WO2008072501A1 - 高純度α-アルミナの製造方法 - Google Patents

高純度α-アルミナの製造方法 Download PDF

Info

Publication number
WO2008072501A1
WO2008072501A1 PCT/JP2007/073366 JP2007073366W WO2008072501A1 WO 2008072501 A1 WO2008072501 A1 WO 2008072501A1 JP 2007073366 W JP2007073366 W JP 2007073366W WO 2008072501 A1 WO2008072501 A1 WO 2008072501A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
content
less
firing
aluminum hydroxide
Prior art date
Application number
PCT/JP2007/073366
Other languages
English (en)
French (fr)
Inventor
Jun Mizuno
Toshihiro Matsuba
Shigeo Yamamoto
Takashi Yamada
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to US12/518,169 priority Critical patent/US8124048B2/en
Priority to CN2007800464733A priority patent/CN101588993B/zh
Priority to EP07850016.2A priority patent/EP2119672B1/en
Priority to KR1020097014025A priority patent/KR101403820B1/ko
Priority to PCT/JP2007/073366 priority patent/WO2008072501A1/ja
Publication of WO2008072501A1 publication Critical patent/WO2008072501A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/444Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing high-purity ⁇ _alumina, and specifically to a method for producing high-purity ⁇ -alumina from which Si, Fe, Ca and Na are removed as much as possible.
  • a-Alumina (a-A1 0) is superior in insulation, heat resistance, wear resistance, corrosion resistance, etc.
  • ⁇ _anoremina is used. Is used.
  • Conventional methods for obtaining high-purity ⁇ -alumina include the hydrolysis of ano-remium alkoxide, quaternary ammonium salt of aluminate, alum pyrolysis, ammonium aluminum carbonate pyrolysis, aluminum chloride heat Decomposition method, underwater spark discharge method, etc. The power of these methods is complicated, and the raw materials used are expensive. The resulting ⁇ -alumina is very expensive. Natsute.
  • Patent Document 4 Heat decarburization to that method (see Patent Document 4), and the like are.
  • the electrofusion treatment is performed. This is different from the firing furnace used for the production of general-purpose alumina by the buyer method because it requires heat treatment (Patent Documents 1 and 2) and requires firing in a special atmosphere (Patent Documents 3 and 4). I have to prepare the equipment.
  • Hydrochloric acid or aluminum chloride is added to aluminum hydroxide, and a silicic refractory container ( Firing method) (see Patent Document 6), method in which hydrochloric acid or aluminum chloride and boric acid or boron oxide coexist in aluminum hydroxide or alumina (see Patent Document 7), and aluminum hydroxide in hydrochloric acid Alternatively, after adding aluminum chloride and mixing and firing the silica-based material, the silica-based material is separated (see Patent Document 8). A method has been proposed in which an alumina is prepared, washed with an aliphatic lower carboxylic acid, and fired again (see Patent Document 9).
  • the final ⁇ _alumina contains Na content of about 100-600ppm, which is not always satisfactory for applications such as electronic component materials. is not. In addition, these methods cannot be expected to reduce the impurity metals such as Si, Ca, and Fe.
  • the alumina powder is pulverized with an iron medium having a diameter of 2 mm or less, the alumina powder is washed with hydrochloric acid or nitric acid, and further washed with sulfuric acid having a concentration of 10 N or more, so that the Fe content in the alumina is reduced.
  • a method of removing see Patent Document 10
  • a method of reducing the Si content by containing fluoride in aluminum hydroxide or alumina and firing see Patent Document 11
  • Patent Document 1 Japanese Patent Laid-Open No. 55-7532
  • Patent Document 2 Japanese Patent Laid-Open No. 53-79797
  • Patent Document 3 JP-A-8-290914
  • Patent Document 4 Japanese Patent Publication No. 6-37293
  • Patent Document 5 US Patent No. 2405275
  • Patent Document 6 Japanese Patent Publication No. 47-5744
  • Patent Document 7 Japanese Patent Publication No. 48-34680
  • Patent Document 8 Japanese Patent Laid-Open No. 54-16398
  • Patent Document 9 Japanese Unexamined Patent Publication No. 55-140719
  • Patent Document 10 Japanese Patent Laid-Open No. 10-324519
  • Patent Document 11 JP-A 62-46922
  • an object of the present invention is to produce a high-purity ⁇ -alumina that can easily and inexpensively obtain a high-purity ⁇ -alumina in which the Si content, Fe content, Ca content, and Na content are simultaneously reduced. It is to provide a manufacturing method.
  • Another object of the present invention is to provide a high-purity ⁇ -alumina in which the Si content, Fe content, Ca content and Na content are simultaneously reduced. Means for solving the problem
  • the present invention uses a firing vessel containing a range of Al 2 ⁇ 3 85 to 93 wt% and Si_ ⁇ 2 7-14 wt%, Na content impurities in each terms of alumina 0. 11 mass% or less, Fe content 6 ppm or less, Ca content 1.5 ppm or less, Si content lO ppm or less, and an average particle diameter of 55 m or less, 1100 ⁇ ; calcining temperature of 1500 ° C It is a method for producing high-purity ⁇ -alumina, characterized in that the ⁇ -alumina obtained by firing is washed.
  • the present invention is a high-purity ⁇ -alumina characterized in that the Si content is 20 ppm or less, the Fe content is 10 ppm or less, the Ca content is 2 ppm or less, and the Na content is 40 ppm or less.
  • Aluminum fluoride has an average particle size of 55 111 or less, preferably 30 in or less, and impurities are 0.11% by mass or less Na in terms of alumina (total Na 2 O content is 0.15% by mass or less). It is necessary that the Fe content is 6 ppm or less in terms of lumina, the Ca content is 1.5 ppm or less in terms of alumina, and the Si content is 1 Oppm or less in terms of alumina. If the average particle size is greater than 55 m, it is not suitable for reducing the Na content in alumina, which has a low Na content removal efficiency, to 40 ppm or less. If the Na content exceeds 0.1 ll% by mass in terms of alumina (total Na 2 O content is 0.15% by mass)!
  • the amount of impurities in aluminum hydroxide can be calculated by multiplying by 155.96 / 101.96 1.53 when converted to alumina base. Therefore, in terms of the amount of impurities before conversion to alumina, the Na content is 0.074 mass% or less (the total Na 2 O content is 0.1 mass% or less), the Fe content is 4 ppm or less, the Ca content is 1 ppm or less, and Si Min is less than 6ppm.
  • the means for obtaining such aluminum hydroxide is not particularly limited, and may be, for example, aluminum hydroxide by the Bayer method, but preferably by the method described in JP-A-11 278829. The obtained aluminum hydroxide is preferably used.
  • the dissolved Na 2 O concentration (C) is 100 g / L or more and the Fe concentration in the solution is 0.4 mg / L or less, and the molar ratio of dissolved Na 2 O to dissolved Al 2 O (M, dissolved Na 0 min). / Dissolved A10))
  • M dissolved Na 2 O
  • M dissolved Na 0 min.
  • Dissolved A10 A supersaturated sodium aluminate solution having a value of 1.6 to 2.0 is used as a raw material solution.
  • this raw material solution the following formula (1)
  • the solution temperature (T) is lowered to 55 ° C or lower with stirring to reduce the molar ratio ( (M) is decomposed until it exceeds 3.0, and the precipitated aluminum hydroxide is solid-liquid separated, so that the average particle diameter is 15 to 40 111 and the total Na 2 O content is 0.1% by mass.
  • Aluminum hydroxide with Fe component force of ppm or less can be obtained below.
  • the obtained aluminum hydroxide can be further reduced in average particle size by pulverization.
  • the above equation (3) is derived from the so-called white equation (Light Metals, (1984), pp237-253).
  • the sodium sodium aluminate solution may be prepared by any method, but is preferably a supersaturated sodium aluminate solution obtained by the Bayer method, specifically, dissolved Na 2 O concentration (C) 100-200 g / L, molar ratio of dissolved Na 2 O to dissolved Al 2 O (M) 1.5 ⁇ ;!
  • a baking container containing SiO in the range of 7 to 14% by weight a so-called siliceous firing container that is generally used and contains a relatively large amount of SiO, a large amount of Si remains in the alumina after firing, and Ca and Fe are volatilized. There is a problem of lowering the purity of alumina obtained by adsorption.
  • high-alumina-based firing containers with relatively low SiO have the problems that Si contamination can be suppressed, but the effect of reducing Na is small and Ca contamination is significant.
  • the present inventors have repeatedly conducted a firing test using a combination of the composition of the firing container and the firing temperature, and as a result, the Al 2 O force is 5 to 93% by weight, and the SiO force is approximately 14% by weight.
  • the Al 2 O force is 5 to 93% by weight
  • the SiO force is approximately 14% by weight.
  • the aluminum hydroxide filling filled in the firing container is used for the purpose of preventing contamination due to volatilization or adsorption of impurities derived from the firing container. It is preferable to reduce the contact area between and the baking vessel as much as possible, and it is preferable that the contact area be 30% or less of the surface area of the aluminum hydroxide filler.
  • the part of the ⁇ -alumina that is in contact with the firing container has a particularly large amount of Si in the obtained ⁇ _alumina. By setting the contact area within the above range, it is possible to avoid contamination of impurities through the contact part as much as possible. Can do.
  • the means for reducing the contact area of the aluminum hydroxide filler to the firing container is not particularly limited.
  • aluminum hydroxide aluminum hydroxide
  • press-molded in advance according to the shape of the firing container. (Filler) may be put into a firing container through a spacer made of a sintered piece made of high-purity alumina, and accommodated so as to form a predetermined gap between the inner wall surface of the firing container. .
  • aluminum hydroxide (aluminum hydroxide filling) that has been press-molded so as to have a leg that can contact the bottom of the inner wall of the firing container and support its own weight is accommodated so that only the leg is in contact with the firing container.
  • a sheet material made of polyethylene, polypropylene, polystyrene, or the like, which is burned off during firing is placed on the inner wall surface of the firing container, and aluminum hydroxide (filled with aluminum hydroxide) is accommodated through this sheet material. You may do it.
  • aluminum hydroxide is baked to ⁇ -alumina, a certain shape can be maintained by sintering.
  • a predetermined opening is provided in the sheet material arranged on the bottom surface of the inner wall of the baking container.
  • the aluminum hydroxide filled in the opening serves as a leg portion that supports its own weight, and it is possible to avoid contact with the firing container other than the leg portion. wear.
  • a predetermined gap may be provided between the lid of the baking container and the aluminum hydroxide filling.
  • the portion that may come into contact with the baking container and possibly contaminated with impurities may be removed after baking.
  • the ⁇ obtained by having a predetermined shape as a lump after baking. -It is recommended to remove 5mm (depth 5mm) from the surface of alumina.
  • the aluminum hydroxide placed in the firing container is fired at a firing temperature of 1100-1500 ° C. If the firing temperature is less than 1100 ° C, the Na removal effect is likely to be insufficient.
  • There is a problem that the Na content in the alumina cannot be reduced to 40 ppm or less. If exceeded, impurity contamination from the firing container becomes significant, and it is impossible to keep the Fe content in a-alumina at ⁇ ⁇ pm or less, the Ca content at 2 ppm or less, and the Si content at 20 ppm or less.
  • This firing can reduce the Na content in the aluminum hydroxide, and finally the ability to stably obtain ⁇ -alumina with a Na content of 40 ppm or less.
  • Reduction effect of the Na content in the firing Is greatly affected by the particle size of aluminum hydroxide and firing conditions.
  • the smaller the particle size of aluminum hydroxide the greater the reduction effect of Na.
  • the higher the firing temperature the greater the Na reduction effect.
  • the baking it is appropriate to perform the baking until the ⁇ -alumina particles grow from aluminum hydroxide. It is not necessarily limited because it depends on the Na content and particle size contained, but also the firing temperature, but it is preferably 1 hour or longer.
  • the firing atmosphere may be in the air.
  • ⁇ -alumina obtained by firing is washed.
  • One of the purposes of this cleaning treatment is to further remove Na contained in the ⁇ -alumina obtained by firing. Therefore, preferably, the ⁇ _alumina obtained by firing is slurried with pure water, repulp water such as hydrochloric acid, phosphoric acid, hydrofluoric acid, etc., and stirred and washed to dissolve Na content in the alumina. Next, it is recommended to wash and wash water.
  • the conditions for the cleaning treatment depend on the Na content and the particle size of aluminum hydroxide and the temperature at the time of firing, but the following conditions can be exemplified. That is, when stirring ⁇ -alumina, the slurry is preferably slurried with 2 L or more of repulped water with respect to 1 kg of ⁇ -alumina and stirred for 1 hour or longer. If the amount of repulp water is less than 2L / kg-alumina, the effect of reducing Na content may not be fully expected even after stirring for 1 hour or more. Even if the slurry exceeds 2L / kg-alumina and stirred for 1 hour or longer, the effect of stirring and washing is saturated.
  • washing water it is better to replace the residual liquid containing the eluted Na contained in the particles with sufficient washing water while filtering.
  • the effect is saturated even if the water is washed over 5L / kg-alumina.
  • the obtained high-purity ⁇ -alumina is further changed as necessary. 800 to 1000 ° C, preferably 900 to 1000 ° C, and the washing treatment may be performed again.
  • high purity ⁇ _alumina may be pulverized and slurried again, and contacted with, for example, a strong ionic ion exchange resin to further remove the impurity metal.
  • «-Alumina can be produced easily and inexpensively. Specifically, high-purity ⁇ -alumina having a Si content of 20 ppm or less, an Fe content of 10 ppm or less, a Ca content of 2 ppm or less, and a Na component force of Oppm or less can be obtained. In addition, according to the production method of the present invention, high-purity ⁇ -alumina having almost no change in the particle size of aluminum hydroxide as a raw material can be obtained, so that the insulating material is not subject to restrictions on its use. It can be expected to be used in a wide range of applications including fine ceramics, electronic materials, and pharmaceuticals as well as general ⁇ -alumina such as abrasives, and its industrial importance is extremely high.
  • FIG. 1 is an explanatory cross-sectional view showing a state in which aluminum hydroxide is fired using a firing vessel.
  • FIG. 2 is a perspective explanatory view of an aluminum hydroxide filling formed by press-molding aluminum hydroxide.
  • FIG. 3 is an assembly explanatory view of a sheet used for firing aluminum hydroxide.
  • FIG. 4 is a perspective explanatory view of an aluminum hydroxide filling prepared for testing.
  • FIG. 5 is a cross-sectional explanatory view showing a filling method of aluminum hydroxide into a firing container (used in a part of [Firing Test by Filling Method]).
  • FIG. 1 is an explanatory cross-sectional view showing a state in which aluminum hydroxide is fired using the firing container 1.
  • the firing container 1 is composed of 85 to 93% by weight of Al 2 O and 7 to 14% of SiO; 14% by weight of the firing container body 2 and 85 to 93% by weight of Al 2 O and 7 to 14% of SiO.
  • the lid 3 is contained in the range of weight%, and the calcined container 1 is filled with pre-pressed aluminum hydroxide filler 4! /.
  • this aluminum hydroxide filling 4 is press-molded into a getter mold having leg portions 4a, and only the leg portions 4a are in contact with the firing container 1 so that the firing container 1 They are arranged at a predetermined distance d from the inner wall surface.
  • the sheet material 5 shown in FIG. 3 can be used.
  • the sheet material 5 is made of polyethylene, polypropylene, polystyrene or the like, and is burned out after firing.
  • This sheet material 5 is used as an insole when filling the firing container 1 with aluminum hydroxide, and corresponds to the inner wall side surface 2a of the firing container body 2 according to the shape of the firing container 1 (4 in FIG. 3). Sheet) and the one corresponding to the bottom 2b of the inner wall (one sheet in Fig. 3) should be prepared.
  • some openings 5a are provided so as to form a leg portion that can support its own weight after being filled with aluminum hydroxide power. It is preferable to do so.
  • the sheet material 5 is disposed on the inner wall surface of the baking container main body 2. At this time, the sheet material 5 having the opening 5a is disposed on the bottom surface 2b of the inner wall. Then, the hydroxide used as a raw material in the firing container body 2 in which all the sheet materials 5 are arranged Fill with aluminum fluoride. At this time, it is preferable to adjust the shape of the aluminum hydroxide filler while applying pressure. After filling all the aluminum hydroxide, cover the firing container body 2 with the lid 3.
  • the firing container 1 filled with aluminum hydroxide is fired at a firing temperature of 1100-1500 ° C in, for example, a shuttle kiln or an electric furnace.
  • the firing time is not necessarily limited because it depends on the particle size of aluminum hydroxide, the contained Na, and the like, but it is preferably 1 hour or longer. At this time, the firing atmosphere can be performed in the air.
  • the ⁇ -alumina obtained by firing is usually in the form of a lump, it is crushed as necessary and subjected to a predetermined cleaning treatment.
  • a suitable method for the washing treatment first, ⁇ _alumina cooled to room temperature is poured into repulp water such as pure water, hydrochloric acid, phosphoric acid, hydrofluoric acid, etc., slurried, washed with stirring, ⁇ _Eluted impurities (mainly ⁇ a) remaining in alumina.
  • the stirring time for slurrying with 2 L or more of repulped water per 1 kg of ⁇ -alumina is 1 hour or more.
  • the slurry is poured into the filter and the repulped water is suctioned and filtered to remove the eluted impurity metals.
  • pass the washing water for example, pure water
  • the ⁇ -alumina filtered and replace the repulp water containing the impurity metal remaining between the particles with the washing water, and suction filter to remove ⁇ - Wash the alumina.
  • the high-purity ⁇ -alumina obtained above may be further heat-treated at a temperature of 800 to 1000 ° C and washed again.
  • High purity ⁇ -alumina may be pulverized and slurried again, and contacted with a strong ion exchange resin or the like, for example, to further remove impurity metals.
  • the Na content can be further reduced to 10 ppm or less.
  • the material of the firing container 1 (the firing container body 2 and the lid 3) and the material obtained by firing using the same.
  • aluminum hydroxide is calcined using calcining vessels A to G each having the chemical composition (mass%) shown in Table 1, and then washed.
  • calcining vessels A to G each having the chemical composition (mass%) shown in Table 1, and then washed.
  • high-purity ⁇ -alumina Firing containers ⁇ and ⁇ are so-called siliceous firing containers, and firing containers E, F and G are high-alumina firing containers.
  • the material of each baking container is the result of analysis by fluorescent X-ray analysis. Table 1 shows the dimensions (inner diameter) of each firing container body.
  • each of the firing containers A to G and the hydrated aluminum hydroxide filling 4 was filled so as to be in contact with only the leg portion 4a. That is, the area of contact between the aluminum hydroxide filler 4 and each baking vessel is the sum of the surfaces of the columnar legs 4a, which corresponds to 8% of the surface area of the aluminum hydroxide filler 4. .
  • the aluminum hydroxide filler 4 and each of the firing containers A to G are not in contact with each other! /, The part is! /, And the aluminum hydroxide filler 4 and the firing container (the firing container body and the lid) And a gap d of at least 5 mm or more between them.
  • the firing containers A to G filled with the aluminum hydroxide filler as described above were put into an electric furnace and fired for 10 hours (holding time) at the firing temperature shown in Table 2 in an air atmosphere. I did it.
  • the average particle diameter of aluminum hydroxide and the amount of each impurity metal used in each test number are as shown in Table 2.
  • the average particle diameter of aluminum hydroxide was measured using a laser scattering method Microtrac 9320HRA (X100) manufactured by Nikkiso Co., Ltd.
  • the amount of impurity metal contained in the aluminum hydroxide used as a raw material is a value obtained by atomic absorption spectrometry and ICP emission spectroscopic analysis, and the Na content was 1% 10 OOOppm.
  • the amount of impurity metal contained in ⁇ _alumina after the firing treatment and after the washing treatment was measured in the same manner.
  • the amount of impurities contained in the raw aluminum hydroxide is a value converted to alumina.
  • ⁇ _alumina After washing in this manner, drying was performed to obtain ⁇ _alumina from which the impurity metal was removed.
  • Table 2 shows the measurement results of impurity metals contained in the obtained alumina.
  • is attached in the table for those for which impurities were not measured.
  • ND is attached to values that are not detected.
  • ⁇ -alumina (test ⁇ ⁇ 9 to 12) obtained by firing and cleaning using firing containers ⁇ and ⁇ has a Si content exceeding 20 ppm. It was found that the power, Na content and Fe content were higher than ⁇ -alumina obtained using other containers. In addition, ⁇ -alumina (test ⁇ .13-21) obtained using firing containers E, F, and G all contained Ca content exceeding 2 ppm. On the other hand, ⁇ -alumina (test Nos. 1 to 8) obtained by firing and cleaning using firing containers C and D is particularly Ca content compared to other firing containers. The content was low (2 ppm or less), and at the same time, the contents of Na, Si, and Fe were also low (Na: 40 ppm or less, Si: 20 ppm or less, Fe: 10 ppm or less).
  • the prepared aluminum hydroxide consists of high-purity aluminum hydroxide powder (trade name ⁇ 39, manufactured by Nippon Light Metal Co., Ltd.), trial aluminum hydroxide powder (manufactured by Nippon Light Metal Co., Ltd., see Table 3), and regular grain aluminum hydroxide.
  • Amounts of impurities in aluminum hydroxide are values converted to alumina.
  • “NA” represents “not analyzed” and “NDJ represents“ not detected ”.
  • At least one of Na, Fe, Ca and Si contained in the aluminum hydroxide used as a raw material is “Na content of 0.11 mass% or less”, “Fe content of 6 ppm or less”, “ Impurities contained in ⁇ -alumina obtained by cleaning when aluminum hydroxide does not satisfy the conditions of “Ca content 1.5 ppm or less” and “Si content lOppm or less” (Test ⁇ ⁇ 31-34)
  • the amount of metal exceeded one of the following criteria: “Na content 40 ppm or less”, “Ca content 2 ppm or less”, “Si content 20 ppm or less”, and “Fe content lOppm or less”.
  • the firing temperature is 1000 ° C (Test Nos.
  • the Na content in the ⁇ -alumina obtained by washing treatment exceeds 40 ppm, and when the firing temperature is 1600 ° C (Test In the case of No. 29), the Si content of the ⁇ -alumina obtained by the cleaning treatment exceeded 20 ppm.
  • This aluminum hydroxide filler 4 is 250 mm (L) X 200 mm (D) X 80 mm (H), and the surface corresponding to the bottom of the inner wall of the firing vessel is 15 mm (1) X 5 mm (h) legs. It has a shape with five parts 4a. When filling the aluminum hydroxide filler 4 into the firing containers C and D, make sure that only the legs 4a are in contact with the firing container, and the other parts are at least 5mm between the firing container body and the lid. The gap d is formed. Hydroxylation at this time The contact area between the aluminum filler 4 and the firing container is 10% of the surface area of the aluminum hydroxide filler 4.
  • the raw material aluminum hydroxide is put into the firing container body as it is without press molding aluminum hydroxide, and the inner wall bottom and inner walls of the firing container body It filled so that it might contact with a side part. Then, firing and cleaning were performed in the same manner as described above, and the amount of impurity metal was measured (Test ⁇ .37 and 38). The results of these test Nos. 35 to 38 are shown in Table 4, and in the case of the aluminum hydroxide filling without the legs (test Nos. 37 and 38), the Si content exceeding 20 ppm in ⁇ -alumina. Was included.
  • the firing test by filling method As a reference, aluminum hydroxide filling after firing was performed.
  • a predetermined part is used for each case when pressed into a getter mold (Test No. 35) and when filled without pressing (Test ⁇ ⁇ 38). Separated and collected, these were individually washed and the amount of impurities was compared.
  • the aluminum hydroxide filler 4 press-molded into a getter mold has legs 4a (part I) of the aluminum hydroxide filler 4 after firing, the inner wall of the firing container body.
  • the gap between the aluminum hydroxide filler and the firing container is adjusted to 1 to 10 mm, and firing is performed.
  • the amount of impurity metal contained in the later ⁇ -alumina was measured. Specifically, when the gap d (gap d shown in FIG. 1) between the aluminum hydroxide filler 4 press-molded into a getter mold and the firing container 1 (firing container C) is 5 mm or more (Test No. 39). ⁇ 41), and the case of less than 5mm! /, (Test Nos.
  • the firing container-specific tests were performed except that the firing temperature was 1350 ⁇ ; 1400 ° C and the holding time was 10 ⁇ ; 12 hours. Firing was performed in the same manner, and the amount of impurity metals contained in the ⁇ -alumina after firing was measured.
  • the site where the amount of impurity metal was measured was site II shown in FIG. 5 (A).
  • Table 6 I This shows as I this, (or a test vo-44 to 48, using a high-purity aluminum hydroxide having an average particle diameter 38 ⁇ m, Na content 0 - 092 mass 0/0 (alumina basis), baking
  • the aluminum hydroxide filler was fired in the same manner as in the above [Baking Test by Filling Method] using a firing vessel C at a temperature of 1200 ° C and a holding time of 10 hours.In Test Nos. 49 to 55, the average particle size was 27 m.
  • the ⁇ -alumina obtained above was subjected to stirring washing and water washing in the same manner as in the above [Baking container separate test] so as to satisfy the washing conditions shown in Table 6. After washing treatment, drying was performed to obtain ⁇ -alumina from which the impurity metal was removed. Table 6 shows the results of the Na removal rate derived from the Na content in the ⁇ -alumina before the cleaning treatment and the Na content in the ⁇ -alumina after the cleaning treatment.
  • Na removal rate 100 X (Na content in ⁇ -alumina before cleaning treatment Na content in ⁇ -alumina after cleaning treatment) ⁇ (Washing treatment This is the value derived from “Na content in the previous ⁇ -alumina” (100% is equivalent to complete removal).
  • Test ⁇ ⁇ 45 specimen ⁇ -alumina (hereinafter referred to as “Test ⁇ ⁇ 45 specimen”) finally obtained after stirring and passing water washing by the method shown in Test No. 45 of the above [Na content removal effect test]
  • Test No. 56 ⁇ -alumina
  • Test No. 57 was the same as Test No. 56 except that the above test No. 45 specimen was reheated at 1000 ° C for 1 hour.
  • test No. 58 a series of treatments performed in test No. 57 were performed twice in total.
  • Test No. 59 the test material No. 45 was pulverized to an average particle size of 5 ⁇ m or less, and then slurried with pure water to obtain a cation exchange resin (Diaion SK1B manufactured by Mitsubishi Chemical Corporation). ) To remove Na. At this time, the ⁇ -alumina slurry was brought into contact with the cation exchange resin for 24 hours so that the amount of the cation exchange resin was 50 ml with respect to 1 kg of ⁇ -alumina, and then separated and recovered. Note that the test material No. 45 used in this test was obtained by the test of the same method as test ⁇ ⁇ 45, and the test material No. 45 in the above [Na content removal effect test] was used. It is not the ⁇ -alumina itself obtained. Therefore, there are two types of ⁇ -alumina used in this test with different Na contents.
  • Test No. 60 the same treatment as in Test No. 56 was performed, except that Test No. 45 specimen was reheated at 500 ° C for 1 hour. .45 Test material was treated in the same way as test No. 56 except that it was reheated at 700 ° C for 1 hour. In test No. 62, test sample 45 was reheated at 1200 ° C for 1 hour. The same treatment as in Test No. 56 was performed, except for the above.
  • an additional Na content removal effect test was performed after measuring the BE T specific surface area of Test No. 45 specimen in advance. Then, the BET specific surface area of ⁇ -alumina obtained in the additional Na removal effect test was measured, and the values before and after the additional Na removal treatment were compared.
  • the BET specific surface area is inversely proportional to the primary particle diameter of ⁇ _alumina, and “the specific surface area of the alumina decreases and the primary particle diameter of the alumina grows large” and “the specific surface area of the alumina does not change.” It can be used as a judgment index for changes in the primary particle size of alumina, such as “No growth of diameter”.
  • a specific surface area automatic measuring device model: Flowsorb II 2300 manufactured by Micromeritics was used.
  • the high-purity ⁇ _alumina obtained by the present invention is a general use of ⁇ _alumina, in addition to ceramic materials, refractories, insulators, abrasives, pharmaceuticals, adsorbents, fillers, catalyst carriers, special glass Power that can be widely used for raw materials, single crystal raw materials, fluorescent materials, plasma spray materials, etc. Especially fine ceramics, electronic components, single crystal raw materials with low content of Si, Fe, Ca and Na Suitable for applications such as fluorescent materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 Si分、Fe分、Ca分及びNa分が同時に低減された高純度α-アルミナの製造方法を提供する。  Al2O3を85~93重量%及びSiO2を7~14重量%の範囲で含有する焼成容器を用いて、不純物がそれぞれアルミナ換算でNa分0.11質量%以下、Fe分6ppm以下、Ca分1.5ppm以下、及びSi分10ppm以下であり、かつ、平均粒子径が55μm以下である水酸化アルミニウムを1100~1500°Cの焼成温度で焼成し、得られたα-アルミナを洗浄処理することにより高純度α-アルミナを製造する。

Description

明 細 書
高純度 a -アルミナの製造方法
技術分野
[0001] この発明は、高純度 α _アルミナの製造方法に関し、具体的には Si、 Fe、 Ca及び N a分が可及的に除去された高純度 α -アルミナの製造方法に関する。
背景技術
[0002] a -アルミナ( a -A1 0 )は、絶縁性、耐熱性、耐磨耗性、耐食性等に優れることから
、耐火物、研磨材、碍子、電子部品、点火プラグ、充填材、触媒担体等に広く用いら れており、なかでも、ファインセラミックスや電子部品等の用途には、高純度の α _ァ ノレミナが使用されている。従来において、高純度の α -アルミナを得る方法として、ァ ノレミニゥムアルコキシド加水分解法、アルミン酸四級アンモニゥム塩法、明礬熱分解 法、アンモニゥムアルミニウム炭酸塩熱分解法、塩化アルミニウム熱分解法、水中火 花放電法等が用いられている力 これらの方法は、製造工程が複雑であり、かつ、用 いる原材料が高価であることから、得られる α -アルミナの価格が非常に高くなつてし まう。
[0003] そこで、汎用の α -アルミナを製造する方法として一般的に採用されているバイヤー 法を利用し、純度の高!/、 a -アルミナを得るための方法カ^、くつか提案されて!/、る。 例えば、バイヤー法によって得られたアルミナを電気炉によって溶融し、この溶融ァ ノレミナに圧縮空気等を吹き付けることによって中空粒状体を得て、これを鉱酸に浸漬 して不純物を溶出する方法(特許文献 1参照)、アルミナを SiOと共に電熱溶融させ て得られたコランダムを粉砕し、塩酸とフッ酸で洗浄して高純度の α -アルミナを得る 方法(特許文献 2参照)、ノ ィヤー法による水酸化アルミニウム又はこれを仮焼して得 られた遷移アルミナを粉砕し、塩化水素ガスを含んだ雰囲気中で 600〜; 1400°Cで 焼成する方法(特許文献 3参照)、バイヤー法による水酸化アルミニウム及びこれを加 熱処理して得られた中間アルミナを原料としてこれを炭素質物質で被覆し、減圧雰 囲気で 800°C以上の温度で焼成し、次!/、で常圧酸化雰囲気で加熱して脱炭処理す る方法(特許文献 4参照)等が挙げられる。しかしながら、これらの方法では、電融処 理が必要であったり(特許文献 1及び 2)、特殊雰囲気下での焼成が必要である(特 許文献 3及び 4)ことから、バイヤー法によって汎用アルミナを製造する際の焼成炉と は別の設備を用意しなければならなレ、。
[0004] 一方で、バイヤー法を利用する際の一般的な課題として、バイヤー法では工程上 で苛性ソーダ (水酸化ナトリウム)を用いるため、得られたアルミナ中に Na分が多量に 残存してしまう点が挙げられる。 Na分は電気絶縁性を阻害する要因になるため、ァ ノレミナを絶縁材料や電子部品材料として使用する場合にはできるだけ除去する必要 がある。そこで、水酸化アルミニウムを低温と高温の 2段階で焼成し、洗浄とろ過を繰 り返す方法(特許文献 5参照)、水酸化アルミニウムに塩酸又は塩化アルミニウムを添 カロして、珪酸質耐火容器 (焼成容器)で焼成する方法 (特許文献 6参照)、水酸化ァ ノレミニゥム又はアルミナに塩酸又は塩化アルミニウムとホウ酸又は酸化ホウ素を共存 させて焼成する方法(特許文献 7参照)、水酸化アルミニウムに塩酸又は塩化アルミ 二ゥムを添加し、シリカ系物質を混合して焼成した後に、シリカ系物質を分離する方 法 (特許文献 8参照)、水酸化アルミニウムを焼成して結晶質を含まない無定形アルミ ナとした後、脂肪族低級カルボン酸で洗浄して再度焼成する方法 (特許文献 9参照) 等が提案されている。し力もながら、これらの方法によっても、最終的に得られる α _ アルミナには、いずれも 100〜600ppm程度の Na分が含まれてしまい、電子部品材 料をはじめとした用途では必ずしも満足できるものではない。また、これらの方法では 、 Si、 Ca、 Fe等の不純物金属を低減させる効果は望めない。
[0005] そこで、例えばアルミナ粉末を直径 2mm以下の鉄媒体で粉砕した後、このアルミナ 粉末を塩酸又は硝酸で洗浄し、更に濃度 10N以上の硫酸で洗浄することで、アルミ ナ中の Fe分を除去する方法(特許文献 10参照)、水酸化アルミニウム又はアルミナ にフッ化物を含有させて焼成することで Si分を低減させる方法 (特許文献 11参照)等 が提案されている。し力、しながら、上記 Fe分の除去に係る方法では、出発原料として 純度 99. 99質量%以上のアルミナ粉末を用いる必要があり、また、その実施例にお いて Feと思われる不純物は 40〜50ppmまで低減されたに過ぎない。一方、 Si分の 低減に係る上記方法では、用いられるフッ化物が α -アルミナの粒子成長促進剤とし ても作用するため、得られる α -アルミナが粗粒化する傾向がある。そのため、微細な 粒子が求められる電子材料やセラミックス原料用の高純度 α -アルミナを得る製法と しては不向きである。
特許文献 1 :特開昭 55— 7532号公報
特許文献 2:特開昭 53— 79797号公報
特許文献 3 :特開平 8— 290914号公報
特許文献 4:特公平 6— 37293号公報
特許文献 5:米国特許第 2405275号公報
特許文献 6:特公昭 47— 5744号公報
特許文献 7:特公昭 48— 34680号公報
特許文献 8:特開昭 54— 16398号公報
特許文献 9:特開昭 55— 140719号公報
特許文献 10 :特開平 10— 324519号公報
特許文献 11 :特開昭 62— 46922号公報
発明の開示
発明が解決しょうとする課題
[0006] 上記で説明した従来の方法では、それぞれ単独であっても、あるいはいくつかの方 法を組み合わせたとしても、 Si分、 Fe分、 Ca分及び Na分が同時に低減された高純 度 α -アルミナを得ることは困難である。そこで、本発明者等は、これらの不純物金属 を可及的に低減した高純度 α -アルミナを製造する方法につ!/、て鋭意検討した結果 、 Na分や Fe分等がそれぞれ所定の値以下であって平均粒子径が制御された水酸 化アルミニウムを特定の焼成容器を用いて焼成し、洗浄処理することによって、上記 のような不純物金属が可及的に除去された α -アルミナが得られることを見出し、本 発明を完成した。
[0007] したがって、本発明の目的は、 Si分、 Fe分、 Ca分及び Na分が同時に低減された 高純度 α -アルミナを、簡便かつ低コストで得ることができる高純度 α -アルミナの製 造方法を提供することにある。
[0008] また、本発明の別の目的は、 Si分、 Fe分、 Ca分及び Na分が同時に低減された高 純度 α -アルミナを提供することにある。 課題を解決するための手段
[0009] すなわち、本発明は、 Al23を 85〜93重量%及び Si〇2を 7〜14重量%の範囲で 含有する焼成容器を用いて、不純物がそれぞれアルミナ換算で Na分 0. 11質量% 以下、 Fe分 6ppm以下、 Ca分 1. 5ppm以下、及び Si分 lOppm以下であり、かつ、 平均粒子径が 55 m以下である水酸化アルミニウムを 1100〜; 1500°Cの焼成温度 で焼成し、得られた α -アルミナを洗浄処理することを特徴とする高純度 α -アルミナ の製造方法である。
[0010] また、本発明は、 Si分が 20ppm以下、 Fe分が lOppm以下、 Ca分が 2ppm以下、 及び Na分が 40ppm以下であることを特徴とする高純度 α -アルミナである。
[0011] 本発明の高純度 α -アルミナ(α -Α1 0 )を製造する方法において、使用する水酸
2 3
化アルミニウムは、平均粒子径が 55 111以下、好ましくは 30 in以下であり、不純物 は、アルミナ換算で Na分が 0. 11質量%以下(全 Na O分が 0. 15質量%以下)、ァ ルミナ換算で Fe分が 6ppm以下、アルミナ換算で Ca分が 1. 5ppm以下、及びアルミ ナ換算で Si分が l Oppm以下である必要がある。平均粒子径が 55 mより大きいと N a分の除去効率が低ぐアルミナ中の Na分を 40ppm以下に低減するためには適さな い。また、 Na分がアルミナ換算で 0. l l質量%(全Na O分が 0. 15質量%)を超えて 含まれて!/、ると、焼成及び洗浄処理による Na分の除去操作を行なっても除去しきれ ず多くの Na分が残留してしまい、アルミナ中の Na分力 Oppmを超えてしまうという問 題が生じる。一方、 Na分以外の不純物については、水酸化アルミニウム中の含有量 がそのままアルミナへ移行し残留することから、製造工程でのコンタミ分を考慮して、 Fe分、 Ca分、及び Si分をそれぞれ上記範囲内にすることで、最終的に Fe分が ΙΟρρ m以下、 Ca分が 2ppm以下、及び Si分が 20ppm以下の高純度 α -アルミナを得るこ と力 Sできる。なお、水酸化アルミニウム中に含まれる不純物量については、アルミナ三 水和物(A1 0 ' 3^^ 0 :分子量155.96) 1分子カ ァルミナ(八1 0:分子量 101.96) 1分
2 3 2 2 3 子に相当することから、水酸化アルミニウム中の不純物量をアルミナベースに換算す る際には 155.96/101.96 1.53を乗じて求めることができる。そのため、アルミナ換算 する前の不純物量で示せば、 Na分は 0. 074質量%以下(全 Na O分が 0. 1質量% 以下)、 Fe分は 4ppm以下、 Ca分は lppm以下、及び Si分は 6ppm以下である。 [0012] このような水酸化アルミニウムを得る手段については特に制限されず、例えばバイ ヤー法による水酸化アルミニウムであってもよいが、好適には、特開平 11 278829 号公報に記載された方法によって得られた水酸化アルミニウムを用いるのがよい。す なわち、溶解 Na O濃度(C) 100g/L以上及び液中 Fe濃度 0. 4mg/L以下であつ て、溶解 Na O分と溶解 Al O分とのモル比(M、溶解 Na 0分/溶解 A1 0分)が 1. 6 〜2. 0である過飽和アルミン酸ナトリウム溶液を原料溶液として用い、この原料溶液 中に、 75°C以下であって下記式(1)
T≤l . 2 X 106 /C2 (1)
の条件を満たす溶液温度 (T、 °C)で、 BET比表面積 l〜7m2/gの水酸化アルミユウ ムを種子として 2〜 15m2/Lの割合で添加する。
[0013] この際、この添加種子から原料溶液中に持ち込まれる種子由来の混入 Fe量を下記 式 (2)
Υ = 2· 0 X 10— 3 X A X (3· 0— M) (2)
〔但し、式中 Aは溶解 Al 0濃度(g/L)を示す〕で表される許容最大値 Y (mg/リット
2 3
ル)以下に維持し、次いで下記式(3)
2486. 7 - 1. 0876 C、
X = A— C X exp 6. 2106
T + 273 ( 3 )
で表される原料溶液の過飽和濃度 Xを 30g/L≤X≤50g/Lの範囲内に維持しな がら、攪拌下に溶液温度 (T)を 55°C以下まで低下させて上記モル比(M)が 3· 0以 上になるまで分解させ、析出した水酸化アルミニウムを固液分離することで、平均粒 子径が 15〜40 111であって、全 Na O分が 0. 1質量%以下、及び Fe分力 ppm以 下の水酸化アルミニウムを得ることができる。得られた水酸化アルミニウムは、粉砕処 理することにより平均粒子径を更に小さいものにすることができる。なお、上記式(3) は、いわゆるホワイト(White)の式(Light Metals,(1984),pp237-253)から導かれるもの である。
[0014] 上記のようにして水酸化アルミニウムを製造する際に原料溶液として使用する過飽 和アルミン酸ナトリウム溶液は、どのような方法で調製してもよいが、好適にはバイャ 一法によって得られた過飽和アルミン酸ナトリウム溶液、具体的には溶解 Na O濃度( C) 100〜200g/L、溶解 Na O分と溶解 Al O分とのモル比(M) 1. 5〜; ! · 8、及び 液中 Fe濃度 1〜; 15mg/Lの過飽和アルミン酸ナトリウム溶液を用い、この溶液中に 、 BET比表面積 3〜7m2/gの水酸化アルミニウムを種子として 15〜50m2/リットル の割合で添加し、 70〜80°Cで攪拌下に;!〜 3時間接触させ、次いで固液分離するこ とにより精製過飽和アルミン酸ナトリウム溶液として得るのがよい。
[0015] そして、このような水酸化アルミニウムを焼成するに際しては、 Al Oを 85〜93重量
%、及び SiOを 7〜; 14重量%の範囲で含有する焼成容器を用いる。一般的に使用 される焼成容器であって SiOが比較的多く含まれるいわゆる珪酸質系の焼成容器で は、焼成後のアルミナに Si分が多く残存してしまうほか、 Caや Feが揮散したり吸着す ることによって得られるアルミナの純度を低下させる問題がある。一方、 SiOが比較 的少ない高アルミナ質系の焼成容器では、 Si汚染は抑制できるものの、 Naの低減効 果が少なぐまた、 Ca汚染が著しくなる問題がある。そこで、本発明者等は、焼成容 器の組成と焼成温度との組み合わせによる焼成試験を繰り返し行なった結果、 Al O 力 5〜93重量%、及び SiO力 〜; 14重量%の範囲である焼成容器を用いて上記 水酸化アルミニウムを所定の温度で焼成することで、十分な Na低減効果が得られる と共に、 Si、 Ca及び Fe等の不純物金属による汚染を抑制して アルミナを得ること ができることを新たに見出した。
[0016] このような焼成容器に水酸化アルミニウムを充填して焼成する際には、焼成容器に 由来する不純物の揮散や吸着による汚染を防ぐ目的から、焼成容器に充填した水酸 化アルミニウム充填物と焼成容器との接触面積を可及的に少なくするのがよぐ好ま しくは接触面積が水酸化アルミニウム充填物の表面積の 30%以下となるようにして焼 成するのがよい。焼成容器と接触した部分は、得られた α _アルミナにおいて特に Si 分の量が多くなるが、接触面積を上記範囲にすることで、接触部分を介した不純物 汚染を可及的に回避することができる。また、水酸化アルミニウム充填物と焼成容器 とが接触しない非接触部分については、好ましくは 5mm以上の隙間を設けて焼成す ることによって不純物汚染を可及的に回避することができる。 [0017] 焼成容器に対して水酸化アルミニウム充填物の接触面積を少なくする手段につい ては特に制限はないが、例えば、焼成容器の形状に応じて予めプレス成形した水酸 化アルミニウム(水酸化アルミニウム充填物)を、高純度アルミナ製焼結ピース等から なるスぺーサーを介して焼成容器に入れて、焼成容器の内壁面との間に所定の隙 間を形成するように収容してもよい。また、焼成容器の内壁底面部に接して自重を支 え得る脚部を備えるようにプレス成形した水酸化アルミニウム(水酸化アルミニウム充 填物)を、脚部のみが焼成容器と接触するように収容してもよい。あるいは、ポリェチ レン、ポリプロピレン、ポリスチレン等からなって焼成時には焼失するシート材を焼成 容器の内壁面に配置しておき、このシート材を介して水酸化アルミニウム(水酸化ァ ノレミニゥム充填物)を収容するようにしてもよい。この際、水酸化アルミニウムは、焼成 されて α -アルミナになると、焼結によってある程度の形状を維持することができること から、焼成容器の内壁底面部に配置するシート材に所定の開口部を設けておけば、 シート材が焼失した後であってもこの開口部に充填された水酸化アルミニウムがその 自重を支える脚部となって、脚部以外が焼成容器と接触することを回避することがで きる。なお、焼成容器の蓋体と水酸化アルミニウム充填物との間には所定の隙間を設 けるようにすればよい。また、焼成容器と接触して不純物の混入のおそれがある部分 については、焼成後に除去するようにしてもよぐ具体的には、焼成後に塊として所 定の形状を有して得られた α -アルミナの表層から 5mm (深さ 5mm)の部分を除去す るようにするのがよい。
[0018] そして、焼成容器に入れた水酸化アルミニウムを 1 100〜1500°Cの焼成温度で焼 成する。焼成温度が 1 100°C未満であると Na分の除去効果が不十分と成り易ぐ得ら れる α —アルミナ中の Na分を 40ppm以下にできない問題があり、反対に 1500°C以 上を超えると焼成容器からの不純物汚染が著しくなり、 a—アルミナ中の Fe分を Ι Ορ pm以下、 Ca分を 2ppm以下、及び Si分を 20ppm以下に保つことができない。この 焼成によって水酸化アルミニウムに含まれる Na分を低減させることができ、最終的に Na分が 40ppm以下の α -アルミナを安定的に得ることができるようになる力 焼成に おける Na分の低減効果は、水酸化アルミニウムの粒径や焼成条件の影響を大きく受 ける。すなわち、水酸化アルミニウムの粒径がより小さい方が Na分の低減効果が大き ぐあるいは、焼成温度がより高い方が Na分の低減効果が大きくなる。
[0019] 効果的に Na分を低減させるためには、水酸化アルミニウムから α -アルミナの粒子 が結晶成長するまで焼成を行なうのがよぐ適切な焼成時間としては、水酸化アルミ 二ゥムに含まれる Na分や粒径のほか、焼成する際の温度にも依存するため必ずしも 限定されないが、好ましくは 1時間以上とするのがよい。また、焼成雰囲気について は大気中であってもよい。
[0020] そして、本発明にお!/、ては、焼成により得られた α -アルミナを洗浄処理する。この 洗浄処理の目的のひとつは、焼成して得られた α -アルミナに含まれている Na分を 更に除去することにある。そこで、好ましくは、焼成によって得られた α _アルミナを純 水、塩酸、リン酸、ふつ化水素酸等のリパルプ水でスラリー化し、攪拌洗浄することで « -アルミナ中の Na分を溶解させ、次いで、洗浄水を通水して通水洗浄するのがよ い。
[0021] 洗浄処理の条件については、水酸化アルミニウムの Na分や粒径のほ力、、焼成する 際の温度にも依存するが、例えば次のような条件を例示することができる。すなわち、 上記攪拌洗浄にっレ、ては、好適には α -アルミナをスラリー化する際に α -アルミナ 1 kgに対して 2L以上のリパルプ水でスラリー化し、 1時間以上攪拌するのがよい。リパ ルプ水の量が 2L/kg-アルミナより少ないと 1時間以上攪拌しても Na分の低減効果 が十分に望めないおそれがある。 2L/kg-アルミナを超えてスラリー化して 1時間以 上攪拌しても、攪拌洗浄の効果は飽和する。次いでろ過しながら、粒子間に含まれる 溶出した Na分を含む残存液を十分な洗浄水をかけて置換するようにするのがよい。 具体的には、攪拌洗浄後の通水洗浄については、 α -アルミナ lkgに対して 3L以上 、好ましくは 5L以上の洗浄水を通水して通水洗浄するのがよい。通水洗浄が 3L/k g-アルミナより少なレ、と溶解した Na分の洗浄効果が十分に望めな!/、おそれがある。
5L/kg-アルミナを超えて通水洗浄をしてもその効果は飽和する。
[0022] 上記洗浄処理後の α -アルミナにつ!/、ては、例えば定置乾燥、流動層乾燥、噴霧 乾燥等の一般的な手法で乾燥させることにより、 Si分が 20ppm以下、 Fe分が Ι Ορρ m以下、 Ca分が 2ppm以下、及び Na分が 40ppm以下の高純度 α -アルミナを得る こと力 Sでさる。本発明においては、必要に応じて、得られた高純度 α -アルミナを、更 に 800〜; 1000°C、好ましくは 900〜; 1000°Cの温度で加熱処理し、再度洗浄処理を 行ってもよい。このように加熱処理と再洗浄処理を繰り返すことで、高純度 α -アルミ ナの物性を変化させることなぐ Na分を lOppm以下まで更に低減させることができる 。あるいは、高純度 α _アルミナを粉砕して再度スラリー化し、例えば強イオン性のィ オン交換樹脂等と接触させることで、更に不純物金属を除去するようにしてもよい。 発明の効果
[0023] 本発明によれば、 Si、 Fe、 Ca、 Na等の不純物金属が可及的に除去された高純度
« -アルミナを簡便かつ安価に製造することができる。具体的には、 Si分が 20ppm以 下、 Fe分が lOppm以下、 Ca分が 2ppm以下、及び Na分力 Oppm以下の高純度 α -アルミナを得ることができる。また、本発明の製造方法によれば、原料となる水酸化 アルミニウムの粒径とほぼ変化のない高純度 α -アルミナを得ることができるため、そ の用途の制約を受けることがなぐ絶縁材ゃ研磨材等の一般的な α -アルミナの用途 はもちろん、ファインセラミックス用、電子材料用、医薬品用等を含めた幅広い範囲で の利用が期待でき、その工業的な重要性は極めて高い。
図面の簡単な説明
[0024] [図 1]図 1は、焼成容器を用いて水酸化アルミニウムを焼成する様子を表す断面説明 図である。
[図 2]図 2は、水酸化アルミニウムをプレス成形した水酸化アルミニウム充填物の斜視 説明図である。
[図 3]図 3は、水酸化アルミニウムを焼成する際に用いるシート剤の組み立て説明図 である。
[図 4]図 4は、試験用に準備した水酸化アルミニウム充填物の斜視説明図である。
[図 5]図 5は、焼成容器に対する水酸化アルミニウムの充填方法([充填方法別焼成 試験]の一部で利用)を示す断面説明図である。
符号の説明
[0025] 1 :焼成容器
2 :焼成容器本体
2a :内壁側面部 2b :内壁底面部
3 :蓋体
4:水酸化アルミニウム充填物
4a :脚部
5 :シート材
5a :開口部
発明を実施するための最良の形態
[0026] 以下、図面を用いて本発明の好適な実施の形態を説明する。
図 1は、焼成容器 1を用いて水酸化アルミニウムを焼成する様子を表す断面説明図 である。上記焼成容器 1は、 Al Oを 85〜93重量%及び SiOを 7〜; 14重量%の範 囲で含有する焼成容器本体 2と、同じく Al Oを 85〜93重量%及び SiOを 7〜14重 量%の範囲で含有する蓋体 3とからなり、この焼成容器 1には予めプレス成形された 水酸化アルミニウム充填物 4が入れられて!/、る。この水酸化アルミニウム充填物 4は、 図 2に示すように、脚部 4aを備えたゲタ型にプレス成形されており、この脚部 4aのみが 焼成容器 1と接触するように、焼成容器 1の内壁面からそれぞれ所定の間隔 dをおい て配置される。
[0027] 焼成容器 1を用いて水酸化アルミニウムを焼成する際には、例えば図 3に示したシ ート材 5を用いることもできる。このシート材 5はポリエチレン、ポリプロピレン、ポリスチ レン等からなるものであって、焼成後には焼失するものである。このシート材 5は水酸 化アルミニウムを焼成容器 1に充填する際に中敷きとして用いられ、焼成容器 1の形 状に合わせて焼成容器本体 2の内壁側面部 2aに対応するもの(図 3では 4枚)と、内 壁底面部 2bに対応するもの(図 3では 1枚)とをそれぞれ用意するのがよい。このうち 、焼成容器本体 2の内壁底面部 2bに対応するシート材 5については、充填された水 酸化アルミニウム力 焼成後に自重を支え得る脚部を形成するように開口部 5aをいく つか設けておくようにするのが好ましい。
[0028] このシート材 5の使用方法としては、先ず、焼成容器本体 2の内壁面に上記シート 材 5を配置する。このとき、内壁底面部 2bには開口部 5aを備えたシート材 5を配置す るようにする。そして、全てのシート材 5を配置した焼成容器本体 2に原料となる水酸 化アルミニウムを充填する。この際、加圧しながら水酸化アルミニウム充填物の形状 を整えるようにするのがよい。全ての水酸化アルミニウムを充填した後、焼成容器本 体 2を蓋体 3で蓋をする。
[0029] 水酸化アルミニウムを充填した焼成容器 1は、例えばシャトルキルンや電気炉等に 入れて 1100〜1500°Cの焼成温度で焼成する。焼成時間については、水酸化アル ミニゥムの粒径や含まれる Na分等にもよるため必ずしも限定されないが、好ましくは 1 時間以上とするのがよい。この際、焼成雰囲気は大気中で行なうことができる。
[0030] そして、焼成して得られた α -アルミナは、通常、塊状であるため、必要に応じて解 砕した上で、所定の洗浄処理を行う。洗浄処理の好適な方法としては、先ず、室温ま で放冷した α _アルミナを純水、塩酸、リン酸、ふつ化水素酸等のリパルプ水に投入し てスラリー化させて攪拌洗浄し、 α _アルミナ中に残存している不純物金属(主には Ν a分)を溶出させる。この際、好ましくは、 α -アルミナ lkgに対して 2L以上のリパルプ 水でスラリー化するのがよぐ攪拌時間は 1時間以上とするのがよい。攪拌洗浄後は、 ろ過機にスラリーを注入してリパルプ水を吸引'ろ別し、溶出した不純物金属を取り除 くようにする。次!/、で、ろ別した α -アルミナに洗浄水(例えば純水)を通水しながら粒 子間に残った不純物金属を含んだリパルプ水を洗浄水で置換し、吸引ろ別して α - アルミナを洗浄する。この際、 α -アルミナ lkgに対して 3L以上、好ましくは 5L以上の 洗浄水を通水して洗浄するのが好ましい。このようにして洗浄処理した後は、例えば 噴霧乾燥して乾燥させることで Si分が 20ppm以下、 Fe分が lOppm以下、 Ca分が 2 ppm以下、及び Na分が 40ppm以下の高純度 α -アルミナを得ることができる。
[0031] 本発明においては、必要に応じて、上記で得られた高純度 α -アルミナを、更に 80 0〜; 1000°Cの温度で加熱処理し、再度洗浄処理を行ってもよぐあるいは高純度 α -アルミナを粉砕して再度スラリー化し、例えば強イオン性のイオン交換樹脂等と接触 させることで、更に不純物金属を除去するようにしてもよい。これらの処理を更に行う ことで、 Na分を lOppm以下まで更に低減させることができる。
実施例
[0032] [焼成容器別試験 (試験 No. l〜21) ]
先ず、焼成容器 1 (焼成容器本体 2及び蓋体 3)の材質と、これを用いて焼成して得 られる α _アルミナに含まれる不純物金属量との関係を調べるため、それぞれ表 1に 示した化学組成(質量%)を有する焼成容器 A〜Gを用いて水酸化アルミニウムを焼 成し、その後洗浄処理を行って高純度 α -アルミナを製造した。焼成容器 Α及び Βは いわゆる珪酸質系の焼成容器であり、焼成容器 E、 F及び Gは高アルミナ質系の焼成 容器である。なお、各焼成容器の材質は、蛍光 X線分析法による分析結果である。ま た、各焼成容器本体の寸法(内径)を表 1に示した。
[表 1]
焼成容器材質 (蛍光 X線分析法)
Figure imgf000014_0001
[0034] また、原料として表 2に示した高純度水酸化アルミニウム(日本軽金属社製:品番 B HP39)を用意し、これを図 4に示したように、 65mm X 80mmHの円柱形であって( 図中 R=65mm、 H=80mm)、焼成容器本体の内壁底面部側に対応する面に深さ 5mm の凹溝を設けて周縁部と中央部とからなる脚部 4a (図中 r=10mm、 t=10mm、 s=5mm) が形成されるようにプレス成形した水酸化アルミニウム充填物 4を所定の数だけ準備 し、上記焼成容器 A〜Gにそれぞれ充填した。この際、各焼成容器 A〜Gと水酸化ァ ノレミニゥム充填物 4とは脚部 4aのみで接触するように充填した。すなわち、水酸化ァ ノレミニゥム充填物 4と各焼成容器とが接触する面積は、円柱状の脚部 4aの表面の合 計であり、これは水酸化アルミニウム充填物 4の表面積の 8%に相当する。また、水酸 化アルミニウム充填物 4と各焼成容器 A〜Gとが接触しな!/、部分につ!/、ては、水酸化 アルミニウム充填物 4と焼成容器 (焼成容器本体及び蓋体)との間に少なくとも 5mm 以上の隙間 dを設けるようにして充填した。
[0035] 上記のようにして水酸化アルミニウム充填物が充填された焼成容器 A〜Gを電気炉 に入れ、大気雰囲気中でそれぞれ表 2に示す焼成温度で 10時間 (保持時間)の焼 成を行なった。この際、各試験番号において用いた水酸化アルミニウムの平均粒径 及び各不純物金属の量は表 2に示す通りである。ここで、水酸化アルミニウムの平均 粒子径は、 日機装株式会社製レーザー散乱法 Microtrac 9320HRA (X100)を用いて 測定した。また、原料とした水酸化アルミニウム中に含まれる不純物金属の量は、原 子吸光法及び ICP発光分光分析法により求めた値であり、 Na分については 1 % 10 OOOppmとした。以降、焼成処理後及び洗浄処理後の α _アルミナに含まれる不純 物金属量についてもそれぞれ同様にして測定した。なお、原料とした水酸化アルミ二 ゥム中に含まれる不純物量につ!/、ては、アルミナ換算した値である。
[0036] [表 2]
Figure imgf000016_0001
*2 水酸化アルミニウムの各不純物量はアルミナ換算した値である,また、表中の「NAJは「分析せず」、「ND」は「検出せず」をそれぞれ表す *3 10000ppm = 1 %
[0037] 焼成後、得られた α -アルミナを室温で放置し、 a -アルミナに含まれる不純物金属 をそれぞれ測定した。その結果を表 2に示す。次いで、この α _アルミナを、 α _アルミ ナ lkgに対して 2Lの純水(リバルプ水)でスラリー化させ、 1時間攪拌洗浄した。攪拌 洗浄後、ろ過機にスラリーを注入してリパルプ水を吸引'ろ別し、溶出した不純物金 属を取り除いた。更に、ろ別した α _アルミナに純水(洗浄水)を通水して α _アルミナ lkgに対して 5Lの洗浄水が通水されるまで通水洗浄を行なった。このようにして洗浄 処理した後、乾燥させて不純物金属が除去された α _アルミナを得た。得られた アルミナに含まれた不純物金属の測定結果を表 2に示す。なお、不純物測定しなか つたものについては表中で ΝΑを付している。また、検出されない値については ND を付している。
[0038] 上記焼成容器別試験の結果、焼成容器 Α及び Βを用いて焼成し、洗浄処理して得 られた α -アルミナ(試験 Νο·9〜12)は、 Si分が 20ppmを超えるものがあったほ力、、 N a分及び Fe分が他の容器を用いて得た α -アルミナより高い値で含まれることが分か つた。また、焼成容器 E、 F、及び Gを用いて得られた α -アルミナ(試験 Νο.13〜21) は、いずれも 2ppmを超える Ca分が含まれていた。これに対して、焼成容器 C及び D を用いて焼成し、洗浄処理して得られた α -アルミナ (試験 No. 1〜8)は、他の焼成容 器の場合と比べて特に Ca分の含有量が少なく(2ppm以下)、同時に Na分、 Si分、及 び Fe分の含有量もそれぞれ低い値(Na分: 40ppm以下、 Si分: 20ppm以下、 Fe分: 10p pm以下)でめった。
[0039] [水酸化アルミニウム別焼成試験 (試験 Νο·22〜34) ]
上記焼成容器別試験で良好な結果を得られた焼成容器のな力、から容器 Cを用い て、原料にする水酸化アルミニウム(粒径及び不純物金属量を変えたもの)と焼成温 度との関係を調べるため、水酸化アルミニウム別焼成試験を行った。用意した水酸化 アルミニウムは、高純度水酸化アルミニウム粉末(商品名 ΒΗΡ39、 日本軽金属株式会 社製)、試作水酸化アルミニウム粉末(日本軽金属株式会社製、表 3参照)、及び普 通粒水酸化アルミニウム(商品名 Β53、 日本軽金属株式会社製)の 3種である。また、 これらの水酸化アルミニウムを焼成容器 Cに充填する際には、上記焼成容器別試験 と同様にして、図 4に示した脚部 4aを備えた円柱状の水酸化アルミニウム充填物 4に プレス成形して充填した。その後、電気炉を用いて、表 3に示す各焼成温度で 10時 間(保持時間)の焼成を行なった。また、得られた α -アルミナにつ!/、ては、上記焼成 容器別試験と同様にして洗浄処理し、乾燥させて不純物金属が除去された α -アル ミナを得た。得られた α -アルミナに含まれた不純物金属の測定結果を表 3に示す。
[表 3]
化アルミニ ム 焼成
Figure imgf000019_0001
*1 焼成の際の保持時間は全て 10時間
*2 水酸化アルミニウムの各不純物量はアルミナ換算した値である。また、表中の「NA」は「分析せず」、「NDJは「検出せず」をそれぞれ表す。
[0041] 上記の水酸化アルミニウム別焼成試験の結果、粒径が 55 11 mを超える水酸化アル ミニゥム(試験 No.26及び 27)を用いた場合には、洗浄処理して得られた α -アルミナ の Na分が 40ppmを超えるものがあった。また、原料とする水酸化アルミニウムに含ま れる Na分、 Fe分、 Ca分、及び Si分の少なくともいずれかがアルミナ換算で「Na分 0 . 11質量%以下」、「Fe分 6ppm以下」、「Ca分 1. 5ppm以下」、及び「Si分 lOppm 以下」の条件を満たさない水酸化アルミニウム(試験 Νο·31〜34)である場合、洗浄処 理して得られた α -アルミナに含まれる不純物金属量が「Na分 40ppm以下」、「Ca分 2ppm以下」、「Si分 20ppm以下」、及び「Fe分 lOppm以下」のいずれかの基準を超 えてしまった。尚、焼成温度が 1000°C (試験 No.28及び 30)の場合には洗浄処理して 得られた α -アルミナの Na分が 40ppmを超えてしまい、焼成温度が 1600°Cの場合( 試験 No.29)の場合には、洗浄処理して得られた α -アルミナの Si分が 20ppmを超え てしまった。
[0042] これに対して、試験 Νο·22〜25については、洗浄処理後に得られた α -アルミナは 、 Na分、 Ca分、 Si分及び Fe分がいずれも上記基準を満たして不純物量が低いもの であった。尚、表 3中の NA、 NDについては表 2と同様である。
[0043] [充填方法別焼成試験 (試験 Νο·35〜43) ]
水酸化アルミニウムを焼成容器に充填する方法によって、得られる α _アルミナ中に 含まれる不純物量の違いを確認するため、上記焼成容器 C及び Dを用いて以下のよ うな充填方法別焼成試験を行った。先ず、高純度水酸化アルミニウム(日本軽金属 社製 ΒΗΡ39:平均粒子径 26 m、 Na分 0.039質量%、 Ca分 0.3ppm、 Si分 3ppm、 Fe分 2 ppm)をゲタ型にプレス成形し、図 2に示したように、脚部 4aを備えた水酸化アルミユウ ム充填物 4を用意して、これをそれぞれの焼成容器 C及び Dに充填した。この水酸化 アルミニウム充填物 4は、 250mm (L) X 200mm (D) X 80mm (H)であって、焼成 容器の内壁底面部に対応する面には 15mm (1) X 5mm (h)の脚部 4aを 5つ備えた 形状をしている。水酸化アルミニウム充填物 4を焼成容器 C及び Dに充填する際は、 脚部 4aのみが焼成容器と接触するようにして、それ以外の部分は焼成容器本体及び 蓋体との間に少なくとも 5mm以上の隙間 dが形成されるようにした。この際の水酸化 アルミニウム充填物 4と焼成容器との接触面積は、水酸化アルミニウム充填物 4の表 面積の 10%である。そして、表 4に示したように、焼成温度 1450°C及び保持時間 10 〜; 12時間とする以外は上記焼成容器別試験と同様にして焼成を行なった。その後、 焼成後の α -アルミナを上記焼成容器別試験と同様にして洗浄処理し、上記焼成容 器別試験と同様にして不純物金属量を測定した (試験 Νο.35及び 36)。
[0044] また、比較例として、原料の水酸化アルミニウムを通常の方法、すなわち、水酸化ァ ルミ二ゥムをプレス成形せずにそのまま焼成容器本体に入れ、焼成容器本体の内壁 底面部及び内壁側面部と接触するように充填した。そして、上記と同様にして焼成及 び洗浄処理を行い、不純物金属量を測定した (試験 Νο.37及び 38)。これら試験 No. 35〜38の結果は表 4に示すとおりであり、脚部を設けない水酸化アルミニウム充填 物の場合(試験 No.37及び 38)では、 α -アルミナ中に 20ppmを超える Si分が含まれ ていた。
[0045] [表 4]
g^¾せ図 ( l^A!:H 2g Loリ*.〜EJ.
Figure imgf000022_0001
充填方法別焼成試験では、参考として、焼成後の水酸化アルミニウム充 填物 4の部位別の不純物量を確認するため、ゲタ型にプレス成形した場合 (試験 No. 35)とプレス成形せずにそのまま充填した場合 (試験 Νο·38)について、それぞれ所定 の部位を分別回収し、これらを個別に洗浄処理して不純物量を比較した。先ず、ゲタ 型にプレス成形した水酸化アルミニウム充填物 4については、図 5 (A)に示すように、 焼成後の水酸化アルミニウム充填物 4の脚部 4a (部位 I)、焼成容器本体の内壁底面 部側であって脚部 4aを除いた厚さ 5mmの表層部分(部位 Π)、蓋体側の厚さ 5mmの 表層部分(部位 IV)、及びこれら以外の残りの部分(部位 III)に含まれる不純物量をそ れぞれ調べた。また、そのまま充填した水酸化アルミニウム充填物 4については、焼 成容器本体と接触する厚さ 5mmの表層部分(部位 I)、部位 Iを除いて蓋体側の厚さ 5mmの表層部分(部位 IV)、及びこれら以外の残りの部分(部位 III)に含まれる不純 物量をそれぞれ調べた。すなわち、いずれの場合も部位 Iは焼成容器と接触する部 分であり、部位 II〜IVは非接触部分である。結果を表 4に示した。この結果から明らか なように、焼成容器と接触する部分の α -アルミナには多量の Si分が混入することが 確認された。そのため、焼成後の α -アルミナのうち焼成容器と接触していた部分に ついては、少なくとも表層から 5mm (深さ 5mm)を除去するようにすれば、最終的に得 られる α -アルミナの Si分を低減することができる。
[0047] 更に、水酸化アルミニウム充填物と焼成容器との間に設ける隙間の影響を確認する ため、水酸化アルミニウム充填物と焼成容器との隙間を 1〜; 10mmに調整して焼成し 、焼成後の α -アルミナに含まれる不純物金属量を測定した。具体的には、ゲタ型に プレス成形した水酸化アルミニウム充填物 4と焼成容器 1 (焼成容器 C)との隙間 d (図 1に示した隙間 d)を 5mm以上にした場合(試験 No.39〜41)と、 5mmに満たな!/、場 合(試験 No.42及び 43)について、焼成温度 1350〜; 1400°C及び保持時間 10〜; 12 時間とした以外は上記焼成容器別試験と同様にして焼成を行ない、焼成後の α -ァ ルミナに含まれる不純物金属量を測定した。なお、不純物金属量を測定した部位は 、図 5 (A)に示した部位 IIである。
[0048] 表 5に示した結果から明らかなように、隙間 dが 5mmに満たない場合 (試験 No.42及 び 43)、焼成後の α -アルミナには 20ppmを超える Si分が含まれることが確認された 。そのため、少なくとも d= 5mmの隙間を設けるように水酸化アルミニウムを充填して 間隔 d別の焼成後 -アルミナの不純物 j
Figure imgf000024_0001
Figure imgf000024_0003
|5位 IIについては図 5参照(厚みは 5mmH)
Figure imgf000024_0002
¾a0094 [0050] [Na分の除去効果試験(試験 Νο·44〜55) ]
洗浄処理による Na分除去の効果を確認するため、攪拌洗浄及び通水洗浄の条件 を変化させ、洗浄処理前後での α -アルミナに含まれる Na分の変化量を調べた。表 6 ίこ示すよう ίこ、試験 Νο·44〜48で (ま、平均粒子径 38〃 m、 Na分 0· 092質量0 /0 ( アルミナ換算)の高純度水酸化アルミニウムを用いて、焼成温度 1200°C、保持時間 10時間として焼成容器 Cを用いて上記 [充填方法別焼成試験]と同様に水酸化アル ミニゥム充填物を焼成した。試験 No.49〜55では、平均粒子径 27 m、 Na分 0. 07 7質量% (アルミナ換算)の高純度水酸化アルミニウムを用いて、焼成温度 1400°C、 保持時間 10時間として焼成容器 Cを用いて上記 [充填方法別焼成試験]と同様に水 酸化アルミニウム充填物を焼成した。
[0051] 次いで、上記で得られた α -アルミナについて、表 6に示した洗浄条件になるように 、上記 [焼成容器別試験]と同様にして攪拌洗浄及び通水洗浄を行った。洗浄処理 後、乾燥させ、不純物金属が除去された α -アルミナを得た。この処理において、洗 浄処理前の α -アルミナに含まれる Na分と洗浄処理後の α -アルミナに含まれる Na 分より導出した Na除去率の結果を表 6に示した。ここで、 Na除去率とは、『Na除去率 (%)= 100 X (洗浄処理前の α -アルミナに含まれる Na分 洗浄処理後の α -アルミ ナに含まれる Na分) ÷ (洗浄処理前の α -アルミナに含まれる Na分)』で導出される値 をいう(100%なら完全除去に相当)。
[0052] 表 6から明らかなように、 α -アルミナ lkgに対して 2L以上のリパルプ水でスラリー化 して 1時間以上攪拌洗浄すると共に、攪拌洗浄後の α -アルミナ lkgに対して 3L以 上の洗浄水を通水する通水洗浄を行った場合には、 V、ずれも Na除去率が 90%以 上であると!/、う優れた除去効果を発揮した。
[0053] [表 6] (¾懇)0.56 N62〜 洗浄条件別 Na除去効果
Figure imgf000026_0001
Figure imgf000026_0002
*1 焼成の際の保持時間は全て 10時間
*2 Na除去率 (%) =
100 x (洗浄処理前 Q? -アルミナ中 Na分一洗浄処理後ひ-アルミナ中 Na分) ÷ (洗浄処理前ひ -アルミナ中 Na分)
洗浄処理して得られた高純度の α _アルミナについて、更に Na分の除去効果を高 めるために、表 7に示すように、以下のような追加の Na除去処理を行った。上記 [Na 分の除去効果試験]の試験 No.45に示す方法で攪拌洗浄及び通水洗浄を行い、最 終的に得られた α -アルミナ(以下「試験 Νο·45供試材」という)を、先ず、再び 800°C で 1時間加熱処理した後、再度、純水 2L/kg-アルミナとなるようにスラリー化して 1 時間攪拌洗浄し、更に純水 5L/kg -アルミナとなるように通水洗浄を行った (試験 No .56)。また、試験 No.57については、上記試験 No.45供試材を 1000°Cで 1時間再 加熱した以外は試験 No.56と同様にした。更に、試験 No.58については、試験 No.5 7で行った一連の処理を合計 2度行った。
[表 7]
洗浄処理後 条件別追加 Na除去効果
Figure imgf000028_0001
*1 焼成の際の保持時間は全て 10時間
*2 A Na二洗浄処理アルミナ中 Na分-追加 Na除去処理アルミナ中の Na分 *3 A BET=洗浄処理アルミナ BET -追加 Na除去処理アルミナ BET
[0056] 一方、試験 No.59では、試験 No.45供試材を平均粒子径 5 μ m以下まで粉砕した 上で、純水でスラリー化し、陽イオン交換樹脂(三菱化学社製ダイアイオン SK1B)と接 触させて Na分を除去した。この際、 α -アルミナ lkgに対して陽イオン交換樹脂が 50 mlの割合となるようにして、 α -アルミナのスラリーと陽イオン交換樹脂とを 24時間接 触させた後、分離回収した。尚、本試験で使用した試験 No.45供試材は、試験 Νο·4 5と同じ方法の試験によって得られたものであって、上記 [Na分の除去効果試験]の 試験 No . 45で得られた α -アルミナそのものではない。そのため、本試験に使用した α -アルミナには Na分が異なる 2種類のものが存在する。
[0057] 更には、試験 No.60では、試験 No.45供試材を 500°Cで 1時間再加熱した以外は 試験 No.56と同様な処理を行い、試験 No.61では、試験 No.45供試材を700°Cでl 時間再加熱した以外は試験 No. 56と同様な処理を行い、試験 No.62では、試験 No. 45供試材を 1200°Cで 1時間再加熱した以外は試験 No.56と同様な処理を行った。
[0058] 以上について、表 7から明らかなように、試験 Νο· 56〜59及び 62では、いずれも十 分な Na除去効果が認められた。すなわち、試験 No. 56〜59及び 62では、追加の N a除去効果試験によって Na変化量( Δ Na)カ^、ずれも 5ppm以上の値を示した。
[0059] ところで、この追加の Na分の除去効果試験では、事前に試験 No.45供試材の BE T比表面積を測定した上で追加の Na分除去効果試験を行った。そして、追加の Na 分除去効果試験で得られた α -アルミナの BET比表面積を測定して、追加の Na分 除去処理前後の値を比較した。 BET比表面積は、 α _アルミナの 1次粒子径と反比 例する関係にあり、「ΒΕΤ比表面積が減少 アルミナの 1次粒子径が大きく成長」 、「ΒΕΤ比表面積は変化なし アルミナの 1次粒子径の成長もなし」等のように アルミナの 1次粒子径変化の判断指標として利用することができる。尚、 BET比表面 積の測定には、 Micromeritics社製比表面積自動測定装置(型式: Flowsorb II 2300) を用いた。
[0060] 表 7に示すとおり、試験 No.56〜61では、追加の Na分の除去効果試験の前後で B ET比表面積の変化量(Δ ΒΕΤ)がほとんどなく(特に No.56〜58、 60、 61では変化が なく)、処理の前後によって粒子成長(物性変化)は起きなかったものと考えられる。 すなわち、本試験では、試験 Νο· 56〜59について、アルミナ粒子を変化させずに Ν a分を効率的に除去できることが確認された。
産業上の利用可能性
本発明によって得られた高純度 α _アルミナは、 α _アルミナの一般的な用途である セラミックス材料のほか、耐火物、碍子、研磨材、医薬品、吸着剤、充填材、触媒担 体、特殊ガラス原料、単結晶原料、蛍光材料、プラズマ溶射材等に広く用いることが できる力 特に、 Si分、 Fe分、 Ca分、及び Na分の含有量が少なぐファインセラミック ス、電子部品、単結晶原料、蛍光材料等の用途に好適である。

Claims

請求の範囲
[1] Al23を 85〜93重量%及び Si〇2を 7〜; 14重量%の範囲で含有する焼成容器を用 いて、不純物がそれぞれアルミナ換算で Na分 0. 11質量%以下、 Fe分 6ppm以下、 Ca分 1. 5ppm以下、及び Si分 lOppm以下であり、かつ、平均粒子径が 55 m以下 である水酸化アルミニウムを 1100〜; 1500°Cの焼成温度で焼成し、得られた α _アル ミナを洗浄処理することを特徴とする高純度 α -アルミナの製造方法。
[2] Si分が 20ppm以下、 Fe分が lOppm以下、 Ca分が 2ppm以下、及び Na分が 40pp m以下の α -アルミナが得られる請求項 1に記載の高純度 α -アルミナの製造方法。
[3] 水酸化アルミニウム力 バイヤー法により得られた水酸化アルミニウムである請求項
1又は 2に記載の高純度 α -アルミナの製造方法。
[4] 焼成容器に充填した水酸化アルミニウム充填物と焼成容器との接触面積が、水酸 化アルミニウム充填物の表面積の 30%以下となるようにすると共に、水酸化アルミ二 ゥム充填物と焼成容器とが接触しない非接触部分では、 5mm以上の隙間を設けて 焼成する請求項 1〜3のいずれかに記載の高純度 α -アルミナの製造方法。
[5] 洗浄処理が、 α _アルミナ lkgに対して 2L以上のリパルプ水でスラリー化して 1時間 以上攪拌する攪拌洗浄と、攪拌洗浄後の α _アルミナ lkgに対して 3L以上の洗浄水 を通水して洗浄する通水洗浄とからなる請求項;!〜 4のいずれかに記載の高純度 α - アルミナの製造方法。
[6] 洗浄処理後、 800〜; 1000°Cの温度で加熱処理し、再度洗浄処理を行う請求項 1
〜5のいずれかに記載の高純度 α -アルミナの製造方法。
[7] 洗浄処理後、粉砕処理し、再度スラリー化した上で、イオン交換樹脂を用いて不純 物金属を除去する請求項;!〜 6のいずれかに記載の高純度 α -アルミナの製造方法
[8] Si分が 20ppm以下、 Fe分が lOppm以下、 Ca分が 2ppm以下、及び Na分が 40pp m以下であることを特徴とする高純度 α -アルミナ。
PCT/JP2007/073366 2006-12-15 2007-12-04 高純度α-アルミナの製造方法 WO2008072501A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/518,169 US8124048B2 (en) 2006-12-15 2007-12-04 Process for producing high-purity α-alumina
CN2007800464733A CN101588993B (zh) 2006-12-15 2007-12-04 高纯度α-氧化铝的制造方法
EP07850016.2A EP2119672B1 (en) 2006-12-15 2007-12-04 Process for producing high-purity alpha-alumina
KR1020097014025A KR101403820B1 (ko) 2006-12-15 2007-12-04 고순도 α-알루미나의 제조 방법
PCT/JP2007/073366 WO2008072501A1 (ja) 2006-12-15 2007-12-04 高純度α-アルミナの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006-339032 2006-12-15
JP2006339032A JP4997953B2 (ja) 2006-12-15 2006-12-15 高純度α−アルミナの製造方法
PCT/JP2007/073366 WO2008072501A1 (ja) 2006-12-15 2007-12-04 高純度α-アルミナの製造方法

Publications (1)

Publication Number Publication Date
WO2008072501A1 true WO2008072501A1 (ja) 2008-06-19

Family

ID=39511523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073366 WO2008072501A1 (ja) 2006-12-15 2007-12-04 高純度α-アルミナの製造方法

Country Status (8)

Country Link
US (1) US8124048B2 (ja)
EP (1) EP2119672B1 (ja)
JP (1) JP4997953B2 (ja)
KR (1) KR101403820B1 (ja)
CN (1) CN101588993B (ja)
PT (1) PT2119672T (ja)
RU (1) RU2438978C2 (ja)
WO (1) WO2008072501A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983401A (zh) * 2015-03-06 2016-10-05 中国石油天然气股份有限公司 制备α-氧化铝的方法、α-氧化铝、复合氧化物及制法
WO2023073842A1 (ja) * 2021-10-27 2023-05-04 日本軽金属株式会社 高純度微粒アルミナ粉末

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053206B2 (ja) * 2008-08-22 2012-10-17 東ソー・クォーツ株式会社 型材を用いた石英ガラス材料の成形方法
WO2010109873A1 (ja) 2009-03-25 2010-09-30 株式会社Sumco シリコンウェーハおよびその製造方法
FR2956111B1 (fr) * 2010-02-11 2012-04-20 Baikowski Alumine alpha, utilisation, procede de synthese et dispositif associes
US8524191B2 (en) * 2011-08-08 2013-09-03 Basf Se Process for preparing high-purity aluminum oxide by purification of alumina
JP2013122028A (ja) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd 絶縁層形成用組成物の製造方法、絶縁層形成用フィルムの製造方法および基板の製造方法
JP5857736B2 (ja) * 2011-12-27 2016-02-10 住友ベークライト株式会社 絶縁層形成用組成物、絶縁層形成用フィルムおよび基板
CN102718243A (zh) * 2012-01-13 2012-10-10 上海赢奔晶体科技有限公司 蓝宝石晶体废弃晶料的纯化方法
US8944003B2 (en) * 2012-11-16 2015-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Remote plasma system and method
KR101975458B1 (ko) * 2013-07-16 2019-05-07 삼성전기주식회사 인쇄회로기판 필러용 알루미나 파우더 제조 방법 및 이를 포함하는 인쇄회로기판용 수지 조성물
CN104340999B (zh) * 2013-09-05 2016-01-13 安庆飞凯高分子材料有限公司 一种氧化铝的提纯方法
CN103643290B (zh) * 2013-12-02 2016-03-30 昆明理工大学 一种蓝宝石晶体用高纯氧化铝的提纯方法
CN103754909A (zh) * 2013-12-12 2014-04-30 中国铝业股份有限公司 一种柱状氢氧化铝的制备方法
KR101643361B1 (ko) 2013-12-26 2016-07-28 주식회사 씨아이에스 저점도 특성을 갖는 초미립 이소결성 알루미나의 제조 방법
CN104370299B (zh) 2014-01-17 2016-03-30 上海飞凯光电材料股份有限公司 一种氧化铝的制备方法
CN104386722B (zh) * 2014-10-28 2017-02-15 上海飞凯光电材料股份有限公司 一种高纯氢氧化铝和高纯氧化铝的制备方法
EP3492431B1 (en) 2016-07-29 2023-11-22 Sumitomo Chemical Company Limited Alumina and method for producing automotive catalyst using same
KR101907363B1 (ko) 2016-11-14 2018-10-11 스미또모 가가꾸 가부시키가이샤 알루미나 및 이것을 함유하는 슬러리, 그리고 이것을 사용한 알루미나 다공막, 적층 세퍼레이터, 비수 전해액 이차 전지 및 비수 전해액 이차 전지의 제조 방법
US20180351147A1 (en) * 2016-11-14 2018-12-06 Sumitomo Chemical Company, Limited Alumina and slurry containing the same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
FR3067617B1 (fr) * 2017-06-20 2019-07-19 Arkema France Catalyseur a base d'alumine alpha et procede d'hydrogenation d'une olefine en presence de celui-ci.
JP6977666B2 (ja) * 2018-05-31 2021-12-08 日本軽金属株式会社 低ソーダα−アルミナ粉体及びその製造方法
KR102408088B1 (ko) * 2019-12-18 2022-06-13 한국세라믹기술원 고방열 산화알루미늄-엘라스토머 복합소재 및 이의 제조 방법
WO2023190464A1 (ja) * 2022-03-30 2023-10-05 日本軽金属株式会社 α-アルミナ粉体の製造方法
CN115448343A (zh) * 2022-10-25 2022-12-09 河北铭万精细化工有限公司 一种电子级纳米氧化铝的生产工艺
KR102497278B1 (ko) 2022-11-02 2023-02-08 주식회사 씨아이에스케미칼 슈도-뵈마이트와 염화물계 첨가제를 이용한 고순도 알루미나의 제조방법
KR102497275B1 (ko) 2022-11-02 2023-02-08 주식회사 씨아이에스케미칼 나트륨 제거제를 이용한 알루미나의 고순도화 및 초미립 알루미나 입자의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298018A (ja) * 1988-05-25 1989-12-01 Nippon Light Metal Co Ltd 高純度アルミナの製造方法
JPH07206434A (ja) * 1993-12-01 1995-08-08 Sumitomo Chem Co Ltd 焼結体用α−アルミナ粉末およびその焼結体
JPH08290914A (ja) * 1995-02-21 1996-11-05 Sumitomo Chem Co Ltd α−アルミナおよびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2405275A (en) 1944-02-19 1946-08-06 Aluminum Co Of America Purification of aluminum hydrate
DE1071566B (ja) * 1953-10-10
US3106452A (en) * 1960-05-18 1963-10-08 Reynolds Metals Co Method for reducing the soda content of alumina
JPS4834680B1 (ja) 1968-11-15 1973-10-23
US3655339A (en) * 1969-07-18 1972-04-11 Aluminum Co Of America Production of low-soda alumina
DE2658124C3 (de) * 1976-12-22 1982-05-06 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Elektroschmelzkorund
JPS5416398A (en) 1977-07-07 1979-02-06 Showa Denko Kk Production of low soda alumina
JPS557532A (en) 1978-06-30 1980-01-19 Taiheiyo Kinzoku Kk Production of high purity alumina fine powder
JPS55140719A (en) 1979-04-23 1980-11-04 Showa Alum Ind Kk Manufacture of starting material alumina for porcelain
JPS57129868A (en) * 1980-10-09 1982-08-12 Vasipari Kutato Intezet Stamping powder and tool
JPS6246922A (ja) 1985-08-21 1987-02-28 Riyouka Keikinzoku Kogyo Kk 高純度アルミナの製造方法
AU699077B2 (en) 1995-02-21 1998-11-19 Sumitomo Chemical Company, Limited Alpha-alumina and method for producing the same
ID16934A (id) 1996-05-22 1997-11-20 Samsung Electronics Co Ltd Alat kontrol arah dan kecepatan alir udara yang dikeluarkan oleh mesin penyejuk udara dan metoda kerjanya
CN1085620C (zh) * 1997-04-09 2002-05-29 大连铁道学院精细陶瓷工程研究中心 超高纯超细氧化铝粉体制备方法
JPH10324519A (ja) 1997-05-20 1998-12-08 Chichibu Onoda Cement Corp 易焼結性高純度アルミナ粉末の製造方法
US6242854B1 (en) * 1998-01-20 2001-06-05 Matsushita Electronics Corporation Indirectly heated cathode for a CRT having high purity alumina insulating layer with limited amounts of Na OR Si

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298018A (ja) * 1988-05-25 1989-12-01 Nippon Light Metal Co Ltd 高純度アルミナの製造方法
JPH07206434A (ja) * 1993-12-01 1995-08-08 Sumitomo Chem Co Ltd 焼結体用α−アルミナ粉末およびその焼結体
JPH08290914A (ja) * 1995-02-21 1996-11-05 Sumitomo Chem Co Ltd α−アルミナおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2119672A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983401A (zh) * 2015-03-06 2016-10-05 中国石油天然气股份有限公司 制备α-氧化铝的方法、α-氧化铝、复合氧化物及制法
WO2023073842A1 (ja) * 2021-10-27 2023-05-04 日本軽金属株式会社 高純度微粒アルミナ粉末

Also Published As

Publication number Publication date
KR101403820B1 (ko) 2014-06-03
JP2008150238A (ja) 2008-07-03
EP2119672B1 (en) 2018-03-14
EP2119672A1 (en) 2009-11-18
JP4997953B2 (ja) 2012-08-15
KR20090094128A (ko) 2009-09-03
PT2119672T (pt) 2018-05-16
CN101588993A (zh) 2009-11-25
RU2438978C2 (ru) 2012-01-10
RU2009127110A (ru) 2011-01-20
US20100021374A1 (en) 2010-01-28
EP2119672A4 (en) 2013-08-14
US8124048B2 (en) 2012-02-28
CN101588993B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2008072501A1 (ja) 高純度α-アルミナの製造方法
TWI415980B (zh) Α Aluminum oxide powder
Suchanek Hydrothermal synthesis of alpha alumina (α‐Al2O3) powders: study of the processing variables and growth mechanisms
US20120189833A1 (en) Alpha alumina (corundum) whiskers and fibrous-porous ceramics and method of preparing thereof
JP5217322B2 (ja) αアルミナ粉末
AU699077B2 (en) Alpha-alumina and method for producing the same
US20100159226A1 (en) Thermally stable nano-sized alpha alumina (coruncum) materials and method of preparing thereof
EP1857175A2 (en) Alpha Aluminia supports for ethylene oxide catalysts and method of preparing thereof
US6203773B1 (en) Low temperature mineralization of alumina
JP7354247B2 (ja) 相対密度が高い高純度アルファアルミナ、該アルファアルミナの製造方法、及び該アルファアルミナの使用
WO2013133331A1 (ja) 水酸化アルミニウム粉末及びその製造方法
KR20140063691A (ko) 옥살산바륨티타닐의 제조 방법 및 티탄산바륨의 제조 방법
JP3972380B2 (ja) α−アルミナの製造方法
JPH03500284A (ja) 水酸化アルミニウムの製造方法および焼結品の形成方法
WO2020195721A1 (ja) スピネル粉末
WO2002034692A2 (en) Method of producing low soda alumina, low soda alumina and method of producing porcelain
JP3975513B2 (ja) αアルミナの連続的製造法
Perander Evolution of nano-and microstructure during the calcination of Bayer gibbsite to produce alumina
KR101694975B1 (ko) 저온소결성 알루미나 및 저소다 알루미나의 제조방법
KR20220008499A (ko) 고밀도 알루미나 소결체 제조 방법
US20140041548A1 (en) Process for producing sio2 mouldings
JPH052611B2 (ja)
JPH068169B2 (ja) 高密度粗大結晶粒マグネシアクリンカー
KR20240014763A (ko) 뵈마이트 입자의 제조 방법
TWI687390B (zh) 隕鋁鈣(grossite)陶瓷、及使用其之窯用具以及隕鋁鈣陶瓷之製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046473.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12518169

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097014025

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2007850016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4099/CHENP/2009

Country of ref document: IN

Ref document number: 2007850016

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009127110

Country of ref document: RU

Kind code of ref document: A