WO2010090173A1 - 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法 - Google Patents

線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法 Download PDF

Info

Publication number
WO2010090173A1
WO2010090173A1 PCT/JP2010/051394 JP2010051394W WO2010090173A1 WO 2010090173 A1 WO2010090173 A1 WO 2010090173A1 JP 2010051394 W JP2010051394 W JP 2010051394W WO 2010090173 A1 WO2010090173 A1 WO 2010090173A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
input
wave
output port
output
Prior art date
Application number
PCT/JP2010/051394
Other languages
English (en)
French (fr)
Inventor
近藤 肇
利幸 矢加部
初男 矢部
Original Assignee
国立大学法人電気通信大学
株式会社キャンパスクリエイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人電気通信大学, 株式会社キャンパスクリエイト filed Critical 国立大学法人電気通信大学
Priority to US13/147,575 priority Critical patent/US8725442B2/en
Publication of WO2010090173A1 publication Critical patent/WO2010090173A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a technique for measuring an amplitude ratio and a phase difference of a signal in a high frequency region (particularly, a microwave band, a millimeter wave band, a submillimeter wave band) and an optical region (infrared ray, visible ray, ultraviolet ray).
  • VNA Vector Network Analyzer
  • the VNA is a device for measuring an amplitude ratio and a phase difference (S parameter: scattering matrix element) of an incident wave and a reflected wave, or an incident wave and a transmitted wave of a DUT (Device Under Test).
  • S parameter scattering matrix element
  • a heterodyne method is used as such a VNA. In the heterodyne method, the signal is measured by dropping the frequency of the input signal to an intermediate frequency using a local oscillator and a mixer.
  • Patent Document 1 discloses a six-port reflectometer. This is to derive the amplitude ratio and phase difference (vector quantity) of two waves from hardware information (calibration parameters) specific to the system obtained by calibration and a plurality of power measurement values (scalar quantities).
  • the phase difference which is difficult to measure with high accuracy as the frequency increases in the conventional method, is a basic measurement amount in electromagnetic wave measurement, and the measurement accuracy is almost equal to the frequency. It can be obtained based on the measurement of the scalar value, which is an independent power value. According to this technology, it is possible to correct four power measurements and software imperfections with software (system parameters) called calibration, which is free from the demand for conventional high-precision hardware.
  • the reflectometer is a device for comparing the incident wave and the outgoing wave with respect to one wave (signal). Further, the inventor of the present application has proposed a technique for constructing a correlator by developing the technique of this document (Patent Documents 2 to 7 below).
  • a correlator (Wave-Correlator) is a device that compares two independent waves (having the same frequency), that is, measures a complex amplitude ratio.
  • a system parameter called parameter T is acquired in advance, and the S parameter of the DUT is obtained using this system parameter.
  • the reflectometer system parameter is named parameter K
  • the correlator system parameter is named parameter T.
  • the system parameter of the homodyne VNA is integrated into parameter T Sometimes called.
  • this parameter T it is necessary to calculate the intersection of three circles on the complex plane using the output at each port (see, for example, FIG. 21 of Patent Document 7). For this reason, this method tends to increase the amount of calculation. There is also a problem that the intersection of three circles is not always obtained.
  • the present invention has been made based on a novel finding that the S parameter of the DUT can be expressed by a linear combination using the system parameter H and the power difference rate.
  • the system parameter H is a new parameter set by the present inventors. That is, the present invention provides a technique for measuring the amplitude ratio and phase difference of a signal in a high frequency region using a vector network analyzer by a method different from the method described in the prior art document in order to solve the above-described problem. The purpose is to do. It is another object of the present invention to provide a novel system parameter measurement method, a measurement method using a vector network analyzer using the same, and a program.
  • the present invention includes a first input port, a second input port, a third output port in which an output wave is represented by linear combination of an input wave from the first input port and an input wave from the second input port, A method of measuring system parameters H3_11, H4_11, and H5_11, which are inherent values of linear multiports including four output ports and a fifth output port, A predetermined wave (a wave coming out from one of the output terminals (symbol R) of the power distributor PD in FIGS. 4 and 9, for example) is put into the first input port, and the second input port is matched.
  • a short standard device (assuming that the standard device has known transmission characteristics and reflection characteristics; the same shall apply hereinafter) is connected to the second input port.
  • Another predetermined wave (specifically, a wave coming out from the other output terminal (symbol M) of the power distributor PD in FIG. 4, FIG.
  • a standard device of line 1 is inserted in front of the short standard device of the second input port, the other predetermined wave is put into the standard device of line 1 and the short standard device, and the reflected wave is put into the standard wave
  • the power of the third output port, the fourth output port, and the fifth output port is measured in the state of being put in the second input port, and these are measured as P3 (S11_s [2]), P4 (S11_s [2]) , P5 (S11_s [2])
  • a standard device of line 2 is inserted instead of the standard device of line 1 of the second input port, the other predetermined wave is put into the standard device of line 2 and the short standard device, and
  • the present invention includes a first input port, a second input port, a third output port in which an output wave is represented by linear combination of an input wave from the first input port and an input wave from the second input port, A method of measuring system parameters H3_12, H4_12, and H5_12 that are unique values of a linear multiport including four output ports and a fifth output port, A predetermined wave is input to the first input port, and the power of the third output port, the fourth output port, and the fifth output port is measured in a state where the second input port is matched and terminated.
  • Reference power measurement steps (0), P4 (0), P5 (0) Measure the power of the third output port, the fourth output port, and the fifth output port with the matched termination of the second input port removed and another predetermined wave applied to the second input port.
  • a line 1 standard device is connected to the second input port, and the third output port, the fourth output port, and the second output port are inserted through the line 1 standard device.
  • the third output port is connected to a standard device of line 2 instead of the standard device of line 1 of the second input port, and the other predetermined wave is inserted through the standard device of line 2 Measuring the power of the fourth output port and the fifth output port, and measuring them as P3 (S12_s [3]), P4 (S12_s [3]), P5 (S12_s [3]),
  • the system parameters H3_12, H4_12, and H5_12 are calculated by the following formula.
  • the present invention divides a wave from a power source that generates a high frequency signal such as a microwave band, a millimeter wave band, a submillimeter wave band, an infrared ray, a visible ray, and an ultraviolet ray into two, one of which is two input ports and three or more.
  • a first input port of a linear multi-port including the output port of the second and the other input to the device under test, and a wave that has passed through the device under test or a wave reflected by the device under test is input to the first input port of the linear multi-port.
  • a vector network analyzer that measures the detection output of each of the three or more output ports for power measurement of the linear multi-port in this state and measures the vector quantity related to the device under test based on the result.
  • the linear multiport includes a first input port, a second input port, an input wave from the first input port, and a second input port.
  • the third output port output waves are respectively represented by a linear combination of the input wave from, a measuring method using those containing fourth output port and the fifth output port, A predetermined wave is input to the first input port, and the power of the third output port, the fourth output port, and the fifth output port is measured in a state where the second input port is matched and terminated.
  • Reference power measurement steps (0), P4 (0), P5 (0) With the wave reflected by the device under test being put into the second input port, the power of the third output port, the fourth output port, and the fifth output port is measured, and these are measured as P3 (S11) , P4 (S11), P5 (S11) power measurement step, Based on the P3 (0), P4 (0), P5 (0), the P3 (S11), P4 (S11), P5 (S11), the system parameters H3_11, H4_11, H5_11 determined in advance and the following formula The reflection characteristic S11 of the device under measurement is calculated.
  • the present invention divides a wave from a power source that generates a high frequency signal such as a microwave band, a millimeter wave band, a submillimeter wave band, an infrared ray, a visible ray, and an ultraviolet ray into two, one of which is two input ports and three or more.
  • a first input port of a linear multi-port including the output port of the second and the other input to the device under test, and a wave that has passed through the device under test or a wave reflected by the device under test is input to the first input port of the linear multi-port.
  • a vector network analyzer that measures the detection output of each of the three or more output ports for power measurement of the linear multi-port in this state and measures the vector quantity related to the device under test based on the result.
  • the linear multiport includes a first input port, a second input port, an input wave from the first input port, and a second input port.
  • the third output port output waves are respectively represented by a linear combination of the input wave from, a measuring method using those containing fourth output port and the fifth output port, A predetermined wave is input to the first input port, and the power of the third output port, the fourth output port, and the fifth output port is measured in a state where the second input port is matched and terminated.
  • Reference power measurement steps (0), P4 (0), P5 (0) With the wave that has passed through the device under test inserted in the second input port, the power of the third output port, the fourth output port, and the fifth output port is measured, and these are measured as P3 (S12), Power measurement step P4 (S12), P5 (S12), Based on the P3 (0), P4 (0), P5 (0), the P3 (S12), P4 (S12), P5 (S12), the system parameters H3_12, H4_12, H5_12 determined in advance and the following formula: The pass characteristic S12 of the device under test is calculated.
  • a vector network analyzer applied to the present invention includes, for example, a power source that generates a high-frequency signal such as a microwave band, a millimeter wave band, a submillimeter wave band, infrared rays, visible light rays, and ultraviolet rays, and at least two outputs of the power source.
  • a power source that generates a high-frequency signal such as a microwave band, a millimeter wave band, a submillimeter wave band, infrared rays, visible light rays, and ultraviolet rays, and at least two outputs of the power source.
  • a five-port junction including two power input ports P1 and P2 and three power measurement output ports P3 to P5 that respectively receive the waves distributed by the power distributor;
  • a detector for detecting each of the waves output from the output ports P3 to P5, and a switching mechanism provided between the power distributor and the input port P2 of the 5-port junction,
  • the switching mechanism includes a first connection for putting a wave distributed by the power distributor into one port of the device under test and a wave coming out of the port into the input port P2, and the other port of the device under test.
  • One of the fourth connections to be input to the input port P2 is selected.
  • SW1 and SW2 in FIG. 4 constitute a switching mechanism.
  • Claims 1 and 3 can be applied, for example, in the first connection or the fourth connection, and Claims 2 and 4 can be applied, for example, in the second connection or the third connection.
  • the procedure of S11 of the present invention can be similarly applied.
  • how the port number is allocated is arbitrary, and therefore the procedure for S11 can be used as the procedure for S22 by appropriately allocating the port number.
  • the procedure of S12 of the present invention can be similarly applied to the S parameter S21.
  • the present invention relates to a system or a computer program for realizing the measurement method described above.
  • Embodiment 1 of the Invention An example of a 5-port junction is shown in FIG.
  • 5PJ indicates a 5-port junction.
  • Q is a known 90 ° hybrid
  • PD is a known power distributor.
  • Port 1 and port 2 are input ports.
  • Reference numerals 3 to 5 are power measurement ports.
  • the 90 ° hybrid when a high-frequency signal is input to one port on one side, a high-frequency signal having half the amplitude of the high-frequency signal is output to the opposite port on the opposite side, and the other half is on the other port on the opposite side.
  • the phase difference of the high-frequency signal output to the port and the opposite port and the other port is 90 °.
  • a five-port correlator is a linear circuit system that measures the correlation between the magnitude and phase of a sine wave entering two ports from the power values output from the remaining three ports.
  • the power of the waves coming out from the side arm ports 3, 4 and 5 can be written as follows.
  • Ah and Bh are complex constants inherent to the 5-port junction, and ⁇ h is a conversion coefficient.
  • Kh in the above-described equation (4) is a system parameter conventionally called parameter K in the reflectometer and parameter T in the correlator.
  • the system parameter is a value unique to the 5-port junction 5PJ.
  • the parameter H is newly introduced as a system parameter.
  • the system parameter (parameter H in this embodiment) needs to be obtained in advance prior to measurement according to the procedure described below. This point will be described in more detail later.
  • FIG. 4 shows an example of a measurement circuit for DUT.
  • VS is a power source (signal source) that supplies a signal having a predetermined frequency.
  • the PD is a power distributor that distributes waves from the power supply VS into two.
  • the power distributor PD in FIG. 4 is different from the power distributor PD in FIG.
  • the apparatus shown in FIG. 4 receives a detector for measuring the power at the output port, an amplifier for amplifying the output of the detector, and the output of the amplifier (that is, three of the five-port junction 5PJ).
  • PCs computers for calculating system parameters based on the detection outputs of the output ports P3 to P5).
  • DC1 and DC2 are directional couplers. Two ends of one side of the directional coupler DC1 are connected to the first switch SW1 and the second switch SW2, and one end of the other side is a two-port device under test (hereinafter referred to as “DUT”). And the other end is terminated.
  • DUT two-port device under test
  • SW1 is a switch that puts a wave from the power distributor PD into one of the two directional couplers DC1 or DC2.
  • SW2 is a switch that selects either one of the two directional couplers DC1 or DC2 and sends a wave from the selected one to port 2 of the 5-port junction 5PJ.
  • 1st switch SW1 and 2nd switch SW2 comprise the switching mechanism which implement
  • SW1 and SW2 in FIG. 4 constitute a switching mechanism.
  • the switching mechanism is provided between the power distributor PD and the input port P2 of the five-port junction 5PJ, and puts the wave distributed by the power distributor PD into one port of the device under test (DUT) and exits from the port A first connection for putting a wave into the input port P2, a second connection for putting a wave distributed by the power distributor PD into the other port of the DUT and a wave coming from the one port into the input port P2, the one of the DUT A third connection for putting the wave distributed by the power distributor PD into the port of the second and the wave coming out of the other port to the input port P2, and the wave distributed by the power distributor PD to the other port of the DUT And a fourth connection for inputting a wave coming out from the port to the input port P2 is selected.
  • 5 to 8 are flowcharts of a method of measuring a system parameter (parameter H in the present embodiment) of a correlator using a 5-port junction 5PJ.
  • the system parameters H3_11,... Will be described in detail later. In the following description, it is assumed that “load”, “short”, “line 1”, “line 2”, etc. are standard devices and their characteristics are known.
  • STEP8 Obtain the power value from P3, P4, and P5 of the 5-port junction 5PJ. These power values are P3 (S11_s [3]), P4 (S11_s [3]), and P5 (S11_s [3]).
  • STEP9 P3 (0), P4 (0), P5 (0), (S11_s [1]), P4 (S11_s [1]), P5 (S11_s [1]), P3 (S11_s) obtained in the above step [2]), P4 (S11_s [2]), P5 (S11_s [2]), P3 (S11_s [3]), P4 (S11_s [3]), P5 (S11_s [3]) By substituting, H3_11, H4_11, and H5_11 can be obtained.
  • H3_21, H4_21, H5_21 measurement procedure (see Fig. 7)
  • STEP21 Set SW1 to the left (select DC1) and SW2 to the right (select DC2). Then, “load” is connected to PA (matching termination), and “load” is connected to PB.
  • STEP23 Connect PA and PB directly.
  • STEP24 Obtain the power value from P3, P4, and P5 of the 5-port junction 5PJ.
  • STEP35 Change “short” on PB to “line 1” + “short”. PA “load” is not changed.
  • STEP 36 Obtain the power value from P3, P4, and P5 of the 5-port junction 5PJ. These power values are P3 (S22_s [2]), P4 (S22_s [2]), and P5 (S22_s [2]).
  • STEP37 Change “Line 1” + “Short” on PB to “Line 2” + “Short”.
  • STEP38 The power value is acquired from P3, P4, and P5 of the 5-port junction 5PJ.
  • FIG. 13 is a flowchart of a method for measuring S-parameters of a DUT using a 5-port junction 5PJ.
  • the formula used in the figure is as follows.
  • a measurement procedure will be described with reference to FIG. STEP 41: Connect the DUT as shown in FIG. 4 (PA + DUT + PB).
  • STEP42 Select DC1 with SW1 and SW2 (SW1 on the left and SW2 on the left).
  • STEP43 Obtain the power value from P3, P4, and P5 of the 5-port junction. These are P3 (S11), P4 (S11), and P5 (S11). By substituting P3 (0), P4 (0), P5 (0) (see FIG. 5 and the description thereof) and H3_11, H4_11, and H5_11, which have already been obtained, into S11 above, S11 is obtained.
  • STEP44 Select DC2 with SW1 and select DC1 with SW2.
  • STEP45 Obtain the power value from P3, P4, and P5 of the 5-port junction. These are P3 (S12), P4 (S12), and P5 (S12). S12 is obtained by substituting P3 (0), P4 (0), P5 (0) (see FIG. 6 and the description thereof) and H3_12, H4_12, and H5_12, which have already been obtained, into the above equation of S12.
  • STEP46 Select DC1 with SW1 and select DC2 with SW2.
  • STEP47 Obtain the power value from P3, P4, and P5 of the 5-port junction. These are P3 (S21), P4 (S21), and P5 (S21). S21 is obtained by substituting P3 (0), P4 (0), P5 (0) (see FIG.
  • the S parameter can be expressed by a linear combination using a new parameter H and a power difference rate ( ⁇ P (S) / P (0) ⁇ -1). I found it. With this knowledge, the parameter H can be directly calculated. According to the embodiment of the present invention, the parameter H can be easily derived by calculation using at least three known standard devices, and the amount of calculation can be reduced.
  • System parameters can be obtained for S11, S12, and S22 as well.
  • the measured values P3 (0), P4 (0), P5 (0), P3 (S21_s [1]), P4 (S21_s [1]), P5 (S21_s [ 1]), P3 (S21_s [2]), P4 (S21_s [2]), P5 (S21_s [2]), P3 (S21_s [3]), P4 (S21_s [3]), P5 (S21_s [3] ) Is a ternary simultaneous linear equation.
  • the system parameters H3_21, H4_21, and H5_21 can be obtained. That is, it is not essential to use the least square method described above.
  • Embodiment 2 of the Invention It was shown that if the parameter H can be obtained in the 5-port junction, the S parameter of the DUT can be calculated from the power of the ports 3, 4, and 5. What can apply the above method is not a physical port number of 5, but a structure that functions as a 5-port junction.
  • the S parameter of the DUT can be measured for 5.1 port according to the procedure of FIG.
  • FIG. 17 shows an example of a system for realizing the measurement method of the present embodiment.
  • This system is a system for measuring system parameters H3_11, H4_11, and H5_11.
  • the reference power measurement unit 101 puts a predetermined wave into the port 1 and measures the output power P3 (0) obtained by measuring the output power at the port 3, the port 4 and the port 5 in a state where the port 2 is matched and terminated. ), P4 (0), P5 (0).
  • the first power measurement unit 102 removes the matching termination of the port 2, connects the short standard device to the port 2, puts another predetermined wave into the short standard device, and puts the reflected wave into the port 2 Then, input the measured values P3 (S11_s [1]), P4 (S11_s [1]), and P5 (S11_s [1]) obtained by measuring the output power at port 3, port 4 and port 5. Accept.
  • the second power measuring unit 103 inserts the standard device of line 1 before the short standard device of port 2, puts other predetermined waves into the standard device of line 1 and the short standard device, and reflects the reflected wave
  • the measured values P3 (S11_s [2]), P4 (S11_s [2]), P5 (S11_s [) obtained by measuring the output power at port 3, port 4 and port 5 in the state of being put in port 2 2]) is accepted.
  • the third power measurement unit 104 inserts the line 2 standard in place of the line 1 standard of the port 2, puts other predetermined waves into the line 2 standard and the short standard, and reflects the reflected wave.
  • the calculation unit 105 calculates the system parameters H3_11, H4_11, and H5_11 by the following formula.
  • the calculation unit 105 can be configured by a combination of an appropriate computer program and hardware, for example.
  • Each element in the above-described system can exchange data via an appropriate bus line (see FIG. 17).
  • the above-described measurement method can be executed by a computer program that processes measurement values at each port. That is, by inputting the measurement values at each port to the computer, the computer can perform the above-described calculation processing according to the method of the present embodiment and acquire the parameter H and S parameter.

Abstract

本発明は、VNA(Vector Network Analyzer:ベクトルネットワークアナライザ)に使用される5ポート接合のシステムパラメータの新規な測定方法を提供するものである。VNAは、DUT(Device Under Test:被測定デバイス)の入射波と反射波、または入射波と透過波の振幅比と位相差(Sパラメータ:散乱行列要素)を測定するための装置である。新しい知見として、5ポート接合においては、SパラメータをHと電力差分率({P(S)/P(0)}-1)とを使った線形結合で表せることを見いだした。既知の標準器最低3個を使ってパラメータHを計算で簡単に導出でき、従来よりも計算量を削減できる。

Description

線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法
 本発明は、高周波領域(特に、マイクロ波帯、ミリ波帯、サブミリ波帯)や光領域(赤外線、可視光線、紫外線)において、信号の振幅比と位相差を測定する技術に関する。
 高周波領域で動作するデバイス、回路や機器の研究及び開発にとって、当該デバイス、回路や機器の入出力信号間の位相差を測定することは不可欠なことである。従来からVNA(Vector Network Analyzer:ベクトルネットワークアナライザ)がその役割を果たしてきた。VNAは、DUT(Device Under Test:被測定デバイス)の入射波と反射波、または入射波と透過波の振幅比と位相差(Sパラメータ:散乱行列要素)を測定するための装置である。
 このようなVNAとしては、従来から、ヘテロダイン方式が用いられている。ヘテロダイン方式では、局部発信器及びミキサを用いて、入力信号の周波数を中間周波数に落とすことによって、信号の測定を行っている。
 しかしながら、ヘテロダイン方式では、高い部品精度が要求され、装置が高価になりがちである。また、入力信号の周波数が高くなると、中間周波数の生成が難しくなるという問題もある。
 このような問題を解決できる手段として、ホモダイン方式が提案されている(下記特許文献1参照)。この文献には、6ポート型リフレクトメータ(Six-Port Reflectometer)が開示されている。これは、校正により得られるシステム固有のハードウェア情報(校正パラメータ)と、複数の電力測定値(スカラー量)から、2つの波の振幅比と位相差(ベクトル量)を導出するものである。この装置及びこれを用いた測定方法によれば、従来方式では周波数が高くなるに従って高精度な測定が困難となる位相差を、電磁波計測において基本測定量であり、かつ、計測精度が周波数に殆ど依存しない、電力値というスカラー量の計測を基に求めることができる。この技術によれば、従来の高精度なハードウェアの要請から開放され、4つの電力測定と、ハードウェアの不完全さを校正と呼ばれるソフトウェア(システムパラメータ)で補正することができる。なお、リフレクトメータとは、ひとつの波(信号)に関して、その入射波と出射波を比較するための装置である。
 さらに、本願発明者は、この文献の技術を発展させて、コリレータを構成する技術を提案している(下記特許文献2~7)。コリレータ(Wave-Correlator)とは、独立した2つの波(周波数は同じ)についてこれらを比較すること、すなわち複素振幅比を計測する装置である。
米国特許第4104583号公報 特開2003-215183号公報 特開2005-221375号公報 特開2005-326308号公報 特開2006-112893号公報 特開2008-164418号公報 特開2009-68932号公報
 ところで、前記したホモダイン方式のVNAにおいては、パラメータTと呼ばれるシステムパラメータを事前に取得し、このシステムパラメータを用いて、DUTのSパラメータを求めている。なお、従来から慣用的に、リフレクトメータのシステムパラメータをパラメータK、コリレータのシステムパラメータをパラメータTと名付けているが、この明細書では、ホモダイン方式のVNAのシステムパラメータを、統合的に、パラメータTと呼ぶことがある。このパラメータTを求めるためには、各ポートでの出力を用いて、複素平面上における三つの円の交点を演算する必要がある(例えば前記特許文献7の図21参照)。このため、この方式では、計算量が多くなる傾向がある。また、必ずしも三つの円の交点が求まらない場合があるという問題もあった。
 本発明は、DUTのSパラメータを、システムパラメータHと電力差分率とを使った線形結合で表わせるという新規な知見に基づいてなされたものである。ここで、システムパラメータHとは、本発明者らが設定した新たなパラメータである。
 すなわち、本発明は、前記した問題を解決するために、上記先行技術文献記載の方法とは異なる方法により、ベクトルネットワークアナライザを用いて高周波領域の信号の振幅比と位相差を測定する技術を提供することを目的とする。さらに、本発明は、新規なシステムパラメータの測定方法及びこれを使用したベクトルネットワークアナライザを用いた測定方法並びにプログラムを提供することを目的とする。
 この発明は、第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含む線形マルチポートについて、その固有の値であるシステムパラメータH3_11,H4_11,H5_11を測定する方法であって、
 前記第1入力ポートに所定の波(具体例を挙げれば、図4、図9などにおける電力分配器PDの出力端の一方(符号R)から出る波)を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
 前記第2入力ポートの前記整合終端を外し、前記第2入力ポートにショートの標準器(標準器はその通過特性及び反射特性が既知であるとする。以下同じ)を接続し、前記ショートの標準器に他の所定の波(具体例を挙げれば、図4、図9などにおける電力分配器PDの出力端の他方(符号M)から出る波)を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11_s[1]),P4(S11_s[1]),P5(S11_s[1])とする電力測定ステップと、
 前記第2入力ポートの前記ショートの標準器の前にライン1の標準器を挿入し、前記ライン1の標準器と前記ショートの標準器に前記他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11_s[2]),P4(S11_s[2]),P5(S11_s[2])とする電力測定ステップと、
 前記第2入力ポートの前記ライン1の標準器に代えてライン2の標準器を挿入し、前記ライン2の標準器と前記ショートの標準器に前記他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11_s[3]),P4(S11_s[3]),P5(S11_s[3])とする電力測定ステップと、
 下記式によりシステムパラメータH3_11,H4_11,H5_11を計算するものである。
Figure JPOXMLDOC01-appb-M000006
 この発明は、第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含む線形マルチポートについて、その固有の値であるシステムパラメータH3_12,H4_12,H5_12を測定する方法であって、
 前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
 前記第2入力ポートの前記整合終端を外し、前記第2入力ポートに他の所定の波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12_s[1]),P4(S12_s[1]),P5(S12_s[1])とする電力測定ステップと、
 前記第2入力ポートにライン1の標準器を接続し、前記ライン1の標準器を介して前記他の所定の波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12_s[2]),P4(S12_s[2]),P5(S12_s[2])とする電力測定ステップと、
 前記第2入力ポートの前記ライン1の標準器に代えてライン2の標準器を接続し、前記ライン2の標準器を介して前記他の所定の波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12_s[3]),P4(S12_s[3]),P5(S12_s[3])とする電力測定ステップと、
 下記式によりシステムパラメータH3_12,H4_12,H5_12を計算するものである。
Figure JPOXMLDOC01-appb-M000007
 この発明は、マイクロ波帯、ミリ波帯、サブミリ波帯や赤外線、可視光線、紫外線などの高周波信号を発生する電源からの波を2つに分け、一方を、2つの入力ポートと3つ以上の出力ポートを備える線形マルチポートの第1入力ポートに、他方を被測定デバイスに入力するとともに、前記被測定デバイスを通過した波又は前記被測定デバイスで反射された波を前記線形マルチポートの第2入力ポートに入れ、この状態で前記線形マルチポートの3つ以上の電力計測用の出力ポートそれぞれの検波出力を測定し、その結果に基づき前記被測定デバイスに関するベクトル量を測定するベクトルネットワークアナライザであって、前記線形マルチポートは、第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含むものを用いた測定方法であって、
 前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
 前記第2入力ポートに前記被測定デバイスで反射された波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11),P4(S11),P5(S11)とする電力測定ステップと、
 前記P3(0),P4(0),P5(0)、前記P3(S11),P4(S11),P5(S11)、予め求められたシステムパラメータH3_11,H4_11,H5_11及び下記式に基づき、前記被測定デバイスの反射特性S11を計算するものである。
Figure JPOXMLDOC01-appb-M000008
 この発明は、マイクロ波帯、ミリ波帯、サブミリ波帯や赤外線、可視光線、紫外線などの高周波信号を発生する電源からの波を2つに分け、一方を、2つの入力ポートと3つ以上の出力ポートを備える線形マルチポートの第1入力ポートに、他方を被測定デバイスに入力するとともに、前記被測定デバイスを通過した波又は前記被測定デバイスで反射された波を前記線形マルチポートの第2入力ポートに入れ、この状態で前記線形マルチポートの3つ以上の電力計測用の出力ポートそれぞれの検波出力を測定し、その結果に基づき前記被測定デバイスに関するベクトル量を測定するベクトルネットワークアナライザであって、前記線形マルチポートは、第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含むものを用いた測定方法であって、
 前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
 前記第2入力ポートに前記被測定デバイスを通過した波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12),P4(S12),P5(S12)とする電力測定ステップと、
 前記P3(0),P4(0),P5(0)、前記P3(S12),P4(S12),P5(S12)、予め求められたシステムパラメータH3_12,H4_12,H5_12及び下記式に基づき、前記被測定デバイスの通過特性S12を計算するものである。
Figure JPOXMLDOC01-appb-M000009
 この発明に適用されるベクトルネットワークアナライザは、例えば、マイクロ波帯、ミリ波帯、サブミリ波帯や赤外線、可視光線、紫外線などの高周波信号を発生する電源と、前記電源の出力を少なくとも2つに分配する電力分配器と、前記電力分配器で分配された波をそれぞれ受ける2つの入力ポートP1とP2及び3個の電力計測用の出力ポートP3乃至P5を含む5ポート接合と、前記5ポート接合の前記出力ポートP3乃至P5から出る波をそれぞれ検波する検波器と、前記電力分配器と前記5ポート接合の前記入力ポートP2の間に設けられた切換機構とを備え、
 前記切換機構は、被測定デバイスの一方のポートに前記電力分配器で分配された波を入れるとともに当該ポートから出る波を前記入力ポートP2へ入れる第1接続、前記被測定デバイスの他方のポートに前記電力分配器で分配された波を入れるとともに前記一方のポートから出る波を前記入力ポートP2へ入れる第2接続、前記被測定デバイスの前記一方のポートに前記電力分配器で分配された波を入れるとともに前記他方のポートから出る波を前記入力ポートP2へ入れる第3接続、及び、前記被測定デバイスの前記他方のポートに前記電力分配器で分配された波を入れるとともに当該ポートから出る波を前記入力ポートP2へ入れる第4接続、のいずれかを選択するものである。
 例えば、図4のSW1,SW2は切換機構を構成する。
 請求項1及び請求項3は、例えば、前記第1接続又は前記第4接続で適用され、請求項2及び請求項4は、例えば、前記第2接続又は前記第3接続で適用されうる。
 SパラメータのS22は、本発明のS11の手順を同様に適用することができる。つまり、ポート番号をどのように割り振るかは任意であるから、ポート番号を適宜に割り振ることにより、S11用の手順をS22用の手順として利用できる。同様に、SパラメータのS21については、本発明のS12の手順を同様に適用することができる。以上から理解できるように、システムパラメータH3_22,H4_22,H5_22及びH3_21,H4_21,H5_21についても同様である。
 さらに、本発明は、前記した測定方法を実現するためのシステム又はコンピュータプログラムに関するものである。
5ポート接合の内部ブロック図である。 5ポート接合の説明図である。 5ポート接合の説明図(ポート2を整合終端)である。 DUT用の測定回路(VNA)のブロック図である。 H3_11,H4_11,H5_11の測定手順を示すフローチャートである。 H3_12,H4_12,H5_12の測定手順を示すフローチャートである。 H3_21,H4_21,H5_21の測定手順を示すフローチャートである。 H3_22,H4_22,H5_22の測定手順を示すフローチャートである。 H3_11,H4_11,H5_11測定の回路接続を示す図である(「ロード」接続)。 H3_11,H4_11,H5_11測定の回路接続を示す図である(「ライン1/2」+「ロード」接続)。 H3_12,H4_12,H5_12測定の回路接続を示す図である(「ライン1/2」接続)。 H3_12,H4_12,H5_12測定の回路接続を示す図である(直結)。 DUTのS11,S12,S21,S22の測定手順を示すフローチャートである。 5.1ポート接合の内部ブロック図である。 パラメータH3_21,H4_21,H5_21の計算式を示す図である。 パラメータH3_21,H4_21,H5_21の計算式を示す図である。 本実施形態における測定手順を実行するためのシステムの一例を示すブロック図である
発明の実施の形態1.
 5ポート接合の一例を、図1に示す。図中、5PJは5ポート接合を示す。Qは公知の90°ハイブリッド、PDは公知の電力分配器である。ポート1及びポート2は入力ポートである。3~5は電力計測用のポートである。90°ハイブリッドとは、一方の側のひとつのポートに高周波信号を入力すると、その高周波信号の半分の振幅の高周波信号が反対側の対向するポートに出力され、残りの半分が反対側の他方のポートに出力され、前記対向するポートと前記他方のポートとの高周波信号の位相差が90°となるというものである。
 5ポート接合5PJの動作は次のようなものである。
 5ポートコリレータ(Five-port correlator)は、2つのポートに入る正弦波の大きさと位相の相互関係を、残りの3つのポートから出る電力値から測定する線形回路システムである。
 図2の線形5ポート接合において、入力ポート1、2から入る波の複素振幅をa1、a2とすると、サイドアームポート3、4、5から出てくる波の電力は次のように書ける。
Figure JPOXMLDOC01-appb-M000010
ここで、Ah、Bhは5ポート接合固有の複素定数、αhは変換係数である。
 コリレータでは、ポート1から入る波a1を基準波(Reference wave)、ポート2から入る波a2を測定波(Measurement wave)とし、基準波に対する測定波の複素振幅比Wを測定する。
 そこで、図3のように、ポート2を整合終端して a2=0 とし、基準波入力のみのサイドアームポート電力を、基準ポート電力Phrと定義し、式(1)を次のように書き換えることができる。
Figure JPOXMLDOC01-appb-M000011
 前記した式(4)のkhは、従来、リフレクトメータにおいてはパラメータK、コリレータにおいてはパラメータTと呼ばれていたシステムパラメータである。5ポート接合5PJを備えるコリレータを用いて計測を行うには、各出力ポートの波の電力値を計測するとともに、電力値とシステムパラメータを所定の数式に代入し計算する。システムパラメータとは、5ポート接合5PJに固有の値である。この実施形態では、システムパラメータとして、パラメータHを新たに導入した。システムパラメータ(本実施形態ではパラメータH)は、以下に説明する手順に従い、測定に先立ち予め求めておく必要がある。この点については、後にさらに詳しく説明する。
 図4に、DUT用の測定回路の例を示す。DUTの測定においては、まず、この回路におけるシステムパラメータを求め、その後、そのシステムパラメータを用いてDUTのSパラメータを求める。
 図4において、VSは、所定の周波数の信号を供給する電源(信号源)である。PDは、電源VSからの波を2つに分配する電力分配器である。図4における電力分配器PDは、図1における電力分配器PDとは別のものである。なお、図示しないが、図4の装置は、出力ポートの電力を測定するための検波器、検波器の出力を増幅する増幅器、増幅器の出力を受け、その出力(すなわち5ポート接合5PJの3個の出力ポートP3~P5の検波出力)に基づきシステムパラメータを計算するパソコン(コンピュータ)を備えていてもよい。
 DC1及びDC2は方向性結合器である。方向性結合器DC1の一方の側の2つの端は第1スイッチSW1及び第2スイッチSW2に接続され、他方の側の1つの端は2ポートの供試デバイス(Device Under Test:以下「DUT」と記す)の一方の端に接続され、残りの一端は終端されている。方向性結合器DC2も同様である。SW1は、電力分配器PDからの波を2つの方向性結合器DC1又はDC2のいずれかに入れるスイッチである。SW2は、2つの方向性結合器DC1又はDC2のいずれかを選択し、選択された方からの波を5ポート接合5PJのポート2へ送るスイッチである。
 第1スイッチSW1及び第2スイッチSW2は、DUTの4つのSパラメータ(S11、S12、S21、S22)をそれぞれ計測するための接続を実現する切換機構を構成する。
 なお、以下の説明で、第1スイッチSW1、第2スイッチSW2などを、単にSW1、SW2と略記することがある。
 図4のSW1,SW2は切換機構を構成する。切換機構は、電力分配器PDと5ポート接合5PJの入力ポートP2の間に設けられ、被測定デバイス(DUT)の一方のポートに電力分配器PDで分配された波を入れるとともに当該ポートから出る波を入力ポートP2へ入れる第1接続、DUTの他方のポートに電力分配器PDで分配された波を入れるとともに前記一方のポートから出る波を入力ポートP2へ入れる第2接続、DUTの前記一方のポートに電力分配器PDで分配された波を入れるとともに前記他方のポートから出る波を入力ポートP2へ入れる第3接続、及び、DUTの前記他方のポートに電力分配器PDで分配された波を入れるとともに当該ポートから出る波を入力ポートP2へ入れる第4接続、のいずれかを選択するものである。
 以下に説明する図5乃至図8のフローチャートは、それぞれ、第1接続~第4接続に対応している。
 図5乃至図8は、5ポート接合5PJを用いたコリレータのシステムパラメータ(本実施形態でのパラメータH)の測定方法のフローチャートである。システムパラメータH3_11,・・・については、後に詳しく説明する。なお、以下の説明にある、「ロード」「ショート」「ライン1」「ライン2」などは標準器であり、その特性は既知であるとする。
(1)H3_11,H4_11,H5_11の測定手順(図5参照)
 STEP1:SW1を左側、SW2を左側に設定する(DC1を選択する)。そして、PAに「ロード」を接続し(整合終端)、PBに「ロード」を接続する(図9参照)。
 STEP2:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(0)、P4(0)、P5(0)とする。
 STEP3:PAの「ロード」を「ショート」(短絡)に変更する。PBの「ロード」は変更しない。
 STEP4:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S11_s[1])、P4(S11_s[1])、P5(S11_s[1])とする。
 STEP5:PAの「ショート」を「ライン1(アダプタ等)」+「ショート」に変更する(図10参照)。PBの「ロード」は変更しない。
 STEP6:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S11_s[2])、P4(S11_s[2])、P5(S11_s[2])とする。
 STEP7:PAの「ライン1(アダプタ等)」+「ショート」を「ライン2(ライン1とは別の長さのアダプタ等)」+「ショート」に変更する。
 STEP8:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S11_s[3])、P4(S11_s[3])、P5(S11_s[3])とする。
 STEP9:上記ステップで得られた、P3(0)、P4(0)、P5(0)、(S11_s[1])、P4(S11_s[1])、P5(S11_s[1])、P3(S11_s[2])、P4(S11_s[2])、P5(S11_s[2])、P3(S11_s[3])、P4(S11_s[3])、P5(S11_s[3])を図16の式に代入することにより、H3_11,H4_11,H5_11を求めることができる。
 なお、図16の式の右辺はS21となっているが、S11,S12,S22についても同様に成立する。図16の式の右辺のS21_s[i]をS11_s[i]に読み替えて、上記値を代入する(以下、同様)。これにより得られるパラメータはH3_11,H4_11,H5_11である。
(2)H3_12,H4_12,H5_12の測定手順(図6参照)
 STEP11:SW1を右側(DC2を選択)、SW2を左側に設定する(DC1を選択する)。そして、PAに「ロード」を接続し(整合終端)、PBに「ロード」を接続する。
 STEP12:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(0)、P4(0)、P5(0)とする。
 STEP13:PAとPBを直結する(図12参照)。
 STEP14:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S12_s[1])、P4(S12_s[1])、P5(S12_s[1])とする。
 STEP15:PAとPBの間に「ライン1」を接続する(図11参照)。
 STEP16:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S12_s[2])、P4(S12_s[2])、P5(S12_s[2])とする。
 STEP17:PAとPBの間の「ライン1」を「ライン2」に変更する(図11参照)。
 STEP18:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S12_s[3])、P4(S12_s[3])、P5(S12_s[3])とする。
 STEP19:上記ステップで得られた、P3(0)、P4(0)、P5(0)、P3(S12_s[1])、P4(S12_s[1])、P5(S12_s[1])、P3(S12_s[2])、P4(S12_s[2])、P5(S12_s[2])、P3(S12_s[3])、P4(S12_s[3])、P5(S12_s[3])を図16の式に代入することにより、H3_12,H4_12,H5_12を求めることができる。
 図16の式の右辺のS21_s[i]をS12_s[i]に読み替えて、上記値を代入する。
(3)H3_21,H4_21,H5_21の測定手順(図7参照)
 STEP21:SW1を左側(DC1を選択)、SW2を右側に設定する(DC2を選択する)。そして、PAに「ロード」を接続し(整合終端)、PBに「ロード」を接続する。
 STEP22:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(0)、P4(0)、P5(0)とする。
 STEP23:PAとPBを直結する。
 STEP24:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S21_s[1])、P4(S21_s[1])、P5(S21_s[1])とする。
 STEP25:PAとPBの間に「ライン1」を接続する。
 STEP26:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S21_s[2])、P4(S21_s[2])、P5(S21_s[2])とする。
 STEP27:PAとPBの間の「ライン1」を「ライン2」に変更する。
 STEP28:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S21_s[3])、P4(S21_s[3])、P5(S21_s[3])とする。
 STEP29:上記ステップで得られた、P3(0)、P4(0)、P5(0)、(S21_s[1])、P4(S21_s[1])、P5(S21_s[1])、P3(S21_s[2])、P4(S21_s[2])、P5(S21_s[2])、P3(S21_s[3])、P4(S21_s[3])、P5(S21_s[3])を図16の式に代入することにより、H3_21,H4_21,H5_21を求めることができる。
(4)H3_22,H4_22,H5_22の測定手順(図8参照)
 STEP31:SW1を右側、SW2を右側に設定する(DC2を選択する)。そして、PAに「ロード」を接続し(整合終端)、PBに「ロード」を接続する。
 STEP32:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(0)、P4(0)、P5(0)とする。
 STEP33:PBの「ロード」を「ショート」(短絡)に変更する。PAの「ロード」は変更しない。
 STEP34:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S22_s[1])、P4(S22_s[1])、P5(S22_s[1])とする。
 STEP35:PBの「ショート」を「ライン1」+「ショート」に変更する。PAの「ロード」は変更しない。
 STEP36:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S22_s[2])、P4(S22_s[2])、P5(S22_s[2])とする。
 STEP37:PBの「ライン1」+「ショート」を「ライン2」+「ショート」に変更する。
 STEP38:5ポート接合5PJのP3、P4、P5から電力の値を取得する。これら電力値をP3(S22_s[3])、P4(S22_s[3])、P5(S22_s[3])とする。
 STEP39:上記ステップで得られた、P3(0)、P4(0)、P5(0)、(S22_s[1])、P4(S22_s[1])、P5(S22_s[1])、P3(S22_s[2])、P4(S22_s[2])、P5(S22_s[2])、P3(S22_s[3])、P4(S22_s[3])、P5(S22_s[3])を図16の式に代入することにより、H3_22,H4_22,H5_22を求めることができる。
 図16の式の右辺のS21_s[i]をS22_s[i]に読み替えて、上記値を代入する。
 ここで使用している「ショート」「ロード」「ライン1」「ライン2」は、すべてその特性が分かっているものを使用する。
 なお、上記測定方法は、後述の5.1ポートに関しても、同様に適用することができる。
 図13は、5ポート接合5PJを用いたDUTのSパラメータの測定方法のフローチャートである。同図で使用する式は次のものである。
Figure JPOXMLDOC01-appb-M000012
 図13を参照して測定手順を説明する。
 STEP41:図4のようにDUTを接続する(PA+DUT+PB)。
 STEP42:SW1及びSW2でDC1を選択する(SW1を左側、SW2を左側にする)。
 STEP43:5ポート接合のP3、P4、P5から電力の値を取得する。これらをP3(S11)、P4(S11)、P5(S11)とする。上記のS11の式に、これらと既に求めていたP3(0)、P4(0)、P5(0)(図5及びその説明参照)及びH3_11,H4_11,H5_11を代入して、S11を求める。
 STEP44:SW1でDC2を選択し、SW2でDC1を選択する。
 STEP45:5ポート接合のP3、P4、P5から電力の値を取得する。これらをP3(S12)、P4(S12)、P5(S12)とする。上記のS12の式に、これらと既に求めていたP3(0)、P4(0)、P5(0)(図6及びその説明参照)及びH3_12,H4_12,H5_12を代入して、S12を求める。
 STEP46:SW1でDC1を選択し、SW2でDC2を選択する。
 STEP47:5ポート接合のP3、P4、P5から電力の値を取得する。これらをP3(S21)、P4(S21)、P5(S21)とする。上記のS21の式に、これらと既に求めていたP3(0)、P4(0)、P5(0)(図7及びその説明参照)及びH3_21,H4_21,H5_21を代入して、S21を求める。
 STEP48:SW1及びSW2でDC2を選択する。
 STEP49:5ポート接合のP3、P4、P5から電力の値を取得する。これらをP3(S22)、P4(S22)、P5(S22)とする。上記のS22の式に、これらと既に求めていたP3(0)、P4(0)、P5(0)(図8及びその説明参照)及びH3_22,H4_22,H5_22を代入して、S22を求める。
 前記した従来のホモダイン法においては、システムパラメータ(パラメータH又はパラメータK)を求めるために三つの円の交点を計算していた。したがって、前記したように、円の交点を求めるための計算が複雑であるとともに、交点を正確に求めることが困難であるという問題があった。
 本発明者らによる新しい知見として、5ポートにおいては、Sパラメータを新たなパラメータHと電力差分率({P(S)/P(0)}-1)とを使った線形結合で表せることを見いだした。この知見によりパラメータHを直接計算することができるようになった。本発明の実施の形態によれば、既知の標準器最低3個を使ってパラメータHを計算で簡単に導出でき、計算量を削減できる。
 以下、式の導出について説明を加える。
A.最小二乗法を用いた5ポートシステムのシステムパラメータの求め方
 まず、5ポートシステムの基本式について説明する。
ポート1からの入力波をa1、ポート2からの入力波をa2とおくと、出力ポートiの電力はAi, Biを複素定数として
Figure JPOXMLDOC01-appb-M000013
 と表わされる。ここで、Bi/Ai=ki、a2/a1=W、また、PiはWの関数なのでPi≡Pi(W)とすると
Figure JPOXMLDOC01-appb-M000014
 となる。また、Pi(0)=α|Aia1|^2|1+ki0|^2=|Aia1|^2なので、上記式(数9)は
Figure JPOXMLDOC01-appb-M000015
と書くことができる。5ポートVNAの場合、DUTの透過係数をS21とすると
Figure JPOXMLDOC01-appb-M000016
と表わされる。
 上記式(数11)をポートi(i=3,4,5)に適用して整理し、S21を求める式を導出するとH3_21,H4_21,H5_21をシステム定数として
Figure JPOXMLDOC01-appb-M000017
となる。なお、S11,S12,S22に関しても同様の式が成立する。
 S11,S12,S22に関しても同様にシステムパラメータを求めることができる。
最小二乗法によるシステムパラメータの決定方法
 既知の標準器をi(i=3,4,5,・・・)個用意し、S21_s[i]それぞれの標準器を接続したときの式(数12)との差の二乗I
Figure JPOXMLDOC01-appb-M000018
を求め、その偏微分を0とおいた式
Figure JPOXMLDOC01-appb-M000019
を行列で表現すると、図15に示す式となる。したがって、図16に示す式で求めることができる。
 前記した数12の式に、例えば、図7の測定値P3(0)、P4(0)、P5(0)、P3(S21_s[1])、P4(S21_s[1])、P5(S21_s[1])、P3(S21_s[2])、P4(S21_s[2])、P5(S21_s[2])、P3(S21_s[3])、P4(S21_s[3])、P5(S21_s[3])を代入したものは、3元連立一次方程式である。これを解いてシステムパラメータH3_21,H4_21,H5_21を求めることもできる。つまり、前記した最小二乗法を使うことは必須ではない。
5ポートシステムにおける、計算式の導出
 上述した5ポートシステムの基本式(数10)をポートi(i=3,4,5)に適用して整理し、Wを求める式を導出すると
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
より、行列で表現して
Figure JPOXMLDOC01-appb-M000022
 よって、
Figure JPOXMLDOC01-appb-M000023
 となる。式(数18)を展開すると、
Figure JPOXMLDOC01-appb-M000024
 式(数19)において
Figure JPOXMLDOC01-appb-M000025
とおくと、これは定数となり、これにより式(数19)は
Figure JPOXMLDOC01-appb-M000026
という、線形結合で表すことができる。5ポートVNAの場合には測定したい特性によって
上記式(数19)のWをそれぞれ、S11, S12, S21, S22と書き換え、それぞれ
Figure JPOXMLDOC01-appb-M000027
と表すことができる。なお、数19のWをS11, S12, S21, S22と書き換え可能なのは、これらがいずれも入出力の関係を示しているからである。また、以上により、例えば数12の式を導出できることを示せた。
発明の実施の形態2.
 5ポート接合において、パラメータHを取得できれば、ポート3,4,5のパワーからDUTのSパラメータを計算できることを示した。上記方法を適用可能なものは、物理的なポート数が5であることではなく、5ポート接合として機能する構造である。
 その一例として、図14に示すように、5ポート接合に電力分配器PDをひとつ付加した装置について説明を加える。同図の装置を便宜上5.1ポートと記すことにする。
5.1ポートシステムにおける、計算式の導出
 ポート1からの入力波をa1、ポート2からの入力波をa2とおくと、出力ポートiの電力はAi, Biを複素定数として
Figure JPOXMLDOC01-appb-M000028
 と表わされる。ここで、出力ポートがa2に依存しないポート、つまりa2=0のポート(図14におけるポート0)
Figure JPOXMLDOC01-appb-M000029
を用意し、このポートとの比をとると
Figure JPOXMLDOC01-appb-M000030
ここで、Pi/Ph=hPi, Ai/Ah=hAi, Bi/Ah=hki, a2/a1=W,また、hPiはWの関数なのでhPi≡hPi(W)とすると
Figure JPOXMLDOC01-appb-M000031
 となる。また、hPi(0)=|hAi|^2|1+hki(0)|^2=|hAi|^2なので、式(数26)は
Figure JPOXMLDOC01-appb-M000032
と書くことができる。
 上記式(数26)をポートh=0, i=3,4,5について適用し、Wを求める式を導出すると
Figure JPOXMLDOC01-appb-M000033
より、行列で表現して
Figure JPOXMLDOC01-appb-M000034
 よって、
Figure JPOXMLDOC01-appb-M000035
 となる。式(数30)を展開すると、
Figure JPOXMLDOC01-appb-M000036
 上記式(数31)において
Figure JPOXMLDOC01-appb-M000037
とおくと、これは定数となり、これにより上記式(数31)は
Figure JPOXMLDOC01-appb-M000038
という、線形結合で表すことができる。5.1ポートVNAの場合には測定したい特性によって式(数33)のWをそれぞれ、S11, S12, S21, S22と書き換え、それぞれ
Figure JPOXMLDOC01-appb-M000039
と表すことができる。
 したがって、5.1ポートに関しても、図13の手順にしたがってDUTのSパラメータを測定することができる。
 また、図17に、前記した本実施形態の測定方法を実現するためのシステムの一例を示す。このシステムは、システムパラメータH3_11,H4_11,H5_11を測定するためのシステムである。
 基準電力測定部101は、ポート1に所定の波を入れ、ポート2を整合終端した状態で、ポート3、ポート4及びポート5での出力電力を測定することで得られた測定値P3(0),P4(0),P5(0)の入力を受け付ける。
 第1電力測定部102は、ポート2の整合終端を外し、ポート2にショートの標準器を接続し、ショートの標準器に他の所定の波を入れ、その反射波をポート2に入れた状態で、ポート3、ポート4及びポート5での出力電力を測定することで得られた測定値P3(S11_s[1]),P4(S11_s[1]),P5(S11_s[1])の入力を受け付ける。
 第2電力測定部103は、ポート2のショートの標準器の前にライン1の標準器を挿入し、ライン1の標準器とショートの標準器に他の所定の波を入れ、その反射波をポート2に入れた状態で、ポート3、ポート4及びポート5での出力電力を測定することで得られた測定値P3(S11_s[2]),P4(S11_s[2]),P5(S11_s[2])の入力を受け付ける。
 第3電力測定部104は、ポート2のライン1の標準器に代えてライン2の標準器を挿入し、ライン2の標準器とショートの標準器に他の所定の波を入れ、その反射波をポート2に入れた状態で、ポート3、ポート4及びポート5での出力電力を測定することで得られた測定値P3(S11_s[3]),P4(S11_s[3]),P5(S11_s[3])の入力を受け付ける。
 算出部105は、前記したとおり、下記式によりシステムパラメータH3_11,H4_11,H5_11を計算する。算出部105は、例えば適切なコンピュータプログラムとハードウエアの組み合わせにより構成することができる。
Figure JPOXMLDOC01-appb-M000040
 前記したシステムにおける各要素は、適宜なバス線(図17参照)を介してデータをやりとりすることが可能である。
 さらに、前記した測定方法は、各ポートでの測定値を処理するコンピュータプログラムにより実行可能である。すなわち、各ポートでの測定値をコンピュータに入力することにより、コンピュータは、本実施形態の方法に従って、前記した計算処理を行い、パラメータHやSパラメータを取得できる。
 本発明は、以上の実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
 5PJ 5ポート接合
 DC1、DC2 方向性結合器
 DUT 被測定デバイス
 PD  電力分配器
 SW1、SW2 高周波スイッチ
 VS  電源

Claims (7)

  1.  第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含む線形マルチポートについて、その固有の値であるシステムパラメータH3_11,H4_11,H5_11を測定する方法であって、
     前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
     前記第2入力ポートの前記整合終端を外し、前記第2入力ポートにショートの標準器(標準器はその通過特性及び反射特性が既知であるとする。以下同じ)を接続し、前記ショートの標準器に他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11_s[1]),P4(S11_s[1]),P5(S11_s[1])とする電力測定ステップと、
     前記第2入力ポートの前記ショートの標準器の前にライン1の標準器を挿入し、前記ライン1の標準器と前記ショートの標準器に前記他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11_s[2]),P4(S11_s[2]),P5(S11_s[2])とする電力測定ステップと、
     前記第2入力ポートの前記ライン1の標準器に代えてライン2の標準器を挿入し、前記ライン2の標準器と前記ショートの標準器に前記他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11_s[3]),P4(S11_s[3]),P5(S11_s[3])とする電力測定ステップと、
     下記式によりシステムパラメータH3_11,H4_11,H5_11を計算するステップとを備えることを特徴とする線形マルチポートのシステムパラメータ測定方法。
    Figure JPOXMLDOC01-appb-M000001
  2.  第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含む線形マルチポートについて、その固有の値であるシステムパラメータH3_12,H4_12,H5_12を測定する方法であって、
     前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
     前記第2入力ポートの前記整合終端を外し、前記第2入力ポートに他の所定の波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12_s[1]),P4(S12_s[1]),P5(S12_s[1])とする電力測定ステップと、
     前記第2入力ポートにライン1の標準器を接続し、前記ライン1の標準器を介して前記他の所定の波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12_s[2]),P4(S12_s[2]),P5(S12_s[2])とする電力測定ステップと、
     前記第2入力ポートの前記ライン1の標準器に代えてライン2の標準器を接続し、前記ライン2の標準器を介して前記他の所定の波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12_s[3]),P4(S12_s[3]),P5(S12_s[3])とする電力測定ステップと、
     下記式によりシステムパラメータH3_12,H4_12,H5_12を計算するステップとを備えることを特徴とする線形マルチポートのシステムパラメータ測定方法。
    Figure JPOXMLDOC01-appb-M000002
  3.  マイクロ波帯、ミリ波帯、サブミリ波帯や赤外線、可視光線、紫外線などの高周波信号を発生する電源からの波を2つに分け、一方を、2つの入力ポートと3つ以上の出力ポートを備える線形マルチポートの第1入力ポートに、他方を被測定デバイスに入力するとともに、前記被測定デバイスを通過した波又は前記被測定デバイスで反射された波を前記線形マルチポートの第2入力ポートに入れ、この状態で前記線形マルチポートの3つ以上の電力計測用の出力ポートそれぞれの検波出力を測定し、その結果に基づき前記被測定デバイスに関するベクトル量を測定するベクトルネットワークアナライザであって、前記線形マルチポートは、第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含むものを用いた測定方法であって、
     前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
     前記第2入力ポートに前記被測定デバイスで反射された波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S11),P4(S11),P5(S11)とする電力測定ステップと、
     前記P3(0),P4(0),P5(0)、前記P3(S11),P4(S11),P5(S11)、予め求められたシステムパラメータH3_11,H4_11,H5_11及び下記式に基づき、前記被測定デバイスの反射特性S11を計算するステップとを備えることを特徴とするベクトルネットワークアナライザを用いた測定方法。
    Figure JPOXMLDOC01-appb-M000003
  4.  マイクロ波帯、ミリ波帯、サブミリ波帯や赤外線、可視光線、紫外線などの高周波信号を発生する電源からの波を2つに分け、一方を、2つの入力ポートと3つ以上の出力ポートを備える線形マルチポートの第1入力ポートに、他方を被測定デバイスに入力するとともに、前記被測定デバイスを通過した波又は前記被測定デバイスで反射された波を前記線形マルチポートの第2入力ポートに入れ、この状態で前記線形マルチポートの3つ以上の電力計測用の出力ポートそれぞれの検波出力を測定し、その結果に基づき前記被測定デバイスに関するベクトル量を測定するベクトルネットワークアナライザであって、前記線形マルチポートは、第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含むものを用いた測定方法であって、
     前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(0),P4(0),P5(0)とする基準電力測定ステップと、
     前記第2入力ポートに前記被測定デバイスを通過した波を入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定し、それらをP3(S12),P4(S12),P5(S12)とする電力測定ステップと、
     前記P3(0),P4(0),P5(0)、前記P3(S12),P4(S12),P5(S12)、予め求められたシステムパラメータH3_12,H4_12,H5_12及び下記式に基づき、前記被測定デバイスの通過特性S12を計算するステップとを備えることを特徴とするベクトルネットワークアナライザを用いた測定方法。
    Figure JPOXMLDOC01-appb-M000004
  5.  第1入力ポート及び第2入力ポートと、前記第1入力ポートからの入力波と第2入力ポートからの入力波の線形結合で出力波がそれぞれ表される第3出力ポート、第4出力ポート及び第5出力ポートを含む線形マルチポートについて、その固有の値であるシステムパラメータH3_11,H4_11,H5_11を測定するためのシステムであって、
     前記第1入力ポートに所定の波を入れ、前記第2入力ポートを整合終端した状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定することで得られた測定値P3(0),P4(0),P5(0)の入力を受け付ける基準電力測定部と、
     前記第2入力ポートの前記整合終端を外し、前記第2入力ポートにショートの標準器(標準器はその通過特性及び反射特性が既知であるとする。以下同じ)を接続し、前記ショートの標準器に他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定することで得られた測定値P3(S11_s[1]),P4(S11_s[1]),P5(S11_s[1])の入力を受け付けるとする第1電力測定部と、
     前記第2入力ポートの前記ショートの標準器の前にライン1の標準器を挿入し、前記ライン1の標準器と前記ショートの標準器に前記他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定することで得られた測定値P3(S11_s[2]),P4(S11_s[2]),P5(S11_s[2])の入力を受け付ける第2電力測定部と、
     前記第2入力ポートの前記ライン1の標準器に代えてライン2の標準器を挿入し、前記ライン2の標準器と前記ショートの標準器に前記他の所定の波を入れ、その反射波を前記第2入力ポートに入れた状態で、前記第3出力ポート、前記第4出力ポート及び前記第5出力ポートの電力を測定することで得られた測定値P3(S11_s[3]),P4(S11_s[3]),P5(S11_s[3])の入力を受け付ける第3電力測定部と、
     下記式によりシステムパラメータH3_11,H4_11,H5_11を計算する算出部とを備えることを特徴とする線形マルチポートのシステムパラメータ測定システム。
    Figure JPOXMLDOC01-appb-M000005
  6.  請求項1~4のいずれか1項に記載の計算ステップをコンピュータに実行させるためのコンピュータプログラム。
  7.  請求項1~4のいずれか1項に記載の計算ステップをコンピュータに実行させるためのコンピュータプログラムを格納した記録媒体。
PCT/JP2010/051394 2009-02-04 2010-02-02 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法 WO2010090173A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/147,575 US8725442B2 (en) 2009-02-04 2010-02-02 Method for measuring system parameter of linear multiport and measuring method using vector network analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023816A JP5213124B2 (ja) 2009-02-04 2009-02-04 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法
JP2009-023816 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090173A1 true WO2010090173A1 (ja) 2010-08-12

Family

ID=42542066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051394 WO2010090173A1 (ja) 2009-02-04 2010-02-02 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法

Country Status (3)

Country Link
US (1) US8725442B2 (ja)
JP (1) JP5213124B2 (ja)
WO (1) WO2010090173A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014175B4 (de) * 2013-08-26 2018-01-11 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Verfahren zur Kalibrierung eines Messaufbaus
WO2018020655A1 (ja) * 2016-07-29 2018-02-01 株式会社島津製作所 分析制御システム
US10805015B1 (en) * 2020-02-21 2020-10-13 Rohde & Schwarz Gmbh & Co. Kg Method as well as test system for testing a device under test

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065791A1 (fr) * 2006-11-30 2008-06-05 Murata Manufacturing Co., Ltd. Procédé de correction d'erreur de caractéristiques hautes fréquences d'un composant électronique
JP2009068932A (ja) * 2007-09-12 2009-04-02 Campus Create Co Ltd 線形マルチポートのシステムパラメータの測定方法及び装置、ベクトルネットワークアナライザを用いた測定方法並びにプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104583A (en) 1977-08-31 1978-08-01 The United States Of America As Represented By The Secretary Of Commerce Six-port measuring circuit
JP3540797B2 (ja) 2002-01-18 2004-07-07 利幸 矢加部 7ポート型コリレータとその校正方法および7ポート型コリレータを用いたベクトル・ネットワーク・アナライザ装置
JP2005221375A (ja) 2004-02-05 2005-08-18 Toshiyuki Yakabe 移相器を用いた直接校正によるコリレータ
JP4137002B2 (ja) 2004-05-14 2008-08-20 利幸 矢加部 6ポート型システムを用いた高周波広帯域1ポート可変負荷装置
JP4149428B2 (ja) 2004-10-14 2008-09-10 国立大学法人 電気通信大学 ベクトルネットワークアナライザ及びその校正方法
JP2008164418A (ja) 2006-12-28 2008-07-17 Campus Create Co Ltd ベクトルネットワークアナライザ及びこれを用いた測定方法並びにプログラム
DE102007028725A1 (de) * 2007-06-21 2008-12-24 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Kalibrierung von Netzwerkanalysatoren mit einem Kammgenerator
US8155904B2 (en) * 2007-10-05 2012-04-10 Dvorak Steven L Vector signal measuring system, featuring wide bandwidth, large dynamic range, and high accuracy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065791A1 (fr) * 2006-11-30 2008-06-05 Murata Manufacturing Co., Ltd. Procédé de correction d'erreur de caractéristiques hautes fréquences d'un composant électronique
JP2009068932A (ja) * 2007-09-12 2009-04-02 Campus Create Co Ltd 線形マルチポートのシステムパラメータの測定方法及び装置、ベクトルネットワークアナライザを用いた測定方法並びにプログラム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Microwave Conference, 1976. 6th European, Italy, IEEE, 1976", 1976, ITALY, article CRONSON ET AL.: "A New Calibration Technique for Automated Broadband Microwave Measurements", pages: 205 - 209 *
"Proceedings of the IEICE Conference, vol.2008 Electronics 1, Nippon, IEICE, 2008", 2008, article KENJI HIROSE ET AL.: "Five-Port Based VNA no Teian", pages: 161 *
GHANNOUCHI ET AL.: "The six-port reflectometer and its complete calibration by four standard terminations, Microwaves, Antennas and Propagation", IEE PROCEEDINGS H, vol. 135, no. 4, 1988, pages 285 - 288 *
LI ET AL.: "The Measurement of Complex Reflection Coefficient by Means of a Five-Port Reflectometer", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 31, no. 4, 1983, pages 321 - 326 *
YAKABE ET AL.: "Complete Calibration of a Six-Port Reflectometer with One Sliding Load and One Short", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 42, no. 11, 1994, pages 2035 - 2039 *

Also Published As

Publication number Publication date
JP2010181226A (ja) 2010-08-19
US8725442B2 (en) 2014-05-13
JP5213124B2 (ja) 2013-06-19
US20110288800A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
CA2921479C (en) Method for calibrating a test setup
US8860434B2 (en) Method of measuring scattering parameters of device under test
US8504315B2 (en) Method for the secondary error correction of a multi-port network analyzer
US6836743B1 (en) Compensating for unequal load and source match in vector network analyzer calibration
CN110967573B (zh) 集成矢量网络分析仪
JP2004317506A (ja) テスト・システム校正を含む平衡デバイスの特性解明
JP4517119B2 (ja) 線形マルチポートのシステムパラメータの測定方法、ベクトルネットワークアナライザを用いた測定方法及びプログラム
JPH11352163A (ja) ネットワ―ク・アナライザの校正方法
JPH03500929A (ja) マイクロ波・ミリメータ波回路評価装置の校正方法
US8126670B2 (en) Method and device for calibrating a network analyzer for measuring at differential connections
CN109239634B (zh) 基于岭回归的二端口矢量网络分析仪校准的方法
JP2009058348A (ja) ベクトルネットワークアナライザを用いた測定方法及びその校正方法並びにプログラム
US20130317767A1 (en) Measurement error correction method and electronic component characteristic measurement apparatus
US8928333B2 (en) Calibration measurements for network analyzers
WO2010090173A1 (ja) 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法
JP7153309B2 (ja) ベクトルネットワークアナライザを用いた反射係数の測定方法
Wollensack et al. METAS VNA Tools II-Math Reference V2.
Dudkiewicz Vector-receiver load pull measurements
US6982561B2 (en) Scattering parameter travelling-wave magnitude calibration system and method
JP3540797B2 (ja) 7ポート型コリレータとその校正方法および7ポート型コリレータを用いたベクトル・ネットワーク・アナライザ装置
Vandenberghe et al. Identifying error-box parameters from the twelve-term vector network analyzer error model
Shimaoka A new method for measuring accurate equivalent source reflection coefficient of three-port devices
Rumiantsev Development of Calibration Solutions
Stenarson et al. A Reformulation and Stability Study of TRL and LRM Using $ S $-Parameters
US11558129B1 (en) System and method for calibrating vector network analyzer modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147575

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738505

Country of ref document: EP

Kind code of ref document: A1