WO2018020655A1 - 分析制御システム - Google Patents

分析制御システム Download PDF

Info

Publication number
WO2018020655A1
WO2018020655A1 PCT/JP2016/072299 JP2016072299W WO2018020655A1 WO 2018020655 A1 WO2018020655 A1 WO 2018020655A1 JP 2016072299 W JP2016072299 W JP 2016072299W WO 2018020655 A1 WO2018020655 A1 WO 2018020655A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
information
power consumption
control system
information acquisition
Prior art date
Application number
PCT/JP2016/072299
Other languages
English (en)
French (fr)
Inventor
卓哉 磯井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201680088117.7A priority Critical patent/CN109564251B/zh
Priority to JP2018530297A priority patent/JP6635199B2/ja
Priority to EP16910558.2A priority patent/EP3492931A1/en
Priority to PCT/JP2016/072299 priority patent/WO2018020655A1/ja
Priority to US16/321,120 priority patent/US11460489B2/en
Publication of WO2018020655A1 publication Critical patent/WO2018020655A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8651Recording, data aquisition, archiving and storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8804Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Definitions

  • the present invention relates to an analysis control system for acquiring operation information in a plurality of analyzers.
  • a signal related to power consumption of the machine is acquired as the operation information, and the operation state is determined based on the signal. Since the signal related to the power consumption is a signal generated as a result of the operation of the machine, the operating state of the machine is accurately determined.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an analysis control system capable of managing the operation status of each of a plurality of units with a simple configuration.
  • An analysis control system includes a plurality of analysis devices, a plurality of power consumption measurement units, and an operation information acquisition unit.
  • Each of the plurality of analyzers analyzes a sample using a plurality of units.
  • the plurality of power consumption measuring units measure power consumption of reference units included in the plurality of units in each analyzer.
  • the operation information acquisition unit acquires operation information of a target unit that is a unit other than the reference unit in each analyzer based on the power consumption of each reference unit measured by each power consumption measurement unit.
  • the power consumption measuring unit measures only the power consumption of the reference unit included in the plurality of units in the analyzer. And an operation information acquisition part acquires the operation information of the object unit in each analyzer based on the power consumption of the reference unit.
  • the power consumption measurement unit measures only the power consumption of the reference unit
  • the operation information acquisition unit calculates each target unit from the power consumption of the reference unit. Operation information can be acquired. As a result, the operation information of each target unit can be acquired without providing a configuration for directly measuring the power consumption of each target unit. Therefore, it is possible to manage the operation status of each of the plurality of units with a simple configuration.
  • the reference unit may be a unit having the highest operating rate among the plurality of units in each analyzer.
  • the analysis control system may further include an operation time calculation unit and a storage unit.
  • the operation time calculation unit calculates the operation time of each reference unit based on the power consumption of each reference unit measured by each power consumption measurement unit.
  • storage part memorize
  • the operation information acquisition unit calculates the operation time of the target unit based on the operation time of each reference unit calculated by the operation time calculation unit and the device configuration information stored in the storage unit. It may be acquired as information.
  • the operation time of each reference unit is calculated by the operation time calculation unit. Then, based on the operating time of the reference unit and the device configuration information of the storage unit, the operating time of each target unit is acquired by the operating information acquisition unit. Therefore, the operation time of each unit can be managed in the analysis control system. For example, the maintenance time of each unit can be accurately determined based on the information on the operation time.
  • the analysis control system may further include an input receiving unit and an information rewriting processing unit.
  • the input receiving unit receives input of the device configuration information.
  • the information rewriting processing unit rewrites the device configuration information stored in the storage unit when an input of the device configuration information is received by the input receiving unit.
  • the operation information acquisition unit can acquire the operation information of the target unit.
  • the plurality of power consumption measurement units may include an operation time calculation unit and a storage unit.
  • the operation time calculation unit calculates the operation time of each reference unit based on the power consumption of each reference unit measured by each power consumption measurement unit.
  • storage part memorize
  • the operation information acquisition unit calculates the operation time of the target unit based on the operation time of each reference unit calculated by the operation time calculation unit and the device configuration information stored in the storage unit. It may be acquired as information.
  • the operating time calculation unit and the storage unit are provided in the power consumption measurement unit. Therefore, members other than the power consumption measuring unit in the analysis control system can be easily configured.
  • the operation time of each reference unit is calculated by the operation time calculation unit. Then, based on the operating time of the reference unit and the device configuration information of the storage unit, the operating time of each target unit is acquired by the operating information acquisition unit.
  • the operation time of each unit can be managed in the analysis control system.
  • the maintenance time of each unit can be accurately determined based on the information on the operation time.
  • the analysis control system may further include a setting information acquisition unit.
  • the setting information acquisition unit acquires setting information about the operation of a plurality of components included in each of the plurality of units.
  • the operation information acquisition unit may acquire operation information of each component based on the setting information of each component acquired by the setting information acquisition unit.
  • the operation information acquisition unit can acquire the operation information of each component in addition to the operation information of each unit. Therefore, in addition to the operating status of each unit, the operating status of each component can be managed.
  • the analysis control system may further include an error information acquisition unit.
  • the error information acquisition unit acquires error information of the plurality of parts in each analysis device.
  • the operation information acquisition unit acquires operation information of each component based on the setting information of each component acquired by the setting information acquisition unit and the error information of each component acquired by the error information acquisition unit. May be.
  • the error information can be reflected in the operation information acquired by the operation information acquisition unit.
  • the operation information acquisition unit can acquire the operation information of each component with high accuracy.
  • each analysis apparatus includes a large number of target units
  • only the power consumption of the reference unit is measured by the power consumption measurement unit, and the power consumption of the reference unit is measured by the operation information acquisition unit.
  • the operation information of each target unit can be acquired from Therefore, the operation information of each target unit can be acquired without providing a configuration for directly measuring the power consumption of each target unit.
  • the operation status of each of the plurality of units can be managed with a simple configuration.
  • FIG. 6 is a block diagram showing a specific configuration of a data processing unit and its peripheral members in the analysis control system of FIG. 5.
  • FIG. 1 is a schematic diagram showing a configuration of an analysis control system 1 according to the first embodiment of the present invention.
  • the analysis control system 1 is a system including a plurality of analysis devices, and is a system for acquiring (managing) operation information of each unit included in each analysis device.
  • the analysis control system 1 includes a liquid chromatograph 2 and a gas chromatograph 3 as examples of the analysis apparatus.
  • the analysis control system 1 includes a power source 4, a first power consumption measurement unit 5, a second power consumption measurement unit 6, a data collection unit 7, and a data processing unit 8 in addition to these analysis devices. I have.
  • the liquid chromatograph 2 includes a pump 21, an autosampler 22, an oven 23, and a detector 24 as a unit.
  • the pump 21 is an example of a reference unit
  • the autosampler 22, the oven 23, and the detector 24 are examples of a target unit.
  • the pump 21 is the unit having the highest operating rate among the plurality of units in the liquid chromatograph 2.
  • Each member of the liquid chromatograph 2 (pump 21, autosampler 22, oven 23, and detector 24) is electrically connected to the power source 4, and electricity is supplied from the power source 4.
  • the mobile phase is sent to the flow path in the liquid chromatograph 2 by the operation of the pump 21.
  • a sample is injected from the autosampler 22 into the flow path.
  • the sample is conveyed to a separation column in the oven 23 and separated for each component, and is introduced into the detector 24 from this separation column.
  • Each sample component is detected by the detector 24.
  • the user analyzes the sample based on the detection result.
  • the gas chromatograph 3 includes a gas chromatograph main body (GC main body) 31 and a headspace sampler 32 as a unit.
  • the gas chromatograph main body 31 is an example of a reference unit
  • the headspace sampler 32 is an example of a target unit.
  • the gas chromatograph main body 31 is the unit having the highest operating rate among the plurality of units in the gas chromatograph 3.
  • the gas chromatograph main body 31 includes a column, a column oven, a sample introduction unit, a detector, a gas supply unit (not shown), and the like.
  • Each of the gas chromatograph main body 31 and the head space sampler 32 is electrically connected to the power source 4, and electricity is supplied from the power source 4.
  • a sample is injected from the head space sampler 32 into the sample introduction part in the gas chromatograph main body 31.
  • the sample is vaporized at the sample introduction part.
  • a carrier gas is supplied from the gas supply unit to the sample introduction unit.
  • the vaporized sample is introduced into the column together with the carrier gas, separated into various sample components in the process of passing through the column, and sequentially introduced into the detector. Then, each sample component is sequentially detected by the detector. The user analyzes the sample based on the detection result.
  • electricity is individually supplied from the power source 4 to each unit of the analysis apparatus.
  • the pump 21, the autosampler 22, the oven 23 and the detector 24 of the liquid chromatograph 2 and the gas chromatograph main body 31 and the head space sampler 32 of the gas chromatograph 3 are individually connected to the power source 4 and the electric power source 4, respectively.
  • the power is supplied individually from the power supply 4.
  • the first power consumption measuring unit 5 is arranged in a circuit that supplies electricity from the power source 4 to the liquid chromatograph 2. Specifically, the first power consumption measuring unit 5 is arranged in a circuit that supplies electricity from the power source 4 to the pump 21 and is configured to measure the power consumption of the pump 21.
  • the second power consumption measuring unit 6 is arranged in a circuit that supplies electricity from the power source 4 to the gas chromatograph 3. Specifically, the second power consumption measuring unit 6 is arranged in a circuit that supplies electricity from the power supply 4 to the gas chromatograph body 31 and is configured to measure the power consumption of the gas chromatograph body 31.
  • the data collection unit 7 receives a signal related to the power consumption of the pump 21 measured by the first power consumption measurement unit 5 and a signal related to the power consumption of the gas chromatograph body 31 measured by the second power consumption measurement unit 6. Is done. That is, the data collection unit 7 collects information on the power consumption of the pump 21 measured by the first power consumption measurement unit 5 and the power consumption of the gas chromatograph body 31 measured by the second power consumption measurement unit 6. Note that the data collection unit 7 may collect the processed data after performing processing such as compression on the data.
  • the data processing unit 8 receives signals related to the data collected by the data collection unit 7.
  • the data processing unit 8 acquires operation information of each unit in the analyzer (the liquid chromatograph 2 and the gas chromatograph 3) based on the input signal, as will be described later.
  • the power consumption of the reference unit in each analyzer is measured, and the operation time of the reference unit is calculated based on the information. Based on the calculated operation time of the reference unit, the operation time of the target unit in each analyzer is calculated.
  • the first power consumption measuring unit 5 measures the power consumption of the pump 21 that is the reference unit in the liquid chromatograph 2.
  • Information on the power consumption of the pump 21 measured by the first power consumption measurement unit 5 is collected by the data collection unit 7.
  • the data processing unit 8 is based on the data collected by the data collection unit 7 (information on the power consumption of the pump 21).
  • the autosampler 22 and the oven 23 that are target units in the liquid chromatograph 2 are used. And the operation information of each detector 24 is acquired.
  • the power consumption of the gas chromatograph main body 31 that is the reference unit in the gas chromatograph 3 is measured by the second power consumption measurement unit 6.
  • Information on the power consumption of the gas chromatograph main body 31 measured by the second power consumption measurement unit 6 is collected by the data collection unit 7.
  • the data processing unit 8 uses the data collected by the data collecting unit 7 (information on the power consumption of the gas chromatograph main body 31) of the head space sampler 32 that is the target unit in the gas chromatograph 3. Get operational information.
  • the analysis control system 1 only the power consumption of the reference unit in each analyzer is measured, and the power consumption of other target units is not measured. And in the analysis control system 1, based on the power consumption information of the reference unit, the operation information of the target unit in each analyzer is acquired.
  • the data processing unit 8 includes an operation unit 81, a display unit 82, a storage unit 83, and a control unit 84.
  • the operation unit 81 is composed of, for example, a keyboard and a mouse. The user can input various information to the control unit 84 by operating the operation unit 81.
  • the display unit 82 is composed of, for example, a liquid crystal display. Various information such as operation information of each unit in the analyzer is displayed on the display unit 82 under the control of the control unit 84.
  • the storage unit 83 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a hard disk.
  • the storage unit 83 stores a plurality (two) of device configuration information 831 and a plurality (two) of operation information 832.
  • the apparatus configuration information 831 is information on the ratio of the operating time between the reference unit and the target unit in each analyzer (liquid chromatograph 2 and gas chromatograph 3).
  • one apparatus configuration information 831 includes information on the ratio of operating time between the pump 21 and the autosampler 22, information on the ratio of operating time between the pump 21 and the oven 23, and information on the ratio between the pump 21 and the detector 24. Contains information on the ratio of uptime.
  • the operating time ratio between the pump 21 and the autosampler 22 is 1: 0.5
  • the operating time ratio between the pump 21 and the oven 23 is 1: 1
  • the pump 21 and the detector 24 The ratio of operating hours is 1: 0.7.
  • the other device configuration information 831 includes information on the ratio of the operating time between the gas chromatograph main body 31 and the headspace sampler 32.
  • the operating time ratio between the gas chromatograph body 31 and the headspace sampler 32 is 1: 0.5.
  • the operation information 832 is information on the operation status of each unit of the analyzer acquired by the control unit 84.
  • the date and time when each unit of the analyzer was operated, the operation time at the date and time, and the total operation time obtained by integrating the operation times are associated with each other.
  • the control unit 84 includes, for example, a CPU (Central Processing Unit).
  • the control unit 84 can input or output an electrical signal between the operation unit 81 and the display unit 82.
  • the control unit 84 stores information in the storage unit 83 and reads out information stored in the storage unit 83 as necessary.
  • the control unit 84 functions as an operation time calculation unit 841, an operation information acquisition unit 842, a display control unit 843, an input reception unit 844, an information rewrite processing unit 845, and the like when the CPU executes a program.
  • the operation time calculation unit 841 receives a signal from the data collection unit 7.
  • the operating time calculation unit 841 calculates the operating time of each reference unit based on the power consumption information of each reference unit collected by the data collection unit 7. That is, the operating time calculation unit 841 calculates the operating time of each reference unit based on the information on the power consumption of each reference unit measured by each of the first power consumption measuring unit 5 and the second power consumption measuring unit 6. To do. Specifically, the operation time calculation unit 841 calculates the operation time of the pump 21 of the liquid chromatograph 2 based on the information on the power consumption of the pump 21 of the liquid chromatograph 2 collected by the data collection unit 7. The operation time calculation unit 841 calculates the operation time of the gas chromatograph body 31 of the gas chromatograph 3 based on the power consumption information of the gas chromatograph body 31 of the gas chromatograph 3 collected by the data collection unit 7.
  • the operation information acquisition unit 842 Based on the information on the operation time of each reference unit calculated by the operation time calculation unit 841 and the device configuration information 831 stored in the storage unit 83, the operation information acquisition unit 842 Get the operating time as operating information. That is, the operation information acquisition unit 842 operates the operation of each target unit in the analyzer based on the power consumption information of each reference unit measured by each of the first power consumption measurement unit 5 and the second power consumption measurement unit 6. Get time as operating information. This information is stored in the storage unit 83 as operation information 832. Specifically, the operation information acquisition unit 842 is based on the operation time of the pump 21 of the liquid chromatograph 2 calculated by the operation time calculation unit 841 and the device configuration information 831 stored in the storage unit 83.
  • the operating time of units (autosampler 22, oven 23, and detector 24) other than the pump 21 of the liquid chromatograph 2 is acquired as operating information.
  • the operation information acquisition unit 842 is based on the operation time of the gas chromatograph body 31 of the gas chromatograph 3 calculated by the operation time calculation unit 841 and the device configuration information 831 stored in the storage unit 83.
  • the operation time of a unit (headspace sampler 32) other than the gas chromatograph main body 3 is acquired as operation information.
  • the display control unit 843 performs a process of displaying the operation status of each unit based on the operation information 832 stored in the storage unit 83.
  • the input receiving unit 844 receives a change regarding the device configuration information 831 (input of the device configuration information 831) based on the operation of the operation unit 81 by the user.
  • the information rewrite processing unit 845 rewrites the device configuration information 831 stored in the storage unit 83 based on the content received by the input receiving unit 844.
  • Control Operation by Control Unit When an analysis operation is performed in each of the liquid chromatograph 2 and the gas chromatograph 3, the first power consumption measuring unit 5 measures the power consumption of the pump 21 of the liquid chromatograph 2, and the second power consumption.
  • the measuring unit 6 measures the power consumption of the gas chromatograph body 31 of the gas chromatograph 3. Further, the data collection unit 7 collects information on the power consumption measured by the first power consumption measurement unit 5 and the second power consumption measurement unit 6.
  • Signals related to information collected by the data collection unit 7 are input to the operation time calculation unit 841 of the control unit 84 (data processing unit 8). Is done.
  • the operation time calculation unit 841 calculates the operation time of the pump 21 of the liquid chromatograph 2 and the operation time of the gas chromatograph body 31 of the gas chromatograph 3 based on the signal from the data collection unit 7.
  • the operation information acquisition unit 842 includes the operation time calculated by the operation time calculation unit 841 (the operation time of the pump 21 and the operation time of the gas chromatograph main body 31) and the device configuration stored in the storage unit 83. Based on the information 831, the operating times of the autosampler 22, the oven 23, and the detector 24, which are target units in the liquid chromatograph 2, and the operating time of the headspace sampler 32, which is the target unit in the gas chromatograph 3, are acquired. To do.
  • the ratio of the operation time of the pump 21 and the autosampler 22 is 1: 0.5. Therefore, the operation time of the autosampler 22 is acquired (calculated) by multiplying the operation time of the pump 21 calculated by the operation time calculation unit 841 by 0.5. Further, in the device configuration information 831, for example, the ratio of the operation time between the pump 21 and the oven 23 is 1: 1. Therefore, the operation time of the oven 23 is acquired (calculated) as the same time as the operation time of the pump 21 calculated by the operation time calculation unit 841.
  • the ratio of the operation time between the pump 21 and the detector 24 is 1: 0.7. Therefore, the operation time of the detector 24 is acquired (calculated) by multiplying the operation time of the pump 21 calculated by the operation time calculation unit 841 by 0.7.
  • the ratio of the operating time between the gas chromatograph main body 31 and the headspace sampler 32 is 1: 0.5. Therefore, the operating time of the headspace sampler 32 is acquired (calculated) by multiplying the operating time of the pump 21 calculated by the operating time calculation unit 841 by 0.5.
  • the operating time of each unit acquired in this manner (the operating time of the pump 21, the autosampler 22, the oven 23 and the detector 24 of the liquid chromatograph 2, and the gas chromatograph main body 31 and the headspace sampler 32 of the gas chromatograph 3).
  • the operation time is associated with the acquired date and time and stored in the storage unit 83 as operation information 832.
  • each time the liquid chromatograph 2 and the gas chromatograph 3 operate the operation time of each unit is acquired as described above.
  • the operation time of each unit is stored in the storage unit 83 as operation information 832.
  • information about the total operation time of each unit is stored in the storage unit 83 as the operation information 832.
  • the display control unit 843 displays the contents of the operation information 832 stored in the storage unit 83 on the display unit 82 as the operation status of each unit.
  • the display control unit 843 may display the contents of the operation information 832 on the display unit 82 at a predetermined timing, and the contents of the operation information 832 on the display unit 82 according to the operation of the operation unit 81 by the user. It may be displayed.
  • the user determines the maintenance time of each unit by confirming the operating status (operating time) of each unit displayed on the display unit 82.
  • the user when changing the device configuration information 831 in the storage unit 83, the user operates the operation unit 81 to input new device configuration information 831.
  • the input receiving unit 844 receives input of new device configuration information 831.
  • the information rewriting processing unit 845 rewrites the device configuration information 831 stored in the storage unit 83 based on the new information received by the input receiving unit 844.
  • the rewritten device configuration information 831 is used when the operation information acquisition unit 842 calculates the operation time of each unit as described above.
  • the input receiving unit 844 may be configured to receive the input of the device configuration information 831 and may have a configuration other than the configuration of receiving the input by the operation of the operation unit 81 described above. For example, the input receiving unit 844 may receive an input of the device configuration information 831 created and output in the analysis control system 1. Further, the input receiving unit 844 may receive an input of the device configuration information 831 created and output by an external system. Further, the input receiving unit 844 may issue a command in the analysis control system 1, and may receive an input of the device configuration information 831 that is automatically created and output by the external system in accordance with the command.
  • the first power consumption measuring unit 5 measures only the power consumption of the pump 21 that is the reference unit of the liquid chromatograph 2.
  • the second power consumption measuring unit 6 measures only the power consumption of the gas chromatograph body 31 which is the reference unit of the gas chromatograph 3.
  • the data collection unit 7 collects these pieces of information.
  • the operation information acquisition unit 842 of the data processing unit 8 is the target unit of the liquid chromatograph 2 based on the power consumption information of the pump 21 of the liquid chromatograph 2 collected by the data collection unit 7.
  • the operation information of each autosampler 22, oven 23 and detector 24 is acquired.
  • the operation information acquisition unit 842 of the data processing unit 8 is based on the power consumption information of the gas chromatograph body 31 of the gas chromatograph 3 collected by the data collection unit 7, and the headspace sampler 32 that is the target unit of the gas chromatograph 3. Get the operation information of.
  • the liquid chromatograph 2 includes many target units, only the power consumption of the pump 21 is measured by the first power consumption measurement unit 5, and the power consumption of the pump 21 by the operating time calculation unit 841.
  • the operation information of each target unit can be acquired from Similarly, even when the gas chromatograph 3 includes many target units, the second power consumption measuring unit 6 measures only the power consumption of the gas chromatograph main body 31, and the operating time calculating unit 841 measures the gas chromatograph main body.
  • the operation information of each target unit can be acquired from the 31 power consumption.
  • the operation information of each target unit can be acquired without providing a configuration for directly measuring the power consumption of each target unit of the liquid chromatograph 2 and the power consumption of each target unit of the gas chromatograph 3. Therefore, it is possible to manage the operation status of each of the plurality of units with a simple configuration.
  • the reference unit in the liquid chromatograph 2, the reference unit is the pump 21 that is the unit having the highest operating rate among the plurality of units.
  • the reference unit in the gas chromatograph 3, the reference unit is the gas chromatograph main body 31 that is the unit having the highest operating rate among the plurality of units.
  • the operation information acquisition unit 842 acquires operation information of a unit (target unit) other than the pump 21 of the liquid chromatograph 2 from the power consumption of the pump 21, and from the power consumption of the gas chromatograph main body 31, Operation information of units (target units) other than the gas chromatograph main body 31 is acquired.
  • the operation information of each target unit can be obtained with higher accuracy than when a unit having a low operation rate is used as a reference unit.
  • the operation time of the pump 21 of the liquid chromatograph 2 is calculated by the operation time calculation unit 841.
  • a unit (target unit) other than the pump 21 of the liquid chromatograph 2 is obtained by the operation information acquisition unit 842 based on the operation time of the pump 21 and the device configuration information 831 of the storage unit 83.
  • the operating time of is acquired.
  • the operation time of the gas chromatograph body 31 of the gas chromatograph 3 is calculated by the operation time calculation unit 841.
  • the operation information acquisition unit 842 Based on the operation time of the gas chromatograph main body 31 and the device configuration information 831 of the storage unit 83, the operation information acquisition unit 842 operates the operation time of units (target units) other than the gas chromatograph main body 31 of the gas chromatograph 3. To be acquired.
  • the operation time of each unit can be managed in the analysis control system 1. And based on the information of the operation time, the maintenance time of each unit can be determined accurately.
  • the input receiving unit 844 receives a change related to the device configuration information 831 (input of the device configuration information 831) based on the operation of the operation unit 81 by the user.
  • the information rewrite processing unit 845 rewrites the device configuration information 831 stored in the storage unit 83 based on the content received by the input receiving unit 844.
  • the input receiving unit 844 receives input of information
  • the device configuration information 831 stored in the storage unit 83 can be rewritten with the latest information.
  • the operation information acquisition unit 842 can acquire the operation information of each target unit.
  • FIG. 3 is a schematic diagram illustrating the configuration of the analysis control system 1 according to the second embodiment of the present invention.
  • FIG. 4 is a block diagram showing a specific configuration of the first power consumption measurement unit 5, the second power consumption measurement unit 6, and peripheral members in the analysis control system 1 of FIG.
  • the analysis control system 1 includes the data processing unit 8. Then, the data processing unit 8 performs control for acquiring operation information of each unit.
  • main control for acquiring operation information of each unit is performed by each of the first power consumption measuring unit 5 and the second power consumption measuring unit 6. .
  • the data processing unit 8 in the first embodiment is omitted.
  • the first power consumption measurement unit 5 includes a first storage unit 51 and a first control unit 52.
  • the second power consumption measuring unit 6 includes a second storage unit 61 and a second control unit 62.
  • the first storage unit 51 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a hard disk, and the like.
  • the first storage unit 51 stores device configuration information 511.
  • the device configuration information 511 is the same information as the device configuration information 831 (device configuration information 831 related to the liquid chromatograph 2) in the first embodiment.
  • the 1st control part 52 is the structure containing CPU (Central Processing Unit), for example.
  • the first control unit 52 inputs an electrical signal to the data collection unit 7.
  • the 1st control part 52 reads the information memorized by the 1st storage part 51 as needed.
  • the first control unit 52 functions as a first measurement unit 521, a first operation time calculation unit 522, a first operation information acquisition unit 523, and the like when the CPU executes a program.
  • the first measurement unit 521 is configured to measure the power consumption of the pump 21 of the liquid chromatograph 2.
  • the first operation time calculation unit 522 calculates the operation time of the pump 21 based on the power consumption of the pump 21 measured by the first measurement unit 521.
  • the first operation information acquisition unit 523 is based on the operation time of the pump 21 calculated by the first operation time calculation unit 522 and the device configuration information 511 stored in the first storage unit 51.
  • the operation times of the auto sampler 22, the oven 23, and the detector 24, which are the target units, are acquired.
  • Information on the operation time of each unit acquired by the first operation information acquisition unit 523 is input to the data collection unit 7.
  • the second storage unit 61 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a hard disk, and the like.
  • the second storage unit 61 stores device configuration information 611.
  • the device configuration information 611 is the same information as the device configuration information 831 (device configuration information 831 related to the gas chromatograph 3) in the first embodiment.
  • the second control unit 62 includes a CPU (Central Processing Unit).
  • the second control unit 62 inputs an electrical signal to the data collection unit 7.
  • the 2nd control part 62 reads the information memorized by the 2nd storage part 61 as needed.
  • the second control unit 62 functions as a second measurement unit 621, a second operation time calculation unit 622, a second operation information acquisition unit 623, and the like when the CPU executes a program.
  • the second measuring unit 621 is configured to measure the power consumption of the gas chromatograph body 31 of the gas chromatograph 3.
  • the second operation time calculation unit 622 calculates the operation time of the gas chromatograph body 31 based on the power consumption of the gas chromatograph body 31 measured by the second measurement unit 621.
  • the second operation information acquisition unit 623 is based on the operation time of the gas chromatograph body 31 calculated by the first operation time calculation unit 622 and the device configuration information 611 stored in the second storage unit 61. 3, the operating time of the head space sampler 32 that is the target unit is acquired. Information on the operation time of each unit acquired by the second operation information acquisition unit 623 is input to the data collection unit 7.
  • the first operating time calculation unit 522 is based on the power consumption of the pump 21 of the liquid chromatograph 2 measured by the first measurement unit 521. Calculate the operating time. Further, the first operation information acquisition unit 523 performs liquid chromatography based on the operation time of the pump 21 calculated by the first operation time calculation unit 522 and the device configuration information 511 stored in the first storage unit 51. The operating times of the auto sampler 22, the oven 23, and the detector 24, which are target units in the graph 2, are acquired. Information (operation time information) of each unit acquired by the first operation time calculation unit 522 is input to the data collection unit 7.
  • the second operating time calculating unit 622 is based on the power consumption of the gas chromatograph body 31 of the gas chromatograph 3 measured by the second measuring unit 621, and the gas chromatograph body of the gas chromatograph 3. 31 working hours are calculated.
  • the second operation information acquisition unit 623 is based on the operation time of the gas chromatograph body 31 calculated by the second operation time calculation unit 622 and the device configuration information 611 stored in the second storage unit 61.
  • the operating time of the head space sampler 32 which is the target unit in the gas chromatograph 3 is acquired.
  • Information (operation time information) of each unit acquired by the second operation time calculation unit 622 is input to the data collection unit 7.
  • the data collection unit 7 displays the input information on a display unit (not shown) or the like as necessary.
  • the first power consumption measurement unit 5 includes a first storage unit 51 and a first control unit 52.
  • the first storage unit 51 stores device configuration information 511.
  • the first control unit 52 functions as a first measurement unit 521, a first operation time calculation unit 522, a first operation information acquisition unit 523, and the like.
  • the second power consumption measurement unit 6 includes a second storage unit 61 and a second control unit 62.
  • the second storage unit 61 stores device configuration information 611.
  • the second control unit 62 functions as a second measurement unit 621, a second operation time calculation unit 622, a second operation information acquisition unit 623, and the like.
  • the control for acquiring the operation information (operation time) of each unit of the liquid chromatograph 2 and the gas chromatograph 3 is mainly performed by the first power consumption measuring unit 5 and the second power consumption measuring unit. Each of 6 is performed. Therefore, members other than the first power consumption measuring unit 5 and the second power consumption measuring unit 6 in the analysis control system 1 can be easily configured.
  • FIG. 5 is a schematic diagram illustrating the configuration of the analysis control system 1 according to the third embodiment of the present invention.
  • FIG. 6 is a block diagram showing a specific configuration of the data processing unit 8 and its peripheral members in the analysis control system 1 of FIG.
  • the operation information acquisition unit 842 acquires the operation information of each unit of each analysis device (liquid chromatograph 2 and gas chromatograph 3).
  • the operation information acquisition unit 842 acquires not only the operation information of each unit but also the operation information of the parts included in each unit of each analyzer.
  • the analysis control system 1 further includes a setting information acquisition unit 10 and an error information acquisition unit 11 as shown in FIG.
  • Each unit of the liquid chromatograph 2 and each unit of the gas chromatograph 3 are provided with a plurality of parts and hold setting information regarding the operation of these parts.
  • the pump 21 of the liquid chromatograph 2 includes a valve as a component, and holds setting information regarding the operation of the valve (not shown).
  • the setting information acquisition unit 10 is electrically connected to each unit of the liquid chromatograph 2 and each unit of the gas chromatograph 3. Specifically, the setting information acquisition unit 10 is electrically connected to the pump 21 of the liquid chromatograph 2, the autosampler 22, the oven 23 and the detector 24, and the gas chromatograph main body 31 and the headspace sampler 32 of the gas chromatograph 3. Connected. The setting information acquisition unit 10 acquires setting information of parts included in each unit of the liquid chromatograph 2 and each unit of the gas chromatograph 3.
  • the component setting information is, for example, information on the number of times of a predetermined operation in the component when each unit operates for a unit time.
  • the pump 21 of the liquid chromatograph 2 holds, as setting information, information on how many times a valve that is a part operates when the pump 21 operates for a unit time.
  • the error information acquisition unit 11 is electrically connected to each unit of the liquid chromatograph 2 and each unit of the gas chromatograph 3. Specifically, the error information acquisition unit 11 is electrically connected to the pump 21 of the liquid chromatograph 2, the autosampler 22, the oven 23 and the detector 24, and the gas chromatograph body 31 and the headspace sampler 32 of the gas chromatograph 3. Connected.
  • the error information acquisition unit 11 acquires information (error information) related to an error occurring in a part included in each unit of the liquid chromatograph 2 and each unit of the gas chromatograph 3.
  • the error information may include, for example, information on the time when each component is not operating due to an error.
  • the setting information acquisition unit 10 includes setting information of parts included in each unit of the liquid chromatograph 2, and Each of the setting information of the parts included in each unit of the gas chromatograph 3 is acquired.
  • the error information acquisition unit 11 acquires error information when an error occurs in each of the components included in each unit of the liquid chromatograph 2 and the components included in each unit of the gas chromatograph 3. .
  • the operation information acquisition unit 842 acquires the operation time of each unit of the liquid chromatograph 2 and the operation time of each unit of the gas chromatograph 3 in the same manner as in the first embodiment. .
  • the operation information acquisition unit 842 acquires the operation information of the parts of each unit based on the operation time of each unit and the setting information of the parts of each unit acquired by the setting information acquisition unit 10. In this example, the operation information acquisition unit 842 calculates (acquires) the number of predetermined operations in the components of each unit as operation information.
  • the operation information acquisition unit 842 acquires the operation information of each component corrected based on the error information.
  • Information on the components of each unit acquired in this way by the operation information acquisition unit 842 is stored in the storage unit 83 as operation information 832.
  • the display control unit 843 displays the contents of the operation information 832 on the display unit 82 as the operation status of the components of each unit.
  • the analysis control system 1 further includes a setting information acquisition unit 10.
  • the setting information acquisition unit 10 acquires setting information of parts included in each unit.
  • the operation information acquisition unit 842 acquires operation information of each component based on the setting information of each component acquired by the setting information acquisition unit 10. Therefore, the operation information acquisition unit 842 can acquire the operation information of each component in addition to the operation information of each unit.
  • the analysis control system 1 in addition to the operation status of each unit, the operation status of each component can be managed.
  • the analysis control system 1 further includes an error information acquisition unit 11.
  • the error information acquisition unit 11 acquires error information of components included in each unit.
  • the operation information acquisition unit 842 acquires operation information of each component based on the setting information of each component acquired by the setting information acquisition unit 10 and the error information of each component acquired by the error information acquisition unit 11. . Therefore, when an error occurs in each component, the error information can be reflected in the operation information of each component acquired by the operation information acquisition unit 842. As a result, the operation information acquisition unit 842 can acquire the operation information of each component with high accuracy.
  • the analysis control system 1 has been described as including the liquid chromatograph 2 and the gas chromatograph 3 as analysis apparatuses.
  • the analysis control system 1 may include any other analysis device that analyzes the characteristics of the sample, such as a mass spectrometer, a spectrophotometer, a total organic carbon meter, an infrared microscope, and an electron microscope. Then, the operation information of the target unit may be acquired by measuring the power consumption of the reference unit included in the analyzer.
  • the operation information is described as the operation time and the number of operations.
  • the operation information is not limited to the operation time and the number of operations, and may include, for example, various information indicating the operation status of each unit or each component, such as the operation date and time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

第1消費電力測定部5は、液体クロマトグラフ2の基準ユニットであるポンプ21の消費電力のみを測定する。また、第2消費電力測定部6は、ガスクロマトグラフ3の基準ユニットであるガスクロマトグラフ本体31の消費電力のみを測定する。稼働情報取得部は、ポンプ21の消費電力の情報に基づいて、液体クロマトグラフ2の対象ユニットであるオートサンプラー22、オーブン23及び検出器24のそれぞれの稼働情報を取得する。また、稼働情報取得部は、ガスクロマトグラフ本体31の消費電力の情報に基づいて、ガスクロマトグラフ3の対象ユニットであるヘッドスペースサンプラー32の稼働情報を取得する。そのため、分析装置に多くの対象ユニットが含まれる場合であっても、基準ユニットの消費電力のみを測定して、稼働時間算出部によってその基準ユニットの消費電力から各対象ユニットの稼働情報を取得できる。

Description

分析制御システム
 本発明は、複数の分析装置における稼働情報を取得するための分析制御システムに関するものである。
 従来より、各種機械の稼働状況の管理をシステムによって行う技術が利用されている。例えば、長期間にわたって使用する機械の稼働情報を自動的に取得し、この情報に基づいて、機械の稼働状態(稼働時間など)を判定するシステムが提案されている。このシステムで得られた判定結果は、例えば、メンテナンスを行うべきタイミングを判断する際の情報として用いられる(例えば、下記特許文献1参照)。
 上記特許文献1に記載のシステムでは、稼働情報として、機械の消費電力に関する信号が取得され、その信号に基づいて、稼働状態が判定される。消費電力に関する信号は、機械が稼働した結果として生じる信号であるため、機械の稼働状態が的確に判定される。
特開2004-70424号公報
 上記した従来のシステムでは、管理対象となる機械が増える場合には、その機械の数だけシステムを増やす必要がある。その場合、全体の構成が複雑になり、コストも増加するという不具合が生じる。例えば、クロマトグラフなどの分析装置のように、複数のユニットが設けられる機械において、各ユニットの稼働状況を管理したい場合には、ユニットの数だけシステムを構成する必要が生じ、構成の複雑化、コストの増大という不具合を招いてしまう。
 本発明は、上記実情に鑑みてなされたものであり、簡易な構成で、複数のユニットのそれぞれにおける稼働状況を管理できる分析制御システムを提供することを目的とする。
(1)本発明に係る分析制御システムは、複数の分析装置と、複数の消費電力測定部と、稼働情報取得部とを備える。前記複数の分析装置は、それぞれ複数のユニットを用いて試料の分析を行う。前記複数の消費電力測定部は、各分析装置における前記複数のユニットに含まれる基準ユニットの消費電力を測定する。前記稼働情報取得部は、各消費電力測定部により測定される各基準ユニットの消費電力に基づいて、各分析装置における前記基準ユニット以外のユニットである対象ユニットの稼働情報を取得する。
 このような構成によれば、消費電力測定部は、分析装置における複数のユニットに含まれる基準ユニットの消費電力のみを測定する。そして、稼働情報取得部は、その基準ユニットの消費電力に基づいて、各分析装置における対象ユニットの稼働情報を取得する。
 そのため、各分析装置に多くの対象ユニットが含まれる場合であっても、消費電力測定部によって基準ユニットの消費電力のみを測定して、稼働情報取得部によってその基準ユニットの消費電力から各対象ユニットの稼働情報を取得できる。
 その結果、各対象ユニットの消費電力を直接測定する構成を設けることなく、その各対象ユニットの稼働情報を取得できる。
 よって、簡易な構成で、複数のユニットのそれぞれにおける稼働状況を管理できる。
(2)また、前記基準ユニットは、各分析装置における前記複数のユニットのうち最も稼働率が高いユニットであってもよい。
 このような構成によれば、稼働率が低いユニットを基準ユニットにする場合に比べて、消費電力測定部による消費電力の測定における誤差の割合を小さくできる。そして、稼働情報取得部によってその消費電力から各対象ユニットの稼働情報を取得する。そのため、稼働率が低いユニットを基準ユニットにする場合に比べて、各対象ユニットの稼働情報を精度よく取得できる。
(3)また、前記分析制御システムは、稼働時間算出部と、記憶部とをさらに備えてもよい。前記稼働時間算出部は、各消費電力測定部により測定される各基準ユニットの消費電力に基づいて、各基準ユニットの稼働時間を算出する。前記記憶部は、各分析装置における前記基準ユニットと前記対象ユニットとの稼働時間の比率を装置構成情報として記憶する。前記稼働情報取得部は、前記稼働時間算出部により算出された各基準ユニットの稼働時間と、前記記憶部に記憶されている前記装置構成情報とに基づいて、前記対象ユニットの稼働時間を前記稼働情報として取得してもよい。
 このような構成によれば、稼働時間算出部によって、各基準ユニットの稼働時間が算出される。そして、その基準ユニットの稼働時間、及び、記憶部の装置構成情報に基づいて、稼働情報取得部によって、各対象ユニットの稼働時間が取得される。
 そのため、分析制御システムにおいて、各ユニットの稼働時間を管理できる。そして、例えば、その稼働時間の情報に基づいて、各ユニットのメンテナンス時期を的確に判断できる。
(4)また、前記分析制御システムは、入力受付部と、情報書換処理部とをさらに備えてもよい。前記入力受付部は、前記装置構成情報の入力を受け付ける。前記情報書換処理部は、前記入力受付部により前記装置構成情報の入力が受け付けられた場合に、前記記憶部に記憶されている前記装置構成情報を書き換える。
 このような構成によれば、入力受付部が装置構成情報の入力を受け付けることにより、記憶部に記憶されている装置構成情報を、最新の情報に書き換えることができる。そして、その最新の装置構成情報に基づいて、稼働情報取得部により対象ユニットの稼働情報を取得できる。
(5)また、前記複数の消費電力測定部は、稼働時間算出部と、記憶部とを備えてもよい。前記稼働時間算出部は、各消費電力測定部により測定される各基準ユニットの消費電力に基づいて、各基準ユニットの稼働時間を算出する。前記記憶部は、各分析装置における前記基準ユニットと前記対象ユニットとの稼働時間の比率を装置構成情報として記憶する。前記稼働情報取得部は、前記稼働時間算出部により算出された各基準ユニットの稼働時間、及び、前記記憶部に記憶されている前記装置構成情報に基づいて、前記対象ユニットの稼働時間を前記稼働情報として取得してもよい。
 このような構成によれば、稼働時間算出部及び記憶部は、消費電力測定部に備えられる。
 そのため、分析制御システムにおける消費電力測定部以外の部材を簡易に構成できる。
 また、分析制御システムでは、稼働時間算出部によって、各基準ユニットの稼働時間が算出される。そして、その基準ユニットの稼働時間、及び、記憶部の装置構成情報に基づいて、稼働情報取得部によって、各対象ユニットの稼働時間が取得される。
 そのため、分析制御システムにおいて、各ユニットの稼働時間を管理できる。そして、例えば、その稼働時間の情報に基づいて、各ユニットのメンテナンス時期を的確に判断できる。
(6)また、前記分析制御システムは、設定情報取得部をさらに備えてもよい。前記設定情報取得部は、前記複数のユニットにそれぞれ含まれる複数の部品の動作についての設定情報を取得する。前記稼働情報取得部は、前記設定情報取得部により取得された各部品の設定情報に基づいて、各部品の稼働情報を取得してもよい。
 このような構成によれば、稼働情報取得部によって、各ユニットの稼働情報に加えて、各部品の稼働情報を取得できる。
 そのため、各ユニットの稼働状況に加えて、各部品の稼働状況を管理できる。
(7)また、前記分析制御システムは、エラー情報取得部をさらに備えてもよい。前記エラー情報取得部は、各分析装置における前記複数の部品のエラー情報を取得する。前記稼働情報取得部は、前記設定情報取得部により取得された各部品の設定情報、及び、前記エラー情報取得部により取得された各部品のエラー情報に基づいて、各部品の稼働情報を取得してもよい。
 このような構成によれば、各部品でエラーが発生した場合に、そのエラー情報を稼働情報取得部で取得する稼働情報に反映させることができる。
 その結果、稼働情報取得部によって、各部品の稼働情報を精度よく取得できる。
 本発明によれば、各分析装置に多くの対象ユニットが含まれる場合であっても、消費電力測定部によって基準ユニットの消費電力のみを測定して、稼働情報取得部によってその基準ユニットの消費電力から各対象ユニットの稼働情報を取得できる。そのため、各対象ユニットの消費電力を直接測定する構成を設けることなく、その各対象ユニットの稼働情報を取得できる。その結果、簡易な構成で、複数のユニットのそれぞれにおける稼働状況を管理できる。
本発明の第1実施形態に係る分析制御システムの構成を示した概略図である。 図1の分析制御システムにおけるデータ処理部、及び、その周辺の部材の具体的構成を示したブロック図である。 本発明の第2実施形態に係る分析制御システムの構成を示した概略図である。 図3の分析制御システムにおける第1消費電力測定部、第2消費電力測定部、及び、その周辺の部材の具体的構成を示したブロック図である。 本発明の第3実施形態に係る分析制御システムの構成を示した概略図である。 図5の分析制御システムにおけるデータ処理部、及び、その周辺の部材の具体的構成を示したブロック図である。
1.分析制御システムの全体構成
 図1は、本発明の第1実施形態に係る分析制御システム1の構成を示した概略図である。
 分析制御システム1は、複数の分析装置を備えるシステムであって、各分析装置に含まれる各ユニットの稼働情報を取得(管理)するためのシステムである。具体的には、分析制御システム1は、分析装置の一例として、液体クロマトグラフ2と、ガスクロマトグラフ3とを備えている。また、分析制御システム1は、これらの分析装置に加えて、電源4と、第1消費電力測定部5と、第2消費電力測定部6と、データ収集部7と、データ処理部8とを備えている。
 液体クロマトグラフ2は、ユニットとして、ポンプ21と、オートサンプラー22と、オーブン23と、検出器24とを備えている。液体クロマトグラフ2において、ポンプ21が基準ユニットの一例であり、オートサンプラー22、オーブン23及び検出器24が対象ユニットの一例である。
 ポンプ21は、液体クロマトグラフ2における複数のユニットのうち、最も稼働率が高いユニットである。
 液体クロマトグラフ2の部材(ポンプ21、オートサンプラー22、オーブン23及び検出器24)のそれぞれは、電源4と電気的に接続されており、この電源4から電気が供給される。
 液体クロマトグラフ2では、ポンプ21の動作により、移動相が液体クロマトグラフ2内の流路に送出される。また、オートサンプラー22から当該流路に試料が注入される。試料は、オーブン23内の分離カラムに搬送されて成分ごとに分離され、この分離カラムから検出器24に導入される。そして、検出器24において、各試料成分が検出される。ユーザは、この検出結果に基づいて、試料の分析を行う。
 ガスクロマトグラフ3は、ユニットとして、ガスクロマトグラフ本体(GC本体)31と、ヘッドスペースサンプラー32とを備えている。ガスクロマトグラフ3において、ガスクロマトグラフ本体31が、基準ユニットの一例であり、ヘッドスペースサンプラー32が対象ユニットの一例である。
 ガスクロマトグラフ本体31は、ガスクロマトグラフ3における複数のユニットのうち、最も稼働率が高いユニットである。ガスクロマトグラフ本体31は、カラム、カラムオーブン、試料導入部、検出器及びガス供給部(図示せず)などを備えている。
 ガスクロマトグラフ本体31及びヘッドスペースサンプラー32のそれぞれは、電源4と電気的に接続されており、この電源4から電気が供給される。
 ガスクロマトグラフ3では、ヘッドスペースサンプラー32からガスクロマトグラフ本体31内の試料導入部に試料が注入される。試料は、試料導入部において気化される。また、ガスクロマトグラフ本体31において、試料導入部には、ガス供給部からキャリアガスが供給される。気化された試料は、キャリアガスとともにカラム内に導入され、カラム内を通過する過程で各種試料成分に分離されて、検出器に順次導入される。そして、検出器において、各試料成分が順次検出される。ユーザは、この検出結果に基づいて、試料の分析を行う。
 上記したように、分析制御システム1において、分析装置の各ユニットには、電源4から電気が個別に供給される。具体的には、液体クロマトグラフ2のポンプ21、オートサンプラー22、オーブン23及び検出器24、並びに、ガスクロマトグラフ3のガスクロマトグラフ本体31及びヘッドスペースサンプラー32のそれぞれは、個別に電源4と電気的に接続されており、電源4から電気が個別に供給される。
 第1消費電力測定部5は、電源4から液体クロマトグラフ2に電気を供給する回路に配置されている。具体的には、第1消費電力測定部5は、電源4からポンプ21に電気を供給する回路に配置されており、ポンプ21の消費電力を測定するように構成されている。
 第2消費電力測定部6は、電源4からガスクロマトグラフ3に電気を供給する回路に配置されている。具体的には、第2消費電力測定部6は、電源4からガスクロマトグラフ本体31に電気を供給する回路に配置されており、ガスクロマトグラフ本体31の消費電力を測定するように構成されている。
 データ収集部7には、第1消費電力測定部5が測定するポンプ21の消費電力に関する信号、及び、第2消費電力測定部6が測定するガスクロマトグラフ本体31の消費電力に関する信号のそれぞれが入力される。すなわち、データ収集部7は、第1消費電力測定部5が測定するポンプ21の消費電力、及び、第2消費電力測定部6が測定するガスクロマトグラフ本体31の消費電力の情報を収集する。なお、データ収集部7は、データに対して圧縮などの加工を施した後、その加工後のデータを収集してもよい。
 データ処理部8には、データ収集部7が収集したデータに関する信号が入力される。データ処理部8は、入力された信号に基づいて、後述するように、分析装置(液体クロマトグラフ2及びガスクロマトグラフ3)における各ユニットの稼働情報を取得する。
 分析制御システム1では、各分析装置における基準ユニットの消費電力が測定され、その情報に基づいて、基準ユニットの稼働時間が算出される。そして、算出された基準ユニットの稼働時間に基づいて、各分析装置における対象ユニットの稼働時間が算出される。
 具体的には、分析制御システム1では、第1消費電力測定部5によって、液体クロマトグラフ2における基準ユニットであるポンプ21の消費電力が測定される。第1消費電力測定部5が測定したポンプ21の消費電力の情報は、データ収集部7に収集される。そして、詳しくは後述するが、データ処理部8は、データ収集部7が収集したデータ(ポンプ21の消費電力の情報)に基づいて、液体クロマトグラフ2における対象ユニットであるオートサンプラー22、オーブン23及び検出器24のそれぞれの稼働情報を取得する。また、分析制御システム1では、第2消費電力測定部6によって、ガスクロマトグラフ3における基準ユニットであるガスクロマトグラフ本体31の消費電力が測定される。第2消費電力測定部6が測定したガスクロマトグラフ本体31の消費電力の情報は、データ収集部7に収集される。そして、詳しくは後述するが、データ処理部8は、データ収集部7が収集したデータ(ガスクロマトグラフ本体31の消費電力の情報)に基づいて、ガスクロマトグラフ3における対象ユニットであるヘッドスペースサンプラー32の稼働情報を取得する。
 このように、分析制御システム1では、各分析装置における基準ユニットの消費電力のみが測定され、それ以外の対象ユニットの消費電力は測定されない。そして、分析制御システム1では、その基準ユニットの消費電力の情報に基づいて、各分析装置における対象ユニットの稼働情報が取得される。
2.データ処理部及びその周辺の部材の具体的構成
 図2は、図1の分析制御システム1におけるデータ処理部8、及び、その周辺の部材の具体的構成を示したブロック図である。
 データ処理部8は、操作部81と、表示部82と、記憶部83と、制御部84とを備えている。
 操作部81は、例えば、キーボード及びマウスなどにより構成される。ユーザは、操作部81を操作することにより、各種情報を制御部84に入力することができる。
 表示部82は、例えば、液晶表示器などにより構成される。表示部82には、制御部84の制御により、分析装置における各ユニットの稼働情報などの各種情報が表示される。
 記憶部83は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)及びハードディスクなどにより構成されている。記憶部83は、複数(2個)の装置構成情報831、及び、複数(2個)の稼働情報832を記憶している。
 装置構成情報831は、各分析装置(液体クロマトグラフ2及びガスクロマトグラフ3)における基準ユニットと対象ユニットとの稼働時間の比率の情報である。
 具体的には、一方の装置構成情報831には、ポンプ21とオートサンプラー22との稼働時間の比率の情報、ポンプ21とオーブン23との稼働時間の比率の情報、ポンプ21と検出器24との稼働時間の比率の情報が含まれる。例えば、ポンプ21とオートサンプラー22との稼働時間の比率は、1:0.5であり、ポンプ21とオーブン23との稼働時間の比率は、1:1であり、ポンプ21と検出器24との稼働時間の比率は、1:0.7である。
 また、他方の装置構成情報831には、ガスクロマトグラフ本体31とヘッドスペースサンプラー32との稼働時間の比率の情報が含まれる。例えば、ガスクロマトグラフ本体31とヘッドスペースサンプラー32との稼働時間の比率は、1:0.5である。
 稼働情報832は、制御部84で取得された分析装置の各ユニットの稼働状況の情報である。稼働情報832では、分析装置の各ユニットが稼働した日時、当該日時における稼働時間、及び、各稼働時間を積算した総稼働時間が互いに対応付けられている。
 制御部84は、例えば、CPU(Central Processing Unit)を含む構成である。制御部84は、操作部81及び表示部82との間で、電気信号の入力又は出力が可能である。制御部84は、必要に応じて、記憶部83に情報を格納し、また、記憶部83に記憶されている情報を読み出す。制御部84は、CPUがプログラムを実行することにより、稼働時間算出部841、稼働情報取得部842、表示制御部843、入力受付部844及び情報書換処理部845などとして機能する。
 稼働時間算出部841には、データ収集部7からの信号が入力される。稼働時間算出部841は、データ収集部7が収集する各基準ユニットの消費電力の情報に基づいて、各基準ユニットの稼働時間を算出する。すなわち、稼働時間算出部841は、第1消費電力測定部5及び第2消費電力測定部6のそれぞれで測定される各基準ユニットの消費電力の情報に基づいて、各基準ユニットの稼働時間を算出する。具体的には、稼働時間算出部841は、データ収集部7が収集する液体クロマトグラフ2のポンプ21の消費電力の情報に基づいて、液体クロマトグラフ2のポンプ21の稼働時間を算出する。また、稼働時間算出部841は、データ収集部7が収集するガスクロマトグラフ3のガスクロマトグラフ本体31の消費電力の情報に基づいて、ガスクロマトグラフ3のガスクロマトグラフ本体31の稼働時間を算出する。
 稼働情報取得部842は、稼働時間算出部841により算出された各基準ユニットの稼働時間の情報、及び、記憶部83に記憶されている装置構成情報831に基づいて、分析装置における各対象ユニットの稼働時間を稼働情報として取得する。すなわち、稼働情報取得部842は、第1消費電力測定部5及び第2消費電力測定部6のそれぞれで測定される各基準ユニットの消費電力の情報に基づいて、分析装置における各対象ユニットの稼働時間を稼働情報として取得する。この情報は、稼働情報832として記憶部83に格納される。具体的には、稼働情報取得部842は、稼働時間算出部841により算出された液体クロマトグラフ2のポンプ21の稼働時間、及び、記憶部83に記憶されている装置構成情報831に基づいて、液体クロマトグラフ2のポンプ21以外のユニット(オートサンプラー22、オーブン23及び検出器24)の稼働時間を稼働情報として取得する。また、稼働情報取得部842は、稼働時間算出部841により算出されたガスクロマトグラフ3のガスクロマトグラフ本体31の稼働時間、及び、記憶部83に記憶されている装置構成情報831に基づいて、ガスクロマトグラフ3のガスクロマトグラフ本体31以外のユニット(ヘッドスペースサンプラー32)の稼働時間を稼働情報として取得する。
 表示制御部843は、記憶部83に記憶されている稼働情報832に基づいて、各ユニットの稼働状況を表示する処理を行う。
 入力受付部844は、ユーザによる操作部81の操作に基づいて、装置構成情報831に関する変更(装置構成情報831の入力)を受け付ける。
 情報書換処理部845は、入力受付部844が受け付けた内容に基づいて、記憶部83に記憶されている装置構成情報831を書き換える。
3.制御部による制御動作
 液体クロマトグラフ2及びガスクロマトグラフ3のそれぞれで分析動作が行われると、第1消費電力測定部5は、液体クロマトグラフ2のポンプ21の消費電力を測定し、第2消費電力測定部6は、ガスクロマトグラフ3のガスクロマトグラフ本体31の消費電力を測定する。また、データ収集部7は、第1消費電力測定部5及び第2消費電力測定部6が測定した消費電力の情報を収集する。
 データ収集部7が収集した情報(ポンプ21の消費電力の情報、及び、ガスクロマトグラフ本体31の消費電力の情報)に関する信号は、制御部84(データ処理部8)の稼働時間算出部841に入力される。
 稼働時間算出部841は、データ収集部7からの信号に基づいて、液体クロマトグラフ2のポンプ21の稼働時間、及び、ガスクロマトグラフ3のガスクロマトグラフ本体31の稼働時間のそれぞれを算出する。
 そして、稼働情報取得部842は、稼働時間算出部841により算出された稼働時間(ポンプ21の稼働時間、及び、ガスクロマトグラフ本体31の稼働時間)、及び、記憶部83に記憶されている装置構成情報831に基づいて、液体クロマトグラフ2における対象ユニットであるオートサンプラー22、オーブン23及び検出器24のそれぞれの稼働時間、並びに、ガスクロマトグラフ3における対象ユニットであるヘッドスペースサンプラー32の稼働時間を取得する。
 上記したように、装置構成情報831(液体クロマトグラフ2に関する装置構成情報831)において、例えば、ポンプ21とオートサンプラー22との稼働時間の比率は、1:0.5である。そのため、オートサンプラー22の稼働時間は、稼働時間算出部841により算出されたポンプ21の稼働時間に0.5を乗ずることで取得(算出)される。また、装置構成情報831において、例えば、ポンプ21とオーブン23との稼働時間の比率は、1:1である。そのため、オーブン23の稼働時間は、稼働時間算出部841により算出されたポンプ21の稼働時間と同じ時間として取得(算出)される。また、装置構成情報831において、例えば、ポンプ21と検出器24との稼働時間の比率は、1:0.7である。そのため、検出器24の稼働時間は、稼働時間算出部841により算出されたポンプ21の稼働時間に0.7を乗ずることで取得(算出)される。
 同様に、装置構成情報831(ガスクロマトグラフ3に関する装置構成情報831)において、例えば、ガスクロマトグラフ本体31とヘッドスペースサンプラー32との稼働時間の比率は、1:0.5である。そのため、ヘッドスペースサンプラー32の稼働時間は、稼働時間算出部841により算出されたポンプ21の稼働時間に0.5を乗ずることで取得(算出)される。
 このようにして取得された各ユニットの稼働時間(液体クロマトグラフ2のポンプ21、オートサンプラー22、オーブン23及び検出器24の稼働時間、並びに、ガスクロマトグラフ3のガスクロマトグラフ本体31及びヘッドスペースサンプラー32の稼働時間)は、取得された日時と対応付けられて、稼働情報832として記憶部83に格納される。
 分析制御システム1では、液体クロマトグラフ2及びガスクロマトグラフ3のそれぞれが動作するたびに、上記したように各ユニットの稼働時間が取得される。各ユニットの稼働時間は、稼働情報832として記憶部83に格納される。このとき、記憶部83には、稼働情報832として、各ユニットの稼働日時、及び、当該日時における稼働時間の情報に加えて、各ユニットの総稼働時間の情報が格納される。
 そして、表示制御部843は、記憶部83に記憶されている稼働情報832の内容を、各ユニットの稼働状況として表示部82に表示する。なお、表示制御部843は、所定のタイミングで稼働情報832の内容を表示部82に表示させてもよく、また、ユーザの操作部81の操作に応じて稼働情報832の内容を表示部82に表示させてもよい。
 ユーザは、表示部82に表示された各ユニットの稼働状況(稼働時間)を確認することで、各ユニットのメンテナンス時期などを判断する。
 また、記憶部83の装置構成情報831を変更する場合には、ユーザは、操作部81を操作して、新たな装置構成情報831を入力する。入力受付部844は、新たな装置構成情報831の入力を受け付ける。情報書換処理部845は、入力受付部844が受け付けた新たな情報に基づいて、記憶部83に記憶されている装置構成情報831を書き換える。そして、書き換えられた装置構成情報831は、上記したように、稼働情報取得部842が各ユニットの稼働時間を算出する際に用いられる。
 なお、入力受付部844は、装置構成情報831の入力を受け付ける構成であればよく、上記した操作部81の操作によって入力を受け付ける構成以外の構成であってもよい。例えば、入力受付部844は、分析制御システム1において作成、出力された装置構成情報831の入力を受け付けてもよい。また、入力受付部844は、外部システムで作成、出力された装置構成情報831の入力を受け付けてもよい。また、入力受付部844は、分析制御システム1においてコマンドを発行し、そのコマンドに応じて自動的に外部システムで作成、出力された装置構成情報831の入力を受け付けてもよい。
4.作用効果
(1)本実施形態では、図1に示すように、分析制御システム1において、第1消費電力測定部5は、液体クロマトグラフ2の基準ユニットであるポンプ21の消費電力のみを測定する。また、第2消費電力測定部6は、ガスクロマトグラフ3の基準ユニットであるガスクロマトグラフ本体31の消費電力のみを測定する。データ収集部7は、これらの情報を収集する。図2に示すように、データ処理部8の稼働情報取得部842は、データ収集部7が収集した液体クロマトグラフ2のポンプ21の消費電力の情報に基づいて、液体クロマトグラフ2の対象ユニットであるオートサンプラー22、オーブン23及び検出器24のそれぞれの稼働情報を取得する。また、データ処理部8の稼働情報取得部842は、データ収集部7が収集したガスクロマトグラフ3のガスクロマトグラフ本体31の消費電力の情報に基づいて、ガスクロマトグラフ3の対象ユニットであるヘッドスペースサンプラー32の稼働情報を取得する。
 そのため、液体クロマトグラフ2に多くの対象ユニットが含まれる場合であっても、第1消費電力測定部5によってポンプ21の消費電力のみを測定して、稼働時間算出部841によってポンプ21の消費電力から各対象ユニットの稼働情報を取得できる。同様に、ガスクロマトグラフ3に多くの対象ユニットが含まれる場合であっても、第2消費電力測定部6によってガスクロマトグラフ本体31の消費電力のみを測定して、稼働時間算出部841によってガスクロマトグラフ本体31の消費電力から各対象ユニットの稼働情報を取得できる。
 その結果、液体クロマトグラフ2の各対象ユニットの消費電力、及び、ガスクロマトグラフ3の各対象ユニットの消費電力を直接測定する構成を設けることなく、その各対象ユニットの稼働情報を取得できる。
 よって、簡易な構成で、複数のユニットのそれぞれにおける稼働状況を管理できる。
(2)また、本実施形態では、液体クロマトグラフ2において、基準ユニットは、複数のユニットのうち最も稼働率が高いユニットであるポンプ21である。また、ガスクロマトグラフ3において、基準ユニットは、複数のユニットのうち最も稼働率が高いユニットであるガスクロマトグラフ本体31である。
 そのため、稼働率が低いユニットを基準ユニットにする場合に比べて、第1消費電力測定部5による消費電力の測定における誤差の割合、及び、第2消費電力測定部6による消費電力の測定における誤差の割合を小さくできる。そして、稼働情報取得部842によって、ポンプ21の消費電力から、液体クロマトグラフ2のポンプ21以外のユニット(対象ユニット)の稼働情報を取得し、ガスクロマトグラフ本体31の消費電力から、ガスクロマトグラフ3のガスクロマトグラフ本体31以外のユニット(対象ユニット)の稼働情報を取得する。その結果、稼働率が低いユニットを基準ユニットにする場合に比べて、各対象ユニットの稼働情報を精度よく取得できる。
(3)また、本実施形態では、分析制御システム1において、稼働時間算出部841によって、液体クロマトグラフ2のポンプ21の稼働時間が算出される。そして、図2に示すように、ポンプ21の稼働時間、及び、記憶部83の装置構成情報831に基づいて、稼働情報取得部842によって、液体クロマトグラフ2のポンプ21以外のユニット(対象ユニット)の稼働時間が取得される。同様に、本実施形態では、稼働時間算出部841によって、ガスクロマトグラフ3のガスクロマトグラフ本体31の稼働時間が算出される。そして、ガスクロマトグラフ本体31の稼働時間、及び、記憶部83の装置構成情報831に基づいて、稼働情報取得部842によって、ガスクロマトグラフ3のガスクロマトグラフ本体31以外のユニット(対象ユニット)の稼働時間が取得される。
 そのため、分析制御システム1において、各ユニットの稼働時間を管理できる。そして、その稼働時間の情報に基づいて、各ユニットのメンテナンス時期を的確に判断できる。
(4)また、本実施形態では、分析制御システム1において、入力受付部844は、ユーザによる操作部81の操作に基づいて、装置構成情報831に関する変更(装置構成情報831の入力)を受け付ける。情報書換処理部845は、入力受付部844が受け付けた内容に基づいて、記憶部83に記憶されている装置構成情報831を書き換える。
 そのため、入力受付部844が情報の入力を受け付けることにより、記憶部83に記憶されている装置構成情報831を、最新の情報に書き換えることができる。そして、その最新の装置構成情報831に基づいて、稼働情報取得部842により各対象ユニットの稼働情報を取得できる。
5.第2実施形態
 以下では、図3及び図4を用いて、本発明の第2実施形態について説明する。なお、以下の第2実施形態及び第3実施形態において、上記した第1実施形態と同様の構成については、同一の符号を付することにより説明を省略する。
(1)第1消費電力測定部及び第2消費電力測定部の具体的構成
 図3は、本発明の第2実施形態に係る分析制御システム1の構成を示した概略図である。図4は、図3の分析制御システム1における第1消費電力測定部5、第2消費電力測定部6、及び、その周辺の部材の具体的構成を示したブロック図である。
 上記した第1実施形態では、分析制御システム1は、データ処理部8を備えている。そして、データ処理部8において、各ユニットの稼働情報を取得するための制御が行われる。
 対して、第2実施形態では、分析制御システム1において、各ユニットの稼働情報を取得するための主な制御は、第1消費電力測定部5及び第2消費電力測定部6のそれぞれで行われる。
 詳しくは、第2実施形態では、図3に示すように、分析制御システム1では、第1実施形態におけるデータ処理部8が省かれている。そして、図4に示すように、第1消費電力測定部5は、第1記憶部51と、第1制御部52とを備えている。また、第2消費電力測定部6は、第2記憶部61と、第2制御部62とを備えている。
 第1記憶部51は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)及びハードディスクなどにより構成されている。第1記憶部51は、装置構成情報511を記憶している。なお、装置構成情報511は、第1実施形態における装置構成情報831(液体クロマトグラフ2に関する装置構成情報831)と同様の情報である。
 第1制御部52は、例えば、CPU(Central Processing Unit)を含む構成である。第1制御部52は、データ収集部7に対して電気信号を入力する。第1制御部52は、必要に応じて、第1記憶部51に記憶されている情報を読み出す。第1制御部52は、CPUがプログラムを実行することにより、第1測定部521、第1稼働時間算出部522及び第1稼働情報取得部523などとして機能する。
 第1測定部521は、液体クロマトグラフ2のポンプ21の消費電力を測定するように構成されている。
 第1稼働時間算出部522は、第1測定部521が測定したポンプ21の消費電力に基づいて、ポンプ21の稼働時間を算出する。
 第1稼働情報取得部523は、第1稼働時間算出部522により算出されたポンプ21の稼働時間、及び、第1記憶部51に記憶されている装置構成情報511に基づいて、液体クロマトグラフ2における対象ユニットであるオートサンプラー22、オーブン23及び検出器24のそれぞれの稼働時間を取得する。第1稼働情報取得部523で取得された各ユニットの稼働時間の情報は、データ収集部7に入力される。
 第2記憶部61は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)及びハードディスクなどにより構成されている。第2記憶部61は、装置構成情報611を記憶している。なお、装置構成情報611は、第1実施形態における装置構成情報831(ガスクロマトグラフ3に関する装置構成情報831)と同様の情報である。
 第2制御部62は、例えば、CPU(Central Processing Unit)を含む構成である。第2制御部62は、データ収集部7に対して電気信号を入力する。第2制御部62は、必要に応じて、第2記憶部61に記憶されている情報を読み出す。第2制御部62は、CPUがプログラムを実行することにより、第2測定部621、第2稼働時間算出部622及び第2稼働情報取得部623などとして機能する。
 第2測定部621は、ガスクロマトグラフ3のガスクロマトグラフ本体31の消費電力を測定するように構成されている。
 第2稼働時間算出部622は、第2測定部621が測定したガスクロマトグラフ本体31の消費電力に基づいて、ガスクロマトグラフ本体31の稼働時間を算出する。
 第2稼働情報取得部623は、第1稼働時間算出部622により算出されたガスクロマトグラフ本体31の稼働時間、及び、第2記憶部61に記憶されている装置構成情報611に基づいて、ガスクロマトグラフ3における対象ユニットであるヘッドスペースサンプラー32の稼働時間を取得する。第2稼働情報取得部623で取得された各ユニットの稼働時間の情報は、データ収集部7に入力される。
(2)第1消費電力測定部及び第2消費電力測定部における制御動作
 液体クロマトグラフ2及びガスクロマトグラフ3のそれぞれで分析動作が行われると、第1測定部521は、液体クロマトグラフ2のポンプ21の消費電力を測定し、第2測定部621は、ガスクロマトグラフ3のガスクロマトグラフ本体31の消費電力を測定する。
 そして、第1消費電力測定部5において、第1稼働時間算出部522は、第1測定部521が測定した液体クロマトグラフ2のポンプ21の消費電力に基づいて、液体クロマトグラフ2のポンプ21の稼働時間を算出する。また、第1稼働情報取得部523は、第1稼働時間算出部522により算出されたポンプ21の稼働時間、及び、第1記憶部51に記憶されている装置構成情報511に基づいて、液体クロマトグラフ2における対象ユニットであるオートサンプラー22、オーブン23及び検出器24のそれぞれの稼働時間を取得する。第1稼働時間算出部522で取得された各ユニットの情報(稼働時間の情報)は、データ収集部7に入力される。
 また、第2消費電力測定部6において、第2稼働時間算出部622は、第2測定部621が測定したガスクロマトグラフ3のガスクロマトグラフ本体31の消費電力に基づいて、ガスクロマトグラフ3のガスクロマトグラフ本体31の稼働時間を算出する。また、第2稼働情報取得部623は、第2稼働時間算出部622により算出されたガスクロマトグラフ本体31の稼働時間、及び、第2記憶部61に記憶されている装置構成情報611に基づいて、ガスクロマトグラフ3における対象ユニットであるヘッドスペースサンプラー32の稼働時間を取得する。第2稼働時間算出部622で取得された各ユニットの情報(稼働時間の情報)は、データ収集部7に入力される。
 データ収集部7は、必要に応じて、入力された情報を図示しない表示部などに表示する。
(3)第2実施形態の作用効果
 第2実施形態では、図4に示すように、第1消費電力測定部5は、第1記憶部51と、第1制御部52とを備える。第1記憶部51は、装置構成情報511を記憶している。第1制御部52は、第1測定部521、第1稼働時間算出部522及び第1稼働情報取得部523などとして機能する。また、第2消費電力測定部6は、第2記憶部61と、第2制御部62とを備える。第2記憶部61は、装置構成情報611を記憶している。第2制御部62は、第2測定部621、第2稼働時間算出部622及び第2稼働情報取得部623などとして機能する。
 そして、分析制御システム1において、液体クロマトグラフ2及びガスクロマトグラフ3の各ユニットの稼働情報(稼働時間)を取得するための制御は、主に第1消費電力測定部5及び第2消費電力測定部6のそれぞれで行われる。
 そのため、分析制御システム1における第1消費電力測定部5及び第2消費電力測定部6以外の部材を簡易に構成できる。
6.第3実施形態
 以下では、図5及び図6を用いて、本発明の第3実施形態について説明する。
(1)設定情報取得部及びエラー情報取得部の構成
 図5は、本発明の第3実施形態に係る分析制御システム1の構成を示した概略図である。図6は、図5の分析制御システム1におけるデータ処理部8、及び、その周辺の部材の具体的構成を示したブロック図である。
 上記した第1実施形態では、分析制御システム1において、稼働情報取得部842は、各分析装置(液体クロマトグラフ2及びガスクロマトグラフ3)の各ユニットの稼働情報を取得する。
 対して、第3実施形態では、分析制御システム1において、稼働情報取得部842は、各ユニットの稼働情報に加えて、各分析装置の各ユニットに含まれる部品の稼働情報についても取得する。
 詳しくは、第3実施形態では、分析制御システム1は、図5に示すように、設定情報取得部10と、エラー情報取得部11とをさらに備えている。
 なお、液体クロマトグラフ2の各ユニット、及び、ガスクロマトグラフ3の各ユニットのそれぞれは、複数の部品を備えており、これらの部品の動作に関する設定情報を保持している。例えば、液体クロマトグラフ2のポンプ21は、部品としてバルブを備えており、このバルブの動作に関する設定情報を保持している(図示せず)。
 設定情報取得部10は、液体クロマトグラフ2の各ユニット、及び、ガスクロマトグラフ3の各ユニットのそれぞれと電気的に接続されている。具体的には、設定情報取得部10は、液体クロマトグラフ2のポンプ21、オートサンプラー22、オーブン23及び検出器24、並びに、ガスクロマトグラフ3のガスクロマトグラフ本体31及びヘッドスペースサンプラー32のそれぞれと電気的に接続されている。
 設定情報取得部10は、液体クロマトグラフ2の各ユニット、及び、ガスクロマトグラフ3の各ユニットのそれぞれに含まれる部品の設定情報を取得する。
 なお、部品の設定情報とは、例えば、各ユニットが単位時間稼働した場合の部品における所定動作の回数の情報である。例えば、液体クロマトグラフ2のポンプ21は、設定情報として、ポンプ21が単位時間稼働した場合に、部品であるバルブが何回動作するかという情報を保持している。
 エラー情報取得部11は、液体クロマトグラフ2の各ユニット、及び、ガスクロマトグラフ3の各ユニットのそれぞれと電気的に接続されている。具体的には、エラー情報取得部11は、液体クロマトグラフ2のポンプ21、オートサンプラー22、オーブン23及び検出器24、並びに、ガスクロマトグラフ3のガスクロマトグラフ本体31及びヘッドスペースサンプラー32のそれぞれと電気的に接続されている。
 エラー情報取得部11は、液体クロマトグラフ2の各ユニット、及び、ガスクロマトグラフ3の各ユニットのそれぞれに含まれる部品で発生するエラーに関する情報(エラー情報)を取得する。エラー情報には、例えば、各部品がエラーにより動作していない時間の情報が含まれてもよい。
(2)制御部による制御動作
 液体クロマトグラフ2及びガスクロマトグラフ3のそれぞれで分析動作が行われると、設定情報取得部10は、液体クロマトグラフ2の各ユニットに含まれる部品の設定情報、及び、ガスクロマトグラフ3の各ユニットに含まれる部品の設定情報のそれぞれを取得する。
 また、エラー情報取得部11は、液体クロマトグラフ2の各ユニットに含まれる部品、及び、ガスクロマトグラフ3の各ユニットに含まれる部品のそれぞれでエラーが発生した場合には、そのエラー情報を取得する。
 図6に示すように、稼働情報取得部842は、第1実施形態の場合と同様にして、液体クロマトグラフ2の各ユニットの稼働時間、及び、ガスクロマトグラフ3の各ユニットの稼働時間を取得する。
 そして、稼働情報取得部842は、各ユニットの稼働時間、及び、設定情報取得部10が取得した各ユニットの部品の設定情報に基づいて、各ユニットの部品の稼働情報を取得する。この例では、稼働情報取得部842は、各ユニットの部品における所定動作の回数を稼働情報として算出(取得)する。
 このとき、稼働情報取得部842は、エラー情報取得部11が各ユニットの部品のエラー情報を取得している場合には、そのエラー情報に基づいて補正された各部品の稼働情報を取得する。
 このようにして稼働情報取得部842で取得された各ユニットの部品の情報は、稼働情報832として記憶部83に格納される。また、表示制御部843は、この稼働情報832の内容を、各ユニットの部品の稼働状況として表示部82に表示する。
(3)第3実施形態の作用効果
 第3実施形態では、分析制御システム1は、設定情報取得部10をさらに備える。設定情報取得部10は、各ユニットに含まれる部品の設定情報を取得する。稼働情報取得部842は、設定情報取得部10により取得された各部品の設定情報に基づいて、各部品の稼働情報を取得する。
 そのため、稼働情報取得部842によって、各ユニットの稼働情報に加えて、各部品の稼働情報を取得できる。
 その結果、分析制御システム1において、各ユニットの稼働状況に加えて、各部品の稼働状況を管理できる。
 また、第3実施形態では、分析制御システム1は、エラー情報取得部11をさらに備える。エラー情報取得部11は、各ユニットに含まれる部品のエラー情報を取得する。稼働情報取得部842は、設定情報取得部10により取得された各部品の設定情報、及び、エラー情報取得部11により取得された各部品のエラー情報に基づいて、各部品の稼働情報を取得する。
 そのため、各部品でエラーが発生した場合に、そのエラー情報を稼働情報取得部842で取得する各部品の稼働情報に反映させることができる。
 その結果、稼働情報取得部842によって、各部品の稼働情報を精度よく取得できる。
7.変形例
 上記の実施形態では、分析制御システム1には、分析装置として、液体クロマトグラフ2及びガスクロマトグラフ3が含まれるとして説明した。しかし、分析制御システム1には、質量分析装置、分光光度計、全有機体炭素計、赤外顕微鏡及び電子顕微鏡などの試料の特性を分析する他の任意の分析装置が含まれてよい。そして、この分析装置に含まれる基準ユニットの消費電力が測定されることにより、対象ユニットの稼働情報が取得されてもよい。
 また、上記の実施形態では、稼働情報は、稼働時間や稼働回数であるとして説明した。しかし、稼働情報は、稼働時間や稼働回数に限らず、例えば、稼働日時などの各ユニット又は各部品の稼働状況を表す各種情報が含まれてもよい。
   1   分析制御システム
   2   液体クロマトグラフ
   3   ガスクロマトグラフ
   5   第1消費電力測定部
   6   第2消費電力測定部
  10   設定情報取得部
  11   エラー情報取得部
  21   ポンプ
  22   オートサンプラー
  23   オーブン
  24   検出器
  31   ガスクロマトグラフ本体
  32   ヘッドスペースサンプラー
  51   第1記憶部
  52   第1制御部
  61   第2記憶部
  62   第2制御部
  83   記憶部
  84   制御部
 511   装置構成情報
 522   第1稼働時間算出部
 523   第1稼働情報取得部
 611   装置構成情報
 622   第2稼働時間算出部
 623   第2稼働情報取得部
 831   装置構成情報
 832   稼働情報
 841   稼働時間算出部
 842   稼働情報取得部
 844   入力受付部
 845   情報書換処理部
 

Claims (7)

  1.  それぞれ複数のユニットを用いて試料の分析を行う複数の分析装置と、
     各分析装置における前記複数のユニットに含まれる基準ユニットの消費電力を測定する複数の消費電力測定部と、
     各消費電力測定部により測定される各基準ユニットの消費電力に基づいて、各分析装置における前記基準ユニット以外のユニットである対象ユニットの稼働情報を取得する稼働情報取得部とを備えることを特徴とする分析制御システム。
  2.  前記基準ユニットは、各分析装置における前記複数のユニットのうち最も稼働率が高いユニットであることを特徴とする請求項1に記載の分析制御システム。
  3.  各消費電力測定部により測定される各基準ユニットの消費電力に基づいて、各基準ユニットの稼働時間を算出する稼働時間算出部と、
     各分析装置における前記基準ユニットと前記対象ユニットとの稼働時間の比率を装置構成情報として記憶する記憶部とをさらに備え、
     前記稼働情報取得部は、前記稼働時間算出部により算出された各基準ユニットの稼働時間と、前記記憶部に記憶されている前記装置構成情報とに基づいて、前記対象ユニットの稼働時間を前記稼働情報として取得することを特徴とする請求項1に記載の分析制御システム。
  4.  前記装置構成情報の入力を受け付ける入力受付部と、
     前記入力受付部により前記装置構成情報の入力が受け付けられた場合に、前記記憶部に記憶されている前記装置構成情報を書き換える情報書換処理部とをさらに備えることを特徴とする請求項3に記載の分析制御システム。
  5.  前記複数の消費電力測定部は、
     各消費電力測定部により測定される各基準ユニットの消費電力に基づいて、各基準ユニットの稼働時間を算出する稼働時間算出部と、
     各分析装置における前記基準ユニットと前記対象ユニットとの稼働時間の比率を装置構成情報として記憶する記憶部とを備え、
     前記稼働情報取得部は、前記稼働時間算出部により算出された各基準ユニットの稼働時間、及び、前記記憶部に記憶されている前記装置構成情報に基づいて、前記対象ユニットの稼働時間を前記稼働情報として取得することを特徴とする請求項1に記載の分析制御システム。
  6.  前記複数のユニットにそれぞれ含まれる複数の部品の動作についての設定情報を取得する設定情報取得部をさらに備え、
     前記稼働情報取得部は、前記設定情報取得部により取得された各部品の設定情報に基づいて、各部品の稼働情報を取得することを特徴とする請求項1に記載の分析制御システム。
  7.  各分析装置における前記複数の部品のエラー情報を取得するエラー情報取得部をさらに備え、
     前記稼働情報取得部は、前記設定情報取得部により取得された各部品の設定情報、及び、前記エラー情報取得部により取得された各部品のエラー情報に基づいて、各部品の稼働情報を取得することを特徴とする請求項6に記載の分析制御システム。
PCT/JP2016/072299 2016-07-29 2016-07-29 分析制御システム WO2018020655A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680088117.7A CN109564251B (zh) 2016-07-29 2016-07-29 分析控制系统
JP2018530297A JP6635199B2 (ja) 2016-07-29 2016-07-29 分析制御システム
EP16910558.2A EP3492931A1 (en) 2016-07-29 2016-07-29 Analysis control system
PCT/JP2016/072299 WO2018020655A1 (ja) 2016-07-29 2016-07-29 分析制御システム
US16/321,120 US11460489B2 (en) 2016-07-29 2016-07-29 Analysis control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072299 WO2018020655A1 (ja) 2016-07-29 2016-07-29 分析制御システム

Publications (1)

Publication Number Publication Date
WO2018020655A1 true WO2018020655A1 (ja) 2018-02-01

Family

ID=61016997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072299 WO2018020655A1 (ja) 2016-07-29 2016-07-29 分析制御システム

Country Status (5)

Country Link
US (1) US11460489B2 (ja)
EP (1) EP3492931A1 (ja)
JP (1) JP6635199B2 (ja)
CN (1) CN109564251B (ja)
WO (1) WO2018020655A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314534A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 稼働率集計装置
JP2010122176A (ja) * 2008-11-21 2010-06-03 Nec Corp 消費電力管理システム、消費電力管理方法、消費電力管理装置、消費電力管理プログラム
JP2011065383A (ja) * 2009-09-16 2011-03-31 Mitsubishi Electric Corp 設備運用支援システム及びプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769420B2 (ja) * 1999-08-05 2006-04-26 株式会社日立産機システム 設備稼働状態計測装置
JP2004012217A (ja) * 2002-06-05 2004-01-15 Shimadzu Corp 分析装置及び分析装置管理情報収集方法
JP4182399B2 (ja) * 2002-08-01 2008-11-19 シムックス株式会社 工作機械の稼働情報収集システム
JP2008097128A (ja) 2006-10-06 2008-04-24 Cimx Kk 管理装置、解析装置、及びプログラム
EA011626B1 (ru) * 2006-12-20 2009-04-28 Валерий Генрихович Гринкевич Термостат хроматографа
JP5213124B2 (ja) * 2009-02-04 2013-06-19 中央電子株式会社 線形マルチポートのシステムパラメータの測定方法及びベクトルネットワークアナライザを用いた測定方法
ATE517353T1 (de) * 2009-02-19 2011-08-15 Abb Research Ltd Verfahren zum testen eines energieverteilungssystems und energieverteilungssystemanalysegerät
CN102369491B (zh) 2009-04-10 2014-08-13 欧姆龙株式会社 动作信息输出装置、动作信息输出装置的控制方法、监视装置、监视装置的控制方法以及控制程序
CN201535825U (zh) * 2009-07-28 2010-07-28 成都理工大学 基于3gs的核数据采集及处理系统
DE102009054829A1 (de) * 2009-12-17 2011-06-22 Siemens Aktiengesellschaft, 80333 Verfahren und Einrichtung zum Betrieb einer Maschine aus der Automatisierungstechnik
JP2011220909A (ja) * 2010-04-13 2011-11-04 Shimadzu Corp ガスクロマトグラフ
ES2442634T3 (es) * 2011-11-25 2014-02-12 ubitricity Gesellschaft für verteilte Energiesysteme mbH Sistema de punto de tasación y medición para medir y tasar energía eléctrica / electricidad, y procedimiento
KR101864828B1 (ko) * 2012-04-10 2018-06-05 삼성전자주식회사 전자 기기 관리 방법 및 장치
US9910081B2 (en) * 2013-10-21 2018-03-06 Washington State University Performance analysis of power grid monitors
CN104820618B (zh) * 2015-04-24 2018-09-07 华为技术有限公司 一种任务调度方法、任务调度装置及多核系统
US9268938B1 (en) * 2015-05-22 2016-02-23 Power Fingerprinting Inc. Systems, methods, and apparatuses for intrusion detection and analytics using power characteristics such as side-channel information collection
US10768215B2 (en) * 2018-10-05 2020-09-08 Rohde & Schwarz Gmbh & Co. Kg Method of measuring the AM/PM conversion of a device under test

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314534A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 稼働率集計装置
JP2010122176A (ja) * 2008-11-21 2010-06-03 Nec Corp 消費電力管理システム、消費電力管理方法、消費電力管理装置、消費電力管理プログラム
JP2011065383A (ja) * 2009-09-16 2011-03-31 Mitsubishi Electric Corp 設備運用支援システム及びプログラム

Also Published As

Publication number Publication date
EP3492931A1 (en) 2019-06-05
CN109564251B (zh) 2021-07-20
US20190162763A1 (en) 2019-05-30
JPWO2018020655A1 (ja) 2019-04-25
JP6635199B2 (ja) 2020-01-22
CN109564251A (zh) 2019-04-02
US11460489B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP5262482B2 (ja) ガスクロマトグラフ装置
EP3252798A1 (en) Analytical device
JP2016510900A (ja) クロマトグラフィーシステムの校正方法
Bereman Tools for monitoring system suitability in LC MS/MS centric proteomic experiments
WO2008053530A1 (fr) Procédé de quantification d'échantillons
JP4595825B2 (ja) 自動分析用データ処理装置
JP2015059782A (ja) 波形処理支援方法および波形処理支援装置
JP2006292446A (ja) ガスクロマトグラフ装置
He et al. Rapid determination of glyphosate, aminomethyl phosphonic acid, glufosinate, and ethephon residues in environmental water by direct injection-ultra performance liquid chromatography-triple quadrupole mass spectrometry
US20150276688A1 (en) Liquid chromatograph
KR102247116B1 (ko) 데이터 처리 방법, 데이터 처리 장치, 및 데이터 처리 프로그램
JP2017156093A (ja) 分析測定装置システム
WO2018020655A1 (ja) 分析制御システム
US10203309B2 (en) Chromatogram display method, chromatogram display device, and chromatograph comprising said device
JP4438674B2 (ja) ガスクロマトグラフ装置及び該装置のデータ処理方法
JP2008241517A (ja) 試料分析装置
US20200191759A1 (en) Calibrating device for automatically calibrating data of measuring instrument and method thereof
JP5954497B2 (ja) クロマトグラフ用データ処理装置及びデータ処理方法
JP4826579B2 (ja) クロマトグラフ用データ処理装置
JP4600053B2 (ja) クロマトグラフ分析に使用されるデータ処理装置
CN110546496A (zh) 试样分析装置
JP2016017941A (ja) クロマトグラフ用データ処理装置及びデータ処理方法並びにクロマトグラフ分析システム
JP2015210110A (ja) Fftアナライザ
EP4257971A1 (en) Analysis system
JP7040099B2 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016910558

Country of ref document: EP

Effective date: 20190228