average primary particle size of 100 nm or less are used in combination, a cured resin layer in which the silicon oxide ultrafine particles are biased to the surface is formed. The effect of improving sex is further strengthened. Examples of the organic compound containing a silicon atom include a general surfactant containing a silicon atom and a curable resin component.
  • the content of the ultrafine silicon oxide particles is preferably 1 part by weight or more and 400 parts by weight or less with respect to 100 parts by weight of the curable resin component used to form the cured resin layer 13. More preferably, it is 1 part by weight or more and 200 parts by weight or less, more preferably 5 parts by weight or more and 100 parts by weight or less.
  • the cured resin layer 13 is formed by applying a coating liquid containing a curable resin component on the cured resin layer 11, drying it as necessary, and then curing it by ionizing radiation irradiation or heat treatment. Can be formed.
  • the coating solution preferably contains an organic solvent.
  • Examples of the coating method include a method using a known coating machine such as a doctor knife, a barco overnight, a gravure roll coater, a curtain coater, a knife coater, a spinco overnight, a spray method, a dipping method, and the like. .
  • organic solvent examples include ethanol, isopropyl alcohol, bubutanol, 1-methoxy-2-propanol, hexane, cyclohexane, and rig-in are preferred.
  • xylene, toluene, ketones such as methyl ethyl ketone, methyl isoptyl ketone and the like it is preferable to use xylene, toluene, ketones such as methyl ethyl ketone, methyl isoptyl ketone and the like.
  • polar solvents such as cyclohexanone, butyl acetate, and isobutyl acetate can be used. These can be used alone or as a mixed solvent of two or more.
  • UV absorber In order to prevent thermal degradation and light degradation of the cured resin layer 1, UV absorber, oxidation prevention It is also possible to add agents, anti-aging agents, etc.
  • the thickness of the cured resin layer 1 is 0.05 zm or more and 0.5 xm or less.
  • the force S is preferable, and more preferably 0.05 m or more and 0.3 m or less.
  • the cured resin layer is composed of one or a combination of ultrafine particles of metal oxide or metal fluoride having an average primary particle size of 100 nm or less and / or fluororesin. It may be added inside.
  • the refractive index of the cured resin layer 13 at this time is smaller than the refractive index of the polymer film, and the refractive index is preferably 1.2 or more and 1.55 or less, more preferably 1.2 or more and 1.45. It is as follows.
  • the transparent conductive laminate of the present invention comprises a cured resin layer having a refractive index of 1.2 to 1.55 and a film thickness of 0.05 m or more and 0.5 m or less between the cured resin layer 1 and the transparent conductive layer. It is preferable to have one.
  • the transparent conductive laminate of the present invention has a refractive index of 1.2 to 1.55 between the cured resin layer-1 and the metal oxide layer, and a film thickness of 0.05 m or more and 0.5 m or less. It is preferable to have a cured resin layer 13.
  • the transparent conductive laminate of the present invention comprises an optical interference layer comprising a low refractive index layer and a high refractive index layer between the cured resin layer 11 and the transparent conductive layer, wherein the low refractive index layer is in contact with the transparent conductive layer. It is preferable to have it.
  • the transparent conductive laminate of the present invention comprises a low refractive index layer and a high refractive index layer between the cured resin layer-1 and the metal oxide layer, and the low refractive index layer is in contact with the metal oxide layer. It is preferable to have an optical interference layer.
  • the optical interference layer may have a plurality of low refractive index layers.
  • the optical interference layer may have a plurality of high refractive index layers.
  • the optical interference layer may include two or more combination units of the high refractive index layer and the low refractive index layer.
  • the thickness of the optical interference layer is preferably 30 nm to 300 nm, more preferably 50 nm to 200 nm.
  • the optical interference layer improves the adhesion between the layers and the optical properties of the transparent conductive laminate, particularly the transmittance and color tone.
  • the high refractive index layer constituting the optical interference layer is preferably made of, for example, a hydrolyzed condensate of metal alkoxide.
  • the high refractive index layer is a metal having an average primary particle size of 100 nm or less and at least one selected from the group consisting of hydrolyzed condensates of metal alkoxides, thermosetting resins and ionizing radiation curable resins. It is preferably composed of ultrafine particles made of oxide and / or metal fluoride.
  • metal alkoxide examples include titanium alkoxide, zirconium alkoxide, and alkoxysilane.
  • titanium alkoxide examples include titanium tetraisopropoxide, tetra-n-propyl orthotitanate, titanium tetra-n-butoxide, and tetrakis (2-ethylhexyloxy) titanate.
  • zirconium alkoxide examples include zirconium tetraisopropoxide and zirconium tetra-n-butoxide.
  • alkoxysilanes include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethylepoxycyclohexyl) etyltrimethoxysilane, vinyltrimethoxysilane, N-3 (aminoethyl) Examples include r-aminomino trimethoxysilane, N-j8 (aminoethyl) aminopropyldimethoxysilane, and aminoaminopropyl trimethoxysilane.
  • alkoxysilanes are preferably used in a mixture of two or more types from the viewpoint of the mechanical strength, adhesion, solvent resistance, etc. of the layer, and particularly from the viewpoint of solvent resistance, It is preferable that an alkoxysilane force having an amino group in the molecule is contained in a weight ratio of 0.5 to 40%.
  • Alkoxysilane may be used as a monomer or may be used after being appropriately oligomerized by hydrolysis and dehydration condensation in advance.
  • the average primary particle diameter of the ultrafine particles is preferably 100 nm or less, more preferably 75 nm or less, and further preferably 5 O nm or less. If the average primary particle size of the ultrafine particles is controlled to 100 nm or less, the coating layer will not be whitened.
  • the ultrafine particles for example, B i 2 0 3, Ce_ ⁇ 2, I n 2 ⁇ 3, (I n 2 O a - S n 0 2), Hi0 2, La 2 ⁇ 3, MgF 2, Sb 2 0 5 (Sb 2 0 5 ⁇ Sn 0 2 ), S i 0 2 , Sn 0 2 , T i 0 2 , Y 2 0 3 , Zn 0, Z r O 2 and other metal oxides or metal fluorides are exemplified.
  • metal oxide or metal fluoride ultrafine particles having an average primary particle diameter of 100 nm or less can be added alone or in an appropriate amount. It is possible to adjust the refractive index of the high refractive index layer by adding ultrafine particles.
  • the weight ratio between the ultrafine particles and the resin component is preferably 0: 100 to 66.6: 33.3, and more preferably 0: 100 to 60 : 40. If the weight ratio between the ultrafine particles and the resin component exceeds 66.6: 33.3, the strength and adhesion required for the optical interference layer may be insufficient, which is not preferable.
  • the thickness of the high refractive index layer is preferably 15 to 250 nm, more preferably 30 to 150 nm.
  • the refractive index of the high refractive index layer is preferably larger than the refractive indexes of the low refractive index layer and the cured resin layer-1, which will be described later, and the difference is preferably 0.2 or more.
  • the low refractive index layer constituting the optical interference layer can be formed by using the ionizing radiation curable resin, the thermosetting resin, and the alkoxysilane forming the low refractive index layer, which form the cured resin layer 13 described above. .
  • Low refractive index as a super fine particles used when the ultrafine particles, such as S i 0 2 and MgF 2 are suitable.
  • the thickness of the low refractive index layer is preferably 15 to 250 nm, more preferably 30 to 150 nm.
  • the high refractive index layer or the low refractive index layer is formed by the following method. First, a coating solution D in which components for forming a high refractive index layer are dissolved in an organic solvent and a coating solution C in which components for forming a low refractive index layer are dissolved in an organic solvent are prepared. Next, after coating the coating liquid D on the cured resin layer-1, it is cured by ionizing radiation irradiation or heat treatment to form a high refractive index layer. Subsequently, after coating the coating liquid C on the high refractive index layer, ionizing radiation A low refractive index layer is formed by curing by irradiation or heat treatment.
  • coating methods methods using known coating machines such as Doctor Knife, Barco overnight, Gravure Mouth Luco overnight, Curtain Co evening, Knife Co evening, Spinco evening, etc., Spray method, Immersion Law.
  • organic solvent examples include ethanol, isopropyl alcohol, bubutanol, 1-methoxy-2-propanol, hexane, cyclohexane, rigin and the like are preferable.
  • polar solvents such as xylene, toluene, cyclohexanone, methylisoptyl ketone, and isobutyl acetate can also be used. These can be used alone or as a mixed solvent of two or more.
  • the metal alkoxide in the coating layer is hydrolyzed by moisture in the air, and then cross-linked by dehydration condensation.
  • an appropriate heat treatment power s is required to promote crosslinking, and it is preferable to perform a heat treatment for several minutes or more at a temperature of 100 ° C. or higher in the coating process.
  • the degree of crosslinking can be further increased by irradiating the coating layer with actinic rays such as ultraviolet rays in parallel with the heat treatment.
  • the transparent conductive laminate of the present invention preferably has a haze defined by JISK 7 1 3 6 of 2% or more and less than 20%. When the haze is within this range, the anti-Newton ring property and the fingerprint wiping property are good when the transparent conductive laminate is used for the touch panel.
  • the haze of the transparent conductive laminate of the present invention is preferably 2% or more and less than 10%, more preferably 2 % Or more and less than 8%, 2% or more and less than 6%. If the haze is less than 2%, the anti-Newton ring property may be deteriorated. If the haze is 10% or more, there is no problem, but the visibility of the display installed under the evening panel may deteriorate. is there.
  • the haze of the transparent conductive laminate of the present invention is preferably 5% or more and less than 20%. It is particularly preferably 6% or more and less than 15%, or 6% or more and less than 13%. Even if the haze is less than 5%, there is no particular effect, but the antiglare property of the transparent conductive laminate may be reduced. If the haze is 20% or more, the visibility of the display installed under the evening panel There is a concern that it will get worse. When the haze is 5% or more and less than 20%, the visibility of the transparent conductive laminate is improved without deteriorating the antiglare power S of the transparent conductive laminate.
  • the transparent conductive laminate of the present invention has an image clarity of 10% or more and 80% or less when a 0.125 mm optical comb defined by JIS K7105 (1999 edition) is used. preferable. More preferably, it is 20% or more and 75% or less. If the image definition is less than 10%, there is a problem that the visibility of the display body installed under the evening panel is deteriorated and flickering is increased. When the image clarity is higher than 80%, there is a problem that the antiglare property and the anti-Newton ring property are deteriorated.
  • the contact angle with respect to water of the cured resin layer 12 on the surface opposite to the surface on which the transparent conductive layer is formed is preferably 90 ° or less, and 80 ° or less. Is more preferable.
  • the contact angle is 90 ° or less, the fingerprint wiping property on the surface of the cured resin layer 1 is improved.
  • the transparent conductive laminate of the present invention is preferably used mainly as a transparent electrode substrate for evening panels, it is used as a transparent electrode substrate for display bodies such as flexible displays other than those for evening panels. It is also possible.
  • the transparent conductive laminate of the present invention preferably has the following layer structure.
  • the evening panel of the present invention has the above-described transparent conductive laminate of the present invention.
  • the evening panel of the present invention is composed of a movable electrode substrate and a fixed electrode substrate.
  • the movable electrode substrate is preferably the transparent conductive laminate of the present invention.
  • the fixed electrode substrate is preferably a glass substrate, a transparent conductive layer, and a dot spacer laminated in this order.
  • components constituting the transparent conductive layer of the fixed electrode substrate include silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide. Of these, indium oxide and Z or tin oxide are particularly preferred.
  • the transparent conductive layer is preferably a crystalline layer containing indium oxide as a main component, and in particular, a laminar force S composed of crystalline ITO (IndiumTinOxide) is preferably used.
  • substrate is also preferable for the evening panel of this invention.
  • Measurement was performed using a stylus profilometer DEKTAK3 manufactured by S 1 o an. The measurement was performed according to JISB 0601—1994 edition.
  • R a JISB 0601—1994 extracts a reference length from the roughness curve in the direction of the average line, takes the X axis in the direction of the average line of this extracted part, and the Y axis in the direction of the vertical magnification.
  • the roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from the cross-sectional curve with a phase compensation type high frequency filter.
  • a cross-sectional curve is an outline that appears at the cut end when a target plane is cut along a plane perpendicular to the target plane.
  • the reference length (L) of the roughness curve is the length (reference length) of the portion obtained by extracting the length of the cutoff value from the roughness curve.
  • the cut-off value (A c : mm) and the evaluation length (L n : mm) were selected from the following.
  • Measurements were made using a Suf f cordér SE-3400 manufactured by Kosaka Laboratory. The measurement was performed according to JISB 0601-1982 edition.
  • R z JISB 0601— 1982
  • R z is the fifth from the highest measured in the direction of the vertical magnification from the straight line that is parallel to the average line and does not cross the cross-sectional curve, in the part extracted by the reference length from the cross-sectional curve 5th from the average value and deepest of the top of the mountain
  • the value of the difference from the average value of the altitude at the bottom of the valley is expressed in micrometer (m).
  • R z is obtained by the following equation.
  • RR 3 , R 5 , R 7 , R 9 are the elevations of the top to fifth peaks of the extracted part corresponding to the reference length L.
  • R 2 , R 4 , R 6 , R 8 , R 10 are (It is the altitude of the valley bottom from the deepest to the fifth of the extracted part corresponding to the reference length L.)
  • the reference length was 0.25 mm or 0.8 mm.
  • Haze JI S K7136 is the percentage of the transmitted light that passes through the test piece and that is more than 0.044 rmd (2.5 °) away from the incident light due to forward scattering.
  • a fluorescent lamp is reflected on the surface of the cured resin layer opposite to the transparent conductive layer surface of the transparent conductive laminate.
  • the antiglare property was evaluated by the appearance of the end of the fluorescent lamp reflected on the surface of the cured resin layer. Those with no reflection at the edge were judged as good ( ⁇ ), and those with reflection were judged as bad (X).
  • An evening panel was installed on a liquid crystal display of approximately 1 23 d p i (diagonal 10.4 inches, XGA (1,024 ⁇ 768 dots)), and the presence or absence of flickering was visually confirmed.
  • Good ( ⁇ ) indicates that no flicker is confirmed, slightly good ( ⁇ ) indicates that it is faintly confirmed, and indicates defective (X) if it can be clearly confirmed.
  • the center of the prepared evening panel was slid linearly up to 30000 times with a load of 45 g and up to 30 million times before and after the sliding durability test.
  • the amount of change in linearity was measured. If the change in linearity is less than 1.5% at 300,000 times, it was judged as OK.
  • the linearity change amount force S is 1.5% or more, the electrical characteristics are considered to be defective (NG).
  • the number of sliding times when the electrical characteristics were NG was measured.
  • the center of the produced evening touch panel was strongly hit with a finger up to 10,000 times, and changes in the input load on the evening touch panel before and after the finger hitting were measured.
  • PET polyethylene terephthalate
  • One side of the substrate is coated by the bar coating method using the following coating solution A, dried at 70 ° C for 1 minute, and then cured by irradiating with ultraviolet rays to cure to a thickness of 3.5 / xm.
  • a resin layer (A) was formed.
  • Coating liquid A is an unsaturated double bond-containing acrylic copolymer (SP value: 10.0, T g: 92 ° C), 4 parts by weight, pentaerythritol triacrylate (SP value: 12.7) 100 parts by weight, 7 parts by weight of photopolymerization initiator Irgacure 184 (manufactured by Ciba Specialty Chemicals) were dissolved in a isobutyl alcohol solvent so that the solid content was 40% by weight.
  • An unsaturated double bond-containing acrylic copolymer (SP value: 10.0, Tg: 92 ° C.) was prepared as follows.
  • O g of propylene glycol monomethyl ether heated to 110 ° C. under a nitrogen atmosphere in a 1,00 Oml reaction vessel equipped with a stirring blade, a nitrogen introduction tube, a cooling tube and a dropping funnel.
  • Tert-butylperoxy-2-ethylhexanoate 1.8 ml of propylene glycol monomethyl ether containing 80.0 g of solution was added dropwise at the same rate over 3 hours at the same time, and then at 110 ° C for 30 hours. Reacted for 1 minute.
  • An unsaturated double bond-containing acrylic copolymer having a number average molecular weight of 5,500 and a weight average molecular weight of 18,000 was obtained.
  • This resin had an SP value of 10.0, Tg: 92 ° C., and surface tension: 31 dyn / cm.
  • Coating liquid B is the above unsaturated double bond-containing acrylic copolymer (SP value: 10.0, Tg: 92 ° C), 4 parts by weight, Penyu Erisuri) ⁇ Lutriacrylate (SP value: 1) 2. 7) 90 parts by weight, trimethylolpropane triethylene glycol triacrylate (SP value: 1 1. 6) 10 parts by weight, photopolymerization initiator Ilgacure 184 (manufactured by Ciba Specialty Chemicals), 7 parts by weight It was prepared by dissolving in an isobutyl alcohol solvent so that the solid content was 40% by weight.
  • a transparent conductive layer (I) is formed on the cured resin layer (A) by sputtering using an indium tin oxide monooxide get having a composition of a weight ratio of indium oxide and tin oxide of 95: 5 and a packing density of 98%.
  • TO layer was formed.
  • the film thickness of the formed transparent conductive layer was 2 O nm.
  • heat treatment was performed at 150 ° C. for 90 minutes to crystallize the transparent conductive layer (ITO layer) to produce a transparent conductive laminate, which was used as a movable electrode substrate.
  • I o T layer force S The surface resistance after crystallization was about 210 ⁇ / port ( ⁇ / sq).
  • the crystal grain size of the ITO layer observed by TEM was in the range of 50 nm to 200 nm.
  • a fixed panel having a layer structure shown in Fig. 1 was fabricated using a fixed electrode substrate and a movable electrode substrate.
  • Tables 1 and 2 show the characteristics of the transparent conductive laminate and the evening panel.
  • the evening panel using the transparent conductive laminate of this example has anti-glare properties, anti-Newton ring properties, flickering properties, sliding durability, end-pressing durability, finger hitting points. Durability, fingerprint wiping property, and weather resistance (light resistance) were all good.
  • Example 1 As in Example 1, a cured resin layer (A) and a cured resin layer (B) were formed on each side of a polyester terephthalate film having a thickness of 1888 m (OFW manufactured by Teijin DuPont Films Co., Ltd.). .
  • a metal oxide (S i O x layer) was formed by sputtering using a Si target on the cured resin layer (A).
  • the thickness of the formed S i O x layer was about 2. 0 nm.
  • a transparent conductive layer was formed on the metal oxide layer in the same manner as in Example 1, and a transparent conductive laminate was produced to obtain a movable electrode substrate.
  • the crystal grain size of the ITO layer observed by TEM was in the range of 50 nm to 200 nm.
  • a fixed electrode substrate was produced in the same manner as in Example 1.
  • a fixed panel having the layer structure shown in Fig. 2 was fabricated using the fabricated fixed electrode substrate and movable electrode substrate.
  • Tables 1 and 2 show the characteristics of the transparent conductive laminate and the evening panel.
  • the evening panel using the transparent conductive laminate of this example has anti-glare properties, anti-Newton ring properties, flickering properties, sliding durability, and edge press durability.
  • the finger hitting point durability, fingerprint wiping property, and weather resistance (light resistance) were all good.
  • Example 3
  • Example 1 a cured resin layer (A) and a cured resin layer (B) were formed on each surface of a polyester terephthalate film having a thickness of 188; tim (OFW manufactured by Teijin DuPont Films Co., Ltd.).
  • aglycidoxypropyltrimethoxylane (“K ⁇ 403J” manufactured by Shin-Etsu Chemical Co., Ltd.) and methyltrimethoxysilane (“ ⁇ 13J” manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed at a molar ratio of 1: 1.
  • the primary particle diameter coating liquid C is a 20 nm T i O 2 ultrafine particles weight ratio of the T I_ ⁇ 2 ultrafine particles and ⁇ alkoxysilane 50: to prepare a coating liquid D were mixed so that the 50 .
  • the coating liquid D was coated by the bar coating method. 1 After baking at 30 ° C for 2 minutes, a high refractive index layer with a film thickness of 55 nm was formed.
  • the coating liquid C is coated on the high refractive index layer by a bar coating method, and after baking at 130 ° C for 2 minutes, a low refractive index layer with a film thickness of 65 nm is formed.
  • the high refractive index layer and the low refractive index layer An optical interference layer was prepared.
  • an Si Ox layer was formed by sputtering using an Si target on the optical interference layer.
  • the film thickness of the formed Si Ox layer was about 2. Onm. (Transparent conductive layer)
  • a transparent conductive layer was formed on the metal oxide layer in the same manner as in Example 1, and a transparent conductive laminate was produced to obtain a movable electrode substrate.
  • IT observed by TEM O The crystal grain size of the layer was in the range of 50 nm to 200 nm.
  • a fixed electrode substrate was produced in the same manner as in Example 1. Using the fabricated fixed electrode substrate and movable electrode substrate, a latch panel having the layer structure shown in Fig. 3 was fabricated. Tables 1 and 2 show the characteristics of the transparent conductive laminate and the evening panel. As is clear from Table 1 and Table 2, the touch panel using the transparent conductive laminate of this example is anti-glare, anti-Newton ring, flicker, sliding durability, end-press durability, finger The hit point durability, fingerprint wiping property, and weather resistance (light resistance) were all good.
  • a hard resin layer (A) was formed in the same manner as in Example 1 using the coating liquid A used in Example 1 on the surface opposite to the surface on which the cured resin layer (C) was formed.
  • a transparent conductive layer was formed on the cured resin layer (A) in the same manner as in Example 1 to produce a transparent conductive laminate, which was used as a movable electrode substrate.
  • the crystal grain size of the ITO layer observed by TEM was in the range of 50 nm to 200 nm.
  • a fixed electrode substrate was produced in the same manner as in Example 1. Using the prepared fixed electrode substrate and transparent conductive laminate, an evening panel having the layer configuration shown in FIG. 1 was prepared.
  • Tables 1 and 2 show the characteristics of the transparent conductive laminate and the evening panel. As can be seen from Table 1 and Table 2, the panel using the transparent conductive laminate of this example has anti-Newton ring properties, flickering properties, sliding durability, end-press durability, 3
  • the finger hit point durability was good. These properties are sufficient for use in fields that do not require anti-glare, fingerprint wiping and weather resistance (light resistance).
  • an indium oxide tin oxide target with an indium oxide to tin oxide weight ratio of 95: 5 and a packing density of 98% is used to form an amorphous material by sputtering.
  • a transparent conductive laminate was made by forming a transparent conductive layer (ITO layer) of high quality, and used as a movable electrode substrate.
  • a latch panel having the layer configuration shown in FIG. 1 was fabricated in the same manner as in Example 1 using the fabricated movable electrode substrate.
  • Tables 1 and 2 show the characteristics of the transparent conductive laminates and evening panels.
  • Example 1 the sliding durability, end-pressing durability, finger hitting durability and weather resistance (light resistance) are inferior when compared to Example 1.
  • the sliding durability, end pushing durability, and finger hitting durability are inferior to those of Example 1 because the transparent conductive layer is amorphous.
  • the weather resistance (light resistance) strength S is inferior to that of Example 1.
  • Trimethylol propane triethylene dallicol triacrylate is applied to the cured resin layer on the side opposite to the surface on which the transparent conductive layer is formed. This is because it is not contained for a while.
  • the surface opposite to the surface on which the cured resin layer (A) was formed was coated by the bar coating method using the following coating solution E, and dried at 70 ° C for 1 minute. Thereafter, ultraviolet rays were applied to form a cured resin layer (E) having a thickness of 2.1 Am.
  • Coating liquid E is Penyu erythritol triacrylate, 100 parts by weight, Irgaki Your 18 4 parts (Ciba Specialty Chemicals) 5 parts by weight, Ube Nitto Kasei Co., Ltd. im product, grade N 3 N) 0.7 parts by weight of the mixture is adjusted to a solid content of 25% by weight in a 1: 1 mixture of isopropyl alcohol and 1-methoxy-2-propanol. Made.
  • a transparent conductive layer was formed on the cured resin layer (E) in the same manner as in Example 1, and a transparent conductive laminate was produced to obtain a movable electrode substrate.
  • the crystal grain size of the I T O layer observed by TEM was in the range of 50 nm to 200 nm.
  • a latch panel having the layer structure of FIG. 1 was produced in the same manner as in Example 1 using the produced transparent conductive laminate.
  • Tables 3 and 4 show the characteristics of the transparent conductive laminates and evening panels.
  • the transparent conductive laminate of this example containing fine particles in the components of the curable resin layer has a flickering property, a sliding durability, an end pushing durability, a finger hitting durability and The weather resistance (light resistance) is poor.
  • a cured resin layer (A) and a cured resin layer (E) were applied to each side of a polyester terephthalate film (O FW manufactured by Teijin DuPont Films Ltd.) with a thickness of 1 88 / m. Formed. Thereafter, an S i O x layer and an I T O layer were formed on the cured resin layer (E) in the same manner as in Example 2 to produce a transparent conductive laminate.
  • a polyester terephthalate film O FW manufactured by Teijin DuPont Films Ltd.
  • a latch panel having the layer structure of FIG. 2 was produced in the same manner as in Example 2.
  • Tables 3 and 4 show the characteristics of the transparent conductive laminates and evening panels.
  • the transparent conductive laminate of this example containing fine particles in the components of the curable resin layer has a flickering property, a sliding durability, an end pushing durability, a finger hitting durability and The weather resistance (light resistance) is poor.
  • an evening panel having the layer structure shown in FIG. 3 was produced in the same manner as in Example 3.
  • Tables 3 and 4 show the characteristics of the fabricated transparent conductive laminate and the evening panel.
  • the transparent conductive laminate of this example containing fine particles in the components of the curable resin layer has a flickering property, sliding durability, end-press durability, and finger point durability. The weatherability and weather resistance (light resistance) are poor. Comparative Example 4
  • a latch panel having the layer structure of FIG. 1 was prepared in the same manner as in Example 5 using the prepared transparent conductive laminate.
  • Tables 3 and 4 show the characteristics of the transparent conductive laminates and evening panels.
  • the transparent conductive laminate of this example when the cured resin layer contains fine particles and the transparent conductive layer is amorphous is flickering and sliding.
  • the durability, end pushing durability, and finger hitting durability were inferior to those of Example 5.
  • Thickness 1 8 8; Lim polyester terf evening rate film (Teijin DuPont Phil (Co., Ltd., O FW) is coated on one side by the bar coating method using the following coating solution F, dried at 70 ° C for 1 minute, and then cured by irradiation with ultraviolet light to give a thickness of 4 A 0 m cured resin layer (F) was formed.
  • Coating liquid F is composed of 10 parts by weight of pen erythritol relay, 7 parts by weight of photopolymerization initiator ILGACURE 1 8 4 (manufactured by Ciba Specialty Chemicals), average primary particle size is 4.5 m After dissolving 10 parts by weight of silica fine particles (Tospearl 1 4 5, manufactured by Toshiba Silicone Co., Ltd.) in a 1: 1 mixed solvent of isopropyl alcohol and 1-methoxy-2-propanol so that the solid content is 40% by weight. In order to give leveling and slipperiness, a small amount of surfactant was added.
  • the cured resin layer (E) used in Comparative Example 1 was formed on the surface opposite to the surface on which the cured resin layer (F) was formed.
  • an ITO layer was formed on the cured resin layer (E) in the same manner as in Example 1 to prepare a transparent conductive laminate.
  • the evening panel shown in FIG. 1 was produced in the same manner as in Example 1 using the produced transparent conductive laminate.
  • Tables 3 and 4 show the characteristics of the transparent conductive laminate and the evening panel. As is clear from Tables 3 and 4, the flickering property, anti-fingerprint wiping property, sliding durability, end-pressing durability, finger point durability and weather resistance (light resistance) are poor.
  • a fixed electrode substrate was produced by forming a dot spacer in the same manner as in Example 1 on the transparent conductive laminate produced in Example 1.
  • V 2 70 L—TFMP manufactured by Nitto Denshi Co., Ltd. was used as the movable electrode substrate.
  • an evening panel having the layer structure shown in Fig. 4 was fabricated.
  • the movable electrode substrate / fixed electrode substrate of the manufactured latch panel was sandwiched between fingers, and the movable electrode substrate / fixed electrode substrate was strongly rubbed.
  • the linearity of the movable electrode substrate was measured before and after rubbing. There was no change in linearity before and after rubbing.
  • the surface of the conductive layer of the transparent conductive laminate was observed using a microscope. No scratches were seen in the rubbed area.
  • a transparent conductive laminate was prepared in the same manner as in Example 1 except that a 100 m-thick poly force one-pone film (“Pure Ace” manufactured by Teijin Chemicals Ltd.) was used.
  • a fixed electrode substrate was produced in the same manner as in Example 6 using the produced transparent conductive laminate.
  • As a movable electrode substrate V 2 70 L—TFMP manufactured by Nitto Denko Corporation was used.
  • an evening panel having the layer structure shown in FIG. 4 was produced in the same manner as in Example 6 using the movable electrode substrate and the fixed electrode substrate.
  • the movable electrode / fixed electrode substrate of the manufactured latch panel was sandwiched between fingers, and the movable electrode substrate / fixed electrode substrate was rubbed strongly.
  • the linearity of the movable electrode substrate was measured before and after rubbing. There was no change in linearity before and after rubbing.
  • the surface of the conductive layer of the movable electrode substrate was observed using a microscope. No scratches were seen in the rubbed area.
  • Transparent conductive laminate Using the transparent conductive laminate prepared in Comparative Example 1, a fixed electrode substrate was prepared in the same manner as in Example 6. As the movable electrode substrate, V 2 70 L—TFMP manufactured by Nitto Denko Corporation was used.
  • an evening panel having the layer structure shown in FIG. 4 was produced in the same manner as in Example 6 using the movable electrode substrate and the fixed electrode substrate.
  • the movable electrode substrate and fixed electrode substrate of the manufactured touch panel were sandwiched with fingers, and the movable electrode substrate and fixed electrode substrate were rubbed together strongly.
  • the linearity of the movable electrode substrate was measured before and after rubbing. After rubbing, it was confirmed that the linearity of the movable electrode substrate was increasing. Furthermore, it was confirmed that the resistance between the terminals of the movable electrode substrate also increased.
  • the surface of the conductive layer of the movable electrode substrate was observed using a microscope. Many scratches due to fine particles contained in the fixed electrode substrate were confirmed in the rubbed area. It was determined that the linearity of the movable electrode substrate and the resistance between the terminals increased due to the confirmed damage. The invention's effect
  • the transparent conductive laminate of the present invention does not contain fine particles for imparting irregularities in the cured resin layer, and has irregularities on the surface of the cured resin layer 11. Since the transparent conductive laminate of the present invention does not contain fine particles, there is little flicker.
  • the transparent conductive laminate of the present invention is excellent in sliding durability, end-pressing durability, and finger hitting durability, and can be used as a movable electrode substrate of an evening panel.
  • the transparent conductive laminate of the present invention hardly damages the opposing substrate surface, and can be used as a fixed electrode substrate of an evening panel.
  • the evening panel of the present invention has less flicker and less Newton rings.
  • the evening panel of the present invention is excellent in sliding durability, end pushing durability, and finger hitting durability.
  • the surface of the movable electrode substrate is less damaged. Further, the evening panel having the cured resin layer-2 of the present invention is excellent in light resistance. Industrial applicability
  • the transparent conductive laminate of the present invention can be used as a movable electrode substrate or a fixed electrode substrate of an evening panel.

Abstract

本発明の目的は、摺動耐久性、端押し耐久性、指打点耐久性、耐光性に優れ、タッチパネルの可動電極基板に好適な透明導電性積層体を提供することにある。 さらに本発明の目的は、該透明導電性積層体を用いたタッチパネルを提供することにある。 本発明は、高分子フィルム、硬化樹脂層-1および透明導電層がこの順序に積層された積層体であって、硬化樹脂層-1は、二種の成分が相分離して形成された凹凸を有し、かつ凹凸を付与するための微粒子を含有せず、かつ、硬化樹脂層-1のJIS B0601-1994による算術平均粗さ(Ra)が0.05μm以上0.5μm未満であり、JIS B0601-1982による十点平均粗さ(Rz)が0.5μm以上2.0μm未満であることを特徴とする透明導電性積層体およびこの透明導電性積層体を用いたタッチパネルである。

Description

透明導電性積層体および夕ツチパネル 技術分野
本発明は透明導電性積層体に関する。 更に詳しくは、 硬ィ匕樹脂層に微粒子を含 有することなく、 表面に凹凸を有する透明導電性積層体およびこの透明導電性積 層体を用いた夕ツチパネルに関する。
背景技術 細 1
近年、 マンマシンインタ一フェースの一つとして対話型入力方式を実現する夕 ツチパネル力 S多く使用されるようになった。 夕ツチパネルは位置検出方式によつ て、 光学方式、 超音波方式、 静電容量方式、 抵抗膜方式などがある。 このうち抵 抗膜方式は、 構造が単純で価格 Z性能比も良いため、 近年急速な普及を見せてい る。
抵抗膜方式の夕ツチパネルは、 対向する側に透明導電層を有する 2枚のフィル ムまたはシートを一定間隔に保持して構成される電子部品であり、 可動電極基板 (視認側の電極基板) をペンまたは指で押圧し、 たわませ、 固定電極基板 (対向 する側の電極基板) と接触、 導通することによって検出回路が位置を検知し、 所 定の入力がなされるものである。 この際、 押圧部周辺にニュートンリングと呼ば れる干渉縞力 S現れることがある。 また、 押圧しない状態であっても可動電極基板 の橈みにより可動電極基板と固定電極基板の間隔が狭くなつた部分にニュートン リングが現れることがある。 ニュートンリングの発生によりディスプレイの視認 性が悪化する。
このような抵抗膜方式の夕ツチパネルを構成する 2枚の透明電極基板間に発生 するニュートンリングを軽減する方法として、 平均一次粒子径が 1〜 4 のフ ィラーを所定量含むコ一ティング層と透明導電層を、 プラスチックフィルムの上 に形成する方法が開示されている (特許文献 1参照)。 また、 平均二次粒子径が 1. 0〜3. 0 mとなるシリカ粒子を含む突起塗工層 (突起を有する塗工層) をプラスチックフィルム上に形成する方法が開示されている (特許文献 2参照)。 前記のように平均一次粒子径または平均二次粒子径が数 m程度の粒子を含有 するコーティング層と透明導電層をプラスチックフィルム上に形成した透明導電 性積層体を用いた夕ツチパネルの場合、 ニュートンリング発生は軽減される。 し かし、 近年の高精細ディスプレイ上に該夕ツチパネルを設置した場合、 該コーテ ィング層中の粒子周辺の樹脂がレンズ効果を果たすことによって、 ディスプレイ から来る光の色分離 (チラツキ、 s p a r k 1 i n g) を起こし、 ディスプレイ の視認性を著しく悪化させる問題力 s発生していた。
また前記以外のニュートンリング (Newt on r i ng s) を軽減するた めのコ一ティング層として、 平均粒子径が異なる 2種以上のマツト化剤とバイン ダ一とからなる樹脂を使用したニュートンリング防止層 (an t i -Newt o n r i ng s 1 a y e r ) がある (特許文献 3参照)。
このような方法によって形成されたニュートンリング防止層 (アンチ二ユート ンリング層) は、 高精細ディスプレイ上でのチラツキを抑制することは可能であ る。 平均粒子径 1〜 15 /imの粒子と平均粒子径 5〜 50 nmの微粒子は、 どち らもマツト化する目的で添加されたものである。 本来、 5〜50 nmの微粒子は 可視光の波長を大きく下回っているためバインダーとなる樹脂にこのサイズの微 粒子を添加してもヘーズが発生しないが、 特許文献 3に記載の実施例、 比較例を 比べると、 5〜 50 nmの微粒子を添加することによってヘーズが上昇している ことから、 この微粒子は二次凝集体を形成していること力 S推測される。 このへ一 ズの上昇、 すなわちマット化によってチラツキを制御していることがわかる。 こ のような手法で形成されたアンチニュートンリング層では、 ヘーズが極端に高く なるため、 ディスプレイの視認性が悪化する問題がある。
特許文献 1〜 3には, 夕ツチパネルの可動電極基板と固定電極基板間のギヤッ プにより発生するニュートンリングを防止するためのアンチニュートンリング層 を形成する方法が開示されている。 しかし、 これらの方法で形成されたアンチ二 ユートンリング層は、 無機または有機微粒子を含有することにより凹凸を形成し ί
3
ている。 このため、 透明導電層形成面に無機または有機微粒子による多数の突起 があり、 夕ツチパネルに要求される摺動耐久性や端押し耐久性試験を行った場合、 これらの無機または有機微粒子によって形成されている突起部分から透明導電層 が劣化、 剥離し始め、 最終的には夕ツチパネルとしての電気特性が低下する問題 がある。
また打点耐久性試験を行った場合、 可動電極基板のアンチニュートンリング層 に含有される無機または有機微粒子によって形成された突起が固定電極基板上に 形成されたドットスぺ一サ一を破壊し、 夕ツチパネル内に飛散させる。 このよう に飛散したドットスぺーサ一の破片が可動電極基板と固定電極基板間の導通を妨 げ、 更に可動電極基板と固定電極基板の透明導電層を着傷するため、 夕ツチパネ ルの電気特性が低下する問題もある。
またこれらの無機または有機微粒子を用いて形成されたアンチニュートンリン グ層を固定電極基板として用いた場合、 無機または有機微粒子によって形成され た突起が可動電極基板の透明導電層を着傷し、 夕ツチパネルの電気特性が低下す る問題もある。
なお、 特許文献 4には微粒子を含まない防眩膜材料について開示されているが、 透明導電性積層体について適用することについて、 一切の開示は無い。
(特許文献 1 ) 特開平 1 0— 3 2 3 9 3 1号公報
(特許文献 2 ) 特開 2 0 0 2— 3 7 3 0 5 6号公報
(特許文献 3 ) 特開 2 0 0 1— 8 4 8 3 9号公報
(特許文献 4 ) W0 2 0 0 5 / 0 7 3 7 6 3号パンフレット 発明の開示
本発明の目的は、 凹凸を付与するための微粒子を含有せず、 硬化樹脂層に凹凸 を有するチラツキの少ない透明導電性積層体を提供することにある。 また本発明 の目的は、 夕ツチパネルの可動電極基板として用いた場合に、 摺動耐久性、 端押 し耐久性、 指打点耐久性、 耐光性に優れた透明導電性積層体を提供することにあ る。 また本発明の目的は、 夕ツチパネルの固定電極基板として用いた場合に、 可 動電極基板への着傷が低減された透明導電性積層体を提供することにある。 さら に本発明の目的は、 該透明導電性積層体を用いた夕ツチパネルを提供することに ある。
本発明者は、 上記従来技術に鑑み、 鋭意検討を重ね本発明に到達した。
すなわち本発明は、 高分子フィルム、 硬化樹脂層一 1および透明導電層がこの 順序に積層された積層体であって、 硬化樹脂層— 1は、 二種の成分が相分離して 形成された凹凸を有し、 力つ凹凸を付与するための微粒子を含有せず、 硬化樹脂 層— 1の J I S B 0601— 1994による算術平均粗さ (Ra) が 0. 05 m以上 0. 5 m未満であり、 J I S B 0601— 1982による十点平均 粗さ (Rz) 力 SO. 以上 2. 0 m未満であることを特徴とする透明導電 性積層体である。
硬化樹脂層一 1を形成する二種の成分のうち、 第 1成分が不飽和二重結合含有 ァクリル共重合体であり、 第 2成分が多官能性不飽和二重結合含有モノマ一であ ることが好ましい。 また第 1成分の SP値 (SP 1) および第 2成分の SP値 (SP2) が、 S P 1<S P 2を満たすこと力 S好ましい。
本発明の透明導電性積層体は、 高分子フィルムの透明導電層が形成された面の 反対面に、 硬化樹脂層— 2を有し、 硬化樹脂層一 2は、 二種の成分が相分離して 形成された凹凸を有し、 力、つ凹凸を付与するための微粒子を含有せず、 硬化樹脂 層一 2の J I S B 0601— 1994による算術平均粗さ (R a) が 0. 05 m以上 0. 50 m未満であり、 J I S B 0601— 1982による十点平 均粗さ (Rz) が 0. 5 /xm以上 2. 0 未満であることが好ましい。
硬化樹脂層一 2を形成する二種の成分のうち、 第 1成分が不飽和二重結合ァク リル共重合体であり、 第 2成分が多官能性不飽和二重結合含有モノマ一であるこ とが好ましい。 第 1成分の SP値 (SP 1) および第 2成分の SP値 (SP 2) が、 SP 1<SP 2を満たすことが好ましい。 硬化樹脂層一 2における第 2成分 力 炭素数 2〜4のアルキレンォキシド単位をモノマー 1分子中に 3〜 6モル当 量有する 3官能以上の多官能性不飽和二重結合含有モノマーであることが好まし レ^ 多官能性不飽和二重結合含有モノマーを、 硬化樹脂層一 2中に 2~40重 量%含有することが好ましい。
本発明の透明導電性積層体は、 J I S K 7136で定義されるヘーズが 2%以上 20%未満であること力 S好ましい。 本発明の透明導電性積層体は、 硬化 樹脂層一 1と透明導電層との間に膜厚が 0. 5 nm以上 5 nm未満の金属酸ィ匕物 層を有することが好ましい。 本発明の透明導電性積層体は、 透明導電層の膜厚が 5 nm以上 50 nm以下であり、 かつ結晶質であることが好ましい。
本発明の透明導電性積層体は、 硬化樹脂層一 1と透明導電層との間に屈折率が 1. 2〜1. 55、 膜厚が 0. 05/xm以上 0. 5 zm以下である硬化樹脂層一 3を有することが好ましい。 本発明の透明導電性積層体は、 硬化樹脂層— 1と金 属酸化物層との間に屈折率が 1. 2〜1. 55、 膜厚が 0. 05 m以上 0. 5 m以下である硬化樹脂層— 3を有することが好ましい。
本発明の透明導電性積層体は、 硬化樹脂層一 1と透明導電層との間に、 低屈折 率層と高屈折率層とからなる光学干渉層を有し、 低屈折率層が透明導電層と接す ることが好ましい。 本発明の透明導電性積層体は、 硬化樹脂層一 1と金属酸化物 層との間に、 低屈折率層と高屈折率層とからなる光学干渉層を有し、 低屈折率層 が透明導電層と接することが好ましい。
本発明は、 上記透明導電性積層体を有する夕ツチパネルを包含する。 また、 本 発明は、 少なくとも片面に透明導電層が設けられた 2枚の透明電極基板が、 互い の透明導電層同士が向き合うように配置された夕ツチパネルにおいて、 少なくと も一方の透明電極基板として上記透明導電性積層体を用いた夕ツチパネルを包含 する。 図面の簡単な説明
図 1は、 本発明の透明導電性積層体の層構造の一例である。
図 2は、 本発明の透明導電性積層体の層構造の一例である。
図 3は、 本発明の透明導電性積層体の層構造の一例である。
図 4は、 本発明の透明導電性積層体の層構造の一例である。 発明を実施するための最良の形態
次に、 本発明の実施の形態について順次説明する。
〈硬化樹脂層— 1〉
硬化樹脂層一 1は、 二種の成分が相分離して形成された凹凸を有する。 硬化樹 脂層— 1は、 凹凸を付与するための微粒子を含有しない。
この凹凸は、 第 1成分および第 2成分を含む組成物を基材上に塗布すると、 第 1成分および第 2成分の物性の差により、 両者が相分離し表面にランダムな凹凸 が生じることにより形成される。
(第 1成分)
第 1成分は、 透明性に優れた硬化性の重合体が好ましく、 熱硬化性重合体、 電 離放射線硬化性重合体がより好ましい。 重合体は公知のものを用いることができ、 例えば国際公開第 2 0 0 5 X 0 7 3 7 6 3号パンフレツトに記載の重合体を挙げ ることができる。
第 1成分として、 不飽和二重結合含有アクリル共重合体 (以下、 共重合体 ( 1 —1 ) と呼ぶことがある) が好ましい。
共重合体 (1— 1 ) としては、 例えば、 (メタ) アクリルモノマーなどの酸基 を有する重合性不飽和モノマーを重合または共重合した樹脂、 この酸基を有する 重合性不飽和モノマーを重合または共重合した樹脂と他のエチレン性不飽和二重 結合を有するモノマーとを共重合した樹脂に、 ェチレン性不飽和二重結合および エポキシ基を有するモノマ一を反応させた共重合体、 またはこの酸基を有する重 合性不飽和モノマーと他のエチレン性不飽和二重結合およびイソシァネート基を 有するモノマーとを反応させた共重合体などが挙げられる。
不飽和二重結合含有ァクリル共重合体の具体的な調製方法の一例として、 例え ば、 酸基を有する重合性不飽和モノマーと、 他の重合性不飽和モノマーとを共重 合し、 次いで得られた共重合体の酸基とエポキシ基含有エチレン性不飽和モノマ —のエポキシ基とを反応させる方法力挙げられる。
酸基を有する重合性不飽和モノマーとしては、 例えば、 アクリル酸、 メタクリ ル酸、 クロトン酸、 2— (メタ) ーァクリロイルォキシェチルコハク酸、 2— (メタ) ァクリロイルォキシェチルフタル酸および 2 _ (メタ) ァクリロイルォ キシェチルへキサヒドロフタル酸のようなモノカルボン酸、 マレイン酸、 フマル 酸、 シトラコン酸、 メサコン酸およびィタコン酸のようなジカルボン酸、 無水マ レイン酸および無水ィタコン酸のような酸無水物およびマレイン酸モノエチル、 フマル酸モノェチルおよびィタコン酸モノェチルのようなジカルボン酸のモノェ ステル、 またはこれらの α—位のハロアルキル、 アルコキシ、 ハロゲン、 ニトロ もしくはシァノにより置換された置換誘導体、 o—、 m—、 p—ビニル安息香酸 またはこれらのアルキル、 アルコキシ、 ハロゲン、 ニトロ、 シァノ、 アミドもし くはエステルにより置換された置換誘導体などを挙げることができる。 これらは 一種のみを用いてもよく、 また 2種以上を併用してもよい。
他の重合性不飽和モノマーとして、 例えば、 スチレンまたはスチレンの α—、 ο—、 m―、 p—アルキル、 アルコキシ、 ハロゲン、 八口アルキル、 ニトロ、 シ ァノ、 アミド、 エステルにより置換された置換誘導体、 ブタジエン、 イソプレン、 ネオプレン等のォレフィン類、 o—、 m—、 p—ヒドロキシスチレンまたはこれ らのアルキル、 アルコキシ、 ハロゲン、 八口アルキル、 ニトロ、 シァノ、 アミド、 エステルもしくはカルポキシにより置換された置換誘導体、 ビニルヒドロキノン、
5—ビニルピロガノ一ル、 6—ビニルピロガロール、 1 —ビニルフロログリシノ ール等のポリヒドロキシビニルフエノール類、 メタクリル酸またはアクリル酸の メチル、 ェチル、 n—プロピル、 i—プロピル、 n—ブチル、 s e c -ブチル、 t e r—ブチル、 ペンチル、 ネオペンチル、 イソァミルへキシル、 シクロへキシ ル、 ァダマンチル、 ァリル、 プロパギル、 フエニル、 ナフチル、 アントラセニル、 アントラキノニル、 ピぺロニル、 サリチル、 シクロへキシル、 ベンジル、 フエネ シル、 クレシル、 グリシジル、 イソポロニル、 トリフエニルメチル、 ジシクロべ ン夕ニル、 クミル、 3— (N, N—ジメチルァミノ) プロピル、 3— (N, N— ジメチルァミノ) ェチル、 フリルもしくはフルフリルエステル、 メ夕クリル酸ま たはアクリル酸のァニリドもしくはアミド、 または N, N—ジメチル、 N, N— ジェチル、 N, N—ジプロピル、 N, N—ジイソプロピルもしくはアントラニル アミド、 アクリロニトリル、 ァクロレイン、 メ夕クリロ二トリル、 塩化ビニル、 塩化ビニリデン、 フッ化ビニル、 フッ化ビニリデン、 N—ビニルピロリドン、 ビ ニルピリジン、 酢酸ピニル、 N—フエニルマレインイミド、 N— (4—ヒドロキ シフエニル) マレインイミド、 N—メタクリロイルフタルイミド、 N—ァクリロ ィルフタルイミド等を用いることができる。
エポキシ含有エチレン性不飽和モノマーとして、 例えば、 グリシジル (メタ) ァクリレート、 /3—メチルダリシジル (メタ) ァクリレートおよび 3, 4ーェポ キシシクロへキサニル (メタ) ァクリレート、 4ーヒドロキシプチルァクリレー トグリシジルエーテル等が挙げられる。 バランスのとれた硬化性と貯蔵安定性を 示す組成物であることから、 グリシジル (メタ) ァクリレートを用いることが好 ましい。
また、 不飽和二重結合含有アクリル共重合体の具体的な調製方法としては、 例 えば、 エポキシ基含有エチレン性不飽和モノマーと、 他の重合性不飽和モノマー とを共重合し、 次いで得られた共重合体のエポキシ基と、 酸基を有する重合性不 飽和モノマーの酸基とを反応させる方法を挙げることができる。
本発明において、 第 1成分として使用される不飽和二重結合含有アクリル共重 合体の重量平均分子量は、 5 0 0〜1 0 0 , 0 0 0であるの力 S好ましく、 1 , 0 0 0〜5 0, 0 0 0であるのがより好ましい。 本明細書における重量平均分子量 は、 ポリスチレン換算による重量平均分子量を意味する。 また、 不飽和二重結合 含有アクリル共重合体は 1種を単独で用いてもよく、 また、 2種以上を併用して もよい。
(第 2成分)
第 2成分は、 共重合体 ( 1 - 1 ) と混合した際に相分離するモノマーであれば よい。 モノマーは公知のものを用いることができ、 例えば国際公開第 2 0 0 5ノ 0 7 3 7 6 3号パンフレツ卜に記載のモノマーを挙げることができる。
第 2成分として、 多官能性不飽和二重結合含有モノマー (以下、 モノマー (1 - 2 ) と呼ぶことがある) が好ましい。 モノマー (1— 2 ) として、 多価アルコ —ルと (メタ) ァクリレートとの脱アルコール反応物が挙げられる。 具体的には、 ペン夕エリスリ! ルトリァクリレート、 ジペン夕エリスリ! ^一ルへキサ (メ 夕) ァクリレート、 ジペン夕エリスリ ] ルペン夕 (メタ) ァクリレート、 トリ メチロールプロパントリ (メタ) ァクリレー卜、 ジトリメチロールプロパンテ卜 ラ (メタ) ァクリレート、 ネオペンチルダリコ一ルジ (メタ) ァクリレートなど が挙げられる。 この他にも、 ポリエチレングリコール # 200ジァクリレート (共栄社化学 (株) 製) などの、 ポリエチレングリコール骨格を有するァクリレ ートモノマーを使用することもできる。 これらの多官能性不飽和二重結合含有モ ノマ一は 1種を単独で用いてもよく、 また 2種以上を混合して用いてもよい。 硬化樹脂層一 1を形成する二種の成分のうち、 第 1成分が不飽和二重結合含有 ァクリル共重合体であり、 第 2成分が多官能性不飽和二重結合含有モノマーであ ること力 S好ましい。
(溶解度パラメ一夕一値: S P値)
また、 第 1成分および第 2成分は、 それぞれの成分の溶解度パラメ一ター値 (SP値) に差があることが好ましく、 上記のように、 第 1成分が、 共重合体 (1-1) であり、 第 2成分が、 モノマー (1— 2) である場合、 第 1成分の S P値 (SP 1) および第 2成分の SP値 (SP2) が、 SP KSP 2を満たす こと力好ましい。 さらにその差が 0. 5以上であることが好ましい。
特に、 第 1成分が共重合体 (1— 1) であり、 第 2成分がモノマー (1— 2) であると、 本発明の透明導電性積層体をタツチパネルに用いた場合、 チラツキが なく、 ヘーズが低く、 その摺動耐久性、 端押し耐久性が飛躍的に向上するので好 ましい。
(表面粗さ)
本発明の透明導電性積層体は、 その硬化樹脂層一 1の J I S B0601— 1 994による算術平均粗さ (Ra) が 0. 05 111以上0. 5 m未満である。 また、 硬化樹脂層— 1の J I S B0601-1982による十点平均粗さ (R z) 力 0. 5 m以上 2 m未満である。
R aおよび Rzがこの範囲であると、 透明導電性積層体を、 夕ツチパネルに用 いた際に、 防眩性、 アンチニュートンリング性、 指紋拭取り性が良好となり、 チ ラツキが低減される。 上記特性を更に良好なものとするため、 Raの範囲は 0. 1 01以上0 . 4 m未満が好ましく、 0 . 1 111以上0 . 3 5 m未満が特に 好ましい。 また、 2の範囲は0 . 7 m以上 1 . 5 m未満が好ましく、 0 . 7 II m以上 1 . 3 m未満が特に好ましい。
(厚さ)
本発明において、 硬化樹脂層一 1の厚さは 1 0 m以下であることが好ましい。 厚さが 1 0 i mを超えると柔軟性が不足し、 夕ツチパネルに用いた際の摺動耐久 性、 端押し耐久性が不良となることがある。 上記特性を更に良好なものとするた め、 硬化樹脂層 _ 1の厚さは 8 // m以下であることが好ましく、 6 /i m以下であ ることが特に好ましい。
(硬化樹脂層一 1の形成)
硬化樹脂層一 1は、 第 1成分および第 2成分を含有する塗工液を基材上に塗工 し、 必要に応じ乾燥させた後に、 電離放射線照射や加熱処理等により硬化させる ことにより形成することができる。 塗工液は有機溶剤を含有すること力 子ましレ^ 塗工方法としては、 ドクターナイフ、 バーコ一夕一、 グラビアロールコ一ター、 カーテンコーター、 ナイフコーター、 スピンコ一夕一等の公知の塗工機械を用い る方法、 スプレー法、 浸漬法等が挙げられる。 尚、 高分子フィルムの両面に硬化 樹脂層一 1を形成する場合、 該硬化樹脂層— 1は、 同一の組成でも良く、 相互に 異なったものであっても良い。
〈高分子フィルム〉
本発明に用いる高分子フィルムは、 透明な有機高分子で構成されるフィルムで あれば特に限定されない。 有機高分子としては、 例えば、 ポリエチレンテレフ夕 レート、 ポリエチレン— 2 , 6—ナフ夕レート、 ポリジァリルフ夕レート等のポ リエステル系樹脂、 ポリカーボネート樹脂、 ポリエーテルサルフォン樹脂、 ポリ サルフォン樹脂、 ポリアリレート樹脂、 アクリル樹脂、 セルロースアセテート樹 脂、 シクロォレフインポリマ一等が挙げられる。 これらはホモポリマー、 コポリ マーとして使用しても良い。 また、 上記有機高分子を単独で使用しても良いし、 ブレンドしても使用し得る。
これらの高分子フィルムは一般的な溶融押出し法もしくは溶液流延法等により 好適に成形されるが、 必要に応じて成形した高分子フィルムに一軸延伸もしくは 二軸延伸を実施して、 機械的強度を高めたり、 光学的機能を高めたりすることも 好ましく行われる。
本発明の透明導電性積層体を夕ツチパネルの可動電極基板として用いる場合に は、 夕ツチパネルをスィッチとして動作させるための可撓性と平坦性を保つ為の 強度の点から、 高分子フィルムの厚さは、 7 5〜4 0 0 mであることが好まし レ 。 本発明の透明導電性積層体を夕ツチパネルの固定電極基板として用いる場合 は平坦性を保つ為の強度の点から高分子フィルムの厚さは、 0 . 1〜4. 0 mm であることが好ましい。 該高分子フィルムは、 1層で構成されていても良いし、 2層以上の積層体で構成されていても良い。 また、 厚さ 5 0〜4 0 0 mの本発 明の透明導電性積層体と他のプラスチックシ一トと貼り合わせることにより、 固 定電極基板全体の厚さが 0 . 1〜4. 0 mmになるような構成にして用いても良 い。
本発明の透明導電性積層体を夕ツチパネルの可動電極基板として用いた場合に は、 固定電極基板には前記高分子フィルム、 プラスチックシート、 ガラス基板あ るいは高分子フィルムとガラス基板との積層体または高分子フィルムとプラスチ ックシートとの積層体上に透明導電層を形成したものを用いても良い。 夕ツチパ ネルの強度、 重量の点から、 固定電極基板全体の厚さは 0 . 1〜4. 0 mmが好 ましい。
また、 最近ではタツチパネルの入力側の面、 すなわち使用者側の面に、 偏光板 のみ、 または偏光板と位相差フィルムを積層した構成の新しいタイプの夕ツチパ ネルが開発されている。 この構成の利点は主として偏光板または、 偏光板と位相 差フィルムの光学的作用によって、 夕ツチパネル内部における外来光の反射率を 半分以下に低減し、 夕ツチパネルを設置した状態でのディスプレイのコントラス トを向上させることにある。
このようなタイプの夕ツチパネルでは、 偏光が透明導電性積層体を通過するこ とから、 光学等方性に優れた高分子フィルムを用いることが好ましい。 具体的に は高分子フィルムの遅相軸方向の屈折率を n x、 進相軸方向の屈折率を n y、 高 分子フィルムの厚さを d (nm) とした場合に、 Re = (ηχ-ny) X d (nm) で表される面内リタ一デーシヨン値 Reは、 少なくとも 30 nm以下で あることが好ましく、 2 Onm以下であることがより好ましい。 なお、 ここで高 分子フィルムの面内リ夕一デーション値は分光ェリプソメ一夕 (日本分光株式会 社製 M— 150) を用いて測定した波長 590 nmでの値で代表している。
この様に例示した透明導電性積層体を偏光が通過するタイプの夕ツチパネルの 用途においては、 高分子フィルムの面内リタ一デーシヨン値力 S非常に重要である が、 これに加えて高分子フィルムの三次元屈折率特性、 すなわち高分子フィルム の厚さ方向の屈折率を n zとしたときに K= {(nx + ny) /2— nz} X d で表される K値が一 250〜十 150 nmであること力 S好ましく、 一 200〜+ 100 nmの範囲にあることが夕ツチパネルの優れた視野角特性を得る上でより 好ましい。
これらの光学等方性に優れた高分子フィルムを構成する樹脂としては、 例えば、 ポリ力一ポネート、 非晶性ポリアリレー卜、 ポリエーテルスルフォン、 ポリスル フォン、 トリァセチルセルロース、 ジァセチルセルロース、 シクロォレフィンポ リマーおよびこれらの変性物もしくは別種材料との共重合物等の熱可塑性樹脂、 エポキシ系樹脂等の熱硬化性樹脂ゃァクリル系樹脂等の電離放射線硬化性樹脂等 力 S挙げられる。 成形性や製造コスト、 熱的安定性等の観点から、 例えばポリカー ポネート、 非晶性ポリアリレート、 ポリエーテルスルフォン、 ポリスルフォン、 シクロォレフインポリマーおよびこれらの変性物もしくは別種材料との共重合物 が最も好ましく挙げられる。
より具体的には、 ポリカーボネートとしては例えば、 ビスフエノール A、 1, 1—ジ (4—フエノール) シクロへキシリデン、 3, 3, 5—トリメチル一1, 1—ジ (4—フエノール) シクロへキシリデン、 フルオレン一 9, 9ージ (4— フエノール)、 フルオレン一 9, 9—ジ (3—メチルー 4—フエノール) 等から なる群から選ばれる少なくとも一つの成分をモノマー単位とする重合体や共重合 体であるか、 または上記群から選ばれる少なくとも一つの成分をモノマー単位と する重合体または共重合体の混合物である。 平均分子量がおよそ 15, 000〜 1 0 0 , 0 0 0の範囲のポリカーボネート力好ましく用いられる。 ポリカーポネ ートとして、 帝人化成 (株) 製 「パンライト (登録商標)」 やバイエル社製 「A p e c HT (登録商標)」 等が例示される。
また非晶性ポリアリレートとしては、 (株) カネ力製 「エルメック (登録商 標)」、 ュニチカ (株) 製 「Uポリマー (登録商標)」、 イソノバ社製 「ィサリル (登録商標)」 等が例示される。
またシクロォレフインポリマーとしては、 日本ゼオン (株) 製 「ゼォノア (登 録商標)」 や J S R (株) 製 「アートン (登録商標)」 等が例示される。
またこれらの樹脂の成形方法としては、 溶融押出法や溶液流延法、 射出成型法 等の方法が例示されるが、 優れた光学等方性を得る観点からは、 特に溶液流延法 や溶融押出し法を用いて成形を行うことが好ましい。
〈透明導電層〉
本発明において、 透明導電層は、 導電性に優れた透明な層であれば特に限定さ れない。
透明導電層を構成する成分としては、 例えば酸化ケィ素、 酸化アルミニウム、 酸化チタン、 酸化マグネシウム、 酸化亜鉛、 酸化インジウム、 酸化錫等が挙げら れる。 これらのうち酸化インジウムおよび/または酸化錫力 S特に好ましい。
更に、 透明導電層は、 酸化インジウムを主成分とした結晶質の層であることが 好ましく、 特に結晶質の I T O ( I n d i um T i n O x i d e ) からなる 層が好ましく用いられる。 また結晶粒径は、 特に上限を設ける必要はないが 3,
0 0 0 n m以下であること力 S好ましい。 結晶粒径が 3, 0 0 0 n mを超えると筆 記耐久性が悪くなるため好ましくない。 ここで結晶粒径とは、 透過型電子顕微鏡 (T EM) 下で観察される多角形状または長円状の微結晶の各領域における対角 線または直径の中で最大のものと定義される。
本発明において "酸化インジウムを主成分とした" とは、 ド一パントとして錫、 テルル、 カドミウム、 モリブデン、 タングステン、 フッ素、 亜鉛等を含有する酸 化インジウム、 或いはドーパントとして錫の他に更に、 珪素、 チタン、 亜鉛等を 含有する酸化インジウムを意味する。 また、 "結晶質の層" とは、 ドーパントを含有する酸化インジウムからなる層 の 50%以上、 好ましくは 75%以上、 より好ましくは 95%以上、 特に好まし くはほぼ 100%が結晶相で占められていることを意味する。 透明導電層が結晶 質の層であることにより、 硬化樹脂層— 1と透明導電層との密着性や環境信頼性 が優れたものとなる。 その結果、 本発明の透明導電性積層体をタツチパネルに用 いた際に、 夕ツチパネルに必要とされる環境信頼性や夕ツチパネルの筆記耐久性 が改善される。
透明導電層は、 公知の手法にて形成することが可能であり、 例えば DCマグネ トロンスパッタリング法、 R Fマグネトロンスパッ夕リング法、 イオンプレーテ イング法、 真空蒸着法、 パルスレーザ一デポジション法等の物理的形成法 (Ph y s i c a l Vapo r Depo s i t i on, 以下、 P VD) 等を用いる ことができるが、 大面積に対して均一な厚さの透明導電層を形成するという工業 生産性に着目すると、 DCマグネトロンスパッタリング法が望ましい。 なお、 上 記物理的形成法 (PVD) のほかに、 Ch em i c a 1 Vapo r De po s i t i on (以下、 CVD)、 ゾルゲル法などの化学的形成法を用いることも できる力 厚さ制御の観点からはやはりスパッ夕リング法が望ましい。
透明導電層を形成するその他の方法としては、 ドクターナイフ、 バーコ一ター、 グラビアロー^コ一夕一、 カーテンコ一夕一、 ナイフコー夕一、 スピンコ一夕一 等の公知の塗工機械を用いる方法、 スプレー法、 浸漬法等が用いられる。 実際こ れら方法を用いて透明導電層を形成する場合、 ポリチォフェンやポリアラニンな どの公知の導電性高分子材料および/または導電性を有する金属、 金属酸化物、 炭素などからなる超微粒子および Zまたは導電性を有する金属、 金属酸化物、 炭 素などからなるナノワイヤ一等の導電性物質成分とバインダ一としての硬化樹脂 成分とからなる導電性塗布剤が用いられる。
前記の導電性塗布剤を各種有機溶剤に溶解して、 濃度や粘度を調節した塗工液 を用いて、 高分子フィルム上に塗工後、 放射線照射や加熱処理等により層を形成 する方法が挙げられる。
透明導電層の厚さは、 透明性と導電性の点から 5〜 50 nmであることが好ま しい。 更に好ましくは 5〜30 nmである。 透明導電層の厚さが 5 nm未満では 抵抗値の経時安定性に劣る傾向が有り、 また 50 nmを超えると表面抵抗値が低 下するため夕ツチパネル用途として好ましくない。 厚さ 5〜50 nmにおいて表 面抵抗値が 1 0 0〜2, 0 00 Q/U (Ω/s q), より好ましくは 140〜 1, 00 0 Ω/Π (Ω/s q) の範囲を示す透明導電層を用いることが好ましい。 透明導電層の膜厚が 5 nm以上 50 nm以下であり、 かつ結晶質であることが 好ましい。
〈硬化樹脂層一 2〉
本発明では、 高分子フィルムの透明導電層を形成した面と反対面に、 硬化樹脂 層 _ 2を有すること力 S好ましい。 この硬化樹脂層一 2は、 硬化樹脂層一 1と同様 に、 二種の成分が相分離して形成された凹凸を有し、 かつ凹凸を付与するための 微粒子を含有しない層である。
硬化樹脂層一 2を形成する第 1成分の S P値 (S P 1) および第 2成分の S P 値 (S P 2) が、 S P 1<S P 2を満たすこと力 S好ましい。
硬化樹脂層— 2は、 : T I S B 060 1 - 1 9 94準拠で定義される算術平均 粗さ (Ra) が 0. 05 im以上 0. 5 m未満、 J I S B 060 1— 1 98
2準拠で定義される十点平均粗さ (Rz) 力 0. 5 m以上 2. 0 m未満の範 囲にある。
R aおよび Rzがこの範囲であると、 透明導電性積層体を、 夕ツチパネルに用 いた際に、 防眩性、 指紋拭取り性が良好となり、 チラツキが低減される。 Raが 0. 5 O ^m以上の場合には、 チラツキ、 指紋拭取り性が低下する可能性やタツ チパネル下に設置する表示体の視認性が低下する可能性もある。 また R aが 0. 0 5 m未満の場合には、 防眩性が低下する。 Rzが 2. 0 m以上場合には、 チラツキ、 指紋拭取り性が低下する可能性や夕ッチパネル下に設置する表示体の 視認性が低下する可能性もある。 また Rzが 0. 5 未満の場合には、 防眩性 が低下する。
上記特性を更に良好なものとするため、 Raの範囲は 0. 1 0 111以上0. 4 0 m未満が好ましく、 0. 1 0 111以上0. 3 5 m未満が特に好ましい。 ま た、 2の範囲は0. 7 m以上 1. 5 m未満が好ましく、 0. 7 m以上 1. 3 m未満が特に好ましい。
硬化樹脂層一 2の第 1成分は、 前述の不飽和二重結合アクリル共重合体 (共重 合体 (1— 1)) から選ばれるアクリル共重合体 (共重合体 (2-1)) である。 本発明の透明導電性積層体において、 硬化樹脂層一 2の第 1成分 (共重合体 (2 ー1)) は、 硬化樹脂層一 1の第 1成分の共重合体 (1— 1) と同じものであつ ても、 異なる種類、 組成のものであっても良い。
硬化樹脂層一 2の第 2成分は、 前述の多官能性不飽和二重結合含有モノマーの 内で特に炭素数 2〜 4のアルキレンォキシド単位をモノマー 1分子中に 3〜 6モ ル当量有する 3官能以上の不飽和二重結合含有モノマ一 (以下、 モノマ一 (2— 2) ということがある) であることが好ましい R I。
本発明の透明導電性積層体が夕ツチパネルの可動電極基板として用いられる場 合には、 耐候性 (耐光性) が要求されることがある。 その場合には、 硬化樹脂層 一 2における第 2成分としてモノマー (2-2) が好ましい。
モノマー (2— 2) は、 例えば、 3官能以上の多価アルコールに、 炭素数 2〜 4のアルキレンォキシド骨格を導入し、 これに (メタ) ァクリレートを反応させ ることによって調製することができる。
モノマー (2— 2) として、 例えば下記式 (A) で示されるモノマーが挙げら れる。
R1——
Figure imgf000017_0001
A) 式 (A) 中、 n、 mおよび pは、 それぞれ独立して 2〜4の整数である。 x、 yおよび zは、 それぞれ独立して 0〜 3の整数であり、 但し、 x、 yおよび の 和が 3〜 6である。 R 1は、 水酸基を有していてもよい炭素数 1〜 3のアルキル 基である。 R 2、 R 3および R4は、 それぞれ独立して水素またはメチル基である。 モノマー (2— 2 ) として、 例えば、 トリエチレングリコール—トリメチロー ルプロパントリ (メタ) ァクリレート、 トリプロピレングリコール一トリメチロ ールプロパントリ (メタ) ァクリレート、 へキサエチレングリコ一ルートリメチ ロールプロパントリ (メタ) ァクリレート、 へキサプロピレングリコール一トリ メチロールプロパントリ (メタ) ァクリレ一ト、 などが挙げられる。
硬化樹脂層— 2において、 その第 2成分として、 モノマー ( 2 - 2 ) を用いる ことにより、 硬化樹脂層一 2に、 耐候性 (耐光性) を更に付与することができ、 その結果、 透明導電層を形成した面と反対面に耐候性 (耐光性) を有する硬化性 樹脂層が形成された透明導電性積層体を得ることができる。
第 2成分として、 モノマー (2— 2 ) と、 他の多官能性不飽和二重結合含有モ ノマーとを併用するのが好ましい。 その他の多官能性不飽和二重結合含有モノマ 一を併用することによって、 硬化樹脂層一 2の硬度を確保することができる。 モノマー (2— 2 ) 以外の多官能性不飽和二重結合含有モノマーとして、 例え ば、 多価アルコールと (メタ) ァクリレートとの脱アルコール反応物である、 3 官能またはそれ以上の多官能性不飽和二重結合含有モノマーが挙げられる。 具体 的には、 ペン夕エリスリトールトリ (メタ) ァクリレート、 ペン夕エリスリトー ルテトラ (メタ) ァクリレー卜、 ジペン夕エリスリトールへキサ (メタ) ァクリ レート、 ジペンタエリスリ! ^一ルペン夕 (メタ) ァクリレート、 トリメチロール プロパントリ (メタ) ァクリレート、 ジトリメチロールプロパンテトラ (メタ) ァクリレート、 ネオペンチルダリコールジ (メタ) ァクリレートなどが挙げられ る。
モノマー (2— 2 ) は、 硬化樹脂層一 2中に 2〜4 0重量%含有することが好 ましい。 モノマー (2— 2 ) 力 2重量%より低い場合は、 硬化樹脂層一 2の耐候 性 (耐光性) 向上効果が不十分になるおそれがある。 またモノマー (2— 2 ) が 4 0重量%を超える場合は、 硬化樹脂層一 2の表面硬度が低くなるおそれがある。 本発明において、 硬化樹脂層一 2の厚さは 1 0 以下であることが好ましい。 厚さが 1 0 を超えると柔軟性力 S不足し、 夕ツチパネルに用いた際の摺動耐久 性、 端押し耐久性が不良となることがある。 硬化樹脂層一 1の厚さは 8 μ πι以下 であることが好ましく、 6 m以下であることが特に好ましい。
硬化樹脂層一 2は、 第 1成分および第 2成分を含有する塗工液を基材上に塗工 し、 必要に応じ乾燥させた後に、 電離放射線照射や加熱処理等により硬化させる ことにより形成することができる。 塗工液は有機溶剤を含有することが好ましい。 塗工方法としては、 ドクターナイフ、 バーコ一夕一、 グラビアロールコ一夕一、 カーテンコ一夕一、 ナイフコ一夕一、 スピンコ一夕一等の公知の塗工機械を用い る方法、 スプレー法、 浸漬法等が挙げられる。
硬化樹脂層一 2を高分子フィルムの一方の面のみに形成した場合の J I S K 7 1 3 6で定義されるヘーズは、 2 %以上 1 8 %未満であること力好ましく、 更 に好ましくは 3 %以上 1 5 %未満であり、 特に好ましくは 3 %以上 1 0 %未満で ある。 ヘーズが 1 8 %以上では、 夕ツチパネル下に設置される表示体の視認性が 悪化する可能性があり、 ヘーズが 2 %未満では、 防眩性が低下する。
〈金属酸化物層〉
本発明の透明導電性積層体は、 硬化樹脂層一 1と透明導電層の間に厚さが 0 . 5 nm以上 5 nm未満の金属酸化物層を更に有していてもよい。
高分子フィルム、 硬化樹脂層一 1、 厚さが制御された金属酸化物層および透明 導電層を順次積層することにより各層間の密着性が大幅に改善される。 このよう な透明導電性積層体を用いた夕ツチパネルは、 金属酸化物層がない場合と比較し て、 近年、 夕ツチパネルに要求される筆記耐久性力更に向上する。 金属酸化物層 の厚さが 5 . O nm以上の場合、 金属酸化物層が連続体としての機械物性を示し 始めることにより、 夕ツチパネルに要求される端押し耐久性の向上は望めない。 一方、 金属酸化物層の厚さが 0 . 5 nm未満の場合、 厚さの制御が困難なことに 加え、 硬化樹脂層一 1と透明導電層との密着性を十分発現させることが困難にな り、 夕ツチパネルに要求される筆記耐久性の向上は不十分となることがある。 金属酸化物層を構成する成分としては、 例えば、 酸化ケィ素、 酸化アルミニゥ ム、 酸化チタン、 酸化マグネシウム、 酸化亜鉛、 酸化インジウム、 酸化錫等の金 属酸化物が挙げられる。
これらの金属酸化物層は、 公知の手法にて形成することが可能であり、 例えば DCマグネトロンスパッタリング法、 RFマグネトロンスパッタリング法、 ィォ ンプレーティング法、 真空蒸着法、 パルスレーザ一デポジション法等の物理的形 成法 (Phy s i c a l Vapo r Depo s i t i on、 以下、 P VD) 等を用いることができるが、 大面積に対して均一な厚さの金属酸化物層を形成す るという工業生産性に着目すると、 D Cマグネトロンスパッ夕リング法が望まし レ^ なお、 上記物理的形成法 (PVD) のほかに、 Chemi c a 1 Vapo r De po s i t i on (以下、 CVD)、 ゾルゲル法などの化学的形成法を 用いることもできる力 厚さ制御の観点からはやはりスパッ夕リング法が望まし い。
スパッタリング法に用いる夕一ゲットは金属ターゲットが望ましく、 反応性ス パッタリング法を用いることが広く採用されている。 これは、 金属酸化物層とし て用いる元素の酸化物が絶縁体であることが多く、 金属酸化物夕一ゲットの場合 D Cマグネト口ンスパッ夕リング法が適応できないことが多いからである。 また、 近年では、 2つの力ソードを同時に放電させ、 ターゲットへの絶縁体の形成を抑 制するような電源が開発されており、 擬似的な RFマグネトロンスパッタリング 法を適応できるようになってきている。
〈硬化樹脂層一 3〉
本発明の透明導電性積層体は、 硬化樹脂層一 1と透明導電層の間に硬化樹脂層 一 3を有することができる。 また硬化樹脂層一 1と金属酸化物層の間に硬化樹脂 層一 3を有することができる。
硬化樹脂層一 3は、 上記層間の密着性を改良する。 硬化樹脂層— 3を形成する のに用いられる硬化性樹脂としては、 電離放射線硬化性樹脂や熱硬化性樹脂等が 挙げられる。 電離放射線硬化性樹脂を与えるモノマーとしては、 例えばポリオールァクリレ ート、 ポリエステルァクリレート、 ウレタンァクリレート、 エポキシァクリレー ト、 変性スチレンァクリレート、 メラミンァクリレート、 シリコン含有ァクリレ 一ト等の単官能および多官能ァクリレートを挙げることができる。
具体的なモノマーとしては、 例えばトリメチロールプロパントリメタクリレー ト、 トリメチロールプロパンエチレンオキサイド変性ァクリレート、 トリメチロ —ルプロパンプロピレンォキサイド変性ァクリレート、 イソシァヌ一ル酸アルキ レンォキサイド変性ァクリレート、 ペンタエリスリトールトリァクリレート、 ジ ペンタエリスリトールへキサァクリレート、 ジメチロールトリシクロデカンジァ クリレート、 トリプロピレングリコールトリァクリレート、 ジエチレングリコー ルジァクリレート、 1, 6一へキサンジオールジァクリレート、 エポキシ変性ァ クリレート、 ウレタン変性ァクリレート、 エポキシ変性ァクリレ一ト等の多官能 モノマーが挙げられる。 これらを単独で用いても、 数種類を混合して用いてよく、 また場合によっては、 各種アルコキシシランの加水分解物を適量添加してもよレ^ なお、 電離放射線によつて樹脂層の重合を行う場合には公知の光重合開始剤が適 量添加される。 また必要に応じ光増感剤を適量添加してもよい。
光重合開始剤としては、 ァセトフエノン、 ベンゾフエノン、 ベンゾイン、 ベン ゾィルベンゾェ一ト、 チォキサンソン類等が挙げられ、 光増感剤としては、 トリ ェチルアミン、 トリ— n—ブチルホスフィン等が挙げられる。
熱硬ィ匕性樹脂としては、 メチルトリエトキシシラン、 フエニルトリエトキシシ ラン等のシラン化合物をモノマーとしたオルガノシラン系の熱硬化性樹脂ゃェ一 テル化メチロールメラミン等をモノマーとしたメラミン系熱硬化性樹脂、 イソシ ァネート系熱硬化性樹脂、 フエノール系熱硬化性樹脂、 エポキシ系熱硬化性樹脂 等が挙げられる。 これら熱硬化性樹脂を単独または複数組み合わせて使用するこ とも可能である。 また必要に応じ熱可塑性樹脂を混合することも可能である。 なお、 熱によって樹脂層の架橋を行う場合には公知の反応促進剤、 硬化剤が適 量添加される。 反応促進剤としては、 例えばトリエチレンジァミン、 ジブチル錫 ジラウレート、 ベンジルメチルァミン、 ピリジン等が挙げられる。 硬化剤として は、 例えばメチルへキサヒドロ無水フタル酸、 4, 4 ' ージアミノジフエニルメ タン、 4, 4, ージアミノー 3, 3, 一ジェチルジフエニルメ夕ン、 ジアミノジ フエニルスルフォン等力 S挙げられる。
硬化樹脂層一 3と透明導電層または金属酸化物層との密着性を強化するため、 硬化樹脂層一 3中に、 平均 1次粒子径が 1 0 0 nm以下の酸化珪素超微粒子を含 有させることできる。 更に、 珪素原子を含有する有機化合物と平均一次粒子径が 1 0 0 n m以下の酸化珪素超微粒子とを併用すると、 該酸化珪素超微粒子が表面 に偏祈した硬化樹脂層となるため、 上記密着性の改善効果が一層強化される。 珪 素原子を含有する有機化合物としては、 一般的な珪素原子を含有する界面活性剤 や硬化性樹脂成分が挙げられる。 この際の酸化珪素超微粒子の含有量は、 硬化樹 脂層一 3を形成するのに用いられる硬化性樹脂成分 1 0 0重量部に対して 1重量 部以上 4 0 0重量部以下が好ましく、 更に好ましくは 1重量部以上 2 0 0重量部 以下、 より好ましくは 5重量部以上 1 0 0重量部以下である。
硬化樹脂層一 3は、 硬化性樹脂成分を含有する塗工液を硬化樹脂層一 1上に塗 ェし、 必要に応じ乾燥させた後に、 電離放射線照射や加熱処理等により硬化させ ることにより形成することができる。 塗工液は有機溶剤を含有することが好まし レ^
塗工方法として、 ドクターナイフ、 バーコ一夕一、 グラビアロールコーター、 カーテンコ一夕一、 ナイフコーター、 スピンコ一夕一等の公知の塗工機械を用い る方法、 スプレー法、 浸漬法等が挙げられる。
有機溶剤としては、 アルコール系、 炭化水素系の溶剤、 例えば、 エタノール、 イソプロピルアルコール、 ブ夕ノール、 1ーメトキシー 2—プロパノール、 へキ サン、 シクロへキサン、 リグ口イン等力好ましい。 特に、 キシレン、 トルエン、 ケトン類、 例えばメチルェチルケトン、 メチルイソプチルケトン等を使用するの 力好ましい。 この他に、 シクロへキサノン、 酢酸プチル、 酢酸イソブチル等の極 性溶媒も使用可能である。 これらのものは単独で用いるか、 あるいは 2種類以上 の混合溶剤として用いること力 S出来る。
硬化樹脂層一 3の熱劣化や光劣化を防止するために、 紫外線吸収剤、 酸化防止 剤、 老化防止剤等を添加することも可能である。
硬化樹脂層一 3の厚さや屈折率を調整することにより、 透明導電性積層体の光 学特性 (透過率や色調) を調整することが可能である。 その際の硬化樹脂層一 3 の厚さは 0. 05 zm以上、 0. 5 xm以下であること力 S好ましく、 更に好まし く 0. 05 m以上、 0. 3 m以下である。 硬化樹脂層一 3の屈折率を調整す るために平均一次粒子径が 100 nm以下の金属酸化物または金属フッ化物の超 微粒子および/またはフッ素系樹脂を単独または複数組み合わせて硬化樹脂層— 3中に添加しても良い。 この時の硬化樹脂層一 3の屈折率は、 高分子フィルムの 屈折率より小さく、 且つ屈折率が 1. 2以上 1. 55以下であることが好ましく、 更に好ましくは 1. 2以上 1. 45以下である。
本発明の透明導電性積層体は、 硬化樹脂層一 1と透明導電層の間に屈折率が 1. 2〜1. 55、 膜厚が 0. 05 m以上 0. 5 m以下の硬化樹脂層一 3を有す ることが好ましい。 また本発明の透明導電性積層体は、 硬化樹脂層— 1と金属酸 化物層の間に屈折率が 1. 2〜 1. 55、 膜厚が 0. 05^ m以上 0. 5 m以 下である硬化樹脂層一 3を有することが好ましい。
〈光学干渉層〉
本発明の透明導電性積層体は、 硬化樹脂層一 1と透明導電層の間に、 低屈折率 層と高屈折率層とからなり、 低屈折率層が透明導電層と接する光学干渉層を有す ることが好ましい。 また、 本発明の透明導電性積層体は、 硬化樹脂層— 1と金属 酸化物層の間に、 低屈折率層と高屈折率層とからなり、 低屈折率層が金属酸化物 層と接する光学干渉層を有することが好ましい。
光学干渉層は、 複数の低屈折率層を有していてもよい。 また光学干渉層は、 複 数の高屈折率層を有していてもよい。 光学干渉層は、 高屈折率層と低屈折率層の 組み合わせ単位を二つ以上とすることも出来る。 光学干渉層が一層の高屈折率層 と一層の低屈折率層から構成される場合、 光学干渉層の厚さは 30 nm〜300 n mが好ましく、 更に好ましくは 50n m〜 200n mである。 光学干渉層は、 上記層間の密着性および透明導電性積層体の光学特性、 特に透過率と色調を改良 する。 光学干渉層を構成する高屈折率層は、 例えば金属アルコキシドの加水分解縮合 物からなることが好ましい。 また高屈折率層は、 金属アルコキシドの加水分解縮 合物、 熱硬化性樹脂および電離放射線硬化性樹脂からなる群より選ばれる少なく とも一種と、 平均 1次粒子径が 1 0 0 nm以下の金属酸化物および/または金属 フッ化物からなる超微粒子とからなることが好ましい。
金属アルコキシドとしては、 例えばチタニウムアルコキシド、 ジルコニウムァ ルコキシド、 アルコキシシランを挙げることができる。
チタニウムアルコキシドとしては、 例えば、 チタニウムテトライソプロポキシ ド、 テ卜ラー n—プロピルオルトチタネート、 チタニウムテトラー n—ブトキシ ド、 テトラキス (2—ェチルへキシルォキシ) チタネート等が挙げられる。 ジルコニウムアルコキシドとしては、 例えばジルコニウムテトライソプロポキ シド、 ジルコニウムテトラー n—ブトキシド等が挙げられる。
アルコキシシランとしては、 例えば、 テトラメトキシシラン、 テトラエトキシ シラン、 メチルトリメトキシシラン、 メチルトリエトキシシラン、 ジメチルジメ エポキシシクロへキシル) ェチルトリメトキシシラン、 ビニルトリメトキシシラ ン、 N— 3 (アミノエチル) r—ァミノプロビルトリメトキシシラン、 N— j8 (アミノエチル) ァーァミノプロピルジメトキシシラン、 ァーァミノプロビルト リェトキシシラン等が挙げられる。
これらのアルコキシシランは、 層の機械的強度や密着性および耐溶剤性等の観 点からニ種類以上を混合して用いることが好ましく、 特に耐溶剤性の観点から、 アルコキシシランの全組成中に重量比率 0 . 5〜4 0 %の範囲で、 分子内にアミ ノ基を有するアルコキシシラン力含有されていること力好ましい。
アルコキシシランは、 モノマーで用いてもあらかじめ加水分解と脱水縮合を行 つて適度にオリゴマー化して用いても良い。
超微粒子の平均 1次粒子径は 1 0 0 n m以下が好ましく、 更に好ましくは 7 5 nm以下、 更に好ましくは 5 O nm以下である。 超微粒子の平均 1次粒子径を 1 0 0 nm以下に制御すれば、 塗工層が白化することがない。 超微粒子としては、 例えば B i 203、 Ce〇2、 I n23、 (I n2Oa - S n 02)、 Hi02、 La23、 MgF2、 Sb 205、 ( S b 25 · S n〇 2)、 S i 02、 Sn〇2、 T i〇2、 Y203、 Zn〇、 Z r O 2などの金属酸化物または金 属フッ化物の超微粒子が例示される。
高屈折率層中には、 平均 1次粒子径が 100 nm以下の金属酸化物または金属 フッ化物の超微粒子を単独または 2種類以上適当量添加することができる。 超微 粒子を添加することにより高屈折率層の屈折率を調整することが可能である。 高屈折率層中に超微粒子を添加する場合、 超微粒子と樹脂成分との重量比率は、 0 : 100〜66. 6 : 33. 3であることが好ましく、 更に好ましくは 0 : 1 00〜60 : 40である。 超微粒子と樹脂成分との重量比率が 66. 6 : 33. 3を超える場合は光学干渉層に必要な強度や密着性が不足することがあり、 好ま しくない。
高屈折率層の厚さは、 好ましくは 15〜250 nm、 より好ましくは 30〜1 50nmである。 また高屈折率層の屈折率は、 後述する低屈折率層および硬化樹 脂層— 1の屈折率より大きく、 その差が 0. 2以上であることが好ましい。
光学干渉層を構成する低屈折率層は、 前述の硬化樹脂層一 3を形成する電離放 射線硬化性樹脂、 熱硬化性樹脂、 低屈折率層を形成するアルコキシシラン用いて 形成することが出来る。 透明導電層または金属酸化物層との密着性を強化するこ とや屈折率を調整することを目的として、 平均一次粒子径が 10 Onm以下であ る金属酸化物または金属フッ化物からなる超微粒子の 1種類または 2種類以上を 低屈折率層に適当量添加すること力 S出来る。 この時用いる超微粒子としては屈折 率が低い、 S i 02や MgF2などの超微粒子が適当である。 低屈折率層の厚さ は、 好ましくは 15〜250 nm、 より好ましくは 30〜150 nmである。 高屈折率層または低屈折率層は、 以下の方法で形成される。 先ず高屈折率層を 形成するための成分を有機溶剤に溶解した塗工液 Dと、 低屈折率層を形成するた めの成分を有機溶剤に溶解した塗工液 Cを調製する。 次に硬化樹脂層— 1上に塗 ェ液 Dを塗工後、 電離放射線照射や加熱処理等により硬化させることにより高屈 折率層を形成する。 引き続いて、 高屈折率層上に塗工液 Cを塗工後、 電離放射線 照射や加熱処理等により硬化させることにより低屈折率層を形成する。
塗工方法として、 ドクターナイフ、 バーコ一夕一、 グラビア口一ルコ一夕一、 カーテンコ一夕一、 ナイフコー夕一、 スピンコ一夕一等の公知の塗工機械を用い る方法、 スプレー法、 浸漬法等が挙げられる。
有機溶剤としては、 アルコール系、 炭化水素系の溶剤、 例えば、 エタノール、 イソプロピルアルコール、 ブ夕ノール、 1ーメトキシ一 2—プロパノール、 へキ サン、 シクロへキサン、 リグ口イン等が好ましい。 この他に、 キシレン、 トルェ ン、 シクロへキサノン、 メチルイソプチルケトン、 酢酸イソブチル等の極性溶媒 も使用可能である。 これらのものは単独あるいは 2種類以上の混合溶剤として用 いることが出来る。
塗工液中に金属アルコキシドカ S含まれる場合、 塗工層中の金属アルコキシドは、 空気中の水分等により加水分解が進行し、 続いて、 脱水縮合により架橋が進行す る。 一般に、 架橋の促進には適当な加熱処理力 s必要であり、 塗工工程において 1 0 0 °C以上の温度で数分間以上の熱処理を施すことが好ましい。 また場合によつ ては、 前記熱処理と並行して、 紫外線等の活性光線を塗工層に照射することによ り、 架橋度をより高めることが出来る。
〈透明導電性積層体〉
本発明の透明導電性積層体は、 J I S K 7 1 3 6で定義されるヘーズが 2 % 以上 2 0 %未満であることが好ましい。 ヘーズがこの範囲であると、 透明導電性 積層体をタツチパネルに用いた際に、 アンチニュートンリング性、 指紋拭取り性 が良好となる。
高分子フィルムの片面のみに硬化樹脂層— 1と透明導電層が順次積層されてい る場合、 本発明の透明導電性積層体のヘーズは、 2 %以上 1 0 %未満が好ましく、 更に好ましくは 2 %以上 8 %未満、 2 %以上 6 %未満であること力 S特に好ましい。 ヘーズが 2 %未満では、 アンチニュートンリング性が低下する可能性があり、 へ —ズが 1 0 %以上では特に問題はないが夕ツチパネル下に設置する表示体の視認 性が悪化する可能性がある。
硬化樹脂層一 1が高分子フィルムの両面に形成されている場合、 または高分子 フィルム上に硬化樹脂層一 1と硬化樹脂層一 2がそれぞれの一方の面に形成され ている場合、 本発明の透明導電性積層体のヘーズは 5 %以上 20 %未満が好まし く、 更に好ましくは 6%以上 15%未満、 6%以上 13%未満であることが特に 好ましい。 ヘーズが 5%未満でも特に影響はないが、 透明導電性積層体の防眩性 が低下する可能性があり、 ヘーズが 20%以上の場合は夕ツチパネルの下に設置 される表示体の視認性が悪化することが懸念される。 ヘーズが 5 %以上 20 %未 満の場合、 透明導電性積層体の防眩性力 S低下することなく、 透明導電性積層体の 視認性が良化するため好ましい。
本発明の透明導電性積層体は、 J I S K7105 (1999年版) によって 規定される 0. 125 mmの光学櫛を使つた場合の透過法の像鮮明度が 10 %以 上 80%以下であることが好ましい。 更に好ましくは 20%以上 75%以下であ る。 像鮮明度が 10%未満では夕ツチパネルの下に設置される表示体の視認性が 悪くなる問題やチラツキが増加する問題がある。 像鮮明度が 80%より大きい場 合は、 防眩性やアンチニュートンリング性が低下する問題がある。
本発明の透明導電性積層体は、 透明導電層が形成された面と反対面にある硬化 樹脂層一 2の水に対する接触角が 90° 以下であることが好ましく、 80° 以 下であることが更に好ましい。 接触角が 90° 以下であると、 硬化樹脂層一 2 表面の指紋拭取り性が良好になる。
本発明の透明導電性積層体は、 主に夕ツチパネル用の透明電極基板として使用 されることが好ましいが、 夕ツチパネル用以外のフレキシブルディスプレイゃ電 子ペーパーなどの表示体の透明電極基板として使用することも可能である。 本発明の透明導電性積層体は、 以下の層構造を有することが好ましい。
( 1 ) 高分子フィルム Z硬化樹脂層一 1 Z透明導電層
(2) 高分子フィルム Z硬化樹脂層一 1Z金属酸化物層 Z透明導電層
(3) 高分子フィルム Z硬化樹脂層一 1/光学干渉層/金属酸化物層 透明導電 層
( 4 ) 硬化樹脂層一 2 Z高分子フィルム /硬化樹脂層― 1 Z透明導電層
( 5 ) 硬化樹脂層一 2 /高分子フィルム /硬化樹脂層一 1 金属酸化物層 Z透明 導電層
( 6 ) 硬化樹脂層一 2 /高分子フィルムノ硬化樹脂層一 1 Z光学干渉層 金属酸 化物層/透明導電層
〈夕ツチパネル〉
本発明の夕ツチパネルは、 前述した本発明の透明導電性積層体を有する。 本発 明の夕ツチパネルは、 可動電極基板と固定電極基板から構成される。 可動電極基 板は、 本発明の透明導電性積層体であることが好ましい。
固定電極基板は、 ガラス基板、 透明導電層およびドットスぺ一サ一がこの順序 に積層されたもの力 S好ましい。 固定電極基板の透明導電層を構成する成分として、 例えば、 酸化ケィ素、 酸化アルミニウム、 酸化チタン、 酸化マグネシウム、 酸化 亜鉛、 酸化インジウム、 酸化錫等が挙げられる。 これらのうち酸化インジウムお よび Zまたは酸化錫が特に好ましい。 更に、 透明導電層は、 酸化インジウムを主 成分とした結晶質の層であることが好ましく、 特に結晶質の I TO (I nd i u m T i n 〇x i d e) からなる層力 S好ましく用いられる。
また本発明の夕ツチパネルは、 固定電極基板として、 本発明の透明導電性積層 体の透明導電層上にドットスぺーサ一を形成した基板を用いる態様も好ましい。 本発明によれば、 少なくとも片面に透明導電層が設けられた 2枚の透明電極基 板が、 互いの透明導電層同士が向き合うように配置された夕ツチパネルにおいて、 少なくとも一方の透明電極基板として、 前述の本発明の透明導電性積層体を用い た夕ツチパネル力 S提供される。 実施例
以下、 本発明を実施例により更に具体的に説明するが、 本発明はこれにより何 等限定を受けるものでは無い。 尚、 実施例中の各値は以下の方法に従って求めた。 <SP (溶解度パラメ一夕一) >
'P r op e r t i e s o f P o l yme r s (E l s e v i e r, Ams t e r d am (1976)) に記載の Va n K 1 e v i nの方法にした がって算出する。 <Ra (算術平均粗さ) >
S 1 o an社製 触針段差計 DEKTAK3を用いて測定した。 測定は J I S B 0601— 1994年版に準拠して行った。
Ra (J I S B 0601— 1994) は、 粗さ曲線からその平均線の方向 に基準長さだけ抜き取り、 この抜取り部分の平均線の方向に X軸を、 縦倍率の方 向に Y軸を取り、 粗さ曲線を y=f (x) で表したときに、 次の式によって求め られる値をマイクロメートル ( m) で表したものをいう。
Figure imgf000029_0001
(L:基準長さ)
粗さ曲線は、 断面曲線から、 所定の波長より長い表面うねり成分を位相補償形 高域フィル夕で除去した曲線である。 断面曲線は、 対象面に直角な平面で対象面 を切断したときに、 その切り口に現れる輪郭である。 粗さ曲線のカットオフ値
(Ac) は、 位相補償形高域フィル夕の利得が 50%になる周波数に対応する波 長カットオフ値である。 粗さ曲線の基準長さ (L) は、 粗さ曲線からカットオフ 値の長さを抜き取った部分の長さ (基準長さ) である。
カットオフ値 (Ac : mm) と評価長さ (Ln : mm) は下記のいずれかを選 択した。
カットオフ値 評価長さ
0. 25 mm 1. 25 mm
0. 8 mm 4 mm
<Rz (十点平均粗さ) 〉
(株) 小坂研究所製 Su r f c o r de r SE-3400 を用いて測定 した。 測定は J I S B 0601 - 1982年版に準拠して行った。
Rz ( J I S B 0601— 1982) は、 断面曲線から基準長さだけ抜き 取った部分において、 平均線に平行、 かつ、 断面曲線を横切らない直線から縦倍 率の方向に測定した最高から 5番目までの山頂の標高の平均値と最深から 5番目 までの谷底の標高の平均値との差の値をマイクロメ一トル ( m) で表したもの をいう。
R zは下記式により求められる。
R (R1+R3+R5+R R9) - (R HR4+R6+R8+R10)
' 5
(R R3、 R5、 R7、 R9は基準長さ Lに対応する抜き取り部分の最高から 5番目までの山頂の標高である。 R2、 R4、 R6、 R8、 R10は基準長さ Lに対 応する抜き取り部分の最深から 5番目までの谷底の標高である。)
基準長さは 0. 25mmまたは 0. 8mmとした。
ぐ接触角 >
平板状の試料片を水平に置き、 硬化樹脂層の面を上にして、 J I S R325 7の静滴法に従い、 容量 1 m 1の注射器により水を 1滴滴下して、 試料片上に 1 1以上 4 1以下の水滴を静置した。 ついで角度測定器がついた顕微鏡により、 1分間静置後の水接触角 Θを読み取つた。
<厚さ >
ケ一エルケ一 ·テンコ一社製、 触針式膜厚計 アルファステップを使用し測定 を行った。
<ヘーズ〉
日本電色 (株) 製へ一ズメーター (MDH 2000) を用いて測定した。 ヘーズ (J I S K7136) は、 試験片を透過する透過光のうち、 前方散乱 によって、 入射光から 0. 044 rmd (2. 5° ) 以上それた透過光の百分 率である。
ヘーズ (%) は、 次の式によって算出する
ヘーズ = [( r 4/ 2) 一 て 3 (て 2/て 丄;)] X I 00
(r!:入射光の光束
2:試験片を透過した全光束 て 3:装置で拡散した光束
4:装置及び試験片で拡散した光束)
<全光線透過率 >
日本電色 (株) 製へ一ズメ一夕一 (MDH 2000) を用いて J I S 7 361— 1に準じて測定した。
<防眩性 >
作成した透明導電性積層体の透明導電層面と反対側の硬化樹脂層面へ蛍光灯を 映りこませる。 その時硬化樹脂層面に映りこんだ蛍光灯端部の見え方により防眩 性を評価した。 端部の映りこみのないものを良好 (〇)、 映りこみのあるものを 不良 (X) とした。
ぐアンチニュートンリング性 >
3波長蛍光灯の下で、 夕ツチパネルの表面 (垂直方向 0度) に対して斜め 60 度の方向から、 可動電極基板と固定電極基板を接触させた領域でのニュートンリ ングの有無を目視で観察した。 ニュートンリングが観測できないものを良好 (〇)、 かすかに観測できるものをやや良好 (△)、 明確に観測できるものを不良 (X) とした。
ぐチラツキ性 >
約 1 23 d p i (対角 10. 4ィンチ、 XGA (1, 024X 768ドッ 卜)) の液晶ディスプレイ上に夕ツチパネルを設置しチラツキの有無を目視で確 認した。 チラツキが確認できないものを良好 (〇)、 かすかに確認できるものを やや良好 (△)、 明確に確認できるものを不良 (X) とした。
ぐリニアリティー >
' 可動電極基板上又は固定電極基板上の平行電極間に直流電圧 5 Vを印加する。 平行電極と垂直の方向に 5 mm間隔で電圧を測定する。 測定開始位置 Aの電圧を EA、 測定終了位置 Bの電圧を EB、 Aからの距離 Xにおける電圧実測値を EX、 理論値を ET、 リニアリティーを Lとし、 下記式より求めた。
ET= (EB-EA) · X/ (B-A) +EA
L (%) = ( I ET-EX I ) / (EB-EA) - 100 <摺動耐久性 >
作成した夕ツチパネルの中央部を 0 . 8 Rのポリァセタール製のペンを用いて 4 5 0 g荷重で直線往復 5万回ずつ最大 3 0万回まで摺動を行い、 摺動耐久性試 験前後の夕ツチパネルのリニアリティ一変化量を測定した。 3 0万回でリニアリ ティ一変化量が 1 . 5 %未満の場合を良 (OK) とした。 リニアリティ一変化量 力 S 1 . 5 %以上となった場合、 電気特性を不良 (N G) とした。 また電気特性が N Gとなった摺動回数を測定した。
ぐ端押し耐久性 >
作製した夕ッチパネルの絶縁層から約 2 . 5 mmの位置を絶縁層と平行して可 動電極側から先端が 0 . 8 Rのポリアセタール製のペンを用いて 4 5 0 g荷重で 直線往復 1万回ずつ最大 1 0万回まで摺動を行い、 端押し耐久性試験前後のタツ チパネルのリニァリティ一変化量を測定した。
3 0万回でリニアリティ一変化量が 1 . 5 %未満の場合を良 (OK) とした。 リニアリティー変化量が 1 . 5 %以上となった場合、 電気特性を不良 (N G) と した。 また電気特性が N Gとなった摺動回数を測定した。
ぐ指打点耐久性 >
作製した夕ツチパネルの中央部 1箇所を指で強く最大 1万回打点し、 指打点前 後の夕ツチパネルの入力荷重変化を測定した。
ぐ指紋拭取り性 >
測定サンプルの硬ィ匕樹脂層表面が上になるように黒色板上に置き、 指紋をサン プル表面に押し付け、 市販のティッシュペーパーを用いて拭き取り、 その後サン プル表面に残存'する指紋の程度を目視で確認した。 指紋が観測されないものを良 好 (〇)、 かすかに観測されるものをやや良好 (△)、 明確に観測されるものを不 良 (X ) とした。
<耐光性 >
作製した夕ツチパネルの可動電極基板側に光を照射し、 A S TM G 1 5 4に 準拠した方法で耐光性試験を実施した。 耐光性試験後の外観変化 (硬化樹脂層剥 がれの有無) を確認した。 剥がれが観測されないものを良好 (〇)、 かすかに観 測されるものをやや良好 (△)、 明確に観測されるものを不良 (X) とした。
実施例 1
〔透明導電性積層体〕
(高分子フィルム)
基材として厚さ 188 imのポリエチレンテレフ夕レート (PET) フィルム (帝人デュポンフィルム (株) 製 OFW) を用いた。
(硬化樹脂層 (A))
基材の片面に、 下記塗工液 Aを用いてバーコート法によりコーティングし、 7 0°Cで 1分間乾燥した後、 紫外線を照射して硬化させることにより厚さ 3. 5/x mの硬化樹脂層 (A) を形成した。
塗工液 Aは、 不飽和二重結合含有アクリル共重合体 (SP値: 10. 0、 T g: 92°C) 4重量部、 ペンタエリスリト一ルトリアクリレ一ト (SP値: 12. 7) 100重量部、 光重合開始剤ィルガキュア 184 (チバスべシャリティ一ケ ミカル社製) 7重量部を、 ィソブチルアルコール溶媒に固形分が 40重量%とな るように溶解して作製した。
なお、 不飽和二重結合含有アクリル共重合体 (SP値: 10. 0、 Tg : 9 2°C) は、 以下のとおりに調製を行なった。
イソボロニルメ夕クリレート 171. 6 g、 メチルメタクリレート 2. 6 g、 メチルアクリル酸 9. 2 gからなる混合物を混合した。 この混合液を、 攪拌羽根、 窒素導入管、 冷却管及び滴下漏斗を備えた 1, 00 Oml反応容器中の、 窒素雰 囲気下で 110°Cに加温したプロピレングリコールモノメチルエーテル 330. O gに、 ターシャルブチルペルォキシ一 2—ェチルへキサノエ一ト 1. 8 gを含 むプロピレングリコールモノメチルエーテル 80. 0 g溶液と同時に 3時間かけ て等速で滴下し、 その後、 110°Cで 30分間反応させた。 その後、 夕一シャル ブチルペルォキシ—2—ェチルへキサノエート 0. 2 gを含むプロピレングリコ —ルモノメチルエーテル 17. 0 gの溶液を滴下してテトラプチルアンモニゥム ブロマイド 1. 4 gとハイドロキノン 0. l gを含む 5. 0 gのプロピレンダリ コールモノメチルエーテル溶液を加え、 空気バブリングしながら、 4—ヒドロキ シブチルァクリレートグリシジルエーテル 22. 4 gとプロピレングリコールモ ノメチルエーテル 5. 0 gの溶液を 2時間かけて滴下し、 その後 5時間かけて更 に反応させた。 数平均分子量 5, 500、 重量平均分子量 18, 000の不飽和 二重結合含有アクリル共重合体を得た。 この樹脂は、 SP値: 10. 0、 Tg : 92°C、 表面張力: 31 dyn/cmであった。
(硬化樹脂層 (B))
硬化樹脂層 (A) を形成した面と反対面に、 下記塗工液 Bを用いてバーコート 法によりコーティングし、 70°Cで 1分間乾燥した後、 紫外線を照射して硬化さ せることにより厚さ 3. 5 mの硬化樹脂層 (B) を形成した。
塗工液 Bは、 上記不飽和二重結合含有アクリル共重合体 (SP値: 10. 0、 Tg: 92°C) 4重量部、 ペン夕エリスリ) ^一ルトリァクリレート (SP値: 1 2. 7) 90重量部、 トリメチロールプロパントリエチレングリコールトリァク リレート (SP値: 1 1. 6) 10重量部、 光重合開始剤ィルガキュア 184 (チバスべシャリティーケミカル社製) 7重量部を、 イソブチルアルコール溶媒 に固形分が 40重量%となるように溶解して作製した。
(透明導電層) '
次いで、 硬化樹脂層 (A) 上に酸化インジウムと酸化錫の重量比が 95 : 5の 組成で充填密度 98%の酸化インジウム一酸化錫夕一ゲットを用いスパッタリン グ法により透明導電層 (I TO層) を形成した。 形成した透明導電層の膜厚は 2 O nmであった。 更に、 150°C 90分の熱処理を行い、 透明導電層 ( I TO 層) を結晶化させ透明導電性積層体を作製し可動電極基板とした。
I T〇層力 S結晶化した後の表面抵抗値は約 210Ω /口 (Ω/s q) であった。 なお、 TEMにより観察された I TO層の結晶粒径は 50 nm〜200 nmの範 囲であった。
〔夕ツチパネル〕
厚さ 1. 1mmのガラス板の両面に S i 02ディップコートを行った後、 スパ ッ夕リング法により厚さ 18 nmの I TO層を形成した。 次に I TO層上に高さ 7 ΠΙ、 直径 70 ^m、 ピッチ 1. 5mmのドットスぺ一サ一を形成することに より、 固定電極基板を作製した。
固定電極基板と可動電極基板とを用いて図 1に示す層構造を有する夕ツチパネ ルを作製した。 透明導電性積層体および夕ツチパネルの特性を表 1および表 2に 示す。 表 1および表 2から明らかなように、 本例の透明導電性積層体を使用した 夕ツチパネルは、 防眩性、 アンチニュートンリング性、 チラツキ性、 摺動耐久性、 端押し耐久性、 指打点耐久性、 指紋拭取り性および耐候性 (耐光性) が何れも良 好であった。
実施例 2
〔透明導電性積層体〕 ·
実施例 1と同様に厚さ 1 8 8 mのポリエステルテレフ夕レートフィルム (帝 人デュポンフィルム (株) 製 O FW) の各面に硬化樹脂層 (A) と硬化樹脂層 (B) を形成した。
(金属酸化物層)
その後、 硬化樹脂層 (A) 上に S iターゲットを用いてスパッタリング法によ り金属酸化物 (S i O x層) を形成した、 形成された S i O x層の膜厚は約 2 . 0 nmであった。
(透明導電層)
次いで金属酸化物層の上に、 実施例 1と同様にして透明導電層を形成し、 透明 導電性積層体を作製し可動電極基板とした。 なお、 T EMにより観察された I T O層の結晶粒径は 5 0 nm〜2 0 0 nmの範囲であった。
〔夕ツチパネル〕
実施例 1と同様にして固定電極基板を作製した。 作製した固定電極基板と可動 電極基板を用いて図 2示す層構造を有する夕ツチパネルを作製した。
作製した透明導電性積層体および夕ツチパネルの特性を表 1および表 2に示す。 表 1および表 2から明らかなように、 本例の透明導電性積層体を使用した夕ッチ パネルは、 防眩性、 アンチニュートンリング性、 チラツキ性、 摺動耐久性、 端押 し耐久性、 指打点耐久性、 指紋拭取り性および耐候性 (耐光性) 力何れも良好で あった。 実施例 3
〔透明導電性積層体〕
実施例 1と同様に厚さ 188; timのポリエステルテレフ夕レートフィルム (帝 人デュポンフィルム (株) 製 OFW) の各面に硬化樹脂層 (A) と硬化樹脂層 (B) を形成した。
(高屈折率層)
次にァーグリシドキシプロピルトリメトキシラン (信越化学工業 (株) 製 「K ΒΜ403J) とメチルトリメトキシシラン (信越化学工業 (株) 製 「ΚΒΜ1 3J) を 1 : 1のモル比で混合し、 酢酸水溶液 (ρΗ=3. 0) により公知の方 法で前記アルコキシシランの加水分解を行った。 こうして得たアルコキシシラン の加水分解物に対して Ν— jS (アミノエチル) ァ―ァミノプロピルメトキシシラ ン (信越化学工業 (株) 製 「KBM603」) を、 固形分の重量比率 20 : 1の 割合で添加し、 更にィソプロピルアルコールと n—ブ夕ノ一ルの混合溶液で希釈 を行い、 アルコキシシラン塗工液 Cを作製した。
塗工液 Cに 1次粒子径が 20 n mの T i O 2超微粒子を T i〇 2超微粒子とァ ルコキシシランとの重量比率が 50 : 50となるように混合した塗工液 Dを作製 した。 硬化樹脂層 (A) 上に、 塗工液 Dをバーコ一ト法でコーティングを行い 1 30°C2分間の焼成後、 膜厚が 55 nmの高屈折率層を形成した
(低屈折率層)
高屈折率層上に塗工液 Cをバーコ一ト法によりコーティングを行い 130°C2 分間の焼成後、 膜厚が 65 nmの低屈折率層を形成し、 高屈折率層と低屈折率層 よりなる光学干渉層を作製した。
(金属酸化物層)
その後、 光学干渉層上に S iターゲットを用いてスパッタリング法により S i Ox層を形成した、 形成された S i Ox層の膜厚は約 2. Onmであった。 (透明導電層)
次いで金属酸化物層の上に、 実施例 1と同様にして透明導電層を形成し、 透明 導電性積層体を作製し可動電極基板とした。 なお、 TEMにより観察された I T 〇層の結晶粒径は 5 0 nm〜 2 0 0 nmの範囲であった。
〔夕ツチパネル〕
実施例 1と同様にして固定電極基板を作製した。 作製した固定電極基板と可動 電極基板を用いて図 3に示す層構造を有する夕ツチパネルを作製した。 作製した 透明導電性積層体および夕ッチパネルの特性を表 1および表 2に示す。 表 1およ び表 2から明らかなように、 本例の透明導電性積層体を使用したタツチパネルは、 防眩性、 アンチニュートンリング性、 チラツキ性、 摺動耐久性、 端押し耐久性、 指打点耐久性、 指紋拭取り性および耐候性 (耐光性) が何れも良好であった。 実施例 4
〔透明導電性積層体〕
厚さ 1 8 8 mのポリエチレンテレフタレ一トフイルム (帝人デュポンフィル ム (株) 製 O FW) の片面にペン夕エリスリトールトリァクリレート 1 0 0重量 部、 光重合開始剤ィルガキュア 1 8 4 (チバスべシャリティーケミカル社製) 7 重量部、 レペリング性と滑り性を付与させるために界面活性剤を少量添加した塗 ェ液を用いてバーコート法によりコーティングし、 7 0 °Cで 1分間乾燥した後、 紫外線を照射して硬化させることにより厚さ 4 mの硬化樹脂層 (C) を形成し た。
硬化樹脂層 (C) を形成した面と反対面に実施例 1で使用した塗工液 Aを用い て実施例 1と同様にして硬ィ匕樹脂層 (A) を形成した。
その後、 実施例 1と同様にして硬化樹脂層 (A) 上に透明導電層を形成し、 透 明導電性積層体を作成し可動電極基板とした。 なお、 T EMにより観察された I T O層の結晶粒径は 5 0 nm〜2 0 0 nmの範囲であった。
〔夕ツチパネル〕
実施例 1と同様にして固定電極基板を作製した。 作製した固定電極基板と透明 導電性積層体を用いて図 1に示す層構成を有する夕ツチパネルを作製した。
作製した透明導電性積層体および夕ツチパネルの特性を表 1および表 2に示す。 表 1および表 2から明らかなように、 本例の透明導電性積層体を使用した夕ツチ パネルは、 アンチニュートンリング性、 チラツキ性、 摺動耐久性、 端押し耐久性、 3フ
指打点耐久性は何れも良好であった。 防眩性、 指紋拭き取り性および耐候性 (耐 光性) が不要な分野で使用するには十分な特性である。
' r一'
実施例 5 '
〔透明導電性積層体〕 .
厚さ 1 8 8 mのポリエチレンテレフタレ一トフイルム (帝人デュポンフィル ム (株) 製 O FW) の両面に、 実施例 1の塗工液 Aを用いて実施例 1と同様な 方法で硬化樹脂層 (A) を形成した。
次に、 一方の硬化樹脂層 (A) 上に酸化インジウムと酸化錫の重量比が 9 5 : 5の組成で充填密度 9 8 %の酸化インジウム一酸化錫ターゲットを用いスパッ夕 リング法により非晶質の透明導電層 (I T O層) を形成することにより透明導電 性積層体を作成し可動電極基板とした。
〔夕ツチパネル〕
作製した可動電極基板を用いて実施例 1と同様にして図 1に示す層構成を有す る夕ツチパネルを作製した。 作製した透明導電性積層体および夕ツチパネルの特 性を表 1および表 2に示す。
表 1および表 2から明らかなように、 摺動耐久性、 端押し耐久性、 指打点耐久 性および耐候性 (耐光性) が実施例 1と比較した場合劣っている。 摺動耐久性、 端押し耐久性、 指打点耐久性が実施例 1と比較して劣っているのは、 透明導電層 が非晶質であるためである。 また、 耐候性 (耐光性) 力 S実施例 1と比較して劣つ ているのは、 透明導電層が形成された面と反対面の硬化樹脂層にトリメチロール プロパントリエチレンダリコールトリァクリレ一卜力含有されていないためであ る。
比較例 1
〔透明導電性積層体〕
厚さ 1 8 8 mのポリエチレンテレフ夕レートフィルム (帝人デュポンフィル ム (株) 製 O FW) の片面に、 実施例 1の塗工液 Aを用いて実施例 1と同様に 硬化樹脂層 (A) を形成した。 硬化樹脂層 (A) を形成した面と反対面に、 下記 塗工液 Eを用いてバーコート法によりコーティングし、 7 0 °Cで 1分間乾燥した 後、 紫外線を照射し厚さ 2 . 1 A mの硬化樹脂層 (E) を形成した。
塗工液 Eは、 ペン夕エリスリトールトリァクリレート 1 0 0重量部、 ィルガキ ユア 1 8 4 (チバ ·スペシャルティ ·ケミカルズ社製) 5重量部、 宇部日東化成 社製 ひヽィプレシ力 F Q、 3 . 0 im品、 グレード N 3 N) 0 . 7重量部の混合 物をイソプロビルアルコールと 1 —メ卜キシ— 2—プロパノールの 1 : 1混合溶 媒に固形分が 2 5重量%となるよう調整して作製した。
次いで、 硬化樹脂層 (E) 上に実施例 1と同様に透明導電層を形成し、 透明導 電性積層体を作成し可動電極基板とした。 なお、 T EMにより観察された I T O 層の結晶粒径は 5 0 n m〜2 0 0 nmの範囲であった。
〔夕ツチパネル〕
作製した透明導電性積層体を用いて実施例 1と同様にして図 1の層構造を有す る夕ツチパネルを作製した。 作製した透明導電性積層体および夕ツチパネルの特 性を表 3および表 4に示す。 表 3および表 4から明らかなように、 硬化性樹脂層 の成分に微粒子を含有する本例の透明導電性積層体は、 チラツキ性、 摺動耐久性、 端押し耐久性、 指打点耐久性および耐候性 (耐光性) が不良である。
比較例 2
〔透明導電性積層体〕
比較例 1と同様な方法で厚さ 1 8 8 / mのポリエステルテレフタレートフィル ム (帝人デュポンフィルム (株) 製 O FW) の各面に硬化樹脂層 (A) と硬化樹 脂層 (E) を形成した。 その後、 硬化樹脂層 (E) 上に実施例 2と同様な方法で S i O x層と I T O層を形成することにより透明導電性積層体を作製した。
〔夕ツチパネル〕
作製した透明導電性積層体を用いて実施例 2と同様にして図 2の層構造を有す る夕ツチパネルを作製した。 作製した透明導電性積層体および夕ツチパネルの特 性を表 3および表 4に示す。 表 3および表 4から明らかなように、 硬化性樹脂層 の成分に微粒子を含有する本例の透明導電性積層体は、 チラツキ性、 摺動耐久性、 端押し耐久性、 指打点耐久性および耐候性 (耐光性) が不良である。
比較例 3 〔透明導電性積層体〕
比較例 1と同様な方法で厚さ 1 8 8 zmのポリエステルテレフタレ一トフィル ム (帝人デュポンフィルム (株) 製 O FW) の各面に硬化樹脂層 (A) と硬化樹 脂層 (E) を形成した。 その後、 硬化樹脂層 (E) 上に実施例 3と同様な方法で 高屈折率層、 低屈折率層、 S i〇x層および I T O層を形成することにより透明 導電性積層体を作製した。
〔夕ツチパネル〕
作製した透明導電性積層体を用いて実施例 3と同様にして図 3に示す層構造を 有する夕ツチパネルを作製した。 作製した透明導電性積層体および夕ツチパネル の特性を表 3および表 4に示す。 表 3および表 4から明らかなように、 硬化性樹 脂層の成分に微粒子を含有する本例の透明導電性積層体は、 チラツキ性、 摺動耐 久性、 端押し耐久性、 指打点耐久性および耐候性 (耐光性) が不良である。 比較例 4
〔透明導電性積層体〕
比較例 1と同様な方法で厚さ 1 8 8 xmのポリエステルテレフ夕レートフィル ム (帝人デュポンフィルム (株) 製 O FW) の各面に硬化樹脂層 (A) と硬化樹 脂層 (E) を形成した。 その後、 硬化樹脂層 (E) 上に実施例 5と同様に非晶質 の I T O層を形成することにより透明導電性積層体を作成した。
〔夕ツチパネル〕
作成した透明導電性積層体を用いて実施例 5と同様にして図 1の層構造を有す る夕ツチパネルを作成した。 作成した透明導電性積層体および夕ツチパネルの特 性を表 3および表 4に示す。 表 3および表 4からわかるように、 硬化樹脂層の成 分に微粒子を含有し、 更に透明導電層が非晶質であった場合の本例の透明導電性 積層体は、 チラツキ性、 摺動耐久性、 端押し耐久性、 指打点耐久性が実施例 5と 比較して劣っている。
比較例 5
〔透明導電性積層体〕
厚さ 1 8 8 ; Limのポリエステルテレフ夕レートフィルム (帝人デュポンフィル ム (株) 製 O FW) の片面に、 下記塗工液 Fを用いてバーコート法によりコーテ イングし、 7 0 で 1分間乾燥した後、 紫外線照射して硬ィ匕させることにより厚 さ 4. 0 mの硬化樹脂層 (F) を形成した。
塗工液 Fは、 ペン夕エリスリト一ルァクリレー卜 1 0 0重量部、 光重合開始剤 ィルガキュア 1 8 4 (チバスべシャリティ一ケミカル社製) 7重量部、 平均 1次 粒子径が 4. 5 mのシリカ微粒子 (東芝シリコーン (株) 製、 トスパール 1 4 5 ) 1 0重量部を、 イソプロピルアルコールと 1ーメトキシー 2—プロパノール の 1 : 1混合溶媒に固形分が 4 0重量%となるように溶解した後、 レべリング性 と滑り性を付与させるために界面活性剤を少量添加して作成した。
硬化樹脂層 (F ) を形成した面と反対面に、 比較例 1で用いた硬化樹脂層 (E) を形成した。 次いで、 硬化樹脂層 (E) 上に実施例 1と同様に I T O層を 形成することにより透明導電性積層体を作成した。
〔夕ツチパネル〕
作成した透明導電性積層体を用いて実施例 1と同様にして図 1の夕ツチパネル を作成した。 作成した透明導電性積層体および夕ツチパネルの特性を表 3および 表 4に示す。 表 3および表 4からも明らかのように、 チラツキ性、 耐指紋拭取り 性、 摺動耐久性、 端押し耐久性、 指打点耐久性および耐候性 (耐光性) が不良で ある。
表 1
Figure imgf000042_0001
表 2
Figure imgf000043_0001
表 3
Figure imgf000044_0001
表 4
Figure imgf000045_0001
実施例 6
〔透明導電性積層体〕
実施例 1で作成した透明導電性積層体上に実施例 1と同様にしてドットスべ一 サーを形成することにより固定電極基板を作製した。 可動電極基板として日東電 ェ (株) 製 V 2 7 0 L— T FMPを用いた。
〔夕ツチパネル〕
可動電極基板と固定電極基板とを用いて図 4の層構造を有する夕ッチパネルを 作製した。 作製した夕ツチパネルの可動電極基板 ·固定電極基板同士を指で挟み、 可動電極基板 ·固定電極基板を強く擦り合わせた。 擦り合わせた前後で可動電極 基板のリニアリティ一測定をした。 擦り合わせた前後でリニアリティ一の変化は 見られなかった。 顕微鏡を用いて透明導電性積層体の導電層表面を観察した。 擦 り合わせた領域内に着傷は見られなかつた。
実施例 7
〔透明導電性積層体〕
厚さ 1 0 0 mのポリ力一ポネ一トフイルム (帝人化成 (株) 製 "ピュアエー ス") を用いた以外は、 実施例 1と同様にして透明導電性積層体を作製した。 作 製した透明導電性積層体を用いて実施例 6と同様にして固定電極基板を作製した。 可動電極基板として日東電工 (株) 製 V 2 7 0 L— T F M Pを用いた。
〔夕ツチパネル〕
次に、 可動電極基板と固定電極基板とを用いて実施例 6と同様にして図 4に示 す層構造を有する夕ツチパネルを作製した。 作製した夕ツチパネルの可動電極 · 固定電極基板同士を指で挟み、 可動電極基板 ·固定電極基板を強く擦り合わせた。 擦り合わせた前後で可動電極基板のリニァリティ一測定をした。 擦り合わせた前 後でリニァリティ一の変化は見られなかった。
顕微鏡を用いて可動電極基板の導電層表面を観察した。 擦り合わせた領域内に 着傷は見られなかった。
比較例 6
〔透明導電性積層体〕 比較例 1で作製した透明導電性積層体を用いて実施例 6と同様にして固定電極 基板を作製した。 可動電極基板として日東電工 (株) 製 V 2 7 0 L— T FMPを 用いた。
〔夕ツチパネル〕
次に、 可動電極基板と固定電極基板とを用いて実施例 6と同様にして図 4に示 す層構造を有する夕ツチパネルを作製した。
作製したタツチパネルの可動電極基板,固定電極基板同士を指で挟み、 可動電 極基板 ·固定電極基板を強く擦り合わせた。 擦り合わせた前後で可動電極基板の リニァリティ一測定をした。 擦り合わせた後に可動電極基板のリニァリティ一が 大きくなつていることを確認した。 更に可動電極基板の端子間抵抗値も上昇して いることを確認した。
顕微鏡を用いて可動電極基板の導電層表面を観察した。 擦り合わせた領域内に 固定電極基板中に含まれる微粒子による着傷を多数確認した。 確認された着傷に より可動電極基板のリニァリティ一、 端子間抵抗値が上昇したものと判断した。 発明の効果
本発明の透明導電性積層体は、 硬化樹脂層中に凹凸を付与するための微粒子を 含有せず、 硬化樹脂層一 1の表面に凹凸を有する。 本発明の透明導電性積層体は、 微粒子を含有しないのでチラツキが少ない。 本発明の透明導電性積層体は、 摺動 耐久性、 端押し耐久性、 指打点耐久性に優れ、 夕ツチパネルの可動電極基板とし て用いることができる。 本発明の透明導電性積層体は、 対向する基板表面を着傷 することが少なく、 夕ツチパネルの固定電極基板として用いることができる。 本発明の夕ツチパネルは、 チラツキが少なく且つニュートンリングの発生も少 ない。 また本発明の夕ツチパネルは、 摺動耐久性、 端押し耐久性、 指打点耐久性 に優れる。
また本発明の夕ツチパネルは、 可動電極基板表面に着傷が少ない。 さらに本発 明の硬化樹脂層— 2を有する夕ツチパネルは耐光性に優れる。 産業上の利用可能性
本発明の透明導電性積層体は、 夕ツチパネルの可動電極基板または固定電極基 板として用いることができる。

Claims

1. 高分子フィルム、 硬化樹脂層一 1および透明導電層がこの順序に積層され た積層体であって、 硬化樹脂層一 1は、 二種の成分が相分離して形成された凹凸 を有し、 かつ凹凸を付与するための微粒子を含有せず、 硬化樹脂層一 1の J I S B 0601—1994による算術平均粗さ (R a) が 0. 05 111以上0. 5 n m未満であり、 J I S B0601-1982による十点平均粗さ (R z ) が 0. 5 /im以上 2 未満であるこ請とを特徴とする透明導電性積層体。
2. 硬化樹脂層 4
一 1を形成する二種のつ成o c分のうち、 第 1成分が不飽和二重結合 含有ァクリル共重合体であり、 第 2成分が多官能性不飽和二重結合含有モノマー である請求項 1記載の透明導電性積層体。 囲
3. 第 1成分の SP値 (SP 1) および第 2成分の SP値 (SP2) 、 SP KSP2を満たす請求項 2記載の透明導電性積層体。
4. 高分子フィルムの透明導電層が形成された面の反対面に、 硬化樹脂層— 2 を有し、 硬化樹脂層一 2は、 二種の成分が相分離して形成された凹凸を有し、 か つ凹凸を付与するための微粒子を含有せず、 硬化樹脂層— 2の J I S B060 1一 1994による算術平均粗さ (R a) が 0. 05 zm以上 0. 5 xm未満で あり、 J I S BO 601—1982による十点平均粗さ (Rz) が 0. 5 m 以上 2 m未満である請求項 1記載の透明導電性積層体。
5. 硬化樹脂層一 2を形成する二種の成分のうち、 第 1成分が不飽和二重結合 ァクリル共重合体であり、 第 2成分が多官能性不飽和二重結合含有モノマーであ る請求項 4記載の透明導電性積層体。
6. 第 1成分の SP値 (SP 1) および第 2成分の SP値 (SP2) 力 SP 1 < S P 2を満たす請求項 5記載の透明導電性積層体。
7. 硬化樹脂層一 2における第 2成分が、 炭素数 2〜4のアルキレンォキシド 単位をモノマー 1分子中に 3〜 6モル当量有する 3官能以上の多官能性不飽和二 重結合含有モノマーである請求項 5記載の透明導電性積層体。
8. 多官能性不飽和二重結合含有モノマ一を、 硬化樹脂層— 2中に 2〜 40重 量%含有する請求項 7記載の透明導電性積層体。
9. J I S K 7136で定義されるヘーズが 2%以上 20 %未満である請 求項 1に記載の透明導電性積層体。
10. 硬化樹脂層— 1と透明導電層との間に膜厚が 0. 5 nm以上 5 nm未満 の金属酸化物層を有する請求項 1に記載の透明導電性積層体。
11. 透明導電層の膜厚が 5 nm以上 5 Onm以下であり、 かつ結晶質である 請求項 1に記載の透明導電性積層体。
12. 硬化樹脂層— 1と透明導電層との間に屈折率が 1. 2〜 1. 55、 膜厚 が 0. 05 111以上0. 5 m以下である硬化樹脂層一 3を有する請求項 1に記 載の透明導電性積層体。
13. 硬化樹脂層一 1と金属酸化物層の間に屈折率が 1. 2〜 1. 55、 膜厚 が 0. Ο δ^πι以上 0. 5 /im以下である硬化樹脂層— 3を有する請求項 10記 載の透明導電性積層体。
14. 硬化樹脂層— 1と透明導電層との間に、 低屈折率層と高屈折率層とから なる光学千渉層を有し、 低屈折率層が透明導電層と接する請求項 1に記載の透明 導電性積層体。
1 5 . 硬化樹脂層— 1と金属酸ィ匕物層との間に、 低屈折率層と高屈折率層とか らなる光学干渉層を有し、 低屈折率層が金属酸化物層と接する請求項 1 0記載の 透明導電性積層体。
1 6 . 請求項 1〜1 4のいずれか一項に記載の透明導電性積層体を有するタツ チパネル。
1 7 . 少なくとも片面に透明導電層が設けられた 2枚の透明電極基板力 互い の透明導電層同士が向き合うように配置された夕ツチパネルにおいて、 少なくと も一方の透明電極基板として請求項 1に記載の透明導電性積層体を用いた夕ツチ パネル。
PCT/JP2008/067590 2007-10-26 2008-09-19 透明導電性積層体およびタッチパネル WO2009054227A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/739,673 US8512847B2 (en) 2007-10-26 2008-09-19 Transparent conductive laminate and touch panel
CN200880113304.1A CN101874275B (zh) 2007-10-26 2008-09-19 透明导电性层叠体和触摸面板
KR1020147037168A KR20150013914A (ko) 2007-10-26 2008-09-19 투명 도전성 적층체 및 터치 패널
KR1020107008735A KR101521317B1 (ko) 2007-10-26 2008-09-19 투명 도전성 적층체 및 터치 패널
EP08841112.9A EP2211355B1 (en) 2007-10-26 2008-09-19 Transparent conductive laminate and touch panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-278495 2007-10-26
JP2007278495 2007-10-26
JP2008-233357 2008-09-11
JP2008233357A JP5033740B2 (ja) 2007-10-26 2008-09-11 透明導電性積層体およびタッチパネル

Publications (1)

Publication Number Publication Date
WO2009054227A1 true WO2009054227A1 (ja) 2009-04-30

Family

ID=40579334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067590 WO2009054227A1 (ja) 2007-10-26 2008-09-19 透明導電性積層体およびタッチパネル

Country Status (7)

Country Link
US (1) US8512847B2 (ja)
EP (1) EP2211355B1 (ja)
JP (1) JP5033740B2 (ja)
KR (2) KR20150013914A (ja)
CN (1) CN101874275B (ja)
TW (1) TWI453767B (ja)
WO (1) WO2009054227A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002820A (ja) * 2009-05-21 2011-01-06 Daicel Chemical Industries Ltd ニュートンリング防止フィルム及びタッチパネル
JP4640535B1 (ja) * 2009-10-19 2011-03-02 東洋紡績株式会社 透明導電性フィルム及びこれを用いたタッチパネル
JP2012243289A (ja) * 2011-05-24 2012-12-10 Geomatec Co Ltd 静電容量型入力装置用電極基板及び静電容量型入力装置
WO2013015039A1 (ja) * 2011-07-26 2013-01-31 株式会社きもと 静電容量式タッチパネルおよび防眩性フィルム
JP2013507682A (ja) * 2009-10-08 2013-03-04 エルジー イノテック カンパニー リミテッド タッチパネル用板状部材及びその製造方法
TWI397926B (zh) * 2009-10-20 2013-06-01 Toyo Boseki 透明導電性薄膜及使用它之觸控面板

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383752A4 (en) * 2008-12-26 2012-08-15 Teijin Ltd TRANSPARENT ELECTROCONDUCTIVE LAMINATE AND TRANSPARENT TOUCH SCREEN
JP5618520B2 (ja) * 2008-12-26 2014-11-05 帝人株式会社 透明導電性積層体及び透明タッチパネル
TWI517185B (zh) 2009-03-31 2016-01-11 Teijin Ltd Transparent conductive laminates and transparent touch panels
JP5408075B2 (ja) * 2009-10-06 2014-02-05 日油株式会社 透明導電性フィルム
JP5501800B2 (ja) * 2010-02-25 2014-05-28 株式会社ダイセル 透明導電性膜及びタッチパネル
CN103003781B (zh) * 2010-07-14 2016-08-17 Lg伊诺特有限公司 触摸面板及其制造方法
KR101266545B1 (ko) 2010-11-26 2013-05-24 제일모직주식회사 광확산 필름 및 이를 이용한 백라이트 유닛
JP5971121B2 (ja) * 2010-11-29 2016-08-17 コニカミノルタ株式会社 光学フィルムの製造方法
JP5806620B2 (ja) 2011-03-16 2015-11-10 日東電工株式会社 透明導電性フィルムおよびタッチパネル
EP2696354A4 (en) * 2011-04-06 2014-10-01 Teijin Ltd TRANSPARENT LEADING LAMINATE AND TRANSPARENT TOUCH SCREEN
JP5808966B2 (ja) * 2011-07-11 2015-11-10 富士フイルム株式会社 導電性積層体、タッチパネル及び表示装置
US9164642B2 (en) * 2011-08-02 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Touch panel
JP2013195483A (ja) * 2012-03-16 2013-09-30 Sumitomo Chemical Co Ltd ディスプレイ用保護板
KR20140082404A (ko) * 2012-12-24 2014-07-02 도레이첨단소재 주식회사 투명 도전성 필름
JP5651259B2 (ja) * 2013-03-25 2015-01-07 積水ナノコートテクノロジー株式会社 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル
JP6199605B2 (ja) 2013-05-27 2017-09-20 日東電工株式会社 ハードコートフィルム及びハードコートフィルム巻回体
JP6201452B2 (ja) * 2013-06-27 2017-09-27 東レ株式会社 樹脂組成物およびそれを用いた成形品
KR102213491B1 (ko) * 2013-09-09 2021-02-08 닛뽄 가야쿠 가부시키가이샤 광학 부재의 제조 방법 및 그것에 이용하는 자외선 경화형 수지 조성물
JP6205224B2 (ja) * 2013-09-25 2017-09-27 株式会社きもと ベース基材シート及び静電容量式タッチパネル
JP6656799B2 (ja) * 2013-11-29 2020-03-04 王子ホールディングス株式会社 アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネル
CN103700517B (zh) * 2013-12-31 2015-10-07 南通万德科技有限公司 开关触点元件及其制备方法
KR102262757B1 (ko) * 2014-03-11 2021-06-09 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 광학 시트의 선별 방법 및 광학 시트의 제조 방법
JP6257428B2 (ja) * 2014-04-15 2018-01-10 株式会社ジャパンディスプレイ 電極基板、表示装置、入力装置および電極基板の製造方法
KR101760225B1 (ko) * 2014-07-18 2017-07-20 도판 인사츠 가부시키가이샤 파장 변환 시트용 보호 필름, 파장 변환 시트 및 백라이트 유닛
CN104112616B (zh) * 2014-07-21 2016-04-27 南通万德科技有限公司 一种消抖的按键及其制备方法
JP6720481B2 (ja) * 2014-07-29 2020-07-08 大日本印刷株式会社 積層体、導電性積層体及びタッチパネル
EP3208520B1 (en) 2014-10-16 2023-05-03 Toppan Printing Co., Ltd. Quantum dot protective film, quantum dot film using same, and backlight unit
JP6361462B2 (ja) * 2014-10-21 2018-07-25 大日本印刷株式会社 透明導電性積層体の選別方法、及び透明導電性積層体の製造方法
JP6577708B2 (ja) * 2014-12-05 2019-09-18 日東電工株式会社 透明導電性フィルムおよびそれを用いたタッチセンサ
KR102251886B1 (ko) * 2014-12-05 2021-05-14 엘지이노텍 주식회사 전극 부재 및 이를 포함하는 터치 윈도우
KR102382755B1 (ko) * 2015-02-26 2022-04-06 다이니폰 인사츠 가부시키가이샤 터치 패널, 표시 장치 및 광학 시트, 그리고 광학 시트의 선별 방법 및 광학 시트의 제조 방법
JP6484098B2 (ja) * 2015-04-24 2019-03-13 株式会社カネカ 透明導電フィルムおよび表示デバイス、並びに、透明導電フィルムの製造方法および表示デバイスの製造方法
KR20160150499A (ko) * 2015-06-22 2016-12-30 주식회사 엘지화학 도전성 필름
KR102040461B1 (ko) * 2015-06-22 2019-11-05 주식회사 엘지화학 도전성 필름
KR20170051111A (ko) * 2015-10-31 2017-05-11 엘지디스플레이 주식회사 표시 장치
KR101744821B1 (ko) 2015-12-22 2017-06-08 현대자동차 주식회사 초박형 스위치 및 이의 제조방법
CN107124900A (zh) * 2015-12-25 2017-09-01 松下知识产权经营株式会社 触摸面板和使用该触摸面板的显示装置
JP6852731B2 (ja) * 2016-04-25 2021-03-31 大日本印刷株式会社 タッチパネル、表示装置、光学シート及び光学シートの選別方法
JP2018072588A (ja) * 2016-10-31 2018-05-10 三菱ケミカル株式会社 ハードコートフィルム及び硬化性組成物
JP2019057141A (ja) * 2017-09-21 2019-04-11 シャープ株式会社 ペン入力用表面材、偏光板及び表示装置
US11947136B2 (en) * 2018-03-26 2024-04-02 Daicel Corporation Anti-Newton ring film, and manufacturing method and use thereof
WO2019188904A1 (ja) 2018-03-30 2019-10-03 住友化学株式会社 センサ及びその製造方法
JP7116994B2 (ja) * 2018-06-27 2022-08-12 ロック技研工業株式会社 Itoフィルム及び透明導電性フィルム
WO2024009887A1 (ja) * 2022-07-08 2024-01-11 日本電気硝子株式会社 触感呈示デバイス用トップパネル、触感呈示デバイス、及び触感呈示デバイス用トップパネルの製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361283A (ja) * 1986-09-01 1988-03-17 日東電工株式会社 タツチパネル
JPH10323931A (ja) 1997-05-26 1998-12-08 Kanegafuchi Chem Ind Co Ltd 透明導電性フィルム
JP2001084839A (ja) 1999-09-17 2001-03-30 Kimoto & Co Ltd 透明導電性薄膜易接着フィルム
JP2002163933A (ja) * 2000-11-27 2002-06-07 Toyobo Co Ltd 透明導電性フィルム、透明導電性シートおよびタッチパネル
JP2002373056A (ja) 2001-03-08 2002-12-26 Nippon Paper Industries Co Ltd ニュートンリング防止フィルム及びタッチパネル
WO2005073763A1 (ja) 2004-01-29 2005-08-11 Nippon Paint Co., Ltd. 防眩性コーティング組成物、防眩フィルムおよびその製造方法
JP2006190509A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190510A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190508A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190512A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190511A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006252875A (ja) * 2005-03-09 2006-09-21 Teijin Ltd 透明導電性積層体及び透明タッチパネル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495253B1 (en) * 1999-09-17 2002-12-17 Kimoto Co., Ltd. Support film for a transparent conductive thin film
JP4543292B2 (ja) * 2000-02-10 2010-09-15 東洋紡績株式会社 透明導電性フィルム、透明導電性シートおよびタッチパネル
US6806031B2 (en) * 2000-05-15 2004-10-19 Fuji Photo Film Co., Ltd. Support for lithographic printing plate and presensitized plate
WO2003012799A1 (fr) * 2001-07-31 2003-02-13 Toyo Boseki Kabushiki Kaisha Film conducteur transparent et procede de fabrication associe, feuille conductrice transparente et ecran tactile
KR100949870B1 (ko) * 2001-12-17 2010-03-25 다이셀 가가꾸 고교 가부시끼가이샤 방현성 필름, 및 이를 이용한 광학 부재 및 액정디스플레이 장치
CN100376907C (zh) * 2002-12-20 2008-03-26 帝人株式会社 透明导电性层压体、触摸屏和带有触摸屏的液晶显示装置
JP4895482B2 (ja) * 2003-11-27 2012-03-14 富士通コンポーネント株式会社 タッチパネル及びその製造方法
JP2005165213A (ja) * 2003-12-05 2005-06-23 Canon Inc 帯電部材、画像形成装置、帯電方法及びプロセスカートリッジ
WO2006027859A1 (ja) * 2004-09-07 2006-03-16 Teijin Limited 透明導電性積層体及び透明タッチパネル
JP2007182519A (ja) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd アンチブロッキング性光硬化性樹脂組成物、それを基材上に被覆硬化したアンチブロッキング性構造体およびその製法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361283A (ja) * 1986-09-01 1988-03-17 日東電工株式会社 タツチパネル
JPH10323931A (ja) 1997-05-26 1998-12-08 Kanegafuchi Chem Ind Co Ltd 透明導電性フィルム
JP2001084839A (ja) 1999-09-17 2001-03-30 Kimoto & Co Ltd 透明導電性薄膜易接着フィルム
JP2002163933A (ja) * 2000-11-27 2002-06-07 Toyobo Co Ltd 透明導電性フィルム、透明導電性シートおよびタッチパネル
JP2002373056A (ja) 2001-03-08 2002-12-26 Nippon Paper Industries Co Ltd ニュートンリング防止フィルム及びタッチパネル
WO2005073763A1 (ja) 2004-01-29 2005-08-11 Nippon Paint Co., Ltd. 防眩性コーティング組成物、防眩フィルムおよびその製造方法
JP2006190509A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190510A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190508A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190512A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190511A (ja) * 2005-01-04 2006-07-20 Teijin Ltd 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006252875A (ja) * 2005-03-09 2006-09-21 Teijin Ltd 透明導電性積層体及び透明タッチパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2211355A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002820A (ja) * 2009-05-21 2011-01-06 Daicel Chemical Industries Ltd ニュートンリング防止フィルム及びタッチパネル
US20120070614A1 (en) * 2009-05-21 2012-03-22 Hiroshi Takahashi Anti-newton-ring film and touch panel
JP2013507682A (ja) * 2009-10-08 2013-03-04 エルジー イノテック カンパニー リミテッド タッチパネル用板状部材及びその製造方法
JP4640535B1 (ja) * 2009-10-19 2011-03-02 東洋紡績株式会社 透明導電性フィルム及びこれを用いたタッチパネル
WO2011048647A1 (ja) * 2009-10-19 2011-04-28 東洋紡績株式会社 透明導電性フィルム及びこれを用いたタッチパネル
TWI397926B (zh) * 2009-10-20 2013-06-01 Toyo Boseki 透明導電性薄膜及使用它之觸控面板
JP2012243289A (ja) * 2011-05-24 2012-12-10 Geomatec Co Ltd 静電容量型入力装置用電極基板及び静電容量型入力装置
WO2013015039A1 (ja) * 2011-07-26 2013-01-31 株式会社きもと 静電容量式タッチパネルおよび防眩性フィルム

Also Published As

Publication number Publication date
CN101874275B (zh) 2015-09-09
TW200937457A (en) 2009-09-01
KR20150013914A (ko) 2015-02-05
EP2211355A4 (en) 2010-11-24
KR20100088127A (ko) 2010-08-06
CN101874275A (zh) 2010-10-27
JP2009123685A (ja) 2009-06-04
US20100289762A1 (en) 2010-11-18
EP2211355A1 (en) 2010-07-28
KR101521317B1 (ko) 2015-05-18
EP2211355B1 (en) 2017-04-26
JP5033740B2 (ja) 2012-09-26
TWI453767B (zh) 2014-09-21
US8512847B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
JP5033740B2 (ja) 透明導電性積層体およびタッチパネル
JP5091165B2 (ja) 透明導電性積層体およびそれよりなるタッチパネル
US10042481B2 (en) Transparent electroconductive laminate and transparent touch panel
JP4423264B2 (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
US10061461B2 (en) Transparent electroconductive laminate and transparent touch panel using the same
TW200937458A (en) Transparent conductive laminate and transparent touch panel
WO2001016963A1 (fr) Corps conducteur transparent multicouches et ecran tactile comprenant ce dernier
JP2011140187A (ja) 積層フィルム、透明導電性積層フィルムおよび電子部品
JP5393222B2 (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP2007042283A (ja) 透明導電性積層体及び透明タッチパネル
JP2005209431A (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP4393573B1 (ja) 透明導電性積層体およびそれを用いた透明タッチパネル
JP2006190512A (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP2005014572A (ja) 端押し耐久性に優れた透明導電性積層体
JP2006190508A (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP4384250B1 (ja) 透明導電性積層体およびそれを用いた透明タッチパネル
JP2006190510A (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190511A (ja) 透明導電性積層体及びそれを用いた透明タッチパネル
JP2006190509A (ja) 透明導電性積層体及びそれを用いた透明タッチパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880113304.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841112

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20107008735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008841112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008841112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12739673

Country of ref document: US