WO2008065791A1 - Procédé de correction d'erreur de caractéristiques hautes fréquences d'un composant électronique - Google Patents

Procédé de correction d'erreur de caractéristiques hautes fréquences d'un composant électronique Download PDF

Info

Publication number
WO2008065791A1
WO2008065791A1 PCT/JP2007/067378 JP2007067378W WO2008065791A1 WO 2008065791 A1 WO2008065791 A1 WO 2008065791A1 JP 2007067378 W JP2007067378 W JP 2007067378W WO 2008065791 A1 WO2008065791 A1 WO 2008065791A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
electronic component
admittance
measurement
measured
Prior art date
Application number
PCT/JP2007/067378
Other languages
English (en)
French (fr)
Inventor
Naoki Fujii
Gaku Kamitani
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2007800440531A priority Critical patent/CN101542299B/zh
Priority to CN201110363325.2A priority patent/CN102520258B/zh
Priority to DE112007002891.2T priority patent/DE112007002891B4/de
Priority to JP2008547039A priority patent/JP5126065B2/ja
Priority to PCT/JP2007/073110 priority patent/WO2008066137A1/ja
Publication of WO2008065791A1 publication Critical patent/WO2008065791A1/ja
Priority to US12/474,389 priority patent/US8423868B2/en
Priority to JP2012104185A priority patent/JP5483132B2/ja
Priority to JP2012104184A priority patent/JP5483131B2/ja
Priority to JP2012104186A priority patent/JP5483133B2/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response

Definitions

  • the present invention relates to a method for correcting high-frequency characteristic errors of electronic components, and more particularly to a method for correcting errors in a measurement system in measuring high-frequency characteristics of a two-terminal impedance component.
  • the electrical characteristics of the electronic parts have been measured using an automatic characteristic sorter. Since the measurement system with the automatic characteristic sorter has different circuit characteristics from the standard measurement system, by correcting the measurement value with the automatic characteristic sorter and estimating the measurement value with the standard measurement system, Yield can be improved. As a method for performing such correction, techniques called SOLT, TRL calibration, and RRRR / TRRR calibration are known.
  • TRL calibration is the most effective technique that can be used to measure the true value of the scattering coefficient matrix of a surface-mounted component that is the subject.
  • SOLT calibration Another widely used conventional technology is SOLT calibration. These will be briefly described.
  • Figure 1 shows the error model used in a typical error elimination method (calibration method).
  • the electronic component 2 as the subject is connected on a transmission path formed on the upper surface of the measurement jig 10.
  • Connectors 51a and 61 provided at one end of the coaxial cables 50 and 60 are connected to the connectors 11a and ib provided at both ends of the transmission line of the measuring jig 10, and the other ends of the coaxial cables 50 and 60 are Connected to the network analyzer measurement port (not shown).
  • Arrows 51s and 61s indicate the calibration plane.
  • Figure 1 (b) is an error model for TRL correction, expressed as scattering coefficients S 1, S 2, S 3, and S 2.
  • Figure 1 (c) shows the error of the SOLT correction, which is measured by the scattering coefficients S 1, S 2, S 3, and S 2.
  • One measurement port represented by scattering coefficients E, E, ⁇ , ⁇ on both sides of the fixture circuit 14
  • Circuit 54 on the other side and circuit 64 on the other measurement port side represented by the scattering coefficients ⁇ and ⁇
  • TRL calibration instead of a standard device with a difficult device shape, several types of transmission lines (Lines) with different lengths are used, with direct connection between ports (Through), total reflection (Reflection usually short-circuited), and different lengths. Used as a standard device.
  • the transmission path of the standard device can be expected to be the most accurate, especially in a waveguide environment, as soon as a relatively known scattering coefficient is manufactured and the total reflection is short-circuited.
  • FIG. 3 shows the TRL calibration error factor derivation method.
  • the transmission line is hatched.
  • the calibration surface is the connection with the device as shown by arrows 2s and 2t.
  • the board 86 directly connected between the ports (Through), the board 83 of total reflection (normally short-circuited), and boards 84 and 85 of several types of transmission lines (Lines) of different lengths are used. Use as a standard device. In this example, Through is so-called Zero-Through.
  • the subject 2 is connected in series to a measurement substrate 87 that is longer by the size of the subject.
  • Fig. 4 shows the TRRR calibration error model, which is the same as the SOLT calibration error model shown in Fig. 1 (c).
  • Figure 5 shows the RRRR calibration error model, which is the same as the TRL calibration error model shown in Figure 1 (b).
  • the point of the RRRR / TRRR calibration method is the measurement method of “standard measurement value” used for calibration.
  • the measurement value of the standard device in SOLT and the standard transmission line in TRL is “standard measurement value”.
  • the measurement value measured by changing the position of the short-circuit reference on the measurement substrate 10a is taken as the “standard measurement value”. Since there is no influence of the connector, it can be said that this is a more accurate and effective method for desktop measurement than SOLT calibration and TRL calibration.
  • the jig transmission line 10s, 10t is connected to the short circuit reference (short chip). (2s) is used as a calibration reference because of the change in the reflection coefficient caused by the difference in the connection position, so if the wavelength of the signal to be measured is long (the frequency is low), the connection position of the short-circuit reference must be changed significantly. Since T and T in the figure need to be lengthened,
  • the jig 10a should be provided with a GND terminal for correction, and the short chip 2s can be positioned accurately. (For example, see Patent Documents 1 and 2).
  • Patent Document 1 WO2005 / 101033 Publication
  • Patent document 2 WO2005 / 101034
  • Non-Patent Document 1 Application Note 1287-9: In- Fixture Measurements Using Vector Net work Analyzers, ((1999 1999 Hewlett-Packard Company)
  • the test pins 32a and 32b protruding from the measurement terminal part 30 are connected to the test object.
  • the electrodes 2a and 2b of an electronic component 2 are pressed against each other and connected in series between the measurement pins 32a and 32b, and the measurement pins 32a and 32b are connected to the measuring device (not shown) via coaxial cables 34 and 36. It is connected to the. If the space is small enough to connect the electronic component 2 around the measurement terminal section 30 and it cannot be secured, the sample on the measurement terminal section 30 is substantially the same as the mass production device itself or the mass production device. Measurement system error correction must be performed under the restriction that it cannot be connected. In such a case, the following problem arises.
  • SOLT calibration requires measurement of 1-port devices at each port. That is, as shown in the plan view of the measurement board 10b in Fig. 7, when measuring two-terminal electronic parts in series connection between the slits 10k of one signal line ⁇ , it is not necessary for the measurement and is grounded to the terminal part. The terminal is! /. However, since one-port devices cannot be measured without a ground conductor in SOLT calibration, it is necessary to provide a ground terminal only for calibration in order to apply SOLT calibration.
  • the present invention corrects the high-frequency characteristic error of an electronic component that can be calibrated for a two-terminal impedance component while the measurement system to be corrected remains in the same state as at the time of actual measurement. Is to provide a method.
  • the present invention provides a method for correcting a high-frequency characteristic error of an electronic component configured as follows.
  • the method of correcting the high-frequency characteristic error of an electronic component may be obtained by measuring the electronic component, which is a two-terminal impedance component, using an actual measurement system and measuring the electronic component using a reference measurement system. This is a method of calculating an estimated value of the high frequency characteristics of the electronic component.
  • Electric The method for correcting the high frequency characteristic error of the sub-parts includes (1) a first step of measuring at least three first correction data acquisition samples having different high frequency characteristics using the reference measurement system, and (2) at least 3 Measure at least three second correction data acquisition samples that can be regarded as having the same high-frequency characteristics as the first correction data acquisition sample or the first correction data acquisition sample.
  • a fifth step of the electronic component to calculate the estimated value of the high-frequency characteristics of the electronic components would be obtained if measured by the reference measuring system.
  • the first and second steps can be executed using the correction data acquisition sample having substantially the same shape and size as the electronic component.
  • the force that could only be calibrated up to the tip of the coaxial connector in the measurement system of the automatic characteristic sorter The compensation up to the tip of the terminal to which the electronic component is connected can be performed by the above method.
  • one aspect is that the electronic components are connected in series to the actual measurement system and the reference measurement system.
  • the above formula is obtained by measuring terminals 1 and 2 at which impedance Z is measured when the electronic component is measured by the reference measurement system, and measuring the electronic component by the actual measurement system.
  • impedances Z and Z are connected in series between the terminal 1 and the terminal 1.
  • the impedance Z between the connection point of the impedance Z and Z and the ground.
  • impedance Z is connected between the terminal 2 and the terminal 2,
  • Impedance Z is connected between terminal 2 and ground. Impedance Z, Z d 22 f 1
  • Z 1, Z 2, Z are at least three first correction data acquisitions in the first step.
  • Z fl -[ ⁇ (Z22 + (Z 21 + Z 0 )) Z dl + ((Z 2l + Z 0 ) + Z l2 ) Z 22 + Z n (Z 2l + Z 0 ) ⁇ Z mU
  • Z 3 -[ ⁇ (Z 22 + (Z 21 + Z)) Z rf3 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + z 0 ) ⁇ z ml3
  • the measurement result in the reference measurement system can be estimated by correcting the error in the transmission path according to the measurement result in the series connection actual measurement system.
  • the electronic components are shunt-connected to the actual measurement system and the reference measurement system.
  • the mathematical formula is obtained by measuring terminals 1 and 2 at which admittance Y is measured when the electronic component is measured by the reference measurement system, and measuring the electronic component by the actual measurement system.
  • the error model is such that an admittance Y is connected between the terminal 1 and the terminal 1, and the terminal 1 and
  • An admittance ⁇ is connected between the connection point of the admittance Y and the ground, and the
  • An admittance ⁇ is connected between the connection point between the admittance ⁇ and the terminal 1 and the ground.
  • An admittance Y is connected between the terminal 2 and the terminal 2, and the admittance Y and
  • Instances ⁇ , ⁇ , ⁇ , Y, Y are the at least three first complements f 11 12 21 22 in the first step.
  • -[ ⁇ (3 ⁇ 4 + (F 21 + Y a )) Y dl + ((Y 2l + Y 0 ) + Y u ) Y 22 + Y l2 (Y 2l + Y 0 ) ⁇ Y mU + ⁇ (- -Y U ) Y 22 + ( -7 12 -Y) (Y 2l + Y 0 ) ⁇ Y
  • the measurement result in the reference measurement system can be estimated by correcting the error in the transmission path for the measurement result in the actual measurement system for shunt connection.
  • At least three of the first correction data acquisition sample or the second correction data acquisition sample are measured using an admittance ⁇ , ,, ⁇ mi ml2
  • the present invention it is possible to perform the calibration work for the two-terminal impedance component while the measurement system to be corrected remains in the same state as that at the time of actual measurement.
  • the automatic characteristic sorter that has not had an effective calibration method so far can be selected after performing accurate calibration. And guarantee of the user's characteristics.
  • the conventional error correction technique requires work that is not in the original measurement, such as removing a terminal from the connector and connecting a standard device for error correction. For this purpose, it is necessary to provide a grounding terminal or to have a structure capable of pressing the short-circuit standard.
  • the measurement for correction may be performed by the same operation as the normal measurement.
  • there is no need for a GND terminal and a short-circuit mechanism for correction and the terminal section only needs to have a function that allows normal measurement.
  • FIG. L (a) Explanatory diagram of measurement system, (b) Circuit diagram of TRL calibration error model, (c) Circuit diagram of SOLT calibration error model. (Conventional example)
  • FIG. 2 is an explanatory diagram of a method for deriving an error factor in SOLT calibration. (Conventional example)
  • FIG. 3 is an explanatory diagram of a TRL calibration error factor derivation method. (Conventional example)
  • FIG. 4 is a circuit diagram of an error model for TRRR calibration. (Conventional example)
  • FIG. 5 is a circuit diagram of an error model for RRRR calibration. (Conventional example)
  • FIG. 6 is an explanatory diagram of measurement positions in TRRR calibration and RRRR calibration. (Conventional example)
  • FIG. 7 is a plan view of a series-connected measurement board.
  • FIG. 8 is a plan view of a measurement substrate for shunt connection. (Conventional example)
  • FIG. 9 is a cross-sectional configuration diagram of a main part showing calibration of a measurement terminal part. (Example)
  • FIG. 10 (a) Configuration diagram of measurement system, (b) Front view of measurement substrate. (Example 1)
  • FIG. 11 is a graph showing the measurement results of the chip inductor. (Example 1)
  • FIG. 12 (a) Configuration diagram of measurement system, (b) Front view of measurement board. (Example 2)
  • FIG. 13 is a graph showing measurement results of chip resistance. (Example 2)
  • FIG. 14 is a circuit diagram of an error model for series connection. (Example 1)
  • FIG. 15 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
  • FIG. 16 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
  • FIG. 17 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
  • FIG. 18 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
  • FIG. 19 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 1)
  • FIG. 20 is a circuit diagram of a shunt connection error model. (Example 2)
  • FIG. 21 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • FIG. 22 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • FIG. 23 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • FIG. 24 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • FIG. 25 is a circuit diagram of an equivalent circuit viewed from the port 1 side. (Example 2)
  • the electrical characteristics of electronic components are usually represented by the scattering coefficient matrix. There is a special reason why the electrical characteristics must be represented by the scattering coefficient matrix. If it is a parameter that can be used, V is easier to use depending on the purpose.
  • an impedance T-type connection circuit is used here, and its error model is shown in Fig. 14. In the figure, the part enclosed by a dotted line is the error model for each port.
  • the error model is the terminals 1 and 2 where the object is measured in the reference measurement system, and the correction target.
  • the three impedance values for the correction data acquisition sample are Z, Z, and Z.
  • the error factor can be calculated by the following mathematical formula 5b] obtained from the mathematical formula 5a]. In the formula Which of the Kakuhaya different soils to choose will be described later
  • defJom (Z J2 -Z dl ) Z m + (Z d ⁇ ⁇ Z ii3 ) Z ml2 ⁇ (Z d -Z d2 ) Z m
  • Equation [0050] Z can be obtained by substituting Z Z in Equation [5b] into Equation [5a] as follows:
  • Equation 5c can be obtained by using ZZ instead of ZZ or using ZZ mil dl ml2 d2 ml3 d3.
  • port 1 is just a termination impedance.
  • Z is obtained by substituting Z Z obtained in Equation 6b for Equation 6a].
  • Impedance Z is connected between the connection point of impedance Z and Z and the ground
  • Impedance z is connected between
  • the impedance viewed from port 1 represents the state in which the boat 2 side is anti-reflective terminated (that is, normally connected with 50 ⁇ ) in the error model of Fig. 19. Is the force S that can be obtained from the set of the sample value Z for correction data acquisition and the measured value Z when it is connected.
  • Z indicates the characteristic impedance.
  • z fx — [ ⁇ (Z 22 + (Z 21 + Z 0 )) Z dl + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 ) ⁇ Z mt ,
  • Z / 2 -[ ⁇ (Z 22 + (Z 21 + Z 0 )) Z rf2 + ((Z 21 + Z 0 ) + Z 12 ) Z 22 + Z 12 (Z 21 + Z 0 ) ⁇ Z ml2
  • Equation 7 Since the value of ⁇ is one, ⁇ ⁇ ⁇ obtained in Equation 7 should have the same value.
  • the correction data acquisition sample is a series connection of two-terminal impedance elements, if the correction is performed based on the error model of FIG. 19, the same result as the correction based on FIG. 14 can be obtained.
  • the variable represents admittance.
  • the circuit model is different from that of series measurement, but they can be converted to each other.
  • the part displayed as DUT is the subject. Since it is a shunt measurement of a two-terminal impedance element, the subject can be modeled as a two-terminal impedance element.
  • the error model parameter values in the figure are taken as correction data.
  • the purpose of the correction is to derive from the measurement result of the sample to be obtained.
  • the correction data acquisition sample should be connected only in the state shown in the figure, so that the measurement jig is complicated and does not cause any problems!
  • port 2 is just a termination admittance.
  • the error factor can be calculated by the following equation [Equation 8b] obtained from the equation [Equation 8a].
  • Y can be calculated by substituting Y Y obtained by Equation [Equation 8b] into Equation [Equation 8a].
  • the mathematical expression 8c] can be obtained by using ⁇ and ⁇ instead of ⁇ and ⁇ , or using ⁇ and ⁇ mil dl ml2 d2 ml3 d. it can.
  • this mathematical expression 8b] is substantially the same mathematical expression as in the case of series measurement. Which solution to choose from among the different soils in the equation will be described later.
  • the error factor can be calculated by the following mathematical formula 9b] obtained from the mathematical formula 9a].
  • ⁇ 21 dl ⁇ 22 d2 m23 d can also be used to find the power.
  • ⁇ ⁇ and Y which are error factors that have not yet been obtained by the above procedure, are used to obtain correction data.
  • Y in the figure is an error factor that can be thought of as parallel connection of Y and Y (that is, the sum of values).
  • admittance Y is connected between terminal 1 and terminal 1, and terminal 1
  • Admittance Y is connected between the connection point of admittance Y and ground and admittance m 12 11
  • the admittance Y is connected between the connection point between the terminal Y and the terminal 1 and the ground, and the terminal 2 and the terminal
  • admittance Y is connected to admittance Y, and the connection point between admittance ⁇ and terminal 2 and ground m 22 22 m
  • the impedance viewed from port 1 represents the state in which the port 2 side is non-reflective terminated (that is, normally connected to 50 ⁇ ) in the error model of Fig. 23.
  • Y in the formula is characteristic admittance:
  • r fl -[ ⁇ (3 ⁇ 4 + (r 21 + ⁇ ⁇ )) ⁇ ⁇ + ((r 2I + r 0 ) + 7 12 ) F 22 + r 12 (r 21 + Y 0 ) ⁇ r ml
  • ⁇ 3 -[ ⁇ (3 ⁇ 4 + (3 ⁇ 4 + W + ((+ r 0 ) + d 22 + y 12 ( 21 + r 0 ) ⁇ y ro:
  • Equation 10 Since there is only one value for Z, Y, ⁇ , and ⁇ obtained in Equation 10 should have the same value.
  • Example 1 A case of series connection will be described with reference to FIG. 10 and FIG. Series connection is a method of connecting a device under test between two ports of a measuring machine.
  • the electronic component 2 as the subject is placed on the measurement board 20. It is arranged so as to straddle the slit 22x between the transmission lines 22a and 22b formed on the upper surface, and is connected in series between the transmission lines 22a and 22b. SMA connectors 56 and 66 are soldered to both ends of the transmission lines 22a, 22b; 24 on the upper and lower surfaces of the measurement board 20, and are connected to the network analyzer 70 via coaxial cables 58 and 68.
  • the network analyzer 70 is an Agilent network analyzer 8753D, and the measurement board 20 is designed with a characteristic impedance of 50 ⁇ .
  • the measurement board 20 has a length L of 50 mm and a width W of 30 mm.
  • the Agilent measurement jig 16192A is attached to the Agilent impedance analyzer 4291, and measurement is performed.
  • the electronic component 2 as the object is a 56 nH chip inductor having a size of 1.0 mm ⁇ 0.5 mm.
  • the three correction data acquisition samples include
  • Resistors of 2.2 ⁇ , 51 ⁇ , and 510 ⁇ were used.
  • the correction coefficient is calculated by the personal computer based on the principle 1> described above from the measurement data of the reference measuring instrument (4291) and the measuring instrument (8753D) actually used for measurement.
  • the procedure up to this point is the measurement system correction procedure.
  • Fig. 11 is a graph showing the results of measurement and correction processing for a 1005 size chip inductor (52nH).
  • Figure 11 (a) is a graph of the reference value, the measurement value before correction, and the measurement value after correction.
  • the “reference value” is a value measured with a reference measuring machine.
  • Before correction is the measurement result itself with the measuring instrument that is actually used for measurement, and is corrected, measured, and measured value.
  • “After correction” is a value obtained by correcting the measured value of the measuring instrument actually used for measurement (estimated value of the measured value when measured with the reference measuring instrument).
  • Fig. 1 l (b-1) is a graph of measured values before correction
  • Fig. 1 l (b-2) is a graph of measured values after correction
  • Fig. 11 (c) is a graph of reference values. It is.
  • FIG. Shunt connection is a method of connecting a device under test between one port of the measuring instrument and the ground.
  • the measurement board 21 has SMA connectors 56 and 66 soldered to both ends of the signal conductor 24 and the ground conductor 25, and is connected to the network analyzer 70 via coaxial cables 58 and 68.
  • Agilen for network analyzer 70 Using the network analyzer 8753D manufactured by t, the measurement board 20 is designed with a characteristic impedance of 50 ⁇ .
  • the measurement board 20 has a length L of 50 mm and a width W of 30 mm.
  • the measurement system used as a reference is measured by attaching an Agilent measurement jig 16192A to an Agilent impedance analyzer 4291.
  • the electronic component 2 as the subject is a 50 ⁇ chip resistor of l.Omm x 0.5mm size.
  • the correction coefficient is calculated from the measurement data of the reference measuring instrument (4291) and the measuring instrument (8753D) actually used for the measurement on the personal computer based on the principle 2> described above.
  • the procedure up to this point is the correction procedure.
  • Fig. 13 is a graph showing the results of measurement and correction processing performed on a 1005-sized chip resistor (50 ⁇ ).
  • Figure 13 (a) is a graph of the reference value, the measurement value before correction, and the measurement value after correction.
  • the “reference value” is a value measured with a reference measuring machine.
  • “Before correction” is the measurement result of the measuring instrument that is actually used for measurement, and is the measurement value that has not been corrected.
  • Correction “After” is a value obtained by correcting the measured value of the measuring instrument actually used for measurement (estimated value of the measured value when measured with the reference measuring instrument).
  • Fig. 13 (b-1) is a graph of measured values before correction
  • Fig. 13 (b-2) is a graph of measured values after correction
  • Fig. 13 (c) is a graph of reference values. .
  • the present invention can be applied not only to a measurement system using a measurement substrate but also to a measurement system using a measurement pin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

明 細 書
電子部品の高周波特性誤差補正方法
技術分野
[0001] 本発明は、電子部品の高周波特性誤差補正方法に関し、詳しくは、 2端子インピー ダンス部品の高周波特性の測定において測定系の誤差を補正する方法に関する。 背景技術
[0002] 従来、電子部品の量産工程において、 自動特性選別機を用いて電子部品の電気 特性が測定されている。 自動特性選別機での測定系は、基準となる測定系と回路特 性が異なるため、自動特性選別機による測定値を補正して、基準となる測定系での 測定値を推定することにより、歩留まりの向上を図ることができる。このような補正を行 う方法として、 SOLT、 TRL校正及び RRRR/TRRR校正と呼ばれる技術が知られ ている。
[0003] まず、 TRL/SOLT校正につ!/、て、説明する。
[0004] 被検体である表面実装部品の散乱係数行列の真値を測定するために使用できる 従来技術としては、 TRL校正が最も有効な技術である。また、広く使用されている従 来技術として SOLT校正がある。これらについて簡単に説明する。
[0005] 被検体の真値を得るためには、測定系の誤差要因を同定して、測定結果から誤差 要因の影響を取り除かなければならない。図 1に、代表的な誤差除去方法 (校正方 法)で使用される誤差モデルを示す。
[0006] すなわち、図 1 (a)に示すように、被検体である電子部品 2は、測定治具 10の上面 に形成された伝送路上に接続される。測定治具 10の伝送路の両端に設けられたコ ネクタ 11a, l ibには、同軸ケーブル 50, 60の一端に設けられたコネクタ 51 , 61が 接続され、同軸ケーブル 50, 60の他端は不図示のネットワークアナライザの測定ポ ートに接続される。矢印 51s, 61sは校正面を示す。
[0007] 図 1 (b)は TRL補正の誤差モデルであり、散乱係数 S , S , S , S で表さ
11A 12A 21A 22A れる測定治具の回路 12と、端子対 a — b 、 a — bとの間に、散乱係数 e , e , e ,
1 1 2 2 00 01 10 e で表される一方の測定ポート側の回路 52と、散乱係数 f , f , f , f で表される 他方の測定ポート側の回路 62とが接続されている。
[0008] 図 1 (c)は SOLT補正の誤差であり、散乱係数 S , S , S , S で表される測
11A 12A 21A 22A
定治具の回路 14の両側に、散乱係数 E , E , Ι , Ε で表される一方の測定ポート
DF RF SF
側の回路 54と、散乱係数 Ε , Ε で表される他方の測定ポート側の回路 64とが接
LF TF
続されている。
[0009] SOLT校正の場合、誤差要因を同定するためには、被検体測定面に少なくとも 3種 類の散乱係数が既知のデバイスを取り付けて測定を行わなければならず、図 2に示 すように、伝統的に開放 (ΟΡΕΝ)、短絡 (SHORT)、終端 (LOAD=50 Q )の標準器 8 0, 81 , 82が使用されることが多いが、同軸環境以外では、良好な「開放」「終端」の 標準器の実現は極めて困難であり、治具 10の先端 (矢印 51s, 61sで示す校正面) で校正できない。同軸環境であれば、このような標準器はスライディングロード等の手 法で実現できるため、この方法は広く使用されており、 SOLT校正と呼ばれる。
[0010] TRL校正とは、実現の難しいデバイス形状の標準器に代えて、ポート間直結状態( Through)と全反射 (Reflection通常は短絡)及び長さが異なる数種類の伝送路 (Li ne)を標準器として使用するものである。標準器の伝送路は、比較的散乱係数が既 知のものを製作しやすぐまた、全反射も短絡であれば比較的簡単にその特性を予 想できることから、特に導波管環境では最も精度の高い校正方法として知られている
[0011] 図 3に TRL校正の誤差要因導出方法を示す。図中、伝送路には斜線を付している 。校正面は、矢印 2s, 2tで示すように、デバイスとの接続部である。誤差要因を同定 するためには、ポート間直結状態 (Through)の基板 86と全反射 (Reflection通常 は短絡)の基板 83及び長さが異なる数種類の伝送路 (Line)の基板 84, 85を、標準 器として使用する。この例では、 Throughはいわゆる Zero-Throughである。被検体 の測定時には、被検体の大きさだけ長さを長くした測定基板 87に被検体 2をシリーズ 接続して測定する。
[0012] TRL, SOLT校正の概要は、先に述べたとおりである力 S、これらの技術には、以下 の 2つの問題がある。
[0013] (1)標準器である伝送路等 (Line数種類と Reflection)と Throughにおいて、同軸 -平面伝送路の接続部に生じる誤差要因が全て等しくなければ校正誤差を生じる。 たとえ各標準器で同じ種類のコネクタを使用しても、おのおのが異なる場合には特に コネクタの特性バラツキの影響が非常に大きくなり、ミリ波帯に近づくと事実上実施不 可能である。
[0014] (2)上記課題を解決するため、市販治具では、同軸コネクタを共通として標準器伝 送路と接触接続することでコネクタ測定のバラツキの影響を回避しょうという工夫もさ れているが、同軸ピンが破損するため接触部に十分な押しつけ荷重を確保すること が構造上難しぐ接触が安定しないために校正が不安定になることが多い。また、測 定周波数が高くなると一般に伝送路も同軸ピンも細くなるので、これらの位置決め再 現性による測定バラツキが大きくなつてしまう。
[0015] これらの問題を解決するため、いわゆる RRRR/TRRR校正法が提案されている。
[0016] 次に、 RRRR/TRRR校正法の概要を説明する。
[0017] これらは、ただ 1つの伝送路上の所定の数力所にて信号導体と接地導体を短絡す ることにより、伝送路先端までの測定系の誤差を同定し、表面実装部品の高周波電 気特性を高精度に測定できることが特徴である。 TRL/SOLT校正法で問題となつ て!/、た伝送路特性のバラツキや、伝送路と同軸コネクタの接点状態のバラツキと無関 係であることが利点となる。
[0018] 誤差モデルは、図 4及び図 5に示すとおり、 SOLT/TRL校正と同様である。すな わち、図 4は TRRR校正の誤差モデルであり、図 1 (c)に示した SOLT校正の誤差モ デノレと同じである。図 5は RRRR校正の誤差モデルであり、図 1 (b)に示した TRL校 正の誤差モデルと同じである。
[0019] RRRR/TRRR校正法のポイントは、校正に用いる「標準測定値」の測定方法であ り、 SOLTでは標準デバイス、 TRLでは標準伝送路の測定値を「標準測定値」として いるが、 RRRR/TRRR校正法では、図 6に示すように、測定基板 10a上で短絡基 準の位置を変えて測定した測定値を「標準測定値」として!/、る。コネクタの影響が生じ ないので、卓上測定においては、 SOLT校正や TRL校正より高精度で有効な方法 であるといえる。
[0020] しかし、 TRRR/RRRR校正では、治具伝送路 10s, 10tに短絡基準(ショートチッ プ 2s)を接続する位置の違いによって生じる反射係数の変化を校正基準として使用 するので、測定する信号の波長が長い場合 (周波数が低い)場合、短絡基準の接続 位置を大きく変える必要があり、図中の T , Tを長くする必要があるために、測定基
1 2
板 10aの長さ(矢印 Lで示す方向の寸法)を長くする必要がある。また、量産工程で用 いる自動特性選別機では、構造、寸法に制約があるので、治具 10aに補正のための GND端子を設けることや、ショートチップ 2sを精度良く位置決めできる構造にするこ とが難しい (例えば、特許文献 1、 2参照)。
特許文献 1: WO2005/101033号公報
特許文献 2 : WO2005/101034号公報
非特許文献 1: Application Note 1287-9: In- Fixture Measurements Using Vector Net work Analyzers, ( (しノ 1999 Hewlett-Packard Company)
発明の開示
発明が解決しょうとする課題
[0021] 電子部品の量産工程において用いられている自動特性選別機では、例えば図 9の 要部構成図に示したように、測定端子部 30から突出する測定ピン 32a, 32bに、被 検体である電子部品 2の電極 2a, 2bが押し当てられて測定ピン 32a, 32bの間に直 列に接続され、測定ピン 32a, 32bは、同軸ケーブル 34, 36を介して、不図示の測 定機に接続されている。測定端子部 30の周囲に、電子部品 2を接続できる程度の狭 い空間し力、確保できない場合、測定端子部 30に実質的に量産デバイス自体又は量 産デバイスと略同じ寸法 ·形状の試料しか接続できないという制約のもとで、測定系 の誤差補正を行わざるを得ない。このような場合には、次の課題を生じる。
[0022] (1)長さの異なる伝送路を自動特性選別機の測定端子部に接続することは、そもそ も不可能であり、 TRL校正が適用できない。
[0023] (2)SOLT校正は、現実的には測定端子部先端での校正ができず、同軸、導波管 系にしか適用できないという制約がある。通常は、同軸コネクタ部までは SOLT校正 により校正し、それ以後の伝送路は誤差が生じないように設計することで十分な測定 精度を得ている。ところ力 自動特性選別機の測定端子部では、同軸コネクタ以後の 伝送路に形状、寸法制約があるので、同軸コネクタ部までの校正だけでは、十分な 精度が得られなレ、ことが多レ、。
[0024] (3)SOLT校正で何らかの工夫を行って測定端子部の先端で標準デバイスを測定 しょうとしても、次の問題が生じる。
[0025] i) SOLT校正では各ポートでの 1ポートデバイスの測定が必要である。すなわち、 図 7の測定基板 10bの平面図に示すように 1本の信号線 ΙΟχのスリット 10kの間に 2 端子電子部品をシリーズ接続で測定する場合、測定に不要であるので端子部に接 地端子はな!/、。しかし、 SOLT校正では接地導体がなければ 1ポートデバイスは測定 できないため、 SOLT校正を適用するには、校正のためだけに接地端子を設ける必 要がある。
[0026] ii) SOLT校正では、 2つのポートそれぞれで、値が既知の 3種類の 1ポートデバイス の測定が必要であるが、図 8の測定基板 10cの平面図に示すように信号導体 10pと 接地導体 10gとの間にデバイスの 2つの端子が接続されるために、各ポートが独立し た 1ポートデバイスの測定が不可能である。
[0027] (4)2端子電子部品をシリーズ接続で測定する場合、測定に不要であるので端子部 に接地端子はない。し力、し、 RRRR校正ではショートでの測定が必要であるため、 RR RR校正を適用するには、校正のためだけに接地端子を設ける必要がある。
[0028] (5)RRRR校正では基板の数箇所でショートを行!/、測定するが、周波数が低!/、場 合、短絡基準の接続位置を大きく変える必要があり、そのために測定基板の長さを 長くする必要がある。
[0029] 本発明は、かかる実情に鑑み、 2端子インピーダンス部品について、補正の対象と なる測定系が実測時と同じ状態のままで校正作業を行うことができる、電子部品の高 周波特性誤差補正方法を提供しょうとするものである。
課題を解決するための手段
[0030] 本発明は、上記課題を解決するために、以下のように構成した電子部品の高周波 特性誤差補正方法を提供する。
[0031] 電子部品の高周波特性誤差補正方法は、 2端子インピーダンス部品である電子部 品を実測測定系で測定した結果から、当該電子部品を基準測定系で測定したなら ば得られるであろう当該電子部品の高周波特性の推定値を算出する方法である。電 子部品の高周波特性誤差補正方法は、(1)高周波特性の異なる少なくとも 3つの第 1の補正データ取得用試料を、前記基準測定系で測定する第 1のステップと、 (2)少 なくとも 3つの前記第 1の補正データ取得用試料、又は前記第 1の補正データ取得用 試料と同等の高周波特性を有すると見なせる少なくとも 3つの第 2の補正データ取得 用試料を、前記実測測定系で測定する第 2のステップと、 (3)前記第 1及び第 2のス テツプで得られた測定結果から、前記実測測定系で測定した測定値と前記基準測定 系で測定した測定値とを、伝送路の誤差補正係数を用いて関連付ける数式を決定 する第 3のステップと、 (4)任意の電子部品を前記実測測定系で測定する第 4のステ ップと、(5)前記第 4のステップで得られた測定結果に基づいて、前記第 3のステップ で決定した前記数式を用いて、当該電子部品を前記基準測定系で測定したならば 得られるであろう当該電子部品の高周波特性の推定値を算出する第 5のステップとを 備える。
[0032] 上記方法によれば、電子部品と実質的に同じ形状、寸法の補正データ取得用試料 を用いて、第 1及び第 2のステップを実行することができる。従来、自動特性選別機の 測定系では同軸コネクタ先端までの校正しかできなかった力 上記方法により電子部 品を接続する端子部先端までの補正ができるようになる。
[0033] 好まし!/、一態様は、前記実測測定系及び前記基準測定系にお!/、て、前記電子部 品はシリーズ接続される。前記数式は、前記基準測定系で電子部品を測定したとき のインピーダンス Z が測定される端子 1 , 2 と、前記実測測定系で電子部品を測定
m m m
したときのインピーダンス Zが測定される端子 1 , 2との間に接続される誤差モデル
d d d
に基づいて導出される。前記端子 1 力も見たインピーダンスを算出するとき、前記誤
m
差モデルは、前記端子 1 と前記端子 1との間にインピーダンス Z と Zとが直列に接
m d 11 f
続され、前記インピーダンス Z と Zとの接続点とグランドとの間にインピーダンス Z
11 f 12 が接続され、前記端子 2と前記端子 2 との間にインピーダンス Z が接続され、前記
d m 21
端子 2とグランドとの間にインピーダンス Z が接続される。前記インピーダンス Z , Z d 22 f 1
, Z , Z , Z は、前記第 1のステップで少なくとも 3つの前記第 1の補正データ取
1 12 21 22
得用試料のインピーダンスを測定した結果 Z , Z , Z と、前記第 2のステップにお
dl d2 d3
いて、少なくとも 3つの前記第 1の補正データ取得用試料又は前記第 2の補正データ 取得用試料について、前記端子 1 のインピーダンスを測定した結果 z , ζ , ζ
m mil ml2 ml
、及び前記端子 2 のインピーダンスを測定した結果 Z , Ζ , Ζ とを用い、次の
3 m πι21 πι22 m23
数式 [数 la]と、
[数 la]
denom (ZJ2 - Zdl)Zml3 + (Z ― Zd3)Zml2 + (Zd3― Zd2)ZmU = [
Figure imgf000009_0001
I denom 士 ^/( rfi)(Z 3 i 一 一 ZwllX )Z
I denom 次の数式 [数 lb]と、
[数 lb]
denom (Zd2 -Zdl)Zm23 +{Zd{ -Zd3)Zm22 +(Zrf3 -Zd2)Zm2l [ 土 V 一 ^l
~ 一 一 Z ^t
I denom 土 (2rf2― ZrflX + 一 ) X 一
I denom
から得られる 16通りの Z , Z , Z , Z の糸且み合わせのうち、
11 12 21 22
次の数式ほ女 2]について、 Z , Z , Z がー致する少なくとも 1つの組み合わせを用
fl f2 f3
いて、決定される。
ほ夂 2]
Zfl = -[{(Z22 +(Z21 +Z0))Zdl + ((Z2l +Z0) + Zl2)Z22 +Zn(Z2l +Z0)}ZmU
+ {(-Z12 -ZU)Z22 +(-Z12 -ZU)(Z2, +Ζ0)}ΖΛ
+ {(— - zu)(z21 +z。)一 ZUZI2 /ム 22 -Z Zl2 (Z21 + Z0) ]
/[{( + (Z21 +Z0)}Zmll + (-Z12 -Zn)Z22 +(-Z12-Z11)(Z21+Z0)] z,2 = -[{(z22 + (Z21 + Z0 ))Z,2 + ((Z21 +Z0) + Z12 )Z22 + Z12 (Z21 + Z0 )}Zml2
+ {(-zn― Zu )Z22 + (-Z12― Z, , )(Z21 + Z0 )}Z,2
+ {( -^12— ^ll) 21 + Z0ノー Zu 12 Z22u 12( 2i +Z0) J
/[{(Z22 + (Z21 + Z0)}Zmll + (-Zu― ZU)Z22 + (-Z12― Z„)(Z2I + z
Z 3 = -[{(Z22 + (Z21 + Z ))Zrf3 + ((Z21 +Z0) + Z12 )Z22 +Z12(Z21+ z0 )}zml3
+ {(- Z -Zn)Z22 +(- Z12 -Zn)(Z21 +z0)}z,3
+ {(—Z12— Zn21 一 _ZUZ12)Z22― Zn^l2 ^21 +z ]
/[{(Z22 +(Z21 +Z0)}Zml3 +(-Z12 -Zn)Z22 +(— Z12 -Z„)(Z21 +Z0)]
[0034] この場合、シリーズ接続の実測測定系での測定結果にっレ、て伝送路の誤差を補正 することにより、基準測定系での測定結果を推定することができる。
[0035] 好まし!/、他の態様は、前記実測測定系及び前記基準測定系にお!/、て、前記電子 部品はシャント接続される。前記数式は、前記基準測定系で電子部品を測定したとき のアドミタンス Y が測定される端子 1 , 2 と、前記実測測定系で電子部品を測定し
m m m
たときのアドミタンス Yが測定される端子 1 , 2との間に接続される誤差モデルに基
d d d
づいて導出される。前記端子 1 力も見たアドミタンスを導出するとき、前記誤差モデ ノレは、前記端子 1 と前記端子 1 との間にアドミタンス Y が接続され、前記端子 1 と
m d 12 m 前記アドミタンス Y との接続点とグランドとの間にアドミタンス Υ が接続され、前記ァ
12 11
ドミタンス Υ と前記端子 1 との接続点とグランドとの間にアドミタンス Υが接続され、
12 d f
前記端子 2と前記端子 2 との間にアドミタンス Y が接続され、前記アドミタンス Y と
d m 22 22 前記端子 2 との接続点とグランドとの間にアドミタンス Y が接続される。前記アドミタ
m 21
ンス Υ, Υ , Υ , Y , Y は、前記第 1のステップで少なくとも 3つの前記第 1の補 f 11 12 21 22
正データ取得用試料のアドミタンスを測定した結果 Y Υ , Y と、前記第 2のステ
dl d2 d3
ップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料又は前記第 2の補 正データ取得用試料について、前記端子 1 のアドミタンスを測定した結果 Y , Y
m mil ml
, Υ 、及び前記端子 2 のアドミタンスを測定した結果 Υ , Υ , Υ とを用い、
2 ml3 m m21 m22 m23 次の数式ほ女 3a]と、
[数 3a]
denom = (Yd2 - Yd, ) + (Ydl - )YmX1 + ( - Yd2 ) 1 =土 [ 2 ^ Λ/¾3
- { ( - ) 2 3 + ( - ) 3 + ( - ) 2} ]
I denom
I denom 次の数式 [数 3b]と、
[数 3b] denom = (Yd2 - )Ym23 + ( - Yd3 )Ym22 + ( 一 Yd2 )Ym2l
Figure imgf000011_0001
- fc - ) 2 23 + ( -^3)^2,^23 + ¾2 -^1)> 21^22} ]
I denom
/ denom から得られる 16通りの Y , Υ , Υ , Υ の組み合わせのうち、
11 12 21 22
次の数式ほ女 4]について、
[数 4コ
Υ =-[{(¾ +(F21 +Ya))Ydl +((Y2l +Y0) + Yu)Y22 +Yl2(Y2l +Y0)}YmU + {(- -YU)Y22 +(-712 -Y )(Y2l +Y0)}Y
+ {(— +70)-rn712}r22 -Y Y (Y2l + Y0) ]
/[{(F22 +(721 +r0)}i il +(-712 -Yu)Yn +{-Yn -Yu)(Yn +Y,)]
Y + )+ )¾ +ri2(F21 +r0)}7ml2
+ {(-Yn - ) ¾ + (- - ) + )}
+{(- ¾ - ) σ2, -YuYniY +γ0) ]
/fc +σ 12 + (- - ) ¾ - :— [{(¾ + 21 + )) +((¾ + 0) + r12)F22 +r12(r21 +Y0)}vml3
+ {(-Yn - ) ¾ + (-^ -^) +y 3
+{(-^12 - +Y,)-YnYu}Yi2 -^ΜΥ21 + ) ]
/[{(¾ +σ21 +y K3 +(- ¾ - ) - ) Y , Y , Y がー致する少なくとも 1つの組み合わせを用いて、決定される。
f l f2 f3
[0036] この場合、シャント接続の実測測定系での測定結果について伝送路の誤差を補正 することにより、基準測定系での測定結果を推定することができる。
[0037] なお、第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料 又は第 2の補正データ取得用試料について実測測定系でアドミタンス Υ 、Υ , Υ mi l ml2
, Υ 、Y , Υ を測定するとき、端子 1と端子 2との間が電気的に接続されて ml3 πι21 πι22 m23
いてもよい。
発明の効果
[0038] 本発明によれば、 2端子インピーダンス部品について、補正の対象となる測定系が 実測時と同じ状態のままで校正作業を行うことができる。その結果、これまで有効な 校正方法がなかった自動特性選別機にお!/、て正確な校正を実施の上選別を実施で きるので、これまで不可能であった量産デバイスの正確な測定選別及び特性のユー ザ一保証が可能になる。
[0039] また、従来の誤差補正技術では、誤差補正のためにコネクタから端子を外して標準 デバイスを接続する等の本来の測定にはない作業が必要となる。また、そのためには 接地端子を設けたり、短絡基準を押し当てることができる構造としたりする必要がある 。これに対して、本発明の方法では、通常の測定と同じ作業で補正のための測定を 行えばよい。また、補正のための GND端子、短絡機構は不要であり、端子部には通 常の測定ができる機能だけがあればよい。
図面の簡単な説明
[0040] [図 l] (a)測定系の説明図、(b)TRL校正の誤差モデルの回路図、(c) SOLT校正の 誤差モデルの回路図である。 (従来例)
[図 2]SOLT校正の誤差要因導出法の説明図である。 (従来例)
[図 3]TRL校正の誤差要因導出法の説明図である。 (従来例)
[図 4]TRRR校正の誤差モデルの回路図である。 (従来例)
[図 5]RRRR校正の誤差モデルの回路図である。 (従来例)
[図 6]TRRR校正、 RRRR校正での測定位置の説明図である。 (従来例)
[図 7]シリーズ接続の測定基板の平面図である。 (従来例) [図 8]シャント接続の測定基板の平面図である。 (従来例)
[図 9]測定端子部の校正を示す要部断面構成図である。 (実施例)
[図 10] (a)測定系の構成図、(b)測定基板の正面図である。 (実施例 1)
[図 11]チップインダクタの測定結果を示すグラフである。 (実施例 1 )
[図 12] (a)測定系の構成図、(b)測定基板の正面図である。 (実施例 2)
[図 13]チップ抵抗の測定結果を示すグラフである。 (実施例 2)
[図 14]シリーズ接続の誤差モデルの回路図である。 (実施例 1)
[図 15]ポート 1側から見た等価回路の回路図である。 (実施例 1)
[図 16]ポート 1側から見た等価回路の回路図である。 (実施例 1)
[図 17]ポート 1側から見た等価回路の回路図である。 (実施例 1)
[図 18]ポート 1側から見た等価回路の回路図である。 (実施例 1)
[図 19]ポート 1側から見た等価回路の回路図である。 (実施例 1)
[図 20]シャント接続の誤差モデルの回路図である。 (実施例 2)
[図 21]ポート 1側から見た等価回路の回路図である。 (実施例 2)
[図 22]ポート 1側から見た等価回路の回路図である。 (実施例 2)
[図 23]ポート 1側から見た等価回路の回路図である。 (実施例 2)
[図 24]ポート 1側から見た等価回路の回路図である。 (実施例 2)
[図 25]ポート 1側から見た等価回路の回路図である。 (実施例 2)
符号の説明
[0041] 2 電子部品
20, 21 測定基板
22a, 22b 伝送路
26 信号導体
28 接地導体
発明を実施するための最良の形態
[0042] 以下、本発明の実施の形態について、図 9〜図 25を参照しながら説明する。
[0043] まず、本発明の誤差補正方法の原理について、図 14〜図 25を参照しながら説明 する。 [0044] <原理 1〉 シリーズ接続の場合の測定誤差補正の原理について、図 14〜図 19 を参照しながら説明する。
[0045] マイクロ波以上の周波数では、通常電子部品の電気特性は散乱係数行列で表現 される力 電気特性を散乱係数行列で表現しなければならない特段の理由があるわ けではなぐこれと相互変換できるパラメータであれば、 目的に応じてより使用しやす V、パラメータを用いればょレ、。 2端子インピーダンス素子のシリーズ測定を想定した際 の誤差パラメータとして、ここではインピーダンスの T型接続回路を採用し、その誤差 モデルを図 14に示す。図中、点線で囲まれた部分が各ポートの誤差モデルであり、 誤差モデルは、基準となる測定系で被検体が測定される端子 1 , 2 と、補正の対象
m m
となる測定系で被検体が測定される端子 1 , 2との間に接続されている。変数 Zはィ
d d
ンピーダンスを表す。また、 DUTと表示された部分が被検体である。 2端子インピー ダンス素子のシリーズ測定であるので、被検体は 2端子インピーダンス素子としてモ デル化し、シャント容量は無視し得ると考える。
[0046] ポート 1から観察すればポート 2は単なる終端インピーダンスにすぎないので、図 15 の等価回路を得る。ここに、 Zはポート 2の等価インピーダンスである。
2
[0047] 図 15を注意深く観察すれば、 Z , Z , Zは単なる直列接続である。そこで、 Z と Z
13 d 2 13 をまとめて Z と表示すると、等価回路は図 16のように変形できる。
2 el
[0048] 図 16の誤差モデル中の未知数は Z Z Z の 3つであるので、補正データ取得
11 12 el
用試料 Zを測定した際の測定値 Z を 3組取得すれば、これら未知数は決定する。具
d m
体的には、補正データ取得用試料 3つのインピーダンス値を Z , Z , Z 、これに対
dl d2 d3
する測定値を Ζ , Ζ , Ζ とすると、次の数式ほ女 5a]の関係が成り立つ。
mi l ml2 ml3
[数 5a]
Figure imgf000014_0001
z 12 + + 2
Μ13 ' zn +zel + zdi 11
[0049] 誤差要因は、数式ほ女 5a]から求めた次の数式ほ女 5b]によって、計算できる。式中 の土が異なる角早のうち、どちらを選択するかは後に述
[数 5b]
defJom = (ZJ2 -Zdl)Zm +(Zd} ~Zii3)Zml2 ^ (Zd -Zd2)Zm
ΖΠ = [ 士 "\ / 一 一 一 一 A 一
I denom
Z12 _Zrfl)(Z 3 (~Zd2 -Zdl)Zd3 +ZdxZdl ^m 一 ZmU)(Zml3 + /»ll)Z + ^ m ^ mil)
I denom
[0050] Z は、数式 [数 5b]の Z Z を数式 [数 5a]に代入すれば、次の数式 [数 5c]によ
el 11 12
り求められるが、誤差補正の計算、すなわち後述する数式 [数 7]には使用されない。
[数 5c] γ
1 一 7 + 7 _ 7 1 なお、数式 [数 5c]は、 Z Z の代わりに、 Z Z を用いても、あるいは Z Z mil dl ml2 d2 ml3 d3 を用いても、求めること力 sできる。
[0051] ポート 2から観察すれば、ポート 1は単なる終端インピーダンスにすぎないので、図 1
7の等価回路を得る。ここに、 Zは、ポート 1の等価インピーダンスである。
[0052] 図 17を注意深く観察すれば、 Z , Z , Zは単なる直列接続である。そこで、 Z と Z
21 d 1 21 をまとめて Z と表示すると、等価回路は図 18のように変形できる。
1 e2
[0053] 図 18の誤差モデル中の未知数は Z Z Z の 3つであるので、補正データ取得
21 22 e2
用試料 Zを測定した際の測定値 Z を 3組取得すれば、これら未知数は決定する。
d m
[0054] 具体的には、 3つの補正データ取得用試料 (i=l, 2, 3)について、それぞれのィ ンピーダンス値を Z 、これに対する測定値を Z とすると、次の数式ほ女 6a]が成り立
di m2i
[数 6a] 7 21
22 + Ze2 + ,
' 7-^—つつ -- (ze -+
722 +ze22
(Ze " ά " τι I
m23 77 +7 + +7
22 3
[0055] 3つの補正データ取得用試料 (i=l 2 3)についての数式ほ女 6a]から、誤差要因 である Z , Z を求めると、次の数式 [数 6b]が求まる。式中の土が異なる解のうち、ど
21 22
ちらを選択するかは後に述べる。
[数 6b]
denom = (Zd2 -Zdl)Zm23 +(Zdl— z Zw22 +(Zrf3 -Zd2)Zm2X
Figure imgf000016_0001
― {( ム )Z + ( 一 Ζ ZW21 M23 + (Zd2― Zdl)Z
I denom I denom
[0056] Z は、数式ほ女 6b]で求めた Z Z を数式ほ女 6a]に代入すれば、次の数式ほ女 6
21
c]により求められる力 誤差補正の計算、すなわち後述する数式ほ女 7]には使用され ない。
[数 6c]
7 一 ^ ~ n^i2
2 — 7 + 7 — 7 d なお、数式ほ女 6c]は、 Ζ Z の代わりに、 Z Z を用いても、あるいは Z Z πι21 dl πι22 d2 m23 d3 を用いても、求めること力 sできる。
[0057] 以上によって Z , Z を除く誤差モデルは定まる。
13 23
[0058] ところで、 Z と Z については、補正データ取得用試料をシリーズ接続するだけで
13 23
は、これらのィ直を求めることができない。
[0059] しかし、 Z と Z は直列接続の関係であるので、別個独立にその値を定める必要は
13 23
ないので、誤差モデルを図 19のように描き直す。図中の Zは、 Z と Z の直列接続(
f 13 23
つまり値の和)と観念できる誤差要因である。 [0060] 図 19の誤差モデルは、端子 1 と端子 1との間にインピーダンス Z と Zとが直歹 I
f
接続され、インピーダンス Z と Zとの接続点とグランドとの間にインピーダンス Z
11 f 12 接続され、端子 2と端子 2 との間にインピーダンス Z が接続され、端子 2とグランド
d m 21 d
との間にインピーダンス z が接続されている。
[0061] 例えばポート 1から見たインピーダンスは、図 19の誤差モデルにおいてボート 2側 が無反射終端 (つまり、通常は 50 Ωが接続された状態)された状態を表していることか ら、 Zは、補正データ取得用試料の値 Zとこれを接続した際の測定値 Z の組から求 f a m めること力 Sでさる。
[0062] 3つの補正データ取得用試料 (i=l, 2, 3)について、補正データ取得用試料の値 Z と、これを接続した際の測定値 Z との組み合わせには 3通りあり、次の数式ほ女 7] ai mi
で Zを計算することができる。なお、式中の Zは特性インピーダンスを示す。
fi 0
[数 7]
zfx =— [{(Z22 + (Z21 + Z0 ))Zdl + ((Z21 +Z0) + Z12 )Z22 + Z12 (Z21 + Z0 )}Zmt ,
+ {(— Z12 -Zn)Z22 + (-z12ηχζ210)}ΖΛ
+ {(— Z12― ZH)(Z21 Zlla^12 / — Zn^12
/[{(Z22 + (Z21 +Z0)}Zmll + (-Z12 -Zn)Z22 + (-Z12 -ZU)(Z21 +Z0)]
Z/2 =-[{(Z22 + (Z21 +Z0))Zrf2 + ((Z21 +Z0) + Z12)Z22 +Z12(Z21 +Z0)}Zml2
+ {(-
+ {(
Figure imgf000017_0001
+ Ζ0) J
/[{(Ζ22 + (Ζ210)}Ζ„Π + (-Ζ12η22 +(-Ζ12 -ZU)(Z21 +Z0)] ζ 3 = -[{(ζ22 + (Ζ21 + Ζ0 ))Zd3 + ((Ζ210) + Ζ1222 + Ζ1221 + Ζ0 )}ΖΜ13
+ {(- Ζ,2Π22 + (-Ζ12η)(Ζ210)}Ζ^3
+ {(- Ζ12Π)(Ζ21 +Ζ - Ζ„Ζ1222ηΖη2]0) ]
/[{(Ζ22 + (Ζ21 +Za)}Zm +(- Ζ12 -Zu)Z22 +(-Zn -ZU)(Z21 +Z0)]
[0063] Ζの値は 1つであるので、数式ほ女 7]で求めた Ζ Ζ Ζ は、同じ値を取るべきで
f fl 12 f3
ある力 S、数式ほ女 5b]及びほ女 6b]に示すように、 Ζ Ζ , Ζ , Ζ には、符号の異な
12 21 21 22
る 2つの解があり、その通りの組み合わせによっては、 Ζ , Ζ , Ζ がー致しない。
fl f2 f3
[0064] そこで、次の表 1に示す 24= 16通りの組み合わせパターンのそれぞれについて、 上記数式ほ女 7]の Z Z , Z を計算し Z Z Z がー致する Z , Z Z Z の
fl f2 f3 、 fl f2 f3 12 21 21 22 組み合わせを選択することにする。 Z , Z , Z がー致する組み合わせは複数存在
f l f2 f3
するので、そのうちのいずれを用いてもよい。
[表 1]
Figure imgf000018_0001
[0065] なお、そもそも、 Z と Z は直列接続として Zを形成する誤差要因なのであるから、
13 23 f
補正データ取得用試料が 2端子インピーダンス素子のシリーズ接続をするものである 限り、図 19の誤差モデルに基づいて補正を行えば、図 14に基づく補正と全く同じ結 果が得られる。
[0066] <原理 2〉 シャント測定時の 2ポート誤差補正の原理について、図 20〜図 25を参 照しながら説明する。
[0067] 2端子インピーダンス素子のシャント測定を想定した際には、誤差パラメータとしてィ ンピーダンスの兀型接続回路にれも回路ノ ラメータとしてはあまり一般的ではない) を採用することとし、この誤差モデルを図 20に示す。図中、点線で囲まれた部分が各 ポートの誤差モデルであり、誤差モデルは、基準となる測定系で被検体が測定される 端子 1 , 2 と、補正の対象となる測定系で被検体が測定される端子 1 , 2との間に m m d d
接続される。変数はアドミタンスを表す。回路モデルはシリーズ測定の場合と異なるが 、これらは相互変換可能である。また、 DUTと表示された部分が被検体である。 2端 子インピーダンス素子のシャント測定であるので、被検体は 2端子インピーダンス素 子としてモデル化し得る。
[0068] シリーズ測定の場合と同様、図中の誤差モデルのパラメータの値を、補正データ取 得用試料の測定結果から導出することが補正の目的である。やはり、補正データ取 得用試料は図に示された状態での接続のみを行うこととし、測定治具の複雑化といつ た課題を生じな!/、ようにする。
[0069] さて、等価回路こそ一見異なるものの、以下のように、シリーズ接続の場合とほとん ど同様の手順で誤差モデルのパラメータを決定できる。
[0070] まず、ポート 1から観察した際に、ポート 2は単なる終端アドミタンスにすぎないので
、図 21の等価回路を得る。ここに、 Yはポート 2の等価アドミタンスである。
2
[0071] 図 21の Y Y Yは並列接続の関係であるから、 Y と Yをまとめて Y と表示す
13 d 2 13 2 el
ると、等価回路は図 22のように変形できる。
[0072] シリーズ測定の場合と同様、図 22の誤差モデル中の未知数は 3つであるので、や はり 3つの補正データ取得用試料の測定によって、これら未知数は決定することがで きる。シリーズ測定の場合に倣って変数名を決めると、次の数式ほ女 8a]が成り立つ。
[数 8a] γ 一 (ュ el + ノ ト V γ _ + ) v γ γ
Figure imgf000019_0001
[0073] 誤差要因は、数式 [数 8a]から求めた次の数式 [数 8b]によって計算できる。
[数 8b]
denom = ¾2 _ ) 3 + ( - ^) 2 + ( - 2) 】
Figure imgf000019_0002
I denom
W ( 2 — ) (¾ + (— ^2 - ) + ) ( 2 _ - + U 2 )
I denom
[0074] Y は、数式 [数 8b]で求めた Y Y を数式 [数 8a]に代入すれば、次の数式 [数
el 11 12
8c]により求められる力 S、誤差補正の計算、すなわち後述する数式ほ女 10]には使用 されない。
[数 8c]
γ γ - γ γ
γ _ 1m\\1\2 1\\1Υ1 γ
~ γ +γ -γ ά1
-Ίΐ卞 2 -'mil なお、数式ほ女 8c]は、 Υ ,Υ の代わりに、 Υ ,Υ を用いても、あるいは Υ ,Υ mil dl ml2 d2 ml3 d を用いても、求めること力 Sできる。
3
[0075] 実は、この数式ほ女 8b]は、シリーズ測定の場合と実質的に同じ数式である。式中の 土が異なる解のうち、どちらを選択するかは後に述べる。
[0076] 次にポート 2から見た場合につ!/、て、未知数の導出を説明する。
[0077] ポート 2から観察した際にはポート 2は単なる終端アドミタンスにすぎないので、図 2 3の等価回路を得る。ここに、 Yはポート 1の等価アドミタンスである。
[0078] 図 23の Υ , Υ , Yは並列接続の関係であるから、 Y と Yをまとめて Y と表示す
23 d 1 23 1 e2
ると、等価回路は図 24のように変形できる。
[0079] ポート 1の場合と同様に変数名を決めると、誤差要因は数式を同様に計算でき、次 の数式ほ女 9a]が成り立つ。
[数 9a]
Figure imgf000020_0001
γ (^el + )^22 I γ
m23 - γ γ γ 21
[0080] 誤差要因は、数式ほ女 9a]から求めた次の数式ほ女 9b]によって計算できる。
[数 9b] denom = (Yd2― Ydl )Fra23 + ( - )Yml2 + ( 一 Yd2 )Ym21 ~[土 一】/l ュ
- * [( +( - ) " ~ ^ΐ
/ denom
Y =土 十厂 — 】ゴ )(
I denom
[0081] Y は、数式 [数 9b]で求めた Y , Υ を数式 [数 9a]に代入すれば、次の [数 9c]
e2 11 22
により求められるが、誤差補正の計算、すなわち後述する数式ほ女 10]には使用され ない。
[数 9c]
γ γ - γ γ
el " γ + γ - γ dl なお、数式ほ女 9c]は、 Y Υ の代わりに、 Υ Υ を用いても、あるいは Υ Υ
πι21 dl πι22 d2 m23 d を用いても、求めること力 sできる。
3
[0082] 以上の手順でまだ得られていない誤差要因である Υ , Y は、補正データ取得用
13 23
試料をシャント接続するだけでは求めることが不可能である力 並列接続の関係であ るので、別個独立にその値を定める必要はないので、誤差モデルを図 25のように描 き直す。図中の Yは、 Y と Y の並列接続(つまり値の和)と観念できる誤差要因で
f 13 23
ある。
[0083] 図 25の誤差モデルは、端子 1 と端子 1との間にアドミタンス Y が接続され、端子 1
m d 12
とアドミタンス Y との接続点とグランドとの間にアドミタンス Υ が接続され、アドミタン m 12 11
ス Y と端子 1との接続点とグランドとの間にアドミタンス Yが接続され、端子 2と端子
12 d f d
2 との間にアドミタンス Y が接続され、アドミタンス Υ と端子 2 との接続点とグランド m 22 22 m
との間にアドミタンス γ が接続されている。
21
[0084] 例えばポート 1から見たインピーダンスは、図 23の誤差モデルにおいてポート 2側 が無反射終端 (つまり、通常は 50 Ωが接続された状態)された状態を表していることか ら、 Υは、補正データ取得用試料の値 Υとこれを接続した際の測定値 Υ の組から求 f d m めること力 sできる。この点でもシリーズ測定の場合と同様であり、次の数式数式ほ女 10 ]で丫を計算すること力できる。なお、式中の Yは特性アドミ:
fi 0
[数 10] rfl =-[{(¾ +(r21ϋ))Υιη +((r2I + r0) + 712)F22 +r12(r21 +Y0)}rml
+ {(- 12 -γ )γ22 + (-Y -Yn)(Y2l +Y0)}Ydl
+ — +70)-7n¾}722 -YnYn(Y2l+Y0) ]
/[{(¾ +r0)}Ymn + (-Yn - ) - ) ( + 0)] γη = =-[{( +(¾ +y。)) +(σ21 +y。)+¾) +y0 }rm
(- 22 + (- ¾ - yu)( , + )}
(― Yn - ) σ21 + 0)-K„y12}722 -yur12(r21 +y0) ]
r22 + (Y2l + r0)}Ymn + (- ― γη12 + (- 2 - γηχγ2 + r0)]
^3 =-[{(¾+(¾ + W +(( +r0) + d22 +y12( 21+r0)}yro:
+ {(- 12 -Yn)Y22 + ^Yn -Yn)(Y2] +Y0)}Yd3
+ {(-Yn一^) +r0)-^,712}722ηΥη2 +Y0) ]
/[{( +( + 0)}Ymn + (- ¾— ) + (- — w21
[0085] Zの値は 1つであるので、数式ほ女 10]で求めた Y 、 Υ , Υ は、同じ値を取るべき
f fl f2 f3
である力、数式ほ女 8b]及びほ女 9b]に示すように、 Y , Υ , Υ , Υ には、符号の
12 12 21 22
異なる 2つの解があり、その組み合わせによっては、 Υ , Υ , Υ がー致しない。
fl 12 f3
[0086] そこで、次の表 2に示す 24= 16通りの組み合わせパターンのそれぞれについて、 上記数式ほ女 10]の Y , Y , Y を計算し Y , Y , Y がー致する Y , Y , Y , fl f2 f3 、 fl f2 f3 1 12 21
Y の組み合わせを選択することにする。 Y , Y , Y がー致する組み合わせは複
22 fl f2 f3
数存在するので、そのうちのいずれを用いてもよい。
[表 2] 1符号 丫 21符号 丫12符号 丫22符号
パターン 1 + + + +
パターン 2 + + + 一
パターン 3 + + 一 +
パターン 4 + + 一 一
パターン 5 + - + +
パターン 6 + - + 一
/《ターン 7 + 一 一 +
/《ターン 8 + ― ― 一
パターン 9 - + + +
パターン 10 ― + + - パターン 11 - + 一 +
パターン 12 ― + 一 - パターン 13 一 - + +
パターン 14 ― - + 一
パターン 15 一 - 一 +
パターン 16 ― - - - [0087] Y と Y は並列接続して Υを形成する誤差要因であるから、補正データ取得用試
13 23 f
料が 2端子インピーダンス素子のシャント接続をするものである限り、図 25の誤差モ デルに基づいて補正を行えば、図 20基づく補正と全く同じ結果が得られる。
[0088] 次に、実施例について、図 10〜図 13を参照しながら説明する。
[0089] く実施例 1〉 シリーズ接続の場合について、図 10及び図 11を参照しながら説明 する。シリーズ接続とは、測定機の 2つのポート間に被測定物接続する方法である。
[0090] 補正の対象となる測定系では、図 10 (a)の全体構成図及び (b)の測定基板 20の 正面図に示すように、被検体である電子部品 2が、測定基板 20の上面に形成された 伝送路 22a, 22b間のスリット 22xをまたぐように配置され、伝送路 22a, 22b間に直 列に接続される。測定基板 20の上面及び下面の伝送路 22a, 22b ; 24の両端に SM Aコネクタ 56, 66がはんだ付けされており、ネットワークアナライザ 70と同軸ケーブル 58, 68を介して接続されている。ネットワークアナライザ 70には Agilent社製ネットヮ ークアナライザ 8753Dを用い、測定基板 20は、特性インピーダンス 50 Ωで設計され ている。測定基板 20の長さ Lは 50mm、幅 Wは 30mmである。
[0091] 基準となる測定系では、 Agilent社製インピーダンスアナライザ 4291に、 Agilent 社製測定治具 16192Aを取り付けて、測定を行う。
[0092] 被検体である電子部品 2は、 1.0mm X 0.5mmサイズの 56nHのチップインダクタ である。
[0093] 測定及び補正の作業を順に説明する。
[0094] (1) 3つの補正データ取得用試料を準備する。 3つの補正データ取得用試料には、
2·2 Ω、 51 Ω、 510 Ωの抵抗を使用した。
[0095] (2)補正データ取得用試料のインピーダンス Ζ , Ζ , Ζ を、基準測定系で測定す
dl d2 d3
る。なお、測定ポイント数、掃引周波数範囲は基準測定機、実際に用いるネットワーク アナライザで統一しておく必要がある。
[0096] (3)実際に測定に用いる測定機 (8753D)において、同軸ケーブル先端までの伝送 路の校正を行う。この校正は、一般的に行っている SOLT校正でよい。
[0097] (4)補正データ取得用試料のインピーダンスを実際に測定に用いる測定機 (8753
D)で測定する。その際、基準測定機と同じ測定ポイント数、掃引周波数範囲で Z , z ml2 , z 及び
ml3 z m21 , z を取得する。
m22 , z m23
[0098] (5)基準測定機 (4291)、実際に測定に用いる測定機 (8753D)での測定データか ら補正係数を、上述したく原理 1〉に基づいて、パソコンで計算する。ここまでが、測 定系の補正の手順となる。
[0099] (6)実際に測定に用いる測定機 (8753D)で、チップインダクタを測定する。
[0100] (7)測定データと補正データとを用いて、補正された測定 をパソコンによって計 算する。
[0101] 以上の手順により測定、補正処理を行った結果、基準測定機での測定結果と、ネッ トワークアナライザの測定 がー致した。
[0102] 図 11に、 1005サイズのチップインダクタ(52nH)について、測定、補正処理を行つ た結果のグラフを示す。図 11(a)は、基準値、補正前の測定値及び補正後の測定値 のグラフである。「基準値」は、基準測定機での測定値である。「補正前」は、実際に 測定に用いる測定機での測定結果そのものであり、補正してレ、なレ、測定値である。「 補正後」は、実際に測定に用いる測定機での測定値を補正した値 (基準測定機で測 定した場合の測定値の推定値)である。図 1 l(b— 1)は「補正前」の測定値のグラフ、 図 1 l(b— 2)は「補正後」の測定値のグラフ、図 11(c)は「基準値」のグラフである。
[0103] 図 11(a)に示されたように、「基準値」と「補正後」とは、図では区別できないくらいに よく一致しているが、「補正前」は「基準値」から大きくずれている。つまり、補正を行わ ない場合、基準測定機での測定値と大きく外れた測定値しか得られないが、補正を 行うことで、基準測定機での測定値と極めて近レヽ測定値を得ること力 Sできる。
[0104] く実施例 2〉 シャント接続の場合について、図 12及び図 13を参照しながら説明 する。シャント接続とは、測定機の 1つのポートとグランドの間に被測定物を接続する 方法である。
[0105] 補正の対象となる測定系では、図 12 (a)の全体構成図及び (b)の測定の正面図に 示すように、被検体である電子部品 2が、測定基板 21の上面に形成された信号導体 24と接地導体 25との間に接続される。測定基板 21は信号導体 24及び接地導体 25 の両端に SMAコネクタ 56, 66がはんだ付けされており、ネットワークアナライザ 70と 同軸ケーブル 58, 68を介して接続されている。ネットワークアナライザ 70には Agilen t社製ネットワークアナライザ 8753Dを用い、測定基板 20は、特性インピーダンス 50 Ωで設計されている。測定基板 20の長さ Lは 50mm、幅 Wは 30mmである。
[0106] 基準となる測定系は、 Agilent社製インピーダンスアナライザ 4291に、 Agilent社 製測定治具 16192Aを取り付けて、測定を行う。
[0107] 被検体である電子部品 2は、 l.Omm X 0.5mmサイズの 50 Ωのチップ抵抗である。
[0108] 次に、測定及び補正の作業を順に説明する。
[0109] (1) 3つの補正データ取得用試料を準備する。 2·2 Ω、 51 Ω、 510 Ωの抵抗を使用 した。
[0110] (2)補正データ取得用試料のアドミタンス Υ , Υ , Υ を基準測定機で測定する。
dl d2 d3
なお、測定ポイント数、掃引周波数範囲は基準測定機、実際に用いるネットワークァ ナライザで統一しておく必要がある。
[0111] (3)実際に測定に用いる測定機 (8753D)において、同軸ケーブル先端までの伝送 路の校正を行う。この校正は、一般的に行っている SOLT校正でよい。
[0112] (4)補正データ取得用試料のアドミタンスを実際に測定に用いる測定機 (8753D) で測定する。その際、基準測定機と同じ測定ポイント数、掃引周波数範囲で Y , Y mi l
, Y 及び Y , Y , Y を取得する。
ml2 ml3 m21 m22 m23
[0113] (5)基準測定機 (4291)、実際に測定に用いる測定機 (8753D)での測定データか ら補正係数を、上述したく原理 2〉に基づいて、パソコンで計算する。ここまでが、補 正の手順となる。
[0114] (6)実際に測定に用いる測定機 (8753D)で、チップ抵抗を測定する。
[0115] (7)測定データと補正データを用いて、補正された測定 をパソコンによって計算 する。
[0116] 以上の手順により測定、補正処理を行った結果、基準測定機での測定結果と、ネッ トワークアナライザの測定 がー致した。
[0117] 図 13に、 1005サイズのチップ抵抗(50 Ω )について、測定、補正処理を行った結 果のグラフに示す。図 13(a)は、基準値、補正前の測定値及び補正後の測定値のグ ラフである。「基準値」は、基準測定機での測定値である。「補正前」は、実際に測定 に用いる測定機での測定結果そのものであり、補正していない測定値である。「補正 後」は、実際に測定に用いる測定機での測定値を補正した値 (基準測定機で測定し た場合の測定値の推定値)である。図 13(b— 1)は「補正前」の測定値のグラフ、図 13 (b— 2)は「補正後」の測定値のグラフ、図 13(c)は「基準値」のグラフである。
[0118] 図 13(a)に示されたように、「基準値」と「補正後」とは、図では区別できないくらいに よく一致しているが、「補正前」は「基準値」から大きくずれている。つまり、補正を行わ ない場合には、基準測定機での測定値と大きく外れた測定値しか得られないが、補 正を行うことで、基準測定機での測定値と極めて近レヽ測定値を得ること力 Sできる。
[0119] <まとめ〉 以上に説明した誤差補正方法を用いると、 2端子インピーダンス部品 について、補正の対象となる測定系が実測時と同じ状態のままで、校正作業を行うこ とができる。そのため、実質的に量産デバイス自体又は量産デバイスと略同じ寸法- 形状の試料しか測定端子部に接続できな!/ヽ自動特性選別機にっレ、ても、測定系の 誤差補正を行うことができる。
[0120] なお、本発明は、上記した実施の形態に限定されるものではなぐ種々の変更を加 えて実施することが可能である。
[0121] 例えば、本発明は、測定基板を用いる測定系に限らず、測定ピンを用いる測定系 などにも適用することができる。

Claims

請求の範囲
[1] 2端子インピーダンス部品である電子部品を実測測定系で測定した結果から、当該 電子部品を基準測定系で測定したならば得られるであろう当該電子部品の高周波特 性の推定値を算出する、電子部品の高周波特性誤差補正方法であって、
高周波特性の異なる少なくとも 3つの第 1の補正データ取得用試料を、前記基準測 定系で測定する第 1のステップと、
少なくとも 3つの前記第 1の補正データ取得用試料、又は前記第 1の補正データ取 得用試料と同等の高周波特性を有すると見なせる少なくとも 3つの第 2の補正データ 取得用試料を、前記実測測定系で測定する第 2のステップと、
前記第 1及び第 2のステップで得られた測定結果から、前記実測測定系で測定した 測定値と前記基準測定系で測定した測定値とを、伝送路の誤差補正係数を用いて 関連付ける数式を決定する第 3のステップと、
任意の電子部品を前記実測測定系で測定する第 4のステップと、
前記第 4のステップで得られた測定結果に基づ!/、て、前記第 3のステップで決定し た前記数式を用いて、当該電子部品を前記基準測定系で測定したならば得られるで あろう当該電子部品の高周波特性の推定値を算出する第 5のステップと、 を備えることを特徴とする、電子部品の高周波特性誤差補正方法。
[2] 前記実測測定系及び前記基準測定系において、前記電子部品はシリーズ接続さ れ、
前記数式は、前記基準測定系で電子部品を測定したときのインピーダンス Z が測 m 定される端子 1 , 2 と、前記実測測定系で電子部品を測定したときのインピーダンス m m
Zが測定される端子 1 , 2との間に接続される誤差モデルに基づいて導出され、 d d d
前記端子 1 力も見たインピーダンスを算出するとき、前記誤差モデルは、前記端子 m
1 と前記端子 1との間にインピーダンス z と zとが直列に接続され、前記インピーダ m d 11 f
ンス Z と Zとの接続点とグランドとの間にインピーダンス Z が接続され、前記端子 2
11 f 12 d と前記端子 2 との間にインピーダンス Z が接続され、前記端子 2とグランドとの間に m 21 d
インピーダンス z が接続され、
22
前記インピーダンス Z, Z , Z , Z , Z は、 前記第 1のステップで少なくとも 3つの前記第 1の補正データ取得用試料のインピー ダンスを測定した結果 Z , Z , Z と、
dl d2 d3
前記第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料 又は前記第 2の補正データ取得用試料について、前記端子 1 のインピーダンスを測
m
定した結果 Z , Z , Z 、及び前記端子 2 のインピーダンスを測定した結果 Z mil ml2 ml 3 m m21
, z ζ とを用い、
m22 πι23
次の数式 [数 la]と、
[数 la]
denom (Zdl Zd )Zml3 + (Zi/1一 Zd3)Zml2 + (Zd3 Zd2)Zmn
― [土 _ -ム、 一 ~ ^mll
— +(Z Zmii mn +
I denom
Z Zd2 ,dl)(Zd3 +、— 2 -Zd )^d +Z X^ml2ー wll)(Zml3 + Z mu)Z
I denom 次の数式 [数 lb]と、
[数 lb]
denom = (Zd2 -Zdl)Zm23 +(Z -Zd3)Zm22 +{Zd2 -Zd2)Zm2l 一 V <
I denom
A 一 2rflX 一 rfl) ― Zm2
I denom から得られる 16通りの Z Z Z Z の糸且み合わせのうち、
11 12 21 22
次の数式 [数 2]について、
2] 2 = -[{(^2 +(Z2l +Z0))Zdl +((Z2l +ZQ) + Zl2)Z22 +Zl2(Z2l +Z0)}ZmU
+ {(—Z12 -ZU)Z22 + (-Z12 -ZU)(Z2, +Ζ0)}ΖΛ
+ {(— - ZU)(Z21 + Z0)- Z Zl2}Z22 -Z Zl2 (Z21 + Z0) ]
/[{( + (Z21 +Z0)}Zmll +(— Zl2 -Zn)Z22 +(-Z12 -Zn)(Z21 +Z0)]
Z/2 = -[{(Z22 + (Z21 + Z0 ))Zrf2 + ((Z21 +Z0) + Z12)Z22 + Zn (Z21 + Z。 )}Zml2
+ {(-2,2 - z„)z22 + (-Z12 -Zn)(Z21 +Z0)}ZJ2
12 -^ll)( 21 0)一 ^11 12 22 —"^11 12 21 J
/[{(Z22 +(Z2t +Z0)}ZmU + (-Zu -ZU)Z22 + (-Z12 -Z )(Z21 +Z0)]
Z 3 = -[{(Z22 + (Z21 + Z0 ))Zrf3 + ((Z21 +Z0) + Z12 )Z22 +Z12(Z21 + Z0 )}Zml3
+ {(- Z -Zn)Z22 + (-Z12 -Zn)(Z21 +Z0)}Zrf3
+ {(— Z12 -Z„)(Z21 +Z0)_ , 2}222 -ZUZ12(Z21 +Z0) ]
/[{(Z22 +(Z21 +Z0)}Zml3 +(-Z12 -Zn)Z22 + (-Z12 -Z„)(Z21 +Z0)] z , z , z がー致する少なくとも 1つの組み合わせを用いて、決定されることを特徴 fl f2 f3
とする、請求項 1に記載の電子部品の高周波特性誤差補正方法。
[3] 前記実測測定系及び前記基準測定系において、前記電子部品はシャント接続さ れ、
前記数式は、前記基準測定系で電子部品を測定したときのアドミタンス Y が測定さ
m
れる端子 1 , 2 と、前記実測測定系で電子部品を測定したときのアドミタンス Yが測
m m d 定される端子 1 2との間に接続される誤差モデルに基づいて導出され、
d d
前記端子 1 力、ら見たアドミタンスを導出するとき、前記誤差モデルは、前記端子 1
m m と前記端子 1との間にアドミタンス Y が接続され、前記端子 1 と前記アドミタンス Y
d 12 m 12 との接続点とグランドとの間にアドミタンス Y が接続され、前記アドミタンス Υ と前記
11 12 端子 1との接続点とグランドとの間にアドミタンス Υが接続され、前記端子 2と前記端 d f d
子 2 との間にアドミタンス Y が接続され、前記アドミタンス Υ と前記端子 2 との接続 m 22 22 m
点とグランドとの間にアドミタンス Y が接続され、
21
前記アドミタンス Υ Υ Υ Υ Υ は、
f 11 12 21 22
前記第 1のステップで少なくとも 3つの前記第 1の補正データ取得用試料のアドミタ ンスを測定した結果 Y , Y , Y と、
dl d2 d3
前記第 2のステップにおいて、少なくとも 3つの前記第 1の補正データ取得用試料 又は前記第 2の補正データ取得用試料について、前記端子 1 のアドミタンスを測定
m
した結果 Υ , Υ , Y 、及び前記端子 2 のアドミタンスを測定した結果 Υ , Y
mil ml2 ml^ m m21
, Y とを用い、
πι22 πι23
次の数式ほ女 3a]と、
[数 3a]
denom = (Yd2 - ) + ( - ) 2 + (7,3 - Yd2 )Ymll
^ll =土 Lェ <ί2一】 dl ―】 ―】 ml Φ —
- {( - Uml3 - UM
Figure imgf000030_0001
} ]
I denom
I denom 次の数式ほ女 3b]と、
[数 3b] denom = {Ydl― )Fm23 + ( - )Ymll + ( 一 Yd2 )Ym21 ~[土 一】 rfl 一 】
- {( - - ) + ( ~
I denom
Y ( 2 ~ 2— + ^1 2)( 22 ~ Jm2lX — 21
I denom から得られる 16通りの Y Υ Υ Υ の糸且み合わせのうち、
11 12 21 22
次の数式 [数 4]について、
[数 4] rfl =—[{(¾+(¾ + (σ21 +^o)+ ^2 +y0)}Ymn
十 {(-r12一 γη22 + {-γη― γΗ)(Υ21 + Y0 )}YDL
+ {(-Yn― )( + )— 2— ( +^) ]
/[{(¾ +(¾ +Y0)}Ymn +(-Yu - ) + (-Yn yf2 = 2 +(¾+ Yo wd2 +((γ210)+Υη )γ22 + γ12 ( + γ0 )}Ymn
+ {(-Υη— ) ¾ + (- ¾— )(¾
+ {(-ru - YN)(Y2L +Y9)- YUYN }Y22 - Υ Υη (^21 +Υο) ]
/[{(¾ + 21 + )} 2 + (- -Yn)Yi2 + ('Yn - )( +。)] γ = - + + Yo )) + (( + ) + Yn + Yu 2, + 0 )}
+{(-¾ - ) ¾ + (- ¾ - w21 +Yo)} a,
/[{(¾ +(Y2l +Y0)}Ymn +(-12ηη +(-r12 -ruxr21 + r0)]
Y , Y , Y がー致する少なくとも lつの組み合わせを用いて、決定されることを特徴 fl f2 f3
とする、請求項 1に記載の電子部品の高周波特性誤差補正方法。
PCT/JP2007/067378 2006-11-30 2007-09-06 Procédé de correction d'erreur de caractéristiques hautes fréquences d'un composant électronique WO2008065791A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN2007800440531A CN101542299B (zh) 2006-11-30 2007-11-29 电子部件的高频特性误差修正方法
CN201110363325.2A CN102520258B (zh) 2006-11-30 2007-11-29 电子部件的高频特性误差修正方法
DE112007002891.2T DE112007002891B4 (de) 2006-11-30 2007-11-29 Verfahren und Vorrichtung zum Korrigieren eines Hochfrequenzcharakteristik-Fehlers elektronischer Komponenten
JP2008547039A JP5126065B2 (ja) 2006-11-30 2007-11-29 電子部品の高周波特性誤差補正方法及び装置
PCT/JP2007/073110 WO2008066137A1 (fr) 2006-11-30 2007-11-29 Procédé et dispositif de correction d'erreur de caractéristique haute fréquence de composant électronique
US12/474,389 US8423868B2 (en) 2006-11-30 2009-05-29 Method for correcting high-frequency characteristic error of electronic component
JP2012104185A JP5483132B2 (ja) 2006-11-30 2012-04-27 電子部品の高周波特性誤差補正方法
JP2012104184A JP5483131B2 (ja) 2006-11-30 2012-04-27 電子部品の高周波特性誤差補正方法
JP2012104186A JP5483133B2 (ja) 2006-11-30 2012-04-27 電子部品の高周波特性誤差補正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006324975 2006-11-30
JP2006-324975 2006-11-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073110 Continuation WO2008066137A1 (fr) 2006-11-30 2007-11-29 Procédé et dispositif de correction d'erreur de caractéristique haute fréquence de composant électronique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/474,389 Continuation US8423868B2 (en) 2006-11-30 2009-05-29 Method for correcting high-frequency characteristic error of electronic component

Publications (1)

Publication Number Publication Date
WO2008065791A1 true WO2008065791A1 (fr) 2008-06-05

Family

ID=39467589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067378 WO2008065791A1 (fr) 2006-11-30 2007-09-06 Procédé de correction d'erreur de caractéristiques hautes fréquences d'un composant électronique

Country Status (5)

Country Link
US (1) US8423868B2 (ja)
JP (4) JP5126065B2 (ja)
CN (2) CN102520258B (ja)
DE (1) DE112007002891B4 (ja)
WO (1) WO2008065791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090173A1 (ja) * 2009-02-04 2010-08-12 国立大学法人電気通信大学 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917083B2 (en) 2010-11-24 2014-12-23 International Business Machines Corporation Structures and methods for RF de-embedding
JP6055215B2 (ja) * 2012-06-29 2016-12-27 キーサイト テクノロジーズ, インク. インピーダンス測定方法及び測定装置
WO2015133265A1 (ja) * 2014-03-04 2015-09-11 株式会社 村田製作所 測定誤差の補正方法及び電子部品特性測定装置
DE102014119331B4 (de) * 2014-12-22 2016-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Charakterisieren von Mikrowellenbauelementen
JP6568733B2 (ja) * 2015-07-15 2019-08-28 株式会社Fuji 検査装置
CN105785304B (zh) * 2016-05-11 2018-09-18 中国电子科技集团公司第十三研究所 用于校准在片高值电阻测量系统的标准件
JP7429858B2 (ja) * 2020-03-11 2024-02-09 日新電機株式会社 インピーダンス測定治具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082808A (ja) * 1996-08-01 1998-03-31 Hewlett Packard Co <Hp> 伝送測定誤差補正方法
JP2003240827A (ja) * 2001-12-10 2003-08-27 Murata Mfg Co Ltd 測定誤差の補正方法、電子部品の良否判定方法および電子部品特性測定装置
WO2005101033A1 (ja) * 2004-03-31 2005-10-27 Murata Manufacturing Co., Ltd. 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
WO2006030547A1 (ja) * 2004-09-16 2006-03-23 Murata Manufacturing Co., Ltd. 測定誤差の補正方法及び電子部品特性測定装置
JP2006242799A (ja) * 2005-03-04 2006-09-14 Murata Mfg Co Ltd 測定誤差の補正方法及び電子部品特性測定装置
JP2006300928A (ja) * 2005-03-22 2006-11-02 Murata Mfg Co Ltd 補正データ取得用試料、測定誤差補正方法及び電子部品特性測定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI74549C (fi) * 1986-02-13 1988-02-08 Vaisala Oy Maetningsfoerfarande foer impedanser, saerskilt smao kapacitanser.
US6061551A (en) * 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
US7515896B1 (en) * 1998-10-21 2009-04-07 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US6920407B2 (en) * 2000-09-18 2005-07-19 Agilent Technologies, Inc. Method and apparatus for calibrating a multiport test system for measurement of a DUT
EP1320763A4 (en) * 2000-09-18 2005-07-27 Agilent Technologies Inc METHOD AND APPARATUS FOR CHARACTERIZING ASYMMETRIC OR SYMMETRIC MULTITERMINAL DEVICES
JP3876770B2 (ja) * 2002-06-07 2007-02-07 日産自動車株式会社 配線構造
US6876935B2 (en) 2002-09-24 2005-04-05 Murata Manufacturing Co., Ltd. Method for correcting measurement error, method of determining quality of electronic component, and device for measuring characteristic of electronic component
JP3558086B1 (ja) * 2003-03-05 2004-08-25 株式会社村田製作所 測定誤差の補正方法および電子部品特性測定装置
JP4274462B2 (ja) * 2003-09-18 2009-06-10 株式会社アドバンテスト 誤差要因取得用装置、方法、プログラムおよび記録媒体
WO2005101037A1 (ja) 2004-04-02 2005-10-27 Murata Manufacturing Co., Ltd. 電子部品の高周波電気特性測定方法および装置
WO2005116669A1 (ja) * 2004-05-25 2005-12-08 Murata Manufacturing Co., Ltd. 測定誤差の補正方法及び電子部品特性測定装置
US7995490B2 (en) * 2004-06-29 2011-08-09 Spirent Communications, Inc. System and method for identifying a signature of a device, in a communication circuit, utilizing distortion products
WO2006090550A1 (ja) 2005-02-22 2006-08-31 Murata Manufacturing Co., Ltd. 伝送路材料の誘電率測定方法およびこの誘電率測定方法を用いた電子部品の電気特性測定方法
JP2007285890A (ja) * 2006-04-17 2007-11-01 Agilent Technol Inc ネットワークアナライザの再校正方法、および、ネットワークアナライザ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082808A (ja) * 1996-08-01 1998-03-31 Hewlett Packard Co <Hp> 伝送測定誤差補正方法
JP2003240827A (ja) * 2001-12-10 2003-08-27 Murata Mfg Co Ltd 測定誤差の補正方法、電子部品の良否判定方法および電子部品特性測定装置
WO2005101033A1 (ja) * 2004-03-31 2005-10-27 Murata Manufacturing Co., Ltd. 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
WO2006030547A1 (ja) * 2004-09-16 2006-03-23 Murata Manufacturing Co., Ltd. 測定誤差の補正方法及び電子部品特性測定装置
JP2006242799A (ja) * 2005-03-04 2006-09-14 Murata Mfg Co Ltd 測定誤差の補正方法及び電子部品特性測定装置
JP2006300928A (ja) * 2005-03-22 2006-11-02 Murata Mfg Co Ltd 補正データ取得用試料、測定誤差補正方法及び電子部品特性測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090173A1 (ja) * 2009-02-04 2010-08-12 国立大学法人電気通信大学 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法
JP2010181226A (ja) * 2009-02-04 2010-08-19 Chuo Electronics Co Ltd 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法
US8725442B2 (en) 2009-02-04 2014-05-13 The University Of Electro-Communications Method for measuring system parameter of linear multiport and measuring method using vector network analyzer

Also Published As

Publication number Publication date
CN101542299B (zh) 2011-12-14
CN102520258B (zh) 2015-04-29
US20100017669A1 (en) 2010-01-21
JP5483132B2 (ja) 2014-05-07
JP5483131B2 (ja) 2014-05-07
JPWO2008066137A1 (ja) 2010-03-11
DE112007002891T5 (de) 2009-10-29
JP5126065B2 (ja) 2013-01-23
JP5483133B2 (ja) 2014-05-07
CN101542299A (zh) 2009-09-23
JP2012163573A (ja) 2012-08-30
JP2012181201A (ja) 2012-09-20
JP2012163574A (ja) 2012-08-30
DE112007002891B4 (de) 2019-07-25
CN102520258A (zh) 2012-06-27
US8423868B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
US7439748B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
WO2008065791A1 (fr) Procédé de correction d&#39;erreur de caractéristiques hautes fréquences d&#39;un composant électronique
CN109444721B (zh) 检测s参数的方法及终端设备
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP4650487B2 (ja) 伝送路材料の誘電率測定方法およびこの誘電率測定方法を用いた電子部品の電気特性測定方法
US20060181286A1 (en) Method and system for calibrating a measurement device path and for measuring a device under test in the calibrated measurement device path
US7064555B2 (en) Network analyzer calibration employing reciprocity of a device
US20040162689A1 (en) Multiport network analyzer calibration employing reciprocity of a device
CA2695403C (en) Measuring system for contactless decoupling of a signal running on a signal waveguide
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP4984769B2 (ja) 高周波特性測定用プローブの校正方法、およびこのプローブを用いた電子デバイスの高周波特性測定方法
JP3912429B2 (ja) 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
JP3558080B2 (ja) 測定誤差の補正方法、電子部品の良否判定方法および電子部品特性測定装置
JP3912427B2 (ja) 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
US20080010034A1 (en) Method for network analyzer calibration and network analyzer
JP4743208B2 (ja) 電子部品の電気特性測定方法
US7042232B1 (en) Cable and substrate compensating custom resistor
WO2008066137A1 (fr) Procédé et dispositif de correction d&#39;erreur de caractéristique haute fréquence de composant électronique
JP2001343406A (ja) 同軸プローブ
JP2022105348A (ja) 電子部品の電気特性測定用基板及びこれを用いた電子部品の電気特性測定方法
KR101569251B1 (ko) 프로브 시스템을 위한 수직/수평 겸용 캘리브레이션 키트
Zhang et al. A hybrid approach to decrease port influence in transmission line characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP