WO2008032737A1 - Appareil d'affichage - Google Patents

Appareil d'affichage Download PDF

Info

Publication number
WO2008032737A1
WO2008032737A1 PCT/JP2007/067729 JP2007067729W WO2008032737A1 WO 2008032737 A1 WO2008032737 A1 WO 2008032737A1 JP 2007067729 W JP2007067729 W JP 2007067729W WO 2008032737 A1 WO2008032737 A1 WO 2008032737A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
light emitting
emitting layer
common electrode
type semiconductor
Prior art date
Application number
PCT/JP2007/067729
Other languages
English (en)
French (fr)
Inventor
Reiko Taniguchi
Masayuki Ono
Shogo Nasu
Eiichi Satoh
Toshiyuki Aoyama
Kenji Hasegawa
Masaru Odagiri
Masato Murayama
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/439,753 priority Critical patent/US8179033B2/en
Priority to JP2008534360A priority patent/JP5014347B2/ja
Publication of WO2008032737A1 publication Critical patent/WO2008032737A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to a display device using an electro-luminescence (hereinafter abbreviated as EL) element,
  • an electoluminescence device (hereinafter referred to as an EL device).
  • EL devices can be broadly divided into organic EL devices that emit light by applying a direct voltage to phosphors made of organic materials and recombining electrons and holes, and inorganic materials.
  • An alternating voltage is applied to the phosphor made of the material, and the electrons accelerated by a high electric field of about 10 6 V / cm collide with the emission center of the inorganic phosphor to be excited, and the inorganic phosphor emits light during the relaxation process.
  • the inorganic EL element includes a dispersed EL element in which inorganic phosphor particles are dispersed in a binder made of a polymer organic material to form a light emitting layer, and a thin film light emitting layer having a thickness of about 1 ⁇ m.
  • a dispersed EL element in which inorganic phosphor particles are dispersed in a binder made of a polymer organic material to form a light emitting layer, and a thin film light emitting layer having a thickness of about 1 ⁇ m.
  • thin-film EL elements with insulating layers on both sides or one side.
  • distributed EL devices are attracting attention as they have the advantage of low power consumption and low manufacturing costs due to simple manufacturing.
  • a conventional distributed EL element has a laminated structure, and is constructed by laminating a substrate, a first electrode, a light emitting layer, an insulator layer, and a second electrode in this order from the substrate side.
  • the light emitting layer has a configuration in which inorganic phosphor particles such as ZnS: Mn are dispersed in an organic binder, and the insulator layer has a configuration in which a strong insulator such as BaTiO is dispersed in an organic binder.
  • An AC power supply is installed between the first electrode and the second electrode, and the distributed EL element emits light when a voltage is applied between the first electrode and the second electrode from the AC power supply.
  • the light-emitting layer is a layer that determines the luminance and efficiency of the dispersion-type EL element, and the inorganic phosphor particles of the light-emitting layer have a particle size of 15 to 35 Hm.
  • the emission color of the light-emitting layer of the dispersion-type EL element is determined by the inorganic phosphor particles used in the light-emitting layer. For example, when ZnS: Mn is used for the inorganic phosphor particles, orange light is emitted. ZnS: C on body particles When U is used, blue-green light is emitted.
  • the emission color is determined by the inorganic phosphor particles used, so when obtaining other emission colors such as white, for example, the emission color is converted to another color by mixing an organic dye with an organic binder.
  • the target emission color is obtained (see, for example, Patent Document 2).
  • the illuminant used in the dispersion-type EL element has a problem that the luminance is low and the lifetime is short.
  • the half-life of the light output of the light emitter is reduced in inverse proportion to the applied voltage.
  • the method of reducing the applied voltage to the light-emitting layer is considered.
  • the emission luminance and the half-life are in a reciprocal relationship that when one is improved by increasing or decreasing the voltage applied to the light emitting layer, the other is worsened. Therefore, it is necessary to select either emission luminance or lifetime (half-life of light output).
  • the half-life is the time until the light output of the light emitter is reduced to half of the original light emission luminance.
  • the EL element 50 includes a light emitting layer 53 in which phosphor particles 61 of CdSe microcrystals are dispersed in a medium of indium tin oxide 63, which is a transparent conductor, between electrodes 52 and 54. In this method, light is emitted by applying a voltage. Since this EL element 50 is a current injection type light emitting element, it can be driven at a low voltage.
  • Patent Document 1 International Publication No. WO03 / 020848 Pamphlet
  • Patent Document 2 JP-A-7-216351
  • Patent Document 3 Japanese Patent No. 3741157
  • an inorganic EL element as described above is used as a high-definition display device such as a television, a luminance of about 300 cd / m 2 or more is required.
  • the inorganic EL element in the above proposal is still insufficient in terms of light emission luminance, and practical problems remain. Yes.
  • An object of the present invention is to provide a display device capable of obtaining high luminance display with low voltage driving and having excellent uniformity of luminance and chromaticity in a light emitting surface.
  • the display device according to the present invention includes a substrate,
  • a plurality of scanning lines extending in parallel with each other in a first direction on the substrate; and extending in parallel with each other in a second direction parallel to the substrate surface and perpendicular to the first direction.
  • At least one switching element provided corresponding to each intersection of the scanning wiring and the data wiring;
  • a pixel electrode connected to the switching element
  • At least one light emitting layer provided on the pixel electrode
  • a common electrode provided on the light emitting layer
  • the light emitting layer has a polycrystalline structure made of a first semiconductor material, and a second semiconductor material different from the first semiconductor material is segregated at a grain boundary of the polycrystalline structure.
  • a display device includes a substrate,
  • a plurality of scanning wirings extending in parallel with each other in a first direction on the substrate; and in parallel with each other in a second direction parallel to the substrate surface and perpendicular to the first direction.
  • At least one switching element provided corresponding to each intersection of the scanning wiring and the data wiring;
  • a pixel electrode connected to the switching element
  • a common electrode provided on the same plane as the pixel electrode with respect to the substrate;
  • At least one light emitting layer provided on the pixel electrode and the common electrode,
  • the light emitting layer has a polycrystalline structure made of a first semiconductor material, and a second semiconductor material different from the first semiconductor material is segregated at a grain boundary of the polycrystalline structure.
  • the common electrode may be substantially parallel to the scanning wiring or the data wiring and extend substantially parallel to each other in the first direction or the second direction. Good.
  • the common electrode has a width in a direction perpendicular to the extending direction in the extending direction.
  • the pixel electrode and the common electrode each have a comb-shaped structure, and at least a part of each of the comb-shaped structures of the pixel electrode and the common electrode is provided to be engaged with each other. It may be done.
  • a display device includes a substrate,
  • a common electrode provided on the substrate
  • a plurality of scanning lines extending in parallel to each other in a first direction on the insulating layer; and a plurality extending in parallel to a second direction that is parallel to the substrate surface and orthogonal to the first direction.
  • At least one switching element provided corresponding to each intersection of the scanning wiring and the data wiring;
  • a pixel electrode connected to the switching element
  • At least one light emitting layer provided on the pixel electrode
  • the light emitting layer has a polycrystalline structure made of a first semiconductor material, and a second semiconductor material different from the first semiconductor material is segregated at a grain boundary of the polycrystalline structure.
  • the insulating layer may have at least one opening for each pixel corresponding to each intersection of the scanning wiring and the data wiring.
  • the common electrode may be exposed to face the light emitting layer through the opening of the insulating layer.
  • the common electrode may be provided in a substantially solid shape with respect to the substrate! /, Or may be! /.
  • the pixel electrode and the exposed portion of the common electrode each have a comb-shaped structure, and at least a part of the comb-shaped structure of each of the pixel electrode and the exposed portion of the common electrode is It ’s occluded! /
  • an insulating layer may be further provided on at least one interface between the pixel electrode and the light emitting layer or between the exposed portion of the common electrode and the light emitting layer. Good.
  • a color conversion layer may be further provided facing the pixel electrode and the common electrode and in front of the light emission extraction direction.
  • the first semiconductor material and the second semiconductor material may have semiconductor structures of different conductivity types. Still further, the first semiconductor material may have an n-type semiconductor structure, and the second semiconductor material may have a p-type semiconductor structure! /.
  • the first semiconductor material and the second semiconductor material may each be a compound semiconductor. Further, the first semiconductor material may be a Group 12 Group 16 compound semiconductor. Furthermore, the first semiconductor material may be a Group 13 Group 15 compound semiconductor. The first semiconductor material may be a chalcopyrite type compound semiconductor. Still further, the first semiconductor material may have a cubic structure.
  • the first semiconductor material may be Cu, Ag, Au, Ir, Al, Ga, In, Mn, Cl, Br, I, Li, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb may contain at least one element selected from the group of forces!
  • the average crystal particle diameter of the polycrystalline structure made of the first semiconductor material is 5 to 500. It may be in the range of nm.
  • the second semiconductor material may be Cu S, ZnS, ZnSe, ZnSSe, ZnSeTe, ZnT.
  • e GaN, or InGaN may be used.
  • a display device includes a substrate,
  • a plurality of scanning lines extending in parallel with each other in a first direction on the substrate; and extending in parallel with each other in a second direction parallel to the substrate surface and perpendicular to the first direction.
  • At least one switching element provided corresponding to each intersection of the scanning wiring and the data wiring;
  • a pixel electrode connected to the switching element
  • At least one light emitting layer provided on the pixel electrode
  • a common electrode provided on the light emitting layer
  • the light emitting layer includes a p-type semiconductor and an n-type semiconductor! /.
  • the light emitting layer may have a configuration in which n-type semiconductor particles are dispersed in a p-type semiconductor medium. Further, it may be composed of an aggregate of n-type semiconductor particles, and a p-type semiconductor may be formed between the particles.
  • the n-type semiconductor may be electrically joined to the first and second electrodes via the p-type semiconductor.
  • a display device includes a substrate,
  • a plurality of scanning lines extending in parallel with each other in a first direction on the substrate; and extending in parallel with each other in a second direction parallel to the substrate surface and perpendicular to the first direction.
  • At least one switching element provided corresponding to each intersection of the scanning wiring and the data wiring;
  • a pixel electrode connected to the switching element
  • a common electrode provided on the same plane as the pixel electrode with respect to the substrate;
  • At least one light emitting layer provided on the pixel electrode and the common electrode;
  • the light emitting layer includes a P-type semiconductor and an n-type semiconductor.
  • the light emitting layer may have a configuration in which n-type semiconductor particles are dispersed in a p-type semiconductor medium.
  • it may be composed of an aggregate of n-type semiconductor particles, and a p-type semiconductor segregates between the particles! /.
  • the n-type semiconductor may be electrically joined to the pixel electrode and the common electrode via the p-type semiconductor.
  • the common electrodes may be substantially parallel to the scanning wiring or the data wiring and extend substantially parallel to each other in the first direction or the second direction. Further, the width of the common electrode in the direction orthogonal to the extending direction may change corresponding to the length of a certain period in the extending direction. Further, the pixel electrode and the common electrode have a comb-like structure, respectively, and at least a part of the comb-like structure of each of the pixel electrode and the common electrode is provided to be engaged with each other! / It ’s okay.
  • a display device includes a substrate,
  • a common electrode provided on the substrate
  • a plurality of scanning lines extending in parallel to each other in a first direction on the insulating layer; and a plurality extending in parallel to a second direction that is parallel to the substrate surface and orthogonal to the first direction.
  • At least one switching element provided corresponding to each intersection of the scanning wiring and the data wiring;
  • a pixel electrode connected to the switching element
  • At least one light emitting layer provided on the pixel electrode
  • the light emitting layer includes a P-type semiconductor and an n-type semiconductor.
  • the light emitting layer may have a configuration in which n-type semiconductor particles are dispersed in a p-type semiconductor medium.
  • it may be composed of an aggregate of n-type semiconductor particles, and a p-type semiconductor segregates between the particles! /.
  • the n-type semiconductor particles may be electrically joined to the first and second electrodes via the p-type semiconductor.
  • the insulating layer may have at least one opening for each pixel corresponding to each intersection of the scanning wiring and the data wiring.
  • the common electrode is exposed to face the light emitting layer through the opening of the insulating layer.
  • the common electrode may be provided substantially in a solid form with respect to the substrate.
  • the pixel electrode and the exposed portion of the common electrode each have a comb-like structure, and at least a part of the comb-shaped structure of each of the pixel electrode and the exposed portion of the common electrode is engaged. It may be provided.
  • an insulating layer may be further provided on at least one of the interface between the pixel electrode and the light emitting layer or between the exposed portion of the common electrode and the light emitting layer.
  • a color conversion layer may be further provided opposite to the pixel electrode and the common electrode and in front of the light emission extraction direction.
  • the n-type semiconductor and the p-type semiconductor may each be a compound semiconductor. Furthermore, the n-type semiconductor may be a Group 12 Group 16 compound semiconductor. Still further, the n-type semiconductor may be a Group 13 Group 15 compound semiconductor. The n-type semiconductor may be a chalcopyrite type compound semiconductor.
  • the p-type semiconductor is Cu S, ZnS, ZnSe, ZnSSe, ZnSeTe, ZnTe, GaN.
  • the present invention it is possible to provide a high-luminance display with low-voltage driving, excellent uniformity of luminance and chromaticity within the display surface, high display quality, and a display device. .
  • the display device of the present invention it is possible to provide a high-luminance display by driving at a low voltage, and to provide a display device that is excellent in uniformity of luminance and chromaticity in the display surface and has high display quality.
  • the light emitting layer has a polycrystalline structure made of an n-type semiconductor material, and has a structure in which a p-type semiconductor material is segregated at the grain boundary of the polycrystalline structure.
  • a p-type semiconductor material is segregated at the grain boundary of the polycrystalline structure.
  • the light emitting layer has (i) a structure in which n-type semiconductor particles are dispersed in a p-type semiconductor medium, or (ii) an aggregate of n-type semiconductor particles.
  • the light emitting layer has any structure in which a p-type semiconductor is segregated between the particles. Since the light emitting layer has the above structure, it is possible to efficiently inject holes into the n-type semiconductor particles or into the interface, and to emit light with low voltage, high luminance, and long life. The power S can be achieved.
  • FIG. L (a) is a schematic diagram showing a configuration of a display device according to Embodiment 1 of the present invention, and (b) shows each of the display units of the display device of (a). It is the schematic which shows the structure of a pixel.
  • FIG. 2 is a schematic diagram showing wiring in each pixel of the display unit of the display device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along the line AA in FIG.
  • FIG. 4 is a schematic cross-sectional view showing a schematic configuration of an EL element of each pixel.
  • FIG. 5 is an enlarged schematic view showing the configuration of the light emitting layer of FIG.
  • FIG. 6 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of a modification of the display device according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a direction force perpendicular to the light emitting surface of another modification of the display device according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram showing wiring in each pixel of a display unit of a display device according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic sectional view seen from a direction perpendicular to the light emitting surface along the line BB in FIG.
  • FIG. 10 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of a modification of the display device according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic cross-sectional view perpendicular to the light emitting surface of another modification of the display device according to Embodiment 2 of the present invention.
  • FIG. 12 shows each screen of the display unit of still another modified example of the display device according to Embodiment 2 of the present invention. It is a perspective view which shows the outline of the wiring in an element
  • FIG. 13 A perspective view showing an outline of wiring in each pixel of a display unit of still another modification of the display device according to Embodiment 2 of the present invention.
  • FIG. 14 A schematic diagram showing wiring in each pixel of the display unit of the display device according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along the line CC in FIG.
  • FIG. 16 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of a modification of the display device according to Embodiment 3 of the present invention.
  • FIG. 17 (a) is a schematic diagram showing a configuration of a display device according to Embodiment 4 of the present invention, and (b) is a configuration of each pixel constituting the display unit of the display device of (a).
  • FIG. 18] FIG. 18 is a schematic diagram showing wiring in each pixel of the display unit of the display device according to Embodiment 4 of the present invention.
  • FIG. 19 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along the line AA in FIG.
  • FIG. 20 A schematic cross-sectional view showing a schematic configuration of an EL element of each pixel.
  • FIG. 21 A schematic cross-sectional view showing a schematic configuration of an EL element of each pixel in another example.
  • FIG. 22 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of a modification of the display device according to Embodiment 4 of the present invention.
  • FIG. 23 It is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of another modification of the display device according to Embodiment 4 of the present invention.
  • FIG. 24 A schematic diagram showing wiring in each pixel of the display unit of the display device according to Embodiment 5 of the present invention.
  • FIG. 25 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along the line BB in FIG. 24.
  • FIG. 26 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of a modification of the display device according to Embodiment 5 of the present invention.
  • FIG. 27 A schematic cross-sectional view perpendicular to the light emitting surface of another modification of the display device according to Embodiment 5 of the present invention.
  • FIG. 28 A perspective view showing an outline of wiring in each pixel of a display unit of still another modification of the display device according to Embodiment 5 of the present invention.
  • FIG. 29 is a perspective view showing an outline of wiring in each pixel of a display unit of still another modification example of the display device according to Embodiment 5 of the present invention.
  • FIG. 30 is a schematic diagram showing wiring in each pixel of the display unit of the display device according to Embodiment 6 of the present invention.
  • FIG. 31 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along line CC in FIG.
  • FIG. 32 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface of a modification of the display device according to Embodiment 6 of the present invention.
  • FIG. 33 is a schematic configuration diagram seen from a direction perpendicular to the light emitting surface of a conventional inorganic EL element.
  • FIG. 1 (a) is a block diagram showing a schematic configuration of the display device 100 according to the first embodiment.
  • the display device 100 includes a display unit 101 in which a plurality of pixels are arranged two-dimensionally, a driving unit 102 that selectively drives the pixels, and the power of the driving unit 102.
  • the driving power supply 103 is supplied.
  • a DC power source is used as the power source 103.
  • the drive unit 102 drives the data electrode X.
  • the data electrode driving circuit 121 for illuminating and the scanning electrode driving circuit 122 for driving the scanning electrode Y are provided.
  • the display unit 101 includes an EL element array in which pixels are two-dimensionally arranged in i columns X j rows, and a plurality of pixels extending in parallel in a first direction parallel to the surface of the EL element array Data electrode X, X
  • a plurality of scanning electrodes Y, Y, ⁇ ⁇ ' ⁇ ⁇ extending in parallel with the surface of the EL element array
  • FIG. 1 (b) is a schematic diagram showing the configuration of each pixel in FIG. 1 (a).
  • Each pixel has a data electrode X, a scan electrode Y, a current supply line X, and il j i2 il j connected to the data electrode X and the scan electrode Y.
  • the switching element 104 includes the switching element 104 and the current supply line X.
  • the current drive circuit 105 is connected to the switching element 104, the capacitor 106, and the EL element 110. That is, this display device is an active matrix type display device.
  • the gate voltage of the switching element is determined according to the signal voltage at that time, and the current according to the conductivity is supplied from the current supply wiring X through the current drive element 105.
  • the EL element 110 is supplied.
  • FIG. 2 is a perspective view schematically showing the planar configuration of the wiring in the pixel of the display device 100 of the present embodiment.
  • the active matrix display device 100 includes a plurality of scanning wires 11 extending in parallel to a first direction parallel to the light emitting surface, and a second direction parallel to the light emitting surface and orthogonal to the first direction. And a plurality of data wires 12 extending in parallel.
  • a thin film transistor 30 (hereinafter referred to as “TFT”), which is a switching element, is provided corresponding to each intersection of the scanning wiring 11 and the data wiring 12.
  • An area surrounded by two adjacent scanning lines 11 and two adjacent data lines 12 is one pixel, and a plurality of these are arranged two-dimensionally.
  • At least one pixel electrode 14 is provided and connected to the TFT 30.
  • the EL element requires a current supply, and therefore the power supply line 13 extends substantially parallel to the data line 12.
  • the substrate 10 is provided as a support for the wirings and electrodes and the TFT 30, and the array substrate 40 is configured.
  • FIG. 3 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along the line AA in FIG.
  • FIG. 4 is a schematic diagram when one pixel in FIG. 3 is considered as one EL element 110.
  • the substrate 10 and the above-described substrate disposed on the substrate 10 are provided.
  • a light emitting layer 20 is formed in a substantially planar shape on an array substrate 40 composed of wiring and electrodes, and the light emitting layer 20 constitutes a light emitting portion of the display device 100.
  • a common electrode 15 is formed on the light emitting layer 20.
  • one schematic EL element 110 is configured.
  • a pixel electrode 14, a light emitting layer 20, and a common electrode 15 are laminated on a substrate 10 in this order.
  • the pixel electrode 14 when an external voltage, for example, a voltage from the DC power source 103 is applied to the pixel electrode 14 via the TFT 30, the pixel electrode 14 is connected to the common electrode 15.
  • a potential difference occurs.
  • the potential difference becomes equal to or higher than the light emission start voltage, a current flows through the light emitting layer 20 to cause light emission. Light emission is extracted from the surface opposite to the array substrate 40 to the outside.
  • the display device 100 is not limited to the above-described configuration, and a plurality of light-emitting layers 20 are provided.
  • the scanning wiring 11, the data wiring 12, the pixel electrode 14, and the common electrode 15 are all transparent electrodes. Any one of the electrodes is a black electrode, further includes a structure that seals all or part of the display device 100, further includes a structure that converts the color of light emitted from the light emitting layer 20 in front of the light emission extraction direction, etc. Changes can be made as appropriate.
  • the light-emitting layer is color-coded by RGB colors
  • the light-emitting units for each RGB color are stacked, and a single-color or two-color light-emitting layer and a color filter (in FIG. 3, the color filter). 17) and / or the color conversion filter (color conversion layer 16 in Fig. 3) can be changed as appropriate by displaying RGB colors.
  • the substrate 10 is made of a material that can support each layer formed thereon and has high electrical insulation.
  • a material for example, glass such as Couting 1737, quartz, ceramic, a metal substrate having an insulating layer on the surface, a silicon wafer, or the like can be used.
  • a non-alloy glass or soda lime glass in which alumina or the like is coated on the glass surface as an ion noble layer may be used.
  • polyester, polyethylene terephthalate, polychlorotrifluoroethylene and nylon 6 combinations, fluororesin materials, polyethylene, Resin films such as propylene, polyimide, and polyamide can also be used.
  • the resin film is made of a material with excellent durability, flexibility, transparency, electrical insulation and moisture resistance. These are merely examples, and the material of the substrate 10 is not particularly limited thereto.
  • any known low-resistance conductive material can be applied to the pixel electrode 14 and the common electrode 15.
  • metal materials such as Pt, Au, Pd, Ag, Ni, Cu, Al, Ru, Rh, Ir, Cr, Mo, W, Ta, Nb, and Ti, and a laminated structure thereof are preferable.
  • Conductive polymers such as metal oxides, polyalyrin, polypyrrole, PEDOT (poly (3,4-ethylenedioxythiophene)) / PSS (polystyrene sulfonic acid)
  • a material other than metal such as conductive carbon
  • different materials may be used for the pixel electrode 14 and the common electrode 15.
  • a material having a high hole injection and a high work function is selected for the pixel electrode 14, and the common electrode 15 has an electron injection property.
  • a small material with a good work function can be selected.
  • FIG. 5 is a schematic configuration diagram in which the light emitting layer 20 is enlarged.
  • the light emitting layer 20 has a polycrystalline structure made of the first semiconductor material 21, and has a structure in which the second semiconductor material 23 segregates at the grain boundaries 22 of the polycrystalline material.
  • the first semiconductor substance 21 a semiconductor material in which majority carriers are electrons and exhibits n-type conduction is used.
  • the second semiconductor substance 23 uses a semiconductor material in which majority carriers are holes and exhibits p-type conduction, and the first semiconductor substance 21 and the second semiconductor substance 23 are electrically joined.
  • Holes and electrons injected from the electrode are scattered at high density in the light-emitting layer and recombine with the above-mentioned segregation part to obtain light emission. Note that light emission by energy transfer is also possible in the same way because of the recombination via the donor acceptor level and the presence of other ion species in the vicinity.
  • the size of the band gap ranges from the near-near region to the visible region.
  • Those with (1.7 eV to 3.6 eV) are preferred. More preferred are those having eV force, et al. 3.6 eV).
  • the above-described ZnS, Group 12-Group 16 compounds such as ZnSe, ZnTe, CdS, CdSe, etc. and mixed crystals thereof (for example, ZnSSe, etc.)
  • Group 2-Group such as CaS, SrS, etc.
  • Group 13-15 compounds such as A1P, AlAs, GaN, GaP, and mixed crystals thereof (for example, In GaN)
  • ZnMgS, CaSSe, CaSrS A mixed crystal of the above-described compound can be used.
  • a chalcopyrite type compound such as CuAlS may be used.
  • the first chalcopyrite type compound such as CuAlS may be used.
  • a polycrystalline body made of a semiconductor material is preferably one whose main part has a cubic structure. Furthermore, Cu, Ag, Au, Ir, Al, Ga, In, Mn, Cl, Br, I, Li, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, One or more kinds of atoms or ions selected from the group consisting of Tm and Yb may be contained as an additive. The color of light emitted from the light emitting layer 20 is also determined by the types of these elements.
  • These materials may contain one or more kinds of atoms from N, Cu, and In as additives for imparting p-type conduction.
  • the structure of the light emitting layer 20 can be realized by a manufacturing method such as a firing method, a gas phase synthesis method, an explosion method, a hydrothermal synthesis method, a high temperature / high pressure synthesis method, a flux method, or a coprecipitation method.
  • a manufacturing method such as a firing method, a gas phase synthesis method, an explosion method, a hydrothermal synthesis method, a high temperature / high pressure synthesis method, a flux method, or a coprecipitation method.
  • the display device 100 is characterized in that the light emitting layer 20 has a polycrystalline structure made of an n-type semiconductor material 21, and a p-type semiconductor material is formed at the grain boundary 22 of the polycrystalline structure. 23 has a segregated structure.
  • the force that prevented the electrons accelerated by a high electric field from being scattered by increasing the crystallinity of the light-emitting layer ZnS, ZnSe, etc. generally show n-type conduction, so High-brightness light emission due to recombination of electrons and holes that cannot be sufficiently supplied cannot be expected.
  • the crystal grains of the light emitting layer grow, the grain boundaries also extend uniquely unless they are single crystals.
  • the inventor of the present invention has a light-emitting layer 20 having a polycrystalline structure made of an n-type semiconductor material 21, and a p-type semiconductor material 23 at a grain boundary 22 of this polycrystalline structure. It has been found that the hole injection property is improved by the p-type semiconductor material segregated at the grain boundaries. Furthermore, by segregating segregation parts in the light emitting layer 20 at a high density, electrons and It has been found that recombination light emission of holes occurs efficiently.
  • a light emitting element that emits light with high luminance at a low voltage can be realized, and the present invention has been achieved.
  • a donor or acceptor by introducing a donor or acceptor, recombination of free electrons and holes captured by the acceptor, recombination of electrons captured by free holes and donors, and single-acceptor pair emission are also possible. It is. Furthermore, light emission by energy transfer is possible in the same way because other ion species are in the vicinity.
  • Embodiment 1 an example of a method for manufacturing display device 100 according to Embodiment 1 will be described. It should be noted that the same manufacturing method can also be used in the case of using a light emitting layer made of the other materials described above.
  • a glass substrate 10 is prepared.
  • the scanning wiring 11 and the gate electrode 31 connected to the scanning wiring 11 are formed.
  • A1 is used, and patterns are formed substantially in parallel at a predetermined interval by photolithography.
  • the film thickness is 200 nm.
  • An insulating layer such as silicon nitride is formed on the scanning wiring 11 as the gate insulating film 32 of the TFT 30.
  • an amorphous silicon layer responsible for the switching function of the TFT 30 is laminated, and further an N + amorphous silicon layer is laminated to form a pattern.
  • the source 33 and the drain 34, and the pixel electrode 14 connected to the drain 34 are patterned using Ta, for example.
  • the film thickness is lOOnm.
  • the data wiring 12 and the current supply line 13 are patterned using, for example, A1.
  • the data wiring 12 and the current supply line 13 are formed so as to be substantially parallel to each other with a predetermined interval and to be substantially orthogonal to the scanning wiring 11.
  • the film thickness is 200 nm.
  • an insulating layer such as silicon nitride is patterned as the protective layer 35 so that the pixel electrode 14 is exposed. In this way, the array substrate 40 can be formed.
  • the light emitting layer 20 is formed on the substrate 10 as follows. First, each was charged with powder of Zn S and Cu S into a plurality of evaporation sources, in vacuo (10_ 6 Torr stand), elect port to each material
  • the ZnS and Cu S are co-deposited on the array substrate 40, and then annealed. By treatment, a light emitting layer 20 having a polycrystalline structure of ZnS and a segregation part of Cu S can be obtained.
  • the common electrode 15 is patterned using, for example, ITO.
  • the film thickness is 200 nm.
  • a transparent insulator layer such as silicon nitride is formed on the common electrode 15 as a protective layer (not shown).
  • the display device 100 of this embodiment can be obtained.
  • high light emission luminance could be obtained at a low voltage of about 5 to 10V.
  • the present invention is not limited to the above-described configuration, and the TFT 30 serving as a switching element can be appropriately changed to use low-temperature polysilicon, CG silicon, organic TFT, or the like. It is also possible to provide a configuration in which a plurality of TFTs are provided per pixel and the pixel selection function and the drive function are separated. As an example, it consists of two TFTs, a drive TET and a select TFT, a capacitor placed between them, and a power supply wiring connected to the source of the drive TFT. The pixel electrode is connected to the drain of the driving TFT.
  • the selection TFT connected to the scanning wiring is turned on, the signal voltage from the data wiring is written to the capacitor, and at the same time, the driving TFT is turned on.
  • the gate voltage of the driving TFT is determined according to the signal voltage at that time, and a current corresponding to the conductivity is supplied from the current supply wiring to the light emitting layer through the pixel electrode.
  • the present invention is not limited to the configuration described above, and can be appropriately changed to a known current control type driving technique, halftone control technique, and the like.
  • the light emitting layer may be formed by color-coding with RGB phosphors.
  • light emitting units for each RGB color such as transparent electrode / light emitting layer / back electrode may be laminated.
  • each color of RGB may be displayed using a color filter and / or a color conversion filter. it can.
  • an insulating protective film 18 a is also formed on the pixel electrode 14, and further below the common electrode 15.
  • Thin insulating layer 18 As shown in the schematic cross-sectional view of FIG. 7, a flattened insulating layer 19 is formed, and a pixel electrode 14 is formed on the flattened insulating layer 19 to make contact.
  • the connection to the drain 34 through a hole can be changed as appropriate.
  • the display device can emit light with high luminance by driving at a lower voltage than in the past by using a light emitting layer having high light emission efficiency.
  • FIG. 8 is a diagram schematically showing a planar configuration of wiring in each pixel of the display device according to the second embodiment.
  • FIG. 9 is a diagram schematically showing a cross-sectional configuration viewed from a direction perpendicular to the light emitting surface along the line BB in FIG.
  • the active matrix display device 10 includes a plurality of scanning wirings 11 extending in parallel to a first direction parallel to the light emitting surface, and a second direction parallel to the light emitting surface and orthogonal to the first direction. And a plurality of data wires 12 extending in parallel.
  • a thin film transistor 30 hereinafter referred to as “TFT”), which is a switching element, is provided corresponding to each intersection of the scanning wiring 11 and the data wiring 12.
  • An area surrounded by two adjacent scanning wirings 11 and two adjacent data wirings 12 is one pixel, and a plurality of these are two-dimensionally arranged.
  • at least one pixel electrode 14 is provided and connected to the TFT 30.
  • at least one common electrode 15 paired with one pixel electrode 14 is provided, and the common electrode 15 extends substantially parallel to the data wiring 12.
  • the substrate 10 is provided to support these wirings, electrodes, and TFTs 30, and the array substrate 40 is configured.
  • the light emitting layer 20 is formed in a substantially planar shape on the array substrate 40, and constitutes the light emitting portion of the display device 100.
  • the display device 100 has a structure in which the pixel electrode 14 and the common electrode 15 are disposed on substantially the same plane side with respect to the light emitting layer 20.
  • the resistivity of the light emitting layer 20 is a semiconductor region, and in addition, since current flows at a low voltage, light emission occurs even in the above configuration. Further, in this configuration, a transparent electrode is not required, and the wiring and the electrode can be formed from a metal material having a sufficiently low resistance, so that a voltage drop due to the resistance of the transparent electrode can be avoided.
  • the common electrode 15 may extend substantially parallel to the scan electrode 11 without being limited to the above-described configuration.
  • the pixel electrode 14 or the common electrode 15 is a black electrode, and further includes a structure (not shown) that protects and seals all or part of the display device.
  • the structure can be changed as appropriate, for example, by further providing a structure (color conversion layer 16 in FIG. 9) for converting the emission color.
  • the light-emitting layer is color-coded by RGB colors, the light-emitting units for each RGB color are stacked, a single-color or two-color light-emitting layer and a color filter (color filter 17 in FIG. 9) and Appropriate changes can be made, such as displaying RGB colors in combination with color conversion filters.
  • each constituent member of the display device according to the second embodiment is substantially the same as each constituent member of the display device according to the first embodiment, except that the characteristics thereof are particularly described. Can be used.
  • Embodiment 2 An example of a method for manufacturing the display device according to Embodiment 2 will be described. A similar manufacturing method can be used for the light emitting layer 20 made of the other materials described above.
  • a glass substrate 10 is prepared.
  • the scanning wiring 11 and the gate electrode 31 connected to the scanning wiring 11 are formed.
  • A1 is used, and patterns are formed substantially in parallel at a predetermined interval by photolithography.
  • the film thickness is 200 nm.
  • An insulating layer such as silicon nitride is formed on the scanning wiring 11 as the gate insulating film 32 of the TFT 30.
  • an amorphous silicon layer which is responsible for the switching function of the TFT 30, is laminated, and an N + amorphous silicon layer is further laminated to form a pattern.
  • the source 33 and the drain 34 and the pixel electrode 14 connected to the drain 34 are patterned using Ta, for example.
  • the film thickness is lOOnm.
  • the protective layer 35 an insulating layer such as silicon nitride is patterned so that the pixel electrode 14 is exposed.
  • the data wiring 12 and the common electrode 15 are patterned using, for example, A1.
  • the data lines 12 are formed so as to be substantially parallel to each other with a predetermined interval and to be substantially orthogonal to the scanning lines 11.
  • the common electrode 15 is formed between the adjacent data line 12 and the pixel electrode 15 and substantially parallel to the data line 12.
  • the film thickness is 200nm
  • the array substrate 40 is formed.
  • the light emitting layer 20 is formed on the array substrate 40.
  • the light emitting layer 20 having a structure and a segregation portion of Cu S can be obtained.
  • a transparent insulator layer such as silicon nitride is formed on the light emitting layer 20 as a protective layer (not shown).
  • the display device of this embodiment can be obtained. According to this display device, in-plane luminance uniformity is improved as compared with an active matrix display device having an upper and lower electrode structure in which a common electrode is used as a transparent electrode and formed above the light emitting layer.
  • the present invention is not limited to the above-described configuration, and the TFT 30 serving as a switching element can be appropriately changed to use low-temperature polysilicon, CG silicon, organic TFT, or the like. It is also possible to provide a configuration in which a plurality of TFTs are provided per pixel and the pixel selection function and the drive function are separated. As an example, it may be composed of two TFTs, a driving TET and a selection TFT, a capacitor provided between them, and a power supply wiring connected to the source of the driving TFT. The pixel electrode 14 is connected to the drain of the driving TFT.
  • the selection TFT connected to the scanning wiring 11 when the selection TFT connected to the scanning wiring 11 is turned on, the signal voltage from the data wiring 12 is written to the capacitor, and at the same time, the driving TFT is turned on.
  • the gate voltage of the driving TFT is determined according to the signal voltage at that time, and a current according to the conductivity is supplied from the power supply wiring to the light emitting layer 20 through the pixel electrode 14. It should be noted that the present invention is not limited to the configuration described above, and can be appropriately changed to a known current control type driving technique, halftone control technique, and the like.
  • a thin insulating layer 18 is also formed on the pixel electrode 14 and the common electrode 15 to change to AC driving.
  • the pixel electrode 14 and the common electrode 15 can have any width, length, and thickness.
  • it has a comb shape, and the comb-shaped portions of the pixel electrode 14 and the common electrode 15 are arranged so as to be engaged with each other! /, May! / .
  • the width of the non-pixel region of the common electrode 15 may be increased.
  • the width in the direction perpendicular to the extending direction of the common electrode 15 may be increased along the gate wiring 11. Thereby, the heat radiation effect from the common electrode 15 to the gate electrode 11 side can be enhanced.
  • the light emitting layer has the resistivity of the semiconductor region, and when applied to a display device having a matrix structure, it is expected that the voltage drop due to the resistance of the transparent electrode is large. There was a practical problem.
  • the present inventor since the light emitting layer of the direct current driven inorganic EL element has rather low resistance, the present inventor has found that light can be emitted by energization in the surface direction of the light emitting layer 20, and this embodiment The configuration of the display device was realized. In the display device according to the present embodiment, light emission can be obtained by energization in the surface direction of the low-resistance light-emitting layer 20.
  • a transparent electrode such as ITO is not required, and a display device can be configured using only metal electrodes. Since the metal electrode has a sufficiently low resistance, it is possible to emit light with high brightness, and voltage drop due to the electrode resistance is suppressed, so that in-plane brightness and chromaticity uniformity are improved.
  • FIG. 14 is a diagram schematically showing a planar configuration of wiring in each pixel of the display device according to the third embodiment.
  • FIG. 15 is a cross-sectional view taken along the line CC in FIG. 14 as seen from the direction perpendicular to the light emitting surface.
  • This active matrix display device includes a plurality of scanning wirings 11 extending in parallel to a first direction parallel to the light emitting surface, and a second direction parallel to the light emitting surface and orthogonal to the first direction. And a plurality of data wirings 12 extending to.
  • a thin film transistor 30 switching element corresponding to each intersection of the scanning wiring 11 and the data wiring 12 ( Hereinafter referred to as “TFT”. ).
  • An area surrounded by two adjacent scanning lines 11 and two adjacent data lines 12 is one pixel, and a plurality of these are two-dimensionally arranged IJ.
  • at least one pixel electrode 14 is provided and connected to the TFT 30.
  • a common electrode 15 having a substantially entire surface that forms a pair with the pixel electrode 14 is provided.
  • the common electrode 15 is electrically separated from the wiring, electrode, and TFT 30 via an insulating layer 18.
  • the insulating layer 18 has at least one opening per pixel, and the lower common electrode 15 is exposed.
  • a substrate 10 is provided as a support for these wirings, electrodes, and TFTs 30 to form an array substrate 40.
  • the light emitting layer 20 is formed in a substantially planar shape on the array substrate 40, and constitutes the light emitting portion of the display device.
  • an external voltage is applied to the pixel electrode 14 via the TFT 30 in the pixel selected by the scanning wiring 11 and the data wiring 12, a potential difference is generated between the pixel electrode 14 and the common electrode 15.
  • the potential difference becomes equal to or higher than the light emission start voltage, a current flows through the light emitting layer 20 to cause light emission. Light emitted from the light emitting layer 20 is taken out from the surface opposite to the array substrate 40.
  • the display device 100 has a structure in which the pixel electrode 14 and the common electrode 15 are disposed on substantially the same surface side with respect to the light emitting layer 20.
  • the resistivity of the light emitting layer 20 is a semiconductor region, and a current flows at a low voltage. Further, in this configuration, a transparent electrode is not required, and the wiring and the electrode can be formed from a metal material having a sufficiently low resistance, so that a voltage drop due to the resistance of the transparent electrode can be avoided.
  • the common electrode 15 may extend substantially parallel to the scan electrode 11 without being limited to the above-described configuration.
  • the pixel electrode 14 or the common electrode 15 is a black electrode, and further includes a structure (not shown) that protects and seals all or part of the display device.
  • the structure can be changed as appropriate, for example, by further providing a structure (color conversion layer 16 in FIG. 15) for converting the emission color.
  • the light-emitting layer is color-coded by RGB color
  • the light-emitting units for each RGB color are stacked, and a single-color or two-color light-emitting layer and color filter (in FIG. 15, color filter 17).
  • a color conversion filter in combination with a color conversion filter, each color of RGB can be changed as appropriate.
  • each component of the display device according to the third embodiment is described in particular with respect to its characteristics. Except for what will be described, substantially the same components as those of the display device according to Embodiment 1 may be used.
  • a glass substrate 10 is prepared.
  • a solid common electrode 15 is formed on the glass substrate 10 using Ta, for example.
  • the film thickness is 200 nm.
  • an insulating layer 18 such as silicon nitride is formed on the common electrode 15. Further, an opening corresponding to the pixel is patterned by photolithography to form an exposed portion of the common electrode 15.
  • the scanning wiring 11 and the gate electrode 31 connected to the scanning wiring 11 are formed on the insulating layer 18.
  • A1 is used as the scanning wiring 11, and patterns are formed substantially in parallel at a predetermined interval by a photolithography method.
  • the film thickness is 200 nm.
  • an insulating layer such as silicon nitride is formed as the gate insulating film 32 of the TFT 30 on the scanning wiring 11. Further, the gate insulating film 23 is also patterned in accordance with the above-described opening, and an exposed portion of the common electrode 15 is formed.
  • an amorphous silicon layer having a TFT switching function is laminated, and further an N + amorphous silicon layer is laminated to form a pattern.
  • the source 33, the drain 34, and the pixel electrode 14 connected to the drain 34 are patterned using Ta, for example.
  • the film thickness is lOOnm.
  • an insulating layer such as silicon nitride is patterned as the protective layer 35 so that the pixel electrode 14 is exposed.
  • an exposed portion of the common electrode 15 is formed in accordance with the aforementioned opening.
  • the data wiring 12 is patterned using, for example, A1.
  • the data lines 12 are formed so as to be substantially parallel to each other with a predetermined interval and to be substantially orthogonal to the scanning lines 11.
  • the film thickness is 200 nm. In this way, the array substrate 40 is formed.
  • the light emitting layer 20 is formed on the array substrate 40.
  • ZnS and Cu for multiple evaporation sources S powder was placed respectively, in a vacuum (10_ b Torr table), by irradiating the electron beam on each material after co-evaporation of ZnS and Cu S, by Aniru process, the ZnS multi
  • the light emitting layer 20 having a crystal structure and a Cu S segregation part can be obtained.
  • a transparent insulator layer such as silicon nitride is formed on the light emitting layer 20 as a protective layer (not shown).
  • the display device of this embodiment can be obtained. According to this display device, in-plane luminance uniformity is improved as compared with an active matrix display device having an upper and lower electrode structure in which a common electrode is used as a transparent electrode and formed above the light emitting layer.
  • the present invention is not limited to the above-described configuration, and the TFT 30 serving as a switching element can be appropriately changed to use low-temperature polysilicon, CG silicon, organic TFT, or the like. It is also possible to provide a configuration in which a plurality of TFTs are provided per pixel and the pixel selection function and the drive function are separated. As an example, it may be composed of two TFTs, a driving TET and a selection TFT, a capacitor provided between them, and a power supply wiring connected to the source of the driving TFT. The pixel electrode 14 is connected to the drain of the driving TFT.
  • the selection TFT connected to the scanning wiring 11 when the selection TFT connected to the scanning wiring 11 is turned on, the signal voltage from the data wiring 12 is written to the capacitor, and at the same time, the driving TFT is turned on.
  • the gate voltage of the driving TFT is determined according to the signal voltage at that time, and a current according to the conductivity is supplied from the power supply wiring to the light emitting layer 20 through the pixel electrode 14. It should be noted that the present invention is not limited to the configuration described above, and can be appropriately changed to a known current control type driving technique, halftone control technique, and the like.
  • the thin-film insulating layer 18b is also formed on the pixel electrode 14 and the common electrode 15, and is changed to AC driving. Is also possible as appropriate.
  • the exposed portions of the pixel electrode 14 and the common electrode 15 are formed in a comb shape that may have any width, length, and thickness. And place them to bite each other! /
  • the display device uses a low-resistance light-emitting layer and can emit light when energized in the surface direction.
  • a transparent electrode such as ITO is not required, and a display device can be configured with only metal electrodes. Since the metal electrode has a sufficiently low resistance, it emits high brightness light. This is possible, and the voltage drop due to the electrode resistance is suppressed, so that the uniformity of in-plane brightness and chromaticity is improved.
  • the common electrode is formed in a substantially solid shape, it has excellent heat dissipation such as Joule heat generated during light emission, and uneven brightness and color due to temperature characteristics between pixels caused by in-plane temperature distribution. Is also suppressed.
  • FIG. 17 (a) is a block diagram showing a schematic configuration of the display device 100 according to the fourth embodiment.
  • the display device 100 includes a display unit 101 in which a plurality of pixels are two-dimensionally arranged, a driving unit 102 that selectively drives the pixels, and power of the driving unit 102. And a driving power supply 103 for supplying power.
  • a DC power source is used as the power source 103.
  • the drive unit 102 connects the data electrode X to
  • the display unit 101 includes an EL element array in which pixels are arranged two-dimensionally in i columns X j rows, and includes a plurality of pixels extending in parallel in a first direction parallel to the surface of the EL element array.
  • a plurality of scanning electrodes Y, Y, ⁇ ⁇ ' ⁇ ⁇ extending in parallel with the surface of the EL element array
  • FIG. 17 (b) is a schematic diagram showing the configuration of each pixel in FIG. 17 (a).
  • Each pixel includes a data electrode X, a scan electrode Y, a current supply line X, a switching element 104 connected to the data electrode X and the scan electrode Y, a current drive circuit 105, This is composed of a Canon 106 and an EL element 110.
  • the capacitor 106 is connected to the switching element 104 and the current supply line X i2.
  • the current drive circuit 105 is connected to the switching element 104, the capacitor 106, and the EL element 110. That is, this display device is an active matrix type display device. [0085] When the switching element 104 is turned on, the signal voltage of the data wiring X is changed to the capacitor 10
  • the gate voltage of the switching element is determined according to the signal voltage at that time, and the current according to the conductivity is supplied from the current supply wiring X through the current drive element 105.
  • the EL element 110 is supplied.
  • FIG. 18 is a perspective view schematically showing a planar configuration of wiring in a pixel of display device 100 of the present embodiment.
  • the active matrix display device 100 includes a plurality of scanning wires 11 extending in parallel to a first direction parallel to the light emitting surface, and a second direction parallel to the light emitting surface and orthogonal to the first direction. And a plurality of data wires 12 extending in parallel.
  • a thin film transistor 30 (hereinafter referred to as “TFT”), which is a switching element, is provided corresponding to each intersection of the scanning wiring 11 and the data wiring 12.
  • An area surrounded by two adjacent scanning lines 11 and two adjacent data lines 12 is one pixel, and a plurality of these are arranged two-dimensionally.
  • At least one pixel electrode 14 is provided and connected to the TFT 30.
  • the EL element requires a current supply, and therefore the power supply line 13 extends substantially parallel to the data line 12.
  • the substrate 10 is provided as a support for the wirings and electrodes and the TFT 30, and the array substrate 40 is configured.
  • FIG. 19 is a schematic cross-sectional view seen from a direction perpendicular to the light emitting surface along the line AA in FIG.
  • FIG. 20 is a schematic diagram when one pixel in FIG. 19 is considered as one EL element 110.
  • a light-emitting layer 20 is formed in a substantially planar shape on a substrate 10 and an array substrate 40 composed of the wiring and electrodes arranged on the substrate 10, and the light-emitting layer 20 is formed on the display device. Consists of 100 light emitting parts.
  • a common electrode 15 is formed on the light emitting layer 20.
  • one schematic EL element 110 is formed in the pixel selected by the scanning wiring 11 and the data wiring 12.
  • a pixel electrode 14, a light emitting layer 20, and a common electrode 15 are sequentially stacked on a substrate 10.
  • an external voltage for example, a voltage is applied from the DC power source 103 to the pixel electrode 14 via the TFT 30, the pixel A potential difference is generated between the electrode 14 and the common electrode 15.
  • the potential difference becomes equal to or higher than the light emission start voltage, a current flows through the light emitting layer 20 to cause light emission. The emitted light is extracted from the surface opposite to the array substrate 40 to the outside.
  • the light emitting layer 20 has n-type semiconductor particles as shown in FIG.
  • the light emitting layer 20 is characterized in that the n-type semiconductor particles 21 are dispersed in the medium of the p-type semiconductor 23. In this way, by forming many interfaces between the n-type semiconductor particles and the P-type semiconductor, the hole injectability is improved, the recombination light emission of electrons and holes is efficiently generated, and the low voltage is applied. It is possible to achieve an EL element 1 10 that emits high brightness light.
  • the light emission efficiency can be improved, light emission is possible at a low voltage, and high A display device that emits light with luminance is obtained.
  • the display device 100 is not limited to the above-described configuration, and a plurality of light-emitting layers 20 are provided.
  • the scanning wiring 11, the data wiring 12, the pixel electrode 14, and the common electrode 15 are all transparent electrodes. Any one of the electrodes is a black electrode, further includes a structure that seals all or part of the display device 100, further includes a structure that converts the color of light emitted from the light emitting layer 20 in front of the light emission extraction direction, etc. Changes can be made as appropriate.
  • the light-emitting layer is color-coded by RGB colors, light-emitting units for each RGB color are stacked, and a single-color or two-color light-emitting layer and a color filter (in FIG. 19, color filters). 17) and / or color conversion filters (color conversion layer 16 in Fig. 19) can be changed as appropriate, such as displaying each RGB color.
  • each constituent member of the display device according to the fourth embodiment is substantially the same as each constituent member of the display device according to the first embodiment, except for the description of the characteristics thereof. Can be used.
  • the light emitting layer 20 is sandwiched between the pixel electrode 14 and the common electrode 15 and has one of the following two structures.
  • n-type semiconductor particles 21 are dispersed in a medium of p-type semiconductor 23 (for example, the structure shown in FIG. 21).
  • each n-type semiconductor particle 21 constituting the light emitting layer 20 is electrically joined to the pixel electrode 14 and the common electrode 15 via the p-type semiconductor 23.
  • the material of the n-type semiconductor particles 21 is an n-type semiconductor material in which majority carriers are electrons and exhibit n-type conduction.
  • the material may be a Group 12-Group 16 compound semiconductor. Further, it may be a Group 13 Group 15 Group 15 compound semiconductor.
  • the optical band gap is a material having a visible light size, for example, ZnS, ZnSe, GaN, InGaN, Al N, GaAlN, GaP, CdSe, CdTe, SrS, CaS As power or additive, Cu, Ag, Au, Ir, Al, Ga, In, Mn, Cl, Br, I, Li, Ce, Pr, Nd, Pm, Sm, Eu Gd, Tb, Dy, Ho, Er, Tm, Yb force, or one or more kinds of atoms or ions selected from the group may be contained as an additive.
  • the color of light emitted from the light emitting layer 20 is also determined by the type of these elements.
  • the material of the p-type semiconductor 23 is a p-type semiconductor material in which majority carriers are holes and exhibits p-type conduction.
  • This p-type semiconductor material is, for example, 'Cu S, ZnS, ZnSe, ZnSS.
  • e compounds such as ZnSeTe and ZnTe, and nitrides such as GaN and InGaN.
  • p-type semiconductor materials Cu S and the like inherently show p-type conduction, but other materials are added.
  • additives additives selected from nitrogen, Ag, Cu, and In as additives.
  • chalcopyrite type such as CuGaS, CuAlS etc. which show p-type conduction
  • a compound may be used.
  • a firing method As a method for manufacturing each of the above semiconductors, a firing method, a gas phase synthesis method, an explosion method, a hydrothermal synthesis method, a high temperature high pressure synthesis method, a flux method, a coprecipitation method, or the like can be used.
  • the display device 100 is characterized in that the light-emitting layer 20 has (i) a structure in which a p-type semiconductor 23 is segregated between n-type semiconductor particles 21 (Fig. 20), (ii) p In other words, it has a structure of! /, Which is a structure in which n-type semiconductor particles 21 are dispersed in a medium of the type semiconductor 23 (FIG. 21).
  • Fig 3 As in the conventional example shown in FIG. 3, when the medium electrically connected to the semiconductor particles 61 is indium tin oxide 63, the force that allows the electrons to reach the semiconductor particles 61 to emit light is indium tin oxide. Since the hole concentration of is small, holes for recombination are insufficient.
  • the present inventor has focused on a structure that can efficiently inject holes in the light emitting layer 20 together with the injection of electrons in order to obtain continuous light emission with particularly high brightness and high efficiency.
  • a large number of holes reach the inside or the interface of the luminescent particles, and holes are rapidly injected from the electrode facing the electron injection electrode, and the luminescent particles or It is necessary to reach the interface. Therefore, as a result of earnest research, the present inventor has made the structure of the light emitting layer 20 one of the above (i) and (ii), so that electrons can be introduced into the n-type semiconductor particle 21 or the interface.
  • holes can be injected efficiently along with the injection. That is, according to the light emitting layer 20 of each structure described above, electrons injected from the electrode reach the n-type semiconductor particle 21 through the p-type semiconductor 23, while many holes are emitted from the other electrode to the phosphor particles.
  • the power S can be efficiently emitted by recombination of electrons and holes.
  • a display device that emits light with high luminance at a low voltage can be realized, and the present invention has been achieved.
  • introducing a donor or acceptor recombination of free electrons and holes captured by the acceptor, recombination of free holes and electrons captured by the donor, and donor-acceptor pair emission are also possible. It is.
  • a glass substrate 10 is prepared.
  • the scanning wiring 11 and the gate electrode 31 connected to the scanning wiring 11 are formed.
  • A1 is used, and patterns are formed substantially in parallel at a predetermined interval by photolithography.
  • the film thickness is 200 nm.
  • an insulating film such as silicon nitride is used as the gate insulating film 32 of the TFT 30 on the scanning wiring 11. An edge layer is formed.
  • an amorphous silicon layer responsible for the switching function of the TFT 30 is laminated, and further an N + amorphous silicon layer is laminated to form a pattern.
  • the source 33 and the drain 34, and the pixel electrode 14 connected to the drain 34 are patterned using Ta, for example.
  • the film thickness is lOOnm.
  • the data wiring 12 and the current supply line 13 are patterned using, for example, A1.
  • the data wiring 12 and the current supply line 13 are formed so as to be substantially parallel to each other with a predetermined interval and to be substantially orthogonal to the scanning wiring 11.
  • the film thickness is 200 nm.
  • an insulating layer such as silicon nitride is patterned as the protective layer 35 so that the pixel electrode 14 is exposed. In this way, the array substrate 40 can be formed.
  • the light emitting layer 20 is formed on the substrate 10 as follows. First, each was charged with powder of Zn S and Cu S into a plurality of evaporation sources, in vacuo (10_ 6 Torr stand), elect port to each material
  • a light emitting layer 20 is formed on the substrate 10.
  • the substrate temperature is 200 ° C., and ZnS and Cu S are co-evaporated.
  • the common electrode 15 is patterned by using, for example, ITO.
  • the film thickness is 200 nm.
  • a transparent insulator layer such as silicon nitride is formed on the common electrode 15 as a protective layer (not shown).
  • the display device 100 of this embodiment can be obtained.
  • high luminance was obtained at a low voltage of about 5 to 10 V.
  • the present invention is not limited to the above-described configuration, and the TFT 30 serving as a switching element can be appropriately changed to use low-temperature polysilicon, CG silicon, organic TFT, or the like.
  • multiple TFTs can be provided per pixel, and the pixel selection function and drive function can be separated. It is also possible. As an example, it consists of two TFTs, a drive TET and a select TFT, a capacitor placed between them, and a power supply wiring connected to the source of the drive TFT.
  • the pixel electrode is connected to the drain of the driving TFT.
  • the selection TFT connected to the scanning wiring is turned on, the signal voltage from the data wiring is written to the capacitor, and at the same time, the driving TFT is turned on.
  • the gate voltage of the driving TFT is determined according to the signal voltage at that time, and a current corresponding to the conductivity is supplied from the current supply wiring to the light emitting layer through the pixel electrode.
  • the present invention is not limited to the configuration described above, and can be appropriately changed to a known current control type driving technique, halftone control technique, and the like.
  • the light emitting layer may be formed by color-coding with RGB phosphors.
  • light emitting units for each RGB color such as transparent electrode / light emitting layer / back electrode may be laminated.
  • each color of RGB may be displayed using a color filter and / or a color conversion filter. it can.
  • an insulating protective film 18 a is also formed on the pixel electrode 14, and further below the common electrode 15.
  • a thin insulating layer 18b is formed on the substrate, and the AC drive is changed.
  • a flattened insulating layer 19 is formed, and the pixel electrode is formed on the flattened insulating layer 19. It is possible to appropriately change such that 14 is formed and connected to the drain 34 via the contact hole.
  • the display device can emit light with high luminance by driving at a lower voltage than in the past by using a light emitting layer having high light emission efficiency.
  • FIG. 24 is a diagram schematically showing a planar configuration of wiring in each pixel of the display device according to the fifth embodiment.
  • FIG. 25 is a diagram schematically showing a cross-sectional configuration viewed from a direction perpendicular to the light emitting surface along the line BB in FIG.
  • the active matrix display device 10 includes a plurality of scanning wirings 11 extending in parallel to a first direction parallel to the light emitting surface, and a second direction parallel to the light emitting surface and perpendicular to the first direction. Multiple data wires that extend parallel to the 1 And 2.
  • a thin film transistor 30 hereinafter referred to as “TFT”), which is a switching element, is provided corresponding to each intersection of the scanning wiring 11 and the data wiring 12.
  • An area surrounded by two adjacent scanning wirings 11 and two adjacent data wirings 12 is one pixel, and a plurality of these are arranged two-dimensionally.
  • at least one pixel electrode 14 is provided and connected to the TFT 30.
  • at least one common electrode 15 paired with one pixel electrode 14 is provided, and the common electrode 15 extends substantially parallel to the data wiring 12.
  • the substrate 10 is provided to support these wirings, electrodes, and TFTs 30, and the array substrate 40 is configured.
  • the light emitting layer 20 is formed in a substantially planar shape on the array substrate 40, and constitutes the light emitting portion of the display device 100.
  • the display device 100 has a structure in which the pixel electrode 14 and the common electrode 15 are disposed on substantially the same surface side with respect to the light emitting layer 20.
  • the resistivity of the light emitting layer 20 is a semiconductor region, and a current flows at a low voltage. Further, in this configuration, a transparent electrode is not required, and the wiring and the electrode can be formed from a metal material having a sufficiently low resistance, so that a voltage drop due to the resistance of the transparent electrode can be avoided.
  • the common electrode 15 may extend substantially parallel to the scan electrode 11 without being limited to the above-described configuration.
  • the pixel electrode 14 or the common electrode 15 is a black electrode, and further includes a structure (not shown) that protects and seals all or part of the display device.
  • the structure can be changed as appropriate, for example, by further providing a structure (color conversion layer 16 in FIG. 25) for converting the emission color.
  • the light-emitting layer is color-coded by RGB colors, the light-emitting units for each RGB color are stacked, and a single-color or two-color light-emitting layer and color filter (in FIG. 25, color filters 17 ) And / or display in combination with a color conversion filter, each color of RGB can be changed as appropriate.
  • each component of the display device according to the fifth embodiment is substantially the same as each component of the display device according to the above-described fourth embodiment, except that the characteristics thereof are particularly described. The following can be used.
  • a glass substrate 10 is prepared.
  • the scanning wiring 11 and the gate electrode 31 connected to the scanning wiring 11 are formed.
  • A1 is used, and patterns are formed substantially in parallel at a predetermined interval by photolithography.
  • the film thickness is 200 nm.
  • An insulating layer such as silicon nitride is formed on the scanning wiring 11 as the gate insulating film 32 of the TFT 30.
  • an amorphous silicon layer which is responsible for the switching function of the TFT 30, is laminated, and an N + amorphous silicon layer is further laminated to form a pattern.
  • the source 33 and the drain 34 and the pixel electrode 14 connected to the drain 34 are patterned using Ta, for example.
  • the film thickness is lOOnm.
  • an insulating layer such as silicon nitride is patterned so that the pixel electrode 14 is exposed.
  • the data wiring 12 and the common electrode 15 are patterned using, for example, A1.
  • the data lines 12 are formed so as to be substantially parallel to each other with a predetermined interval and to be substantially orthogonal to the scanning lines 11.
  • the common electrode 15 is formed between the adjacent data line 12 and the pixel electrode 15 and substantially parallel to the data line 12.
  • the film thickness is 200nm
  • the array substrate 40 is formed.
  • the light emitting layer 20 is formed on the array substrate 40.
  • electron Bee respectively charged with powder of ZnS and Cu S into a plurality of evaporation sources, in vacuo (10- 6 Torr stand), in each material
  • a light emitting layer 20 is formed on the substrate 10.
  • the substrate temperature is 200 ° C., and ZnS and CuS are co-evaporated.
  • a protective layer (not shown) on the light emitting layer 20, for example, silicon nitride or the like A transparent insulator layer is formed.
  • the display device of this embodiment can be obtained. According to this display device, in-plane luminance uniformity is improved as compared with an active matrix display device having an upper and lower electrode structure in which a common electrode is used as a transparent electrode and formed above the light emitting layer.
  • the present invention is not limited to the above-described configuration, and the TFT 30 serving as a switching element can be appropriately changed to use low-temperature polysilicon, CG silicon, organic TFT, or the like. It is also possible to provide a configuration in which a plurality of TFTs are provided per pixel and the pixel selection function and the drive function are separated. As an example, it may be composed of two TFTs, a driving TET and a selection TFT, a capacitor provided between them, and a power supply wiring connected to the source of the driving TFT. The pixel electrode 14 is connected to the drain of the driving TFT.
  • the selection TFT connected to the scanning wiring 11 when the selection TFT connected to the scanning wiring 11 is turned on, the signal voltage from the data wiring 12 is written to the capacitor, and at the same time, the driving TFT is turned on.
  • the gate voltage of the driving TFT is determined according to the signal voltage at that time, and a current according to the conductivity is supplied from the power supply wiring to the light emitting layer 20 through the pixel electrode 14. It should be noted that the present invention is not limited to the configuration described above, and can be appropriately changed to a known current control type driving technique, halftone control technique, and the like.
  • a thin insulating layer 18 is also formed on the pixel electrode 14 and the common electrode 15 to be AC driven.
  • the planarization insulating layer 19 is formed and the pixel electrode 14 and the common electrode 15 are formed through the contact holes.
  • the pixel electrode 14 and the common electrode 15 can have any width, length, and thickness.
  • it has a comb shape and is arranged so that the comb-shaped portions of the pixel electrode 14 and the common electrode 15 are engaged with each other! / ,! .
  • the width of the common electrode 15 in the non-pixel region may be increased.
  • the width in the direction perpendicular to the extending direction of the common electrode 15 may be increased along the gate wiring 11. Thereby, the heat radiation effect from the common electrode 15 to the gate electrode 11 side can be enhanced.
  • the light emitting layer has the resistivity of the semiconductor region.
  • a transparent electrode may be used in order to extract light emitted from the film thickness direction. I realized that there was a practical problem that the descent was large. This time, since the light emitting layer of this direct current drive type inorganic EL element has a low resistance, the present inventor has found that light can be emitted by energization in the plane direction of the light emitting layer 20, and the present embodiment The configuration of the display device could be realized.
  • light emission can be obtained by energization in the surface direction of the low-resistance light-emitting layer 20.
  • a transparent electrode such as ITO is not required, and a display device can be configured using only metal electrodes. Since the metal electrode has sufficiently low resistance, it can emit light with high brightness, and voltage drop due to electrode resistance can be suppressed, improving the uniformity of in-plane brightness and chromaticity.
  • FIG. 30 is a diagram schematically showing a planar configuration of wiring in each pixel of the display device of the sixth embodiment.
  • FIG. 31 is a cross-sectional view as seen from the direction perpendicular to the light emitting surface along the line CC in FIG.
  • This active matrix display device includes a plurality of scanning wirings 11 extending in parallel to a first direction parallel to the light emitting surface, and a second direction parallel to the light emitting surface and orthogonal to the first direction. And a plurality of data wirings 12 extending to.
  • a thin film transistor 30 hereinafter referred to as “TFT”), which is a switching element, is provided corresponding to each intersection of the scanning wiring 11 and the data wiring 12.
  • An area surrounded by two adjacent scanning lines 11 and two adjacent data lines 12 is one pixel, and a plurality of these are two-dimensionally arranged.
  • at least one pixel electrode 14 is provided and connected to the TFT 30.
  • a common electrode 15 having a substantially entire surface that forms a pair with the pixel electrode 14 is provided.
  • the common electrode 15 is electrically separated from the wiring, electrode, and TFT 30 via an insulating layer 18.
  • the insulating layer 18 has at least one opening per pixel, and the lower common electrode 15 is exposed.
  • a substrate 10 is provided as a support for these wirings, electrodes, and TFTs 30 to form an array substrate 40.
  • the light emitting layer 20 is formed in a substantially planar shape on the substrate 40 and constitutes the light emitting portion of the display device.
  • an external voltage is applied to the pixel electrode 14 via the TFT 30 in the pixel selected by the scanning wiring 11 and the data wiring 12, a potential difference is generated between the pixel electrode 14 and the common electrode 15.
  • the potential difference becomes equal to or higher than the light emission start voltage, a current flows through the light emitting layer 20 to cause light emission. Light emitted from the light emitting layer 20 is taken out from the surface opposite to the array substrate 40.
  • the display device 100 has a structure in which the pixel electrode 14 and the common electrode 15 are disposed on substantially the same surface side with respect to the light emitting layer 20.
  • the resistivity of the light emitting layer 20 is a semiconductor region, and a current flows at a low voltage. Further, in this configuration, a transparent electrode is not required, and the wiring and the electrode can be formed from a metal material having a sufficiently low resistance, so that a voltage drop due to the resistance of the transparent electrode can be avoided.
  • the common electrode 15 may extend substantially parallel to the scan electrode 11 without being limited to the above-described configuration.
  • the pixel electrode 14 or the common electrode 15 is a black electrode, and further includes a structure (not shown) that protects and seals all or part of the display device.
  • the structure can be changed as appropriate, for example, by further providing a structure (color conversion layer 16 in FIG. 31) for converting the emission color.
  • the light-emitting layer is color-coded by RGB colors, the light-emitting units for each RGB color are stacked, and a single-color or two-color light-emitting layer and color filter (in FIG. 31, color filters 17 ) And / or display in combination with a color conversion filter, each color of RGB can be changed as appropriate.
  • each constituent member of the display device according to the sixth embodiment is substantially the same as each constituent member of the display device according to the fourth embodiment, except that the characteristics thereof are particularly described. Can be used.
  • a glass substrate 10 is prepared.
  • a solid common electrode 15 is formed on the glass substrate 10 using Ta, for example.
  • the film thickness is 200 nm.
  • An insulating layer 18 such as silicon nitride is formed on the common electrode 15.
  • photo An opening corresponding to the pixel is patterned by lithography to form an exposed portion of the common electrode 15.
  • the scanning wiring 11 and the gate electrode 31 connected to the scanning wiring 11 are formed.
  • A1 is used as the scanning wiring 11, and patterns are formed substantially in parallel at a predetermined interval by a photolithography method.
  • the film thickness is 200 nm.
  • an insulating layer such as silicon nitride is formed on the scanning wiring 11 as the gate insulating film 32 of the TFT 30. Further, the gate insulating film 23 is also patterned in accordance with the above-described opening, and an exposed portion of the common electrode 15 is formed.
  • an amorphous silicon layer which is responsible for the switching function of the TFT 30, is laminated, and further an N + amorphous silicon layer is laminated to form a pattern.
  • the source 33 and the drain 34, and the pixel electrode 14 connected to the drain 34 are patterned using Ta, for example.
  • the film thickness is lOOnm.
  • an insulating layer such as silicon nitride is patterned so that the pixel electrode 14 is exposed. At the same time, an exposed portion of the common electrode 15 is formed in accordance with the aforementioned opening.
  • the data wiring 12 is patterned using, for example, A1.
  • the data lines 12 are formed so as to be substantially parallel to each other with a predetermined interval and to be substantially orthogonal to the scanning lines 11.
  • the film thickness is 200 nm. In this way, the array substrate 40 is formed.
  • the light emitting layer 20 is formed on the array substrate 40.
  • electron-bi respectively charged with powder of ZnS and Cu S into a plurality of evaporation sources, in vacuo (10_ 6 Torr stand), in each material
  • a light emitting layer 20 is formed on the substrate 10.
  • the substrate temperature is 200 ° C, and ZnS and CuS are co-evaporated.
  • a transparent insulator layer such as silicon nitride is formed on the light emitting layer 20 as a protective layer (not shown).
  • a transparent insulator layer such as silicon nitride is formed on the light emitting layer 20 as a protective layer (not shown).
  • the present invention is not limited to the above-described configuration, and the TFT 30 serving as a switching element can be appropriately changed to use low-temperature polysilicon, CG silicon, organic TFT, or the like. It is also possible to provide a configuration in which a plurality of TFTs are provided per pixel and the pixel selection function and the drive function are separated. As an example, it may be composed of two TFTs, a driving TET and a selection TFT, a capacitor provided between them, and a power supply wiring connected to the source of the driving TFT. The pixel electrode 14 is connected to the drain of the driving TFT.
  • the selection TFT connected to the scanning wiring 11 when the selection TFT connected to the scanning wiring 11 is turned on, the signal voltage from the data wiring 12 is written to the capacitor, and at the same time, the driving TFT is turned on.
  • the gate voltage of the driving TFT is determined according to the signal voltage at that time, and a current according to the conductivity is supplied from the power supply wiring to the light emitting layer 20 through the pixel electrode 14.
  • the present invention is not limited to the above-described configuration, and can be appropriately changed to a known current control type driving technique, intermediate gradation control technique, and the like.
  • the thin-film insulating layer 18b is also formed on the pixel electrode 14 and the common electrode 15 to be AC driven. Is also possible as appropriate.
  • the exposed portions of the pixel electrode 14 and the common electrode 15 are formed in a comb shape that may have any width, length, and thickness. And place them to bite each other! /
  • the display device uses a low-resistance light-emitting layer, and can emit light by energization in the surface direction of the light-emitting layer.
  • a transparent electrode such as ITO is not required, and a display device can be configured using only metal electrodes. Since the metal electrode has sufficiently low resistance, it is possible to emit light with high brightness, and voltage drop due to electrode resistance can be suppressed, so that in-plane brightness and chromaticity uniformity are improved.
  • the common electrode is formed in a substantially solid shape, it has excellent heat dissipation such as Joule heat generated during light emission, and brightness unevenness due to temperature characteristics between pixels caused by in-plane temperature distribution, Color unevenness can be suppressed.
  • the display device provides a display device capable of obtaining high luminance display with low voltage driving and having excellent in-plane luminance and chromaticity uniformity.
  • a high-definition display device such as a television.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

[0001] 本発明は、エレクト口ルミネッセンス(以下、 ELと略記)素子を用いた表示装置、特
Figure imgf000003_0001
背景技術
[0002] 近年、軽量 ·薄型の面発光型素子としてエレクト口ルミネッセンス素子(以下、 EL素
子という。)が注目されている。 EL素子は大別すると、有機材料からなる蛍光体に直 流電圧を印加し、電子と正孔とを再結合させて発光させる有機 EL素子と、無機材料
からなる蛍光体に交流電圧を印加し、およそ 106V/cmもの高電界で加速された電 子を無機蛍光体の発光中心に衝突させて励起させ、その緩和過程で無機蛍光体を 発光させる無機 EL素子とがある。
[0003] さらに、この無機 EL素子には、無機蛍光体粒子を高分子有機材料からなるバイン ダ中に分散させ発光層とする分散型 EL素子と、厚さが 1 μ m程度の薄膜発光層の 両側あるいは片側に絶縁層を設けた薄膜型 EL素子とがある。これらのうち分散型 E L素子は、消費電力が少なぐし力、も製造が簡単なため製造コストが安くなる利点が あるとして注目されている。従来の分散型 EL素子は、積層構造であり、基板側から順 に、基板、第 1電極、発光層、絶縁体層、第 2電極が積層されて構成されている。発 光層は、 ZnS : Mn等の無機蛍光体粒子を有機バインダに分散させた構成を有して おり、絶縁体層は BaTiOなどの強絶縁体を有機バインダにて分散させた構成を有し
3
ている。第 1電極と第 2電極の間には交流電源が設置され、交流電源から第 1電極、 第 2電極間へ電圧を印加することで分散型 EL素子は発光する。
[0004] 分散型 EL素子の構造において、発光層は分散型 EL素子の輝度と効率を決定付 ける層であり、この発光層の無機蛍光体粒子には、粒径 15〜35 H mの大きさのもの が用いられている (例えば、特許文献 1参照。)。また、分散型 EL素子の発光層の発 光色は発光層に用いられる無機蛍光体粒子によって決まり、例えば無機蛍光体粒子 に ZnS: Mnを用いた場合には橙色の発光を示し、例えば無機蛍光体粒子に ZnS: C Uを用いた場合には青緑色の発光を示す。このように、発光色は使用する無機蛍光 体粒子によって決まるため、それ以外の、例えば白色の発光色を得る場合、例えば、 有機色素を有機バインダに混合させることで発光色を他の色に変換し、 目的の発光 色を得ている(例えば、特許文献 2参照。)。
[0005] しかしながら、分散型 EL素子に用いられる発光体は、発光輝度が低ぐまた、寿命 が短いという問題があった。
[0006] 発光輝度を上昇させる方法として、発光層への印加電圧を上げる方法が考えられ る。この場合、印加電圧に反比例して発光体の光出力の半減期が減少しまうという課 題がある。一方、半減期を長くする、つまり寿命を長くする方法としては、発光層への 印加電圧を下げる方法が考えられる力 発光輝度が低下してしまうという課題がある 。このように、発光輝度と半減期とは、発光層への印加電圧の増減によって一方を改 善しようとすると、もう一方が悪化する相反関係にある。したがって、発光輝度か寿命( 光出力の半減期)の何れかを選択しなければならなくなる。なお、本明細書における 半減期とは、発光体の光出力が当初の発光輝度の半分の出力に減少するまでの時 間である。
[0007] そこで、低電圧で EL素子を発光させる提案がなされている(例えば、特許文献 3参 照。)。この EL素子 50は、図 33に示されるように、 CdSe微結晶の発光体粒子 61を 透明な導電体である酸化インジウム錫 63の媒体中に分散させた発光層 53を電極 52 、 54間に挿入し、電圧を印加して発光させる方法である。この EL素子 50では、電流 注入型発光素子であるため、低電圧で駆動可能であるという特徴がある。
[0008] 特許文献 1:国際公開第 WO03/020848号パンフレット
特許文献 2:特開平 7— 216351号公報
特許文献 3:特許第 3741157号
発明の開示
発明が解決しょうとする課題
[0009] 前述のような無機 EL素子をテレビ等の高品位なディスプレイデバイスとして利用す る場合は、約 300cd/m2以上の輝度が必要とされる。しかしながら、前記提案にお ける無機 EL素子は、発光輝度の面で未だ不十分であり、実用的な課題が残されて いる。
[0010] また、前記無機 EL素子の駆動には通常数 100Vの交流電圧を数 10kHzの高周波 で印加する必要があり、薄膜トランジスタ等のアクティブ素子が使えない、駆動回路 が高コスト化する、という課題もあり、現状では実用化が進んでいない。
[0011] 一方、本発明者は、無機 EL素子の低電圧化、高輝度化に向けて、鋭意研究を続 けた結果、直流駆動が可能で、且つ、従来の無機 EL素子に比べて十分に低い数 1 0Vの電圧で高輝度発光する無機 EL素子を見出した(以下、「直流駆動型無機 EL 素子」という。)。
[0012] 本発明の目的は、低電圧駆動で高輝度表示が得られ、且つ、発光面内の輝度や 色度の均一性に優れた表示装置を提供することである。
課題を解決するための手段
[0013] 上記課題は、本発明に係る表示装置によって解決できる。すなわち、本発明に係る 表示装置は、基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、第 1半導体物質よりなる多結晶体構造であって、前記多結晶体構 造の粒界に前記第 1半導体物質とは異なる第 2半導体物質が偏析していることを特 徴とする。
[0014] また、本発明に係る表示装置は、基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも 1層の発光層と を備え、
前記発光層は、第 1半導体物質よりなる多結晶体構造であって、前記多結晶体構 造の粒界に前記第 1半導体物質とは異なる第 2半導体物質が偏析していることを特 徴とする。
[0015] さらに、前記共通電極は、前記走査配線又は前記データ配線に対して略平行であ つて、前記第 1方向又は前記第 2方向に互いに略平行に延在しているものであっても よい。
[0016] また、前記共通電極は、その延在方向に直交する方向の幅が前記延在方向につ
V、て一定周期の長さに対応して変化して!/、るものであってもよ!/、。
[0017] さらに、前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画 素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合 して設けられていてもよい。
[0018] また、本発明に係る表示装置は、基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に直交する第 2方向に平行に延在してい る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と を備え、
前記発光層は、第 1半導体物質よりなる多結晶体構造であって、前記多結晶体構 造の粒界に前記第 1半導体物質とは異なる第 2半導体物質が偏析していることを特 徴とする。
[0019] さらに、前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各 画素について少なくとも 1箇所の開口部を有していてもよい。この場合、前記共通電 極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していてもよい。
[0020] また、前記共通電極は、前記基板に対して略全面ベタ状に設けられて!/、てもよ!/、。
[0021] さらに、前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有 し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも 一部が咬合して設けられて!/、てもよレ、。
[0022] またさらに、前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前 記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えていてもよい。
[0023] また、前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に 色変換層をさらに備えていてもよい。
[0024] さらに、前記第 1半導体物質と前記第 2半導体物質とは、互いに異なる伝導型の半 導体構造を有するものであってもよい。またさらに、前記第 1半導体物質は n型半導 体構造を有し、前記第 2半導体物質は p型半導体構造を有するものであってもよ!/、。 また、前記第 1半導体物質及び前記第 2半導体物質は、それぞれ化合物半導体であ つてもよい。さらに、前記第 1半導体物質は、第 12族 第 16族間化合物半導体であ つてもよい。またさらに、前記第一半導体物質は、第 13族 第 15族間化合物半導体 であってもよい。また、前記第一半導体物質は、カルコパイライト型化合物半導体で あってもよい。またさらに、前記第 1半導体物質は、立方晶構造を有するものであって あよい。
[0025] また、前記第 1半導体物質は、 Cu、 Ag、 Au、 Ir、 Al、 Ga、 In、 Mn、 Cl、 Br、 I、 Li、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb力もなる群より選択さ れる少なくとも一種の元素を含んでレ、てもよ!/、。
[0026] さらに、前記第 1半導体物質よりなる多結晶体構造の平均結晶粒子径は、 5〜500 nmの範囲にあってもよい。
[0027] またさらに、前記第 2半導体物質は、 Cu S、 ZnS、 ZnSe、 ZnSSe、 ZnSeTe、 ZnT
2
e、 GaN、 InGaNのいずれかであってもよい。
[0028] 本発明に係る表示装置は、基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、 p型半導体と n型半導体を有して!/、ることを特徴とする。
[0029] 前記発光層は、 p型半導体の媒体の中に n型半導体粒子が分散した構成にしても よい。また、 n型半導体粒子の集合体で構成され、該粒子間に p型半導体が偏祈し構 成にしてもよい。
[0030] さらに、前記 n型半導体は、前記 p型半導体を介して前記第 1及び第 2電極と電気 的に接合されていてもよい。
[0031] また、本発明に係る表示装置は、基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも 1層の発光層と を備え、
前記発光層は、 P型半導体と n型半導体とを有していることを特徴とする。
[0032] さらに、前記発光層は、 p型半導体の媒体の中に n型半導体粒子が分散した構成 にしてもよい。また、 n型半導体粒子の集合体で構成され、該粒子間に p型半導体が 偏析した構成にしてもよ!/、。
[0033] また、前記 n型半導体は、前記 p型半導体を介して前記画素電極及び前記共通電 極と電気的に接合されて!/、てもよレ、。
[0034] さらに、前記共通電極は、前記走査配線又は前記データ配線に対して略平行であ つて、前記第 1方向又は前記第 2方向に互いに略平行に延在していてもよい。またさ らに、前記共通電極は、その延在方向に直交する方向の幅が前記延在方向につい て一定周期の長さに対応して変化していてもよい。また、前記画素電極と前記共通 電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれ の前記櫛型構造の少なくとも一部が互いに咬合して設けられて!/、てもよレ、。
[0035] また、本発明に係る表示装置は、基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に直交する第 2方向に平行に延在してい る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と
を備え、
前記発光層は、 P型半導体と n型半導体とを有していることを特徴とする。
[0036] さらに、前記発光層は、 p型半導体の媒体の中に n型半導体粒子が分散した構成 にしてもよい。また、 n型半導体粒子の集合体で構成され、該粒子間に p型半導体が 偏析した構成にしてもよ!/、。 [0037] また、前記 n型半導体粒子は、前記 p型半導体を介して前記第 1及び第 2電極と電 気的に接合されてレ、てもよレ、。
[0038] さらに、前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各 画素について少なくとも 1箇所の開口部を有していてもよい。この場合、前記共通電 極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していることが好 ましい。
[0039] またさらに、前記共通電極は、前記基板に対して略全面ベタ状に設けられていても よい。また、前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を 有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なく とも一部が咬合して設けられていてもよい。さらに、前記画素電極と前記発光層との 間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界 面に、絶縁層をさらに備えてもよい。またさらに、前記画素電極及び前記共通電極に 対向し、且つ、発光取出し方向の前方に色変換層をさらに備えてもよい。
[0040] また、前記 n型半導体及び前記 p型半導体は、それぞれ化合物半導体であってもよ い。さらに、前記 n型半導体は、第 12族 第 16族間化合物半導体であってもよい。 またさらに、前記 n型半導体は、第 13族 第 15族間化合物半導体であってもよい。 また、前記 n型半導体は、カルコパイライト型化合物半導体であってもよい。
[0041] さらに、前記 p型半導体は、 Cu S、 ZnS、 ZnSe、 ZnSSe、 ZnSeTe、 ZnTe、 GaN
2
、 InGaNのいずれかであってもよい。
発明の効果
[0042] 本発明によれば、低電圧駆動で高輝度表示が得られる上、表示面内の輝度や色 度の均一性に優れ、表示品位の高!/、表示装置を提供することができる。
[0043] 本発明に係る表示装置によれば、低電圧駆動で高輝度表示が得られる上、表示面 内の輝度や色度の均一性に優れ、表示品位の高い表示装置を提供することができ
[0044] 本発明に係る表示装置によれば、発光層は、 n型半導体物質よりなる多結晶体構 造であって、この多結晶体構造の粒界に p型半導体物質が偏析した構造を有する。 発光層が上記構造を有することによって、粒界に偏析した P型半導体物質により正孔 の注入性を改善することができ、低電圧で、高輝度で発光し、しかも長寿命の表示装 置を実現することができる。
[0045] 本発明に係る表示装置によれば、発光層は、(i) p型半導体の媒体中に n型半導体 粒子が分散した構造、あるいは、(ii) n型半導体粒子の集合体であって、該粒子間に p型半導体が偏析した構造のいずれかを有する。発光層が上記構造を有することに よって、 n型半導体粒子内部または界面へ電子の注入とともに正孔を効率良く注入 することができ、低電圧で、高輝度で発光し、しかも長寿命の表示装置を実現するこ と力 Sできる。
図面の簡単な説明
[0046] [図 l] (a)は、本発明の実施の形態 1に係る表示装置の構成を示す概略図であり、 (b )は、(a)の表示装置の表示部を構成する各画素の構成を示す概略図である。
[図 2]本発明の実施の形態 1に係る表示装置の表示部の各画素における配線を示す 概略図である。
[図 3]図 2の A— A線に沿った発光面に垂直な方向から見た概略断面図である。
[図 4]各画素の EL素子の模式的な構成を示す概略断面図である。
[図 5]図 4の発光層の構成を示す拡大概略図である。
[図 6]本発明の実施の形態 1に係る表示装置の変形例の発光面に垂直な方向から見 た概略断面図である。
[図 7]本発明の実施の形態 1に係る表示装置の別の変形例の発光面に垂直な方向 力 見た概略断面図である。
[図 8]本発明の実施の形態 2に係る表示装置の表示部の各画素における配線を示す 概略図である。
[図 9]図 8の B— B線に沿った発光面に垂直な方向から見た概略断面図である。
[図 10]本発明の実施の形態 2に係る表示装置の変形例の発光面に垂直な方向から 見た概略断面図である。
[図 11]本発明の実施の形態 2に係る表示装置の別の変形例の発光面に垂直な概略 断面図である。
[図 12]本発明の実施の形態 2に係る表示装置のさらに別の変形例の表示部の各画 素における配線の概略を示す斜視図である。
園 13]本発明の実施の形態 2に係る表示装置のまたさらに別の変形例の表示部の各 画素における配線の概略を示す斜視図である。
園 14]本発明の実施の形態 3に係る表示装置の表示部の各画素における配線を示 す概略図である。
[図 15]図 14の C C線に沿った発光面に垂直な方向から見た概略断面図である。
[図 16]本発明の実施の形態 3に係る表示装置の変形例の発光面に垂直な方向から 見た概略断面図である。
[図 17] (a)は、本発明の実施の形態 4に係る表示装置の構成を示す概略図であり、 ( b)は、(a)の表示装置の表示部を構成する各画素の構成を示す概略図である。 園 18]本発明の実施の形態 4に係る表示装置の表示部の各画素における配線を示 す概略図である。
[図 19]図 18の A— A線に沿った発光面に垂直な方向から見た概略断面図である。 園 20]各画素の EL素子の模式的な構成を示す概略断面図である。
園 21]別例の各画素の EL素子の模式的な構成を示す概略断面図である。
[図 22]本発明の実施の形態 4に係る表示装置の変形例の発光面に垂直な方向から 見た概略断面図である。
園 23]本発明の実施の形態 4に係る表示装置の別の変形例の発光面に垂直な方向 から見た概略断面図である。
園 24]本発明の実施の形態 5に係る表示装置の表示部の各画素における配線を示 す概略図である。
[図 25]図 24の B— B線に沿った発光面に垂直な方向から見た概略断面図である。
[図 26]本発明の実施の形態 5に係る表示装置の変形例の発光面に垂直な方向から 見た概略断面図である。
園 27]本発明の実施の形態 5に係る表示装置の別の変形例の発光面に垂直な概略 断面図である。
園 28]本発明の実施の形態 5に係る表示装置のさらに別の変形例の表示部の各画 素における配線の概略を示す斜視図である。 [図 29]本発明の実施の形態 5に係る表示装置のまたさらに別の変形例の表示部の各 画素における配線の概略を示す斜視図である。
[図 30]本発明の実施の形態 6に係る表示装置の表示部の各画素における配線を示 す概略図である。
[図 31]図 30の C C線に沿った発光面に垂直な方向から見た概略断面図である。
[図 32]本発明の実施の形態 6に係る表示装置の変形例の発光面に垂直な方向から 見た概略断面図である。
[図 33]従来例の無機 EL素子の発光面に垂直な方向から見た概略構成図である。 発明を実施するための最良の形態
[0047] 以下、本発明の実施の形態に係る表示装置について添付図面を用いて説明する。
なお、図面において実質的に同一の部材には同一の符号を付している。
[0048] (実施の形態 1 )
<表示装置の概略構成〉
本発明の実施の形態 1に係る表示装置 100について、図 1 (a)及び (b)を用いて説 明する。図 1 (a)は、実施の形態 1に係る表示装置 100の概略的な構成を示すブロッ ク図である。表示装置 100は、図 1 (a)に示すように、複数の画素が 2次元配列してい る表示部 101と、前記画素を選択的に駆動する駆動手段 102と、駆動手段 102の電 力を供給する駆動用電源 103とから構成される。なお、本実施の形態 1においては、 電源 103として直流電源を用いている。また、駆動部 102は、データ電極 X を駆動
il するデータ電極駆動回路 121と、走査電極 Yを駆動する走査電極駆動回路 122とを 備える。
[0049] 表示部 101は、画素が i列 X j行の 2次元配列している EL素子アレイを備え、前記 E L素子アレイの面に平行な第 1方向に平行に延在している複数のデータ電極 X 、 X
11 2
、X - - - Xと、 EL素子アレイの面に平行であって、第 1方向と直交する第 2方向に
1 31 il
平行に延在している複数の走查電極 Y、 Y、 Υ · ' · Υと、前記 EL素子アレイの面に
1 2 3 j
平行な第 1方向に平行に延在している複数の電流供給線 X 、χ 、χ · ' · χとを備
12 22 32 i2 える。このデータ電極 X と走査電極 Yとの各交点において、一つの画素を構成して
il i
いる。 [0050] 図 1 (b)は、図 1 (a)の各画素の構成を示す概略図である。各画素は、データ電極 X と、走査電極 Yと、電流供給線 X と、該データ電極 X と走査電極 Yとに接続された il j i2 il j
スイッチング素子 104と、電流ドライブ回路 105と、キヤノ シタ 106と、 EL素子 110と によって構成される。キャパシタ 106は、該スイッチング素子 104と電流供給線 X と
i2 に接続されている。電流ドライブ回路 105は、スイッチング素子 104と、キャパシタ 10 6と、 EL素子 110とに接続されている。すなわち、この表示装置はアクティブマトリクス 型表示装置である。
[0051] スイッチング素子 104を onにするとデータ配線 X 力もの信号電圧がキャパシタ 10
11
7に書き込まれ、その時の信号電圧に応じてスイッチング素子のゲート電圧が決定さ れ、その導電率に応じた電流が電流供給配線 X より電流ドライブ素子 105を通じて
12
EL素子 110に供給される。
[0052] <表示装置の配線構成〉
図 2は、本実施の形態の表示装置 100の画素における配線の平面構成を概略的 に示した斜視図である。このアクティブマトリクス型表示装置 100は、発光面に平行な 第 1方向に平行に延在している複数の走査配線 11と、発光面に平行であって、第 1 方向と直交する第 2方向に平行に延在している複数のデータ配線 12とを備える。こ の走査配線 11とデータ配線 12との各交点に対応してスイッチング素子である薄膜ト ランジスタ 30 (以下、「TFT」 いう。)を備えている。また、隣接する 2つの走査配線 1 1と隣接する 2つのデータ配線 12とに囲まれた領域が 1画素であり、これらが複数個、 2次元的に配列されている。 1画素に対応しては、少なくとも 1つの画素電極 14を備 え、 TFT30に接続されている。さらに EL素子では、 LCDと異なり電流の供給が必須 となるため、電力供給線 13がデータ配線 12に略平行に延在している。なお、上記配 線及び電極、 TFT30を支えるものとして基板 10を備え、アレイ基板 40を構成してい
[0053] <表示装置の断面構成〉
また、図 3は、図 2の A— A線に沿った発光面に垂直な方向から見た概略断面図で ある。図 4は、図 3の一つの画素について、一つの EL素子 110と考えた場合の模式 的な概略図である。この表示装置では、基板 10と該基板 10の上に配置された上記 配線及び電極からなるアレイ基板 40の上に、発光層 20が略平面状に形成されてお り、この発光層 20が表示装置 100の発光部分を構成している。また発光層 20の上部 には、共通電極 15が形成される。走査配線 11とデータ配線 12により選択された画素 において、一つの模式的な EL素子 110が構成される。この模式的な EL素子 110で は、基板 10の上に、画素電極 14、発光層 20、共通電極 15が順に積層されて構成さ れている。一つの画素において構成される EL素子 110では、 TFT30を介して、画 素電極 14に外部電圧、例えば、直流電源 103によって電圧が印加されると、画素電 極 14と共通電極 15との間に電位差が生じる。電位差が発光開始電圧以上になると、 発光層 20内を電流が流れ発光に至る。発光は、アレイ基板 40とは反対側の面から 外部へ取出される。
[0054] なお、表示装置 100として、上述の構成に限られず、発光層 20を複数層設ける、走 查配線 11、データ配線 12、画素電極 14、共通電極 15の全てを透明電極にする、い ずれかの電極を黒色電極とする、表示装置 100の全部又は一部を封止する構造を 更に備える、発光取出し方向の前方に発光層 20からの発光色を色変換する構造を 更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合には、発 光層を RGBの各色で色分けする、 RGB各色毎の発光ユニットを積層する、単一色 又は 2色の発光層とカラーフィルタ(図 3ではカラーフィルタ 17)及び/又は色変換フ ィルタ(図 3では色変換層 16)との組合せにより RGBの各色を表示する等、適宜変更 が可能である。
[0055] 以下、この表示装置 100の各構成部材について詳述する。
[0056] <基板〉
基板 10は、その上に形成する各層を支持できるもので、且つ、電気絶縁性の高い 材料を用いる。このような材料としては、例えば、コーユング 1737等のガラス、石英、 セラミック、表面に絶縁層を有する金属基板、シリコンウェハ等を用いることができる。 通常のガラスに含まれるアルカリイオン等が発光層 20へ影響しないように、無アル力 リガラスや、ガラス表面にイオンノ リア層としてアルミナ等をコートしたソーダライムガラ スであってもよい。また、ポリエステル、ポリエチレンテレフタレート系、ポリクロロトリフ ルォロエチレン系とナイロン 6の組み合わせやフッ素樹脂系材料、ポリエチレン、ポリ プロピレン、ポリイミド、ポリアミドなどの樹脂フィルム等を用いることもできる。樹脂フィ ルムは耐久性、柔軟性、透明性、電気絶縁性、防湿性の優れた材料を用いる。なお 、これらは例示であって、基板 10の材料は特にこれらに限定されるものではない。
[0057] <電極〉
画素電極 14、共通電極 15には、公知の低抵抗の導電材料であればいずれでも適 用できる。例えば、 Pt、 Au、 Pd、 Ag、 Ni、 Cu、 Al、 Ru、 Rh、 Ir、 Cr、 Mo、 W、 Ta、 Nb、 Ti等の金属材料、これらの積層構造が好ましい。 ITOや InZnO、 ZnO、 SnO
2 等を主体とする金属酸化物、ポリア二リン、ポリピロール、 PEDOT〔ポリ(3, 4—ェチ レンジォキシチォフェン)〕 /PSS (ポリスチレンスルホン酸)等の導電性高分子、ある いは導電性カーボン等、金属以外の材料であっても、金属材料と積層する等併用す ることによって低抵抗化することにより用い得る。なお、画素電極 14と共通電極 15と では異なる材料を使用してもよい。例えば、画素電極 14を陽極として、共通電極 15 を陰極として構成する場合、画素電極 14には、正孔注入性のよい仕事関数の大きな 材料が選択され、共通電極 15には、電子注入性のよい仕事関数の小さな材料が選 択され得る。
[0058] <発光層〉
次に、発光層 20について説明する。図 5は、発光層 20を拡大視した概略構成図で ある。発光層 20は、第 1半導体物質 21よりなる多結晶体構造であって、この多結晶 体の粒界 22に第 2半導体物質 23が偏析した構造を有する。第 1半導体物質 21とし ては、多数キャリアが電子であり、 n型伝導を示す半導体材料が用いられる。一方、 第 2半導体物質 23は、多数キャリアが正孔であり、 p型伝導を示す半導体材料が用 いられ、第 1半導体物質 21と第 2半導体物質 23は電気的に接合している。電極より 注入された正孔と電子は、発光層中に高密度に散在して!/、る前述の偏析部にぉレ、 て再結合し、発光が得られる。なお、ドナーゃァクセプター準位をさらに経由して再 結合したり、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可 能である。
[0059] 第 1半導体物質 21としては、バンドギャップの大きさが近視外領域から可視光領域
(1. 7eVから 3. 6eV)を有するものが好ましぐさらに近視外領域から青色領域(2. 6 eV力、ら 3. 6eV)を有するものがより好ましい。具体的には、前述の ZnSや、 ZnSe、 Z nTe、 CdS、 CdSe等の第 12族—第 16族間化合物やこれらの混晶(例えば ZnSSe 等)、 CaS、 SrS等の第 2族-第 16族間化合物やこれらの混晶(例えば CaSSe等)、 A1P、 AlAs、 GaN、 GaP等の第 13族-第 15族間化合物やこれらの混晶(例えば In GaN等)、 ZnMgS、 CaSSe、 CaSrS等の前記化合物の混晶等を用いることができる 。またさらに、 CuAlS等のカルコパイライト型化合物を用いてもよい。またさらに、第 1
2
半導体物質よりなる多結晶体は、主たる部分が立方晶構造を有してレ、るものが好まし い。またさらに、 Cu、 Ag、 Au、 Ir、 Al、 Ga、 In、 Mn、 Cl、 Br、 I、 Li、 Ce、 Pr、 Nd、 P m、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Ybからなる群より選択される 1又は複数 種の原子もしくはイオンを添加剤として含んでいてもよい。これらの元素の種類によつ ても、発光層 20からの発光色が決定される。
[0060] 一方、第 2半導体物質 23としては、 Cu S、 ZnS、 ZnSe、 ZnSSe、 ZnSeTe、 ZnTe
2
、 GaN、 InGaNである。これらの材料には p型伝導を付与するための添加剤として、 N、 Cu、 Inから 1又は複数種の原子を添加剤として含んでいてもよい。
[0061] 上記発光層 20の構成は、焼成法、気相合成法、爆発法、水熱合成法、高温高圧 合成法、フラックス法、共沈法などの製造方法によって実現できる。
[0062] 本実施の形態 1に係る表示装置 100の特徴は、発光層 20が n型半導体物質 21より なる多結晶体構造であって、この多結晶体構造の粒界 22に p型半導体物質 23が偏 析した構造を有する点にある。従来の無機 ELでは、発光層の結晶性を高めることで 、高電界で加速された電子が散乱されることを防いでいた力 ZnSや ZnSe等は一般 に n型伝導を示すため、正孔の供給が十分ではなぐ電子と正孔の再結合による高 輝度の発光は期待できない。一方で、発光層の結晶粒が成長すると、単結晶でない 限り、結晶粒界も一意的に伸びる。高電圧を印加する従来の無機 EL素子では、膜 厚方向の粒界が導電パスとなり、耐圧低下を引き起こすという課題も生じる。これに対 して、本発明者は、鋭意研究の結果、発光層 20を n型半導体物質 21よりなる多結晶 体構造であって、この多結晶体構造の粒界 22に p型半導体物質 23が偏析した構造 とすることによって、粒界に偏析した p型半導体物質により正孔の注入性が改善され ることを見出した。さらに、発光層 20中に偏析部を高密度に散在させることで、電子と 正孔の再結合型発光が効率よく生じることを見出した。これによつて、低電圧で高輝 度発光する発光素子を実現することができ、本発明に至ったものである。また、ドナ 一あるいはァクセプターを導入することにより、自由電子とァクセプターに捕獲された 正孔の再結合、自由正孔とドナーに捕獲された電子の再結合、ドナ一一ァクセプタ 一対発光も同様に可能である。またさらに、他のイオン種が近傍にあることでェネル ギー移動による発光も同様に可能である。
以下、実施の形態 1に係る表示装置 100の製造方法の一実施例を説明する。なお 、前述の他の材料からなる発光層を用いる場合についても同様の製造方法が利用 可能である。
(1)ガラス基板 10を準備する。
(2)基板 10上に、走査配線 11と走査配線 11に接続されたゲート電極 31を形成する 。例えば A1を使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行に パターン形成する。膜厚は 200nmとする。
(3)走査配線 11上に、 TFT30のゲート絶縁膜 32として、例えば窒化シリコン等の絶 縁体層を形成する。
(4)前記絶縁体層 32上に、 TFT30のスイッチング機能を担う、例えばアモルファス シリコン層を積層し、さらに N+アモルファスシリコン層を積層して、パターン形成する
(5)続いて、ソース 33とドレイン 34、さらにドレイン 34に接続された画素電極 14を、 例えば Taを用いて、パターン形成する。膜厚は lOOnmとする。
(6)続いて、データ配線 12及び電流供給線 13を、例えば A1を使用し、パターン形成 する。データ配線 12及び電流供給線 13は、所定の間隔を隔てて略平行に、且つ、 走査配線 11に対して略直交するように形成する。膜厚は 200nmとする。
(7)続いて、保護層 35として、例えば窒化シリコン等の絶縁体層を、画素電極 14を 露出させるようにパターン形成する。このようにして、アレイ基板 40を形成できる。
(8)基板 10上に、発光層 20を以下のようにして形成する。まず、複数の蒸発源に Zn Sと Cu Sの粉体をそれぞれ投入し、真空中(10_6Torr台)にて、各材料にエレクト口
2
ンビームを照射し、 ZnSと Cu Sを上記アレイ基板 40の上に共蒸着した後、ァニール 処理することにより、 ZnSの多結晶構造と Cu Sの偏析部を有する発光層 20を得るこ
X
とができる。この膜を X線回折や SEMによって調べることによって、微小な ZnS結晶 粒の多結晶構造と Cu Sの偏析部とが観察される。詳細は明らかではないが、 ZnSと
X
Cu Sとの相分離が生じ、前記偏析構造が形成されるものと考えられる。
(10)続いて、共通電極 15を、例えば ITOを使用し、パターン形成する。膜厚は 200 nmとする。
(11)続いて、共通電極 15上に、保護層(図では省略)として、例えば、窒化シリコン 等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置 100を得ることができる。この表示装置 100では、 5〜; 10V程度の低電圧で高い発光輝度を得ることができた。
[0064] なお、前述の構成に限られず、スイッチング素子である TFT30としては、低温ポリ シリコン、 CGシリコン、有機 TFT等を用いるように適宜変更が可能である。また、 1画 素あたり複数の TFTを備え、画素選択機能と駆動機能とを分離した構成とすることも また可能である。一例としては、駆動 TETと選択 TFTとの 2つの TFTと、その間に設 けたキャパシタと、駆動 TFTのソースに接続された電源供給配線とで構成される。画 素電極は、駆動 TFTのドレインに接続される。この場合、走査配線に接続された選 択 TFTを onにするとデータ配線からの信号電圧がキャパシタに書き込まれ、同時に 駆動 TFTを onにする。その時の信号電圧に応じて駆動 TFTのゲート電圧が決定さ れ、その導電率に応じた電流が電流供給配線より画素電極を通じて発光層に供給さ れる。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術 等に適宜変更が可能である。
[0065] また、カラーの表示装置とする場合には、発光層を RGBの各色の蛍光体で色分け して成膜すればよい。あるいは、透明電極/発光層/背面電極といった RGB各色 毎の発光ユニットを積層してもよい。また更に、別例のカラー表示装置の場合、単一 色又は 2色の発光層による表示装置を作成した後、カラーフィルタ及び/又は色変 換フィルタを用いて、 RGBの各色を表示することもできる。
[0066] また、実施の形態 1の変形例として、図 6の概略断面図に示すように、絶縁性の保 護膜 18aを画素電極 14の上にも形成し、さらに、共通電極 15の下に薄い絶縁層 18 bを形成して、交流駆動とする変更や、図 7の概略断面図に示すように、平坦化絶縁 層 19を形成し、該平坦化絶縁層 19の上に画素電極 14を形成してコンタクトホールを 介してドレイン 34と接続する、とレ、つた変更も適宜可能である。
[0067] <効果〉
本実施の形態 1に係る表示装置は、高い発光効率を持つ発光層を用いることにより 、従来に比べ低電圧駆動で高輝度な発光が可能である。
[0068] (実施の形態 2)
<表示装置の概略構成〉
図 8は、本実施の形態 2の表示装置の各画素における配線の平面構成を概略的に 示した図である。また、図 9は、図 8の B— B線での発光面に垂直な方向から見た断 面構成を概略的に示した図である。このアクティブマトリクス型表示装置 10は、発光 面に平行な第 1方向に平行に延在している複数の走査配線 11と、発光面に平行で あって、第 1方向と直交する第 2方向に平行に延在している複数のデータ配線 12とを 備える。この走査配線 11とデータ配線 12との各交点に対応してスイッチング素子で ある薄膜トランジスタ 30 (以下、「TFT」という。)を備えている。また、隣接する 2つの 走査配線 11と隣接する 2つのデータ配線 12とに囲まれた領域が 1画素であり、これら が複数個、 2次元的に配列されている。 1画素に対応しては、少なくとも 1つの画素電 極 14を備え、 TFT30に接続されている。さらに、 1つの画素電極 14に対して対をな す少なくとも 1つの共通電極 15を備え、共通電極 15は、データ配線 12に略平行に 延在している。これらの配線及び電極、 TFT30を支えるものとして基板 10を備え、ァ レイ基板 40を構成している。またさらに、アレイ基板 40上には、発光層 20が略平面 状に形成され、表示装置 100の発光部分を構成している。走査配線 11とデータ配線 12により選択された画素において、 TFT30を介して、画素電極 14に外部電圧が印 カロされると、画素電極 14と共通電極 15との間に電位差が生じる。電位差が発光開始 電圧以上になると、発光層 20内を電流が流れ発光に至る。発光層 20からの発光は 、アレイ基板 40とは反対側の面から外部へ取出される。
[0069] この表示装置 100によれば、発光層 20に対して、画素電極 14と共通電極 15とを略 同一面側に配設した構造を有している。発光層 20の抵抗率は半導体領域であり、且 つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成 では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成 できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限ら れず、共通電極 15は走査電極 11に略平行に延在していてもよい。また、画素電極 1 4や共通電極 15を黒色電極とする、表示装置の全部又は一部を保護、封止する構 造(図では省略)を更に備える、発光取出し方向前方に発光層 20からの発光色を色 変換する構造(図 9では色変換層 16)を更に備える等、適宜変更が可能である。また 、カラーの表示装置とする場合、発光層を RGBの各色で色分けする、 RGB各色毎の 発光ユニットを積層する、単一色又は 2色の発光層とカラーフィルタ(図 9ではカラー フィルタ 17)及び/又は色変換フィルタとの組合せにより RGBの各色を表示する等、 適宜変更が可能である。
[0070] なお、本実施の形態 2に係る表示装置の各構成部材は、特にその特徴について説 明するもの以外は、上記実施の形態 1に係る表示装置の各構成部材と実質的に同 様のものを用いることができる。
[0071] 以下、実施の形態 2に係る表示装置の製造方法の一実施例を説明する。なお、前 述の他の材料からなる発光層 20についても同様の製造方法が利用可能である。
(1)ガラス基板 10を準備する。
(2)ガラス基板 10上に、走査配線 11と、走査配線 11に接続されたゲート電極 31を 形成する。例えば A1を使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略 平行にパターン形成する。膜厚は 200nmとする。
(3)走査配線 11上に、 TFT30のゲート絶縁膜 32として、例えば窒化シリコン等の絶 縁体層を形成する。
(4)前記絶縁体層上に、 TFT30のスイッチング機能を担う、例えばアモルファスシリ コン層を積層し、さらに N+アモルファスシリコン層を積層して、パターン形成する。
(5)また、ソース 33とドレイン 34、さらにドレイン 34に接続された画素電極 14を、例え ば Taを用いて、パターン形成する。膜厚は lOOnmとする。
(6)さらに、保護層 35として、例えば窒化シリコン等の絶縁体層を、画素電極 14を露 出させるようにパターン形成する。 (7)次いで、データ配線 12と共通電極 15とを、例えば A1を使用し、パターン形成す る。データ配線 12は、所定の間隔を隔てて略平行に、且つ、走査配線 11に対して略 直交するように形成する。また、共通電極 15は、隣接するデータ配線 12と画素電極 15との間に、且つデータ配線 12に対して略平行に形成する。膜厚は 200nmとする
。このようにして、アレイ基板 40を形成する。
(8)次に、アレイ基板 40上に発光層 20を形成する。複数の蒸発源に ZnSと Cu Sの
2 粉体をそれぞれ投入し、真空中(10— 6Torr台)にて、各材料にエレクトロンビームを 照射して、 ZnSと Cu Sを共蒸着した後、ァニール処理することにより、 ZnSの多結晶
2
構造と Cu Sの偏析部を有する発光層 20を得ることができる。
X
(9)さらに、発光層 20上に、保護層(図では省略)として、例えば窒化シリコン等の透 明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によ れば、共通電極を透明電極として発光層の上部に形成した上下電極構成のァクティ ブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
[0072] なお、前述の構成に限られず、スイッチング素子である TFT30としては、低温ポリ シリコン、 CGシリコン、有機 TFT等を用いるように適宜変更が可能である。また、 1画 素あたり複数の TFTを備え、画素選択機能と駆動機能とを分離した構成とすることも また可能である。一例としては、駆動 TETと選択 TFTとの 2つの TFTと、その間に設 けたキャパシタと、駆動 TFTのソースに接続された電源供給配線とで構成してもよレヽ 。画素電極 14は、駆動 TFTのドレインに接続される。この場合、走査配線 11に接続 された選択 TFTを onにするとデータ配線 12からの信号電圧がキャパシタに書き込ま れ、同時に駆動 TFTを onにする。その時の信号電圧に応じて駆動 TFTのゲート電 圧が決定され、その導電率に応じた電流が電源供給配線より画素電極 14を通じて 発光層 20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技 術、中間調制御技術等に適宜変更が可能である。
[0073] また、実施の形態 2の変形例として、図 10の概略断面図に示すように、画素電極 1 4及び共通電極 15上にも、薄い絶縁層 18を形成し、交流駆動とする変更や、図 11 の概略断面図に示すように、平坦化絶縁層 19を形成し、コンタクトホールを介して画 素電極 14及び共通電極 15形成する、といった変更も適宜可能である。またさらに、 画素電極 14及び共通電極 15は、幅や長さ、厚さは任意の形状とすることができる。 例えば、図 12の斜視図に一例を示すように櫛形形状を有し、画素電極 14と共通電 極 15との櫛形形状部分が互いに咬合するように配置して!/、てもよ!/、。これによつて、 画素電極 14と共通電極 15との間の導電経路を特定することなぐ均一な発光を実現 すること力 Sできる。また、図 13の斜視図に示すように、共通電極 15の非画素領域で の幅を太くしてもよい。例えば、ゲート配線 11に沿って、共通電極 15の延在方向に 垂直な方向の幅を太くしてもよい。これによつて、共通電極 15からゲート電極 11側へ の放熱効果を高めることができる。
[0074] <効果〉
本発明者による直流駆動型無機 EL素子では、発光層が半導体領域の抵抗率を有 しており、マトリクス構造の表示装置に適用した場合、透明電極の抵抗による電圧降 下が大きいことが予想され、実用面での課題があった。今回、この直流駆動型無機 E L素子の発光層が、むしろ低抵抗であることから、本発明者は、発光層 20の面方向 への通電による発光が可能であることを見出し、本実施の形態の表示装置の構成を 実現することができた。本実施の形態に係る表示装置では、低抵抗の発光層 20の面 方向への通電によって発光を得ることができる。これにより、 ITO等の透明電極が不 要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗である ため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられて、面内の 輝度や色度の均一性が改善される。
[0075] (実施の形態 3)
<表示装置の概略構成〉
図 14は、本実施の形態 3の表示装置の各画素における配線の平面構成を概略的 に示した図である。また、図 15は、図 14の C— C線での発光面に垂直な方向から見 た断面図である。このアクティブマトリクス型表示装置は、発光面に平行な第 1方向に 平行に延在している複数の走査配線 11と、発光面に平行であって、第 1方向と直交 する第 2方向に平行に延在している複数のデータ配線 12とを備える。この走査配線 1 1とデータ配線 12との各交点に対応してスイッチング素子である薄膜トランジスタ 30 ( 以下、「TFT」という。)を備えている。また、隣接する 2つの走査配線 11と隣接する 2 つのデータ配線 12とに囲まれた領域が 1画素であり、これらが複数個、 2次元的に配 歹 IJされている。 1画素に対応しては、少なくとも 1つの画素電極 14を備え、 TFT30に 接続されている。さらに、画素電極 14に対して対をなす略全面ベタ状の共通電極 15 を備える。共通電極 15は、前記配線、電極、 TFT30とは絶縁層 18を介して、電気的 に分離され設けられている。絶縁層 18は、 1画素につき少なくとも 1ケ所の開口部が あり、下層の共通電極 15が露出している。またさらに、これらの配線及び電極、 TFT 30を支えるものとして基板 10を備え、アレイ基板 40を構成している。またさらに、ァレ ィ基板 40上には、発光層 20が略平面状に形成され、表示装置の発光部分を構成し ている。走査配線 11とデータ配線 12により選択された画素において、 TFT30を介し て、画素電極 14に外部電圧が印加されると、画素電極 14と共通電極 15との間に電 位差が生じる。電位差が発光開始電圧以上になると、発光層 20内を電流が流れ発 光に至る。発光層 20からの発光は、アレイ基板 40とは反対側の面から外部へ取出さ れる。
[0076] この表示装置 100によれば、発光層 20に対して、画素電極 14と共通電極 15とを略 同一面側に配設した構造を有している。発光層 20の抵抗率は半導体領域であり、且 つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成 では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成 できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限ら れず、共通電極 15は走査電極 11に略平行に延在していてもよい。また、画素電極 1 4や共通電極 15を黒色電極とする、表示装置の全部又は一部を保護、封止する構 造(図では省略)を更に備える、発光取出し方向前方に発光層 20からの発光色を色 変換する構造(図 15では色変換層 16)を更に備える等、適宜変更が可能である。ま た、カラーの表示装置とする場合、発光層を RGBの各色で色分けする、 RGB各色毎 の発光ユニットを積層する、単一色又は 2色の発光層とカラーフィルタ(図 15ではカラ 一フィルタ 17)及び/又は色変換フィルタとの組合せにより RGBの各色を表示する 等、適宜変更が可能である。
[0077] なお、本実施の形態 3に係る表示装置の各構成部材は、特にその特徴について説 明するもの以外は、上記実施の形態 1に係る表示装置の各構成部材と実質的に同 様のものを用いることができる。
以下、実施の形態 3に係る表示装置の製造方法の一実施例を説明する。なお、前 述の他の材料からなる発光層についても同様の製造方法が利用可能である。
(1)ガラス基板 10を準備する。
(2)続いて、ガラス基板 10上に、例えば、 Taを用いてベタ状の共通電極 15を形成す る。膜厚は 200nmとする。
(3)続いて、共通電極 15上に、例えば窒化シリコン等の絶縁層 18を形成する。さら に、フォトリソグラフィ法によって、画素に応じた開口部をパターン形成し、共通電極 1 5の露出部を形成する。
(4)続いて、絶縁層 18上に、走査配線 11と、走査配線 11に接続されたゲート電極 3 1を形成する。走査配線 11は、例えば A1を使用し、フォトリソグラフィ法によって、所 定の間隔を隔てて、略平行にパターン形成する。膜厚は 200nmとする。
(5)続いて、走査配線 11上に、 TFT30のゲート絶縁膜 32として、例えば窒化シリコ ン等の絶縁層を形成する。さらに、前述の開口部に合わせて、ゲート絶縁膜 23につ いてもパターン形成し、共通電極 15の露出部を形成する。
(6)続いて、前記ゲート絶縁膜 32上に、 TFTのスイッチング機能を担う、例えばァモ ルファスシリコン層を積層し、さらに N+アモルファスシリコン層を積層して、パターン形 成する。
(7)続いて、ソース 33とドレイン 34、さらにドレイン 34に接続された画素電極 14を、 例えば Taを用いて、パターン形成する。膜厚は lOOnmとする。
(8)続いて、保護層 35として、例えば窒化シリコン等の絶縁体層を、画素電極 14を 露出させるようにパターン形成する。同時に、前述の開口部に合わせて、共通電極 1 5の露出部を形成する。
(9)続いて、データ配線 12を、例えば A1を使用し、パターン形成する。データ配線 1 2は、所定の間隔を隔てて略平行に、且つ走査配線 11に対して略直交するように形 成する。膜厚は 200nmとする。このようにして、アレイ基板 40を形成する。
(10)続いて、アレイ基板 40上に発光層 20を形成する。複数の蒸発源に ZnSと Cu Sの粉体をそれぞれ投入し、真空中(10_bTorr台)にて、各材料にエレクトロンビー ムを照射して、 ZnSと Cu Sを共蒸着した後、ァニール処理することにより、 ZnSの多
2
結晶構造と Cu Sの偏析部を有する発光層 20を得ることができる。
X
(11)続いて、発光層 20上に、保護層(図では省略)として、例えば窒化シリコン等の 透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によ れば、共通電極を透明電極として発光層の上部に形成した上下電極構成のァクティ ブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
[0079] なお、前述の構成に限られず、スイッチング素子である TFT30としては、低温ポリ シリコン、 CGシリコン、有機 TFT等を用いるように適宜変更が可能である。また、 1画 素あたり複数の TFTを備え、画素選択機能と駆動機能とを分離した構成とすることも また可能である。一例としては、駆動 TETと選択 TFTとの 2つの TFTと、その間に設 けたキャパシタと、駆動 TFTのソースに接続された電源供給配線とで構成してもよレヽ 。画素電極 14は、駆動 TFTのドレインに接続される。この場合、走査配線 11に接続 された選択 TFTを onにするとデータ配線 12からの信号電圧がキャパシタに書き込ま れ、同時に駆動 TFTを onにする。その時の信号電圧に応じて駆動 TFTのゲート電 圧が決定され、その導電率に応じた電流が電源供給配線より画素電極 14を通じて 発光層 20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技 術、中間調制御技術等に適宜変更が可能である。
[0080] また、実施の形態 3の変形例として、図 16の概略断面図に示すように、画素電極 1 4及び共通電極 15上にも、薄膜絶縁層 18bを形成し、交流駆動とする変更も適宜可 能である。またさらに、実施の形態 2の変形例と同様に、画素電極 14及び共通電極 1 5の露出部は、幅や長さ、厚さは任意の形状であってもよぐ櫛型形状に形成して互 いに咬合するように配置して!/、てもよレ、。
[0081] <効果〉
本実施の形態 3に係る表示装置は、低抵抗の発光層を用いており面方向への通電 による発光が可能である。これにより、 ITO等の透明電極が不要となり、金属電極の みで表示装置が構成できる。金属電極は十分に低抵抗であるため、高輝度発光が 可能で、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性 が改善される。さらに共通電極が略全面ベタ状に形成されているため、発光時に生じ るジュール熱等の放熱性にも優れており、面内の温度分布によって生じる画素間の 温度特性による輝度ムラ、色ムラ等も抑えられる。
[0082] (実施の形態 4)
<表示装置の概略構成〉
本発明の実施の形態 4に係る表示装置 100について、図 1 7 (a)及び (b)を用いて 説明する。図 1 7 (a)は、実施の形態 4に係る表示装置 100の概略的な構成を示すブ ロック図である。表示装置 100は、図 1 7 (a)に示すように、複数の画素が 2次元配列 している表示部 101と、前記画素を選択的に駆動する駆動手段 102と、駆動手段 10 2の電力を供給する駆動用電源 103とから構成される。なお、本実施の形態 4におい ては、電源 103として直流電源を用いている。また、駆動部 102は、データ電極 X を
il 駆動するデータ電極駆動回路 121と、走査電極 Yを駆動する走査電極駆動回路 12
J
2とを備える。
[0083] 表示部 101は、画素が i列 X j行の 2次元配列している EL素子アレイを備え、前記 E L素子アレイの面に平行な第 1方向に平行に延在している複数のデータ電極 X 、 X
11 2
、X - - - Xと、 EL素子アレイの面に平行であって、第 1方向と直交する第 2方向に
1 31 il
平行に延在している複数の走查電極 Y、 Y、 Υ · ' · Υと、前記 EL素子アレイの面に
1 2 3 j
平行な第 1方向に平行に延在している複数の電流供給線 X 、χ 、χ · ' · χとを備
12 22 32 i2 える。このデータ電極 X と走査電極 Yとの各交点において、一つの画素を構成して
il i
いる。
[0084] 図 1 7 (b)は、図 1 7 (a)の各画素の構成を示す概略図である。各画素は、データ電 極 X と、走査電極 Yと、電流供給線 X と、該データ電極 X と走査電極 Yとに接続さ il j i2 il j れたスイッチング素子 104と、電流ドライブ回路 105と、キヤノ ンタ 106と、 EL素子 1 1 0とによって構成される。キャパシタ 106は、該スイッチング素子 104と電流供給線 X i2 とに接続されている。電流ドライブ回路 105は、スイッチング素子 104と、キャパシタ 1 06と、 EL素子 1 10とに接続されている。すなわち、この表示装置はアクティブマトリク ス型表示装置である。 [0085] スイッチング素子 104を onにするとデータ配線 X 力もの信号電圧がキャパシタ 10
11
7に書き込まれ、その時の信号電圧に応じてスイッチング素子のゲート電圧が決定さ れ、その導電率に応じた電流が電流供給配線 X より電流ドライブ素子 105を通じて
12
EL素子 110に供給される。
[0086] <表示装置の配線構成〉
図 18は、本実施の形態の表示装置 100の画素における配線の平面構成を概略的 に示した斜視図である。このアクティブマトリクス型表示装置 100は、発光面に平行な 第 1方向に平行に延在している複数の走査配線 11と、発光面に平行であって、第 1 方向と直交する第 2方向に平行に延在している複数のデータ配線 12とを備える。こ の走査配線 11とデータ配線 12との各交点に対応してスイッチング素子である薄膜ト ランジスタ 30 (以下、「TFT」 いう。)を備えている。また、隣接する 2つの走査配線 1 1と隣接する 2つのデータ配線 12とに囲まれた領域が 1画素であり、これらが複数個、 2次元的に配列されている。 1画素に対応しては、少なくとも 1つの画素電極 14を備 え、 TFT30に接続されている。さらに EL素子では、 LCDと異なり電流の供給が必須 となるため、電力供給線 13がデータ配線 12に略平行に延在している。なお、上記配 線及び電極、 TFT30を支えるものとして基板 10を備え、アレイ基板 40を構成してい
[0087] <表示装置の断面構成〉
また、図 19は、図 18の A— A線に沿った発光面に垂直な方向から見た概略断面図 である。図 20は、図 19の一つの画素について、一つの EL素子 110と考えた場合の 模式的な概略図である。この表示装置では、基板 10と該基板 10の上に配置された 上記配線及び電極からなるアレイ基板 40の上に、発光層 20が略平面状に形成され ており、この発光層 20が表示装置 100の発光部分を構成している。また発光層 20の 上部には、共通電極 15が形成される。走査配線 11とデータ配線 12により選択された 画素において、一つの模式的な EL素子 110が構成される。この模式的な EL素子 11 0では、基板 10の上に、画素電極 14、発光層 20、共通電極 15が順に積層されて構 成されている。一つの画素において構成される EL素子 110では、 TFT30を介して、 画素電極 14に外部電圧、例えば、直流電源 103によって電圧が印加されると、画素 電極 14と共通電極 15との間に電位差が生じる。電位差が発光開始電圧以上になる と、発光層 20内を電流が流れ発光に至る。発光は、アレイ基板 40とは反対側の面か ら外部へ取出される。
[0088] さらに、この表示装置 100では、発光層 20が、図 20に示すように、 n型半導体粒子
21の集合体で構成され、該粒子間に p型半導体 23が偏析していることを特徴とする 。また、図 21に示す別例の EL素子 110aでは、発光層 20が、 p型半導体 23の媒体 の中に n型半導体粒子 21が分散して構成されたことを特徴とする。このように、 n型半 導体粒子と P型半導体との界面を多く形成することによって、正孔の注入性が改善さ れ、電子と正孔の再結合型発光が効率よく生じ、低電圧で高輝度発光する EL素子 1 10を実現すること力 Sできる。さらに、 n型半導体粒子 21が p型半導体 23を介して電極 と電気的に接続されている構成とすることによって、発光効率を向上させることができ 、低電圧で発光が可能で、且つ、高輝度発光する表示装置が得られる。
[0089] なお、表示装置 100として、上述の構成に限られず、発光層 20を複数層設ける、走 查配線 11、データ配線 12、画素電極 14、共通電極 15の全てを透明電極にする、い ずれかの電極を黒色電極とする、表示装置 100の全部又は一部を封止する構造を 更に備える、発光取出し方向の前方に発光層 20からの発光色を色変換する構造を 更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合には、発 光層を RGBの各色で色分けする、 RGB各色毎の発光ユニットを積層する、単一色 又は 2色の発光層とカラーフィルタ(図 19ではカラーフィルタ 17)及び/又は色変換 フィルタ(図 19では色変換層 16)との組合せにより RGBの各色を表示する等、適宜 変更が可能である。
[0090] なお、本実施の形態 4に係る表示装置の各構成部材は、その特徴について説明す るもの以外は、上記実施の形態 1に係る表示装置の各構成部材と実質的に同様のも のを用いることができる。
[0091] <発光層〉
この発光層 20は、画素電極 14と共通電極 15との間に挟持され、次の 2つのうち、 いずれかの構造を有する。
(i) n型半導体粒子の集合体であって、該粒子間に p型半導体 23が偏祈した構造( 例えば、図 20に示す構造)。なお、上記 n型半導体粒子 21の集合体は、それ自体で 層を構成している。
(ii) p型半導体 23の媒体中に n型半導体粒子 21が分散した構造 (例えば、図 21に 示す構造)。
更に、発光層 20を構成する各 n型半導体粒子 21が、 p型半導体 23を介して画素 電極 14及び共通電極 15と電気的に接合されていることが好ましい。
[0092] <発光体〉
n型半導体粒子 21の材料は、多数キャリアが電子であり n型伝導を示す n型半導体 材料である。材料としては、第 12族—第 16族間化合物半導体であってもよい。また、 第 13族 第 15族間化合物半導体であってもよい。具体的には、光学バンドギャップ が可視光の大きさを有する材料であって、例えば、 ZnS, ZnSe、 GaN、 InGaN, Al N、 GaAlN、 GaP、 CdSe、 CdTe、 SrS、 CaSを母体とし、母体のまま使用する力、、あ るいは添加剤として、 Cu、 Ag、 Au、 Ir、 Al、 Ga、 In、 Mn、 Cl、 Br、 I、 Li、 Ce、 Pr、 N d、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho, Er、 Tm、 Yb力、らなる群より選択される 1又は 複数種の原子もしくはイオンを添加剤として含んでいてもよい。これらの元素の種類 によっても、発光層 20からの発光色が決定される。
[0093] 一方、 p型半導体 23の材料は、多数キャリアが正孔であり、 p型伝導を示す p型半 導体材料である。この p型半導体材料としては、 列えば'、 Cu S、 ZnS、 ZnSe、 ZnSS
2
e、 ZnSeTe、 ZnTeなどの化合物や、更に GaN, InGaN等の窒化物である。この p型 半導体の材料のうち、 Cu Sなどは、本来的に p型伝導を示すが、その他の材料は添
2
加剤として窒素、 Ag、 Cu、 Inから一種以上選択される元素を添加して用いる。また、 p型半導体 23として、 p型伝導を示す CuGaS 、 CuAlSなどのカルコパイライト型化
2 2
合物を用いても良い。
[0094] 上記各半導体の製造方法としては、焼成法、気相合成法、爆発法、水熱合成法、 高温高圧合成法、フラックス法、共沈法などを用いることができる。
[0095] 本実施の形態に係る表示装置 100の特徴は、発光層 20が、(i) n型半導体粒子 21 の粒子間に p型半導体 23が偏析した構造(図 20)、(ii) p型半導体 23の媒体中に n 型半導体粒子 21が分散した構造(図 21 )の!/、ずれかの構造を有することである。図 3 3に示す従来例のように、半導体粒子 61と電気的に接合する媒体がインジウム錫酸 化物 63の場合、電子が半導体粒子 61に到達して発光することが可能である力 イン ジゥム錫酸化物の正孔濃度は小さいため、再結合するための正孔が不足する。従つ て、電子と正孔の再結合による高輝度の発光は期待できない。そこで、本発明者は、 特に高輝度で効率良ぐし力、も連続した発光を得るために、発光層 20において、電 子の注入とともに正孔を効率良く注入することができる構造に着目した。上記構造を 実現するためには、発光体粒子内部または界面に多くの正孔が到達すること、更に 電子の注入電極に対向する電極からの正孔の注入が速やかに行われかつ発光体 粒子あるいは界面に到達する必要がある。そこで、本発明者は鋭意研究の結果、発 光層 20の構造として、上記 (i)、(ii)のうち、いずれかの構造とすることによって、 n型 半導体粒子 21内部または界面へ電子の注入とともに正孔を効率良く注入することが できることを見出した。すなわち、上記各構造の発光層 20によれば、電極から注入さ れた電子は、 p型半導体 23を通して n型半導体粒子 21に到達し、一方、他方の電極 から多くの正孔が発光体粒子に到達し、電子と正孔との再結合によって効率よく発光 させること力 Sできる。これによつて、低電圧で高輝度発光する表示装置を実現すること ができ、本発明に至ったものである。また、ドナーあるいはァクセプターを導入するこ とにより、自由電子とァクセプターに捕獲された正孔の再結合、 自由正孔とドナーに 捕獲された電子の再結合、ドナ一一ァクセプター対発光も同様に可能である。またさ らに、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能であ 以下、実施の形態 4に係る表示装置 100の製造方法の一実施例を説明する。なお 、前述の他の材料からなる発光層を用いる場合についても同様の製造方法が利用 可能である。
(1)ガラス基板 10を準備する。
(2)基板 10上に、走査配線 11と走査配線 1 1に接続されたゲート電極 31を形成する 。例えば A1を使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行に パターン形成する。膜厚は 200nmとする。
(3)走査配線 1 1上に、 TFT30のゲート絶縁膜 32として、例えば窒化シリコン等の絶 縁体層を形成する。
(4)前記絶縁体層 32上に、 TFT30のスイッチング機能を担う、例えばアモルファス シリコン層を積層し、さらに N+アモルファスシリコン層を積層して、パターン形成する
(5)次に、ソース 33とドレイン 34、さらにドレイン 34に接続された画素電極 14を、例 えば Taを用いて、パターン形成する。膜厚は lOOnmとする。
(6)さらに、データ配線 12及び電流供給線 13を、例えば A1を使用し、パターン形成 する。データ配線 12及び電流供給線 13は、所定の間隔を隔てて略平行に、且つ、 走査配線 11に対して略直交するように形成する。膜厚は 200nmとする。
(7)続いて、保護層 35として、例えば窒化シリコン等の絶縁体層を、画素電極 14を 露出させるようにパターン形成する。このようにして、アレイ基板 40を形成できる。
(8)基板 10上に、発光層 20を以下のようにして形成する。まず、複数の蒸発源に Zn Sと Cu Sの粉体をそれぞれ投入し、真空中(10_6Torr台)にて、各材料にエレクト口
2
ンビームを照射し、基板 10上に発光層 20として成膜する。このとき、基板温度は 200 °Cとし、 ZnSと Cu Sを共蒸着する。
2
(9)発光層 20の成膜後、硫黄雰囲気中、 700°Cで約 1時間焼成する。この膜を X線 回折や SEMによって調べることによって、微小な ZnS結晶粒の多結晶構造と Cu S
X
の偏析部とが観察される。詳細は明らかではないが、 ZnSと Cu Sとの相分離が生じ、 前記偏析構造が形成されたものと考えられる。
(10)また、共通電極 15を、例えば ITOを使用し、パターン形成する。膜厚は 200nm とする。
(11)さらに、共通電極 15上に、保護層(図では省略)として、例えば、窒化シリコン等 の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置 100を得ることができる。この表示装置 では、 5〜; 10V程度の低電圧で高い発光輝度を得ることができた。
なお、前述の構成に限られず、スイッチング素子である TFT30としては、低温ポリ シリコン、 CGシリコン、有機 TFT等を用いるように適宜変更が可能である。また、 1画 素あたり複数の TFTを備え、画素選択機能と駆動機能とを分離した構成とすることも また可能である。一例としては、駆動 TETと選択 TFTとの 2つの TFTと、その間に設 けたキャパシタと、駆動 TFTのソースに接続された電源供給配線とで構成される。画 素電極は、駆動 TFTのドレインに接続される。この場合、走査配線に接続された選 択 TFTを onにするとデータ配線からの信号電圧がキャパシタに書き込まれ、同時に 駆動 TFTを onにする。その時の信号電圧に応じて駆動 TFTのゲート電圧が決定さ れ、その導電率に応じた電流が電流供給配線より画素電極を通じて発光層に供給さ れる。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術 等に適宜変更が可能である。
[0098] また、カラーの表示装置とする場合には、発光層を RGBの各色の蛍光体で色分け して成膜すればよい。あるいは、透明電極/発光層/背面電極といった RGB各色 毎の発光ユニットを積層してもよい。また更に、別例のカラー表示装置の場合、単一 色又は 2色の発光層による表示装置を作成した後、カラーフィルタ及び/又は色変 換フィルタを用いて、 RGBの各色を表示することもできる。
[0099] また、実施の形態 4の変形例として、図 22の概略断面図に示すように、絶縁性の保 護膜 18aを画素電極 14の上にも形成し、さらに、共通電極 15の下に薄い絶縁層 18 bを形成して、交流駆動とする変更や、図 23の概略断面図に示すように、平坦化絶 縁層 19を形成し、該平坦化絶縁層 19の上に画素電極 14を形成してコンタクトホー ルを介してドレイン 34と接続する、といった変更も適宜可能である。
[0100] <効果〉
本実施の形態 4に係る表示装置は、高い発光効率を持つ発光層を用いることにより 、従来に比べ低電圧駆動で高輝度な発光が可能である。
[0101] (実施の形態 5)
<表示装置の概略構成〉
図 24は、本実施の形態 5の表示装置の各画素における配線の平面構成を概略的 に示した図である。また、図 25は、図 24の B— B線での発光面に垂直な方向から見 た断面構成を概略的に示した図である。このアクティブマトリクス型表示装置 10は、 発光面に平行な第 1方向に平行に延在している複数の走査配線 11と、発光面に平 行であって、第 1方向と直交する第 2方向に平行に延在している複数のデータ配線 1 2とを備える。この走査配線 11とデータ配線 12との各交点に対応してスイッチング素 子である薄膜トランジスタ 30 (以下、「TFT」という。)を備えている。また、隣接する 2 つの走査配線 11と隣接する 2つのデータ配線 12とに囲まれた領域が 1画素であり、 これらが複数個、 2次元的に配列されている。 1画素に対応しては、少なくとも 1つの 画素電極 14を備え、 TFT30に接続されている。さらに、 1つの画素電極 14に対して 対をなす少なくとも 1つの共通電極 15を備え、共通電極 15は、データ配線 12に略平 行に延在している。これらの配線及び電極、 TFT30を支えるものとして基板 10を備 え、アレイ基板 40を構成している。またさらに、アレイ基板 40上には、発光層 20が略 平面状に形成され、表示装置 100の発光部分を構成している。走査配線 11とデータ 配線 12により選択された画素において、 TFT30を介して、画素電極 14に外部電圧 が印加されると、画素電極 14と共通電極 15との間に電位差が生じる。電位差が発光 開始電圧以上になると、発光層 20内を電流が流れ発光に至る。発光層 20からの発 光は、アレイ基板 40とは反対側の面から外部へ取出される。
[0102] この表示装置 100によれば、発光層 20に対して、画素電極 14と共通電極 15とを略 同一面側に配設した構造を有している。発光層 20の抵抗率は半導体領域であり、且 つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成 では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成 できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限ら れず、共通電極 15は走査電極 11に略平行に延在していてもよい。また、画素電極 1 4や共通電極 15を黒色電極とする、表示装置の全部又は一部を保護、封止する構 造(図では省略)を更に備える、発光取出し方向前方に発光層 20からの発光色を色 変換する構造(図 25では色変換層 16)を更に備える等、適宜変更が可能である。ま た、カラーの表示装置とする場合、発光層を RGBの各色で色分けする、 RGB各色毎 の発光ユニットを積層する、単一色又は 2色の発光層とカラーフィルタ(図 25ではカラ 一フィルタ 17)及び/又は色変換フィルタとの組合せにより RGBの各色を表示する 等、適宜変更が可能である。
[0103] なお、本実施の形態 5に係る表示装置の各構成部材は、特にその特徴について説 明するもの以外は、上記実施の形態 4に係る表示装置の各構成部材と実質的に同 様のものを用いることができる。
以下、実施の形態 5に係る表示装置の製造方法の一実施例を説明する。なお、前 述の他の材料からなる発光層 20についても同様の製造方法が利用可能である。
(1)ガラス基板 10を準備する。
(2)ガラス基板 10上に、走査配線 11と、走査配線 11に接続されたゲート電極 31を 形成する。例えば A1を使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略 平行にパターン形成する。膜厚は 200nmとする。
(3)走査配線 11上に、 TFT30のゲート絶縁膜 32として、例えば窒化シリコン等の絶 縁体層を形成する。
(4)前記絶縁体層上に、 TFT30のスイッチング機能を担う、例えばアモルファスシリ コン層を積層し、さらに N+アモルファスシリコン層を積層して、パターン形成する。
(5)また、ソース 33とドレイン 34、さらにドレイン 34に接続された画素電極 14を、例え ば Taを用いて、パターン形成する。膜厚は lOOnmとする。
(6)さらに、保護層 35として、例えば窒化シリコン等の絶縁体層を、画素電極 14を露 出させるようにパターン形成する。
(7)次いで、データ配線 12と共通電極 15とを、例えば A1を使用し、パターン形成す る。データ配線 12は、所定の間隔を隔てて略平行に、且つ、走査配線 11に対して略 直交するように形成する。また、共通電極 15は、隣接するデータ配線 12と画素電極 15との間に、且つデータ配線 12に対して略平行に形成する。膜厚は 200nmとする
。このようにして、アレイ基板 40を形成する。
(8)次に、アレイ基板 40上に発光層 20を形成する。まず、複数の蒸発源に ZnSと Cu Sの粉体をそれぞれ投入し、真空中(10— 6Torr台)にて、各材料にエレクトロンビー
2
ムを照射し、基板 10上に発光層 20として成膜する。このとき、基板温度は 200°Cとし 、 ZnSと Cu Sを共蒸着する。
2
(9)発光層 20の成膜後、硫黄雰囲気中、 700°Cで約 1時間焼成する。この膜を X線 回折や SEMによって調べることによって、微小な ZnS結晶粒の多結晶構造と Cu S
X
の偏析部とが観察される。
(10)さらに、発光層 20上に、保護層(図では省略)として、例えば窒化シリコン等の 透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によ れば、共通電極を透明電極として発光層の上部に形成した上下電極構成のァクティ ブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
[0105] なお、前述の構成に限られず、スイッチング素子である TFT30としては、低温ポリ シリコン、 CGシリコン、有機 TFT等を用いるように適宜変更が可能である。また、 1画 素あたり複数の TFTを備え、画素選択機能と駆動機能とを分離した構成とすることも また可能である。一例としては、駆動 TETと選択 TFTとの 2つの TFTと、その間に設 けたキャパシタと、駆動 TFTのソースに接続された電源供給配線とで構成してもよレヽ 。画素電極 14は、駆動 TFTのドレインに接続される。この場合、走査配線 11に接続 された選択 TFTを onにするとデータ配線 12からの信号電圧がキャパシタに書き込ま れ、同時に駆動 TFTを onにする。その時の信号電圧に応じて駆動 TFTのゲート電 圧が決定され、その導電率に応じた電流が電源供給配線より画素電極 14を通じて 発光層 20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技 術、中間調制御技術等に適宜変更が可能である。
[0106] また、実施の形態 5の変形例として、図 26の概略断面図に示すように、画素電極 1 4及び共通電極 15上にも、薄い絶縁層 18を形成し、交流駆動とする変更や、図 27 の概略断面図に示すように、平坦化絶縁層 19を形成し、コンタクトホールを介して画 素電極 14及び共通電極 15形成する、といった変更も適宜可能である。またさらに、 画素電極 14及び共通電極 15は、幅や長さ、厚さは任意の形状とすることができる。 例えば、図 28の斜視図に一例を示すように櫛形形状を有し、画素電極 14と共通電 極 15との櫛形形状部分が互いに咬合するように配置して!/、てもよ!/、。これによつて、 画素電極 14と共通電極 15との間の導電経路を特定することなぐ均一な発光を実現 すること力 Sできる。また、図 29の斜視図に示すように、共通電極 15の非画素領域で の幅を太くしてもよい。例えば、ゲート配線 11に沿って、共通電極 15の延在方向に 垂直な方向の幅を太くしてもよい。これによつて、共通電極 15からゲート電極 11側へ の放熱効果を高めることができる。
[0107] <効果〉 本発明者による直流駆動型無機 EL素子では、発光層が半導体領域の抵抗率を有 している。この直流駆動型無機 EL素子をマトリクス構造の表示装置に適用するため、 膜厚方向から発光を取り出すために透明電極を用いる場合がある力、本発明者は、 この場合に透明電極の抵抗による電圧降下が大きいという実用面での課題があるこ とに気付いたものである。今回、この直流駆動型無機 EL素子の発光層が、低抵抗で あることから、本発明者は、発光層 20の面方向への通電による発光が可能であること を見出し、本実施の形態の表示装置の構成を実現することができた。本実施の形態 に係る表示装置では、低抵抗の発光層 20の面方向への通電によって発光を得るこ とができる。これにより、 ITO等の透明電極が不要となり、金属電極のみで表示装置 を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、 電極抵抗による電圧降下も抑えられるため、面内の輝度や色度の均一性が改善され
(実施の形態 6)
<表示装置の概略構成〉
図 30は、本実施の形態 6の表示装置の各画素における配線の平面構成を概略的 に示した図である。また、図 31は、図 30の C— C線での発光面に垂直な方向から見 た断面図である。このアクティブマトリクス型表示装置は、発光面に平行な第 1方向に 平行に延在している複数の走査配線 11と、発光面に平行であって、第 1方向と直交 する第 2方向に平行に延在している複数のデータ配線 12とを備える。この走査配線 1 1とデータ配線 12との各交点に対応してスイッチング素子である薄膜トランジスタ 30 ( 以下、「TFT」という。)を備えている。また、隣接する 2つの走査配線 11と隣接する 2 つのデータ配線 12とに囲まれた領域が 1画素であり、これらが複数個、 2次元的に配 列されている。 1画素に対応しては、少なくとも 1つの画素電極 14を備え、 TFT30に 接続されている。さらに、画素電極 14に対して対をなす略全面ベタ状の共通電極 15 を備える。共通電極 15は、前記配線、電極、 TFT30とは絶縁層 18を介して、電気的 に分離され設けられている。絶縁層 18は、 1画素につき少なくとも 1ケ所の開口部が あり、下層の共通電極 15が露出している。またさらに、これらの配線及び電極、 TFT 30を支えるものとして基板 10を備え、アレイ基板 40を構成している。またさらに、ァレ ィ基板 40上には、発光層 20が略平面状に形成され、表示装置の発光部分を構成し ている。走査配線 11とデータ配線 12により選択された画素において、 TFT30を介し て、画素電極 14に外部電圧が印加されると、画素電極 14と共通電極 15との間に電 位差が生じる。電位差が発光開始電圧以上になると、発光層 20内を電流が流れ発 光に至る。発光層 20からの発光は、アレイ基板 40とは反対側の面から外部へ取出さ れる。
[0109] この表示装置 100によれば、発光層 20に対して、画素電極 14と共通電極 15とを略 同一面側に配設した構造を有している。発光層 20の抵抗率は半導体領域であり、且 つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成 では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成 できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限ら れず、共通電極 15は走査電極 11に略平行に延在していてもよい。また、画素電極 1 4や共通電極 15を黒色電極とする、表示装置の全部又は一部を保護、封止する構 造(図では省略)を更に備える、発光取出し方向前方に発光層 20からの発光色を色 変換する構造(図 31では色変換層 16)を更に備える等、適宜変更が可能である。ま た、カラーの表示装置とする場合、発光層を RGBの各色で色分けする、 RGB各色毎 の発光ユニットを積層する、単一色又は 2色の発光層とカラーフィルタ(図 31ではカラ 一フィルタ 17)及び/又は色変換フィルタとの組合せにより RGBの各色を表示する 等、適宜変更が可能である。
[0110] なお、本実施の形態 6に係る表示装置の各構成部材は、特にその特徴について説 明するもの以外は、上記実施の形態 4に係る表示装置の各構成部材と実質的に同 様のものを用いることができる。
[0111] 以下、実施の形態 6に係る表示装置の製造方法の一実施例を説明する。なお、前 述の他の材料からなる発光層についても同様の製造方法が利用可能である。
(1)ガラス基板 10を準備する。
(2)次に、ガラス基板 10上に、例えば、 Taを用いてベタ状の共通電極 15を形成する 。膜厚は 200nmとする。
(3)共通電極 15上に、例えば窒化シリコン等の絶縁層 18を形成する。さらに、フォト リソグラフィ法によって、画素に応じた開口部をパターン形成し、共通電極 15の露出 部を形成する。
(4)また、絶縁層 18上に、走査配線 11と、走査配線 11に接続されたゲート電極 31を 形成する。走査配線 11は、例えば A1を使用し、フォトリソグラフィ法によって、所定の 間隔を隔てて、略平行にパターン形成する。膜厚は 200nmとする。
(5)さらに、走査配線 11上に、 TFT30のゲート絶縁膜 32として、例えば窒化シリコン 等の絶縁層を形成する。さらに、前述の開口部に合わせて、ゲート絶縁膜 23につい てもパターン形成し、共通電極 15の露出部を形成する。
(6)次いで、前記ゲート絶縁膜 32上に、 TFT30のスイッチング機能を担う、例えばァ モルファスシリコン層を積層し、さらに N+アモルファスシリコン層を積層して、パターン 形成する。
(7)その後、ソース 33とドレイン 34、さらにドレイン 34に接続された画素電極 14を、 例えば Taを用いて、パターン形成する。膜厚は lOOnmとする。
(8)次いで、保護層 35として、例えば窒化シリコン等の絶縁体層を、画素電極 14を 露出させるようにパターン形成する。同時に、前述の開口部に合わせて、共通電極 1 5の露出部を形成する。
(9)また、データ配線 12を、例えば A1を使用し、パターン形成する。データ配線 12は 、所定の間隔を隔てて略平行に、且つ走査配線 11に対して略直交するように形成す る。膜厚は 200nmとする。このようにして、アレイ基板 40を形成する。
(10)さらに、アレイ基板 40上に発光層 20を形成する。まず、複数の蒸発源に ZnSと Cu Sの粉体をそれぞれ投入し、真空中(10_6Torr台)にて、各材料にエレクトロンビ
2
ームを照射し、基板 10上に発光層 20として成膜する。このとき、基板温度は 200°Cと し、 ZnSと Cu Sを共蒸着する。
2
(11)発光層 20の成膜後、硫黄雰囲気中、 700°Cで約 1時間焼成する。この膜を X線 回折や SEMによって調べることによって、微小な ZnS結晶粒の多結晶構造と Cu S
X
の偏析部とが観察される。
(12)その後、発光層 20上に、保護層(図では省略)として、例えば窒化シリコン等の 透明絶縁体層を形成する。 以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によ れば、共通電極を透明電極として発光層の上部に形成した上下電極構成のァクティ ブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
[0112] なお、前述の構成に限られず、スイッチング素子である TFT30としては、低温ポリ シリコン、 CGシリコン、有機 TFT等を用いるように適宜変更が可能である。また、 1画 素あたり複数の TFTを備え、画素選択機能と駆動機能とを分離した構成とすることも また可能である。一例としては、駆動 TETと選択 TFTとの 2つの TFTと、その間に設 けたキャパシタと、駆動 TFTのソースに接続された電源供給配線とで構成してもよレヽ 。画素電極 14は、駆動 TFTのドレインに接続される。この場合、走査配線 11に接続 された選択 TFTを onにするとデータ配線 12からの信号電圧がキャパシタに書き込ま れ、同時に駆動 TFTを onにする。その時の信号電圧に応じて駆動 TFTのゲート電 圧が決定され、その導電率に応じた電流が電源供給配線より画素電極 14を通じて 発光層 20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技 術、中間階調制御技術等に適宜変更が可能である。
[0113] また、実施の形態 6の変形例として、図 32の概略断面図に示すように、画素電極 1 4及び共通電極 15上にも、薄膜絶縁層 18bを形成し、交流駆動とする変更も適宜可 能である。またさらに、実施の形態 5の変形例と同様に、画素電極 14及び共通電極 1 5の露出部は、幅や長さ、厚さは任意の形状であってもよぐ櫛型形状に形成して互 いに咬合するように配置して!/、てもよレ、。
[0114] <効果〉
本実施の形態 6に係る表示装置は、低抵抗の発光層を用いており、発光層の面方 向への通電による発光が可能である。これにより、 ITO等の透明電極が不要となり、 金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高 輝度発光が可能であり、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度 や色度の均一性が改善される。さらに共通電極が略全面ベタ状に形成されているた め、発光時に生じるジュール熱等の放熱性にも優れており、面内の温度分布によつ て生じる画素間の温度特性による輝度ムラ、色ムラ等も抑えられる。
産業上の利用可能性 本発明に係る表示装置は、低電圧駆動で高輝度表示が得られ、且つ、面内の輝度 や色度の均一性に優れた表示装置を提供するものである。特に、テレビ等の高品位 ディスプレイデバイスとして有用である。

Claims

請求の範囲
[1] 基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、第 1半導体物質よりなる多結晶体構造であって、前記多結晶体構 造の粒界に前記第 1半導体物質とは異なる第 2半導体物質が偏析していることを特 徴とする表示装置。
[2] 基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも 1層の発光層と を備え、
前記発光層は、第 1半導体物質よりなる多結晶体構造であって、前記多結晶体構 造の粒界に前記第 1半導体物質とは異なる第 2半導体物質が偏析していることを特 徴とする表示装置。
[3] 前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前 記第 1方向又は前記第 2方向に互いに略平行に延在していることを特徴とする請求 項 2に記載の表示装置。
[4] 前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一 定周期の長さに対応して変化していることを特徴とする請求項 2に記載の表示装置。
[5] 前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極 と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設け られたことを特徴とする請求項 2に記載の表示装置。
[6] 基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に直交する第 2方向に平行に延在してい る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と
を備え、
前記発光層は、第 1半導体物質よりなる多結晶体構造であって、前記多結晶体構 造の粒界に前記第 1半導体物質とは異なる第 2半導体物質が偏析していることを特 徴とする表示装置。
[7] 前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素に ついて少なくとも 1箇所の開口部を有し、
前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出し ていることを特徴とする請求項 6に記載の表示装置。
[8] 前記共通電極は、前記基板に対して略全面ベタ状に設けられていることを特徴と する請求項 6に記載の表示装置。
[9] 前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記 画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が 咬合して設けられていることを特徴とする請求項 6に記載の表示装置。
[10] 前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層と の間のうちの少なくとも一方の界面に、絶縁層をさらに備えることを特徴とする請求項
6から 9の!/、ずれか一項に記載の表示装置。
[11] 前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変 換層をさらに備えることを特徴とする請求項 6から 10のいずれか一項に記載の表示 装置。
[12] 前記第丄半導体物質と前記第 2半導体物質とは、互いに異なる伝導型の半導体構 造を有することを特徴とする請求項 1から 11のいずれか一項に記載の表示装置。
[13] 前記第 1半導体物質は n型半導体構造を有し、前記第 2半導体物質は p型半導体 構造を有することを特徴とする請求項 1から 11のいずれか一項に記載の表示装置。
[14] 前記第 1半導体物質及び前記第 2半導体物質は、それぞれ化合物半導体であるこ とを特徴とする請求項 1から 11のいずれか一項に記載の表示装置。
[15] 前記第 1半導体物質は、第 12族 第 16族間化合物半導体であることを特徴とする 請求項 1から 11の!/、ずれか一項に記載の表示装置。
[16] 前記第 1半導体物質は、第 13族 第 15族間化合物半導体であることを特徴とする 請求項 1から 11の!/、ずれか一項に記載の表示装置。
[17] 前記第 1半導体物質は、カルコパイライト型化合物半導体であることを特徴とする請 求項 1から 11の!/、ずれか一項に記載の表示装置。
[18] 前記第 1半導体物質は、立方晶構造を有することを特徴とする請求項 1から 11のい ずれか一項に記載の表示装置。
[19] 前記第 1半導体物質は、 Cu、 Ag、 Au、 Ir、 Al、 Ga、 In、 Mn、 Cl、 Br、 I、 Li、 Ce、
Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb力もなる群より選択される 少なくとも一種の元素を含んでいることを特徴とする請求項 1から 18のいずれか一項 に記載の表示装置。
[20] 前記第 1半導体物質よりなる多結晶体構造の平均結晶粒子径は、 5〜500nmの範 囲にあることを特徴とする請求項 1から 19のいずれか一項に記載の表示装置。
[21] 前記第 2半導体物質は、 Cu S、 ZnS、 ZnSe、 ZnSSe, ZnSeTe, ZnTe、 GaN、 I
2
nGaNのいずれかであることを特徴とする請求項 1から 13のいずれか一項に記載の 表示装置。
[22] 基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は P型半導体と n型半導体とを有することを特徴とする表示装置。
[23] 前記発光層は、 p型半導体の媒体の中に n型半導体粒子が分散して構成されて!/、 ることを特徴とする請求項 22に記載の表示装置。
[24] 前記発光層は、 n型半導体粒子の集合体で構成され、該粒子間に p型半導体が偏 析していることを特徴とする請求項 22に記載の表示装置。
[25] 前記 n型半導体粒子は、前記 p型半導体を介して前記画素電極及び前記共通電 極と電気的に接合されていることを特徴とする請求項 22に記載の表示装置。
[26] 基板と、
前記基板上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に対して垂直な第 2方向に互いに平行に 延在して!/、る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、 前記画素電極及び前記共通電極の上に設けた少なくとも 1層の発光層と を備え、
前記発光層は、 P型半導体と n型半導体とを有することを特徴とする表示装置。
[27] 前記発光層は、 p型半導体の媒体の中に n型半導体粒子が分散して構成されて!/、 ることを特徴とする請求項 26に記載の表示装置。
[28] 前記発光層は、 n型半導体粒子の集合体で構成され、該粒子間に p型半導体が偏 析していることを特徴とする請求項 26に記載の表示装置。
[29] 前記 n型半導体粒子は、前記 p型半導体を介して前記画素電極及び前記共通電 極と電気的に接合されていることを特徴とする請求項 26に記載の表示装置。
[30] 前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前 記第 1方向又は前記第 2方向に互いに略平行に延在していることを特徴とする請求 項 26から 29の!/、ずれか一項に記載の表示装置。
[31] 前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一 定周期の長さに対応して変化していることを特徴とする請求項 26から 29のいずれか 一項に記載の表示装置。
[32] 前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極 と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設け られたことを特徴とする請求項 26から 29のいずれか一項に記載の表示装置。
[33] 基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第 1方向に互いに平行に延在している複数の走査配線と、 前記基板面に平行であって前記第 1方向に直交する第 2方向に平行に延在してい る複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも 1つのスィ ツチング素子と、
前記スィッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも 1層の発光層と を備え、
前記発光層は p型半導体と n型半導体とを有して!/、ることを特徴とする表示装置。
[34] 前記発光層は、 p型半導体の媒体の中に n型半導体粒子が分散して構成されて!/、 ることを特徴とする請求項 33に記載の表示装置。
[35] 前記発光層は、 n型半導体粒子の集合体で構成され、該粒子間に p型半導体が偏 析していることを特徴とする請求項 33に記載の表示装置。
[36] 前記 n型半導体粒子は、前記 p型半導体を介して前記画素電極及び前記共通電 極と電気的に接合されていることを特徴とする請求項 33に記載の表示装置。
[37] 前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素に ついて少なくとも 1箇所の開口部を有し、
前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出し て!/、ることを特徴とする請求項 33から 36の!/、ずれか一項に記載の表示装置。
[38] 前記共通電極は、前記基板に対して略全面ベタ状に設けられていることを特徴と する請求項 33から 36のいずれか一項に記載の表示装置。
[39] 前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記 画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が 咬合して設けられて!/、ることを特徴とする請求項 33から 36の!/、ずれか一項に記載の 表示装置。
[40] 前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層と の間のうちの少なくとも一方の界面に、絶縁層をさらに備えることを特徴とする請求項
33から 39の!/、ずれか一項に記載の表示装置。
[41] 前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変 換層をさらに備えることを特徴とする請求項 33から 40のいずれか一項に記載の表示 装置。
[42] 前記 n型半導体及び前記 p型半導体は、それぞれ化合物半導体であることを特徴 とする請求項 22から 41のいずれか一項に記載の表示装置。
[43] 前記 n型半導体は、第 12族 第 16族間化合物半導体であることを特徴とする請求 項 22から 42の!/、ずれか一項に記載の表示装置。
[44] 前記 n型半導体は、第 13族 第 15族間化合物半導体であることを特徴とする請求 項 22から 42の!/、ずれか一項に記載の表示装置。
[45] 前記 n型半導体は、カルコパイライト型化合物半導体であることを特徴とする請求項
22から 42の!/、ずれか一項に記載の表示装置。
[46] 前記 p型半導体は、 Cu S、 ZnS、 ZnSe、 ZnSSe、 ZnSeTe, ZnTe、 GaN、 InGa
2
Nの!/、ずれかであることを特徴とする請求項 22から 42の!/、ずれか一項に記載の表 示装置。
PCT/JP2007/067729 2006-09-14 2007-09-12 Appareil d'affichage WO2008032737A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/439,753 US8179033B2 (en) 2006-09-14 2007-09-12 Display apparatus
JP2008534360A JP5014347B2 (ja) 2006-09-14 2007-09-12 表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006248950 2006-09-14
JP2006248951 2006-09-14
JP2006-248951 2006-09-14
JP2006-248950 2006-09-14

Publications (1)

Publication Number Publication Date
WO2008032737A1 true WO2008032737A1 (fr) 2008-03-20

Family

ID=39183793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067729 WO2008032737A1 (fr) 2006-09-14 2007-09-12 Appareil d'affichage

Country Status (3)

Country Link
US (1) US8179033B2 (ja)
JP (1) JP5014347B2 (ja)
WO (1) WO2008032737A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102559A1 (ja) * 2007-02-23 2008-08-28 Panasonic Corporation 表示装置
WO2010035369A1 (ja) * 2008-09-25 2010-04-01 パナソニック株式会社 発光素子及び表示装置
WO2013011889A1 (ja) * 2011-07-15 2013-01-24 タツモ株式会社 分散型el用蛍光体、分散型el素子およびこれらの製造方法
JP2014203767A (ja) * 2013-04-09 2014-10-27 タツモ株式会社 立体型無機el発光体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268461A1 (en) * 2008-04-28 2009-10-29 Deak David G Photon energy conversion structure
WO2012117439A1 (ja) * 2011-02-28 2012-09-07 パナソニック株式会社 薄膜半導体装置及びその製造方法
KR101830179B1 (ko) * 2011-11-03 2018-02-21 삼성디스플레이 주식회사 유기 전계 발광 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254394A (ja) * 1986-04-25 1987-11-06 鐘淵化学工業株式会社 薄膜el素子及びその製造法
JP2005167229A (ja) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
JP2005187806A (ja) * 2004-11-29 2005-07-14 Japan Science & Technology Agency 発光薄膜及びその光デバイス
WO2006025259A1 (ja) * 2004-09-03 2006-03-09 Sumitomo Electric Industries, Ltd. 蛍光体とその製法及びこれを用いた発光デバイス
JP2006127884A (ja) * 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd 発光素子および表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916582B2 (ja) * 1978-12-08 1984-04-16 松下電器産業株式会社 硫化亜鉛系磁器螢光体およびその製造方法
JPS6366282A (ja) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan 超微粒子蛍光体
JP3250879B2 (ja) 1993-07-26 2002-01-28 株式会社リコー 画像支持体の再生方法および該再生方法に使用する再生装置
JPH07216351A (ja) 1994-01-28 1995-08-15 Fuji Electric Co Ltd 分散型el素子
JP3741157B2 (ja) 1995-05-08 2006-02-01 独立行政法人科学技術振興機構 エレクトロルミネッセンス材料、その製造方法及び発光素子
JP2000133463A (ja) 1998-10-23 2000-05-12 Matsushita Electric Ind Co Ltd 分散型elランプ
JP2000188181A (ja) 1998-12-22 2000-07-04 Canon Inc 発光装置、露光装置及び画像形成装置
WO2003020848A1 (fr) 2001-08-30 2003-03-13 Nemoto & Co., Ltd. Luminophore et son procede de preparation
US7598129B2 (en) * 2003-11-14 2009-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
KR20080014727A (ko) * 2004-12-27 2008-02-14 퀀덤 페이퍼, 인크. 어드레스 가능 및 프린트 가능 발광 디스플레이
US7791561B2 (en) * 2005-04-01 2010-09-07 Prysm, Inc. Display systems having screens with optical fluorescent materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254394A (ja) * 1986-04-25 1987-11-06 鐘淵化学工業株式会社 薄膜el素子及びその製造法
JP2005167229A (ja) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
WO2006025259A1 (ja) * 2004-09-03 2006-03-09 Sumitomo Electric Industries, Ltd. 蛍光体とその製法及びこれを用いた発光デバイス
JP2006127884A (ja) * 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd 発光素子および表示装置
JP2005187806A (ja) * 2004-11-29 2005-07-14 Japan Science & Technology Agency 発光薄膜及びその光デバイス

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102559A1 (ja) * 2007-02-23 2008-08-28 Panasonic Corporation 表示装置
US8110831B2 (en) 2007-02-23 2012-02-07 Panasonic Corporation Display device having a polycrystal phosphor layer sandwiched between the first and second electrodes
JP5191476B2 (ja) * 2007-02-23 2013-05-08 パナソニック株式会社 表示装置
WO2010035369A1 (ja) * 2008-09-25 2010-04-01 パナソニック株式会社 発光素子及び表示装置
US20110175098A1 (en) * 2008-09-25 2011-07-21 Masayuki Ono Light emitting element and display device
WO2013011889A1 (ja) * 2011-07-15 2013-01-24 タツモ株式会社 分散型el用蛍光体、分散型el素子およびこれらの製造方法
JPWO2013011889A1 (ja) * 2011-07-15 2015-02-23 タツモ株式会社 分散型el用蛍光体、分散型el素子およびこれらの製造方法
US9305736B2 (en) 2011-07-15 2016-04-05 Tazmo Co., Ltd. Phosphor for dispersion-type EL, dispersion-type EL device, and method of manufacturing the same
JP2014203767A (ja) * 2013-04-09 2014-10-27 タツモ株式会社 立体型無機el発光体

Also Published As

Publication number Publication date
US8179033B2 (en) 2012-05-15
JPWO2008032737A1 (ja) 2010-01-28
JP5014347B2 (ja) 2012-08-29
US20100188319A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5014347B2 (ja) 表示装置
US20050242712A1 (en) Multicolor electroluminescent display
JPWO2009057317A1 (ja) 発光素子、及び、表示装置
JP5191476B2 (ja) 表示装置
WO2003032690A1 (fr) Ecran a emission spontanee a l&#39;etat solide et son procede de production
JP2006127884A (ja) 発光素子および表示装置
CN111613639A (zh) 包括电致发光元件的显示装置
JP4943440B2 (ja) 発光素子及び表示装置
US7768031B2 (en) Light emitting device and method of producing a light emitting device
JP4723049B1 (ja) 直流駆動の無機エレクトロルミネッセンス素子と発光方法
JPWO2009047899A1 (ja) 発光素子、及び、表示装置
US7982388B2 (en) Light emitting element and display device
JPWO2008072520A1 (ja) 線状発光装置
WO2008069174A1 (ja) 面状発光装置
JP2010219078A (ja) 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法
JP2006120328A (ja) 分散型el素子
JPH04363892A (ja) 直流エレクトロルミネッセンス素子
JP2009117035A (ja) 発光素子及び表示装置
JP5062882B2 (ja) 無機エレクトロルミネッセンス素子
JP5046637B2 (ja) 無機エレクトロルミネッセント素子
JP2007149519A (ja) 発光素子および表示装置
JP2008146861A (ja) 表示装置
JP2008091755A (ja) 表示装置
JP2009048961A (ja) 発光素子及び表示装置
JP2005332695A (ja) 固体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534360

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12439753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807136

Country of ref document: EP

Kind code of ref document: A1