WO2008156195A1 - 耐硫酸腐食性に優れたフェライト系ステンレス鋼板およびその製造方法 - Google Patents

耐硫酸腐食性に優れたフェライト系ステンレス鋼板およびその製造方法 Download PDF

Info

Publication number
WO2008156195A1
WO2008156195A1 PCT/JP2008/061501 JP2008061501W WO2008156195A1 WO 2008156195 A1 WO2008156195 A1 WO 2008156195A1 JP 2008061501 W JP2008061501 W JP 2008061501W WO 2008156195 A1 WO2008156195 A1 WO 2008156195A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
stainless steel
steel sheet
ferritic stainless
Prior art date
Application number
PCT/JP2008/061501
Other languages
English (en)
French (fr)
Inventor
Tomohiro Ishii
Yoshimasa Funakawa
Takumi Ujiro
Masayuki Ohta
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US12/664,913 priority Critical patent/US8152937B2/en
Priority to EP08765822.5A priority patent/EP2163658B9/en
Priority to CN2008800210638A priority patent/CN101680066B/zh
Priority to ES08765822T priority patent/ES2802413T3/es
Publication of WO2008156195A1 publication Critical patent/WO2008156195A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention is directed to a ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid.
  • the present invention also relates to a ferrite stainless steel plate having a rough surface of a bent part where bending work of 90 ° or more is performed and a manufacturing method thereof. Is. Background technology ⁇
  • Fossil fiiels such as petroleum and coal contain sulfur (hereinafter referred to as S). Therefore, when the meteorite fuel burns, S is oxidized and sulfur oxides such as so 2 (so-called SO x ) are mixed into the exhaust gas.
  • SO x sulfur oxides
  • SO x When the temperature of the exhaust gas decreases in the pipe, this SO x reacts with the moisture in the exhaust gas to become sulfuric acid, and condensation occurs on the inner surface of the pipe.
  • This condensed sulfuric acid causes corrosion of the pipe (hereinafter referred to as sulfuric corrosion).
  • Gasoline also includes S, which is an automobile engine. Corrosion of sulfuric acid also occurs in the exhaust gas piping discharged from the plant. Therefore, technology for preventing sulfuric acid corrosion is also required for exhaust gas piping of automobiles. In addition, there are few pipes with severe bending force S.
  • Japanese Patent Application Laid-Open No. 56-146857 discloses a technique for improving acid resistance by reducing the S content of ferritic stainless steel to 0.005 mass% or less.
  • acid resistance is investigated by immersing in boiling hydrochloric acid, and the resistance to sulfuric acid corrosion resistance is not clear.
  • JP-A-7-188866 discloses intergranular corrosion by nitric acid (nitric acid) by reducing the content of C and N in a fluorescent stainless steel and defining the contents of Mn, Ni and B. A technique for suppressing corrosion) is disclosed.
  • the generation mechanism of intergranular corrosion due to nitric acid is that the presence of nitrate ions makes the environmental potential noble, and the failure behavior of the passive film of stainless steel and the stability of the corrosion products Therefore, further research is necessary to apply the technique disclosed in Japanese Patent Application Laid-Open No. 7-188866 to the prevention of sulfuric acid corrosion.
  • An object of the present invention is to provide a Freight type stainless steel plate having excellent sulfuric acid corrosion resistance even in a high temperature environment.
  • the present invention further provides a ferritic stainless steel sheet in which the bending portion subjected to the bending process of 90 ° or more has less skin roughness.
  • ferritic stainless steel sheet In order to improve the formability of ferritic stainless steel sheet, a technology that significantly reduces C and N in the refined process of the molten steel used as a raw material, or carbide and carbide added with Ti and Nb added to the molten steel Techniques to stabilize C and N by forming (nitride) are being studied. As a result, deep drawing characteristics superior to austenitic stainless steel sheet Ferritic stainless steel sheets having the following have been developed. However, conventional ferritic stainless steel sheets with excellent deep drawability have improved formability in deep drawing as evaluated by the Rankford value (so-called r value).
  • Surface roughness is a general term for various surface defects. Ferritic stainless steel sheets frequently have surface roughness called ridging. Ridging is a surface defect caused by a difference in deformation for each texture when a texture parallel to the rolling direction produced by rolling is processed. Steel with suppressed ridging is reported to have many reported strengths. Therefore, it is considered that the generation mechanism of ridging and rough skin is different, and appropriate measures are required. In particular, when the bending process is performed at 90 ° or more, rough skin occurs remarkably.
  • the present invention provides a ferritic stainless steel sheet having excellent sulfuric acid corrosion resistance even in a high-temperature environment, and having less rough skin at the bending portion subjected to bending at 90 ° or more, and a method for producing the same.
  • the purpose is to do. Disclosure of the invention
  • the inventors diligently studied the generation mechanism of sulfuric acid corrosion of the fluorescent stainless steel.
  • sulfur-containing inclusions precipitates containing S
  • S-containing precipitates dissolve upon contact with sulfuric acid, S-containing precipitates can be observed at sites where sulfuric acid corrosion has occurred. And few. Therefore, the inventors focused on the S-containing precipitates before the sulfuric acid corrosion occurred, and investigated the influence of the particle size of the S-containing precipitates on the progress of the sulfuric acid corrosion.
  • the inventors examined the mechanism by which the rough surface (different from ridging) occurs in the bent part by bending the ferritic stainless steel sheet. As a result, a correlation was found between the average grain diameter of the ferrite crystal grains at the bent portion and the depth of rough skin. In other words, it was found that the smaller the average grain size of the ferrite crystal grains in the bent portion, the shallower the rough surface of the bent portion.
  • the present invention has been made based on these findings.
  • C 0.02 wt% or less
  • Si 0.05 to 0.8 wt%
  • 1 ⁇ 0.5 wt% or less
  • P 0.0 mass 0/0 less
  • S 0.010 mass% or less
  • C u 0.3-0.8 mass 0/0
  • Ni 0.5 wt% or less
  • Nb .20-.55 wt. / o
  • N Ferritic stainless steel sheet containing 0.02% by mass or less, the balance being Fe and inevitable impurities, and a structure in which the maximum grain size of precipitates containing S is 5 ⁇ m or less It is.
  • the ferritic stainless steel sheet of the present invention further has M: 0.3 mass in the above composition. / 0 hereinafter, Nb: a ferritic stainless steel sheet is 0 ⁇ 20 to 0.50 mass 0/0.
  • the ferritic stainless steel sheet of the present invention has Ti: 0.005 to 0.5 mass. /. , Zr: 0.5 mass. /.
  • Mo Ferritic stainless steel sheet containing one or more selected from 1.0% by mass or less.
  • the bright stainless steel plate of the present invention is as described above, C: 0.001 to 0.02 mass. / 0, N: 0.001 to 0.02 mass 0/0 in which the composition, even more under 30.0 Myupaiiota following average grain size of ferrite crystal grains, the organization and the maximum diameter of the precipitated NbC grains is not more than 1 mu m It is a ferritic stainless steel sheet.
  • this invention is C: 0.02 mass% or less, Si: 0.05-0.8 mass. Mn: 0.5 mass% or less, P: 0.04 mass. / 0 or less, S: 0.010 mass ° / 0 or less, Al.-0.10 wt ° / 0 or less, Cr: 20 to 24 wt ° / o, Cu: 0.3-0.8 mass 0/0, Ni: 0.5 mass 0/0 Nb: 0.20 to 0.55% by mass, N: 0.02% by mass or less, with the balance being Fe and unavoidable impurities, or steel ingot, hot rolled at a finishing temperature of 700 to 950 ° C Ferritic stainless steel that is cooled at an average cooling rate of 20 ° C / sec or more from the finishing temperature to the coiling temperature and coiled at a scraping temperature of 600 ° C or less. It is a manufacturing method of a steel plate.
  • the present invention is the above-described method for producing a ferritic stainless steel sheet that is scraped at a finishing temperature of 700 to 900 ° C. and a scraping temperature of 570 ° C. or less.
  • the present invention provides a method for producing a ferritic stainless steel sheet as described above, wherein the hot-rolled steel sheet is annealed at 900 to 1200 ° C, pickled and cold-rolled, and then annealed at an annealing temperature of less than 1,050 ° C. It is.
  • the present invention is a method for producing a ferritic stainless steel sheet as described above, wherein the hot-rolled steel sheet is annealed at 900 to 1100 ° C, pickled and cold-rolled, and then annealed at an annealing temperature of less than 900 ° C. .
  • C 0.001 to 0.02 mass%
  • Si 0.05 to 0.3 mass%
  • Mn 0.5 mass%. / 0 or less
  • P 0.0 mass% or less
  • S 0.01 mass% or less
  • Al 0.10 mass. /.
  • the present invention is the above-described method for producing a ferritic stainless steel sheet, wherein the steel sheet is cooled at an average cooling rate of 20 ° C./second or more up to the finishing temperature and scraping temperature. According to the present invention, a ferritic stainless steel sheet having excellent sulfuric acid corrosion resistance even in a high temperature environment can be obtained.
  • a ferritic stainless steel sheet can be obtained in which, in addition to the above characteristics, the bent portion subjected to bending at 90 ° or more causes less skin roughness.
  • Fig. 1 A graph showing the relationship between the grain size of S-containing precipitates and the solution probability of steel.
  • Fig. 2 Schematic diagram showing the method for measuring the rough skin depth of the bent part.
  • C is an element having an effect of increasing the strength of the ferritic stainless steel sheet. In order to acquire the effect, 0.001 mass% or more is preferable. However, if the C content exceeds 0.02 mass ° / 0 , the ferritic stainless steel sheet will harden and press formability will not be reduced. Nitride (carbonitride) precipitates and the resistance to sulfuric acid corrosion decreases. Therefore, C is 0.02 mass% or less. More preferably, it is 0.015 mass% or less.
  • C is within the range of 0.001 to 0.02 mass%. More preferably, it is 0.002 to 0.015 mass%.
  • Si is used as a deoxidizing agent in the steelmaking process of ferritic stainless steel.
  • Si content is 0.05 mass. /. If it is less than 1, sufficient deoxidation effect cannot be obtained. Therefore, a large amount of oxide precipitates on the manufactured fluorescent stainless steel sheet, resulting in weldability. (weldability), press formability decreases. On the other hand, if it exceeds 0.8% by mass, the ferritic stainless steel sheet is hardened and the workability is impaired, which hinders the manufacture of a bright stainless steel sheet. Therefore, Si is within the range of 0.05 to 0.8 mass%. More preferably, it is 0.05 to 0.3% by mass. More preferably, it is 0.06-0.28 mass%.
  • Mn is used as a deoxidizer in the melting stage of ferritic stainless steel. In order to acquire the effect, 0.01 mass% or more is preferable. Mn content is 0.5 mass. /. Exceeding the range causes the workability of the ferritic stainless steel sheet to be impaired by solid solution strengthening. In addition, it combines with S, which will be described later, and precipitation of MnS is promoted, resulting in a decrease in sulfuric acid corrosion resistance. Therefore, Mn is 0.5 mass% or less. More preferably, it is 0.3 mass% or less.
  • P is not related to sulfuric acid corrosion, but it is an element that causes various types of corrosion, so its content needs to be reduced.
  • the P content is 0.04 mass. If it exceeds / 0 , in addition to the problem of corrosion, P will pray to the grain boundaries and the workability of the ferritic stainless steel sheet will be impaired. As a result, it interferes with the production of ferritic stainless steel sheets. Therefore, P is 0.04 mass% or less. More preferably, it is 0.03 mass% or less.
  • S is an element that forms an S-containing precipitate (for example, MnS) by combining with Mn. Therefore, the lower the S content, the better. However, if it is 0.0005 mass% or less, desulfurization becomes difficult and the production load increases. Therefore, the content is preferably 0.0005% by mass or more.
  • S-containing precipitates are dissolved in contact with sulfuric acid, hydrogen sulfide is generated and the pH is locally lowered. A passive film is not formed immediately below the S-containing precipitate deposited on the surface of the fluorescent stainless steel sheet, and even after the S-containing precipitate is dissolved, a passive film is not formed because the pH is low. As a result, the iron base is exposed to sulfuric acid and sulfuric acid corrosion proceeds. If the S content exceeds 0.010% by mass, a large amount of S-containing precipitates precipitate and sulfuric acid corrosion becomes significant. Therefore, S should be 0.010 mass% or less. More preferably, it is 0.008 mass% or less.
  • N in the steel is precipitated as A1N that precipitates at a higher temperature than Nb carbonitride, and the amount of N combined with b is reduced, so that coarse Nb Suppression of carbonitride precipitation is suppressed. Therefore, Nb precipitates as fine NbC, which has an effect on the refinement of ferrite grains and the suppression of coarsening of S-containing precipitates.
  • the precipitated A1N is extremely fine, it inhibits the movement of dislocations during bending, promotes work hardening of the steel, and achieves the effect of uniform deformation of the bent part.
  • A1 content is 0.10 mass. If it exceeds / 0 , A1 non-metal inclusions increase, which may cause surface defects such as surface scratches on the fluorite stainless steel sheet, and the workability is also impaired. Therefore, A1 is 0.10 mass% or less. More preferably, it is 0.08% by mass or less.
  • Cr is an element that enhances the sulfuric acid corrosion resistance of ferritic stainless steel sheets. Cr content is 20 mass. If it is less than 0 , sufficient sulfuric acid corrosion resistance cannot be obtained. On the other hand, if it exceeds 24% by mass, the ⁇ phase is likely to be generated, and the press formability of the ferritic stainless steel sheet is lowered. Therefore, Cr should be in the range of 20-24% by mass. More preferably 20.5-23.0 mass. / 0 .
  • Cu has the effect of reducing the dissolution of ground iron due to the anode reaction after sulfuric acid corrosion occurs on ferritic stainless steel sheets. It also has the effect of modifying the passive film around the S-containing precipitate. According to the study by the inventors, Cu existing in the vicinity of the S-containing precipitate causes distortion in the crystal lattice of the ground iron. A passive film formed on a strained crystal lattice becomes denser than a passive film formed on a normal crystal lattice. By modifying the passive film in this way, the sulfuric acid corrosion resistance of the ferritic stainless steel sheet is improved. If the Cu content is less than 0.3% by mass, this effect cannot be obtained.
  • Cu should be in the range of 0.3 to 0.8 mass%. More preferably, it is 0.3-0.6 mass%.
  • Ni suppresses the anode reaction due to sulfuric acid and has the effect of retaining a passive film even when the pH is lowered. In order to acquire the effect, 0.05 mass% or more is preferable. However, the M content is 0.5 mass. If it exceeds 0 , the ferritic stainless steel sheet is hardened and the press formability is impaired. Therefore, Ni is 0.5 mass% or less. More preferably, it is 0.3 mass% or less. More preferably 0.2 mass. / 0 or less.
  • Nb has the effect of fixing C and N to prevent sensitization to corrosion by Cr carbonitride. It also has the effect of improving the resistance to oxidation at high temperatures of the fluorescent stainless steel sheet. In the present invention, in addition to these effects, it is an important element for refining ferrite crystal grains by dispersing fine precipitates (ie, NbC). NbC serves as a product nucleus for recrystallized grains when annealing a cold-rolled ferritic stainless steel sheet. Therefore, fine ferrite grains are formed by the dispersion and precipitation of NbC. In addition, NbC has the effect of preventing the growth of ferrite grains by inhibiting the movement of grain boundaries during the formation of ferrite grains and maintaining the fine ferrite grains.
  • NbC fine precipitates
  • the fineness of the fly crystal grains can be achieved.
  • the fine NbC that is dispersed and precipitated in the ferritic stainless steel sheet inhibits the movement of dislocations due to the bending cage and causes work hardening of the bent part. As a result, the deformation force due to bending is reduced, and the deformation moves sequentially to the region, so that the bent portion is processed uniformly and the rough skin is reduced.
  • S-containing precipitates adhere to NbC and precipitate, and the particle size of the S-containing precipitates is reduced.
  • N has a function of improving the sulfuric acid corrosion resistance by dissolving in a ferritic stainless steel sheet.
  • 0.001 mass% or more is preferable.
  • the precipitation of coarse Nb carbonitrides is promoted, as in the case of the same, and the resistance to sulfuric acid corrosion of ferritic stainless steel sheets is lowered and the rough surface of the bent part is worsened.
  • the N content exceeds 0.02% by mass, in addition to the problem of sulfuric acid corrosion, the breath formability of the ferritic stainless steel sheet is impaired. Therefore, N is 0.02 mass% or less. More preferably, it is 0.015 mass% or less.
  • the ferritic stainless steel sheet of the present invention contains one or more selected from the medium strengths of Ti, Zr and Mo U / ,.
  • Ti binds to C and N to form Ti carbonitride, thereby fixing C and N and preventing sensitization to corrosion by Cr carbonitride. Therefore, sulfuric acid corrosion resistance can be further improved by adding Ti.
  • Ti content is 0.005 mass. / Below 0 , the effect is not obtained. On the other hand, if it exceeds 0.5 mass%, the ferritic stainless steel sheet is hardened and press formability is impaired. Therefore, when adding Ti, the Ti content is preferably in the range of 0.005 to 0.5 mass%. More preferably, it is 0.1-0.4 mass%.
  • Zr like Ti, binds C and N to form Zr carbonitride to fix C and N and prevent sensitization to corrosion by Cr carbonitride
  • 0.01% by mass or more is preferable, so the addition of Zr can further improve the sulfuric acid corrosion resistance, but the Ti content is 0.5 mass ° / 0. by weight, because it produces Zr Sani ⁇ a (ie Zr_ ⁇ 2, etc.) in a large amount, impair the surface cleaning a ferritic stainless steel sheet It is. Therefore, when Zr is added, the Zr content is preferably 0.5% by mass or less. More preferably, it is 0.4 mass% or less.
  • Mo has the effect of increasing the resistance to sulfuric acid corrosion. 0.1 mass to get the effect. / 0 or more is preferable. However, when the Mo content exceeds L0 mass%, the effect is saturated. That is 1.0 mass. /. Even if it is added in excess of the above, an improvement in sulfuric acid corrosion resistance commensurate with the amount added cannot be expected, but rather, the use of a large amount of expensive Mo increases the production cost of ferritic stainless steel sheets. Therefore, when Mo is added, the Mo content is 1.0 mass. / Less than 0 is preferable. More preferably, it is 0.8 mass% or less.
  • Mg does not contribute to the present invention, the lower it is, the lower the desired inevitable impurity level.
  • the balance other than the above components is Fe and inevitable impurities.
  • the inventors manufactured ferritic stainless steel sheets of various components and investigated the relationship between the size of the S-containing precipitates and the progress of sulfuric acid corrosion. The survey method and survey results are described in V.
  • a ferritic stainless steel with the components shown in Table 1 is melted into steel slabs, heated to 1170 ° C and hot rolled (finishing temperature: 800 ° C, wetting temperature: 450 ° C, plate thickness : 4mm) to make a hot-rolled steel sheet.
  • the average cooling rate from finish rolling to finishing ie, from 800 ° C to 450 ° C was 20 ° C / sec.
  • the obtained hot-rolled steel sheet was annealed at 900 to 1200 ° (for 30 to 300 seconds, and further pickled. Then, after cold rolling, it was annealed at 970 ° C for 30 to 300 seconds. Further, pickling was performed to obtain a bright stainless steel plate (plate thickness: 0.8 mm).
  • the specimen (30mm wide, 50mm long) cut from the ferritic stainless steel plate obtained in this way is polished with No. 600 abrasive paper, and a scanning electron microscope is used. ) (Les, Iwah SEM).
  • the particle size of Nb carbonitride is several ⁇ m Degree, the particle size of the Nb carbide was about 1 ⁇ ⁇ .
  • S-containing precipitates eg MnS
  • the particle size was the maximum length of the long axis.
  • the largest particle size of the measured S-containing precipitates was taken as the maximum particle size.
  • test piece was immersed in sulfuric acid (concentration: 10 mass, temperature: 50 DC ) for 1 hour, and the surface was observed by SEM.
  • sulfuric acid concentration: 10 mass, temperature: 50 DC
  • the dissolution probability (%) is the number M, where the dissolution of ground iron was confirmed after immersion in a place where precipitates having a certain predetermined size existed before immersion.
  • the maximum grain size of the S-containing precipitates is 5 m or less, the dissolution rate of the ground iron is remarkably reduced. This means that sulfuric acid corrosion can be prevented if the maximum grain size of the S-containing precipitate is 5 ⁇ or less. Therefore, the maximum grain size of S-containing precipitates should be 5 ⁇ m or less.
  • Average grain size of ferrite crystal grains 30.0 ⁇ m or less
  • the depth of the rough surface of the bent part in the bending process has a correlation with the average grain diameter of the ferrite crystal grains.
  • the ferrite crystal grains are subjected to tensile stress and become a flat pancake like shape, and rough skin occurs due to the formation of gaps between adjacent ferrite crystal grains.
  • the ratio of the major axis to the minor axis of the ferrite crystal grains transformed into an elliptical sphere is the size of the almost spherical ferrite crystal grains before bending. Regardless, it is constant.
  • the depth of rough skin is proportional to the minor axis of the elliptical ferrite crystal grain, and the minor axis is proportional to the size of the ferrite crystal grain before bending. That is, the rougher the skin, the smaller the average grain size of the phosphor crystal grains.
  • the average grain size of ferrite grains should be 30.0 ⁇ m or less. Preferably it is 20.0 ⁇ m or less.
  • the average grain size of the ferrite crystal grains was measured according to ASTM E 112 by measuring the grain diameters of the ferrite crystal grains of any three fields of view by a cutting method.
  • NbC particle maximum dimension 1 ⁇ m or less
  • the maximum diameter of precipitated NbC exceeds 1 ⁇ m.
  • the maximum diameter of NbC particles should be 1 ⁇ m or less. The particle size of the largest of the NbC precipitates at 10 mm square in any one field of view was measured. The maximum particle size was the maximum length of the long axis.
  • the cooling rate after scraping is not particularly limited. However, since the toughness of hot-rolled steel sheet is reduced in the vicinity of 475 ° C (so-called 475 ° C embrittlement), from 525 to 42 5 ° average cooling rate temperature range above 100 ° CZ hour C is preferred.
  • the hot-rolled steel sheet is annealed at 900 to 1200 ° C., more preferably 900 to 1100 ° C. for 30 to 240 seconds, and further pickling. Further, after cold rolling (preferably a reduction rate of 50% or more), annealing and pickling are performed to obtain a ferritic stainless steel sheet. Annealing after cold rolling is performed on S-containing precipitates. In order to prevent coarsening, it is preferable to carry out under conditions of less than 1050 ° C, more preferably less than 900 ° C and 10 to 240 seconds. When the annealing temperature is 900 ° C or higher, it is preferable to set the heating time to 900 ° C or higher to 1 minute or less.
  • the ferritic stainless steel sheet of the present invention described above has the inherent characteristics of the bright stainless steel having excellent corrosion resistance in a high temperature environment, and the uniqueness of the present invention described in (a) to (c) above. Due to a synergistic effect with these characteristics, it exhibits excellent sulfuric acid corrosion resistance even in high-temperature environments. Furthermore, since the ferrite crystal grains are fine, even when bending at 90 ° or more, the gap between adjacent ferrite crystal grains is suppressed to a level where there is no problem, and rough skin is suppressed.
  • a ferritic stainless steel with the components shown in Table 1 is melted and made into steel slabs, then heated to 1170 ° C and hot-rolled (finishing temperature: 800 ° C, cutting temperature: 450 ° C, plate thickness : 4mm)! / ... hot rolled steel sheet.
  • Final rolling force The average cooling rate up to wrinkle removal (ie, from 800 ° C to 450 ° C) was 20 ° C / sec. 'The obtained hot-rolled steel sheet was annealed at 900 to 1200 ° C for 30 to 300 seconds, and further pickled. Next, after cold rolling, annealing was performed at 970 ° C. for 30 to 300 seconds, and pickling was performed to obtain a ferritic stainless steel plate (plate thickness: 0.8 mm).
  • the ferritic stainless steel plate thus obtained was cut into a width of 30 mm and a length of 50 mm, and both surfaces were polished with No. 600 polishing paper to obtain a test piece.
  • the specimen was observed with a scanning electron microscope (so-called SEM), and the particle size of all the S-containing precipitates within 10 mm square of any one field of view was measured.
  • the particle size was the maximum length of the long axis.
  • the maximum particle size of the measured S-containing precipitates was taken as the maximum particle size.
  • the results are shown in Table 2. Furthermore, the mass of the test piece was measured.
  • test piece was immersed in sulfuric acid (concentration: 10 mass, temperature: 50 ° C) for 48 hours, and then the mass of the test piece was measured to investigate the resistance to sulfuric acid corrosion.
  • sulfuric acid corrosion resistance the change in the mass of the test piece before and after immersion is calculated. If the change in mass is less than 10% of the mass before immersion, it is considered good ( ⁇ ), but not more than 10% (X ).
  • Table 2 A1 to A5 in Table 2 are examples in which the Cu content was changed. In A2 opium A3 that satisfies the scope of the present invention, excellent sulfuric acid corrosion resistance was obtained.
  • B1 to B4 in Table 2 are examples in which the S content was changed.
  • A1 and A4 in Table 2 are comparative examples in which the Cu content is outside the scope of the present invention.
  • B4 is a comparative example in which the S content is outside the scope of the present invention.
  • C1 and C5 are comparative examples in which the Nb content is outside the scope of the present invention.
  • D3 and D4 are comparative examples in which the maximum particle size of the S-containing precipitate is outside the scope of the present invention.
  • E8 to E10 are comparative examples in which one or more of the contents of Al, Cr, Nb, and N are out of the scope of this effort. In the comparative example outside the scope of the present invention, excellent sulfuric acid corrosion resistance could not be obtained.
  • Example 2 is a comparative example in which the S content is outside the scope of the present invention.
  • C1 and C5 are comparative examples in which the Nb content is outside the scope of the present invention.
  • D3 and D4 are comparative examples in which the maximum particle size of the S-containing precipitate is outside the scope of the present invention.
  • Ferritic stainless steel having the components shown in Table 3 was melted and continuously cast, and the obtained flakes were heated to 1170 ° C and hot rolled.
  • Table 4 shows the finishing temperature and scraping temperature.
  • No.l to 29 shown in Table 3 No.l and ⁇ ⁇ 5 are examples in which the Nb content falls outside the scope of the present invention, and No. 13 has a Cu content outside the scope of the present invention.
  • Example No. 28 is an example in which the C content is outside the scope of the present invention, and all other components are within the scope of the present invention.
  • the obtained hot-rolled steel sheet was cooled from the finishing temperature of hot rolling to the scraping temperature at an average cooling rate of 25 ° C / sec.
  • the obtained hot-rolled steel sheet was annealed at 900 to 1100 ° C (however, only No. 9 was annealed at 1150 ° C), and further pickled to remove scale.
  • cold-rolled and further annealed Heating temperature 970. C, heating time 90 seconds
  • pickling to obtain a ferritic stainless steel sheet (thickness 0.8 mm).
  • Table 4 shows the hot rolling finishing temperature, scraping temperature, and cold rolling reduction.
  • No.9, No.17, No.21, No.25 and No.29 are any one of hot rolling finishing temperature, coiling temperature, hot rolled sheet annealing temperature and cold rolling reduction ratio. The above is an example outside the scope of the present invention.
  • a sample having a width of 20 mm and a length of 70 mm was cut from a ferritic stainless steel plate, and both sides were polished with 600th abrasive paper and subjected to bending. Bending was performed by pressing the center of the sample using a punch with a radius of 10 mm and bending at 180 °. After the bending process, the depth of rough skin was measured by observing the cross section of the bent part from any three visual fields. Figure 2 shows how to measure rough skin depth. The depth of rough skin was measured by magnifying the cross-section of the bend with an optical microscope 1000 times and photographed. The largest length was defined as the depth of rough skin. The depth of roughening is good ones 30 ⁇ ⁇ hereinafter as ( ⁇ ), were evaluated to exceed 3 0 ⁇ ⁇ as bad (X). The results are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高温の環境においても優れた耐硫酸腐食性を有するあるいは、さらに90°以上の曲げ加工を行なった曲げ部の肌荒れが少ないフェライト系ステンレス鋼板を提供する。具体的には、C:0.02質量%以下,Si:0.05~0.8質量%,Mn:0.5質量%以下,P:0.04質量%以下,S:0.010質量%以下,Al:0.10質量%以下,Cr:20~24質量%,Cu:0.3~0.8質量%,0.5質量%以下、Nb:0.20~0.55質量%、N:0.02質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成と、Sを含有する析出物の最大粒径が5μm以下である組織とを有するフェライト系ステンレス鋼板。

Description

明細書
耐硫酸腐食性に優れたフェライト系ステンレス鋼板おょぴその製造方法 技術分野
本発明は、硫酸 (suffiiric acid)に対して優れた耐食性を有するフエライト系ステンレス鋼 板(ferritic stainless steel sheet)に闋するものである。さらに、本発明は、上記に加えて 9 0° 以上の曲げカ卩ェ (bending work)を行なつた曲げ部 (bent part)の肌荒れ (rough surface) が少ないフヱライト系ステンレス鋼板およびその製造方法に関するものである。 背景技術 ―
石油 (petroleum)や石炭 (coal)のような化石燃料 (fossil fiiel)には、硫黄 (sulfor) (以下、 Sと 記す)が含まれている。したがってィ匕石燃料が燃焼すれば、 Sが酸化して so2等の硫黄 酸化物 (sulf r oxides) (いわゆる SOx )が排ガス (exhaust gas)に混入する。化石燃料を燃 焼させる機器 (たとえば産業用ボイラー (industr i boiler)等)に付属して設置される煙道 (gas duct),煙突 (chimney pipe)や排煙脱硫装置 (exhaust gas desulftirizer)等の配管内で 排ガスの温度が低下すると、この SOxが排ガス中の水分と反応して硫酸となり、配管の内 面に結露する。この結露した硫酸が配管の腐食 (以下、硫酸腐食 (sutfate corrosion)とい う)を進行させる。 '
硫酸腐食を防止する技術は従来力 種々検討されており、たとえば排ガスの配管を低 合金鋼で構成する、あるいは排ガスの温度を 150°C以上にする等の技術が採用されてい る。
しかしこれらの技術では、硫酸腐食を軽減することは可能であっても、硫酸腐食の進行 を止めることは困難である。
近年、アジアにおける自動車巿場の拡大に伴って、鉄鋼の需要が増加しており、製鉄 業の高炉や熱処理炉 (heat treat fomace)等における化石燃料の消費量が増大している。 そのため、製鉄業 (steel industry)では硫酸腐食を防止する技術の開発が急務となってい る。またガソリン (gasoline)には Sが含まれており、自動車のエンジン (automobile engine)か ら排出される排ガスの配管にも硫酸腐食が発生する。したがって、自動車の排ガス配管 も硫酸腐食を防止する技術が求められている。また、これらの配管には厳しい曲げ加工 力 S施されるものが少なくな 、。
高炉 (blast furnace),熱処理炉ゃ自動車の排ガス配管では、高温の排ガスが流通する ので、高温酸化 (high-temperature oxidation)を防止する観点から低合金鋼を使用せず、 フェライト系ステンレス鋼が多く使用されている。そのため、フェライト系ステンレス鋼の硫 酸腐食に対する ¾■食性(以下、耐硫酸腐食性 (sulfate corrosion resistance)という)を高め る技術が種々検討されて ヽる。
たとえば特開昭 56-146857号公報には、フェライト系ステンレス鋼の S含有量を 0.005 質量%以下に低減することによって、耐酸性を向上する技術が開示されている。しかし特 開昭 56-146857号公報では沸騰塩酸 (boiling hydrochloric acid)に浸漬して耐酸性 (acid resistance)を調査しており、耐硫酸腐食性にっレヽては明らかではなレヽ。
特開平 7- 188866号公報には、フヱライト系ステンレス鋼の C, Nの含有量を低減すると ともに Mn, Ni, Bの含有量を規定することによって、硝酸 (nitric acid)による粒界腐食 (intergranular corrosion)を抑制する技術が開示されている。しかし硝酸による粒界腐食 の発生機構 (generation mechanism)は、硝酸イオンが存在するために環境の電位が貴と なりステンレス鋼の不動態皮膜の破壊挙動や腐食生成物の安定性が硫酸腐食とは異な るので、特開平 7 - 188866号公報に開示された技術を硫酸腐食の防止に適用するため には、さらなる研究が必要である。
本発明は、高温の環境にぉレ、ても優れた耐硫酸腐食性を有するフ ライト系ステンレス 鋼板を提供することを目的とする。
本発明は、さらに、上記に加えて 90° 以上の曲げ加工を行なった曲げ部の肌荒れが 少なレ、フェライト系ステンレス鋼板を得るものである。
フェライト系ステンレス鋼板の成形性を向上するために、素材となる溶鋼の精鍊工程で C、 Nを大幅に低減する技術、あるいは溶鋼に Tiや Nbを添カ卩して炭化物 (carbide)、窒 化物 (nitride)を形成させることによって C、 Nを安定化させる技術が検討されている。その 結果、オーステナイト系ステンレス鋼板より優れた深絞り性 (deep drawing characteristics) を有するフェライト系ステンレス鋼板が開発されている。ただし、従来の深絞り性に優れた フェライト系ステンレス鋼板は、ランクフォード値 (Lankford value) (いわゆる r値)で評価さ れるような、深絞り加工における成形性を向上させたものである。
また、張り出し加工における曲げ部の肌荒れ (いわゆるオレンジピール (orange peel))を 抑制するためには、従来からフヱライト系ステンレス鋼板を所定の形状に成形するための 成形方法を改善する技術 (たとえば特開 2005-139533号公報参照)が検討されている。 しかし曲げ部の肌荒れは張り出し加工 (stretch forming)のみならず、曲げカ卩ェ (bending w ork)等による曲げ部にも発生するものであり、フヱライト系ステンレス鋼板の成分や製造方 法を改善することによって曲げ部の肌荒れを抑制する技術に関する研究は、十分になさ れていない。
肌荒れは種々の表面欠陥の総称である力 フェライト系ステンレス鋼板ではリジングと 呼ばれる肌荒れが頻繁に発生する。リジングとは、圧延によって生じた圧延方向に平行 な集合組織が加工を受けた際に、集合組織ごとに変形に差が生じることによって発生す る表面欠陥である。リジングの発生を抑制した鋼は多くの報告がある力 これらの鋼を用 レ、ても曲げ部の肌荒れが顕著な場合がある。したがって、リジングと曲げ部の肌荒れは発 生機構が異なっていると考えられ、それぞれ適した対策が必要である。特に 90° 以上の 曲げ加工を行なった場合に、肌荒れが顕著に発生する。
したがって、本発明は、高温の環境においても優れた耐硫酸腐食性を有し、さらに、 9 0° 以上の曲げ加工を行なった曲げ部の肌荒れが少ないフェライト系ステンレス鋼板およ びその製造方法を提供することを目的とする。 発明の開示
発明者らは、フヱライト系ステンレス鋼の硫酸腐食の発生機構について鋭意検討した。
Sを含む析出物(以下、含 S析出物 (sulfor- containing inclusion)という)が硫酸腐食の起点 (initiation point)となることは従来力 知られている。しかし、その含 S析出物は硫酸と接 -触することによって溶解するので、硫酸腐食が生じた部位にて含 S析出物が観察されるこ とは少ない。そこで発明者らは、硫酸腐食が生じる前の含 S析出物に着目し、含 S析出物 の粒径が硫酸腐食の進行に及ぼす影響を調査した。
その結果、硫酸腐食を防止するためには
(a) S含有量を低減して含 S析出物の析出を抑制する、
(b) Nb含有量を好適範囲に維持することによって微細な NbCを分散して析出させ、そこ に含 S析出物(たとえば MnS等)を付着させることによって、含 S析出物を微細化する、
(c) Cu含有量を好適範囲に維持することによって不動態皮膜 (passivation film)を改質し、 地鉄の溶解を抑制することが有効であるという知見を得た。
また、発明者らは、フェライト系ステンレス鋼板に曲げ加工を施して、肌荒れ (リジングと は異なる)が曲げ部に発生するメカニズム (mechanism)について検討した。その結果、曲 げ部のフェライト結晶粒 (ferrite crystal grain)の平均粒径 (average grain diameter)と肌荒 れの深さとの相関関係を見出した。つまり曲げ部のフェライト結晶粒の平均粒径が小さい ほど、曲げ部の肌荒れが浅くなることが判明した。
また、微細な NbC粒子を分散させることによって、曲げカ卩ェによる転位 (dislocation)の 動きを阻害して曲げ部に加工硬化を起こせば、曲げ部が均一に加工され、肌荒れが軽 減されることが判明した。
本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、 C : 0.02質量%以下、 Si : 0.05〜0.8質量%、1^: 0.5質量%以下、 P : 0.0 質量0 /0以下、 S : 0.010質量%以下、 A1.- 0.10質量%以下、 Cr: 20〜24質量0ん C u : 0.3—0.8質量0 /0、 Ni: 0.5質量%以下、 Nb : 0.20〜0.55質量。/o、 N : 0.02質量%以下を 含有し、残部が Feおよび不可避的不純物からなる組成と、 Sを含有する析出物の最大 粒径が 5 μ m以下である組織とを有するフェライト系ステンレス鋼板である。
本発明のフェライト系ステンレス鋼板は、前記組成において、さらに、 M : 0.3質量。 /0以 下、 Nb : 0·20〜0.50質量0 /0であるフェライト系ステンレス鋼板である。
また、本発明のフェライト系ステンレス鋼板は、前記組成に加えて、 Ti : 0.005〜0.5質 量。/。、 Zr : 0.5質量。/。以下おょぴ Mo : 1.0質量%以下の中から選ばれる 1種または 2種以 上を含有するフェライト系ステンレス鋼板である。 また、本発明のフヱライト系ステンレス鋼板は、前記において、 C:0.001〜0.02質量。 /0、 N:0.001〜0.02質量0 /0である組成と、さらにフェライト結晶粒の平均粒径が 30.0 μπι以 下であり、析出した NbC粒子の最大径が 1 μ m以下である組織とを有するフェライト系ス テンレス鋼板である。
また、本発明は、 C:0.02質量%以下、 Si:0.05〜0.8質量。ん Mn:0.5質量%以下、 P: 0.04質量。 /0以下、 S: 0.010質量 °/0以下、 Al.-0.10質量 °/0以下、 Cr:20〜24質量 °/o、 Cu: 0.3-0.8質量0 /0、 Ni:0.5質量0 /0以下、 Nb:0.20〜0.55質量%、 N:0.02質量%以下を含 有し、残部が Feおよび不可避的不純物からなる铸片または鋼塊に、仕上げ温度 700~ 950°C、で熱間圧延を行い、仕上げ温度 (finising temperature)から卷き取り温度 (coiling te mperature)まで 20°C/秒以上の平均冷却速度で冷却し、かつ卷き取り温度 600°C以下で、 巻き取りするフェライト系ステンレス鋼板の製造方法である。
また、本発明は、前記において、仕上げ温度 700〜900°Cで、卷き取り温度 570°C以 下で、卷き取りするフェライト系ステンレス鋼板の製造方法である。
また、本発明は、前記において、熱延鋼板を 900〜1200°Cで焼鈍し、酸洗、冷間圧 延後、 1, 050°C未満の焼鈍温度で焼鈍するフェライト系ステンレス鋼板の製造方法であ る。
また、本発明は、前記において、熱延鋼板を 900〜1100°Cで焼鈍し、酸洗、冷間圧 延後、 900°C未満の焼鈍温度で焼鈍するフェライト系ステンレス鋼板の製造方法である。 また本発明は、 C:0.001~0.02質量%、 Si:0.05~0.3質量%、 Mn:0.5質量。 /0以下、 P:0.0 質量%以下、 S:0.01質量%以下、 Al:0.10質量。/。以下、 Cr:20〜24質量%、 Cu:0.3〜0.8質量%、 Ni:0.5質量%以下、 Nb:0.20〜0.55質量0 /0、 N:0.001~0.02質 量0 /0を含有し、残部が Feおよび不可避的不純物からなる鎵片または鋼塊に、仕上げ温 度 770°C以下かつ卷き取り温度 450°C以下の熱間圧延を施し、さらに圧下率 (draft)50% 以上の冷間圧延を施すフェライト系ステンレス鋼板の製造方法である。
また、本発明は、前記において、仕上げ温度力 卷き取り温度まで 20°C/秒以上の平 均冷却速度で冷却するフェライト系ステンレス鋼板の製造方法である。 本発明によれば、高温の環境においても優れた耐硫酸腐食性を有するフェライト系ステ ンレス鋼板を得ることができる。
また、本発明によれば、上記の特性に加えてさらに 90° 以上の曲げ加工を行なった曲 げ部の肌荒れが少ないフェライト系ステンレス鋼板を得ることができる。 図面の簡単な説明
図 1:含 S析出物の粒径と地鉄の溶解確率 (solution probability)との関係を示すグラフ である。
図 2:曲げ部の肌荒れ深さの測定方法を示した模式図である。 発明を実施するための最良の形態
まず、本発明のフェライト系ステンレス鋼板の成分の限定理由を説明する。
C : 0.02質量%以下
cは、フェライト系ステンレス鋼板の強度を高める作用を有する元素である。その効果を 得るためには、 0.001質量%以上が好ましい。しかし C含有量が 0.02質量 °/0を超えると、 フェライト系ステンレス鋼板が硬化して、プレス成形性 (press formability)が低下するばか りでなぐ後述する Nbや Nと結合して粗大な Nb炭窒化物 (carbonitride)が析出して耐硫 酸腐食性が低下する。したがって、 Cは 0.02質量%以下とする。より好ましくは 0.015質 量%以下である。
また、曲げ部の肌荒れの観点から、 Cの含有量が 0.001質量%未満では、フェライト結 晶粒の生成核となる NbCの析出を妨げる。一方、 0.02質量。 /0を超えると、成形性、耐食 性が劣ィ匕するば力 でなぐ NbCが粗大ィ匕する。したがって、 Cは 0.001〜0.02質量%の 範囲内とする。より好ましくは 0·002〜0.015質量%である。
Si: 0.05〜0.8質量0 /0
Siは、フェライト系ステンレス鋼の溶製段階 (steelmaking process)で脱酸剤 (deoxidizing agent)として用いられる。 Si含有量が 0.05質量。/。未満では、十分な脱酸効果が得られな レ、。そのため、製造されたフヱライト系ステンレス鋼板に多量の酸化物が析出し、溶接性 (weldability),プレス成形性が低下する。一方、 0.8質量%を超えると、フェライト系ステン レス鋼板が硬化して加工性 (workability)が損なわれ、フヱライト系ステンレス鋼板の製造 に支障をきたす。したがって、 Siは 0.05〜0.8質量%の範囲内とする。より好ましくは 0.05 〜0·3質量%である。さらに好ましくは 0.06〜0.28質量%である。
Μη: 0.5質量%以下
Mnは、フェライト系ステンレス鋼の溶製段階で脱酸剤として用いられる。その効果を得 るためには、 0.01質量%以上が好ましい。 Mn含有量が 0.5質量。/。を超えると、固溶強 ィ匕(solid solution strengthening)によってフェライト系ステンレス鋼板の加工性が損なわ れる。しかも、後述する Sと結合して MnSの析出が促進され、耐硫酸腐食性が低下する。 したがって、 Mnは 0.5質量%以下とする。より好ましくは 0.3質量%以下である。
P : 0.04質量%以下
Pは、硫酸腐食に関連はないが、種々の腐食を生起させる元素であるから、その含有量 を低減する必要がある。特に P含有量が 0.04質量。 /0を超えると、腐食の問題に加えて、 Pが結晶粒界に偏祈してフェライト系ステンレス鋼板の加工性が損なわれる。その結果、 フェライト系ステンレス鋼板の製造に支障をきたす。したがって、 Pは 0.04質量%以下と する。より好ましくは 0.03質量%以下である。
S : 0.010質量%以下
Sは、 Mn等と結合して含 S析出物 (たとえば MnS等)を生成する元素である。そのため、 S含有量は低いほど望ましいが、 0.0005質量%以下にすると脱硫が困難となり、製造負 荷が増大する。したがって、その含有量は 0.0005質量 %以上が好ましい。含 S析出物が 硫酸と接触して溶解すると、硫化水素 (hydrogen sulfide)が発生し、局所的に pHが低下 する。フヱライト系ステンレス鋼板の表面に析出した含 S析出物の直下では不動態皮膜は 形成されておらず、含 S析出物が溶解した後も、 pHが低いために不動態皮膜は形成さ れない。その結果、地鉄が硫酸に曝され、硫酸腐食が進行する。 S含有量が 0.010質 量%を超えると、含 S析出物が多量に析出して硫酸腐食が顕著になる。したがって、 Sは 0.010質量%以下とする。より好ましくは 0.008質量%以下である。
Alr O.lO質量。/。以下 Alは、フェライト系ステンレス鋼の溶製段階で脱酸剤として用いられる。また、本発明で は、 A1を添加することによって、鋼中の Nを Nb炭窒ィ匕物より高温で析出する A1Nとして 析出させ、 bと結合する N量を低減することで、粗大な Nb炭窒化物の析出を抑制して いる。そのため、 Nbは微細な NbCとして析出し、フェライト結晶粒の微細化、ならびに、 含 S析出物の粗大化抑止に効果を及ぼしている。また、析出した A1Nはきわめて微細で あるため、曲げ加工時の転位の運動を阻害して鋼の加工硬化を促進し、曲げ部の均一 な変形が行われる効果も果たしている。その効果を得るためには、 0.005質量%以上が 好ましい。しかし、 A1含有量が 0.10質量。 /0を超えると、 A1系の非金属介在物 (non- metal inclusion)が増加し、フニライト系ステンレス鋼板の表面傷等の表面欠陥の原因ともなり、 加工性も損なわれる。したがって、 A1は 0.10質量%以下とする。より好ましくは 0.08質 量%以下である。
Cr: 20〜24質量0 /0
Crは、フェライト系ステンレス鋼板の耐硫酸腐食性を高める元素である。 Cr含有量が 2 0質量。 /0未満では、十分な耐硫酸腐食性が得られない。一方、 24質量%を超えると、 σ 相が生成され易くなり、フェライト系ステンレス鋼板のプレス成形性が低下する。したがつ て、 Crは 20〜24質量%の範囲内とする。より好ましくは 20.5-23.0質量。 /0である。
Cu: 0.3〜0.8質量0 /0
Cuは、フェライト系ステンレス鋼板に硫酸腐食が生じた後、アノード反応 (anode reactio n)による地鉄の溶解を低減する作用を有する。また、含 S析出物の周辺の不動態皮膜を 改質する作用を有する。発明者らの研究によれば、含 S析出物の近傍に存在する Cuは 地鉄の結晶格子 (crystal lattice)に歪み (distortion)を生じさせる。歪みを生じた結晶格子 に形成される不動態皮膜は、正常な結晶格子に形成される不動態皮膜に比べて緻密に なる。このようにして不動態皮膜が改質されることによって、フェライト系ステンレス鋼板の 耐硫酸腐食性が向上する。 Cu含有量が 0.3質量%未満では、この効果は得られない。 一方、 0.8質量%を超えると、 Cuが硫酸によって腐食され、それを起点としてフニライト系 ステンレス鋼板の硫酸腐食が進行する。また、熱間加工性 (hot workability)が劣化するの でフェライト系ステンレス鋼板の製造に支障を来たす。したがって、 Cuは 0.3〜0.8質 量%の範囲内とする。より好ましくは 0.3-0.6質量%である。
M. - 0.5質量%以下
Niは、硫酸によるアノード反応を抑制し、 pHが低下しても不動態皮膜を保持する作 用を有する。その効果を得るためには、 0.05質量%以上が好ましい。しかし M含有量が 0.5質量。 /0を超えると、フェライト系ステンレス鋼板が硬化してプレス成形性が損なわれる。 したがって、 Niは 0.5質量%以下とする。より好ましくは 0.3質量%以下である。さらに好 ましくは 0.2質量。 /0以下である。
Nb : 0.20〜0.55質量%
Nbは、 C、 Nを固定して Cr炭窒化物 (carbonitride)による腐食に対する鋭敏化を防ぐ 作用を有する。また、フヱライト系ステンレス鋼板の耐高温酸化性 (resistance to oxidation at high temperatures)を向上させる効果もある。本発明では、これらの効果に加えて、微 細な析出物(すなわち NbC)を分散させることによって、フェライト結晶粒を微細化させる 重要な元素である。 NbCは、冷間圧延したフェライト系ステンレス鋼板に焼鈍を施す際に 再結晶粒の生成核 (product nucleus)となる。したがって NbCが分散して析出することによ つて、微細なフェライト結晶粒が生成する。さらに、 NbCはフェライト結晶粒の生成過程で 粒界 (grain boundary)の移動を阻害してフェライト結晶粒の成長を妨げ、微細なフェライト 結晶粒を維持する効果がある。つまり微細な NbCを分散させると、フ ライト結晶粒の微 細化を達成できる。し力、も、フェライト系ステンレス鋼板に分散して析出した微細な NbCは、 曲げカ卩ェによる転位の移動を阻害し、曲げ部の加工硬化を生起する。その結果、曲げ加 ェによる変形力 変形抵抗 (deformation resistance)の少な 、領域へ順次移動して行くの で、曲げ部が均一に加工され、肌荒れが軽減される。また、発明者らの研究によれば、微 細な NbCを分散して析出させることによって、含 S析出物が NbCに付着して析出し、含 S 析出物の粒径が小さくなる。小さくなつた含 S析出物は、硫酸中において溶解しても、 pH の低下が抑えられるため、周辺の溶液はステンレス鋼が不動態皮膜を形成できる下限の pH以上を維持でき、含 S析出物溶解直後に含 S析出物直下のステンレス鋼の再不動態 化が可能となる。したがって、含 S析出物の溶解が腐食発生の起点とならず、耐硫酸腐 食性が向上する。 Nbの含有量が 0.20質量%未満では、この効果は得られない。一方、 0.55質量 °/0を超えると、 NbCが粗大化し、フヱライト結晶粒、ならびに、含 S析出物も粗 大化する。したがって、 bは 0.20〜0.55質量%の範囲内とする。より好ましくは 0.20〜0. 5質量0 /0である。さらに好ましくは 0.25〜0.45質量0 /0である。
N : 0.02質量%以下
Nは、フェライト系ステンレス鋼板に固溶して、耐硫酸腐食性を向上させる作用を有する。 その効果を得るためには、 0.001質量%以上が好ましい。しかし過剰に含有すると、じと 同様に、粗大な Nb炭窒化物の析出を促進し、フェライト系ステンレス鋼板の耐硫酸腐食 性が低下するとともに曲げ部の肌荒れを悪化させる。特に N含有量が 0.02質量%を超 えると、硫酸腐食の問題に加えて、フェライト系ステンレス鋼板のブレス成形性が損なわ れる。したがって、 Nは 0.02質量%以下とする。より好ましくは 0.015質量%以下である。 さらに本発明のフェライト系ステンレス鋼板では、 Ti, Zrおよび Moの中力 選ばれる 1 種または 2種以上を含有することが好ま U/、。
Ti: 0.005〜0.5質量0 /0
Tiは、 C, Nと結合して Ti炭窒化物を形成することによって C, Nを固定し、 Cr炭窒化 物による腐食に対する鋭敏化を防止する作用を有する。そのため、 Tiを添加することによ つて、耐硫酸腐食性を一層高めることができる。 Ti含有量が 0.005質量。 /0未満では、そ の効果は得られなレ、。一方、 0.5質量%を超えると、フェライト系ステンレス鋼板が硬化し てプレス成形性が損なわれる。したがって Tiを添加する場合は、 Ti含有量は 0.005〜0. 5質量%の範囲内が好ましい。より好ましくは 0.1-0.4質量%である。
1": 0.5質量%以下 ' Zrは、 Tiと同様に、 C, Nと結合して Zr炭窒化物を形成することによって C, Nを固定し、 Cr炭窒化物による腐食に対する鋭敏化を防止する作用を有する。その効果を得るため には、 0.01質量%以上が好ましい。そのため、 Zrを添加することによって、耐硫酸腐食 性を一層高めることができる。しかし Ti含有量が 0.5質量 °/0を超えると、 Zr酸ィ匕物(すな わち Zr〇2等)を多量に生成するので、フェライト系ステンレス鋼板の表面清浄が損なわ れる。したがって Zrを添加する場合は、 Zr含有量は 0.5質量%以下が好ましい。より好 ましくは 0.4質量%以下である。
Mo: 1.0質量%以下
Moは、耐硫酸腐食性を高める作用を有する。その効果を得るためには、 0.1質量。 /0以 上が好ましい。しかし Mo含有量が L0質量%を超えると、その効果は飽和する。つまり 1.0質量。/。を超えて添加しても、その添加量に見合う耐硫酸腐食性の向上は期待できず、 むしろ高価な Moを多量に使用することによって、フェライト系ステンレス鋼板の製造コス トが上昇する。したがって Moを添加する場合は、 Mo含有量は 1.0質量。 /0以下が好まし い。より好ましくは 0.8質量%以下である。
なお、 Mgは、本発明に寄与しないので、低ければ低いほど望ましぐ不可避的不純物 レベル以下である。
上記した成分以外の残部は、 Feおよび不可避的不純物である。 次に、本発明のフェライト系ステンレス鋼板の組織を説明する。
含 S析出物の最大粒径: 5 m以下
発明者らは、種々の成分のフェライト系ステンレス鋼板を製造して、含 S析出物の大きさ と硫酸腐食の進行との関係を調査した。その調査方法と調査結果につ V、て述べる。
表 1に示す成分のフェライト系ステンレス鋼を溶製し、さらに鋼片とした後、 1170°Cに加 熱して熱間圧延 (仕上げ温度 : 800°C,卷取り温度 : 450°C,板厚: 4mm)を行ない、熱延鋼 板とした。仕上げ圧延 (finish rolling)から卷取りまで(すなわち 800°Cから 450°Cまで)の平 均冷却速度は 20°C/秒とした。
得られた熱延鋼板を 900〜1200° (、 30〜300秒で焼鈍し、さらに酸洗を行なった。次い で冷間圧延を行なった後、 970°C、 30〜300秒で焼鈍し、さらに酸洗を施してフヱライト系 ステンレス鋼板(板厚: 0.8mm)とした。
このようにして得られたフェライト系ステンレス鋼板から切り出した試験片(幅 30mm,長 さ 50mm)の両面を 600番の研磨紙 (abrasive paper)で研磨して、走査型電子顕微鏡 (sea nning electron microscope) (レ、わゆる SEM)で観察した。 Nb炭窒化物の粒径は数 μ m 程度、 Nb炭化物の粒径は 1 β πι程度であった。また、 Nb炭窒化物や Nb炭化物の周囲 には含 S析出物 (たとえば MnS等)が付着して析出しているのが認められた。任意の 1つ の視野の 10mm角内にある含 S析出物全ての粒径を測定した。粒径は、長軸の最大長さ とした。測定した含 S析出物のうち最大のものの粒径を最大粒径とした。
その後、試験片を硫酸 (濃度: 10質量。ん温度 : 50DC)に 1時間浸漬して、その表面を S EMで観察した。浸漬前に観察された Nb炭窒化物や Nb炭化物は含 S析出物とともに 溶解しており、その位置には地鉄が溶出したと思われる窪みが生じていた。一部に析出 物が残留していた力 S、それらの析出物から Sは検出されなかった。
このようにして、硫酸に浸漬する前の含 S析出物の粒径と浸漬による地鉄の溶解確率 (s olution probability)との関係を調査した。その結果を図 1に示す。なお溶解確率(%)は、 浸漬前に、ある所定の大きさを有する析出物が存在した場所で浸漬後に地鉄の溶解が 確認、された数 Mを、浸漬前に、その所定の大きさを有する析出物の総数 Nで除した値 (= 100 XM/N)である。
図 1から明らかなように、含 S析出物の最大粒径が 5 m以下であれば、地鉄の溶解確 率が著しく減少する。これは、含 S析出物の最大粒径が 5 μ ιη以下であれば硫酸腐食を 防止できることを意味する。したがって、含 S析出物の最大粒径は 5 μ m以下とする。 次に、本発明の曲げ加工における曲げ部の肌荒れが少なレ、フェライト系ステンレス鋼板 の組織につ!/、て説明する。
フェライト結晶粒の平均粒径: 30.0 μ m以下
曲げ加工における曲げ部の肌荒れの深さは、フェライト結晶粒の平均粒径と相関関係 を有する。曲げ加工によってフェライト結晶粒は引張応力 (tensile stress)を受けて偏平な 楕円球状 (pancake like shape)の形状になり、隣接するフェライト結晶粒の間に隙間が生 じることによって肌荒れが発生する。一定量の曲げ加工を行なった場合、楕円球状に変 形したフェライト結晶粒の長径 (major axis)と短径 (minor axis)の比は、曲げ加工を施す前 のほぼ球形のフェライト結晶粒の大きさに関わらず一定である。肌荒れの深さは楕円球 状のフェライト結晶粒の短径に比例し、その短径は曲げ加工前のフェライト結晶粒の大き さに比例する。つまり、フヱライト結晶粒の平均粒径が小さいほど、肌荒れが浅くなる。発 明者らの研究によれば、フェライト結晶粒の平均粒径が 30.0 μ m以下であれば、 90° 以 上の曲げ加工を行なっても、曲げ部の肌荒れは問題のないレベルに抑制される。したが つて、フェライト結晶粒の平均粒径は 30.0 μ m以下とする。好ましくは 20.0 μ m以下であ る。なお、フェライト結晶粒の平均粒径は、 ASTM E 112に従い、切断法によって任意の 3 視野のフェライト結晶粒の粒径を測定し、その平均値を算出した。
NbC粒子の最大径 (greatest dimension): 1 μ m以下
上記で説明した通り、フェライト系ステンレス鋼板に微細な NbCが分散すると、フェライト 結晶粒の再結晶 (recrystallization)を促進し、かつフェライト結晶粒の成長を阻害するの で、フェライト結晶粒の微細化が達成される。発明者らの研究によれば、析出する NbCの 最大径が 1 μ mを超えると、その効果は得られなレ、。また、 NbCが粗大化すると、曲げ加 ェにおける応力の集中を招き、局所的な変形が生じ易くなる。したがって、 NbC粒子の最 大径は 1 μ m以下とする。任意の 1つの視野の 10mm角內にある NbC析出物の中から 最大のものの粒径を測定した。最大粒径は、長軸の最大長さとした。 以下に本発明のフ ライト系ステンレス鋼板の好適な製造方法の一例を説明する。 所定の成分を有するフェライト系ステンレス鋼を溶製し、さらに鋼片とした後、 1100〜120 0°Cに加熱して熱間圧延 (仕上げ温度: 700〜950°C、より好ましくは 900°C以下、さらに好 ましくは 770°C以下,巻取り温度: 600°C以下より好ましくは 570°C以下、さらに好ましくは 450°C以下,板厚: 2.5〜6mm)を行ない、熱延鋼板とする。仕上げ圧延から巻取りまでの 間に含 S析出物おょぴフェライト結晶粒が粗大化するのを防止するために、仕上げ温度 から卷取り温度まで 20DCZ秒以上の平均冷却速度で冷却する。
卷取り後の冷却速度は特に限定しない。ただし熱延鋼板の靭性が 475°C付近で低下 (いわゆる 475°C脆性)するので、 525〜425°Cの温度領域は 100°CZ時間以上の平均冷 却速度が好ましい。
次いで熱延鋼板を 900〜1200°C、より好ましくは、 900~1100°C、 30〜240秒で焼鈍し、 さらに酸洗を行なう。さらに、冷間圧延 (好ましくは圧下率 50%以上)を行なった後、焼鈍と 酸洗を施してフェライト系ステンレス鋼板とする。冷間圧延の後の焼鈍は、含 S析出物の 粗大化を防止するために、 1050°C未満、より好ましくは、 900°C未満、 10〜240秒の条件 で行なうことが好ましレ、。焼鈍の温度が 900°C以上になる場合は、 900°C以上に加熱され る時間を 1分以下にすることが好ましい。
以上に説明した本発明のフェライト系ステンレス鋼板は、高温の環境において優れた耐 食性を有するというフ ライト系ステンレス鋼本来の特性と、上記の (a)〜(c)に記載した本 発明の固有の特性との相乗効果によって、高温の環境においても優れた耐硫酸腐食性 を発揮する。さらに、フェライト結晶粒が微細であるから、 90° 以上の曲げ加工を行なつ ても、隣接するフェライト結晶粒の隙間は問題のないレベルに抑制され、肌荒れが抑制さ れる。 実施例 1
表 1に示す成分のフェライト系ステンレス鋼を溶製し、さらに鋼片とした後、 1170°Cにカロ 熱して熱間圧延 (仕上げ温度: 800°C,卷取り温度: 450°C,板厚: 4mm)を行な!/、、熱延鋼 板とした。仕上げ圧延力 卷取りまで (すなわち 800°Cから 450°Cまで)の平均冷却速度 は 20°C/秒とした。 ' 得られた熱延鋼板を 900〜1200°C、 30〜300秒で焼鈍し、さらに酸洗を行なった。次い で冷間圧延を行なった後、 970°C、 30〜300秒で焼鈍し、さらに酸洗 (pickling)を施してフ エライト系ステンレス鋼板 (板厚: 0.8mm)とした。
このようにして得られたフェライト系ステンレス鋼板を幅 30mm,長さ 50mmに切断し、両 面を 600番の研磨紙で研磨して試験片とした。その試験片を走查型電子顕微鏡 (いわゆ る SEM)で観察して、任意の 1つの視野の 10mm角内にある含 S析出物全ての粒径を 測定した。粒径は、長軸の最大長さとした。測定した含 S析出物のうち最大のものの粒径 を最大粒径とした。その結果を表 2に示す。さらに試験片の質量を測定した。
次に、試験片を硫酸 (濃度: 10質量。ん温度 : 50°C)に 48時間浸漬した後、試験片の 質量を測定して耐硫酸腐食性を調査した。耐硫酸腐食性は、浸漬前後の試験片の質量 変化を算出し、その質量変化が浸漬前の質量に対して 10%未満のものを良(〇)とし、 1 0%以上のもの不可( X )として評価した。その結果を表 2に示す。 表 2の A1〜A5は、 Cu含有量を変化させた例である。本発明の範囲を満足する A2お ょぴ A3では、優れた耐硫酸腐食性が得られた。表 2の B1〜B4は、 S含有量を変化させ た例である。本発明の範囲を満足する B1〜B3では、優れた耐硫酸腐食性が得られた。 表 2の C1〜C5は、 Nb含有量を変化させた例である。本発明の範囲を満足する C2〜C 4では、優れた耐硫酸腐食性が得られた。表 2の D1〜D4は、含 S析出物の最大粒径を 変化させた例である。本発明の範囲を満足する D1及び D2では、優れた耐硫酸腐食性 が得られた。表 2の E1〜E7は、さらに追加元素として、 Ti, Zr, Moの一種以上を添加し た例である。本発明の範囲を満足する E1〜E7では、優れた耐硫酸腐食性が得られた。 一方、表 2の A1及び A4は、 Cu含有量が本発明の範囲を外れた比較例である。 B4は、 S含有量が本発明の範囲を外れた比較例である。 C1及ぴ C5は、 Nb含有量が本発明の 範囲を外れた比較例である。 D3及び D4は、含 S析出物の最大粒径が本発明の範囲を 外れた比較例である。また、 E8〜E10は、 Al, Cr, Nb, Nの含有量のいづれか 1つ以上 、本努明の範囲を外れた比較例である。本発明の範囲を外れた比較例では、優れた 耐硫酸腐食性を得ることが出来なかった。 実施例 2
耐硫酸腐食性の効果の確認に加えて、さらに、 90° 以上の曲げ加工を行なった曲げ部 の肌荒れの効果を確認した。
表 3に示す成分を有するフェライト系ステンレス鋼を溶製して連続鎵造を行ない、得ら れた铸片を 1170°Cに加熱して熱間圧延を行なった。仕上げ温度と卷き取り温度は表 4に 示す通りである。なお表 3に示す No.l〜29の铸片のうち、 No.lおよび Νο·5は Nb含有 量が本発明の範囲を外れる例、 No.13は Cu含有量が本発明の範囲を外れる例、 No.28 は C含有量が本発明の範囲を外れる例であり、その他は全て成分が本発明の範囲を満 足する。
得られた熱延鋼板を熱間圧延の仕上げ温度から卷き取り温度まで、平均冷却速度 2 5°C/秒で冷却した。得られた熱延鋼板を 900〜1100°Cで焼鈍 (ただし No.9のみ 1150°C で焼鈍)し、さらに酸洗してスケールを除去した。その後、冷間圧延を行ない、さらに焼鈍 (加熱温度 970。C、加熱時間 90秒)およぴ酸洗してフェライト系ステンレス鋼板 (厚さ 0.8 mm)とした。熱間圧延の仕上げ温度、卷き取り温度およぴ冷間圧延の圧下率は表 4に示 す通りである。 No.9, No.17, No.21, No.25および No.29は、熱間圧延の仕上げ温度、巻 き取り温度、熱延板焼鈍温度および冷間圧延の圧下率のいずれか 1つ以上が、本発明 の範囲を外れる例である。
フェライト系ステンレス鋼板の任意の断面を希王水でエッチングし、 ASTM E 112に従 い、切断法によって任意の 3視野のフェライト結晶粒の粒径を測定し、その平均値を算出 した。その結果を表 4に示す。
また、フ ライト系ステンレス鋼板の任意の断面を走查型電子顕微鏡 (scanning electron microscope) (いわゆる SEM)で観察し、析出した NbCの最大径を測定した。任意の 1 つの視野の lOmm角内にある NbC析出物の中力 最大のものの粒径を測定した。最大 粒径は、長軸の最大長さとした。その結果を表 2に示す。
さらに、フェライト系ステンレス鋼板から幅 20mm、長さ 70mmの試料を切り出し、両面を 600番の研磨紙 (abrasive paper)で研磨して、曲げ加工に供した。曲げ加工は、半径 10m m のポンチ (punch)を用いて試料の中央をプレス (press)し、 180° の曲げ加工を行なった。 曲げ加工の後、曲げ部の断面を任意の 3視野を観察して肌荒れの深さを測定した。肌 荒れ深さの測定方法を図 2に図示する。肌荒れの深さは、曲げ部の断面を光学顕微鏡 で 1000倍に拡大して写真に撮り、図 2に示すように、観察した曲げ部の断面の肌荒れの 隣会う凸部と 部の凹凸差の最も大きい長さを肌荒れの深さとした。肌荒れの深さが 30 μ πι以下のものを良(〇)とし、 30 μ πιを超えるものを不良(X )として評価した。その結果 を表 4に示す。
表 4から明らかなように、発明例は、いずれも肌荒れの深さが 30 /z m以下であつたのに 対して、比較例は、深さが 30 μ mを超えた。
なお、ここでは記載していないが、耐硫酸腐食性の効果も確認した力 実施例 1とほぼ 同様な効果が確認できた。
Figure imgf000019_0001
Sを含む析出
硫酸中での 物の怪の最大 備考 値( i m) 耐食性 *1
A1 1.6 X 比較例
A2 2 〇 本発明例
A3 2.5 〇 本発明例
A4 3.2 X 比較例
B1 2.5 〇 本発明例
B2 3.1 〇 本発明例
B3 3.3 〇 本発明例
B4 4.9 X 比較例
C1 4.3 X 比較例
C2 2.4 〇 本発明例
G3 2Π 〇 本発明例
C4 3.1 〇 本発明例
C5 4.8 X 比較例
D1 2.3 〇 本発明例
D2 4.4 〇 本発明例
D3 7.5 X 比較例
D4 9.2 X 比較例
El 1.5 〇 本発明例
E2 1.4 〇 本発明例
E3 1.8 〇 本発明例
E4 1 .9 〇 本発明例
E5 1.8 〇 本発明例
E6 2.2 〇 本発明例
E7 0.7 〇 本発明例
E8 4.9 X 比較例
E9 3.6 X 比較例
E10 10.3 X 比較例 溶解量が 10%以下が〇、 10%以上が X
Figure imgf000021_0001
フェライ卜
NbGの径 仕上げ 巻き取り 冷間圧延 曲げ部肌 粒径 F&= :
(; a m) + /皿曰反 の圧下率 荒れの良 備考 m) (°C) (°C) (%) 否 *1
17.9 0.25 740 432 75 X 比較例
18.2 0.28 743 430 76 O 本発明例
18.3 0.33 736 430 75 〇 本発明例
19.4 0.35 737 431 75 〇 本発明例
18.7 0.38 745 435 75 X 比較例
15.4 0.46 752 434 75 〇 本発明例
18.7 0.48 751 435 76 〇 本発明例
23.3 0.47 752 432 75 〇 本発明例
32.2 0.48 753 432 74 X 比較例
18.4 0.45 760 432 75 〇 本発明例
17.2 0.71 762 431 75 〇 本発明例
18.4 0.88 765 433 74 〇 本発明例
17.9 1.21 763 434 75 X 比較例
14.3 0.36 745 433 75 〇 本発明例
20.2 0.63 752 432 75 〇 本発明例
25.4 0.84 764 435 74 〇 本発明例
31.0 1.08 782 436 75 X 比較例
18.3 0.44 758 407 75 〇 本発明例
21.7 0.43 759 422 74 O 本発明例
24.5 0.45 760 446 76 〇 本発明例
31.8 0.44 758 467 75 X 比較例
16.8 0.32 752 435 85 〇 本発明例
19.4 0.38 753 435 74 O 本発明例
24.7 ' 0.34 752 432 62 O 本発明例
30.2 0.36 751 433 48 X 比較例
15.3 0.33 752 438 80 〇 本発明例
24.4 0.47 753 440 81 〇 本発明例
34.3 1.55 753 433 88 X 比較例
32.5 1.43 852 512 81 X 比較例 の肌荒れ深さが 30 ju m以下のものが〇、 30 m以上のものが X

Claims

請求の範囲
1. C:0.02質量0 /0以下、 Si:0.05~0.8質量0 /0、 Mn:0.5質量%以下、?:0.04質量%以 下、 S: 0.010質量%以下、 Al:0.10質量%以下、 Cr:20〜24質量%、 Cu:0.3〜0.8質 i%、'Ni:0.5質量%以下、 Nb: 0.20-0.55質量%、 N:0.02質量%以下を含有し、残部 が Feおよび不可避的不純物力 なる組成と、 Sを含有する析出物の最大粒径力 ^μπι 以下である組織とを有するフェライト系ステンレス鋼板。
2. 前記組成に加えて、 Ni: 0.3質量。/。以下、 Nb: 0.20-0.5質量%である請求項 1 に記載のフェライト系ステンレス鋼板。
3. 前記組成に加えて、 Ti:0.005〜0.5質量%、 Zr:0.5質量%以下おょぴ Mo: 1.0 質量。 /0以下の中から選ばれる 1種または 2種以上を含有する請求項 1または 2に記載の フェライト系ステンレス鋼板。
4. 請求項 1または 2において、 C:0.001〜0.02質量0 /0、 N:0.001〜0.02質量%である 組成と、フェライト結晶粒の平均粒径が 30.0 μπι以下であり、析出した NbC粒子の最大 径が 1 μ m以下である組織とを有するフヱライト系ステンレス鋼板。
5. C:0.02質量%以下、 Si: 0.05-0.8質量0 /0、 Mn:0.5質量%以下、 P:0.04質量0 /0以 下、 S: 0.010質量。 /0以下、 A1-.0.10質量。 /0以下、 Cr:20〜24質量。 /0、 Cu:0.3〜0.8質 量。 /0、 Ni:0.5質量%以下、 Nb:0.20〜0.55質量%、 N:0.02質量0 /0以下を含有し、残部 が Feおよび不可避的不純物からなる铸片または鋼塊に、仕上げ温度 700〜950°Cで熱 間圧延を行い、仕上げ温度から卷き取り温度まで 20°C/秒以上の平均冷却速度で冷却 し、かつ卷き取り温度 600°C以下で、卷き取りするフェライト系ステンレス鋼板の製造方法,
6.請求項 5において、仕上げ温度 700〜900Cで、卷き取り温度 570°C以下で、卷き取 りするフェライト系ステンレス鋼板の製造方法。
7.請求項 5または、 6において、熱延鋼板を 900〜1200°Cで焼鈍し、酸洗、冷間圧延後、 1, 050°C未満の焼鈍温度で焼鈍するフェライト系ステンレス鋼板の製造方法。
8.請求項 7において、熱延鋼板を 900〜: L100°Cで焼鈍し、酸洗、冷間圧延後、 900°C 未満の焼鈍温度で焼鈍するフェライト系ステンレス鋼板の製造方法。
9. C:0.001〜0.02質量0 /0、 Si: 0.05—0.3質量0 /0、 Mn:0.5質量0 /0以下、 P:0.04質 量0 /0以下、 S:0.01質量0 /0以下、 Al:0.1質量%以下、 Cr:20〜24質量%、 Cu:0.3〜0.8 質量%、 Ni:0.5質量%以下、 Nb:0.20~0.55質量。 /0、 N:0.001〜0.02質量%を含有し、 残部が Feおよび不可避的不純物からなる铸片または鋼塊に、仕上げ温度 770°C以下 かつ卷き取り温度 450°C以下の熱間圧延を施し、さらに圧下率 50%以上の冷間圧延を 施すフ ライト系ステンレス鋼板の製造方法。
10.„請求項 9において、仕上げ温度力 卷き取り温度まで 20°C/秒以上の平均冷却速度 で冷却するフ ライト系ステンレス鋼板の製造方法。
PCT/JP2008/061501 2007-06-21 2008-06-18 耐硫酸腐食性に優れたフェライト系ステンレス鋼板およびその製造方法 WO2008156195A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/664,913 US8152937B2 (en) 2007-06-21 2008-06-18 Ferritic stainless steel sheet having superior sulfuric acid corrosion resistance and method for manufacturing the same
EP08765822.5A EP2163658B9 (en) 2007-06-21 2008-06-18 Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof
CN2008800210638A CN101680066B (zh) 2007-06-21 2008-06-18 耐硫酸腐蚀性优良的铁素体系不锈钢板及其制造方法
ES08765822T ES2802413T3 (es) 2007-06-21 2008-06-18 Chapa de acero inoxidable ferrítico que tiene excelente resistencia a la corrosión frente al ácido sulfúrico, y método para la producción de la misma

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007163418 2007-06-21
JP2007-163418 2007-06-21
JP2007-178097 2007-07-06
JP2007178097 2007-07-06

Publications (1)

Publication Number Publication Date
WO2008156195A1 true WO2008156195A1 (ja) 2008-12-24

Family

ID=40156349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061501 WO2008156195A1 (ja) 2007-06-21 2008-06-18 耐硫酸腐食性に優れたフェライト系ステンレス鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US8152937B2 (ja)
EP (1) EP2163658B9 (ja)
JP (1) JP5315811B2 (ja)
CN (1) CN101680066B (ja)
ES (1) ES2802413T3 (ja)
TW (1) TWI390048B (ja)
WO (1) WO2008156195A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100983A1 (en) * 2007-01-12 2009-09-16 JFE Steel Corporation Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
EP2460900A1 (en) * 2009-07-30 2012-06-06 JFE Steel Corporation Stainless steel for fuel cell separators which has excellent electrical conductivity and ductility, and process for production thereof
US20130319583A1 (en) * 2011-02-17 2013-12-05 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
US9816163B2 (en) 2012-04-02 2017-11-14 Ak Steel Properties, Inc. Cost-effective ferritic stainless steel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012005A (ja) 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp 給油管およびその製造方法
CN103348023B (zh) 2011-02-08 2015-11-25 新日铁住金不锈钢株式会社 铁素体系不锈钢热轧钢板及其制造方法、以及铁素体系不锈钢板的制造方法
US9574092B2 (en) 2011-04-17 2017-02-21 Brightsource Industries (Israel), Ltd. Solar-radiation-absorbing formulations and related apparatus and methods
JP5865775B2 (ja) * 2012-03-16 2016-02-17 新日鐵住金株式会社 焼結排ガス集塵機用ステンレス鋼および焼結排ガス集塵機
FI124995B (fi) 2012-11-20 2015-04-15 Outokumpu Oy Ferriittinen ruostumaton teräs
KR102462565B1 (ko) * 2014-03-28 2022-11-03 닛테츠 닛신 세이코 가부시키가이샤 내산 이슬점 부식성이 우수한 강판 및 제조 방법 및 배기가스 유로 구성 부재
CN106661697A (zh) * 2014-09-02 2017-05-10 杰富意钢铁株式会社 尿素scr壳体用铁素体系不锈钢板
KR101659185B1 (ko) * 2014-12-26 2016-09-23 주식회사 포스코 페라이트계 스테인리스강
CN105714208B (zh) * 2015-12-21 2017-12-29 浙江宣达特种合金流程装备股份有限公司 一种耐蚀高铬铁素体不锈钢及其制备方法与应用
CN109072378A (zh) * 2016-03-30 2018-12-21 日新制钢株式会社 含有Nb的铁素体系不锈钢板及其制造方法
EP3476961B1 (en) * 2016-06-27 2020-11-11 JFE Steel Corporation Ferritic stainless steel sheet
US11021782B2 (en) 2017-03-20 2021-06-01 Apple Inc. Steel compositions and solution nitriding of stainless steel thereof
CN107475491B (zh) * 2017-06-27 2020-04-14 鹰普(中国)有限公司 一种铁素体不锈钢的热处理工艺
EP3670692B1 (en) 2018-12-21 2022-08-10 Outokumpu Oyj Ferritic stainless steel
JP7014754B2 (ja) * 2019-07-09 2022-02-01 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228710A (ja) * 1993-01-29 1994-08-16 Nippon Steel Corp 耐食性の優れたジーゼル排気系用ステンレス鋼
JPH093606A (ja) * 1995-06-22 1997-01-07 Kawasaki Steel Corp 成形加工後の耐肌あれ性および高温疲労特性に優れるフェライト系ステンレス熱延鋼板
JP2001293990A (ja) * 2000-04-11 2001-10-23 Sakurai Takehisa Kenchiku Sekkei Kenkyusho:Kk 文房具ファイル
JP2002194507A (ja) * 2000-12-25 2002-07-10 Nisshin Steel Co Ltd 加工性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
JP2007092163A (ja) * 2005-09-02 2007-04-12 Nisshin Steel Co Ltd 自動車用排ガス流路部材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952226B2 (ja) 1980-04-11 1984-12-18 住友金属工業株式会社 耐銹性及び耐酸性にすぐれたフエライト系ステンレス鋼
CA1184402A (en) * 1980-04-11 1985-03-26 Sumitomo Metal Industries, Ltd. Ferritic stainless steel having good corrosion resistance
CA2085790C (en) * 1991-12-19 2000-03-28 Masao Koike Steel for use in exhaust manifolds of automobiles
JP3263469B2 (ja) * 1992-03-27 2002-03-04 日新製鋼株式会社 排ガス流路部材用フェライト系ステンレス鋼及び製造方法
JPH07188866A (ja) 1993-12-27 1995-07-25 Nkk Corp 耐硝酸腐食性に優れた高純度フェライト系ステンレス鋼
JPH08199314A (ja) * 1995-01-30 1996-08-06 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼及びその製造方法
JP3422878B2 (ja) * 1995-07-28 2003-06-30 新日本製鐵株式会社 大気中での耐食性に優れたフェライト系ステンレス鋼およびその製造方法
JPH10102212A (ja) * 1996-09-30 1998-04-21 Kawasaki Steel Corp 溶接溶け込み性に優れるフェライト系ステンレス鋼板
JPH10298720A (ja) * 1997-04-24 1998-11-10 Nippon Steel Corp 深絞り成形後の耐二次加工脆性に優れた高純クロム鋼板
JP3398591B2 (ja) * 1998-03-16 2003-04-21 川崎製鉄株式会社 抗菌性に優れたステンレス鋼材およびその製造方法
JP3477113B2 (ja) * 1999-06-23 2003-12-10 新日本製鐵株式会社 深絞り成形後の耐二次加工脆性に優れた高純度フェライト系ステンレス鋼板
JP3446667B2 (ja) * 1999-07-07 2003-09-16 住友金属工業株式会社 加工性と靱性に優れたフェライト系ステンレス鋼、フェライト系ステンレス鋼鋼塊及びその製造方法
JP2001181808A (ja) * 1999-12-17 2001-07-03 Nippon Steel Corp リジング特性と深絞り性に優れたフェライト系ステンレス鋼板及びその製造方法
JP3448537B2 (ja) * 2000-03-10 2003-09-22 新日本製鐵株式会社 溶接性に優れたフェライト系ステンレス鋼
JP3448541B2 (ja) 2000-04-12 2003-09-22 新日本製鐵株式会社 延性に優れたフェライト系ステンレス鋼板
JP2002020845A (ja) * 2000-07-07 2002-01-23 Sumitomo Metal Ind Ltd 耐熱フェライト系ステンレス鋼およびそれを用いた自動車排気マニホールド
DE60105955T2 (de) * 2000-12-25 2005-10-06 Nisshin Steel Co., Ltd. Ferritisches rostfreies Stahlblech mit einer guten Verarbeitbarkeit und Verfahren zu dessen Herstellung
JP2005139533A (ja) 2003-11-10 2005-06-02 Nippon Steel & Sumikin Stainless Steel Corp 肌荒れの少ないフェライト系ステンレス鋼板の成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228710A (ja) * 1993-01-29 1994-08-16 Nippon Steel Corp 耐食性の優れたジーゼル排気系用ステンレス鋼
JPH093606A (ja) * 1995-06-22 1997-01-07 Kawasaki Steel Corp 成形加工後の耐肌あれ性および高温疲労特性に優れるフェライト系ステンレス熱延鋼板
JP2001293990A (ja) * 2000-04-11 2001-10-23 Sakurai Takehisa Kenchiku Sekkei Kenkyusho:Kk 文房具ファイル
JP2002194507A (ja) * 2000-12-25 2002-07-10 Nisshin Steel Co Ltd 加工性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
JP2007092163A (ja) * 2005-09-02 2007-04-12 Nisshin Steel Co Ltd 自動車用排ガス流路部材

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100983A1 (en) * 2007-01-12 2009-09-16 JFE Steel Corporation Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
EP2100983A4 (en) * 2007-01-12 2010-03-10 Jfe Steel Corp FERRITIC STAINLESS STEEL SHEET FOR WATER HEATER, HAVING EXCELLENT CORROSION RESISTANCE AT A WELDED PART AND EXCELLENT SHEET TENACITY
US8383034B2 (en) 2007-01-12 2013-02-26 Jfe Steel Corporation Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
EP2460900A1 (en) * 2009-07-30 2012-06-06 JFE Steel Corporation Stainless steel for fuel cell separators which has excellent electrical conductivity and ductility, and process for production thereof
EP2460900A4 (en) * 2009-07-30 2013-03-06 Jfe Steel Corp STAINLESS STEEL FOR FUEL CELL SAVORORS WITH EXCELLENT ELECTRICAL CONDUCTIVITY AND STRETCHNESS AND MANUFACTURING METHOD THEREFOR
US8440029B2 (en) 2009-07-30 2013-05-14 Jfe Steel Corporation Stainless steel having good conductivity and ductility for use in fuel cell and method for producing the same
US20130319583A1 (en) * 2011-02-17 2013-12-05 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
US9938598B2 (en) * 2011-02-17 2018-04-10 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and process for producing the same
US9816163B2 (en) 2012-04-02 2017-11-14 Ak Steel Properties, Inc. Cost-effective ferritic stainless steel

Also Published As

Publication number Publication date
TW200918675A (en) 2009-05-01
JP2009035813A (ja) 2009-02-19
CN101680066A (zh) 2010-03-24
EP2163658A4 (en) 2012-04-18
JP5315811B2 (ja) 2013-10-16
EP2163658B1 (en) 2020-05-06
CN101680066B (zh) 2011-09-28
ES2802413T3 (es) 2021-01-19
TWI390048B (zh) 2013-03-21
US20100139818A1 (en) 2010-06-10
EP2163658B9 (en) 2020-10-28
EP2163658A1 (en) 2010-03-17
US8152937B2 (en) 2012-04-10

Similar Documents

Publication Publication Date Title
JP5315811B2 (ja) 耐硫酸腐食性に優れたフェライト系ステンレス鋼板
EP3124635B1 (en) Rolled ferritic stainless steel sheet, method for producing the same, and flange part
JP5838796B2 (ja) 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
TWI425100B (zh) 延伸性及擴孔性優異之高降伏比高強度熔融鍍鋅鋼板及其製造方法
WO2014119796A1 (ja) 加工性に優れたフェライト系ステンレス鋼板およびその製造方法
KR102201004B1 (ko) 페라이트계 스테인리스 열연 어닐링 강판 및 그 제조 방법
EP2243852A1 (en) High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof
JP5884476B2 (ja) 曲げ加工性に優れた高張力熱延鋼板およびその製造方法
KR102544884B1 (ko) 고강도 용융 아연 도금 강판 및 그의 제조 방법
JP5907320B1 (ja) ステンレス冷延鋼板用素材およびその製造方法
JP6112273B1 (ja) フェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法
JP7136335B2 (ja) 高強度鋼板及びその製造方法
JP5020600B2 (ja) 化成処理性に優れた高張力鋼板
JP3932020B2 (ja) 深絞り性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
JP5217617B2 (ja) フェライト系ステンレス冷延鋼板およびその製造方法
JP2021055141A (ja) フェライト系ステンレス鋼
CN115443344B (zh) 钢板及其制造方法
JP2010137344A (ja) せん断端面の耐食性に優れるフェライト系ステンレス鋼板のせん断方法
JP7136336B2 (ja) 高強度鋼板及びその製造方法
EP3778964B1 (en) Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member
JP7269470B2 (ja) 二相ステンレス鋼およびその製造方法
JP6119894B2 (ja) 加工性に優れた高強度鋼板
EP4269644A1 (en) Cold-rolled steel sheet and method for manufacturing same
WO2023135983A1 (ja) 高強度鋼板およびその製造方法
JP2010095742A (ja) 強度−伸びバランスが良好で、かつリジングの小さいステンレス冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880021063.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4370/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008765822

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12664913

Country of ref document: US