CN112469667B - 具有高纯度和高相对密度的α氧化铝、其生产方法及其用途 - Google Patents

具有高纯度和高相对密度的α氧化铝、其生产方法及其用途 Download PDF

Info

Publication number
CN112469667B
CN112469667B CN201980049676.0A CN201980049676A CN112469667B CN 112469667 B CN112469667 B CN 112469667B CN 201980049676 A CN201980049676 A CN 201980049676A CN 112469667 B CN112469667 B CN 112469667B
Authority
CN
China
Prior art keywords
axis
boehmite
length along
alpha alumina
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980049676.0A
Other languages
English (en)
Other versions
CN112469667A (zh
Inventor
赖纳·格勒克勒
霍尔格·米策尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasol Germany GmbH
Original Assignee
Sasol Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasol Germany GmbH filed Critical Sasol Germany GmbH
Publication of CN112469667A publication Critical patent/CN112469667A/zh
Application granted granted Critical
Publication of CN112469667B publication Critical patent/CN112469667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种具有高纯度、高密度和低表面积的α氧化铝,并且特别涉及一种生产这种α氧化铝的方法以及该α氧化铝在蓝宝石生产中或在复合体和陶瓷体生产中的用途。

Description

具有高纯度和高相对密度的α氧化铝、其生产方法及其用途
技术领域
本发明涉及生产α氧化铝的方法,特别涉及生产具有高纯度、高密度和低BET表面积的α氧化铝的方法。本发明进一步扩展到根据本发明的方法生产的氧化铝以及α氧化铝在蓝宝石生产或复合体和陶瓷体生产中的用途。
背景技术
在超高纯氧化铝的技术领域,重点是生产高纯度、高密度和低BET表面积的氧化铝。在EP 2070873 B1中,描述了纯度至少为99.99%且相对密度为55至90%的α氧化铝粉末。该粉末通过在α氧化铝晶种存在下煅烧无定形氢氧化铝(通过在室温下以两步法用化学计量的水来水解烷氧铝得到)来制备。
需要在不使用α氧化铝晶种的情况下生产高纯度和高密度的氧化铝,即需要简化工艺。
发明内容
根据本发明的第一方面,提供了生产α氧化铝,特别是高纯度α氧化铝的方法,至少包括以下步骤:
i)提供包含勃姆石的勃姆石浆料;其中,勃姆石浆料的勃姆石的晶体尺寸独立地在沿120轴的3.0至6.5nm和沿020轴的3.0至6.0nm的范围内;
ii)老化勃姆石浆料以得到老化的勃姆石浆料,其包含具有(120)轴和(020)轴的改变晶体尺寸的勃姆石颗粒(boehmite particles with a modified crystallite sizehaving a(120)axis and a(020)axis),其中老化在30至240℃的温度下进行0.5至170小时的时间段,直到勃姆石颗粒:
a)具有小于1nm的沿(120)轴的长度与沿(020)轴的长度之间的差值,或
b)(120)轴大于30nm,或
c)a)和b)均适用;
iii)干燥老化的勃姆石浆料以形成干燥的勃姆石,和
iv)将干燥的勃姆石在1200至1600℃的温度下煅烧1至5小时的煅烧时间以产生α氧化铝。
差值是指沿(120)轴的长度减去沿(020)轴的长度。因此,该差值也可以具有负值。
沿(120)轴的长度与沿(020)轴的长度之间的差值优选地大于0nm且小于1nm,更优选地大于0.05nm且小于1nm,甚至更优选地大于0.1nm且小于1nm,并且最优选地大于0.5nm且小于1nm。
还优选a)和b)的组合,即其中a)包括上述优选范围,并且同时其中(120)轴大于30nm。
进一步要求保护的是根据上述方法生产的α氧化铝以及该α氧化铝用于蓝宝石生产或用于陶瓷体或复合体生产的用途,特别是通过施加压力和/或烧结。
具体实施方式
根据本发明,通过确保老化的勃姆石浆料生产具有沿(120)轴和(020)轴小于1nm,优选大于0nm且小于1nm,更优选地大于0.05nm且小于1nm,甚至更优选地大于0.1nm且小于1nm,并且最优选大于0.5nm且小于1nm的晶体尺寸差值或沿(120)轴小于30nm,优选地大于40nm的晶体尺寸的勃姆石颗粒,则能够在不使用氧化铝晶种的情况下得到相对密度大于90%的纯氧化铝。清楚地说,根据本发明,需要遵循步骤ii)的选项a)或步骤ii)的选项b)。可替代地,选项a)和选项b)都可以遵循。
对于选项a),勃姆石颗粒沿(120)轴的长度(这意味着在施加步骤ii)的老化之后)优选为至少7nm,更优选地至少10nm,并且最优选地至少13nm。
可以通过本发明领域中已知的方法得到勃姆石浆料,例如通过如US3394990中描述的烷醇铝(aluminium alkoxide,醇铝)的水解。由烷醇铝的水解生产的商业勃姆石产品的实例包括和/>
根据用于水解的烷醇铝的纯度,勃姆石的纯度在99.8000至99.9999%,优选地在99.9900至99.9997%之间。这是超高纯氧化铝领域所需的纯度。
优选地在95至160℃的温度下老化勃姆石浆料25至40小时的时间段。老化可以在搅拌下进行。搅拌可以设置0.5至4m/s,优选地1至3m/s的圆周速度的桨式搅拌器,特别是对于选项a)。
使用众所周知的谢乐公式(Scherrer formula)(1)在(120)和(020)反射上确定根据本发明的勃姆石颗粒的晶体尺寸:
晶体尺寸=(K×λ×57.3)/(β×cosθ); (1)
其中
K(形状因数):0.992
λ(x射线波长):0.154nm
β(校正的设备线宽):依赖于反射
θ:依赖于反射
本领域技术人员知道,在勃姆石的X射线衍射图中,(120)反射(沿120轴的反射)位于2θ=28.2°,(020)反射(沿020轴的反射)位于2θ=14.5°。使用这些值,可以根据等式(1)由等式(2)计算出的校正后的线宽来计算出每个反射的相应晶体尺寸。
β=样品的半宽度-标准品的半宽度 (2)
关于选项b),沿(120)轴的老化的勃姆石颗粒的晶体尺寸优选地在大于30和100nm之间,更优选地在大于30和50nm之间或大于40和60nm之间。
干燥步骤可以在喷雾干燥器中进行。典型的温度包括300至500℃,优选地320至400℃的入口温度和100至150℃,优选地110至120℃的出口温度。
干燥的勃姆石的煅烧优选地在1300至1400℃的温度下,更优选在1350至1360℃的温度下进行。煅烧时间优选地是3至4小时。煅烧炉的升温速率优选地是2至8℃/min,更优选地4至8℃/min。可以彼此独立选择温度、煅烧时间和升温速率。
本发明的方法生产出具有高于90%的相对密度,优选地高于94%的相对密度,和小于10m2/g的BET表面积的α氧化铝。
因此,根据本发明的第二方面,提供了根据本发明的方法生产的α氧化铝。
根据本发明的方法生产的α氧化铝可以具有高于99.99%的纯度和高于90%的相对密度,优选地高于94%的相对密度,和小于10m2/g的BET表面积。
根据本发明的第三方面,提供了具有至少99.99%的纯度和大于90%的相对密度,优选地大于94%的相对密度,和小于10m2/g的BET表面积的α氧化铝。
在本发明的另一个优选的实施方式中,本发明的α氧化铝用作生产蓝宝石的粉末形式的原料。例如,可以通过将α氧化铝粉末装入坩埚中,加热并熔化α氧化铝粉末来生产蓝宝石。α氧化铝粉末可以以高的堆密度被装入坩埚中,并且适合于生产具有较少空隙的蓝宝石。
根据本发明的另一个优选的实施方式,本发明的α氧化铝可以与其他原料一起用作生产陶瓷或复合体的原料,所述陶瓷或复合体通常是通过施加热和/或压力在模具中生产的。
现在将参考以下非限制性实施例描述本发明。
实施例
根据上述谢乐方程式测量晶体尺寸。
通过ICP原子发射法测量高纯度α氧化铝的纯度,即在使用微波加热的PSS进行溶解后通过ICP原子发射光谱仪测量Ca、Fe、Na、Si和Ti的含量。
根据等式(3)计算纯度:
以%计的纯度=100[1-(以ppm计的杂质总量)/106] (3)
%是指相对于组合物中所含金属的wt.%。
此外,硫酸盐、氯化物和磷酸盐的含量总计小于200ppm。
使用等式(4)-(6)由颗粒密度计算相对密度:
封闭孔体积(cm3/g)=(1/颗粒密度)-(1/3.98) (4)
烧结密度(g/cm3)=
1/[(1/3,98)+孔体积+封闭孔体积] (5)
相对密度(%)=(烧结密度/3.98)x 100 (6)
使用ULTRA PYCNOMETER 1000 T(Quantachrome)确定颗粒密度(等式4)。
使用Philips XRD X’pert设备进行XRD测量。
根据DIN 66133通过汞渗透方法在1.8至1000nm的孔半径范围内确定孔体积(等式5)。
BET表面积涉及通过N2吸附测定比表面积的Brunauer-Emmett-Teller方法。在液氮温度下使用典型的体积设备,如来自Quantachrome的Quadrasorb。使用DIN ISO 9277:2003-05确定表面积。
比较例1(与本发明方法的步骤ii)的选项a)有关)
在水中的500g悬浮液(10.5wt.%的Al2O3,pH=9)加入加热至110℃(1℃/min)的高压釜中。调节反应条件后,使用以1.6m/s的圆周速度运行的标准搅拌器使浆料在110℃下老化24小时,该圆周速度对应于搅拌器速度为500r.p.m。冷却至室温后,将老化的浆料喷雾干燥(入口温度:350℃,出口温度:110℃)。晶体尺寸为沿120轴14.1nm,沿(020)轴10.6nm。然后将颗粒在1350℃下煅烧4小时(加热速率1℃/分钟)。得到纯度为99.9990%的纯α氧化铝,相对密度为59.6%。BET表面积为16m2/g。
比较例2(与步骤ii)的选项b)有关
在水中的500g悬浮液(7.5wt.%的Al2O3)加入加热至140℃(1℃/min)的高压釜中。自生压力是5巴。调节反应条件后,使用以3.0m/s的圆周速度运行的标准搅拌器使浆料在140℃下老化30小时,该圆周速度对应于搅拌器速度为265r.p.m。冷却至室温后,将老化的浆料喷雾干燥(入口温度:350℃,出口温度:110℃)。晶体尺寸为沿120轴24.7nm。然后将颗粒在1350℃下煅烧4小时(加热速率1℃/分钟)。得到纯度为99.9992%的纯α氧化铝,相对密度为85.2%。BET表面积为11m2/g。
实施例1(与本发明方法的步骤ii)的选项a)有关)
在水中的500g悬浮液(10.5wt.%的Al2O3,pH=9)加入加热至98℃(1℃/min)的烧杯中。调节反应条件后,使用以1.6m/s的圆周速度运行的标准搅拌器使浆料在98℃下老化30小时,该圆周速度对应于搅拌器速度为500r.p.m。冷却至室温后,将老化的浆料喷雾干燥(入口温度:350℃,出口温度:110℃)。晶体尺寸为沿120轴13.8nm和沿020轴13.1nm。然后将颗粒在1350℃下煅烧4小时(加热速率1℃/分钟)。得到纯度为99.9996%的纯α氧化铝,相对密度为97.9%。BET表面积为4m2/g。
实施例2(与本发明方法的步骤ii)的选项b)有关)
在水中的500g悬浮液(7.5wt.%的Al2O3)加入加热至160℃(1℃/min)的高压釜中。自生压力是10巴。调节反应条件后,使用以3m/s的圆周速度运行的标准搅拌器使浆料在160℃下老化30小时,该圆周速度对应于搅拌器速度为265r.p.m。冷却至室温后,将老化的浆料喷雾干燥(入口温度:350℃,出口温度:110℃)。晶体尺寸为沿120轴35.8nm。然后将颗粒在1350℃下煅烧4小时(加热速率1℃/分钟)。得到纯度为99.9994%的纯α氧化铝,相对密度为94.1%。BET表面积为8m2/g。
实施例3(与本发明方法的步骤ii)的选项b)有关)
在水中的500g悬浮液(7.5wt.%的Al2O3)加入加热至180℃(1℃/min)的高压釜中。自生压力是15巴。调节反应条件后,使用以1.6m/s的圆周速度运行的标准搅拌器使浆料在180℃下老化30小时,该圆周速度对应于搅拌器速度为500r.p.m。冷却至室温后,将老化的浆料喷雾干燥(入口温度:350℃,出口温度:110℃)。晶体尺寸为沿120轴41.8nm。然后将颗粒在1350℃下煅烧4小时(加热速率1℃/分钟)。得到纯度为99.9996%的纯α氧化铝,相对密度为97.4%。BET表面积为7m2/g。
实验结果概述在下表中:
表1-本发明方法的步骤ii)的选项a):
表2-本发明方法的步骤ii)的选项b):
如通过当与比较例相比时的实施例可以看出,本发明的方法生产了具有大于99.99%的纯度和大于90%的相对密度,优选地大于94%的相对密度,和小于10m2/g的BET表面积的α氧化铝。

Claims (19)

1.一种生产α氧化铝的方法,至少包括以下步骤:
i)提供包含勃姆石的勃姆石浆料;其中,所述勃姆石浆料的勃姆石的晶体尺寸在沿120轴的3.0至6.5 nm和沿020轴的3.0至6.0 nm的范围内;
ii)老化所述勃姆石浆料以得到老化的勃姆石浆料,所述老化的勃姆石浆料包含具有120轴和020轴的改变晶体尺寸的勃姆石颗粒,其中,所述老化在30至240°C的温度下进行0.5至170小时的时间段,直到所述勃姆石颗粒:
a)具有大于0且小于1 nm的沿所述120轴的长度与沿所述020轴的长度之间的差值,或
b)所述120轴大于30 nm,或
c)a)和b)均适用;
iii)干燥所述老化的勃姆石浆料以形成干燥的勃姆石,和
iv)将所述干燥的勃姆石在1300至1400°C的温度下煅烧1至5小时的煅烧时间以产生α氧化铝。
2.根据权利要求1所述的方法,其中,通过烷醇铝的水解得到所述勃姆石浆料。
3.根据权利要求1或权利要求2所述的方法,其中,沿所述120轴的长度与沿所述020轴的长度之间的差值大于0.05 nm且小于1 nm。
4.根据权利要求3所述的方法,其中,沿所述120轴的长度与沿所述020轴的长度之间的差值大于0.1 nm且小于1 nm。
5.根据权利要求4所述的方法,其中,沿所述120轴的长度与沿所述020轴的长度之间的差值大于0.5 nm且小于1 nm。
6.根据权利要求1或权利要求2所述的方法,其中,对于选项a),沿所述120轴的长度是至少7 nm。
7.根据权利要求6所述的方法,其中,对于选项a),沿所述120轴的长度是至少10 nm。
8.根据权利要求7所述的方法,其中,对于选项a),沿所述120轴的长度是至少13 nm。
9.根据权利要求1或权利要求2所述的方法,其中,对于选项b),沿所述120轴的长度大于40 nm。
10.根据权利要求1或权利要求2所述的方法,其中,所述勃姆石的纯度在99.8000%至99.9999%的范围内。
11.根据权利要求10所述的方法,其中,所述勃姆石的纯度在99.9900%至99.9997%的范围内。
12.根据权利要求1或权利要求2所述的方法,其中,所述勃姆石浆料在95至160°C的温度下老化25至40小时的时间段。
13.根据权利要求1或权利要求2所述的方法,其中,对于所述方法的步骤ii)的选项b),老化的勃姆石颗粒沿所述120轴的晶体尺寸为30至100 nm。
14.根据权利要求13所述的方法,其中,对于所述方法的步骤ii)的选项b),老化的勃姆石颗粒沿所述120轴的晶体尺寸为30至50 nm或40至60 nm。
15.根据权利要求1或权利要求2所述的方法,其中,干燥步骤是在喷雾干燥器中进行的,所述喷雾干燥器的入口温度为300至500°C,并且出口温度为100至150°C。
16.根据权利要求15所述的方法,其中,干燥步骤是在喷雾干燥器中进行的,所述喷雾干燥器的入口温度为320至400°C。
17.根据权利要求15所述的方法,其中,干燥步骤是在喷雾干燥器中进行的,所述喷雾干燥器的出口温度为110至120°C。
18.根据权利要求1或权利要求2所述的方法,其中,煅烧在1350至1400°C的温度下发生。
19.根据权利要求18所述的方法,其中,煅烧在1350至1360°C的温度下发生。
CN201980049676.0A 2018-07-27 2019-07-24 具有高纯度和高相对密度的α氧化铝、其生产方法及其用途 Active CN112469667B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18186178.2A EP3599221A1 (en) 2018-07-27 2018-07-27 Alpha alumina with high purity and high relative density, a method for its production and its use
EP18186178.2 2018-07-27
PCT/EP2019/069950 WO2020020960A1 (en) 2018-07-27 2019-07-24 Alpha alumina with high purity and high relative density, a method for its production and its use

Publications (2)

Publication Number Publication Date
CN112469667A CN112469667A (zh) 2021-03-09
CN112469667B true CN112469667B (zh) 2023-09-05

Family

ID=63079871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980049676.0A Active CN112469667B (zh) 2018-07-27 2019-07-24 具有高纯度和高相对密度的α氧化铝、其生产方法及其用途

Country Status (7)

Country Link
US (2) US11964878B2 (zh)
EP (2) EP3599221A1 (zh)
JP (1) JP7354247B2 (zh)
KR (1) KR20210035781A (zh)
CN (1) CN112469667B (zh)
CA (1) CA3102480A1 (zh)
WO (1) WO2020020960A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878816A1 (en) * 2020-03-13 2021-09-15 Almatis GmbH Method for preparing high purity aluminum monohydrate and alpha alumina
EP3915675A1 (en) * 2020-05-26 2021-12-01 SASOL Germany GmbH Stable shaped alumina carriers and method for producing same
CN111795983A (zh) * 2020-06-29 2020-10-20 中国铝业股份有限公司 一种氧化铝α-相测定用标准样品的制备方法
US20230365424A1 (en) * 2020-09-29 2023-11-16 Basf Corporation Crystalline boehmite materials as precursors for large crystal gamma alumina and low surface area alpha alumina

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019536A1 (en) * 1991-04-26 1992-11-12 Vista Chemical Company Process for preparing sub-micron alumina particles
CN102190324A (zh) * 2010-03-09 2011-09-21 住友化学株式会社 用于制备蓝宝石单晶的α氧化铝及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1258854B (de) 1963-05-11 1968-01-18 Deutsche Erdoel Ag Verfahren zur kontinuierlichen Herstellung von Alkoholen durch Hydrolyse von Aluminiumalkoxiden in einem homogenen System aus n-Butanol und Wasser
DE19836821A1 (de) * 1998-08-14 2000-02-24 Rwe Dea Ag Böhmitische Tonerden und aus diesen erhältliche phasenreine, hochtemperaturstabile und hochporöse Aluminiumoxide
JP4366939B2 (ja) 2002-01-16 2009-11-18 住友化学株式会社 アルミナ焼成物の製造方法
TWI254699B (en) * 2002-01-16 2006-05-11 Sumitomo Chemical Co Calcined alumina, its production method and fine alpha\-alumina powder obtained by using the calcined alumina
DE10332775A1 (de) * 2003-07-17 2005-02-17 Sasol Germany Gmbh Verfahren zur Herstellung böhmitischer Tonerden mit hoher a-Umwandlungstemperatur
EP2070873B1 (en) 2006-09-19 2015-05-20 Sumitomo Chemical Company, Limited Alpha-alumina powder
JP2010150090A (ja) 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd αアルミナ粉末
US20110123805A1 (en) 2009-11-20 2011-05-26 Sumitomo Chemical Company, Limited a-ALUMINA FOR PRODUCING SINGLE CRYSTAL SAPPHIRE
JP5766442B2 (ja) 2011-01-04 2015-08-19 住友化学株式会社 サファイア単結晶製造用αアルミナ焼結体
JP2012150090A (ja) 2011-01-19 2012-08-09 Hiroaki Takatori 気泡式粘度・比重、液位計
JP2016037421A (ja) 2014-08-08 2016-03-22 住友化学株式会社 αアルミナ成形体およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019536A1 (en) * 1991-04-26 1992-11-12 Vista Chemical Company Process for preparing sub-micron alumina particles
CN102190324A (zh) * 2010-03-09 2011-09-21 住友化学株式会社 用于制备蓝宝石单晶的α氧化铝及其制备方法

Also Published As

Publication number Publication date
KR20210035781A (ko) 2021-04-01
EP3830034A1 (en) 2021-06-09
WO2020020960A1 (en) 2020-01-30
CN112469667A (zh) 2021-03-09
JP2022507877A (ja) 2022-01-18
JP7354247B2 (ja) 2023-10-02
US20240253999A1 (en) 2024-08-01
CA3102480A1 (en) 2020-01-30
US11964878B2 (en) 2024-04-23
US20210317000A1 (en) 2021-10-14
EP3599221A1 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
CN112469667B (zh) 具有高纯度和高相对密度的α氧化铝、其生产方法及其用途
Hosseini et al. Production of γ-Al2O3 from Kaolin
Boulos et al. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics
WO2008035656A1 (fr) POUDRE D'ALUMINE α
US20030185746A1 (en) Calcined alumina, its production method and fine alpha-alumina powder obtained by using the calcined alumina
Chang et al. Synthesis of submicron BaTiO3 particles by modified solid-state reaction method
López-Delgado et al. Synthesis of α-alumina from a less common raw material
Chakravarty et al. High strength porous alumina by spark plasma sintering
KR102206930B1 (ko) 고강도이며 열전도율이 낮은 산화 아연 소결체 제작용 산화 아연 분말
Billik et al. Mechanochemical-molten salt synthesis of α-Al2O3 platelets
JP2008156146A (ja) αアルミナスラリー
Pązik et al. Microwave driven hydrothermal synthesis of Ba1− xSrxTiO3 nanoparticles
Li et al. Ultrafine alumina powders derived from ammonium aluminum carbonate hydroxide.
Madej Size-dependent hydration mechanism and kinetics for reactive MgO and Al 2 O 3 powders with respect to the calcia-free hydraulic binder systems designed for refractory castables
Wang et al. Synthesis and sintering of pre-mullite powders obtained via carbonate precipitation
JP7516872B2 (ja) 高純度微粒アルミナ粉末
Ebadzadeh et al. Microwave-assisted synthesis of nanosized α-Al2O3
WO2019235525A1 (ja) 酸化亜鉛焼結体作製用酸化亜鉛粉末および酸化亜鉛焼結体、ならびに、これらの製造方法
JPH08143358A (ja) アルミナ質焼結体
WO2023073842A1 (ja) 高純度微粒アルミナ粉末
JP7472956B2 (ja) 粉末及びその製造方法
McCormick et al. Recent developments in mechanochemical nanoparticle synthesis
Haldar et al. Structural and optical properties of Ti 4+ doped sintered ZnAl 2 O 4 ceramics
RU2785131C2 (ru) Альфа-оксид алюминия, способ производства альфа-оксида алюминия и способ производства керамических изделий или композитных изделий
WO2003004415A1 (fr) Poudre de titanate de baryum et procede de production associe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant