WO2023073842A1 - 高純度微粒アルミナ粉末 - Google Patents

高純度微粒アルミナ粉末 Download PDF

Info

Publication number
WO2023073842A1
WO2023073842A1 PCT/JP2021/039710 JP2021039710W WO2023073842A1 WO 2023073842 A1 WO2023073842 A1 WO 2023073842A1 JP 2021039710 W JP2021039710 W JP 2021039710W WO 2023073842 A1 WO2023073842 A1 WO 2023073842A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
alumina powder
particle size
aluminum hydroxide
powder
Prior art date
Application number
PCT/JP2021/039710
Other languages
English (en)
French (fr)
Inventor
真良 吉岡
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to KR1020247014101A priority Critical patent/KR20240070644A/ko
Priority to JP2023555962A priority patent/JPWO2023073842A1/ja
Priority to PCT/JP2021/039710 priority patent/WO2023073842A1/ja
Priority to CN202180103742.5A priority patent/CN118159493A/zh
Priority to EP21962390.7A priority patent/EP4424639A1/en
Publication of WO2023073842A1 publication Critical patent/WO2023073842A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to high-purity fine-grained alumina powder.
  • Alumina ( ⁇ -Al 2 O 3 ) sintered bodies are excellent in various properties such as insulation, heat resistance, wear resistance and corrosion resistance. Therefore, alumina sintered bodies are used in a wide range of fields, including electronic parts, refractories, abrasives, insulators, spark plugs, fillers, and catalyst carriers.
  • Alumina sintered bodies are manufactured by molding and sintering alumina powder as a raw material. In order to obtain a high-performance alumina sintered body, the raw material alumina powder is required to have excellent sinterability, that is, to be fine.
  • a method of slurring alumina powder and wet-processing the slurry is often used.
  • a slurry of alumina powder is spray granulated to form granules, and the granules are molded.
  • a technique of cast-molding slurry of alumina powder there is known a technique of cast-molding slurry of alumina powder.
  • a method of manufacturing a sheet-like alumina sintered body by coating and firing a slurry of alumina powder is also used.
  • Patent Document 1 discloses an alumina powder having a light bulk density (LBD) to heavy bulk density (TBD) ratio (TBD/LBD) of 1.5 or more. It is described that an alumina-containing coating layer having a uniform thickness can be formed (claim 1 and [0032] of Patent Document 1). Further, in Patent Document 1, when the value of TBD/LBD is less than 1.5, the bulk density of individual secondary particles (aggregated particles) contained in the alumina powder becomes too high. It is described that in an alumina slurry containing alumina, agglomerated particles of alumina tend to precipitate, making it difficult to ensure the dispersion stability of the alumina powder ([0038] of Patent Document 1).
  • Patent Document 1 describes that the D50 value of the alumina powder is preferably 0.45 or more and 0.65 ⁇ m or less, and that if the D50 value is less than 0.45 ⁇ m, the aggregation between particles becomes excessively dense. ([0044] of Patent Document 1), there is a limit in miniaturization of alumina powder, that is, improvement in sinterability.
  • alumina powder also had problems with moldability. That is, the fine alumina powder obtained by strong pulverization has poor fluidity because of its irregular particle shape. Therefore, it has been difficult to obtain a high-density compact even if the alumina powder is compacted by a dry method or a wet method.
  • the inventors of the present invention conducted extensive studies in view of such conventional problems.
  • the alumina powder in which the 50% particle diameter D50 and the BET specific surface area S BET in the volume particle size distribution satisfy a specific relationship and the impurities such as sodium are not more than a specific amount have excellent sinterability and slurry It was found that both properties can be achieved.
  • the inventors have found that this alumina powder has good fluidity and is excellent in moldability.
  • this alumina powder is suitable as a raw material for a sintered body that exhibits excellent dielectric properties in a high frequency range in addition to sinterability, slurry properties and formability.
  • the present invention has been completed based on such knowledge, and has excellent slurry characteristics and sintering characteristics, excellent fluidity and moldability, and high-purity fine particles that exhibit excellent dielectric characteristics in the high frequency region.
  • the object is to provide alumina powder.
  • the present invention includes the following aspects (1) to (9).
  • the expression "-" includes both numerical values. That is, “X to Y” is synonymous with “X or more and Y or less”.
  • the 50% particle size (D 50 ) and BET specific surface area (S BET ) in the volume particle size distribution are expressed by the formula: D 50 ⁇ 0.20 ⁇ m and the formula: D 50 ⁇ S BET ⁇ 2.0 ⁇ 10 -6
  • D 50 ⁇ 0.20 ⁇ m The 50% particle size (D 50 ) and BET specific surface area (S BET ) in the volume particle size distribution are expressed by the formula: D 50 ⁇ 0.20 ⁇ m and the formula: D 50 ⁇ S BET ⁇ 2.0 ⁇ 10 -6
  • a high-purity fine-grained alumina powder that satisfies the relationship represented by m 3 /g and has a sodium (Na), silicon (Si), iron (Fe) and calcium (Ca) content of 10 ppm or less.
  • 10% particle size D 10 , 50% particle size D 50 and 90% particle size D 90 in the volume particle size distribution are represented by the formula: (D 90 ⁇ D 10 )/D 50 ⁇ 1.5
  • ⁇ -alumina seeds to be prepared have an average particle size (D 50 ) of 0.1 to 0.5 ⁇ m.
  • a high-purity fine-grained alumina powder that has excellent slurry properties and sintering properties, has excellent fluidity and moldability, and exhibits excellent dielectric properties in a high frequency region.
  • the cross-sectional schematic diagram of a hydrostatic-pressure-type slurry evaluation apparatus is shown.
  • the principle of slurry evaluation by sedimentation pressure measurement is shown.
  • SEM images of alumina powder are shown.
  • SEM images of alumina powder are shown.
  • SEM images of alumina powder are shown.
  • 1 shows a particle size distribution curve for alumina powder.
  • the relationship between the firing temperature (sintering temperature) and the bulk density of the sintered body is shown.
  • 1 shows an XRD pattern (X-ray diffraction profile) of alumina powder.
  • 2 shows the relationship between slurry shear rate and viscosity.
  • Fig. 3 shows the change over time of slurry settling hydrostatic pressure.
  • SEM images of alumina powder are shown. 1 shows a particle size distribution curve for alumina powder.
  • the relationship between the firing temperature (sintering temperature) and the bulk density of the sintered body is shown.
  • this embodiment A specific embodiment of the present invention (hereinafter referred to as “this embodiment") will be described.
  • the present invention is not limited to the following embodiments, and various modifications are possible within the scope of the present invention.
  • the high-purity fine-grained alumina powder (hereinafter sometimes collectively referred to as “alumina powder”) of the present embodiment has a 50% particle size (D 50 ) and a BET specific surface area (S BET ) in the volume particle size distribution, which are expressed by the formula: D 50 ⁇ 0.20 ⁇ m and the relationship represented by the formula: D 50 ⁇ S BET ⁇ 2.0 ⁇ 10 ⁇ 6 m 3 /g.
  • D50 is limited to 0.20 ⁇ m or less.
  • the average particle diameter (D 50 ) and keeping D 50 ⁇ S BET small it is possible to improve sinterability while maintaining good handleability. That is, if the particle size is the same, the more rounded the particle shape, the smaller the specific surface area (S BET ). Therefore, by reducing D 50 and keeping D 50 ⁇ S BET low, it is possible to obtain particles with less fracture surface and less chipping even if the particle size is small.
  • the particles contained therein have a rounded shape and a uniform particle diameter. Therefore, excessive increase and destabilization of slurry viscosity can be suppressed when slurried. In addition, fluidity and moldability are excellent.
  • the D50 may be 0.19 ⁇ m or less, 0.18 ⁇ m or less, 0.17 ⁇ m or less, or 0.16 ⁇ m or less.
  • D 50 ⁇ S BET is 1.9 ⁇ 10 ⁇ 6 m 3 /g or less, 1.8 ⁇ 10 ⁇ 6 m 3 /g or less, 1.7 ⁇ 10 ⁇ 6 m 3 /g or less, or 1.6 It may be less than ⁇ 10 ⁇ 6 m 3 /g.
  • D50 may be 0.05 ⁇ m or greater, 0.10 ⁇ m or greater, or 0.15 ⁇ m or greater.
  • the alumina powder of the present embodiment preferably has a 50% particle size (D 50 ) and a BET specific surface area (S BET ) in the volume particle size distribution of the formula: D 50 ⁇ 0.17 ⁇ m and the formula: D 50 ⁇ S It satisfies the relationship expressed by BET ⁇ 1.8 ⁇ 10 ⁇ 6 m 3 /g.
  • D 50 50% particle size
  • S BET BET specific surface area
  • the alumina powder of the present embodiment has a sodium (Na), silicon (Si), iron (Fe) and calcium (Ca) content of 10 ppm or less. That is, the amount of Na is 10 ppm or less, the amount of Si is 10 ppm or less, the amount of Fe is 10 ppm or less, and the amount of Ca is 10 ppm or less.
  • Impurities form grain boundary phases in the sintered body. For example, sodium (Na) and calcium (Ca) form a glass phase together with silicon (Si). Calcium (Ca) may react with alumina (Al 2 O 3 ) in the main phase to form compounds such as CaO.6Al 2 O 3 . Such a grain boundary phase is not preferable because it causes abnormal grain growth.
  • ⁇ -alumina is a material used as a solid electrolyte for batteries and has high conductivity. Such a large amount of impurities deteriorates sinterability and electric resistance (insulation).
  • the alumina powder of the present embodiment has a small average particle size ( D50 ) and a large sintering driving force. Therefore, impurities are likely to adversely affect sinterability and electrical resistance. Therefore, the content of each impurity (Na, Si, Fe and Ca) is limited to 10 ppm or less. The content of each is preferably 9 ppm or less, more preferably 8 ppm or less.
  • sodium (Na) lowers the sinterability and insulating properties of the alumina powder, so it is desirable to suppress its content. Therefore, it is particularly preferable to suppress the content of sodium (Na) to 5 ppm or less.
  • the alumina powder of the present embodiment may satisfy the relationship represented by the formula: 1.55 ⁇ 10 ⁇ 6 m 3 /g ⁇ D 50 ⁇ S BET .
  • the D 50 ⁇ S BET of perfectly spherical particles is calculated to be 1.51 ⁇ 10 ⁇ 6 m 3 /g using the density of alumina (3.98 g/cm 3 ).
  • Techniques for producing truly spherical alumina particles are also known, but these techniques require expensive raw materials and are complicated to produce.
  • the particles constituting the alumina powder of the present embodiment are rounded and have uniform particle diameters, but are not perfectly spherical particles.
  • D 50 ⁇ S BET may be 1.6 ⁇ 10 ⁇ 6 m 3 /g or more, may be 1.7 ⁇ 10 ⁇ 6 m 3 /g or more, and may be 1.8 ⁇ 10 ⁇ 6 m 3 /g or more. g or more.
  • the alumina powder of the present embodiment preferably has a full width at half maximum (FWHM) of the (113) diffraction line in an X-ray diffraction (XRD) profile of 0.240° or less, more preferably 0.230° or less.
  • fine powder is produced by strong pulverization (strong pulverization).
  • strong pulverization strong pulverization
  • the crystal surfaces of the primary particles are distorted. Such crystal surface distortion may activate the alumina particle surface and adversely affect handling characteristics and slurry characteristics.
  • the alumina powder of the present embodiment is composed of fine primary particles, it has little crystal distortion and excellent crystallinity. A smaller FWHM is more preferable, but it is typically 0.200° or more.
  • the pressed bulk density (GD) of the alumina powder of the present embodiment is preferably 2.20 g/cm 3 or more, more preferably 2.30 g/cm 3 or more.
  • the pressurized bulk density is the bulk density of a molded body (molded piece) obtained by pressurizing alumina powder at a pressure of 350 kgf/cm 2 with no pressing time (0 minute).
  • the upper limit of the pressurized bulk density is preferably as high as possible, but is typically 2.50 g/cm 3 or less.
  • the alumina powder preferably has a 10% particle size (D 10 ), 50% particle size (D 50 ) and 90% particle size (D 90 ) in the volume particle size distribution of the formula: (D 90 ⁇ D 10 )/D 50 It is preferable to satisfy the relationship ⁇ 1.5. If the particle size distribution of the alumina powder is too broad, sinterability and handleability may deteriorate. An overly broad particle size distribution is therefore not preferred. (D 90 ⁇ D 10 )/D 50 may be 1.3 or less, or may be 1.1 or less.
  • the alumina powder of the present embodiment preferably has a degree of alpha conversion of 80.0% or more, more preferably 90.0% or more. If the degree of alpha conversion is less than 80.0%, shrinkage during firing is large when producing a sintered body from the alumina powder, and pores are likely to form. As a result, the sintered body becomes difficult to be densified, and there is a possibility that the characteristics deteriorate. Therefore, the higher the degree of alpha conversion, the better.
  • the degree of alpha conversion is obtained by obtaining the X-ray diffraction profile (XRD pattern) of the alumina powder by the X-ray diffraction method. It can be obtained by comparing with the diffraction intensity of a standard sample.
  • the alumina powder of this embodiment has excellent sinterability, taking advantage of its fineness.
  • the inventors have confirmed that dense sintered bodies can be produced at significantly lower temperatures than conventional alumina powders.
  • the alumina powder of the present embodiment is fine, but has excellent slurry properties. That is, the slurry containing this alumina powder has a low viscosity and is stable. In general, when the particle size of the powder becomes small, the interaction between the particles becomes strong, making it difficult to achieve good dispersion. Therefore, more shear force must be applied to disperse the powder in the slurry. Moreover, even if the powder is temporarily dispersed, the powder tends to aggregate or gel in the slurry, making the slurry unstable. In contrast, the alumina powder of the present embodiment can be dispersed even with a weak shearing force, and the slurry maintains a well-dispersed state for a long period of time. It is presumed that this is because the particles have a rounded shape and a uniform particle size, so that the interaction between the particles is small, which leads to the low viscosity and stabilization of the slurry.
  • the alumina powder of the present embodiment has excellent moldability due to its good fluidity. That is, since the fluidity is good, the filling property during dry or wet molding is high, and as a result, a high-density molded product can be obtained.
  • the alumina powder of this embodiment exhibits excellent dielectric properties in the high frequency range. Therefore, by using this alumina powder as a raw material, an alumina sintered body with low dielectric loss and low transmission loss can be produced. In fact, the inventors have confirmed that it is possible to obtain an alumina sintered body with a small dielectric loss tangent (tan ⁇ ) and transmission loss in a high frequency range of 10 GHz or higher.
  • Such alumina powder can be widely applied to applications such as electronic parts, refractories, abrasives, insulators, spark plugs, fillers, and catalyst carriers. Since it is particularly excellent in sinterability, it is useful when producing a sintered body by dry or wet compaction and firing of alumina powder. It is also useful as a raw material for preparing a composite material by kneading an alumina powder as a filler with a polymer compound such as a resin.
  • the slurry of the present embodiment is prepared by mixing the alumina powder described above, a solvent such as water, and, if necessary, a dispersant.
  • the alumina powder concentration in the slurry is not limited, but may be, for example, 10 to 70% by mass, or 30 to 70% by mass.
  • the dispersant is not limited, the content of the dispersant may be, for example, 1 to 10% by mass, such as an ammonium polycarboxylate-based dispersant.
  • the slurry of this embodiment is characterized by its low viscosity regardless of the shear rate.
  • the viscosity can be maintained at 6 mPa ⁇ sec or less when the shear rate is increased and decreased in the range of 300 to 1000/sec.
  • Slurries are non-Newtonian fluids and do not exhibit a proportional relationship between shear rate and shear stress. Therefore, when evaluating the flow characteristics of the slurry, it is preferable to evaluate using a flow curve, which is the relationship between shear rate and shear stress.
  • a flow curve which is the relationship between shear rate and shear stress.
  • the cone-plate rotational viscometer sandwiches a sample (slurry) between a cone and a flat plate, rotates the cone at a constant speed, and measures the rotational torque at that time. Shear stress can be calculated from the rotational torque.
  • the slurry of this embodiment is characterized by being stable over a long period of time.
  • the stability of slurry can be evaluated by examining the sedimentation state in a gravitational field.
  • One such technique is sedimentation hydrostatic pressure measurement using a hydrostatic slurry evaluator.
  • the principle of sedimentation hydrostatic pressure measurement will be described with reference to FIGS. 1 and 2.
  • FIG. 1 the hydrostatic slurry evaluation apparatus includes a sedimentation tube with an open upper surface, a pressure transmission tube whose tip is inserted into the tube, and a pressure sensor provided at the other end of the pressure transmission tube. and consists of The hydrostatic pressure at depth H is measured with the slurry in the settling tube. Hydrostatic pressure is maximum when all particles in the slurry are suspended.
  • the dispersion stability of particles can be evaluated by determining the hydrostatic pressure (P) as a function of time (t). For example, as shown in FIG. 2, a well-dispersed slurry has a small change in hydrostatic pressure even after a long period of time. On the other hand, if the particles in the slurry agglomerate or gel, the hydrostatic pressure will decrease.
  • the slurry of this embodiment has a good dispersion state and a small change in hydrostatic pressure.
  • the alumina sintered body of the present embodiment is produced by molding the alumina powder described above and firing (sintering) the obtained molded body.
  • the molding may be performed by known techniques such as press molding, casting, injection molding, and extrusion molding.
  • Cold isostatic pressing (CIP) may also be applied to the compact.
  • Firing may also be performed under known conditions. For example, firing may be performed at 1300 to 1500° C. for 1 to 5 hours in air, vacuum or hydrogen atmosphere.
  • the alumina sintered body of this embodiment is characterized by exhibiting good dielectric properties in a high frequency region.
  • the dielectric constant ( ⁇ r) at 10 GHz can be 8.0-12.0, and can be 9.0-11.0.
  • the dielectric loss tangent (tan ⁇ ) at 10 GHz can be 0.20 ⁇ 10 ⁇ 4 or less, and can be 0.15 ⁇ 10 ⁇ 4 or less.
  • Alumina sintered bodies having a low dielectric constant and dielectric loss tangent in the high frequency range are suitable as, but not limited to, antenna materials for fifth-generation mobile communication systems (5G).
  • 5G fifth-generation mobile communication systems
  • the 5th generation mobile communication system is a system following the 4th generation (4G) represented by smartphones, and commercial services will start in Japan from the spring of 2020.
  • radio waves in extremely high frequency regions such as millimeter waves of 24 GHz or more are used together with microwaves of less than 6 GHz.
  • 5G which uses such high frequencies, has three characteristics: high-speed, large-capacity, highly reliable and low-delay communication, and multiple simultaneous connections.
  • the loss amount (a) of the transmission loss that occurs at this time is the frequency (f) of the radio wave, the square root of the relative permittivity ( ⁇ r) of the antenna material, and the dielectric constant of the antenna material, as shown in the following equation (1). It is proportional to the product of tangents (tan ⁇ ). In addition, in the following formula (1), K is a proportionality constant.
  • PTFE Polytetrafluoroethylene
  • the alumina sintered body of this embodiment can have a smaller dielectric loss tangent (tan ⁇ ) and transmission loss in a high frequency region than PTFE. Therefore, it is expected to be used as an antenna material for 5G.
  • alumina sintered body of this embodiment is not limited to 5G antenna materials. Needless to say, it is useful for applications other than antennas, such as circuit boards, capacitor/resistor substrates, IC substrates, sensor member substrates, multilayer substrates, packages, RF windows, and semiconductor manufacturing equipment.
  • a preferred production method includes a step of preparing aluminum hydroxide powder and ⁇ -alumina seeds (preparing step), mixing ⁇ -alumina seeds with the prepared aluminum hydroxide powder, and adding 1 to 1 ⁇ -alumina seeds.
  • a step of obtaining an aluminum hydroxide mixed raw material containing 20% by mass (mixing step), and the obtained aluminum hydroxide mixed raw material is subjected to a mechanochemical treatment using a dry bead mill to reduce the water of crystallization content to 21.0.
  • a step of obtaining amorphous aluminum hydroxide (mechanochemical treatment step) which has a mass% or less and exhibits an exothermic peak in the temperature range of 750 to 850 ° C. in differential scanning calorimetry (mechanochemical treatment step); and a step of heat-treating at a temperature within the range of 1100° C. to obtain alumina powder (heat-treating step).
  • the average particle diameter (D 50 ) of the ⁇ -alumina seeds to be prepared is 0.1 to 0.5 ⁇ m.
  • This production method is characterized by using as an intermediate raw material a specific amorphous aluminum hydroxide produced by mechanochemically treating a mixed raw material of aluminum hydroxide powder and ⁇ -alumina seeds.
  • This amorphous aluminum hydroxide has a remarkably low crystal transition temperature to ⁇ -alumina. Therefore, by using this amorphous aluminum hydroxide as an intermediate raw material, it is possible to easily obtain a fine, high-quality ⁇ -alumina powder with a high degree of alpha conversion. Details of each step are described below.
  • ⁇ Preparation process> aluminum hydroxide powder and ⁇ -alumina seeds are prepared.
  • the aluminum hydroxide powder gibbsite, bayerite, or the like can be used. However, gibbsite is preferred due to manufacturing costs.
  • the aluminum hydroxide powder may be produced by any method, but preferably produced by the Bayer method. From the viewpoint of powder fluidity and ease of handling, the aluminum hydroxide powder has an average particle diameter (D 50 ) of 3 to 50 ⁇ m and a BET specific surface area (S BET ) of 0.2 to 5.0 m 2 /g. Some are preferred.
  • a general-purpose aluminum hydroxide powder has an average particle size and a BET specific surface area within the above ranges. In the manufacturing method of the present embodiment, it is possible to use a general-purpose aluminum hydroxide powder raw material, and as a result, the merits of manufacturing cost reduction and simplicity can be maximized.
  • the ⁇ -alumina seeds preferably have a high degree of alpha conversion from the viewpoint of lowering the temperature of the alpha conversion of amorphous aluminum hydroxide.
  • the degree of alpha conversion is preferably 90% or more, more preferably 95% or more.
  • the average particle diameter (D 50 ) of ⁇ -alumina seeds is limited to 0.1 to 0.5 ⁇ m.
  • the ⁇ -alumina seeds are preferably fine.
  • D50 is preferably 0.1 to 0.3 ⁇ m.
  • the BET specific surface area (S BET ) of ⁇ -alumina seeds is preferably 5 to 15 m 2 /g, more preferably 10 to 15 m 2 /g.
  • the prepared aluminum hydroxide powder is mixed with ⁇ -alumina seeds to obtain an aluminum hydroxide mixed raw material containing 1 to 20% by mass of ⁇ -alumina seeds.
  • a mixing method is not particularly limited. By adding ⁇ -alumina seeds, the effect of lowering the crystal transition temperature of the resulting amorphous aluminum hydroxide can be fully exhibited. From the viewpoint of lowering the temperature of the alpha transition, it is desirable to add a certain amount of alpha-alumina seeds. However, if there are too many ⁇ -alumina seeds, the produced alumina powder may become coarse and the sinterability may deteriorate. Additionally, high quality ⁇ -alumina seeds are expensive.
  • the content of ⁇ -alumina seeds is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, even more preferably 2 to 8% by mass, and particularly preferably 3 to 5% by mass.
  • the content of ⁇ -alumina seeds is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, even more preferably 2 to 8% by mass, and particularly preferably 3 to 5% by mass.
  • D 50 average particle diameter
  • amorphous aluminum hydroxide will be able to undergo an ⁇ -transformation in a low-temperature region, which would normally not undergo a phase transition, without passing through an intermediate alumina phase such as ⁇ -alumina.
  • Amorphous aluminum hydroxide is mainly composed of amorphous aluminum hydroxide.
  • Aluminum hydroxide in its fully crystalline state, is a compound with a composition such as gibbsite (Al(OH) 3 ).
  • gibbsite Al(OH) 3
  • amorphous aluminum hydroxide differs from aluminum hydroxide in a completely crystalline state in the crystalline state and the amount of water of crystallization.
  • the degree of amorphousness can be evaluated by the crystal peak (002) plane intensity (CPS) of gibbsite measured by X-ray diffraction and the crystal water content (LOI).
  • amorphous aluminum hydroxide refers to one having a crystal peak (002) plane intensity of gibbsite measured by X-ray diffraction of 350 CPS or less and a crystal water content of 21.0% by mass or less.
  • non-amorphized gibbsite has a crystal water content of about 34.7% by mass.
  • the amorphous aluminum hydroxide of the present embodiment has a crystal water content (LOI) of 21.0% by mass or less.
  • LOI crystal water content
  • Amorphous aluminum hydroxide has a smaller amount of water of crystallization than aluminum hydroxide in a perfectly crystalline state.
  • the amorphous aluminum hydroxide of the present embodiment is produced by subjecting a mixed raw material composed of aluminum hydroxide powder and ⁇ -alumina seeds to mechanochemical treatment (amorphization treatment) using a dry ball mill. can do. During the amorphous treatment using a dry bead mill, primary particles constituting aluminum hydroxide crystals such as gibbsite are ground to fine regions, and crystal water contained therein is expelled to the outside.
  • the pulverization proceeds until the amount of water of crystallization is reduced, and sufficiently fine primary particles are obtained, thereby making it possible to sufficiently lower the crystal transition temperature to ⁇ -alumina.
  • the content of water of crystallization is preferably 17.0% by mass or less.
  • the lower limit of the water of crystallization content is not particularly limited, it may typically be 15.0% by mass or more.
  • the amorphous aluminum hydroxide of the present embodiment exhibits an exothermic peak within the temperature range of 750 to 850°C in differential scanning calorimetry. This exothermic peak corresponds to crystal transition to ⁇ -alumina ( ⁇ -aluminization). Ordinary aluminum hydroxide has a crystal transition temperature to ⁇ -alumina of 1100 to 1200°C. In contrast, the amorphous aluminum hydroxide of the present embodiment has a crystal transition temperature of 750 to 850°C, which is extremely low. Amorphous aluminum hydroxide preferably exhibits an exothermic peak within the temperature range of 810-830°C.
  • the BET specific surface area of amorphous aluminum hydroxide is not particularly limited, it is typically 15 to 50 m 2 /g.
  • the BET specific surface area can be measured based on JIS1626 using an automatic specific surface area measuring device (Micromeritex, Flowsorb II2300).
  • Amorphous aluminum hydroxide preferably has a content of elements other than aluminum (Al), oxygen (O) and hydrogen (H) of 0.1% by mass or less.
  • the sodium (Na) content is 0.01% by mass or less and the zirconium (Zr) content is 0.05% by mass or less.
  • Sodium and zirconium are components that inhibit sintering in the production of easily sintered ceramics, which is the final product, and it is desirable that the amount of sodium and zirconium be as small as possible.
  • amorphous aluminum hydroxide of the present embodiment even if aluminum hydroxide such as gibbsite having a high sodium content is used as a raw material at the time of its production, sodium contained in the crystals is removed during the amorphous treatment. can be easily washed and removed. Also, if raw materials having a low sodium content are used, the sodium content of the amorphous aluminum hydroxide can naturally be reduced.
  • the crystal When the crystal is continuously pulverized, the number of newly formed surfaces increases and the number of surface atoms and/or molecules that have lost their joints increases, and their bonding state is disturbed in the vicinity of the surface layer. As a result, the ground particles are activated. Also, in the case of dry pulverization, powder agglomeration occurs and the apparent surface area decreases. The active surface of the pulverized particles adsorbs moisture and gas in the air, lowering the chemical potential and stabilizing the particles. Various phase transitions occur during this series of reactions. Such phenomena and effects are called mechanochemical reactions, and treatments that cause such mechanochemical reactions are called mechanochemical treatments.
  • a dry bead mill is used as the mechanochemical treatment.
  • the mixed raw materials are subjected to a high crushing shear and mechanochemical reactions are effectively induced.
  • a dry bead mill is a type of medium agitating pulverizer, and consists of a raw material inlet, a cylindrical container (vessel), a rotating agitating member (agitator) provided in the cylindrical container, and an outlet for processed powder.
  • the agitator gap inside the vessel is filled with a large number of grinding media (beads). The dry bead mill rotates the agitator at high speed during operation to agitate the beads.
  • the raw material charged from the raw material inlet repeatedly collides with the agitator, beads, and the inner wall of the vessel, and is pulverized by impact force, shear force, friction force, etc., and a mechanochemical reaction is induced, resulting in dry process powder. and discharged from the exit.
  • the water of crystallization content of the aluminum hydroxide mixed raw material is While the content of water of crystallization in the dry-processed powder after the dry-bead mill treatment is 27.0% by mass or more, it is reduced to 21.0% by mass or less, and in some cases, to 17.0% by mass or less. From this, it is understood that desorption of water of crystallization occurs due to the dry bead mill treatment.
  • the dry bead mill has an agitator peripheral speed (rotational speed) of preferably 5.0 to 6.0 m/sec, more preferably 5.0 to 5.5 m/sec, and a bead filling amount of preferably 60 to 70% by volume, more preferably 60 to 65% by volume.
  • the feed rate is preferably 1.0 to 4.0 kg/hour, more preferably 2.0 to 3.0 kg/hour.
  • the higher the agitator peripheral speed and the bead filling amount the more effectively the mechanochemical treatment is carried out and the higher the quality of amorphous aluminum hydroxide can be obtained.
  • the smaller the feed amount the longer the residence time of the mixed raw material, and the more amorphous the aluminum hydroxide is promoted.
  • the aluminum hydroxide mixed raw material may be treated with a dry bead mill once (one-pass treatment) or many times (two-pass treatment, three-pass treatment, etc.).
  • the smaller the feed rate the more amorphous the aluminum hydroxide is promoted, but the lower the production efficiency.
  • by performing the treatment many times even if the amount of feed is increased, the same result as when the amount of feed is decreased and the treatment is performed once can be obtained. Therefore, high-quality amorphous aluminum hydroxide can be obtained while maintaining production efficiency. It is preferable that the feed amount is 2.0 to 3.0 kg/hour and two passes are performed.
  • a grinding aid may be added to the aluminum hydroxide mixed raw material. Grinding aids include, for example, ethanol.
  • the dry bead treatment which is a dry treatment, allows the mechanochemical reaction of the aluminum hydroxide mixed raw material to be sufficient, and as a result, crystals form ⁇ -alumina.
  • Amorphous aluminum hydroxide having a remarkably low transition temperature can be easily obtained.
  • the production method of the present embodiment employs a mechanochemical treatment using a dry beer mill, it is possible to inexpensively obtain amorphous aluminum hydroxide, which is highly difficult to process, while using general-purpose aluminum hydroxide as a starting material. can. Therefore, it does not require a sophisticated filtration device or a large-sized drying facility, which are required in wet pulverization, and is excellent in productivity.
  • a continuous device is used as a dry bead mill, continuous processing is possible.
  • the obtained amorphous aluminum hydroxide is heat treated (calcined) at a temperature within the range of 900 to 1100°C. Further, if necessary, the heat-treated powder after the heat treatment may be subjected to crushing treatment or washing treatment. Since the amorphous aluminum hydroxide of the present embodiment has a remarkably low crystal transition temperature to ⁇ -alumina, even heat treatment at a relatively low temperature of 900 to 1100° C. yields ⁇ -alumina powder with a sufficiently high degree of ⁇ -alternative conversion. be able to. Also, since the heat treatment temperature is low, grain growth during heat treatment can be suppressed.
  • the heat treatment temperature is preferably 900 to 1050°C, more preferably 950 to 1050°C. In this manner, the high-purity fine-grained alumina powder of the present embodiment can be produced.
  • Example 1 (Example)
  • ⁇ -alumina seeds were prepared as raw materials.
  • gibbsite BHP39 manufactured by Nippon Light Metal Co., Ltd.
  • ⁇ -alumina seeds high-purity fine grain alumina (manufactured by Nippon Light Metal Co., Ltd.) was used.
  • the ⁇ -alumina seeds (high-purity fine alumina particles) had an average particle size (D 50 ) of 0.18 ⁇ m.
  • ⁇ -alumina seeds (high-purity fine-grained alumina) were added to and mixed with the prepared aluminum hydroxide powder to obtain a mixed raw material. At this time, the content of ⁇ -alumina seeds in the mixed raw material was adjusted to 10% by mass.
  • ⁇ Mechanochemical treatment process The obtained mixed raw material was subjected to mechanochemical treatment using a dry bead mill (SDA-1 manufactured by Ashizawa Phitentech) to obtain a dry treated powder.
  • SDA-1 dry bead mill
  • PSZ partially stabilized zirconia
  • ethanol grinding aid
  • ⁇ Heat treatment process> The obtained dry-processed powder was filled in a high-purity alumina crucible (purity 99%). After that, the filled dry-processed powder was heat-treated using a high-speed heating electric furnace (Superburn manufactured by Motoyama Co., Ltd.) to obtain a heat-treated powder ( ⁇ -alumina powder). The heat treatment was performed under the conditions of a temperature increase rate of 200° C./hour, a maximum temperature of 1070° C., and a holding time of 30 minutes.
  • Example 2 (comparative example) A commercially available high-purity alumina powder (manufactured by another company) was obtained and used as Example 2.
  • Example 3 (comparative example) Alumina powder as a developed product (LS ultrafine particles) was used as Example 3.
  • Example 4 (comparative example) A commercially available high-purity alumina powder (AHP200 manufactured by Nippon Light Metal Co., Ltd.) was obtained and used as Example 4.
  • ⁇ SEM Observation> The alumina powder was observed using a scanning electron microscope (SEM). Observation was performed using a scanning electron microscope (S4700 manufactured by Hitachi High-Tech Science Co., Ltd., JSM-7200 manufactured by JEOL Ltd.) at a magnification of 50,000 times.
  • the amount of impurities (Na) in the alumina powder was measured using an atomic absorption spectrophotometer (polarized Zeeman atomic absorption photometer Z-2000 manufactured by Hitachi High-Technologies Corporation). First, alumina powder was placed in a pressurized decomposition vessel and diluted with water to a constant amount to prepare a sample solution. A sample container was set in the apparatus, and absorbance was measured at a wavelength of 589.0 nm using an air-acetylene flame. Thereafter, the amount of Na was calculated using the absorbance of the standard solution obtained at the same time.
  • the BET specific surface area (S BET ) of the alumina powder was measured according to JIS1626 using an automatic specific surface area measuring device (Micromeritex Flowsorb II2300).
  • the particle size of the alumina powder was measured using a laser diffraction/scattering particle size distribution analyzer (Microtrac MT3300 manufactured by Nikkiso Co., Ltd.). First, the alumina powder was dispersed using a homogenizer (US-600T manufactured by Nihon Seimitsu Seisakusho Co., Ltd.) under conditions of 600 W, 20 kHz, and 1 minute. After that, the dispersed alumina powder was introduced into a measuring device, where the particle size was measured. By analyzing the obtained data, the cumulative 10% particle size (D 10 ), the cumulative 50% particle size (average particle size; D 50 ) and the cumulative 90% particle size (D 90 ) in the volume particle size distribution were determined.
  • D 10 cumulative 10% particle size
  • D 50 cumulative 50% particle size
  • D 90 cumulative 90% particle size
  • GD pressed bulk density
  • ⁇ Sinterability> Sinterability of alumina powder was evaluated. First, alumina powder was filled in a mold and uniaxially press-molded at a pressure of 350 kgf/cm 2 . The resulting molded body was fired in a high-speed heating electric furnace (Super Burn manufactured by Motoyama Co., Ltd.) to obtain a sintered body. The firing was performed under the conditions of a temperature increase rate of 200° C./hour, a maximum temperature (sintering temperature) of 1350 to 1600° C., and a holding time of 2 hours. The density (bulk density) of the obtained sintered body was measured by the Archimedes method.
  • Alumina powder was analyzed by powder X-ray diffraction (XRD) method. Analysis was performed as follows. First, alumina powder was placed on a dedicated sample plate and lightly spread to a size of 20 mm ⁇ 20 mm ⁇ 0.5 mm to prepare a measurement sample. Next, using an X-ray diffractometer, the X-ray diffraction pattern of the measurement sample was determined. The conditions for X-ray diffraction were as follows.
  • a slurry (suspension) of alumina powder was prepared and its viscosity was evaluated.
  • 200 g of alumina powder, 164 g of pure water, and 4 g of ammonium polycarboxylate-based dispersant (Nopcos Perth 5600 manufactured by San Nopco Co., Ltd.) were placed in a 1 L pot together with 600 g of ⁇ 20 media balls. The pot was then rotated at 72 rpm for 2 hours to mix the contents. Thus, a slurry having a concentration of 55% by mass was produced.
  • the viscosity of the resulting slurry was measured using a precision rotary viscometer (RST-CPS manufactured by Eiko Seiki Co., Ltd.), which is a cone-plate type rotary viscometer. Specifically, the shear rate was changed from 1/sec to 1000/sec over 60 seconds at 25° C., and the viscosity value was measured every second.
  • RST-CPS precision rotary viscometer manufactured by Eiko Seiki Co., Ltd.
  • the hydrostatic settling pressure of the slurry was measured using a hydrostatic slurry evaluator (HYSTAP-3, Japan Hotel Goods Supply Co., Ltd.).
  • the slurry used for the measurement was the one adjusted during the viscosity evaluation.
  • the sedimentation velocity was calculated considering interference sedimentation, in which the particles dispersed in the fluid sediment while interfering with each other, and a good dispersion line was created based on this sedimentation velocity.
  • the density of alumina particles is 3.98 g/cm 3
  • the density of water is 1.00 g/cm 3
  • the acceleration of gravity is 9.80665 m/sec 2
  • the viscosity of the liquid medium (water) is 0.00089 Pa ⁇ sec (25° C. )
  • the sedimentation velocity was calculated.
  • a sintered body was produced from alumina powder, and its dielectric properties were evaluated.
  • alumina powder was filled in a mold and uniaxially press-molded at a pressure of 19.6 MPa.
  • the obtained compact was vacuum-packed and then subjected to cold isostatic pressing (CIP) treatment at a pressure of 245 MPa for 1 minute.
  • CIP-treated molded body was sintered in a high-speed heating electric furnace (Superburn manufactured by Motoyama Co., Ltd.) to obtain a sintered body.
  • the firing was performed under the conditions of a temperature increase rate of 200° C./hour, a maximum temperature of 1500° C., and a holding time of 2 hours.
  • the dielectric properties of the obtained sintered body were measured at 1 GHz, 5 GHz and 10 GHz.
  • the value at 1 GHz was measured at room temperature in an air atmosphere using an impedance analyzer (E4991B manufactured by Keysight Technologies).
  • the values at 5 GHz and 10 GHz were measured using a microwave PNA network analyzer (N5227A manufactured by Keysight Technologies) according to JIS1627 under atmospheric conditions at a temperature of 24° C. and a humidity of 45%.
  • Table 1 shows the amount of impurities and powder properties for the alumina powders of Examples 1 to 4.
  • Example 1 which is an example, the content of impurities such as sodium (Na), silicon (Si), iron (Fe) and calcium (Ca) was as low as 10 ppm or less.
  • Comparative Examples 2 to 4 the content of some impurities exceeded 10 ppm.
  • Example 3 the content of each of Na, Si, Fe and Ca was as high as 100 to 200 ppm.
  • Example 1 satisfied the conditions of D 50 ⁇ 0.20 ⁇ m and D 50 ⁇ S BET ⁇ 2.0 ⁇ 10 ⁇ 6 m 3 /g.
  • D 50 ⁇ S BET exceeded 2.0 ⁇ 10 ⁇ 6 m 3 /g.
  • Example 2 had a D 50 comparable to that of Example 1, but a large S BET , resulting in a large D 50 ⁇ S BET .
  • the particle size distribution curves for the alumina powders of Examples 1 to 4 are shown in FIG.
  • the horizontal axis indicates the particle size (particle diameter), and the vertical axis indicates the frequency.
  • the alumina powder of Example 1 exhibited a relatively sharp particle size distribution centered on a particle size of 0.2 ⁇ m.
  • the alumina powder of Example 2 showed a sharp particle size distribution with a particle size of 0.2 ⁇ m as the center, particles with a size of about several ⁇ m were present. Therefore, the particle size distribution was broad as a whole.
  • the alumina powder of Example 3 exhibited a broader particle size distribution than those of Examples 1 and 2. In addition, not a few particles with a size of about several ⁇ m were present.
  • the alumina powder of Example 4 had a large center particle size of 0.4 to 0.5 ⁇ m and exhibited a broad particle size distribution.
  • the densities (bulk densities) of the sintered bodies produced from the alumina powders of Examples 1 to 4 are shown in FIG.
  • the alumina powders of Examples 1 and 2 were densified even at relatively low firing temperatures, and already exhibited densities of 3.8 g/cm 3 or higher at 1350°C. At 1450° C. or higher, the density was almost constant.
  • the alumina powder of Example 3 was inferior to Examples 1 and 2 in densification, and the density at 1350° C. remained at 3.6-3.7 g/cm 3 .
  • the alumina powder of Example 4 was the least densified and had a low density of less than 3.4 g/cm 3 at 1350°C. Moreover, the density finally became constant at 1550° C. or higher.
  • the sinterability results correspond to the mean particle size ( D50 ) results. That is, the alumina powders of Examples 1 and 2 have a fine D 50 of 0.18 to 0.19 ⁇ m and are excellent in sinterability, whereas the alumina powders of Examples 3 and 4 have a D 50 of 0.23. It is considered to be inferior in sinterability because it is coarse at ⁇ 0.45 ⁇ m.
  • Table 2 shows the full width at half maximum (FWHM) values of the (012), (104), (113), (116) and (300) diffraction lines for the alumina powders of Examples 1, 2 and 3. Moreover, the XRD pattern of the alumina powder of Example 1 is shown in FIG.
  • the alumina powder of Example 1 had a smaller peak half width (FWHM) than those of Examples 2 and 3 in any diffraction line. Further, as shown in FIG. 9, almost no diffraction lines derived from crystal phases other than ⁇ -alumina were observed in the XRD pattern of the alumina powder of Example 1. From this, it was found that the alumina powder of Example 1 had a small crystal strain, was extremely excellent in crystallinity, and contained almost no heterogeneous phases.
  • FIG. 10 shows the relationship between shear rate and viscosity for the slurries containing the alumina powders of Examples 1-4.
  • FIG. 10 both the viscosity at increased shear rate (indicated by right-pointing arrows in the figure for some samples) and the viscosity at decreased shear rate (indicated by left-pointing arrows in the figure) are shown. ing.
  • the slurry of Example 1 had a low viscosity and was almost constant regardless of the shear rate. Moreover, there was little difference in viscosity between increasing and decreasing shear rate, indicating a reversible response to shear rate. From this, it was found that the slurry of Example 1 has a low viscosity, is stable, and exhibits a reversible response to shear rate. On the other hand, the slurries of Examples 2 and 3 were highly viscous. In particular, in the slurry of Example 2, although the average particle size of the alumina powder contained therein is almost the same as in Example 1, the difference in viscosity between when the shear rate is increased and when it is decreased is large, and the shear rate showed an irreversible response. Similar to Example 1, the slurry of Example 4 had a low viscosity and was almost constant regardless of the shear rate.
  • FIG. 11 shows the change in sedimentation hydrostatic pressure over time for the slurries containing the alumina powders of Examples 1 and 2.
  • FIG. FIG. 11 also shows a settling hydrostatic pressure line (well-dispersed line) of the slurry indicating an ideal well-dispersed state.
  • the slurry of Example 1 had a small sedimentation hydrostatic pressure change over time, and was close to an ideal well-dispersed state.
  • the slurry of Example 2 exhibited a large time change in hydrostatic settling pressure. From this, it was inferred that the slurry of Example 1 maintained a well-dispersed state for a long time, while the slurry of Example 2 was partially agglomerated.
  • Table 3 shows the dielectric properties (relative dielectric constant ⁇ r, dielectric loss tangent tan ⁇ , ( ⁇ r) 1/2 ⁇ tan ⁇ ) of the alumina sintered bodies of Examples 1, 2 and 4.
  • Table 3 also shows the properties of polytetrafluoroethylene (PTFE).
  • Example 1 The alumina sintered body of Example 1 had smaller dielectric loss tangent and ( ⁇ r) 1/2 ⁇ tan ⁇ in the high frequency region (5 GHz, 10 GHz) than other samples. From this, it was found that Example 1 is an excellent material with small transmission loss as an antenna material.
  • the sintered body of Example 2 had a larger dielectric loss tangent and ( ⁇ r) 1/2 ⁇ tan ⁇ in the high frequency region (5 GHz, 10 GHz) than those of Example 1.
  • Example 2 since the BET specific surface area of the alumina powder was larger than that in Example 1, the compacting density was reduced.
  • the sintered body of Example 4 had a larger dielectric loss tangent and ( ⁇ r) 1/2 ⁇ tan ⁇ than those of Examples 1 and 2.
  • the alumina powder contained a large amount of sodium (Na), which is thought to have adversely affected the sintered body density and electrical resistance.
  • PTFE has a relatively small dielectric loss tangent at 1 GHz, but a much larger dielectric loss tangent at 10 GHz than the alumina sintered bodies (Examples 1, 2 and 4).
  • the transmission loss amount (a) of the antenna material is proportional to ( ⁇ r) 1/2 ⁇ tan ⁇ as shown in the following equation (1). Therefore, the sintered body of Example 1 has the smallest transmission loss in the high frequency range of 10 GHz or higher, and is thus found to be promising as an antenna material.
  • Example B In Experimental Example B, alumina powder was synthesized by changing the particle size and amount of ⁇ -alumina seeds, and the results were evaluated.
  • Example 5 (Example)
  • ⁇ -alumina seeds having an average particle diameter (D 50 ) of 0.16 ⁇ m and a BET specific surface area (S BET ) of 10.2 m 2 /g were used. Also, the content of ⁇ -alumina seeds in the mixed raw material was changed to 4% by mass.
  • Alumina powder was synthesized in the same manner as in Example 1 except for the above.
  • Example 6 (Example) ⁇ -alumina seeds having an average particle diameter (D 50 ) of 0.23 ⁇ m and a BET specific surface area (S BET ) of 8.29 m 2 /g were used.
  • Alumina powder was synthesized in the same manner as in Example 5 except for the above.
  • Example 7 The content of ⁇ -alumina seeds in the mixed raw material was changed to 7% by mass.
  • Alumina powder was synthesized in the same manner as in Example 5 except for the above.
  • Example 8 (Example)
  • the content of ⁇ -alumina seeds in the mixed raw material was changed to 7% by mass.
  • Alumina powder was synthesized in the same manner as in Example 6 except for the above.
  • Example 9 The content of ⁇ -alumina seeds in the mixed raw material was changed to 10% by mass.
  • Alumina powder was synthesized in the same manner as in Example 5 except for the above.
  • Example 10 The content of ⁇ -alumina seeds in the mixed raw material was changed to 10% by mass.
  • Alumina powder was synthesized in the same manner as in Example 6 except for the above.
  • Example 11 The content of ⁇ -alumina seeds in the mixed raw material was changed to 20% by mass.
  • Alumina powder was synthesized in the same manner as in Example 5 except for the above.
  • Example 12 (Example)
  • ⁇ -alumina seeds having an average particle size (D 50 ) of 0.19 ⁇ m and a BET specific surface area (S BET ) of 13.1 m 2 /g were used. Also, the content of ⁇ -alumina seeds in the mixed raw material was changed to 20% by mass.
  • Alumina powder was synthesized in the same manner as in Example 5 except for the above.
  • alumina powders obtained in Examples 5 to 12 were evaluated for powder properties (BET specific surface area, particle size, and pressurized bulk density) in the same manner as in Examples 1 to 4. rice field.
  • Sintered bodies were produced in the same manner as in Examples 1 to 4 except that the sintering temperature was changed to 1300 to 1450° C., and the sinterability of the alumina powder was evaluated.
  • Table 4 shows the properties of the alumina powders obtained in Examples 5 to 12 together with the production conditions.
  • the alumina powders (Examples 5, 7, and 9) produced using ⁇ -alumina seeds with a small particle size have an average particle size (D 50 ) of It was smaller than alumina powders (Examples 6, 8, and 10) made with large-diameter ⁇ -alumina seeds.
  • D 50 average particle size
  • the alumina powders (Examples 5 and 7) produced under the conditions where the amount of the ⁇ -alumina seeds is small have higher pressed bulk densities and sintered bulk densities than ⁇ - It was larger than the alumina powders (Examples 9 and 10) produced under conditions with a large amount of alumina seeds.
  • Example 7 A SEM image of the alumina powder obtained in Example 7 is shown in FIG. It was found that the alumina powder of Example 7 had a small primary particle size and was hardly agglomerated.
  • Example 7 The particle size distribution curve of the alumina powder obtained in Example 7 is shown in FIG. 13 together with the results obtained in Examples 1 and 4.
  • the alumina powders of Examples 1 and 7 produced by dry bead milling using ⁇ -alumina seeds were finer and had a more uniform particle size distribution than the alumina powder of Example 4, which is a conventional example.
  • the alumina powder of Example 7 was finer than the alumina powder of Example 1, which was produced by using ⁇ -alumina seeds having a large particle size and increasing the amount thereof added.
  • Example 7 For the alumina powder obtained in Example 7, the relationship between the firing temperature (sintering temperature) and the bulk density of the sintered body is shown in FIG. 14 together with the results obtained in Examples 1 and 4.
  • the alumina powders of Examples 1 and 7 had significantly higher sinterability than the alumina powder of Example 4, which is a conventional example.
  • the alumina powder of Example 7 required about 200°C lower firing temperature than the alumina powder of Example 4 to obtain the same sintered bulk density.
  • the alumina powder of Example 7 was even more excellent in sinterability than the alumina powder of Example 1, which was produced by using ⁇ -alumina seeds having a large particle size and increasing the amount of the seeds added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

優れたスラリー特性及び焼結特性を有するとともに、流動性及び成形性に優れ、さらに高周波領域で優れた誘電特性を示す高純度微粒アルミナ粉末が提供される。この高純度微粒アルミナ粉末は、体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.20μm、及び式:D50×SBET≦2.0×10-6/gで表される関係を満足するとともに、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)及びカルシウム(Ca)のそれぞれの含有量が10ppm以下である。

Description

高純度微粒アルミナ粉末
 本発明は、高純度微粒アルミナ粉末に関する。
 アルミナ(α-Al)焼結体は、絶縁性、耐熱性、耐摩耗性、耐食性等の諸特性に優れる。そのためアルミナ焼結体は、電子部品を始めとして、耐火物、研磨材、碍子、点火プラグ、充填剤、触媒担体といった幅広い分野で用いられている。アルミナ焼結体は、アルミナ粉末を原料とし、これを成形及び焼成して製造される。高特性のアルミナ焼結体を得る上で、原料たるアルミナ粉末には焼結性に優れること、すなわち微細であることが求められている。
 ところでアルミナ焼結体を製造する際に、アルミナ粉末をスラリー化して、このスラリーを湿式処理する手法が多用されている。例えば成形時の成形性を良好にするために、アルミナ粉末のスラリーを噴霧造粒して造粒物にし、この造粒物を成形することが行われている。また大型かつ複雑形状のアルミナ製品を得るために、アルミナ粉末のスラリーを鋳込み成形する手法が知られている。さらにアルミナ粉末のスラリーを塗布及び焼成してシート状のアルミナ焼結体を製造する手法もある。
 このような湿式処理を行う上で、スラリーのハンドリング性、すなわちスラリー粘度等の特性を適切に制御することが重要である。例えばスラリー粘度が過度に高いと、造粒や成形を行う際に問題が発生する。またスラリー特性が経時変化すると、最終製品の特性が安定せず、ばらつきが生じることがある。そのためアルミナ粉末の粉体特性を制御して、スラリー特性の改善を図る技術が従来から提案されている。
 例えば特許文献1には、軽装嵩密度(LBD)と重装嵩密度(TBD)との比率(TBD/LBD)が1.5以上であるアルミナ粉末が開示され、当該アルミナ粉末を用いることにより、厚さが均一な薄膜の、アルミナ含有コート層を形成することができることが記載されている(特許文献1の請求項1及び[0032])。また特許文献1には、TBD/LBDの値が1.5未満であると、アルミナ粉末に含まれる個々の二次粒子(凝集粒子)の嵩密度が高くなりすぎること、この場合、アルミナ粉末を含むアルミナスラリーにおいてアルミナ凝集粒子の沈殿が起こりやすくなり、アルミナ粉末の分散安定性の確保が困難となることが記載されている(特許文献1の[0038])。
国際公開第2018/047871号
 しかしながら従来から提案されている技術では、アルミナ粉末の焼結性とスラリー特性の両立を図る上で不十分であった。すなわちアルミナ粉末は微細になれば、ある程度に焼結性が向上する。しかしながらアルミナ粉末が微細になると、これを含むスラリーの粘度が急上昇して、造粒や成形などのハンドリングを行うことが困難になる。特に従来の技術では、アルミナ粉末を強粉砕することで微細化を図ることが一般に行われているが、強粉砕により微細化したアルミナ粉末は、スラリー特性を悪化させやすい。さらに、このようなアルミナ粉末は、結晶性が低いために高特性のアルミナ焼結体製造用原料として問題がある。
 例えば、特許文献1ではアルミナ粉末のD50値は0.45以上0.65μm以下であることが好ましい旨、D50値が0.45μm未満であると、粒子間の凝集が過密になる旨が記載されており(特許文献1の[0044])、アルミナ粉末の微細化、すなわち焼結性向上を図る上で限界があった。
 また従来のアルミナ粉末は、成形性にも問題があった。すなわち強粉砕して得た微細なアルミナ粉末は、粒子形状が不定形であるが故に、流動性に劣る。そのため、アルミナ粉末を乾式又は湿式で成形しても、高密度の成形体を得ることが困難であった。
 本発明者らは、このような従来の問題点に鑑みて鋭意検討を行った。その結果、体積粒度分布における50%粒径D50とBET比表面積SBETとが特定の関係を満足し、且つナトリウム等の不純物が特定量以下であるアルミナ粉末は、優れた焼結性とスラリー特性を両立し得るとの知見を得た。またこのアルミナ粉末は、流動性が良好であり、成形性にも優れるとの知見を得た。さらにこのアルミナ粉末は、焼結性、スラリー特性及び成形性に加えて、高周波領域で優れた誘電特性を示す焼結体用原料として好適であるとの知見を得た。
 本発明は、このような知見に基づき完成されたものであり、優れたスラリー特性及び焼結特性を有するとともに、流動性及び成形性に優れ、さらに高周波領域で優れた誘電特性を示す高純度微粒アルミナ粉末の提供を課題とする。
 本発明は下記(1)~(9)の態様を包含する。なお本明細書において「~」なる表現はその両端の数値を含む。すなわち「X~Y」は「X以上Y以下」と同義である。
(1)体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.20μm、及び式:D50×SBET≦2.0×10-6/gで表される関係を満足するとともに、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)及びカルシウム(Ca)のそれぞれの含有量が10ppm以下である、高純度微粒アルミナ粉末。
(2)体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.17μm、及び式:D50×SBET≦1.8×10-6/gで表される関係を満足する、上記(1)の高純度微粒アルミナ粉末。
(3)式:1.55×10-6/g≦D50×SBETで表される関係を満足する、上記(1)又は(2)のアルミナ粉末。
(4)X線回折プロファイルにおいて、(113)回折線の半値全幅(FWHM)が0.240°以下である、上記(1)~(3)のいずれかのアルミナ粉末。
(5)加圧嵩密度(GD)が2.20g/cm以上である、上記(1)~(4)のいずれかのアルミナ粉末。
(6)体積粒度分布における10%粒径D10、50%粒径D50及び90%粒径D90が、式:(D90-D10)/D50≦1.5で表される関係を満足する、上記(1)~(5)のいずれかのアルミナ粉末。
(7)α化度が80.0%以上である、上記(1)~(6)のいずれかのアルミナ粉末。
(8)上記(1)~(7)のいずれかのアルミナ粉末の製造方法であって、
 水酸化アルミニウム粉末とα-アルミナ種子を準備する工程と、
 前記水酸化アルミニウム粉末に前記α-アルミナ種子を混合して、α-アルミナ種子を1~20質量%含有する水酸化アルミニウム混合原料を得る工程と、
 前記水酸化アルミニウム混合原料に、乾式ビーズミルを用いたメカノケミカル処理を施して、結晶水の含有量が21.0質量%以下であり、示差走査熱量分析で750~850℃の温度範囲内で発熱ピークを示す無定形水酸化アルミニウムを得る工程と、
 前記無定形水酸化アルミニウムを900~1100℃の範囲内の温度で熱処理して、アルミナ粉末を得る工程と、を含み、
 準備するα-アルミナ種子の平均粒子径(D50)が0.1~0.5μmである、方法。
(9)準備するα-アルミナ種子の平均粒子径(D50)が0.1~0.3μmであり、前記水酸化アルミニウム混合原料がα-アルミナ種子を3~5質量%含有する、上記(8)の方法。
 本発明によれば、優れたスラリー特性及び焼結特性を有するとともに、流動性及び成形性に優れ、さらに高周波領域で優れた誘電特性を示す高純度微粒アルミナ粉末を提供することができる。
静水圧式スラリー評価装置の断面模式図を示す。 沈降圧測定によるスラリー評価の原理を示す。 アルミナ粉末のSEM像を示す。 アルミナ粉末のSEM像を示す。 アルミナ粉末のSEM像を示す。 アルミナ粉末のSEM像を示す。 アルミナ粉末の粒度分布曲線を示す。 焼成温度(焼結温度)と焼結体嵩密度の関係を示す。 アルミナ粉末のXRDパターン(X線回折プロファイル)を示す。 スラリーのせん断速度と粘度の関係を示す。 スラリー沈降静水圧の時間変化を示す。 アルミナ粉末のSEM像を示す。 アルミナ粉末の粒度分布曲線を示す。 焼成温度(焼結温度)と焼結体嵩密度の関係を示す。
 本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。
<<1.高純度微粒アルミナ粉末>>
 本実施形態の高純度微粒アルミナ粉末(以下、「アルミナ粉末」と総称する場合がある)は、体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.20μm、及び式:D50×SBET≦2.0×10-6/gで表される関係を満足する。一般に粉末の粒子径が小さくなるほど、比表面積が大きくなり、他の粒子との接触点の数が多くなる。また粒子の曲率半径が小さくなるとともに表面がより活性になり、焼結駆動力が大きくなる。したがって高い焼結性を得る観点から、D50を0.20μm以下に限定する。
 一方で粉末の粒子径を小さくするのみでは、ハンドリング性に問題が生じるととともに、焼結性が却って悪化する場合がある。すなわち強粉砕などの手法で粉末を微細化すると、粉末中の粒子にチッピングが起こり、その結果、粒子が角張った形状になる。このような粉末をスラリー化して湿式処理に供すると、スラリー粘度が高くなり過ぎるととともに、スラリー状態が不安定になる恐れがある。また乾式処理を行う場合であっても、粉末の流動性が悪化して充填密度を上げることが困難になり、これが焼結性の悪化につながることがある。
 これに対して平均粒子径(D50)を小さくするともに、D50×SBETを小さく維持することで、ハンドリング性を良好に維持しながら焼結性の向上を図ることが可能になる。すなわち粒子径が同じであれば、粒子形状が丸みを帯びているほど、比表面積(SBET)は小さくなる。そのためD50を小さくするとともにD50×SBETを低く抑えることで、粒子径が小さくとも破断面やチッピングの少ない粒子にすることが可能である。本実施形態のアルミナ粉末は、そこに含まれる粒子の形状が丸みを帯びて粒子径が揃っている。そのためスラリー化した際にスラリー粘度の過度な上昇や不安定化を抑制することができる。また流動性及び成形性が優れたものになる。これらが相乗的に働く結果、優れた焼結性及びハンドリング性の両立が可能になる。D50は0.19μm以下、0.18μm以下、0.17μm以下、または0.16μm以下であってもよい。またD50×SBETは1.9×10-6/g以下、1.8×10-6/g以下、1.7×10-6/g以下、または1.6×10-6/g以下であってもよい。一方で粒子径が過度に小さいと、ハンドリング性悪化の影響を抑えることが困難になる。したがってD50は0.05μm以上であってよく、0.10μm以上であってよく、0.15μm以上であってもよい。
 本実施形態のアルミナ粉末は、好適には、体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.17μm、及び式:D50×SBET≦1.8×10-6/gで表される関係を満足する。平均粒子径(D50)及びD50×SBETをさらに小さく限定することで、アルミナ粉末の成形性及び焼結性のより一層の向上を図ることができる。
 また本実施形態のアルミナ粉末は、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)及びカルシウム(Ca)のそれぞれの含有量が10ppm以下である。すなわちNa量が10ppm以下、Si量が10ppm以下、Fe量が10ppm以下、及びCa量が10ppm以下である。不純物は、焼結体において粒界相を形成する。例えばナトリウム(Na)やカルシウム(Ca)はケイ素(Si)とともにガラス相を形成する。またカルシウム(Ca)は主相中のアルミナ(Al)と反応してCaO・6Alなどの化合物を形成することがある。このような粒界相は異常粒成長を引き起こすため好ましくない。すなわち異常粒成長が起こると、局所的に粗大な粒子が発生し、全体としての均質な焼結性が損なわれることがある。その結果、閉空孔が生じてしまい、最終的な焼結密度が低くなることがある。また不純物の一部が主相中に取り込まれて、主相の電気抵抗を小さくする恐れがある。例えばナトリウム(Na)は主相アルミナ(Al)中に取り込まれてβ-アルミナ(NaO・11Al)になる。β-アルミナは電池の固体電解質として用いられる材料であり導電性が高い。このように不純物が多いと、焼結性や電気抵抗性(絶縁性)が悪化する。
 特に本実施形態のアルミナ粉末は、平均粒子径(D50)が小さく、焼結駆動力が大きい。そのため不純物による焼結性や電気抵抗への悪影響を受けやすい。したがって不純物(Na、Si、Fe及びCa)のそれぞれの含有量を10ppm以下に限定している。それぞれの含有量は、9ppm以下が好ましく、8ppm以下がより好ましい。特にナトリウム(Na)はアルミナ粉末の焼結性及び絶縁性を低下させるため、その含有量を抑えることが望ましい。したがって、ナトリウム(Na)の含有量を5ppm以下に抑えることが特に好ましい。
 本実施形態のアルミナ粉末は、式:1.55×10-6/g≦D50×SBETで表される関係を満足してもよい。アルミナ粒子の形状が最大限に丸みを帯びると、真球状粒子になる。完全な真球状粒子のD50×SBETを、アルミナの密度(3.98g/cm)を用いて計算により求めると、この値は1.51×10-6/gになる。真球状アルミナ粒子を製造する手法も知られているが、これらの手法は高価な原料を必要とするとともに製法が複雑である。後述する実施例にて説明するように、本実施形態のアルミナ粉末を構成する粒子は、丸みを帯びて粒子径が揃っているものの、完全な真球状粒子ではない。また高価な原料を必要とせず製法も簡単である。そのためD50×SBETを完全な真球状粒子ほど低くする必要はなく、製造コストを低く抑えることができる。D50×SBETは1.6×10-6/g以上であってよく、1.7×10-6/g以上であってよく、1.8×10-6/g以上であってもよい。
 本実施形態のアルミナ粉末は、好ましくはX線回折(XRD)プロファイルにおける(113)回折線の半値全幅(FWHM)が0.240°以下、より好ましくは0.230°以下である。一般に、微細な粉末は強解砕(強粉砕)により作製されている。しかしながら強い粉砕力を与えて解砕したアルミナ粉末では、その一次粒子の結晶表面に歪みが生じている。このような結晶表面の歪みは、アルミナ粒子表面を活性化させてハンドリング特性やスラリー特性に悪影響を及ぼす恐れがある。これに対して本実施形態のアルミナ粉末は、微細な一次粒子から構成されるものの、結晶歪みが少なく、結晶性に優れている。FWHMは小さいほど好ましいが、典型的には0.200°以上である。
 本実施形態のアルミナ粉末の加圧嵩密度(GD)は2.20g/cm以上が好ましく、2.30g/cm以上がより好ましい。このように加圧嵩密度の高い粉末にすることで、この粉末から作製した成形体の密度を高めることができ、その結果、焼結体においても気孔(欠陥)の発生を抑えることが可能になる。なお加圧嵩密度は、アルミナ粉末を350kgf/cmの圧力で加圧時間無し(0分)の条件で加圧成形して得られた成形体(成形ピース)の嵩密度である。また加圧嵩密度の上限は高いほど好ましいが、典型的には2.50g/cm以下である。
 アルミナ粉末は、好ましくは体積粒度分布における10%粒径(D10)、50%粒径(D50)及び90%粒径(D90)が、式:(D90-D10)/D50≦1.5で表される関係を満足するのが好ましい。アルミナ粉末の粒度分布が過度に広い場合には、焼結性やハンドリング性が悪化する恐れがある。したがって過度に広い粒度分布は好ましくない。(D90-D10)/D50は1.3以下であってよく、1.1以下であってもよい。
 本実施形態のアルミナ粉末は、好ましくはα化度が80.0%以上、より好ましくは90.0%以上である。α化度が80.0%未満であると、アルミナ粉末から焼結体を作製する際に、焼成時の収縮が大きく、気孔が生成し易くなる。そのため焼結体が緻密化しにくくなり特性が劣化する恐れがある。したがってα化度は高いほど好ましい。なおα化度は、X線回折法によりアルミナ粉末のX線回折プロファイル(XRDパターン)を求め、回折パターンの(012)面及び(116)面のX線回折強度を、α化度100%の標準試料の回折強度と比較することで求めることができる。
 このような本実施形態のアルミナ粉末は、微細という特徴を活かして、焼結性に優れている。実際、本発明者らは、従来のアルミナ粉末に比べて著しく低温で緻密な焼結体を製造し得ることを確認している。
 また、本実施形態のアルミナ粉末は、微細でありながらもスラリー特性に優れている。すなわちこのアルミナ粉末を含むスラリーは粘度が低く且つ安定である。一般に粉末の粒子径が小さくなると、粒子間の相互作用が強くなり、良分散させることが困難になる。そのためスラリー中で粉末を分散させるために、より強いせん弾力を加える必要がある。また、たとえ一時的に分散させたとしても、スラリー中で粉末が凝集又はゲル化し易く、スラリーが不安定になる。これに対して本実施形態のアルミナ粉末は、弱いせん断力でも分散でき、またスラリーが長時間にわたって良分散状態を維持する。これは粒子形状が丸みを帯びて粒子径が揃っているため、粒子間の相互作用が小さく、これがスラリーの低粘度化及び安定化につながっているのではないかと推察している。
 また本実施形態のアルミナ粉末は、流動性が良好であるため、成形性に優れている。すなわち、流動性が良好であるため、乾式又は湿式での成形時での充填性が高く、その結果、高密度の成形体を得ることができる。
 その上、本実施形態のアルミナ粉末は、高周波領域で優れた誘電特性を示す。そのため、このアルミナ粉末を原料に用いることで、誘電損失及び伝送損失の小さいアルミナ焼結体を作製することができる。実際、本発明者らは、10GHz以上の高周波領域で誘電正接(tanδ)及び伝送損失の小さいアルミナ焼結体を得ることができることを確認している。
 このようなアルミナ粉末は、電子部品、耐火物、研磨材、碍子、点火プラグ、充填剤、触媒担体などの用途に広く適用できる。特に焼結性に優れることから、アルミナ粉末を乾式又は湿式で成形及び焼成して焼結体を作製する際に有用である。またアルミナ粉末をフィラーとして用いて樹脂などの高分子化合物と混錬して複合材料を作製する際の原料としても有用である。
<<2.スラリー>>
 本実施形態のスラリーは、上述したアルミナ粉末と、水等の溶媒と、必要に応じて分散剤とを、混合して作製される。スラリー中のアルミナ粉末濃度は限定されるものではないが、例えば10~70質量%であってよく、30~70質量%であってよい。分散剤は限定されるものではないが、例えばポリカルボン酸アンモニウム系分散剤が挙げられる、分散剤の含有量は、例えば1~10質量%であってよい。
 本実施形態のスラリーは、せん断速度によらず粘度が低いという特徴がある。例えば、せん断速度300~1000/秒の範囲でせん断速度を上昇及び下降させたときに粘度を6mPa・秒以下に維持することができる。スラリーは非ニュートン流体であり、せん断速度とせん断応力とが比例関係を示さない。そのためスラリーの流動特性を評価する際は、せん断速度とせん断応力の関係である流動曲線によって評価することが好ましい。そのような手法として、JIS Z 8803で規定される円すい-平板形回転粘度計(コーンプレート形回転粘度計)を用いた手法が挙げられる。コーンプレート形回転粘度計では、試料(スラリー)を円すいと平板で挟み、円すいを一定速度で回転させてその時の回転トルクを測定する。せん断応力は回転トルクから計算することができる。
 また本実施形態のスラリーは、長時間にわたって安定であるという特徴がある。スラリーの安定性は、重力場での沈降状態を調べることで評価が可能である。そのような手法として、静水圧式スラリー評価装置を用いた沈降静水圧測定が挙げられる。沈降静水圧測定の測定原理を図1及び図2を用いて説明する。図1に示すように、静水圧式スラリー評価装置は、上面が開口した沈降管と、この管内に先端が装入された圧力伝達管と、この圧力伝達管の他端部に設けられた圧力センサーと、から構成されている。沈降管にスラリーを入れて、深さHにおける静水圧を測定する。スラリー中の全粒子が懸濁している状態では、静水圧が最大となる。一方でスラリー中の全ての粒子が深さHを通過して沈降すると、静水圧が最小になる。したがって、静水圧(P)を時間(t)の関数で求めると、粒子の分散安定性を評価することができる。例えば図2に示されるように、良分散性のスラリーは、長時間経過後であっても静水圧の変化は小さい。一方でスラリー中の粒子が凝集又はゲル化すると静水圧が減少する。本実施形態のスラリーは分散状態が良好であり、静水圧の変化が小さい。
<<3.アルミナ焼結体>>
 本実施形態のアルミナ焼結体は、上述したアルミナ粉末を成形し、得られた成形体を焼成(焼結)して作製される。成形は、プレス成形、鋳込み成形、射出成形及び押出成形など公知の手法で行えばよい。また成形体に冷間静水圧プレス(CIP)処理を施してもよい。焼成も公知の条件で行えばよい。例えば、大気、真空又は水素雰囲気下1300~1500℃で1~5時間の条件で焼成を行えばよい。
 本実施形態のアルミナ焼結体は、高周波領域で良好な誘電特性を示すという特徴がある。例えば、10GHzにおける比誘電率(εr)を8.0~12.0にすることができ、9.0~11.0にすることもできる。また10GHzにおける誘電正接(tanδ)を0.20×10-4以下にすることができ、0.15×10-4以下にすることもできる。このように高周波領域で比誘電率及び誘電正接が小さいアルミナ焼結体は、限定されるものではないが、第5世代移動通信システム(5G)におけるアンテナ材料として好適である。
 この点について説明するに、第5世代移動通信システム(5G)は、スマートフォンに代表される第4世代(4G)に続くシステムであり、2020年春から日本での商用サービスがスタートする。5Gでは、6GHz未満のマイクロ波とともに24GHz以上のミリ波といった極めて高い周波数領域での電波が利用される。このような高周波を利用する5Gは、高速大容量、高信頼・低遅延通信、多数同時接続という3つの特徴を有している。
 高周波を利用する5Gにおいて、アンテナ材料の伝送損失を小さくすることが重要である。すなわち無線通信において発信された電波は、アンテナ材料で熱に変化する。この際に発生する伝送損失の損失量(a)は、下記式(1)に示されるように、電波の周波数(f)、アンテナ材料の比誘電率(εr)の平方根、及びアンテナ材料の誘電正接(tanδ)の積に比例する。なお下記式(1)においてKは比例定数である。
Figure JPOXMLDOC01-appb-M000001
 伝送損失(a)は周波数(f)に比例することから、使用周波数が高くなるにつれ、アンテナ材料の損失をより小さくすることが必要である。4G以前の周波数領域におけるアンテナ材料として、ポリテトラフルオロエチレン(PTFE)が知られているが、5Gへと高周波化が進むと、PTFEでは損失が大きくアンテナ材料として不十分である。本実施形態のアルミナ焼結体は、高周波領域での誘電正接(tanδ)及び伝送損失をPTFEより小さくすることが可能である。そのため5Gにおけるアンテナ材料として期待がもたれる。
 なお本実施形態のアルミナ焼結体は、その用途が5Gアンテナ材料に限定される訳ではない。回路基板、キャパシタ・抵抗体用基板、IC基板、センサー部材用基板、多層基板、パッケージ、RF窓、及び半導体製造装置など、アンテナ以外の用途に有用であることは言うまでもない。
<<4.アルミナ粉末の製造方法>>
 本実施形態のアルミナ粉末は、上述した要件を満足する限りにおいて、その製造方法が限定される訳ではない。しかしながら、好適な製造方法は、水酸化アルミニウム粉末とα-アルミナ種子を準備する工程(準備工程)と、準備した水酸化アルミニウム粉末にα-アルミナ種子を混合して、α-アルミナ種子を1~20質量%含有する水酸化アルミニウム混合原料を得る工程(混合工程)と、得られた水酸化アルミニウム混合原料に、乾式ビーズミルを用いたメカノケミカル処理を施して、結晶水の含有量が21.0質量%以下であり、示差走査熱量分析で750~850℃の温度範囲内で発熱ピークを示す無定形水酸化アルミニウムを得る工程(メカノケミカル処理工程)と、得られた無定形水酸化アルミニウムを900~1100℃の範囲内の温度で熱処理して、アルミナ粉末を得る工程(熱処理工程)と、を含む。また準備するα-アルミナ種子の平均粒子径(D50)が0.1~0.5μmである。
 この製造方法は、水酸化アルミニウム粉末とα-アルミナ種子の混合原料にメカノケミカル処理を施して作製した特定の無定形水酸化アルミニウムを中間原料にすることを特徴としている。この無定形水酸化アルミニウムは、α-アルミナへの結晶転移温度が著しく低い。そのためこの無定形水酸化アルミニウムを中間原料にすることで、微細且つ高α化度の高品質のα-アルミナ粉末を簡便に得ることができる。各工程の詳細について以下に説明する。
 <準備工程>
 準備工程では、水酸化アルミニウム粉末とα-アルミナ種子を準備する。水酸化アルミニウム粉末として、ギブサイトやバイヤーライトなどを用いることができる。しかしながら、製造コストを踏まえるとギブサイトが好ましい。また、水酸化アルミニウム粉末は何れの方法で製造されたものであってもよいが、バイヤー法で製造されたものが好ましい。粉末の流動性や扱いやすさの観点から、水酸化アルミニウム粉末は、その平均粒子径(D50)が3~50μm、BET比表面積(SBET)が0.2~5.0m/gであるものが好ましい。汎用的な水酸化アルミニウム粉末は、平均粒子径やBET比表面積が上記範囲内である。本実施形態の製造方法では、汎用の水酸化アルミニウム粉末原料を用いることが可能であり、その結果、製造コスト低減及び簡便さというメリットを最大限に生かすことができる。
 一方で無定形水酸化アルミニウムのα化転移を低温化させる観点から、α-アルミナ種子は高α化度であることが好ましい。α化度は、好ましくは90%以上、より好ましくは95%以上である。また製造後のアルミナ粉末の微細化、並びに成形性及び焼結性の改善を図る観点から、α-アルミナ種子の平均粒子径(D50)を0.1~0.5μmに限定している。α-アルミナ種子は微細であることが好ましい。D50は0.1~0.3μmが好ましい。またα-アルミナ種子のBET比表面積(SBET)は5~15m/gが好ましく、10~15m/gがより好ましい。
 <混合工程>
 混合工程では、準備した水酸化アルミニウム粉末にα-アルミナ種子を混合して、α-アルミナ種子を1~20質量%含有する水酸化アルミニウム混合原料にする。混合手法は特に限定されない。α-アルミナ種子を加えることで、得られる無定形水酸化アルミニウムの結晶転移温度低下の効果を十分に発揮させることが可能となる。α化転移を低温化させる観点から、α-アルミナ種子はある程度の量で添加することが望ましい。しかしながら、α-アルミナ種子が過度に多いと、製造後のアルミナ粉末が粗大化するとともに、焼結性が劣化する恐れがある。さらに高品質のα-アルミナ種子は高価である。α-アルミナ種子の含有量は、1~15質量%が好ましく、1~10質量%がより好ましく、2~8質量%がさらに好ましく、3~5質量%が特に好ましい。特に微細なα-アルミナ種子を少量用いることで、微細且つ成形性及び焼結性に優れたアルミナ粉末を得ることができる。したがって、平均粒子径(D50)が0.1~0.3μmと細かいα-アルミナ種子を用い、その含有量を3~5質量%にすることが特に好適である。
 α-アルミナ種子による結晶転移温度低下について、次のように推測している。すなわち、α-アルミナを種子として水酸化アルミニウム原料中に少量添加することで、α化転移温度が低下する現象は古くから知られている。本実施形態においては、原料である水酸化アルミニウム(ギブサイト等)とα-アルミナ種子とを、まず混合状態の原料粉体に調整し、同時にメカノケミカル処理を施すことによって、著しく小さくなるよう粉砕する。そのため、比表面積が増大している無定形水酸化アルミニウム一次粒子とα-アルミナ種子とが粒子界面で密接に凝集し、目的とする相互作用がより均一化される。その結果、無定形水酸化アルミニウムが、χアルミナなどの中間アルミナ相を経由せずに、本来では相転移しないような低温領域でのα化転移が可能になると考えている。
 <メカノケミカル処理工程>
 メカノケミカル処理工程では、得られた水酸化アルミニウム混合原料に、乾式ビーズミルを用いたメカノケミカル処理を施して、無定形水酸化アルミニウムにする。無定形水酸化アルミニウムは、無定形化された水酸化アルミニウムを主体とする。水酸化アルミニウムは、完全な結晶状態では、ギブサイト(Al(OH))などの組成を有する化合物である。無定形水酸化アルミニウムは、水酸化アルミニウムの結晶性が消失又は低下しているとともに、結晶水の一部が抜け出ている。したがって、無定形水酸化アルミニウムは、完全な結晶状態である水酸化アルミニウムとは、結晶状態及び結晶水量が異なる。無定形化の程度は、X線回折で測定されるギブサイトの結晶ピーク(002)面の強度(CPS)と、結晶水含有量(LOI)で評価することができる。本実施形態において、無定形水酸化アルミニウムとは、X線回折で測定されるギブサイトの結晶ピーク(002)面の強度が350CPS以下で、かつ結晶水量が21.0質量%以下のものを指す。これに対して、無定形化されていないギブサイトは、その結晶水量が、34.7質量%程度である。
 本実施形態の無定形水酸化アルミニウムは、結晶水含有量(LOI)が21.0質量%以下である。無定形水酸化アルミニウムは、結晶水量が、完全な結晶状態である水酸化アルミニウムより少ない。後述するように、本実施形態の無定形水酸化アルミニウムは、水酸化アルミニウム粉末とα-アルミナ種子からなる混合原料に、乾式ボールミルを用いたメカノケミカル処理(無定形化処理)を施すことにより作製することができる。乾式ビーズミルを用いた無定形化処理の際、ギブサイト等の水酸化アルミニウム結晶を構成する一次粒子が微細な領域まで擦り潰され、内包する結晶水は外に吐き出される。結晶水量が少なくなるまで粉砕が進み、十分に微細な一次粒子となることで、α-アルミナへの結晶転移温度を十分に低くすることが可能になると推測している。無定形化を進める観点から、結晶水含有量は17.0質量%以下が好ましい。結晶水含有量の下限値は、特に限定されるものではないが、典型的には15.0質量%以上にしてもよい。
 また本実施形態の無定形水酸化アルミニウムは、示差走査熱量分析で750~850℃の温度範囲内で発熱ピークを示す。この発熱ピークはα-アルミナへの結晶転移(α-アルミナ化)に対応するものである。通常の水酸化アルミニウムは、α-アルミナへの結晶転移温度が1100~1200℃である。これに対して、本実施形態の無定形水酸化アルミニウムは、結晶転移温度が750~850℃と極めて低い。無定形水酸化アルミニウムは、好ましくは810~830℃の温度範囲内で発熱ピークを示す。
 無定形水酸化アルミニウムのBET比表面積は、特に限定されるものではないが、典型的には、15~50m/gである。なお、BET比表面積は、JIS1626に基づき、比表面積自動測定装置(マイクロメリテックス社、フローソーブII2300形)を用いて測定することができる。
 無定形水酸化アルミニウムは、アルミニウム(Al)、酸素(O)及び水素(H)以外の元素の含有量が0.1質量%以下であることが好ましい。特に、ナトリウム(Na)含有量が0.01質量%以下、ジルコニウム(Zr)含有量が0.05質量%以下であることが好ましい。最終的な製品である易焼結セラミックスを製造する上で、ナトリウムやジルコニウムは焼結を阻害する成分であり、可能な限り少ないことが望ましい。本実施形態の無定形水酸化アルミニウムは、その製造時に、ナトリウム含有量が多いギブサイト等の水酸化アルミニウムを原料に用いても、無定形化処理の際に、結晶中に内包されるナトリウムが外に出てくるため、簡単に洗浄及び除去することができる。また、ナトリウム含有量の少ない原料を用いれば、当然、無定形水酸化アルミニウムのナトリウム含有量を減らすことができる。
 結晶に対して粉砕操作を継続的に行うと、新生表面が増大するとともに繋ぎ手を失った表面原子及び/又は分子の数が増大し、それらの結合状態の乱れは表面層近傍に及ぶ。その結果、粉砕粒子は活性化する。また、乾式粉砕の場合は、粉末の凝集が起こり、見かけの表面積が減少する。粉砕粒子の活性表面は、空気中の水分やガスを表面吸着して、化学ポテンシャルが低下して安定になる。この一連の反応の際に、種々の相転移が起こる。このような現象及び効果をメカノケミカル反応といい、このようなメカノケミカル反応を引き起こす処理をメカノケミカル処理という。
 本実施形態の製造方法では、メカノケミカル処理として、乾式ビーズミルを用いた処理を行う。乾式ビーズミル処理では、混合原料に高い粉砕シェアがかかり、メカノケミカル反応が効果的に引き起こされる。乾式ビーズミルは、媒体撹拌型粉砕機の一種であり、原料投入口と円筒容器(ベッセル)と円筒容器内に設けられた回転する撹拌部材(アジテータ)と処理粉の出口とから構成されている。また、ベッセル内のアジテータ間隙には、多数の粉砕媒体(ビーズ)が充填されている。乾式ビーズミルは、動作時にアジテータが高速回転し、ビーズを撹拌する。このとき、原料投入口から投入された原料は、アジテータ、ビーズ及びベッセル内壁と衝突を繰り返し、衝撃力、せん段力及び摩擦力などによって粉砕されるとともにメカノケミカル反応が引き起こされ、乾式処理粉となって出口から排出される。
 乾式ビーズミル処理によるメカノケミカル反応の詳細なメカニズムは不明であるが、次のように推測している。処理の際に、水酸化アルミニウムに高シェア状態の乾式粉砕処理が連続的にかかり続けられる。そのため、水酸化アルミニウム中の結晶水の一部が脱離する。また、それとともに、粉砕粒子とビーズとベッセル内壁の摩擦により装置内が高温化し、その結果、粉砕粒子(水酸化アルミニウム)中で部分的に水熱反応や溶解再析出のような相転移現象が起こる。実際、原料水酸化アルミニウム粉末として、ギブサイト(結晶水含有量34.7質量%)を用い、α-アルミナ種子の混合量を20質量%とした場合、水酸化アルミニウム混合原料の結晶水含有量は27.0質量%以上であるのに対し、乾式ビーズミル処理後の乾式処理粉の結晶水含有量は21.0質量%以下、場合によっては17.0質量%以下にまで低減する。このことから、乾式ビーズミル処理により、結晶水の脱離が起こることが理解される。
 乾式ビーズミルは、そのアジテータ周速(回転速度)が、好ましくは5.0~6.0m/秒、より好ましくは5.0~5.5m/秒であり、ビーズ充填量が、好ましくは60~70容量%、より好ましくは60~65容量%である。また、フィード量は、好ましく1.0~4.0kg/時、より好ましくは2.0~3.0kg/時である。アジテータ周速及びビーズ充填量が高いほど、メカノケミカル処理が、より効果的に行われ、高品質の無定形水酸化アルミニウムが得られる。また、フィード量が少ないほど、混合原料の滞留時間が長くなり、水酸化アルミニウムの無定形化が促進される。しかしながら、アジテータ周速及びビーズ充填量が過度に高いと、安定した連続運転が困難となる。また、フィード量が過度に少ないと、粉砕粉漏れによる収率低下等の問題が顕著となり、生産効率が悪くなる。アジテータ周速、ビーズ充填量及びフィード量が上記数値範囲内であれば、高品質の無定形化水酸化アルミニウムを、生産性よく得ることができる。
 メカノケミカル処理の際、水酸化アルミニウム混合原料を乾式ビーズミルで1回処理(1パス処理)してもよく、多数回処理(2パス処理、3パス処理等)してもよい。上述したように、フィード量が少ないほど水酸化アルミニウムの無定形化は促進されるが、生産効率が悪くなる。この点、多数回処理することで、フィード量を多くしても、フィード量を少なくして1回処理した場合と同じ結果が得られる。そのため、生産効率を維持しつつ、高品質の無定形水酸化アルミニウムが得られる。フィード量を2.0~3.0kg/時とし、2パス処理することが好ましい。またメカノケミカル処理の際、必要に応じて、水酸化アルミニウム混合原料に粉砕助剤を加えてもよい。粉砕助剤とし、例えば、エタノールが挙げられる。
 乾式ビーズミル以外の一般的な乾式粉砕機、例えば、乾式ボールミルを用いて処理した場合では、処理粉のメカノケミカル反応が不十分であり、無定形水酸化アルミニウムを得ることができない。その上、このような一般的な乾式粉砕機では、処理時間を長くしても、粉砕粒子の微粒化には限界があり、比表面積を十分に高くすることができない。また、湿式粉砕機を用いて処理した場合には、粉砕粒子を1μm以下に微粒化することは可能であるが、メカノケミカル反応が不十分である。そのため、無定形水酸化アルミニウムを得ることができない。その上、湿式粉砕機を用いた場合には、コンタミネーション(不純物)が増加するとともに、生産性が悪いという問題がある。
 これに対して、本実施形態の製造方法では、乾式処理である乾式ビーズ処理により、水酸化アルミニウム混合原料のメカノケミカル反応を十分なものとすることができ、その結果、α-アルミナへの結晶転移温度が著しく低い無定形水酸化アルミニウムを、簡便に得ることができる。特に、本実施形態の製造方法では、乾式ビールミルによるメカノケミカル処理を採用しているため、汎用の水酸化アルミニウムを出発原料としながらも、加工難度の高い無定形水酸化アルミニウムを安価に得ることができる。したがって、湿式粉砕処理で必要とされる高度な濾過装置や大型乾燥設備が不要であり、生産性に優れている。その上、乾式ビーズミルとして連続式の装置を用いた場合には、連続処理が可能である。
 <熱処理工程>
 熱処理工程では、得られた無定形水酸化アルミニウムを900~1100℃の範囲内の温度で熱処理(焼成)する。また、必要に応じて、熱処理後の熱処理粉に解砕処理や洗浄処理を施してもよい。本実施形態の無定形水酸化アルミニウムは、α-アルミナへの結晶転移温度が著しく低いため、900~1100℃という比較的低温での熱処理でも、α化度の十分に高いα-アルミナ粉末を得ることができる。また、熱処理温度が低いため、熱処理時の結晶粒成長を抑えることができる。したがって、微粒且つ高α化度のアルミナ粉末を得ることができる。熱処理温度は900~1050℃が好ましく、950~1050℃がより好ましい。このようにして本実施形態の高純度微粒アルミナ粉末を製造することができる。
 本発明を以下の実施例を用いてさらに詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。
 [実験例A]
 実験例Aでは、水酸化アルミニウム粉末とα-アルミナ種子に乾式ビーズ処理及び熱処理を施してアルミナ粉末を合成し、その特性を従来のアルミナ粉末と対比した。
(1)アルミナ粉末の合成
 [例1(実施例)]
 <準備工程>
 原料として水酸化アルミニウム粉末とα-アルミナ種子を準備した。水酸化アルミニウム粉末として、バイヤー法により製造されるギブサイト(日本軽金属株式会社製BHP39)を用いた。またα-アルミナ種子として高純度微粒アルミナ(日本軽金属株式会社製)を用いた。このα-アルミナ種子(高純度微粒アルミナ)はその平均粒子径(D50)が0.18μmであった。
 <混合工程>
 次いで、準備した水酸化アルミニウム粉末に、α-アルミナ種子(高純度微粒アルミナ)を添加及び混合して混合原料にした。この際、混合原料中のα-アルミナ種子の含有量を10質量%に調整した。
 <メカノケミカル処理工程>
 得られた混合原料に、乾式ビーズミル(アシザワ・ファイテンテック社製SDA-1)を用いたメカノケミカル処理を施して乾式処理粉を得た。メカノケミカル処理は、PSZ(部分安定化ジルコニア)製メディアビーズと粉砕助剤(エタノール)を用い、ビーズ充填率60容量%、周速4.5~5.0m/秒、フィード量1.0kg/時の条件で行い、混合原料を乾式ビーズミルに1パス通過させた。
 <熱処理工程>
 得られた乾式処理粉を高純度アルミナルツボ(純度99%)に充填した。その後、充填した乾式処理粉を、高速昇温電気炉(株式会社モトヤマ製スーパーバーン)を用いて熱処理し、熱処理粉(α-アルミナ粉末)にした。熱処理は、昇温速度200℃/時、最高温度1070℃、保持時間30分の条件で行った。
 <洗浄工程>
 次に、Na分を除去するために、得られた熱処理粉を質量比2倍量の純水中で撹拌洗浄し、さらに質量比5倍量の水で通水洗浄した。その後、洗浄後の熱処理粉を、乾燥機を用いて110℃×24時間の条件で乾燥させた。
 <解砕工程>
 乾燥した熱処理粉を、ボールミルを用いて解砕した。このようにして例1のアルミナ粉末を得た。
 [例2(比較例)]
 市販されている高純度度アルミナ粉末(他社品)を入手し、これを例2とした。
 [例3(比較例)]
 開発品(LS超微粒)たるアルミナ粉末を例3とした。
 [例4(比較例)]
 市販されている高純度アルミナ粉末(日本軽金属株式会社製AHP200)を入手し、これを例4とした。
(2)アルミナ粉末の評価
 例1~例4に対して、各種特性の評価を以下に示す手順で行った。
 <SEM観察>
 走査電子顕微鏡(SEM)を用いてアルミナ粉末を観察した。観察は、走査電子顕微鏡(株式会社日立ハイテクサイエンス製S4700、日本電子株式会社製JSM-7200)を用いて、倍率50000倍の条件で行った。
 <不純物量>
 アルミナ粉末中の不純物(Si、Fe、Ca)量をICP発光分光分析装置(セイコーインスツルメンツ株式会社製SP3100)用いて測定した。まずアルミナ粉末を加圧分解容器に入れ、乾燥機中で硫酸を用いて10時間加圧分解した。その後、加圧分解物を水で定容して試料溶液を作製した。試料溶液を分析装置にセットし、各元素の波長での発光強度を測定した。その後、同時に求めた検量線を用いて各元素の濃度を算出した。
 アルミナ粉末中の不純物(Na)量を、原子吸光装置(株式会社日立ハイテクノロジーズ製偏光ゼーマン原子吸光光度計Z-2000)を用いて測定した。まずアルミナ粉末を加圧分解容器に入れ、水を用いて一定量になるよう希釈して試料溶液を作製した。試料容器を装置にセットし、空気-アセチレン炎を用いて波長589.0nmにおける吸光度を測定した。その後、同時に求めた標準溶液の吸光度を用いてNa量を算出した。
 <粉体特性‐BET比表面積>
 アルミナ粉末のBET比表面積(SBET)を、比表面積自動測定装置(マイクロメリテックス社製フローソーブII2300形)を用い、JIS1626にしたがって測定した。
 <粉体特性‐粒度>
 アルミナ粉末の粒度をレーザー回折・散乱式粒度分布測定装置(日機装株式会社製マイクロトラックMT3300)を用いて測定した。まずホモジナイザー(日本精密製作所製US-600T)を用いて600W、20kHz、1分間の条件でアルミナ粉末を分散処理した。その後、分散処理したアルミナ粉末を測定装置に導入し、そこで粒度を測定した。得られたデータを解析して、体積粒度分布における累積10%粒径(D10)、累積50%粒径(平均粒子径;D50)及び累積90%粒径(D90)を求めた。
 <粉体特性‐加圧嵩密度>
 アルミナ粉末の加圧嵩密度(GD)を次のように測定した。まずアルミナ粉末を金型に入れ、350kgf/cmの圧力で加圧成形した。この際、加圧時間は無し(0分)にした。得られた成形ピース(成形体)の質量及び寸法を測定し、これらの値を用いて嵩密度を算出した。
 <焼結性>
 アルミナ粉末の焼結性を評価した。まずアルミナ粉末を金型に充填し、350kgf/cmの圧力で一軸プレス成形した。得られた成形体を高速昇温電気炉(株式会社モトヤマ製スーパーバーン)で焼成して、焼結体にした。焼成は、昇温速度200℃/時間、最高温度(焼結温度)1350~1600℃、保持時間2時間の条件で行った。得られた焼結体の密度(嵩密度)をアルキメデス法により測定した。
 <X線回折>
 粉末X線回折(XRD)法により、アルミナ粉末の分析を行った。分析は次のようにして行った。まずアルミナ粉末を専用試料板に載せ、20mm×20mm×0.5mmのサイズになるように軽く押し広げて測定サンプルを作製した。次にX線回折装置を用いて、測定サンプルのX線回折パターンを求めた。X線回折の条件は以下のとおりにした。
 ‐装置:株式会社リガク製RINT(試料水平型;UltimaII)
 ‐線源:CuKα線
 ‐電圧:40kV
 ‐電流:40mA
 ‐スキャンスピード:4°/分
 ‐サンプル幅:0.05°
 ‐開始角度:5°
 ‐終了角度:90°
 得られた回折パターンにおいて、α-アルミナの結晶ピークたる(012)、(104)、(113)、(116)及び(300)面のピーク(回折線)に着目し、これらのピークの半価幅(半値全幅;FWHM)を算出した。また(012)及び(116)面のピーク強度を、標準試料(α化度100%)のピーク強度(回折強度)と比較してアルミナ粉末のα化度を求めた。
 <スラリー特性‐粘度>
 アルミナ粉末のスラリー(懸濁液)を調整し、その粘度を評価した。まずアルミナ粉末200g、純水164g、及びポリカルボン酸アンモニウム系分散剤(サンノプコ株式会社製ノプコスパース5600)4gを、φ20のメディアボール600gとともに、容量1Lのポットに入れた。次いで72rpmの回転数でポットを2時間回転させて、内容物を混合した。これにより濃度55質量%のスラリーを作製した。
 得られたスラリーの粘度を、円すい-平板形回転粘度計である精密回転粘度計(英弘精機株式会社製RST-CPS)を用いて測定した。具体的には25℃でせん断速度を1/秒から1000/秒まで60秒間をかけて変化させ、1秒ごとに粘度の値を測定した。
 <スラリー特性‐沈降静水圧>
 スラリーの沈降静水圧を、静水圧式スラリー評価装置(ジャパンホテルグッズサプライ株式会社、HYSTAP-3)を用いて測定した。測定に用いてスラリーは、粘度評価の際に調整したものを用いた。また流体中に分散した粒子が互いに干渉しながら沈降する干渉沈降を考慮しながら沈降速度を算出し、この沈降速度に基づき良分散ラインを作成した。このときアルミナ粒子密度を3.98g/cm、水の密度を1.00g/cm、重力加速度を9.80665m/秒、媒液(水)の粘度を0.00089Pa・秒(25℃)として、沈降速度を算出した。
 <焼結体の誘電特性>
 アルミナ粉末から焼結体を作製し、その誘電特性を評価した。まずアルミナ粉末を金型に充填し、19.6MPaの圧力で一軸プレス成形した。続いて得られた成形体を真空パックした後、245MPaの圧力で1分間の冷間静水圧プレス(CIP)処理を施した。CIP処理した成形体を高速昇温電気炉(株式会社モトヤマ製スーパーバーン)で焼成して、焼結体にした。焼成は、昇温速度200℃/時、最高温度1500℃、保持時間2時間の条件で行った。
 得られた焼結体について、1GHz、5GHz及び10GHzにおける誘電特性を測定した。1GHzでの値は、インピーダンス・アナライザ(キーサイト・テクノロジー社製E4991B)を用いて大気雰囲気下の室温で測定した。一方で5GHz及び10GHzでの値は、マイクロ波PNAネットワークアナライザ(キーサイト・テクノロジーズ社製N5227A)を用い、JIS1627にしたがって、大気雰囲気下、温度24℃、湿度45%の条件で測定した。
(3)評価結果
 <SEM観察>
 例1~例4のアルミナ粉末につき、図3~図6のそれぞれに粉末のSEM像を示す。実施例たる例1のアルミナ粉末は、微細であるとともに粒子径が揃っていた。また粒子形状が丸みを帯びていた。破断面は少なく、チッピング粒子は見られなかった(図3)。一方で、比較例たる例2のアルミナ粉末は微細であるものの粒子形状が角張っていた。また破断面やチッピング粒子が僅かではあるものの観察された(図4)。比較例たる例3及び例4のアルミナ粉末は粒子径がばらついていた。また破断面やチッピング粒子が多く観察された(図5、図6)。
 <不純物量及び粉体特性>
 例1~例4のアルミナ粉末につき、不純物量と粉体特性を表1に示す。実施例たる例1では、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)及びカルシウム(Ca)のいずれの不純物もその含有量が10ppm以下と少なかった。一方で、比較例たる例2~例4では、いくつかの不純物の含有量が10ppmを超えていた。特に例3はNa、Si、Fe及びCaのいずれの含有量が100~200ppmと多かった。
 例1はD50≦0.20μm以下且つD50×SBET≦2.0×10-6/gの条件を満足していた。一方で例2~例4はD50×SBETが2.0×10-6/gを超えていた。特に例2はそのD50が例1と同等であるものの、SBETが大きく、その結果、D50×SBETが大きかった。
Figure JPOXMLDOC01-appb-T000002
 例1~例4のアルミナ粉末につき、粒度分布曲線を図7に示す。ここで図7において横軸は粒径(粒子径)を、縦軸は頻度を示す。例1のアルミナ粉末は、粒子径0.2μmを中心に比較的揃ったシャープな粒度分布を示していた。例2のアルミナ粉末は、粒子径0.2μmを中心にしたシャープな粒度分布を示すものの、数μm程度の大きさの粒子が存在していた。そのため全体としてブロードな粒度分布になっていた。例3のアルミナ粉末は例1や例2に比べてブロードな粒度分布を示していた。また数μm程度の大きさの粒子が少なからず存在していた。例4のアルミナ粉末は、中心粒子径が0.4~0.5μmと大きく、かつブロードな粒度分布を示していた。
 <焼結性>
 例1~例4のアルミナ粉末から作製した焼結体の密度(嵩密度)を図8に示す。例1及び例2のアルミナ粉末は、比較的低い焼成温度でも緻密化が進行し、1350℃ですでに3.8g/cm以上の密度を示していた。そして1450℃以上で密度がほぼ一定になっていた。一方で、例3のアルミナ粉末は、緻密化が例1及び例2より劣り、1350℃での密度は3.6~3.7g/cmに留まっていた。例4のアルミナ粉末は緻密化が最も劣り、1350℃での密度が3.4g/cm未満と低かった。また1550℃以上でようやく密度が一定になった。
 焼結性の結果は、平均粒子径(D50)の結果に対応している。すなわち例1及び例2のアルミナ粉末は、D50が0.18~0.19μmと微細であるため焼結性に優れるのに対し、例3及び例4のアルミナ粉末はD50が0.23~0.45μmと粗大であるため焼結性に劣ると考えられる。
 <X線回折>
 例1、例2及び例3のアルミナ粉末につき、(012)、(104)、(113)、(116)及び(300)回折線の半値全幅(FWHM)の値を表2に示す。また例1のアルミナ粉末のXRDパターンを図9に示す。
 表2に示されるように、例1のアルミナ粉末は、いずれの回折線においても例2及び例3に比べてピーク半値幅(FWHM)が小さかった。また図9に示されるように、例1のアルミナ粉末のXRDパターンには、α-アルミナ以外の結晶相に由来する回折線が殆ど観察されなかった。このことから例1のアルミナ粉末は、結晶歪が小さく結晶性に極めて優れるとともに異相を殆ど含まないことが分かった。
Figure JPOXMLDOC01-appb-T000003
 <スラリー特性‐粘度>
 例1~例4のアルミナ粉末を含むスラリーにつき、せん断速度と粘度との関係を図10に示す。図10では、せん断速度を上げた場合の粘度(一部の試料につき、図中で右向き矢印で示す)とせん断速度を下げた場合の粘度(図中で左向き矢印で示す)の両方が示されている。
 例1のスラリーは、粘度が小さく、またせん断速度によらずほぼ一定であった。その上、せん断速度を上げた場合と下げた場合の粘度の違いが殆どなく、せん断速度に対して可逆的な応答を示していた。このことから、例1のスラリーは、粘度が小さく且つ安定でありせん断速度に対して可逆的な応答を示すことが分かった。一方で例2及び例3のスラリーは粘度が大きかった。特に例2のスラリーは、そこに含まれるアルミナ粉末の平均粒子径が例1とほぼ同じであるにも関わらず、せん断速度を上げた場合と下げた場合の粘度の差が大きく、せん断速度に対して不可逆的な応答を示していた。例4のスラリーは、例1と同様に、粘度が小さく、せん断速度によらずほぼ一定であった。
 粘度測定より以下のことが推察された。すなわち例1のスラリーは、そこに含まれるアルミナ粉末が微細であるものの、粒子形状が丸みを帯び、粒子径が揃っている。そのためスラリー中で粒子同士が接触又は衝突しても、速やかに回避することができ、相互干渉が小さい。そのためスラリー粘度が低く且つ安定している。一方で例2のスラリーは、そこに含まれるアルミナ粉末の粒子径が例1と殆ど同じであるものの、チッピング粒子を含む粒度分布はブロードであり、また粒子形状も角張っている。そのため粒子同士が接触又は衝突した際に、互いに干渉しあい、スラリー粘度が不安定になる。また例4のスラリーは、そこに含まれるアルミナ粉末が粗大であるため、粘度が小さい。
 <スラリー特性‐沈降静水圧>
 例1及び例2のアルミナ粉末を含むスラリーにつき、沈降静水圧の時間変化を図11に示す。なお図11には理想的な良分散状態を示すスラリーの沈降静水圧ライン(良分散ライン)を併せて示す。例1のスラリーは沈降静水圧の時間変化が小さく、理想的な良分散状態に近かった。一方で例2のスラリーは、沈降静水圧の時間変化が大きかった。このことから例1のスラリーは良分散状態を長時間維持するのに対し、例2のスラリーは一部が凝集していることが推察された。
 <焼結体の誘電特性>
 例1、例2及び例4のアルミナ焼結体につき、誘電特性(比誘電率εr、誘電正接tanδ、(εr)1/2×tanδ)を表3に示す。なお表3にはポリテトラフルオロエチレン(PTFE)の特性も併せて示されている。
 例1のアルミナ焼結体は、高周波領域(5GHz、10GHz)での誘電正接及び(εr)1/2×tanδが他のサンプルに比べて小さかった。このことから例1はアンテナ材料として伝送損失の小さく優れた材料であることが分かった。
 これに対して、例2の焼結体は、高周波領域(5GHz、10GHz)での誘電正接及び(εr)1/2×tanδが例1に比べて大きかった。例2ではアルミナ粉末のBET比表面積が例1に比べて大きいため成形密度が小さくなり、これが焼結体中の気孔(欠陥)発生及び誘電特性に影響を及ぼしたのではないかと考えられる。また例4の焼結体は、誘電正接及び(εr)1/2×tanδが例1及び例2に比べて大きかった。例4ではアルミナ粉末が多量のナトリウム(Na)を含んでおり、これが焼結体密度や電気抵抗に悪影響を及ぼしたのではないかと考えられる。一方でPTFEは、その1GHzでの誘電正接が比較的小さいものの、10GHzでの誘電正接がアルミナ焼結体(例1、例2及び例4)よりはるかに大きかった。
 アンテナ材料の伝送損失量(a)は、下記式(1)に示されるように、(εr)1/2×tanδに比例する。したがって例1の焼結体は、10GHz以上の高周波領域での伝送損失が最も小さく、アンテナ材料として有望であることが分かる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-T000005
 [実験例B]
 実験例Bでは、α-アルミナ種子の粒径及び添加量を変えてアルミナ粉末を合成し、その評価を行った。
(1)アルミナ粉末の合成
 [例5(実施例)]
 例5では、平均粒子径(D50)が0.16μmであり、且つBET比表面積(SBET)が10.2m/gのα-アルミナ種子を用いた。また混合原料中のα-アルミナ種子の含有量を4質量%に変更した。それ以外は例1と同様にしてアルミナ粉末を合成した。
 [例6(実施例)]
 平均粒子径(D50)が0.23μmであり、且つBET比表面積(SBET)が8.29m/gのα-アルミナ種子を用いた。それ以外は例5と同様してアルミナ粉末を合成した。
 [例7(実施例)]
 混合原料中のα-アルミナ種子の含有量を7質量%に変更した。それ以外は例5と同様してアルミナ粉末を合成した。
 [例8(実施例)]
 混合原料中のα-アルミナ種子の含有量を7質量%に変更した。それ以外は例6と同様してアルミナ粉末を合成した。
 [例9(実施例)]
 混合原料中のα-アルミナ種子の含有量を10質量%に変更した。それ以外は例5と同様してアルミナ粉末を合成した。
 [例10(実施例)]
 混合原料中のα-アルミナ種子の含有量を10質量%に変更した。それ以外は例6と同様してアルミナ粉末を合成した。
 [例11(実施例)]
 混合原料中α-アルミナ種子の含有量を20質量%に変更した。それ以外は例5と同様してアルミナ粉末を合成した。
 [例12(実施例)]
 例12では、平均粒子径(D50)が0.19μmであり、且つBET比表面積(SBET)が13.1m/gのα-アルミナ種子を用いた。また混合原料中のα-アルミナ種子の含有量を20質量%に変更した。それ以外は例5と同様にしてアルミナ粉末を合成した。
(2)アルミナ粉末の評価
 例5~例12で得られたアルミナ粉末について、例1~例4と同様にして、粉体特性(BET比表面積、粒度、及び加圧嵩密度)の評価を行った。また焼結温度を1300~1450℃に変更した以外は例1~例4と同様にして焼結体を作製し、アルミナ粉末の焼結性評価を行った。
(3)評価結果
 例5~例12で得られたアルミナ粉末の特性を製造条件とともに表4に示す 。α-アルミナ種子量が同じ場合には、粒径の小さいα-アルミナ種子を用いて作製されたアルミナ粉末(例5、例7、例9)は、その平均粒子径(D50)が、粒径の大きいα-アルミナ種子を用いて作製されたアルミナ粉末(例6、例8、例10)に比べて小さかった。また、その結果、加圧嵩密度及び焼結嵩密度が大きくなった。α-アルミナ種子の粒径が同じ場合には、α-アルミナ種子量の少ない条件で作製されたアルミナ粉末(例5及び例7)は、その加圧嵩密度及び焼結嵩密度が、α-アルミナ種子量の多い条件で作製されたアルミナ粉末(例9及び例10)に比べて大きかった。
 例7で得られたアルミナ粉末のSEM像を図12に示す。例7のアルミナ粉末は、一次粒子径が小さく、かつほとんど凝集していないことが分かった。
 例7で得られたアルミナ粉末の粒度分布曲線を、例1及び例4で得られた結果とともに図13に示す。α-アルミナ種子を用いて乾式ビーズミル処理して作製された例1及び例7のアルミナ粉末は、従来例たる例4のアルミナ粉末に比べて、微細であり、また粒度分布が均一であった。また、例7のアルミナ粉末は、粒径の大きいα-アルミナ種子を用い、その添加量を多くして作製された例1のアルミナ粉末に比べて、さらに微細になっていた。
 例7で得られたアルミナ粉末について、焼成温度(焼結温度)と焼結体嵩密度の関係を、例1及び例4で得られた結果とともに図14に示す。例1及び例7のアルミナ粉末は、従来例たる例4のアルミナ粉末に比べて、焼結性が著しく高くなっていた。例えば、例7のアルミナ粉末は、同じ焼結嵩密度を得るために必要な焼成温度が、例4のアルミナ粉末に比べて約200℃低かった。また、例7のアルミナ粉末は、粒径の大きいα-アルミナ種子を用い、その添加量を多くして作製した例1のアルミナ粉末に比べて、焼結性にさらに優れていた。
 以上の結果より、α-アルミナ種子を用いて乾式ビーズミル処理することで、微細で且つ成形性及び焼結性に優れたアルミナ粉末を得られることが分かった。また粒径の小さいα-アルミナ種子を用い、その添加量を少なくすることで、さらに微細で且つ成形性及び焼結性により一層優れたアルミナ粉末を得られることが分かった。
Figure JPOXMLDOC01-appb-T000006

Claims (9)

  1.  体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.20μm、及び式:D50×SBET≦2.0×10-6/gで表される関係を満足するとともに、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)及びカルシウム(Ca)のそれぞれの含有量が10ppm以下である、高純度微粒アルミナ粉末。
  2.  体積粒度分布における50%粒径(D50)及びBET比表面積(SBET)が、式:D50≦0.17μm、及び式:D50×SBET≦1.8×10-6/gで表される関係を満足する、請求項1に記載の高純度微粒アルミナ粉末。
  3.  式:1.55×10-6/g≦D50×SBETで表される関係を満足する、請求項1又は2に記載のアルミナ粉末。
  4.  X線回折プロファイルにおいて、(113)回折線の半値全幅(FWHM)が0.240°以下である、請求項1~3のいずれか一項に記載のアルミナ粉末。
  5.  加圧嵩密度(GD)が2.20g/cm以上である、請求項1~4のいずれか一項に記載のアルミナ粉末。
  6.  体積粒度分布における10%粒径D10、50%粒径D50及び90%粒径D90が、式:(D90-D10)/D50≦1.5で表される関係を満足する、請求項1~5のいずれか一項に記載のアルミナ粉末。
  7.  α化度が80.0%以上である、請求項1~6のいずれか一項に記載のアルミナ粉末。
  8.  請求項1~7のいずれか一項に記載のアルミナ粉末の製造方法であって、
     水酸化アルミニウム粉末とα-アルミナ種子を準備する工程と、
     前記水酸化アルミニウム粉末に前記α-アルミナ種子を混合して、α-アルミナ種子を1~20質量%含有する水酸化アルミニウム混合原料を得る工程と、
     前記水酸化アルミニウム混合原料に、乾式ビーズミルを用いたメカノケミカル処理を施して、結晶水の含有量が21.0質量%以下であり、示差走査熱量分析で750~850℃の温度範囲内で発熱ピークを示す無定形水酸化アルミニウムを得る工程と、
     前記無定形水酸化アルミニウムを900~1100℃の範囲内の温度で熱処理して、アルミナ粉末を得る工程と、を含み、
     準備するα-アルミナ種子の平均粒子径(D50)が0.1~0.5μmである、方法。
  9.  準備するα-アルミナ種子の平均粒子径(D50)が0.1~0.3μmであり、前記水酸化アルミニウム混合原料がα-アルミナ種子を3~5質量%含有する、請求項8に記載の方法。
PCT/JP2021/039710 2021-10-27 2021-10-27 高純度微粒アルミナ粉末 WO2023073842A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247014101A KR20240070644A (ko) 2021-10-27 2021-10-27 고순도 미립 알루미나 분말
JP2023555962A JPWO2023073842A1 (ja) 2021-10-27 2021-10-27
PCT/JP2021/039710 WO2023073842A1 (ja) 2021-10-27 2021-10-27 高純度微粒アルミナ粉末
CN202180103742.5A CN118159493A (zh) 2021-10-27 2021-10-27 高纯度微粒氧化铝粉末
EP21962390.7A EP4424639A1 (en) 2021-10-27 2021-10-27 High-purity microparticle alumina powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039710 WO2023073842A1 (ja) 2021-10-27 2021-10-27 高純度微粒アルミナ粉末

Publications (1)

Publication Number Publication Date
WO2023073842A1 true WO2023073842A1 (ja) 2023-05-04

Family

ID=86159244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039710 WO2023073842A1 (ja) 2021-10-27 2021-10-27 高純度微粒アルミナ粉末

Country Status (5)

Country Link
EP (1) EP4424639A1 (ja)
JP (1) JPWO2023073842A1 (ja)
KR (1) KR20240070644A (ja)
CN (1) CN118159493A (ja)
WO (1) WO2023073842A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176215A (ja) * 1987-12-28 1989-07-12 Nippon Light Metal Co Ltd α−アルミナの製造方法
JPH01298018A (ja) * 1988-05-25 1989-12-01 Nippon Light Metal Co Ltd 高純度アルミナの製造方法
WO2008035656A1 (fr) * 2006-09-19 2008-03-27 Sumitomo Chemical Company, Limited POUDRE D'ALUMINE α
WO2008072501A1 (ja) * 2006-12-15 2008-06-19 Nippon Light Metal Company, Ltd. 高純度α-アルミナの製造方法
WO2016098579A1 (ja) * 2014-12-17 2016-06-23 住友化学株式会社 無機酸化物粉末、およびこれを含有するスラリー、ならびに非水電解液二次電池およびその製造方法
WO2018047871A1 (ja) 2016-09-09 2018-03-15 住友化学株式会社 アルミナ粉末、アルミナスラリー、アルミナ含有コート層、積層分離膜及び二次電池
JP2021187710A (ja) * 2020-06-01 2021-12-13 日本軽金属株式会社 高純度微粒アルミナ粉末

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176215A (ja) * 1987-12-28 1989-07-12 Nippon Light Metal Co Ltd α−アルミナの製造方法
JPH01298018A (ja) * 1988-05-25 1989-12-01 Nippon Light Metal Co Ltd 高純度アルミナの製造方法
WO2008035656A1 (fr) * 2006-09-19 2008-03-27 Sumitomo Chemical Company, Limited POUDRE D'ALUMINE α
WO2008072501A1 (ja) * 2006-12-15 2008-06-19 Nippon Light Metal Company, Ltd. 高純度α-アルミナの製造方法
WO2016098579A1 (ja) * 2014-12-17 2016-06-23 住友化学株式会社 無機酸化物粉末、およびこれを含有するスラリー、ならびに非水電解液二次電池およびその製造方法
WO2018047871A1 (ja) 2016-09-09 2018-03-15 住友化学株式会社 アルミナ粉末、アルミナスラリー、アルミナ含有コート層、積層分離膜及び二次電池
JP2021187710A (ja) * 2020-06-01 2021-12-13 日本軽金属株式会社 高純度微粒アルミナ粉末

Also Published As

Publication number Publication date
CN118159493A (zh) 2024-06-07
EP4424639A1 (en) 2024-09-04
KR20240070644A (ko) 2024-05-21
JPWO2023073842A1 (ja) 2023-05-04

Similar Documents

Publication Publication Date Title
Boulos et al. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics
US8021451B2 (en) Fine α-alumina particle
US20100040535A1 (en) Alpha-alumina powder
CN110028317B (zh) 纳米钛酸钡粉体及其制备方法、陶瓷介电层及其制造方法
BRPI0613043B1 (pt) Processo para produção de corpos sinterizados nanocristalinos à base de óxido de alumínio alfa
JP2010150090A (ja) αアルミナ粉末
JP5427754B2 (ja) サファイア単結晶製造用αアルミナ
EP2358637A1 (en) Process for preparing an aluminium oxide powder having a high alpha-al2o3 content
CN112469667B (zh) 具有高纯度和高相对密度的α氧化铝、其生产方法及其用途
KR20030062263A (ko) 알루미나 소성물, 이의 제조방법 및 이를 사용하여 수득된미세 α-알루미나 분말
Habib et al. Effect of temperature and time on solvothermal synthesis of tetragonal BaTiO 3
CN115536377B (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
JP2007055888A (ja) 微粒αアルミナ
JP2008156146A (ja) αアルミナスラリー
EP3553028A1 (en) Zinc oxide powder for preparing zinc oxide sintered body with high strength and low thermal conductivity
JP7516872B2 (ja) 高純度微粒アルミナ粉末
WO2023073842A1 (ja) 高純度微粒アルミナ粉末
JP5142468B2 (ja) チタン酸バリウム粉末の製造方法
Dias et al. Hydrothermal synthesis and sintering of electroceramics
JP4534001B2 (ja) ジルコニウム酸カルシウム粉末
KR102497275B1 (ko) 나트륨 제거제를 이용한 알루미나의 고순도화 및 초미립 알루미나 입자의 제조방법
JP7458576B2 (ja) 酸化タンタル粒子、及び酸化タンタル粒子の製造方法
EP4303180A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet
KR101579890B1 (ko) 나노사이즈의 고분산성 α-알루미나의 합성방법 및 이에 의해 합성된 절연성 고열전도성 α-알루미나졸
Bakar et al. Synthesis and characterization of titanium dioxide doped nickel oxide dielectric materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023555962

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18702547

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180103742.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247014101

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021962390

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021962390

Country of ref document: EP

Effective date: 20240527