JPWO2008032737A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JPWO2008032737A1
JPWO2008032737A1 JP2008534360A JP2008534360A JPWO2008032737A1 JP WO2008032737 A1 JPWO2008032737 A1 JP WO2008032737A1 JP 2008534360 A JP2008534360 A JP 2008534360A JP 2008534360 A JP2008534360 A JP 2008534360A JP WO2008032737 A1 JPWO2008032737 A1 JP WO2008032737A1
Authority
JP
Japan
Prior art keywords
display device
light emitting
emitting layer
common electrode
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008534360A
Other languages
English (en)
Other versions
JP5014347B2 (ja
Inventor
麗子 谷口
麗子 谷口
小野 雅行
雅行 小野
昌吾 那須
昌吾 那須
佐藤 栄一
栄一 佐藤
俊之 青山
俊之 青山
長谷川 賢治
賢治 長谷川
小田桐 優
優 小田桐
正人 村山
正人 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008534360A priority Critical patent/JP5014347B2/ja
Publication of JPWO2008032737A1 publication Critical patent/JPWO2008032737A1/ja
Application granted granted Critical
Publication of JP5014347B2 publication Critical patent/JP5014347B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

基板と、前記基板上に第1方向に互いに平行に延在している複数の走査配線と、前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、前記スイッチング素子に接続した画素電極と、前記画素電極の上に設けた少なくとも1層の発光層と、前記発光層の上に設けた共通電極とを備え、前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析している。

Description

本発明は、エレクトロルミネッセンス(以下、ELと略記)素子を用いた表示装置、特に、アクティブマトリクス型表示装置に関する。
近年、軽量・薄型の面発光型素子としてエレクトロルミネッセンス素子(以下、EL素子という。)が注目されている。EL素子は大別すると、有機材料からなる蛍光体に直流電圧を印加し、電子と正孔とを再結合させて発光させる有機EL素子と、無機材料からなる蛍光体に交流電圧を印加し、およそ10V/cmもの高電界で加速された電子を無機蛍光体の発光中心に衝突させて励起させ、その緩和過程で無機蛍光体を発光させる無機EL素子とがある。
さらに、この無機EL素子には、無機蛍光体粒子を高分子有機材料からなるバインダ中に分散させ発光層とする分散型EL素子と、厚さが1μm程度の薄膜発光層の両側あるいは片側に絶縁層を設けた薄膜型EL素子とがある。これらのうち分散型EL素子は、消費電力が少なく、しかも製造が簡単なため製造コストが安くなる利点があるとして注目されている。従来の分散型EL素子は、積層構造であり、基板側から順に、基板、第1電極、発光層、絶縁体層、第2電極が積層されて構成されている。発光層は、ZnS:Mn等の無機蛍光体粒子を有機バインダに分散させた構成を有しており、絶縁体層はBaTiOなどの強絶縁体を有機バインダにて分散させた構成を有している。第1電極と第2電極の間には交流電源が設置され、交流電源から第1電極、第2電極間へ電圧を印加することで分散型EL素子は発光する。
分散型EL素子の構造において、発光層は分散型EL素子の輝度と効率を決定付ける層であり、この発光層の無機蛍光体粒子には、粒径15〜35μmの大きさのものが用いられている(例えば、特許文献1参照。)。また、分散型EL素子の発光層の発光色は発光層に用いられる無機蛍光体粒子によって決まり、例えば無機蛍光体粒子にZnS:Mnを用いた場合には橙色の発光を示し、例えば無機蛍光体粒子にZnS:Cuを用いた場合には青緑色の発光を示す。このように、発光色は使用する無機蛍光体粒子によって決まるため、それ以外の、例えば白色の発光色を得る場合、例えば、有機色素を有機バインダに混合させることで発光色を他の色に変換し、目的の発光色を得ている(例えば、特許文献2参照。)。
しかしながら、分散型EL素子に用いられる発光体は、発光輝度が低く、また、寿命が短いという問題があった。
発光輝度を上昇させる方法として、発光層への印加電圧を上げる方法が考えられる。この場合、印加電圧に反比例して発光体の光出力の半減期が減少しまうという課題がある。一方、半減期を長くする、つまり寿命を長くする方法としては、発光層への印加電圧を下げる方法が考えられるが、発光輝度が低下してしまうという課題がある。このように、発光輝度と半減期とは、発光層への印加電圧の増減によって一方を改善しようとすると、もう一方が悪化する相反関係にある。したがって、発光輝度か寿命(光出力の半減期)の何れかを選択しなければならなくなる。なお、本明細書における半減期とは、発光体の光出力が当初の発光輝度の半分の出力に減少するまでの時間である。
そこで、低電圧でEL素子を発光させる提案がなされている(例えば、特許文献3参照。)。このEL素子50は、図33に示されるように、CdSe微結晶の発光体粒子61を透明な導電体である酸化インジウム錫63の媒体中に分散させた発光層53を電極52、54間に挿入し、電圧を印加して発光させる方法である。このEL素子50では、電流注入型発光素子であるため、低電圧で駆動可能であるという特徴がある。
国際公開第WO03/020848号パンフレット 特開平7−216351号公報 特許第3741157号
前述のような無機EL素子をテレビ等の高品位なディスプレイデバイスとして利用する場合は、約300cd/m以上の輝度が必要とされる。しかしながら、前記提案における無機EL素子は、発光輝度の面で未だ不十分であり、実用的な課題が残されている。
また、前記無機EL素子の駆動には通常数100Vの交流電圧を数10kHzの高周波で印加する必要があり、薄膜トランジスタ等のアクティブ素子が使えない、駆動回路が高コスト化する、という課題もあり、現状では実用化が進んでいない。
一方、本発明者は、無機EL素子の低電圧化、高輝度化に向けて、鋭意研究を続けた結果、直流駆動が可能で、且つ、従来の無機EL素子に比べて十分に低い数10Vの電圧で高輝度発光する無機EL素子を見出した(以下、「直流駆動型無機EL素子」という。)。
本発明の目的は、低電圧駆動で高輝度表示が得られ、且つ、発光面内の輝度や色度の均一性に優れた表示装置を提供することである。
上記課題は、本発明に係る表示装置によって解決できる。すなわち、本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする。
また、本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする。
さらに、前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前記第1方向又は前記第2方向に互いに略平行に延在しているものであってもよい。
また、前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一定周期の長さに対応して変化しているものであってもよい。
さらに、前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設けられていてもよい。
また、本発明に係る表示装置は、基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に直交する第2方向に平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする。
さらに、前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素について少なくとも1箇所の開口部を有していてもよい。この場合、前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していてもよい。
また、前記共通電極は、前記基板に対して略全面ベタ状に設けられていてもよい。
さらに、前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が咬合して設けられていてもよい。
またさらに、前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えていてもよい。
また、前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変換層をさらに備えていてもよい。
さらに、前記第1半導体物質と前記第2半導体物質とは、互いに異なる伝導型の半導体構造を有するものであってもよい。またさらに、前記第1半導体物質はn型半導体構造を有し、前記第2半導体物質はp型半導体構造を有するものであってもよい。また、前記第1半導体物質及び前記第2半導体物質は、それぞれ化合物半導体であってもよい。さらに、前記第1半導体物質は、第12族−第16族間化合物半導体であってもよい。またさらに、前記第一半導体物質は、第13族−第15族間化合物半導体であってもよい。また、前記第一半導体物質は、カルコパイライト型化合物半導体であってもよい。またさらに、前記第1半導体物質は、立方晶構造を有するものであってもよい。
また、前記第1半導体物質は、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される少なくとも一種の元素を含んでいてもよい。
さらに、前記第1半導体物質よりなる多結晶体構造の平均結晶粒子径は、5〜500nmの範囲にあってもよい。
またさらに、前記第2半導体物質は、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNのいずれかであってもよい。
本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、p型半導体とn型半導体を有していることを特徴とする。
前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散した構成にしてもよい。また、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析し構成にしてもよい。
さらに、前記n型半導体は、前記p型半導体を介して前記第1及び第2電極と電気的に接合されていてもよい。
また、本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、p型半導体とn型半導体とを有していることを特徴とする。
さらに、前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散した構成にしてもよい。また、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析した構成にしてもよい。
また、前記n型半導体は、前記p型半導体を介して前記画素電極及び前記共通電極と電気的に接合されていてもよい。
さらに、前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前記第1方向又は前記第2方向に互いに略平行に延在していてもよい。またさらに、前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一定周期の長さに対応して変化していてもよい。また、前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設けられていてもよい。
また、本発明に係る表示装置は、基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に直交する第2方向に平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、p型半導体とn型半導体とを有していることを特徴とする。
さらに、前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散した構成にしてもよい。また、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析した構成にしてもよい。
また、前記n型半導体粒子は、前記p型半導体を介して前記第1及び第2電極と電気的に接合されていてもよい。
さらに、前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素について少なくとも1箇所の開口部を有していてもよい。この場合、前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していることが好ましい。
またさらに、前記共通電極は、前記基板に対して略全面ベタ状に設けられていてもよい。また、前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が咬合して設けられていてもよい。さらに、前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えてもよい。またさらに、前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変換層をさらに備えてもよい。
また、前記n型半導体及び前記p型半導体は、それぞれ化合物半導体であってもよい。さらに、前記n型半導体は、第12族−第16族間化合物半導体であってもよい。またさらに、前記n型半導体は、第13族−第15族間化合物半導体であってもよい。また、前記n型半導体は、カルコパイライト型化合物半導体であってもよい。
さらに、前記p型半導体は、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNのいずれかであってもよい。
本発明によれば、低電圧駆動で高輝度表示が得られる上、表示面内の輝度や色度の均一性に優れ、表示品位の高い表示装置を提供することができる。
本発明に係る表示装置によれば、低電圧駆動で高輝度表示が得られる上、表示面内の輝度や色度の均一性に優れ、表示品位の高い表示装置を提供することができる。
本発明に係る表示装置によれば、発光層は、n型半導体物質よりなる多結晶体構造であって、この多結晶体構造の粒界にp型半導体物質が偏析した構造を有する。発光層が上記構造を有することによって、粒界に偏析したp型半導体物質により正孔の注入性を改善することができ、低電圧で、高輝度で発光し、しかも長寿命の表示装置を実現することができる。
本発明に係る表示装置によれば、発光層は、(i)p型半導体の媒体中にn型半導体粒子が分散した構造、あるいは、(ii)n型半導体粒子の集合体であって、該粒子間にp型半導体が偏析した構造のいずれかを有する。発光層が上記構造を有することによって、n型半導体粒子内部または界面へ電子の注入とともに正孔を効率良く注入することができ、低電圧で、高輝度で発光し、しかも長寿命の表示装置を実現することができる。
(a)は、本発明の実施の形態1に係る表示装置の構成を示す概略図であり、(b)は、(a)の表示装置の表示部を構成する各画素の構成を示す概略図である。 本発明の実施の形態1に係る表示装置の表示部の各画素における配線を示す概略図である。 図2のA−A線に沿った発光面に垂直な方向から見た概略断面図である。 各画素のEL素子の模式的な構成を示す概略断面図である。 図4の発光層の構成を示す拡大概略図である。 本発明の実施の形態1に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態1に係る表示装置の別の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態2に係る表示装置の表示部の各画素における配線を示す概略図である。 図8のB−B線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態2に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態2に係る表示装置の別の変形例の発光面に垂直な概略断面図である。 本発明の実施の形態2に係る表示装置のさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態2に係る表示装置のまたさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態3に係る表示装置の表示部の各画素における配線を示す概略図である。 図14のC−C線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態3に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 (a)は、本発明の実施の形態4に係る表示装置の構成を示す概略図であり、(b)は、(a)の表示装置の表示部を構成する各画素の構成を示す概略図である。 本発明の実施の形態4に係る表示装置の表示部の各画素における配線を示す概略図である。 図18のA−A線に沿った発光面に垂直な方向から見た概略断面図である。 各画素のEL素子の模式的な構成を示す概略断面図である。 別例の各画素のEL素子の模式的な構成を示す概略断面図である。 本発明の実施の形態4に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態4に係る表示装置の別の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態5に係る表示装置の表示部の各画素における配線を示す概略図である。 図24のB−B線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態5に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態5に係る表示装置の別の変形例の発光面に垂直な概略断面図である。 本発明の実施の形態5に係る表示装置のさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態5に係る表示装置のまたさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態6に係る表示装置の表示部の各画素における配線を示す概略図である。 図30のC−C線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態6に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 従来例の無機EL素子の発光面に垂直な方向から見た概略構成図である。
以下、本発明の実施の形態に係る表示装置について添付図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。
(実施の形態1)
<表示装置の概略構成>
本発明の実施の形態1に係る表示装置100について、図1(a)及び(b)を用いて説明する。図1(a)は、実施の形態1に係る表示装置100の概略的な構成を示すブロック図である。表示装置100は、図1(a)に示すように、複数の画素が2次元配列している表示部101と、前記画素を選択的に駆動する駆動手段102と、駆動手段102の電力を供給する駆動用電源103とから構成される。なお、本実施の形態1においては、電源103として直流電源を用いている。また、駆動部102は、データ電極Xi1を駆動するデータ電極駆動回路121と、走査電極Yを駆動する走査電極駆動回路122とを備える。
表示部101は、画素がi列×j行の2次元配列しているEL素子アレイを備え、前記EL素子アレイの面に平行な第1方向に平行に延在している複数のデータ電極X11、X21、X31・・・Xi1と、EL素子アレイの面に平行であって、第1方向と直交する第2方向に平行に延在している複数の走査電極Y、Y、Y・・・Yと、前記EL素子アレイの面に平行な第1方向に平行に延在している複数の電流供給線X12、X22、X32・・・Xi2とを備える。このデータ電極Xi1と走査電極Yとの各交点において、一つの画素を構成している。
図1(b)は、図1(a)の各画素の構成を示す概略図である。各画素は、データ電極Xi1と、走査電極Yと、電流供給線Xi2と、該データ電極Xi1と走査電極Yとに接続されたスイッチング素子104と、電流ドライブ回路105と、キャパシタ106と、EL素子110とによって構成される。キャパシタ106は、該スイッチング素子104と電流供給線Xi2とに接続されている。電流ドライブ回路105は、スイッチング素子104と、キャパシタ106と、EL素子110とに接続されている。すなわち、この表示装置はアクティブマトリクス型表示装置である。
スイッチング素子104をonにするとデータ配線X11からの信号電圧がキャパシタ107に書き込まれ、その時の信号電圧に応じてスイッチング素子のゲート電圧が決定され、その導電率に応じた電流が電流供給配線X12より電流ドライブ素子105を通じてEL素子110に供給される。
<表示装置の配線構成>
図2は、本実施の形態の表示装置100の画素における配線の平面構成を概略的に示した斜視図である。このアクティブマトリクス型表示装置100は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらにEL素子では、LCDと異なり電流の供給が必須となるため、電力供給線13がデータ配線12に略平行に延在している。なお、上記配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。
<表示装置の断面構成>
また、図3は、図2のA−A線に沿った発光面に垂直な方向から見た概略断面図である。図4は、図3の一つの画素について、一つのEL素子110と考えた場合の模式的な概略図である。この表示装置では、基板10と該基板10の上に配置された上記配線及び電極からなるアレイ基板40の上に、発光層20が略平面状に形成されており、この発光層20が表示装置100の発光部分を構成している。また発光層20の上部には、共通電極15が形成される。走査配線11とデータ配線12により選択された画素において、一つの模式的なEL素子110が構成される。この模式的なEL素子110では、基板10の上に、画素電極14、発光層20、共通電極15が順に積層されて構成されている。一つの画素において構成されるEL素子110では、TFT30を介して、画素電極14に外部電圧、例えば、直流電源103によって電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光は、アレイ基板40とは反対側の面から外部へ取出される。
なお、表示装置100として、上述の構成に限られず、発光層20を複数層設ける、走査配線11、データ配線12、画素電極14、共通電極15の全てを透明電極にする、いずれかの電極を黒色電極とする、表示装置100の全部又は一部を封止する構造を更に備える、発光取出し方向の前方に発光層20からの発光色を色変換する構造を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合には、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図3ではカラーフィルタ17)及び/又は色変換フィルタ(図3では色変換層16)との組合せによりRGBの各色を表示する等、適宜変更が可能である。
以下、この表示装置100の各構成部材について詳述する。
<基板>
基板10は、その上に形成する各層を支持できるもので、且つ、電気絶縁性の高い材料を用いる。このような材料としては、例えば、コーニング1737等のガラス、石英、セラミック、表面に絶縁層を有する金属基板、シリコンウェハ等を用いることができる。通常のガラスに含まれるアルカリイオン等が発光層20へ影響しないように、無アルカリガラスや、ガラス表面にイオンバリア層としてアルミナ等をコートしたソーダライムガラスであってもよい。また、ポリエステル、ポリエチレンテレフタレート系、ポリクロロトリフルオロエチレン系とナイロン6の組み合わせやフッ素樹脂系材料、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミドなどの樹脂フィルム等を用いることもできる。樹脂フィルムは耐久性、柔軟性、透明性、電気絶縁性、防湿性の優れた材料を用いる。なお、これらは例示であって、基板10の材料は特にこれらに限定されるものではない。
<電極>
画素電極14、共通電極15には、公知の低抵抗の導電材料であればいずれでも適用できる。例えば、Pt、Au、Pd、Ag、Ni、Cu、Al、Ru、Rh、Ir、Cr、Mo、W、Ta、Nb、Ti等の金属材料、これらの積層構造が好ましい。ITOやInZnO、ZnO、SnO等を主体とする金属酸化物、ポリアニリン、ポリピロール、PEDOT〔ポリ(3,4−エチレンジオキシチオフェン)〕/PSS(ポリスチレンスルホン酸)等の導電性高分子、あるいは導電性カーボン等、金属以外の材料であっても、金属材料と積層する等併用することによって低抵抗化することにより用い得る。なお、画素電極14と共通電極15とでは異なる材料を使用してもよい。例えば、画素電極14を陽極として、共通電極15を陰極として構成する場合、画素電極14には、正孔注入性のよい仕事関数の大きな材料が選択され、共通電極15には、電子注入性のよい仕事関数の小さな材料が選択され得る。
<発光層>
次に、発光層20について説明する。図5は、発光層20を拡大視した概略構成図である。発光層20は、第1半導体物質21よりなる多結晶体構造であって、この多結晶体の粒界22に第2半導体物質23が偏析した構造を有する。第1半導体物質21としては、多数キャリアが電子であり、n型伝導を示す半導体材料が用いられる。一方、第2半導体物質23は、多数キャリアが正孔であり、p型伝導を示す半導体材料が用いられ、第1半導体物質21と第2半導体物質23は電気的に接合している。電極より注入された正孔と電子は、発光層中に高密度に散在している前述の偏析部において再結合し、発光が得られる。なお、ドナーやアクセプター準位をさらに経由して再結合したり、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能である。
第1半導体物質21としては、バンドギャップの大きさが近視外領域から可視光領域(1.7eVから3.6eV)を有するものが好ましく、さらに近視外領域から青色領域(2.6eVから3.6eV)を有するものがより好ましい。具体的には、前述のZnSや、ZnSe、ZnTe、CdS、CdSe等の第12族−第16族間化合物やこれらの混晶(例えばZnSSe等)、CaS、SrS等の第2族−第16族間化合物やこれらの混晶(例えばCaSSe等)、AlP、AlAs、GaN、GaP等の第13族−第15族間化合物やこれらの混晶(例えばInGaN等)、ZnMgS、CaSSe、CaSrS等の前記化合物の混晶等を用いることができる。またさらに、CuAlS等のカルコパイライト型化合物を用いてもよい。またさらに、第1半導体物質よりなる多結晶体は、主たる部分が立方晶構造を有しているものが好ましい。またさらに、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される1又は複数種の原子もしくはイオンを添加剤として含んでいてもよい。これらの元素の種類によっても、発光層20からの発光色が決定される。
一方、第2半導体物質23としては、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNである。これらの材料にはp型伝導を付与するための添加剤として、N、Cu、Inから1又は複数種の原子を添加剤として含んでいてもよい。
上記発光層20の構成は、焼成法、気相合成法、爆発法、水熱合成法、高温高圧合成法、フラックス法、共沈法などの製造方法によって実現できる。
本実施の形態1に係る表示装置100の特徴は、発光層20がn型半導体物質21よりなる多結晶体構造であって、この多結晶体構造の粒界22にp型半導体物質23が偏析した構造を有する点にある。従来の無機ELでは、発光層の結晶性を高めることで、高電界で加速された電子が散乱されることを防いでいたが、ZnSやZnSe等は一般にn型伝導を示すため、正孔の供給が十分ではなく、電子と正孔の再結合による高輝度の発光は期待できない。一方で、発光層の結晶粒が成長すると、単結晶でない限り、結晶粒界も一意的に伸びる。高電圧を印加する従来の無機EL素子では、膜厚方向の粒界が導電パスとなり、耐圧低下を引き起こすという課題も生じる。これに対して、本発明者は、鋭意研究の結果、発光層20をn型半導体物質21よりなる多結晶体構造であって、この多結晶体構造の粒界22にp型半導体物質23が偏析した構造とすることによって、粒界に偏析したp型半導体物質により正孔の注入性が改善されることを見出した。さらに、発光層20中に偏析部を高密度に散在させることで、電子と正孔の再結合型発光が効率よく生じることを見出した。これによって、低電圧で高輝度発光する発光素子を実現することができ、本発明に至ったものである。また、ドナーあるいはアクセプターを導入することにより、自由電子とアクセプターに捕獲された正孔の再結合、自由正孔とドナーに捕獲された電子の再結合、ドナー−アクセプター対発光も同様に可能である。またさらに、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能である。
以下、実施の形態1に係る表示装置100の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層を用いる場合についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)基板10上に、走査配線11と走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層32上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)続いて、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)続いて、データ配線12及び電流供給線13を、例えばAlを使用し、パターン形成する。データ配線12及び電流供給線13は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。膜厚は200nmとする。
(7)続いて、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。このようにして、アレイ基板40を形成できる。
(8)基板10上に、発光層20を以下のようにして形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、ZnSとCuSを上記アレイ基板40の上に共蒸着した後、アニール処理することにより、ZnSの多結晶構造とCuSの偏析部を有する発光層20を得ることができる。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。詳細は明らかではないが、ZnSとCuSとの相分離が生じ、前記偏析構造が形成されるものと考えられる。
(10)続いて、共通電極15を、例えばITOを使用し、パターン形成する。膜厚は200nmとする。
(11)続いて、共通電極15上に、保護層(図では省略)として、例えば、窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置100を得ることができる。この表示装置100では、5〜10V程度の低電圧で高い発光輝度を得ることができた。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成される。画素電極は、駆動TFTのドレインに接続される。この場合、走査配線に接続された選択TFTをonにするとデータ配線からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電流供給配線より画素電極を通じて発光層に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、カラーの表示装置とする場合には、発光層をRGBの各色の蛍光体で色分けして成膜すればよい。あるいは、透明電極/発光層/背面電極といったRGB各色毎の発光ユニットを積層してもよい。また更に、別例のカラー表示装置の場合、単一色又は2色の発光層による表示装置を作成した後、カラーフィルタ及び/又は色変換フィルタを用いて、RGBの各色を表示することもできる。
また、実施の形態1の変形例として、図6の概略断面図に示すように、絶縁性の保護膜18aを画素電極14の上にも形成し、さらに、共通電極15の下に薄い絶縁層18bを形成して、交流駆動とする変更や、図7の概略断面図に示すように、平坦化絶縁層19を形成し、該平坦化絶縁層19の上に画素電極14を形成してコンタクトホールを介してドレイン34と接続する、といった変更も適宜可能である。
<効果>
本実施の形態1に係る表示装置は、高い発光効率を持つ発光層を用いることにより、従来に比べ低電圧駆動で高輝度な発光が可能である。
(実施の形態2)
<表示装置の概略構成>
図8は、本実施の形態2の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図9は、図8のB−B線での発光面に垂直な方向から見た断面構成を概略的に示した図である。このアクティブマトリクス型表示装置10は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、1つの画素電極14に対して対をなす少なくとも1つの共通電極15を備え、共通電極15は、データ配線12に略平行に延在している。これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置100の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図9では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図9ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態2に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態1に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態2に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層20についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)ガラス基板10上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)また、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)さらに、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。
(7)次いで、データ配線12と共通電極15とを、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。また、共通電極15は、隣接するデータ配線12と画素電極15との間に、且つデータ配線12に対して略平行に形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(8)次に、アレイ基板40上に発光層20を形成する。複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射して、ZnSとCuSを共蒸着した後、アニール処理することにより、ZnSの多結晶構造とCuSの偏析部を有する発光層20を得ることができる。
(9)さらに、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、実施の形態2の変形例として、図10の概略断面図に示すように、画素電極14及び共通電極15上にも、薄い絶縁層18を形成し、交流駆動とする変更や、図11の概略断面図に示すように、平坦化絶縁層19を形成し、コンタクトホールを介して画素電極14及び共通電極15形成する、といった変更も適宜可能である。またさらに、画素電極14及び共通電極15は、幅や長さ、厚さは任意の形状とすることができる。例えば、図12の斜視図に一例を示すように櫛形形状を有し、画素電極14と共通電極15との櫛形形状部分が互いに咬合するように配置していてもよい。これによって、画素電極14と共通電極15との間の導電経路を特定することなく、均一な発光を実現することができる。また、図13の斜視図に示すように、共通電極15の非画素領域での幅を太くしてもよい。例えば、ゲート配線11に沿って、共通電極15の延在方向に垂直な方向の幅を太くしてもよい。これによって、共通電極15からゲート電極11側への放熱効果を高めることができる。
<効果>
本発明者による直流駆動型無機EL素子では、発光層が半導体領域の抵抗率を有しており、マトリクス構造の表示装置に適用した場合、透明電極の抵抗による電圧降下が大きいことが予想され、実用面での課題があった。今回、この直流駆動型無機EL素子の発光層が、むしろ低抵抗であることから、本発明者は、発光層20の面方向への通電による発光が可能であることを見出し、本実施の形態の表示装置の構成を実現することができた。本実施の形態に係る表示装置では、低抵抗の発光層20の面方向への通電によって発光を得ることができる。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性が改善される。
(実施の形態3)
<表示装置の概略構成>
図14は、本実施の形態3の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図15は、図14のC−C線での発光面に垂直な方向から見た断面図である。このアクティブマトリクス型表示装置は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、画素電極14に対して対をなす略全面ベタ状の共通電極15を備える。共通電極15は、前記配線、電極、TFT30とは絶縁層18を介して、電気的に分離され設けられている。絶縁層18は、1画素につき少なくとも1ヶ所の開口部があり、下層の共通電極15が露出している。またさらに、これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図15では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図15ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態3に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態1に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態3に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)続いて、ガラス基板10上に、例えば、Taを用いてベタ状の共通電極15を形成する。膜厚は200nmとする。
(3)続いて、共通電極15上に、例えば窒化シリコン等の絶縁層18を形成する。さらに、フォトリソグラフィ法によって、画素に応じた開口部をパターン形成し、共通電極15の露出部を形成する。
(4)続いて、絶縁層18上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。走査配線11は、例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(5)続いて、走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁層を形成する。さらに、前述の開口部に合わせて、ゲート絶縁膜23についてもパターン形成し、共通電極15の露出部を形成する。
(6)続いて、前記ゲート絶縁膜32上に、TFTのスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(7)続いて、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(8)続いて、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。同時に、前述の開口部に合わせて、共通電極15の露出部を形成する。
(9)続いて、データ配線12を、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ走査配線11に対して略直交するように形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(10)続いて、アレイ基板40上に発光層20を形成する。複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射して、ZnSとCuSを共蒸着した後、アニール処理することにより、ZnSの多結晶構造とCuSの偏析部を有する発光層20を得ることができる。
(11)続いて、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、実施の形態3の変形例として、図16の概略断面図に示すように、画素電極14及び共通電極15上にも、薄膜絶縁層18bを形成し、交流駆動とする変更も適宜可能である。またさらに、実施の形態2の変形例と同様に、画素電極14及び共通電極15の露出部は、幅や長さ、厚さは任意の形状であってもよく、櫛型形状に形成して互いに咬合するように配置していてもよい。
<効果>
本実施の形態3に係る表示装置は、低抵抗の発光層を用いており面方向への通電による発光が可能である。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置が構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性が改善される。さらに共通電極が略全面ベタ状に形成されているため、発光時に生じるジュール熱等の放熱性にも優れており、面内の温度分布によって生じる画素間の温度特性による輝度ムラ、色ムラ等も抑えられる。
(実施の形態4)
<表示装置の概略構成>
本発明の実施の形態4に係る表示装置100について、図17(a)及び(b)を用いて説明する。図17(a)は、実施の形態4に係る表示装置100の概略的な構成を示すブロック図である。表示装置100は、図17(a)に示すように、複数の画素が2次元配列している表示部101と、前記画素を選択的に駆動する駆動手段102と、駆動手段102の電力を供給する駆動用電源103とから構成される。なお、本実施の形態4においては、電源103として直流電源を用いている。また、駆動部102は、データ電極Xi1を駆動するデータ電極駆動回路121と、走査電極Yを駆動する走査電極駆動回路122とを備える。
表示部101は、画素がi列×j行の2次元配列しているEL素子アレイを備え、前記EL素子アレイの面に平行な第1方向に平行に延在している複数のデータ電極X11、X21、X31・・・Xi1と、EL素子アレイの面に平行であって、第1方向と直交する第2方向に平行に延在している複数の走査電極Y、Y、Y・・・Yと、前記EL素子アレイの面に平行な第1方向に平行に延在している複数の電流供給線X12、X22、X32・・・Xi2とを備える。このデータ電極Xi1と走査電極Yとの各交点において、一つの画素を構成している。
図17(b)は、図17(a)の各画素の構成を示す概略図である。各画素は、データ電極Xi1と、走査電極Yと、電流供給線Xi2と、該データ電極Xi1と走査電極Yとに接続されたスイッチング素子104と、電流ドライブ回路105と、キャパシタ106と、EL素子110とによって構成される。キャパシタ106は、該スイッチング素子104と電流供給線Xi2とに接続されている。電流ドライブ回路105は、スイッチング素子104と、キャパシタ106と、EL素子110とに接続されている。すなわち、この表示装置はアクティブマトリクス型表示装置である。
スイッチング素子104をonにするとデータ配線X11からの信号電圧がキャパシタ107に書き込まれ、その時の信号電圧に応じてスイッチング素子のゲート電圧が決定され、その導電率に応じた電流が電流供給配線X12より電流ドライブ素子105を通じてEL素子110に供給される。
<表示装置の配線構成>
図18は、本実施の形態の表示装置100の画素における配線の平面構成を概略的に示した斜視図である。このアクティブマトリクス型表示装置100は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらにEL素子では、LCDと異なり電流の供給が必須となるため、電力供給線13がデータ配線12に略平行に延在している。なお、上記配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。
<表示装置の断面構成>
また、図19は、図18のA−A線に沿った発光面に垂直な方向から見た概略断面図である。図20は、図19の一つの画素について、一つのEL素子110と考えた場合の模式的な概略図である。この表示装置では、基板10と該基板10の上に配置された上記配線及び電極からなるアレイ基板40の上に、発光層20が略平面状に形成されており、この発光層20が表示装置100の発光部分を構成している。また発光層20の上部には、共通電極15が形成される。走査配線11とデータ配線12により選択された画素において、一つの模式的なEL素子110が構成される。この模式的なEL素子110では、基板10の上に、画素電極14、発光層20、共通電極15が順に積層されて構成されている。一つの画素において構成されるEL素子110では、TFT30を介して、画素電極14に外部電圧、例えば、直流電源103によって電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光は、アレイ基板40とは反対側の面から外部へ取出される。
さらに、この表示装置100では、発光層20が、図20に示すように、n型半導体粒子21の集合体で構成され、該粒子間にp型半導体23が偏析していることを特徴とする。また、図21に示す別例のEL素子110aでは、発光層20が、p型半導体23の媒体の中にn型半導体粒子21が分散して構成されたことを特徴とする。このように、n型半導体粒子とp型半導体との界面を多く形成することによって、正孔の注入性が改善され、電子と正孔の再結合型発光が効率よく生じ、低電圧で高輝度発光するEL素子110を実現することができる。さらに、n型半導体粒子21がp型半導体23を介して電極と電気的に接続されている構成とすることによって、発光効率を向上させることができ、低電圧で発光が可能で、且つ、高輝度発光する表示装置が得られる。
なお、表示装置100として、上述の構成に限られず、発光層20を複数層設ける、走査配線11、データ配線12、画素電極14、共通電極15の全てを透明電極にする、いずれかの電極を黒色電極とする、表示装置100の全部又は一部を封止する構造を更に備える、発光取出し方向の前方に発光層20からの発光色を色変換する構造を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合には、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図19ではカラーフィルタ17)及び/又は色変換フィルタ(図19では色変換層16)との組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態4に係る表示装置の各構成部材は、その特徴について説明するもの以外は、上記実施の形態1に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
<発光層>
この発光層20は、画素電極14と共通電極15との間に挟持され、次の2つのうち、いずれかの構造を有する。
(i)n型半導体粒子の集合体であって、該粒子間にp型半導体23が偏析した構造(例えば、図20に示す構造)。なお、上記n型半導体粒子21の集合体は、それ自体で層を構成している。
(ii)p型半導体23の媒体中にn型半導体粒子21が分散した構造(例えば、図21に示す構造)。
更に、発光層20を構成する各n型半導体粒子21が、p型半導体23を介して画素電極14及び共通電極15と電気的に接合されていることが好ましい。
<発光体>
n型半導体粒子21の材料は、多数キャリアが電子でありn型伝導を示すn型半導体材料である。材料としては、第12族−第16族間化合物半導体であってもよい。また、第13族−第15族間化合物半導体であってもよい。具体的には、光学バンドギャップが可視光の大きさを有する材料であって、例えば、ZnS,ZnSe、GaN、InGaN、AlN、GaAlN、GaP、CdSe、CdTe、SrS、CaSを母体とし、母体のまま使用するか、あるいは添加剤として、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される1又は複数種の原子もしくはイオンを添加剤として含んでいてもよい。これらの元素の種類によっても、発光層20からの発光色が決定される。
一方、p型半導体23の材料は、多数キャリアが正孔であり、p型伝導を示すp型半導体材料である。このp型半導体材料としては、例えば、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTeなどの化合物や、更にGaN,InGaN等の窒化物である。このp型半導体の材料のうち、CuSなどは、本来的にp型伝導を示すが、その他の材料は添加剤として窒素、Ag、Cu、Inから一種以上選択される元素を添加して用いる。また、p型半導体23として、p型伝導を示すCuGaS、CuAlSなどのカルコパイライト型化合物を用いても良い。
上記各半導体の製造方法としては、焼成法、気相合成法、爆発法、水熱合成法、高温高圧合成法、フラックス法、共沈法などを用いることができる。
本実施の形態に係る表示装置100の特徴は、発光層20が、(i)n型半導体粒子21の粒子間にp型半導体23が偏析した構造(図20)、(ii)p型半導体23の媒体中にn型半導体粒子21が分散した構造(図21)のいずれかの構造を有することである。図33に示す従来例のように、半導体粒子61と電気的に接合する媒体がインジウム錫酸化物63の場合、電子が半導体粒子61に到達して発光することが可能であるが、インジウム錫酸化物の正孔濃度は小さいため、再結合するための正孔が不足する。従って、電子と正孔の再結合による高輝度の発光は期待できない。そこで、本発明者は、特に高輝度で効率良く、しかも連続した発光を得るために、発光層20において、電子の注入とともに正孔を効率良く注入することができる構造に着目した。上記構造を実現するためには、発光体粒子内部または界面に多くの正孔が到達すること、更に電子の注入電極に対向する電極からの正孔の注入が速やかに行われかつ発光体粒子あるいは界面に到達する必要がある。そこで、本発明者は鋭意研究の結果、発光層20の構造として、上記(i)、(ii)のうち、いずれかの構造とすることによって、n型半導体粒子21内部または界面へ電子の注入とともに正孔を効率良く注入することができることを見出した。すなわち、上記各構造の発光層20によれば、電極から注入された電子は、p型半導体23を通してn型半導体粒子21に到達し、一方、他方の電極から多くの正孔が発光体粒子に到達し、電子と正孔との再結合によって効率よく発光させることができる。これによって、低電圧で高輝度発光する表示装置を実現することができ、本発明に至ったものである。また、ドナーあるいはアクセプターを導入することにより、自由電子とアクセプターに捕獲された正孔の再結合、自由正孔とドナーに捕獲された電子の再結合、ドナー−アクセプター対発光も同様に可能である。またさらに、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能である。
以下、実施の形態4に係る表示装置100の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層を用いる場合についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)基板10上に、走査配線11と走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層32上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)次に、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)さらに、データ配線12及び電流供給線13を、例えばAlを使用し、パターン形成する。データ配線12及び電流供給線13は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。膜厚は200nmとする。
(7)続いて、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。このようにして、アレイ基板40を形成できる。
(8)基板10上に、発光層20を以下のようにして形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、基板10上に発光層20として成膜する。このとき、基板温度は200℃とし、ZnSとCuSを共蒸着する。
(9)発光層20の成膜後、硫黄雰囲気中、700℃で約1時間焼成する。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。詳細は明らかではないが、ZnSとCuSとの相分離が生じ、前記偏析構造が形成されたものと考えられる。
(10)また、共通電極15を、例えばITOを使用し、パターン形成する。膜厚は200nmとする。
(11)さらに、共通電極15上に、保護層(図では省略)として、例えば、窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置100を得ることができる。この表示装置では、5〜10V程度の低電圧で高い発光輝度を得ることができた。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成される。画素電極は、駆動TFTのドレインに接続される。この場合、走査配線に接続された選択TFTをonにするとデータ配線からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電流供給配線より画素電極を通じて発光層に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、カラーの表示装置とする場合には、発光層をRGBの各色の蛍光体で色分けして成膜すればよい。あるいは、透明電極/発光層/背面電極といったRGB各色毎の発光ユニットを積層してもよい。また更に、別例のカラー表示装置の場合、単一色又は2色の発光層による表示装置を作成した後、カラーフィルタ及び/又は色変換フィルタを用いて、RGBの各色を表示することもできる。
また、実施の形態4の変形例として、図22の概略断面図に示すように、絶縁性の保護膜18aを画素電極14の上にも形成し、さらに、共通電極15の下に薄い絶縁層18bを形成して、交流駆動とする変更や、図23の概略断面図に示すように、平坦化絶縁層19を形成し、該平坦化絶縁層19の上に画素電極14を形成してコンタクトホールを介してドレイン34と接続する、といった変更も適宜可能である。
<効果>
本実施の形態4に係る表示装置は、高い発光効率を持つ発光層を用いることにより、従来に比べ低電圧駆動で高輝度な発光が可能である。
(実施の形態5)
<表示装置の概略構成>
図24は、本実施の形態5の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図25は、図24のB−B線での発光面に垂直な方向から見た断面構成を概略的に示した図である。このアクティブマトリクス型表示装置10は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、1つの画素電極14に対して対をなす少なくとも1つの共通電極15を備え、共通電極15は、データ配線12に略平行に延在している。これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置100の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図25では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図25ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態5に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態4に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態5に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層20についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)ガラス基板10上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)また、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)さらに、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。
(7)次いで、データ配線12と共通電極15とを、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。また、共通電極15は、隣接するデータ配線12と画素電極15との間に、且つデータ配線12に対して略平行に形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(8)次に、アレイ基板40上に発光層20を形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、基板10上に発光層20として成膜する。このとき、基板温度は200℃とし、ZnSとCuSを共蒸着する。
(9)発光層20の成膜後、硫黄雰囲気中、700℃で約1時間焼成する。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。
(10)さらに、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、実施の形態5の変形例として、図26の概略断面図に示すように、画素電極14及び共通電極15上にも、薄い絶縁層18を形成し、交流駆動とする変更や、図27の概略断面図に示すように、平坦化絶縁層19を形成し、コンタクトホールを介して画素電極14及び共通電極15形成する、といった変更も適宜可能である。またさらに、画素電極14及び共通電極15は、幅や長さ、厚さは任意の形状とすることができる。例えば、図28の斜視図に一例を示すように櫛形形状を有し、画素電極14と共通電極15との櫛形形状部分が互いに咬合するように配置していてもよい。これによって、画素電極14と共通電極15との間の導電経路を特定することなく、均一な発光を実現することができる。また、図29の斜視図に示すように、共通電極15の非画素領域での幅を太くしてもよい。例えば、ゲート配線11に沿って、共通電極15の延在方向に垂直な方向の幅を太くしてもよい。これによって、共通電極15からゲート電極11側への放熱効果を高めることができる。
<効果>
本発明者による直流駆動型無機EL素子では、発光層が半導体領域の抵抗率を有している。この直流駆動型無機EL素子をマトリクス構造の表示装置に適用するため、膜厚方向から発光を取り出すために透明電極を用いる場合があるが、本発明者は、この場合に透明電極の抵抗による電圧降下が大きいという実用面での課題があることに気付いたものである。今回、この直流駆動型無機EL素子の発光層が、低抵抗であることから、本発明者は、発光層20の面方向への通電による発光が可能であることを見出し、本実施の形態の表示装置の構成を実現することができた。本実施の形態に係る表示装置では、低抵抗の発光層20の面方向への通電によって発光を得ることができる。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられるため、面内の輝度や色度の均一性が改善される。
(実施の形態6)
<表示装置の概略構成>
図30は、本実施の形態6の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図31は、図30のC−C線での発光面に垂直な方向から見た断面図である。このアクティブマトリクス型表示装置は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、画素電極14に対して対をなす略全面ベタ状の共通電極15を備える。共通電極15は、前記配線、電極、TFT30とは絶縁層18を介して、電気的に分離され設けられている。絶縁層18は、1画素につき少なくとも1ヶ所の開口部があり、下層の共通電極15が露出している。またさらに、これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図31では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図31ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態6に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態4に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態6に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)次に、ガラス基板10上に、例えば、Taを用いてベタ状の共通電極15を形成する。膜厚は200nmとする。
(3)共通電極15上に、例えば窒化シリコン等の絶縁層18を形成する。さらに、フォトリソグラフィ法によって、画素に応じた開口部をパターン形成し、共通電極15の露出部を形成する。
(4)また、絶縁層18上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。走査配線11は、例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(5)さらに、走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁層を形成する。さらに、前述の開口部に合わせて、ゲート絶縁膜23についてもパターン形成し、共通電極15の露出部を形成する。
(6)次いで、前記ゲート絶縁膜32上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(7)その後、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(8)次いで、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。同時に、前述の開口部に合わせて、共通電極15の露出部を形成する。
(9)また、データ配線12を、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ走査配線11に対して略直交するように形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(10)さらに、アレイ基板40上に発光層20を形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、基板10上に発光層20として成膜する。このとき、基板温度は200℃とし、ZnSとCuSを共蒸着する。
(11)発光層20の成膜後、硫黄雰囲気中、700℃で約1時間焼成する。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。
(12)その後、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間階調制御技術等に適宜変更が可能である。
また、実施の形態6の変形例として、図32の概略断面図に示すように、画素電極14及び共通電極15上にも、薄膜絶縁層18bを形成し、交流駆動とする変更も適宜可能である。またさらに、実施の形態5の変形例と同様に、画素電極14及び共通電極15の露出部は、幅や長さ、厚さは任意の形状であってもよく、櫛型形状に形成して互いに咬合するように配置していてもよい。
<効果>
本実施の形態6に係る表示装置は、低抵抗の発光層を用いており、発光層の面方向への通電による発光が可能である。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能であり、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性が改善される。さらに共通電極が略全面ベタ状に形成されているため、発光時に生じるジュール熱等の放熱性にも優れており、面内の温度分布によって生じる画素間の温度特性による輝度ムラ、色ムラ等も抑えられる。
本発明に係る表示装置は、低電圧駆動で高輝度表示が得られ、且つ、面内の輝度や色度の均一性に優れた表示装置を提供するものである。特に、テレビ等の高品位ディスプレイデバイスとして有用である。
本発明は、エレクトロルミネッセンス(以下、ELと略記)素子を用いた表示装置、特に、アクティブマトリクス型表示装置に関する。
近年、軽量・薄型の面発光型素子としてエレクトロルミネッセンス素子(以下、EL素子という。)が注目されている。EL素子は大別すると、有機材料からなる蛍光体に直流電圧を印加し、電子と正孔とを再結合させて発光させる有機EL素子と、無機材料からなる蛍光体に交流電圧を印加し、およそ10V/cmもの高電界で加速された電子を無機蛍光体の発光中心に衝突させて励起させ、その緩和過程で無機蛍光体を発光させる無機EL素子とがある。
さらに、この無機EL素子には、無機蛍光体粒子を高分子有機材料からなるバインダ中に分散させ発光層とする分散型EL素子と、厚さが1μm程度の薄膜発光層の両側あるいは片側に絶縁層を設けた薄膜型EL素子とがある。これらのうち分散型EL素子は、消費電力が少なく、しかも製造が簡単なため製造コストが安くなる利点があるとして注目されている。従来の分散型EL素子は、積層構造であり、基板側から順に、基板、第1電極、発光層、絶縁体層、第2電極が積層されて構成されている。発光層は、ZnS:Mn等の無機蛍光体粒子を有機バインダに分散させた構成を有しており、絶縁体層はBaTiOなどの強絶縁体を有機バインダにて分散させた構成を有している。第1電極と第2電極の間には交流電源が設置され、交流電源から第1電極、第2電極間へ電圧を印加することで分散型EL素子は発光する。
分散型EL素子の構造において、発光層は分散型EL素子の輝度と効率を決定付ける層であり、この発光層の無機蛍光体粒子には、粒径15〜35μmの大きさのものが用いられている(例えば、特許文献1参照。)。また、分散型EL素子の発光層の発光色は発光層に用いられる無機蛍光体粒子によって決まり、例えば無機蛍光体粒子にZnS:Mnを用いた場合には橙色の発光を示し、例えば無機蛍光体粒子にZnS:Cuを用いた場合には青緑色の発光を示す。このように、発光色は使用する無機蛍光体粒子によって決まるため、それ以外の、例えば白色の発光色を得る場合、例えば、有機色素を有機バインダに混合させることで発光色を他の色に変換し、目的の発光色を得ている(例えば、特許文献2参照。)。
しかしながら、分散型EL素子に用いられる発光体は、発光輝度が低く、また、寿命が短いという問題があった。
発光輝度を上昇させる方法として、発光層への印加電圧を上げる方法が考えられる。この場合、印加電圧に反比例して発光体の光出力の半減期が減少しまうという課題がある。一方、半減期を長くする、つまり寿命を長くする方法としては、発光層への印加電圧を下げる方法が考えられるが、発光輝度が低下してしまうという課題がある。このように、発光輝度と半減期とは、発光層への印加電圧の増減によって一方を改善しようとすると、もう一方が悪化する相反関係にある。したがって、発光輝度か寿命(光出力の半減期)の何れかを選択しなければならなくなる。なお、本明細書における半減期とは、発光体の光出力が当初の発光輝度の半分の出力に減少するまでの時間である。
そこで、低電圧でEL素子を発光させる提案がなされている(例えば、特許文献3参照。)。このEL素子50は、図33に示されるように、CdSe微結晶の発光体粒子61を透明な導電体である酸化インジウム錫63の媒体中に分散させた発光層53を電極52、54間に挿入し、電圧を印加して発光させる方法である。このEL素子50では、電流注入型発光素子であるため、低電圧で駆動可能であるという特徴がある。
国際公開第WO03/020848号パンフレット 特開平7−216351号公報 特許第3741157号
前述のような無機EL素子をテレビ等の高品位なディスプレイデバイスとして利用する場合は、約300cd/m以上の輝度が必要とされる。しかしながら、前記提案における無機EL素子は、発光輝度の面で未だ不十分であり、実用的な課題が残されている。
また、前記無機EL素子の駆動には通常数100Vの交流電圧を数10kHzの高周波で印加する必要があり、薄膜トランジスタ等のアクティブ素子が使えない、駆動回路が高コスト化する、という課題もあり、現状では実用化が進んでいない。
一方、本発明者は、無機EL素子の低電圧化、高輝度化に向けて、鋭意研究を続けた結果、直流駆動が可能で、且つ、従来の無機EL素子に比べて十分に低い数10Vの電圧で高輝度発光する無機EL素子を見出した(以下、「直流駆動型無機EL素子」という。)。
本発明の目的は、低電圧駆動で高輝度表示が得られ、且つ、発光面内の輝度や色度の均一性に優れた表示装置を提供することである。
上記課題は、本発明に係る表示装置によって解決できる。すなわち、本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする。
また、本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする。
さらに、前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前記第1方向又は前記第2方向に互いに略平行に延在しているものであってもよい。
また、前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一定周期の長さに対応して変化しているものであってもよい。
さらに、前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設けられていてもよい。
また、本発明に係る表示装置は、基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に直交する第2方向に平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする。
さらに、前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素について少なくとも1箇所の開口部を有していてもよい。この場合、前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していてもよい。
また、前記共通電極は、前記基板に対して略全面ベタ状に設けられていてもよい。
さらに、前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が咬合して設けられていてもよい。
またさらに、前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えていてもよい。
また、前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変換層をさらに備えていてもよい。
さらに、前記第1半導体物質と前記第2半導体物質とは、互いに異なる伝導型の半導体構造を有するものであってもよい。またさらに、前記第1半導体物質はn型半導体構造を有し、前記第2半導体物質はp型半導体構造を有するものであってもよい。また、前記第1半導体物質及び前記第2半導体物質は、それぞれ化合物半導体であってもよい。さらに、前記第1半導体物質は、第12族−第16族間化合物半導体であってもよい。またさらに、前記第一半導体物質は、第13族−第15族間化合物半導体であってもよい。また、前記第一半導体物質は、カルコパイライト型化合物半導体であってもよい。またさらに、前記第1半導体物質は、立方晶構造を有するものであってもよい。
また、前記第1半導体物質は、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される少なくとも一種の元素を含んでいてもよい。
さらに、前記第1半導体物質よりなる多結晶体構造の平均結晶粒子径は、5〜500nmの範囲にあってもよい。
またさらに、前記第2半導体物質は、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNのいずれかであってもよい。
本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と、
前記発光層の上に設けた共通電極と
を備え、
前記発光層は、p型半導体とn型半導体を有していることを特徴とする。
前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散した構成にしてもよい。また、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析し構成にしてもよい。
さらに、前記n型半導体は、前記p型半導体を介して前記第1及び第2電極と電気的に接合されていてもよい。
また、本発明に係る表示装置は、基板と、
前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記基板に対して前記画素電極と同一面上に設けた共通電極と、
前記画素電極及び前記共通電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、p型半導体とn型半導体とを有していることを特徴とする。
さらに、前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散した構成にしてもよい。また、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析した構成にしてもよい。
また、前記n型半導体は、前記p型半導体を介して前記画素電極及び前記共通電極と電気的に接合されていてもよい。
さらに、前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前記第1方向又は前記第2方向に互いに略平行に延在していてもよい。またさらに、前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一定周期の長さに対応して変化していてもよい。また、前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設けられていてもよい。
また、本発明に係る表示装置は、基板と、
前記基板上に設けた共通電極と、
前記共通電極上に設けた絶縁層と、
前記絶縁層上に第1方向に互いに平行に延在している複数の走査配線と、
前記基板面に平行であって前記第1方向に直交する第2方向に平行に延在している複数のデータ配線と、
前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
前記スイッチング素子に接続した画素電極と、
前記画素電極の上に設けた少なくとも1層の発光層と
を備え、
前記発光層は、p型半導体とn型半導体とを有していることを特徴とする。
さらに、前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散した構成にしてもよい。また、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析した構成にしてもよい。
また、前記n型半導体粒子は、前記p型半導体を介して前記第1及び第2電極と電気的に接合されていてもよい。
さらに、前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素について少なくとも1箇所の開口部を有していてもよい。この場合、前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していることが好ましい。
またさらに、前記共通電極は、前記基板に対して略全面ベタ状に設けられていてもよい。また、前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が咬合して設けられていてもよい。さらに、前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えてもよい。またさらに、前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変換層をさらに備えてもよい。
また、前記n型半導体及び前記p型半導体は、それぞれ化合物半導体であってもよい。さらに、前記n型半導体は、第12族−第16族間化合物半導体であってもよい。またさらに、前記n型半導体は、第13族−第15族間化合物半導体であってもよい。また、前記n型半導体は、カルコパイライト型化合物半導体であってもよい。
さらに、前記p型半導体は、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNのいずれかであってもよい。
本発明によれば、低電圧駆動で高輝度表示が得られる上、表示面内の輝度や色度の均一性に優れ、表示品位の高い表示装置を提供することができる。
本発明に係る表示装置によれば、低電圧駆動で高輝度表示が得られる上、表示面内の輝度や色度の均一性に優れ、表示品位の高い表示装置を提供することができる。
本発明に係る表示装置によれば、発光層は、n型半導体物質よりなる多結晶体構造であって、この多結晶体構造の粒界にp型半導体物質が偏析した構造を有する。発光層が上記構造を有することによって、粒界に偏析したp型半導体物質により正孔の注入性を改善することができ、低電圧で、高輝度で発光し、しかも長寿命の表示装置を実現することができる。
本発明に係る表示装置によれば、発光層は、(i)p型半導体の媒体中にn型半導体粒子が分散した構造、あるいは、(ii)n型半導体粒子の集合体であって、該粒子間にp型半導体が偏析した構造のいずれかを有する。発光層が上記構造を有することによって、n型半導体粒子内部または界面へ電子の注入とともに正孔を効率良く注入することができ、低電圧で、高輝度で発光し、しかも長寿命の表示装置を実現することができる。
以下、本発明の実施の形態に係る表示装置について添付図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。
(実施の形態1)
<表示装置の概略構成>
本発明の実施の形態1に係る表示装置100について、図1(a)及び(b)を用いて説明する。図1(a)は、実施の形態1に係る表示装置100の概略的な構成を示すブロック図である。表示装置100は、図1(a)に示すように、複数の画素が2次元配列している表示部101と、前記画素を選択的に駆動する駆動手段102と、駆動手段102の電力を供給する駆動用電源103とから構成される。なお、本実施の形態1においては、電源103として直流電源を用いている。また、駆動部102は、データ電極Xi1を駆動するデータ電極駆動回路121と、走査電極Yを駆動する走査電極駆動回路122とを備える。
表示部101は、画素がi列×j行の2次元配列しているEL素子アレイを備え、前記EL素子アレイの面に平行な第1方向に平行に延在している複数のデータ電極X11、X21、X31・・・Xi1と、EL素子アレイの面に平行であって、第1方向と直交する第2方向に平行に延在している複数の走査電極Y、Y、Y・・・Yと、前記EL素子アレイの面に平行な第1方向に平行に延在している複数の電流供給線X12、X22、X32・・・Xi2とを備える。このデータ電極Xi1と走査電極Yとの各交点において、一つの画素を構成している。
図1(b)は、図1(a)の各画素の構成を示す概略図である。各画素は、データ電極Xi1と、走査電極Yと、電流供給線Xi2と、該データ電極Xi1と走査電極Yとに接続されたスイッチング素子104と、電流ドライブ回路105と、キャパシタ106と、EL素子110とによって構成される。キャパシタ106は、該スイッチング素子104と電流供給線Xi2とに接続されている。電流ドライブ回路105は、スイッチング素子104と、キャパシタ106と、EL素子110とに接続されている。すなわち、この表示装置はアクティブマトリクス型表示装置である。
スイッチング素子104をonにするとデータ配線X11からの信号電圧がキャパシタ107に書き込まれ、その時の信号電圧に応じてスイッチング素子のゲート電圧が決定され、その導電率に応じた電流が電流供給配線X12より電流ドライブ素子105を通じてEL素子110に供給される。
<表示装置の配線構成>
図2は、本実施の形態の表示装置100の画素における配線の平面構成を概略的に示した斜視図である。このアクティブマトリクス型表示装置100は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらにEL素子では、LCDと異なり電流の供給が必須となるため、電力供給線13がデータ配線12に略平行に延在している。なお、上記配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。
<表示装置の断面構成>
また、図3は、図2のA−A線に沿った発光面に垂直な方向から見た概略断面図である。図4は、図3の一つの画素について、一つのEL素子110と考えた場合の模式的な概略図である。この表示装置では、基板10と該基板10の上に配置された上記配線及び電極からなるアレイ基板40の上に、発光層20が略平面状に形成されており、この発光層20が表示装置100の発光部分を構成している。また発光層20の上部には、共通電極15が形成される。走査配線11とデータ配線12により選択された画素において、一つの模式的なEL素子110が構成される。この模式的なEL素子110では、基板10の上に、画素電極14、発光層20、共通電極15が順に積層されて構成されている。一つの画素において構成されるEL素子110では、TFT30を介して、画素電極14に外部電圧、例えば、直流電源103によって電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光は、アレイ基板40とは反対側の面から外部へ取出される。
なお、表示装置100として、上述の構成に限られず、発光層20を複数層設ける、走査配線11、データ配線12、画素電極14、共通電極15の全てを透明電極にする、いずれかの電極を黒色電極とする、表示装置100の全部又は一部を封止する構造を更に備える、発光取出し方向の前方に発光層20からの発光色を色変換する構造を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合には、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図3ではカラーフィルタ17)及び/又は色変換フィルタ(図3では色変換層16)との組合せによりRGBの各色を表示する等、適宜変更が可能である。
以下、この表示装置100の各構成部材について詳述する。
<基板>
基板10は、その上に形成する各層を支持できるもので、且つ、電気絶縁性の高い材料を用いる。このような材料としては、例えば、コーニング1737等のガラス、石英、セラミック、表面に絶縁層を有する金属基板、シリコンウェハ等を用いることができる。通常のガラスに含まれるアルカリイオン等が発光層20へ影響しないように、無アルカリガラスや、ガラス表面にイオンバリア層としてアルミナ等をコートしたソーダライムガラスであってもよい。また、ポリエステル、ポリエチレンテレフタレート系、ポリクロロトリフルオロエチレン系とナイロン6の組み合わせやフッ素樹脂系材料、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミドなどの樹脂フィルム等を用いることもできる。樹脂フィルムは耐久性、柔軟性、透明性、電気絶縁性、防湿性の優れた材料を用いる。なお、これらは例示であって、基板10の材料は特にこれらに限定されるものではない。
<電極>
画素電極14、共通電極15には、公知の低抵抗の導電材料であればいずれでも適用できる。例えば、Pt、Au、Pd、Ag、Ni、Cu、Al、Ru、Rh、Ir、Cr、Mo、W、Ta、Nb、Ti等の金属材料、これらの積層構造が好ましい。ITOやInZnO、ZnO、SnO等を主体とする金属酸化物、ポリアニリン、ポリピロール、PEDOT〔ポリ(3,4−エチレンジオキシチオフェン)〕/PSS(ポリスチレンスルホン酸)等の導電性高分子、あるいは導電性カーボン等、金属以外の材料であっても、金属材料と積層する等併用することによって低抵抗化することにより用い得る。なお、画素電極14と共通電極15とでは異なる材料を使用してもよい。例えば、画素電極14を陽極として、共通電極15を陰極として構成する場合、画素電極14には、正孔注入性のよい仕事関数の大きな材料が選択され、共通電極15には、電子注入性のよい仕事関数の小さな材料が選択され得る。
<発光層>
次に、発光層20について説明する。図5は、発光層20を拡大視した概略構成図である。発光層20は、第1半導体物質21よりなる多結晶体構造であって、この多結晶体の粒界22に第2半導体物質23が偏析した構造を有する。第1半導体物質21としては、多数キャリアが電子であり、n型伝導を示す半導体材料が用いられる。一方、第2半導体物質23は、多数キャリアが正孔であり、p型伝導を示す半導体材料が用いられ、第1半導体物質21と第2半導体物質23は電気的に接合している。電極より注入された正孔と電子は、発光層中に高密度に散在している前述の偏析部において再結合し、発光が得られる。なお、ドナーやアクセプター準位をさらに経由して再結合したり、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能である。
第1半導体物質21としては、バンドギャップの大きさが近視外領域から可視光領域(1.7eVから3.6eV)を有するものが好ましく、さらに近視外領域から青色領域(2.6eVから3.6eV)を有するものがより好ましい。具体的には、前述のZnSや、ZnSe、ZnTe、CdS、CdSe等の第12族−第16族間化合物やこれらの混晶(例えばZnSSe等)、CaS、SrS等の第2族−第16族間化合物やこれらの混晶(例えばCaSSe等)、AlP、AlAs、GaN、GaP等の第13族−第15族間化合物やこれらの混晶(例えばInGaN等)、ZnMgS、CaSSe、CaSrS等の前記化合物の混晶等を用いることができる。またさらに、CuAlS等のカルコパイライト型化合物を用いてもよい。またさらに、第1半導体物質よりなる多結晶体は、主たる部分が立方晶構造を有しているものが好ましい。またさらに、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される1又は複数種の原子もしくはイオンを添加剤として含んでいてもよい。これらの元素の種類によっても、発光層20からの発光色が決定される。
一方、第2半導体物質23としては、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNである。これらの材料にはp型伝導を付与するための添加剤として、N、Cu、Inから1又は複数種の原子を添加剤として含んでいてもよい。
上記発光層20の構成は、焼成法、気相合成法、爆発法、水熱合成法、高温高圧合成法、フラックス法、共沈法などの製造方法によって実現できる。
本実施の形態1に係る表示装置100の特徴は、発光層20がn型半導体物質21よりなる多結晶体構造であって、この多結晶体構造の粒界22にp型半導体物質23が偏析した構造を有する点にある。従来の無機ELでは、発光層の結晶性を高めることで、高電界で加速された電子が散乱されることを防いでいたが、ZnSやZnSe等は一般にn型伝導を示すため、正孔の供給が十分ではなく、電子と正孔の再結合による高輝度の発光は期待できない。一方で、発光層の結晶粒が成長すると、単結晶でない限り、結晶粒界も一意的に伸びる。高電圧を印加する従来の無機EL素子では、膜厚方向の粒界が導電パスとなり、耐圧低下を引き起こすという課題も生じる。これに対して、本発明者は、鋭意研究の結果、発光層20をn型半導体物質21よりなる多結晶体構造であって、この多結晶体構造の粒界22にp型半導体物質23が偏析した構造とすることによって、粒界に偏析したp型半導体物質により正孔の注入性が改善されることを見出した。さらに、発光層20中に偏析部を高密度に散在させることで、電子と正孔の再結合型発光が効率よく生じることを見出した。これによって、低電圧で高輝度発光する発光素子を実現することができ、本発明に至ったものである。また、ドナーあるいはアクセプターを導入することにより、自由電子とアクセプターに捕獲された正孔の再結合、自由正孔とドナーに捕獲された電子の再結合、ドナー−アクセプター対発光も同様に可能である。またさらに、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能である。
以下、実施の形態1に係る表示装置100の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層を用いる場合についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)基板10上に、走査配線11と走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層32上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)続いて、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)続いて、データ配線12及び電流供給線13を、例えばAlを使用し、パターン形成する。データ配線12及び電流供給線13は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。膜厚は200nmとする。
(7)続いて、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。このようにして、アレイ基板40を形成できる。
(8)基板10上に、発光層20を以下のようにして形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、ZnSとCuSを上記アレイ基板40の上に共蒸着した後、アニール処理することにより、ZnSの多結晶構造とCuSの偏析部を有する発光層20を得ることができる。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。詳細は明らかではないが、ZnSとCuSとの相分離が生じ、前記偏析構造が形成されるものと考えられる。
(10)続いて、共通電極15を、例えばITOを使用し、パターン形成する。膜厚は200nmとする。
(11)続いて、共通電極15上に、保護層(図では省略)として、例えば、窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置100を得ることができる。この表示装置100では、5〜10V程度の低電圧で高い発光輝度を得ることができた。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成される。画素電極は、駆動TFTのドレインに接続される。この場合、走査配線に接続された選択TFTをonにするとデータ配線からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電流供給配線より画素電極を通じて発光層に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、カラーの表示装置とする場合には、発光層をRGBの各色の蛍光体で色分けして成膜すればよい。あるいは、透明電極/発光層/背面電極といったRGB各色毎の発光ユニットを積層してもよい。また更に、別例のカラー表示装置の場合、単一色又は2色の発光層による表示装置を作成した後、カラーフィルタ及び/又は色変換フィルタを用いて、RGBの各色を表示することもできる。
また、実施の形態1の変形例として、図6の概略断面図に示すように、絶縁性の保護膜18aを画素電極14の上にも形成し、さらに、共通電極15の下に薄い絶縁層18bを形成して、交流駆動とする変更や、図7の概略断面図に示すように、平坦化絶縁層19を形成し、該平坦化絶縁層19の上に画素電極14を形成してコンタクトホールを介してドレイン34と接続する、といった変更も適宜可能である。
<効果>
本実施の形態1に係る表示装置は、高い発光効率を持つ発光層を用いることにより、従来に比べ低電圧駆動で高輝度な発光が可能である。
(実施の形態2)
<表示装置の概略構成>
図8は、本実施の形態2の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図9は、図8のB−B線での発光面に垂直な方向から見た断面構成を概略的に示した図である。このアクティブマトリクス型表示装置10は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、1つの画素電極14に対して対をなす少なくとも1つの共通電極15を備え、共通電極15は、データ配線12に略平行に延在している。これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置100の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図9では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図9ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態2に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態1に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態2に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層20についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)ガラス基板10上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)また、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)さらに、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。
(7)次いで、データ配線12と共通電極15とを、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。また、共通電極15は、隣接するデータ配線12と画素電極15との間に、且つデータ配線12に対して略平行に形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(8)次に、アレイ基板40上に発光層20を形成する。複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射して、ZnSとCuSを共蒸着した後、アニール処理することにより、ZnSの多結晶構造とCuSの偏析部を有する発光層20を得ることができる。
(9)さらに、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、実施の形態2の変形例として、図10の概略断面図に示すように、画素電極14及び共通電極15上にも、薄い絶縁層18を形成し、交流駆動とする変更や、図11の概略断面図に示すように、平坦化絶縁層19を形成し、コンタクトホールを介して画素電極14及び共通電極15形成する、といった変更も適宜可能である。またさらに、画素電極14及び共通電極15は、幅や長さ、厚さは任意の形状とすることができる。例えば、図12の斜視図に一例を示すように櫛形形状を有し、画素電極14と共通電極15との櫛形形状部分が互いに咬合するように配置していてもよい。これによって、画素電極14と共通電極15との間の導電経路を特定することなく、均一な発光を実現することができる。また、図13の斜視図に示すように、共通電極15の非画素領域での幅を太くしてもよい。例えば、ゲート配線11に沿って、共通電極15の延在方向に垂直な方向の幅を太くしてもよい。これによって、共通電極15からゲート電極11側への放熱効果を高めることができる。
<効果>
本発明者による直流駆動型無機EL素子では、発光層が半導体領域の抵抗率を有しており、マトリクス構造の表示装置に適用した場合、透明電極の抵抗による電圧降下が大きいことが予想され、実用面での課題があった。今回、この直流駆動型無機EL素子の発光層が、むしろ低抵抗であることから、本発明者は、発光層20の面方向への通電による発光が可能であることを見出し、本実施の形態の表示装置の構成を実現することができた。本実施の形態に係る表示装置では、低抵抗の発光層20の面方向への通電によって発光を得ることができる。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性が改善される。
(実施の形態3)
<表示装置の概略構成>
図14は、本実施の形態3の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図15は、図14のC−C線での発光面に垂直な方向から見た断面図である。このアクティブマトリクス型表示装置は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、画素電極14に対して対をなす略全面ベタ状の共通電極15を備える。共通電極15は、前記配線、電極、TFT30とは絶縁層18を介して、電気的に分離され設けられている。絶縁層18は、1画素につき少なくとも1ヶ所の開口部があり、下層の共通電極15が露出している。またさらに、これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図15では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図15ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態3に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態1に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態3に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)続いて、ガラス基板10上に、例えば、Taを用いてベタ状の共通電極15を形成する。膜厚は200nmとする。
(3)続いて、共通電極15上に、例えば窒化シリコン等の絶縁層18を形成する。さらに、フォトリソグラフィ法によって、画素に応じた開口部をパターン形成し、共通電極15の露出部を形成する。
(4)続いて、絶縁層18上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。走査配線11は、例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(5)続いて、走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁層を形成する。さらに、前述の開口部に合わせて、ゲート絶縁膜23についてもパターン形成し、共通電極15の露出部を形成する。
(6)続いて、前記ゲート絶縁膜32上に、TFTのスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(7)続いて、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(8)続いて、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。同時に、前述の開口部に合わせて、共通電極15の露出部を形成する。
(9)続いて、データ配線12を、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ走査配線11に対して略直交するように形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(10)続いて、アレイ基板40上に発光層20を形成する。複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射して、ZnSとCuSを共蒸着した後、アニール処理することにより、ZnSの多結晶構造とCuSの偏析部を有する発光層20を得ることができる。
(11)続いて、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、実施の形態3の変形例として、図16の概略断面図に示すように、画素電極14及び共通電極15上にも、薄膜絶縁層18bを形成し、交流駆動とする変更も適宜可能である。またさらに、実施の形態2の変形例と同様に、画素電極14及び共通電極15の露出部は、幅や長さ、厚さは任意の形状であってもよく、櫛型形状に形成して互いに咬合するように配置していてもよい。
<効果>
本実施の形態3に係る表示装置は、低抵抗の発光層を用いており面方向への通電による発光が可能である。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置が構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性が改善される。さらに共通電極が略全面ベタ状に形成されているため、発光時に生じるジュール熱等の放熱性にも優れており、面内の温度分布によって生じる画素間の温度特性による輝度ムラ、色ムラ等も抑えられる。
(実施の形態4)
<表示装置の概略構成>
本発明の実施の形態4に係る表示装置100について、図17(a)及び(b)を用いて説明する。図17(a)は、実施の形態4に係る表示装置100の概略的な構成を示すブロック図である。表示装置100は、図17(a)に示すように、複数の画素が2次元配列している表示部101と、前記画素を選択的に駆動する駆動手段102と、駆動手段102の電力を供給する駆動用電源103とから構成される。なお、本実施の形態4においては、電源103として直流電源を用いている。また、駆動部102は、データ電極Xi1を駆動するデータ電極駆動回路121と、走査電極Yを駆動する走査電極駆動回路122とを備える。
表示部101は、画素がi列×j行の2次元配列しているEL素子アレイを備え、前記EL素子アレイの面に平行な第1方向に平行に延在している複数のデータ電極X11、X21、X31・・・Xi1と、EL素子アレイの面に平行であって、第1方向と直交する第2方向に平行に延在している複数の走査電極Y、Y、Y・・・Yと、前記EL素子アレイの面に平行な第1方向に平行に延在している複数の電流供給線X12、X22、X32・・・Xi2とを備える。このデータ電極Xi1と走査電極Yとの各交点において、一つの画素を構成している。
図17(b)は、図17(a)の各画素の構成を示す概略図である。各画素は、データ電極Xi1と、走査電極Yと、電流供給線Xi2と、該データ電極Xi1と走査電極Yとに接続されたスイッチング素子104と、電流ドライブ回路105と、キャパシタ106と、EL素子110とによって構成される。キャパシタ106は、該スイッチング素子104と電流供給線Xi2とに接続されている。電流ドライブ回路105は、スイッチング素子104と、キャパシタ106と、EL素子110とに接続されている。すなわち、この表示装置はアクティブマトリクス型表示装置である。
スイッチング素子104をonにするとデータ配線X11からの信号電圧がキャパシタ107に書き込まれ、その時の信号電圧に応じてスイッチング素子のゲート電圧が決定され、その導電率に応じた電流が電流供給配線X12より電流ドライブ素子105を通じてEL素子110に供給される。
<表示装置の配線構成>
図18は、本実施の形態の表示装置100の画素における配線の平面構成を概略的に示した斜視図である。このアクティブマトリクス型表示装置100は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらにEL素子では、LCDと異なり電流の供給が必須となるため、電力供給線13がデータ配線12に略平行に延在している。なお、上記配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。
<表示装置の断面構成>
また、図19は、図18のA−A線に沿った発光面に垂直な方向から見た概略断面図である。図20は、図19の一つの画素について、一つのEL素子110と考えた場合の模式的な概略図である。この表示装置では、基板10と該基板10の上に配置された上記配線及び電極からなるアレイ基板40の上に、発光層20が略平面状に形成されており、この発光層20が表示装置100の発光部分を構成している。また発光層20の上部には、共通電極15が形成される。走査配線11とデータ配線12により選択された画素において、一つの模式的なEL素子110が構成される。この模式的なEL素子110では、基板10の上に、画素電極14、発光層20、共通電極15が順に積層されて構成されている。一つの画素において構成されるEL素子110では、TFT30を介して、画素電極14に外部電圧、例えば、直流電源103によって電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光は、アレイ基板40とは反対側の面から外部へ取出される。
さらに、この表示装置100では、発光層20が、図20に示すように、n型半導体粒子21の集合体で構成され、該粒子間にp型半導体23が偏析していることを特徴とする。また、図21に示す別例のEL素子110aでは、発光層20が、p型半導体23の媒体の中にn型半導体粒子21が分散して構成されたことを特徴とする。このように、n型半導体粒子とp型半導体との界面を多く形成することによって、正孔の注入性が改善され、電子と正孔の再結合型発光が効率よく生じ、低電圧で高輝度発光するEL素子110を実現することができる。さらに、n型半導体粒子21がp型半導体23を介して電極と電気的に接続されている構成とすることによって、発光効率を向上させることができ、低電圧で発光が可能で、且つ、高輝度発光する表示装置が得られる。
なお、表示装置100として、上述の構成に限られず、発光層20を複数層設ける、走査配線11、データ配線12、画素電極14、共通電極15の全てを透明電極にする、いずれかの電極を黒色電極とする、表示装置100の全部又は一部を封止する構造を更に備える、発光取出し方向の前方に発光層20からの発光色を色変換する構造を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合には、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図19ではカラーフィルタ17)及び/又は色変換フィルタ(図19では色変換層16)との組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態4に係る表示装置の各構成部材は、その特徴について説明するもの以外は、上記実施の形態1に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
<発光層>
この発光層20は、画素電極14と共通電極15との間に挟持され、次の2つのうち、いずれかの構造を有する。
(i)n型半導体粒子の集合体であって、該粒子間にp型半導体23が偏析した構造(例えば、図20に示す構造)。なお、上記n型半導体粒子21の集合体は、それ自体で層を構成している。
(ii)p型半導体23の媒体中にn型半導体粒子21が分散した構造(例えば、図21に示す構造)。
更に、発光層20を構成する各n型半導体粒子21が、p型半導体23を介して画素電極14及び共通電極15と電気的に接合されていることが好ましい。
<発光体>
n型半導体粒子21の材料は、多数キャリアが電子でありn型伝導を示すn型半導体材料である。材料としては、第12族−第16族間化合物半導体であってもよい。また、第13族−第15族間化合物半導体であってもよい。具体的には、光学バンドギャップが可視光の大きさを有する材料であって、例えば、ZnS,ZnSe、GaN、InGaN、AlN、GaAlN、GaP、CdSe、CdTe、SrS、CaSを母体とし、母体のまま使用するか、あるいは添加剤として、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される1又は複数種の原子もしくはイオンを添加剤として含んでいてもよい。これらの元素の種類によっても、発光層20からの発光色が決定される。
一方、p型半導体23の材料は、多数キャリアが正孔であり、p型伝導を示すp型半導体材料である。このp型半導体材料としては、例えば、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTeなどの化合物や、更にGaN,InGaN等の窒化物である。このp型半導体の材料のうち、CuSなどは、本来的にp型伝導を示すが、その他の材料は添加剤として窒素、Ag、Cu、Inから一種以上選択される元素を添加して用いる。また、p型半導体23として、p型伝導を示すCuGaS、CuAlSなどのカルコパイライト型化合物を用いても良い。
上記各半導体の製造方法としては、焼成法、気相合成法、爆発法、水熱合成法、高温高圧合成法、フラックス法、共沈法などを用いることができる。
本実施の形態に係る表示装置100の特徴は、発光層20が、(i)n型半導体粒子21の粒子間にp型半導体23が偏析した構造(図20)、(ii)p型半導体23の媒体中にn型半導体粒子21が分散した構造(図21)のいずれかの構造を有することである。図33に示す従来例のように、半導体粒子61と電気的に接合する媒体がインジウム錫酸化物63の場合、電子が半導体粒子61に到達して発光することが可能であるが、インジウム錫酸化物の正孔濃度は小さいため、再結合するための正孔が不足する。従って、電子と正孔の再結合による高輝度の発光は期待できない。そこで、本発明者は、特に高輝度で効率良く、しかも連続した発光を得るために、発光層20において、電子の注入とともに正孔を効率良く注入することができる構造に着目した。上記構造を実現するためには、発光体粒子内部または界面に多くの正孔が到達すること、更に電子の注入電極に対向する電極からの正孔の注入が速やかに行われかつ発光体粒子あるいは界面に到達する必要がある。そこで、本発明者は鋭意研究の結果、発光層20の構造として、上記(i)、(ii)のうち、いずれかの構造とすることによって、n型半導体粒子21内部または界面へ電子の注入とともに正孔を効率良く注入することができることを見出した。すなわち、上記各構造の発光層20によれば、電極から注入された電子は、p型半導体23を通してn型半導体粒子21に到達し、一方、他方の電極から多くの正孔が発光体粒子に到達し、電子と正孔との再結合によって効率よく発光させることができる。これによって、低電圧で高輝度発光する表示装置を実現することができ、本発明に至ったものである。また、ドナーあるいはアクセプターを導入することにより、自由電子とアクセプターに捕獲された正孔の再結合、自由正孔とドナーに捕獲された電子の再結合、ドナー−アクセプター対発光も同様に可能である。またさらに、他のイオン種が近傍にあることでエネルギー移動による発光も同様に可能である。
以下、実施の形態4に係る表示装置100の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層を用いる場合についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)基板10上に、走査配線11と走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層32上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)次に、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)さらに、データ配線12及び電流供給線13を、例えばAlを使用し、パターン形成する。データ配線12及び電流供給線13は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。膜厚は200nmとする。
(7)続いて、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。このようにして、アレイ基板40を形成できる。
(8)基板10上に、発光層20を以下のようにして形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、基板10上に発光層20として成膜する。このとき、基板温度は200℃とし、ZnSとCuSを共蒸着する。
(9)発光層20の成膜後、硫黄雰囲気中、700℃で約1時間焼成する。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。詳細は明らかではないが、ZnSとCuSとの相分離が生じ、前記偏析構造が形成されたものと考えられる。
(10)また、共通電極15を、例えばITOを使用し、パターン形成する。膜厚は200nmとする。
(11)さらに、共通電極15上に、保護層(図では省略)として、例えば、窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置100を得ることができる。この表示装置では、5〜10V程度の低電圧で高い発光輝度を得ることができた。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成される。画素電極は、駆動TFTのドレインに接続される。この場合、走査配線に接続された選択TFTをonにするとデータ配線からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電流供給配線より画素電極を通じて発光層に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、カラーの表示装置とする場合には、発光層をRGBの各色の蛍光体で色分けして成膜すればよい。あるいは、透明電極/発光層/背面電極といったRGB各色毎の発光ユニットを積層してもよい。また更に、別例のカラー表示装置の場合、単一色又は2色の発光層による表示装置を作成した後、カラーフィルタ及び/又は色変換フィルタを用いて、RGBの各色を表示することもできる。
また、実施の形態4の変形例として、図22の概略断面図に示すように、絶縁性の保護膜18aを画素電極14の上にも形成し、さらに、共通電極15の下に薄い絶縁層18bを形成して、交流駆動とする変更や、図23の概略断面図に示すように、平坦化絶縁層19を形成し、該平坦化絶縁層19の上に画素電極14を形成してコンタクトホールを介してドレイン34と接続する、といった変更も適宜可能である。
<効果>
本実施の形態4に係る表示装置は、高い発光効率を持つ発光層を用いることにより、従来に比べ低電圧駆動で高輝度な発光が可能である。
(実施の形態5)
<表示装置の概略構成>
図24は、本実施の形態5の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図25は、図24のB−B線での発光面に垂直な方向から見た断面構成を概略的に示した図である。このアクティブマトリクス型表示装置10は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、1つの画素電極14に対して対をなす少なくとも1つの共通電極15を備え、共通電極15は、データ配線12に略平行に延在している。これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置100の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図25では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図25ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態5に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態4に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態5に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層20についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)ガラス基板10上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(3)走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁体層を形成する。
(4)前記絶縁体層上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(5)また、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(6)さらに、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。
(7)次いで、データ配線12と共通電極15とを、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ、走査配線11に対して略直交するように形成する。また、共通電極15は、隣接するデータ配線12と画素電極15との間に、且つデータ配線12に対して略平行に形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(8)次に、アレイ基板40上に発光層20を形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、基板10上に発光層20として成膜する。このとき、基板温度は200℃とし、ZnSとCuSを共蒸着する。
(9)発光層20の成膜後、硫黄雰囲気中、700℃で約1時間焼成する。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。
(10)さらに、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間調制御技術等に適宜変更が可能である。
また、実施の形態5の変形例として、図26の概略断面図に示すように、画素電極14及び共通電極15上にも、薄い絶縁層18を形成し、交流駆動とする変更や、図27の概略断面図に示すように、平坦化絶縁層19を形成し、コンタクトホールを介して画素電極14及び共通電極15形成する、といった変更も適宜可能である。またさらに、画素電極14及び共通電極15は、幅や長さ、厚さは任意の形状とすることができる。例えば、図28の斜視図に一例を示すように櫛形形状を有し、画素電極14と共通電極15との櫛形形状部分が互いに咬合するように配置していてもよい。これによって、画素電極14と共通電極15との間の導電経路を特定することなく、均一な発光を実現することができる。また、図29の斜視図に示すように、共通電極15の非画素領域での幅を太くしてもよい。例えば、ゲート配線11に沿って、共通電極15の延在方向に垂直な方向の幅を太くしてもよい。これによって、共通電極15からゲート電極11側への放熱効果を高めることができる。
<効果>
本発明者による直流駆動型無機EL素子では、発光層が半導体領域の抵抗率を有している。この直流駆動型無機EL素子をマトリクス構造の表示装置に適用するため、膜厚方向から発光を取り出すために透明電極を用いる場合があるが、本発明者は、この場合に透明電極の抵抗による電圧降下が大きいという実用面での課題があることに気付いたものである。今回、この直流駆動型無機EL素子の発光層が、低抵抗であることから、本発明者は、発光層20の面方向への通電による発光が可能であることを見出し、本実施の形態の表示装置の構成を実現することができた。本実施の形態に係る表示装置では、低抵抗の発光層20の面方向への通電によって発光を得ることができる。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能で、且つ、電極抵抗による電圧降下も抑えられるため、面内の輝度や色度の均一性が改善される。
(実施の形態6)
<表示装置の概略構成>
図30は、本実施の形態6の表示装置の各画素における配線の平面構成を概略的に示した図である。また、図31は、図30のC−C線での発光面に垂直な方向から見た断面図である。このアクティブマトリクス型表示装置は、発光面に平行な第1方向に平行に延在している複数の走査配線11と、発光面に平行であって、第1方向と直交する第2方向に平行に延在している複数のデータ配線12とを備える。この走査配線11とデータ配線12との各交点に対応してスイッチング素子である薄膜トランジスタ30(以下、「TFT」という。)を備えている。また、隣接する2つの走査配線11と隣接する2つのデータ配線12とに囲まれた領域が1画素であり、これらが複数個、2次元的に配列されている。1画素に対応しては、少なくとも1つの画素電極14を備え、TFT30に接続されている。さらに、画素電極14に対して対をなす略全面ベタ状の共通電極15を備える。共通電極15は、前記配線、電極、TFT30とは絶縁層18を介して、電気的に分離され設けられている。絶縁層18は、1画素につき少なくとも1ヶ所の開口部があり、下層の共通電極15が露出している。またさらに、これらの配線及び電極、TFT30を支えるものとして基板10を備え、アレイ基板40を構成している。またさらに、アレイ基板40上には、発光層20が略平面状に形成され、表示装置の発光部分を構成している。走査配線11とデータ配線12により選択された画素において、TFT30を介して、画素電極14に外部電圧が印加されると、画素電極14と共通電極15との間に電位差が生じる。電位差が発光開始電圧以上になると、発光層20内を電流が流れ発光に至る。発光層20からの発光は、アレイ基板40とは反対側の面から外部へ取出される。
この表示装置100によれば、発光層20に対して、画素電極14と共通電極15とを略同一面側に配設した構造を有している。発光層20の抵抗率は半導体領域であり、且つ、低電圧で電流が流れるため、前記構成であっても発光を生じる。また、この構成では、透明電極を必要とせず、十分に抵抗の低い金属材料で配線及び電極を形成できるため、透明電極の抵抗による電圧降下も回避される。なお、前述の構成に限られず、共通電極15は走査電極11に略平行に延在していてもよい。また、画素電極14や共通電極15を黒色電極とする、表示装置の全部又は一部を保護、封止する構造(図では省略)を更に備える、発光取出し方向前方に発光層20からの発光色を色変換する構造(図31では色変換層16)を更に備える等、適宜変更が可能である。また、カラーの表示装置とする場合、発光層をRGBの各色で色分けする、RGB各色毎の発光ユニットを積層する、単一色又は2色の発光層とカラーフィルタ(図31ではカラーフィルタ17)及び/又は色変換フィルタとの組合せによりRGBの各色を表示する等、適宜変更が可能である。
なお、本実施の形態6に係る表示装置の各構成部材は、特にその特徴について説明するもの以外は、上記実施の形態4に係る表示装置の各構成部材と実質的に同様のものを用いることができる。
以下、実施の形態6に係る表示装置の製造方法の一実施例を説明する。なお、前述の他の材料からなる発光層についても同様の製造方法が利用可能である。
(1)ガラス基板10を準備する。
(2)次に、ガラス基板10上に、例えば、Taを用いてベタ状の共通電極15を形成する。膜厚は200nmとする。
(3)共通電極15上に、例えば窒化シリコン等の絶縁層18を形成する。さらに、フォトリソグラフィ法によって、画素に応じた開口部をパターン形成し、共通電極15の露出部を形成する。
(4)また、絶縁層18上に、走査配線11と、走査配線11に接続されたゲート電極31を形成する。走査配線11は、例えばAlを使用し、フォトリソグラフィ法によって、所定の間隔を隔てて、略平行にパターン形成する。膜厚は200nmとする。
(5)さらに、走査配線11上に、TFT30のゲート絶縁膜32として、例えば窒化シリコン等の絶縁層を形成する。さらに、前述の開口部に合わせて、ゲート絶縁膜23についてもパターン形成し、共通電極15の露出部を形成する。
(6)次いで、前記ゲート絶縁膜32上に、TFT30のスイッチング機能を担う、例えばアモルファスシリコン層を積層し、さらにNアモルファスシリコン層を積層して、パターン形成する。
(7)その後、ソース33とドレイン34、さらにドレイン34に接続された画素電極14を、例えばTaを用いて、パターン形成する。膜厚は100nmとする。
(8)次いで、保護層35として、例えば窒化シリコン等の絶縁体層を、画素電極14を露出させるようにパターン形成する。同時に、前述の開口部に合わせて、共通電極15の露出部を形成する。
(9)また、データ配線12を、例えばAlを使用し、パターン形成する。データ配線12は、所定の間隔を隔てて略平行に、且つ走査配線11に対して略直交するように形成する。膜厚は200nmとする。このようにして、アレイ基板40を形成する。
(10)さらに、アレイ基板40上に発光層20を形成する。まず、複数の蒸発源にZnSとCuSの粉体をそれぞれ投入し、真空中(10−6Torr台)にて、各材料にエレクトロンビームを照射し、基板10上に発光層20として成膜する。このとき、基板温度は200℃とし、ZnSとCuSを共蒸着する。
(11)発光層20の成膜後、硫黄雰囲気中、700℃で約1時間焼成する。この膜をX線回折やSEMによって調べることによって、微小なZnS結晶粒の多結晶構造とCuSの偏析部とが観察される。
(12)その後、発光層20上に、保護層(図では省略)として、例えば窒化シリコン等の透明絶縁体層を形成する。
以上の工程によって、本実施例の表示装置を得ることができる。この表示装置によれば、共通電極を透明電極として発光層の上部に形成した上下電極構成のアクティブマトリクス型表示装置に比べて、面内の輝度の均一性が向上する。
なお、前述の構成に限られず、スイッチング素子であるTFT30としては、低温ポリシリコン、CGシリコン、有機TFT等を用いるように適宜変更が可能である。また、1画素あたり複数のTFTを備え、画素選択機能と駆動機能とを分離した構成とすることもまた可能である。一例としては、駆動TETと選択TFTとの2つのTFTと、その間に設けたキャパシタと、駆動TFTのソースに接続された電源供給配線とで構成してもよい。画素電極14は、駆動TFTのドレインに接続される。この場合、走査配線11に接続された選択TFTをonにするとデータ配線12からの信号電圧がキャパシタに書き込まれ、同時に駆動TFTをonにする。その時の信号電圧に応じて駆動TFTのゲート電圧が決定され、その導電率に応じた電流が電源供給配線より画素電極14を通じて発光層20に供給される。なお、前述の構成に限られず、公知の電流制御型駆動技術、中間階調制御技術等に適宜変更が可能である。
また、実施の形態6の変形例として、図32の概略断面図に示すように、画素電極14及び共通電極15上にも、薄膜絶縁層18bを形成し、交流駆動とする変更も適宜可能である。またさらに、実施の形態5の変形例と同様に、画素電極14及び共通電極15の露出部は、幅や長さ、厚さは任意の形状であってもよく、櫛型形状に形成して互いに咬合するように配置していてもよい。
<効果>
本実施の形態6に係る表示装置は、低抵抗の発光層を用いており、発光層の面方向への通電による発光が可能である。これにより、ITO等の透明電極が不要となり、金属電極のみで表示装置を構成できる。金属電極は十分に低抵抗であるため、高輝度発光が可能であり、且つ、電極抵抗による電圧降下も抑えられて、面内の輝度や色度の均一性が改善される。さらに共通電極が略全面ベタ状に形成されているため、発光時に生じるジュール熱等の放熱性にも優れており、面内の温度分布によって生じる画素間の温度特性による輝度ムラ、色ムラ等も抑えられる。
本発明に係る表示装置は、低電圧駆動で高輝度表示が得られ、且つ、面内の輝度や色度の均一性に優れた表示装置を提供するものである。特に、テレビ等の高品位ディスプレイデバイスとして有用である。
(a)は、本発明の実施の形態1に係る表示装置の構成を示す概略図であり、(b)は、(a)の表示装置の表示部を構成する各画素の構成を示す概略図である。 本発明の実施の形態1に係る表示装置の表示部の各画素における配線を示す概略図である。 図2のA−A線に沿った発光面に垂直な方向から見た概略断面図である。 各画素のEL素子の模式的な構成を示す概略断面図である。 図4の発光層の構成を示す拡大概略図である。 本発明の実施の形態1に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態1に係る表示装置の別の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態2に係る表示装置の表示部の各画素における配線を示す概略図である。 図8のB−B線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態2に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態2に係る表示装置の別の変形例の発光面に垂直な概略断面図である。 本発明の実施の形態2に係る表示装置のさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態2に係る表示装置のまたさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態3に係る表示装置の表示部の各画素における配線を示す概略図である。 図14のC−C線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態3に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 (a)は、本発明の実施の形態4に係る表示装置の構成を示す概略図であり、(b)は、(a)の表示装置の表示部を構成する各画素の構成を示す概略図である。 本発明の実施の形態4に係る表示装置の表示部の各画素における配線を示す概略図である。 図18のA−A線に沿った発光面に垂直な方向から見た概略断面図である。 各画素のEL素子の模式的な構成を示す概略断面図である。 別例の各画素のEL素子の模式的な構成を示す概略断面図である。 本発明の実施の形態4に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態4に係る表示装置の別の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態5に係る表示装置の表示部の各画素における配線を示す概略図である。 図24のB−B線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態5に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態5に係る表示装置の別の変形例の発光面に垂直な概略断面図である。 本発明の実施の形態5に係る表示装置のさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態5に係る表示装置のまたさらに別の変形例の表示部の各画素における配線の概略を示す斜視図である。 本発明の実施の形態6に係る表示装置の表示部の各画素における配線を示す概略図である。 図30のC−C線に沿った発光面に垂直な方向から見た概略断面図である。 本発明の実施の形態6に係る表示装置の変形例の発光面に垂直な方向から見た概略断面図である。 従来例の無機EL素子の発光面に垂直な方向から見た概略構成図である。

Claims (46)

  1. 基板と、
    前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
    前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
    前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
    前記スイッチング素子に接続した画素電極と、
    前記画素電極の上に設けた少なくとも1層の発光層と、
    前記発光層の上に設けた共通電極と
    を備え、
    前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする表示装置。
  2. 基板と、
    前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
    前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
    前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
    前記スイッチング素子に接続した画素電極と、
    前記基板に対して前記画素電極と同一面上に設けた共通電極と、
    前記画素電極及び前記共通電極の上に設けた少なくとも1層の発光層と
    を備え、
    前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする表示装置。
  3. 前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前記第1方向又は前記第2方向に互いに略平行に延在していることを特徴とする請求項2に記載の表示装置。
  4. 前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一定周期の長さに対応して変化していることを特徴とする請求項2に記載の表示装置。
  5. 前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設けられたことを特徴とする請求項2に記載の表示装置。
  6. 基板と、
    前記基板上に設けた共通電極と、
    前記共通電極上に設けた絶縁層と、
    前記絶縁層上に第1方向に互いに平行に延在している複数の走査配線と、
    前記基板面に平行であって前記第1方向に直交する第2方向に平行に延在している複数のデータ配線と、
    前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
    前記スイッチング素子に接続した画素電極と、
    前記画素電極の上に設けた少なくとも1層の発光層と
    を備え、
    前記発光層は、第1半導体物質よりなる多結晶体構造であって、前記多結晶体構造の粒界に前記第1半導体物質とは異なる第2半導体物質が偏析していることを特徴とする表示装置。
  7. 前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素について少なくとも1箇所の開口部を有し、
    前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していることを特徴とする請求項6に記載の表示装置。
  8. 前記共通電極は、前記基板に対して略全面ベタ状に設けられていることを特徴とする請求項6に記載の表示装置。
  9. 前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が咬合して設けられていることを特徴とする請求項6に記載の表示装置。
  10. 前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えることを特徴とする請求項6から9のいずれか一項に記載の表示装置。
  11. 前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変換層をさらに備えることを特徴とする請求項6から10のいずれか一項に記載の表示装置。
  12. 前記第1半導体物質と前記第2半導体物質とは、互いに異なる伝導型の半導体構造を有することを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  13. 前記第1半導体物質はn型半導体構造を有し、前記第2半導体物質はp型半導体構造を有することを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  14. 前記第1半導体物質及び前記第2半導体物質は、それぞれ化合物半導体であることを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  15. 前記第1半導体物質は、第12族−第16族間化合物半導体であることを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  16. 前記第1半導体物質は、第13族−第15族間化合物半導体であることを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  17. 前記第1半導体物質は、カルコパイライト型化合物半導体であることを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  18. 前記第1半導体物質は、立方晶構造を有することを特徴とする請求項1から11のいずれか一項に記載の表示装置。
  19. 前記第1半導体物質は、Cu、Ag、Au、Ir、Al、Ga、In、Mn、Cl、Br、I、Li、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybからなる群より選択される少なくとも一種の元素を含んでいることを特徴とする請求項1から18のいずれか一項に記載の表示装置。
  20. 前記第1半導体物質よりなる多結晶体構造の平均結晶粒子径は、5〜500nmの範囲にあることを特徴とする請求項1から19のいずれか一項に記載の表示装置。
  21. 前記第2半導体物質は、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNのいずれかであることを特徴とする請求項1から13のいずれか一項に記載の表示装置。
  22. 基板と、
    前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
    前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
    前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
    前記スイッチング素子に接続した画素電極と、
    前記画素電極の上に設けた少なくとも1層の発光層と、
    前記発光層の上に設けた共通電極と
    を備え、
    前記発光層はp型半導体とn型半導体とを有することを特徴とする表示装置。
  23. 前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散して構成されていることを特徴とする請求項22に記載の表示装置。
  24. 前記発光層は、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析していることを特徴とする請求項22に記載の表示装置。
  25. 前記n型半導体粒子は、前記p型半導体を介して前記画素電極及び前記共通電極と電気的に接合されていることを特徴とする請求項22に記載の表示装置。
  26. 基板と、
    前記基板上に第1方向に互いに平行に延在している複数の走査配線と、
    前記基板面に平行であって前記第1方向に対して垂直な第2方向に互いに平行に延在している複数のデータ配線と、
    前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
    前記スイッチング素子に接続した画素電極と、
    前記基板に対して前記画素電極と同一面上に設けた共通電極と、
    前記画素電極及び前記共通電極の上に設けた少なくとも1層の発光層と
    を備え、
    前記発光層は、p型半導体とn型半導体とを有することを特徴とする表示装置。
  27. 前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散して構成されていることを特徴とする請求項26に記載の表示装置。
  28. 前記発光層は、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析していることを特徴とする請求項26に記載の表示装置。
  29. 前記n型半導体粒子は、前記p型半導体を介して前記画素電極及び前記共通電極と電気的に接合されていることを特徴とする請求項26に記載の表示装置。
  30. 前記共通電極は、前記走査配線又は前記データ配線に対して略平行であって、前記第1方向又は前記第2方向に互いに略平行に延在していることを特徴とする請求項26から29のいずれか一項に記載の表示装置。
  31. 前記共通電極は、その延在方向に直交する方向の幅が前記延在方向について一定周期の長さに対応して変化していることを特徴とする請求項26から29のいずれか一項に記載の表示装置。
  32. 前記画素電極と前記共通電極とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極のそれぞれの前記櫛型構造の少なくとも一部が互いに咬合して設けられたことを特徴とする請求項26から29のいずれか一項に記載の表示装置。
  33. 基板と、
    前記基板上に設けた共通電極と、
    前記共通電極上に設けた絶縁層と、
    前記絶縁層上に第1方向に互いに平行に延在している複数の走査配線と、
    前記基板面に平行であって前記第1方向に直交する第2方向に平行に延在している複数のデータ配線と、
    前記走査配線と前記データ配線との各交点に対応して設けた少なくとも1つのスイッチング素子と、
    前記スイッチング素子に接続した画素電極と、
    前記画素電極の上に設けた少なくとも1層の発光層と
    を備え、
    前記発光層はp型半導体とn型半導体とを有していることを特徴とする表示装置。
  34. 前記発光層は、p型半導体の媒体の中にn型半導体粒子が分散して構成されていることを特徴とする請求項33に記載の表示装置。
  35. 前記発光層は、n型半導体粒子の集合体で構成され、該粒子間にp型半導体が偏析していることを特徴とする請求項33に記載の表示装置。
  36. 前記n型半導体粒子は、前記p型半導体を介して前記画素電極及び前記共通電極と電気的に接合されていることを特徴とする請求項33に記載の表示装置。
  37. 前記絶縁層は、前記走査配線と前記データ配線との各交点に対応する各画素について少なくとも1箇所の開口部を有し、
    前記共通電極は、前記絶縁層の前記開口部を介して前記発光層に面して露出していることを特徴とする請求項33から36のいずれか一項に記載の表示装置。
  38. 前記共通電極は、前記基板に対して略全面ベタ状に設けられていることを特徴とする請求項33から36のいずれか一項に記載の表示装置。
  39. 前記画素電極と前記共通電極の露出部とは、それぞれ櫛型状の構造を有し、前記画素電極と前記共通電極の露出部のそれぞれの前記櫛型構造の少なくとも一部が咬合して設けられていることを特徴とする請求項33から36のいずれか一項に記載の表示装置。
  40. 前記画素電極と前記発光層との間、又は、前記共通電極の露出部と前記発光層との間のうちの少なくとも一方の界面に、絶縁層をさらに備えることを特徴とする請求項33から39のいずれか一項に記載の表示装置。
  41. 前記画素電極及び前記共通電極に対向し、且つ、発光取出し方向の前方に色変換層をさらに備えることを特徴とする請求項33から40のいずれか一項に記載の表示装置。
  42. 前記n型半導体及び前記p型半導体は、それぞれ化合物半導体であることを特徴とする請求項22から41のいずれか一項に記載の表示装置。
  43. 前記n型半導体は、第12族−第16族間化合物半導体であることを特徴とする請求項22から42のいずれか一項に記載の表示装置。
  44. 前記n型半導体は、第13族−第15族間化合物半導体であることを特徴とする請求項22から42のいずれか一項に記載の表示装置。
  45. 前記n型半導体は、カルコパイライト型化合物半導体であることを特徴とする請求項22から42のいずれか一項に記載の表示装置。
  46. 前記p型半導体は、CuS、ZnS、ZnSe、ZnSSe、ZnSeTe、ZnTe、GaN、InGaNのいずれかであることを特徴とする請求項22から42のいずれか一項に記載の表示装置。
JP2008534360A 2006-09-14 2007-09-12 表示装置 Expired - Fee Related JP5014347B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534360A JP5014347B2 (ja) 2006-09-14 2007-09-12 表示装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006248950 2006-09-14
JP2006248951 2006-09-14
JP2006248950 2006-09-14
JP2006248951 2006-09-14
PCT/JP2007/067729 WO2008032737A1 (fr) 2006-09-14 2007-09-12 Appareil d'affichage
JP2008534360A JP5014347B2 (ja) 2006-09-14 2007-09-12 表示装置

Publications (2)

Publication Number Publication Date
JPWO2008032737A1 true JPWO2008032737A1 (ja) 2010-01-28
JP5014347B2 JP5014347B2 (ja) 2012-08-29

Family

ID=39183793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008534360A Expired - Fee Related JP5014347B2 (ja) 2006-09-14 2007-09-12 表示装置

Country Status (3)

Country Link
US (1) US8179033B2 (ja)
JP (1) JP5014347B2 (ja)
WO (1) WO2008032737A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102559A1 (ja) * 2007-02-23 2008-08-28 Panasonic Corporation 表示装置
US20090268461A1 (en) * 2008-04-28 2009-10-29 Deak David G Photon energy conversion structure
JPWO2010035369A1 (ja) * 2008-09-25 2012-02-16 パナソニック株式会社 発光素子及び表示装置
WO2012117439A1 (ja) * 2011-02-28 2012-09-07 パナソニック株式会社 薄膜半導体装置及びその製造方法
US9305736B2 (en) 2011-07-15 2016-04-05 Tazmo Co., Ltd. Phosphor for dispersion-type EL, dispersion-type EL device, and method of manufacturing the same
KR101830179B1 (ko) * 2011-11-03 2018-02-21 삼성디스플레이 주식회사 유기 전계 발광 표시 장치
JP2014203767A (ja) * 2013-04-09 2014-10-27 タツモ株式会社 立体型無機el発光体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592783A (en) * 1978-12-08 1980-07-14 Matsushita Electric Ind Co Ltd Zinc sulfide-based ceramic fluorescent material, and its preparation
JPS62254394A (ja) * 1986-04-25 1987-11-06 鐘淵化学工業株式会社 薄膜el素子及びその製造法
JPS6366282A (ja) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan 超微粒子蛍光体
JP2005167229A (ja) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
JP2005187806A (ja) * 2004-11-29 2005-07-14 Japan Science & Technology Agency 発光薄膜及びその光デバイス
WO2006025259A1 (ja) * 2004-09-03 2006-03-09 Sumitomo Electric Industries, Ltd. 蛍光体とその製法及びこれを用いた発光デバイス
JP2006127884A (ja) * 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd 発光素子および表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250879B2 (ja) 1993-07-26 2002-01-28 株式会社リコー 画像支持体の再生方法および該再生方法に使用する再生装置
JPH07216351A (ja) 1994-01-28 1995-08-15 Fuji Electric Co Ltd 分散型el素子
JP3741157B2 (ja) 1995-05-08 2006-02-01 独立行政法人科学技術振興機構 エレクトロルミネッセンス材料、その製造方法及び発光素子
JP2000133463A (ja) 1998-10-23 2000-05-12 Matsushita Electric Ind Co Ltd 分散型elランプ
JP2000188181A (ja) 1998-12-22 2000-07-04 Canon Inc 発光装置、露光装置及び画像形成装置
WO2003020848A1 (fr) 2001-08-30 2003-03-13 Nemoto & Co., Ltd. Luminophore et son procede de preparation
US7598129B2 (en) 2003-11-14 2009-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
CA2592055A1 (en) * 2004-12-27 2006-07-06 Quantum Paper, Inc. Addressable and printable emissive display
US7791561B2 (en) * 2005-04-01 2010-09-07 Prysm, Inc. Display systems having screens with optical fluorescent materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592783A (en) * 1978-12-08 1980-07-14 Matsushita Electric Ind Co Ltd Zinc sulfide-based ceramic fluorescent material, and its preparation
JPS62254394A (ja) * 1986-04-25 1987-11-06 鐘淵化学工業株式会社 薄膜el素子及びその製造法
JPS6366282A (ja) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan 超微粒子蛍光体
JP2005167229A (ja) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
WO2006025259A1 (ja) * 2004-09-03 2006-03-09 Sumitomo Electric Industries, Ltd. 蛍光体とその製法及びこれを用いた発光デバイス
JP2006127884A (ja) * 2004-10-28 2006-05-18 Matsushita Electric Ind Co Ltd 発光素子および表示装置
JP2005187806A (ja) * 2004-11-29 2005-07-14 Japan Science & Technology Agency 発光薄膜及びその光デバイス

Also Published As

Publication number Publication date
US20100188319A1 (en) 2010-07-29
US8179033B2 (en) 2012-05-15
JP5014347B2 (ja) 2012-08-29
WO2008032737A1 (fr) 2008-03-20

Similar Documents

Publication Publication Date Title
JP5014347B2 (ja) 表示装置
US20050242712A1 (en) Multicolor electroluminescent display
JP5161200B2 (ja) 表示装置
JP7190740B2 (ja) エレクトロルミネセンス素子を有する表示装置
JPWO2009057317A1 (ja) 発光素子、及び、表示装置
JP5191476B2 (ja) 表示装置
JP2006127884A (ja) 発光素子および表示装置
WO2003032690A1 (fr) Ecran a emission spontanee a l'etat solide et son procede de production
JP4943440B2 (ja) 発光素子及び表示装置
JP4723049B1 (ja) 直流駆動の無機エレクトロルミネッセンス素子と発光方法
US7982388B2 (en) Light emitting element and display device
JPWO2009047899A1 (ja) 発光素子、及び、表示装置
JPWO2008072520A1 (ja) 線状発光装置
JP2010219078A (ja) 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法
WO2008069174A1 (ja) 面状発光装置
JP2006120328A (ja) 分散型el素子
JP5062882B2 (ja) 無機エレクトロルミネッセンス素子
JPH04363892A (ja) 直流エレクトロルミネッセンス素子
JP5046637B2 (ja) 無機エレクトロルミネッセント素子
JP2009117035A (ja) 発光素子及び表示装置
JP2008146861A (ja) 表示装置
JP2007149519A (ja) 発光素子および表示装置
JP2009048961A (ja) 発光素子及び表示装置
JP2005332695A (ja) 固体発光素子
JP2009076307A (ja) エレクトロルミネッセンス素子、その製造方法、照明装置、及び、表示装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees