WO2008032359A1 - Procédé de production d'une électrode pour traitement de surface par décharge électrique et électrode pour traitement de surface par décharge électrique - Google Patents

Procédé de production d'une électrode pour traitement de surface par décharge électrique et électrode pour traitement de surface par décharge électrique Download PDF

Info

Publication number
WO2008032359A1
WO2008032359A1 PCT/JP2006/317999 JP2006317999W WO2008032359A1 WO 2008032359 A1 WO2008032359 A1 WO 2008032359A1 JP 2006317999 W JP2006317999 W JP 2006317999W WO 2008032359 A1 WO2008032359 A1 WO 2008032359A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
powder
surface treatment
discharge surface
discharge
Prior art date
Application number
PCT/JP2006/317999
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Teramoto
Yukio Sato
Akihiro Suzuki
Akihiro Goto
Kazushi Nakamura
Original Assignee
Mitsubishi Electric Corporation
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation, Ihi Corporation filed Critical Mitsubishi Electric Corporation
Priority to KR1020097007458A priority Critical patent/KR101108818B1/ko
Priority to JP2007505298A priority patent/JP4602401B2/ja
Priority to EP06783272A priority patent/EP2062998B1/en
Priority to US11/916,044 priority patent/US9347137B2/en
Priority to CN2006800528872A priority patent/CN101374975B/zh
Priority to PCT/JP2006/317999 priority patent/WO2008032359A1/ja
Priority to TW095134185A priority patent/TWI299292B/zh
Publication of WO2008032359A1 publication Critical patent/WO2008032359A1/ja
Priority to US13/281,884 priority patent/US20120056133A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to an electrode for discharge surface treatment and a manufacturing technique thereof, and in particular, a molded body obtained by molding a metal powder or a metal alloy powder, or an electrode obtained by heat-treating the molded body.
  • a pulsed discharge is generated between the electrode and the material to be treated, and this energy is used to melt the electrode material to form a film on the material to be treated.
  • the present invention relates to an electrode for discharge surface treatment for forming an oxidized metal film on a material to be treated and a manufacturing technique thereof.
  • Patent Document 3 a technique is disclosed in which an electrode used for discharge surface treatment is pulverized without being oxidized in the manufacturing process and used for a discharge surface treatment electrode (see, for example, Patent Document 3).
  • metal powder is pulverized in a solvent, and a mixture of the pulverized metal powder and solvent is mixed with wax as a binder, and then the mixture is dried in an inert gas atmosphere.
  • a method of forming a green compact electrode using the granulated powder is disclosed!
  • Patent Document 1 International Publication No. 2004Z029329 Pamphlet
  • Patent Document 2 Pamphlet of International Publication No. 2005Z068670
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-213560
  • Patent Document 4 International Publication No. 2004Z011696 Pamphlet
  • the conventionally used wear resistant materials are resistant to low temperatures (about 300 ° C or less) and high temperatures (about 700 ° C or more). Although it exhibits sufficient wear performance, it has been found that the wear resistance is not sufficient in the middle temperature range (about 300 ° C to 700 ° C).
  • FIG. 18 is a characteristic diagram showing the relationship between the temperature when the sliding test is performed and the amount of wear of the test piece.
  • a cobalt (Co) alloy metal which is a conventional wear-resistant material, is welded to the specimen body 812 by TIG welding (the upper specimen 813a and the lower specimen). 813b) was prepared. Then, the upper test piece 813a and the lower test piece 813b are arranged so that the film 811 faces each other, and a load is applied so that the surface pressure is 3 MPa to 7 MPa. Only IX 10 6- cycle sliding at a frequency was performed by reciprocating sliding in the X direction in Fig. 19. In addition, after welding the cobalt (Co) alloy metal to the test piece main body 812, grinding is performed to flatten the surface of the conoret (Co) alloy metal 811.
  • the horizontal axis represents the temperature of the atmosphere in which the sliding test was performed, and the room temperature force was also tested at a temperature in the range of about 900 ° C.
  • the vertical axis of the characteristic diagram is the total wear amount of the upper and lower test pieces 813a and 813b after the sliding test (after 1 ⁇ 10 6 cycles sliding). This sliding test is performed without lubrication without supplying lubricating oil.
  • cobalt (Co) alloy metal has a large amount of wear in the middle temperature range even though it is a material conventionally used as a wear-resistant material.
  • the material used here is a cobalt (Co) based alloy material containing Cr (chromium), Mo (molybdenum), and Si (silicon).
  • Patent Document 2 discloses a method of mixing an oxide into an electrode in order to improve wear resistance performance in a middle temperature range.
  • the wear resistance performance in the middle temperature range is improved, there is a problem that the strength of the coating is lowered by putting the oxide in the electrode, and the wear resistance performance in the low temperature range is lowered.
  • Patent Document 3 discloses a method for producing an electrode after pulverizing and granulating a metal without oxidizing it.
  • the film formed by this method has a problem that the wear resistance in the middle temperature range is not sufficient for the same reason as described above.
  • a method for producing an electrode for discharge surface treatment comprises forming a metal powder, a metal compound powder or a conductive ceramic powder.
  • the formed powder is used as an electrode in the working fluid or in the air!
  • a film or electrode that generates a pulsed discharge between the electrode and the workpiece, and the energy of the electrode material on the work surface Material strength of S A method for producing an electrode for discharge surface treatment used for discharge surface treatment to form a film made of a material that reacts with the energy of a pulsed discharge, and an oxygen amount adjusting step for increasing oxygen in the powder
  • the oxygen concentration includes a molding step of manufacturing a molded body is 16% to 4 by weight%.
  • an electrode for discharge surface treatment capable of forming a coating having excellent wear resistance in a temperature range from a low temperature to a high temperature is produced without cracking of the electrode, variation in density, or resistance value. There is an effect that is possible. Then, by forming a film by discharge surface treatment using the discharge surface treatment electrode prepared according to the present invention, excellent wear resistance characteristics in a temperature range from low temperature to high temperature while maintaining the strength of the film. It is possible to form a film showing the above.
  • FIG. 1 is a diagram illustrating a method for producing gold dust powder by a water atomization method.
  • FIG. 2 is a cross-sectional view showing a concept of a powder forming step in Embodiment 1 of the present invention.
  • FIG. 3-1 shows the relationship between the electrical resistance value of the test piece and the amount of wear when a sliding test is performed using a coating formed of a plurality of electrodes having different surface electrical resistance values.
  • FIG. 4 is a diagram showing a standard deviation of the resistance of the electrode surface in the electrode according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs discharge surface treatment in Embodiment 1 of the present invention.
  • Fig. 6-1 is a diagram showing an example of the pulse condition of the discharge during the discharge surface treatment, and is a diagram showing a voltage waveform applied between the electrode and the workpiece during the discharge.
  • Fig. 6-2 is a diagram showing an example of the pulse condition of the discharge during the discharge surface treatment, and shows the current waveform of the current flowing during the discharge.
  • FIG. 7 is a diagram showing an example of discharge pulse conditions during discharge surface treatment.
  • FIG. 8-1 is a view showing a test piece obtained by welding the coating according to the first embodiment of the present invention to the test piece main body by TIG welding.
  • FIG. 8-2 is a diagram comparing the relationship between the temperature of the coating and the amount of wear according to the first embodiment of the present invention with an example produced by welding.
  • FIG. 9 is a cross-sectional view showing a concept of a powder forming step in Embodiment 4 of the present invention.
  • FIG. 10-1 shows the relationship between the electrical resistance of the test piece and the amount of wear when a sliding test is performed using a coating formed of multiple electrodes with different electrical resistance values on the surface.
  • Fig. 10-2 shows a test piece in which the coating according to the fourth embodiment is welded to the test piece main body by TIG welding.
  • FIG. 11 is a diagram showing a standard deviation of the resistance of the electrode surface in the electrode according to the fourth embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs discharge surface treatment in Embodiment 4 of the present invention.
  • FIG. 13-1 is a diagram showing an example of the pulse condition of the discharge during the discharge surface treatment, and is a diagram showing a voltage waveform generated between the electrode and the workpiece during the discharge.
  • FIG. 13-2 is a diagram showing an example of the pulse condition of the discharge during the discharge surface treatment, and is a diagram showing the current waveform of the current flowing during the discharge.
  • FIG. 14 is a diagram showing an example of discharge pulse conditions during discharge surface treatment.
  • FIG. 15 is an SEM image showing a state of a raw material powder of a cobalt (Co) alloy powder.
  • FIG. 16 is a schematic diagram showing an example of the configuration of a swivel jet mill.
  • FIG. 17 is a characteristic diagram showing the relationship between the powder particle diameter of the powder in Embodiment 5 of the present invention and the concentration of oxygen contained in the powder.
  • FIG. 18 is a characteristic diagram showing the relationship between the temperature and the amount of wear of a test piece when a sliding test is performed using a conventional wear-resistant material.
  • FIG. 19 is a view showing a test piece in which a conventional wear-resistant material is welded to the test piece main body by TIG welding.
  • the oxygen concentration is in the range of 4 to 16% by weight. It is important to obtain a metal powder that has been made to occur.
  • a method for obtaining such powder for example, first, a predetermined amount of metal oxide powder is mixed. Next, the mixed powder is heated in an oxidizing atmosphere such as an air furnace at a temperature of 100 ° C to 500 ° C for 10 minutes to 10 hours. This can be achieved by controlling the average particle size of the powder to 0.5 to 1.7 m by a jet mill in an oxidizing atmosphere.
  • the pulverized and oxidized metal powder is granulated, and the granulated powder is molded and sintered. Therefore, it is necessary to manufacture an electrode.
  • oxidized metal powder, organic binder, and solvent are appropriately selected, adjusted at an appropriate blending ratio, and granulated with a granulator such as a spray dryer. Use granular powder.
  • the oxidized metal powder used here includes silicon (Si), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), barium ( Ba), rhenium (Re), tungsten (W) force
  • Si silicon
  • Cr chromium
  • Fe iron
  • Co cobalt
  • Ni nickel
  • Zr zirconium
  • Mo molybdenum
  • Ba barium
  • Re rhenium
  • W tungsten
  • the organic binder of the granulated powder at least one of «Raphine, isoptyl methacrylate, stearic acid, and polybulal alcohol (PVA) is used.
  • the solvent water, ethanol One or more selected from the group consisting of toluene, butanol, propanol, heptane, isobutane, acetone, and normal hexane are used.
  • the organic binder is 1 wt% to 20 wt% of the weight of the metal oxide powder, and the total solute volume of the metal oxide powder and the organic binder is 2 by volume with respect to the solvent. It is preferable to granulate using a solution having a volume% to 30% by volume.
  • the obtained granulated powder was press-molded at a pressing pressure of 50 MPa to 200 MPa, and the compact was held at a temperature of 150 ° C between 400 ° C for 30 minutes to 2 hours, and then at a temperature of 600 to 1000 ° C.
  • the electrode is produced by sintering for 1 to 4 hours. As a result, it is possible to manufacture the discharge surface treatment electrode while preventing the electrode from cracking and preventing the variation in density and resistance. By performing discharge surface treatment using the thus produced discharge surface treatment electrode, it is possible to form a film having excellent wear resistance in a temperature range from low to high temperatures.
  • the electric resistance of the electrode itself was measured by a four terminal method of the electrode surface is 5 X 10- 3 ⁇ 10 ⁇ 10- 3 ⁇ ,
  • the oxygen concentration in the electrode is 4.5 wt% to 10 wt%.
  • FIG. 1 is a diagram illustrating a method for producing gold dust powder by a water atomization method.
  • Water at The maze method is a method for producing metal powder by spraying molten metal with high-pressure water and solidifying it.
  • the molten metal 12 that has flowed down from the tundish 11 is poured into a portion of a hole to be sprayed called a nozzle 13 by a predetermined amount.
  • the high-pressure water 14 is ejected, whereby the molten metal 12 is in a sprayed state and is dispersed with a small force.
  • the powder produced by the water atomization method is classified to obtain a powder having an average particle size of 3 m or less.
  • a powder having an average particle size of 3 ⁇ m or less will be described, but a powder having an average particle size of about 1 ⁇ m or less is more preferable.
  • the recovery rate is extremely low and the manufacturing cost is high.
  • About 3 m is a good place.
  • there is no technical problem with other powder production methods such as force gas atomization described for the water atomization method.
  • the powder with an average particle size of 3 ⁇ m obtained by the above water atomization method is placed in an oxidizing atmosphere.
  • an atmospheric oven was used.
  • the powder was placed in a carbon container and placed in an atmospheric oven and heated at a temperature of 500 ° C. for 24 hours. After the oven heater was turned off, it was naturally cooled until the air atmosphere reached room temperature, and the powder was taken out.
  • the amount of oxygen contained in this powder was measured and found to be 8% by weight.
  • the amount of oxygen contained in the powder varies depending on the heating temperature, heating time, powder material, and powder particle size. The higher the heating temperature, the longer the heating time, and the smaller the powder particle size, the easier the powder oxidizes and the more oxygen is contained in the powder.
  • the amount of oxygen contained in the powder was 4 to 16% by weight, preferably 6%. From 14% to 14% by weight, it was clear that the resulting force could be judged.
  • Oxygen content in powder S If the amount of oxygen exceeds this range, the strength of the formed film will be weakened. In particular, when the amount of oxygen contained in the powder exceeds 16% by weight, it becomes extremely difficult to uniformly form the powder in the molding process described later. In addition, when the amount of oxygen contained in the powder is less than 4% by weight, the formed coating is inferior in wear resistance and it is difficult to reduce wear in the middle temperature range as in the prior art. .
  • an electrode forming process will be described. Improves fluidity when filling the mold with powder in press molding using a mold, improves the transmission of the pressure of the press inside the powder, reduces friction between the mold wall surface and the powder, and is uniform
  • 10% by weight of petroleum wax (paraffin) as an organic binder was added to the above pulverized powder.
  • the amount of organic binder with respect to the pulverized powder must be 1 to 20% by weight.
  • the content of the organic binder when the content of the organic binder is 1% by weight or less, it does not function as a binder, and not only the pressure is not transmitted uniformly during pressing, but the strength of the molded product is low. Becomes very difficult.
  • the content of the organic binder exceeds 20% by weight, there is a problem that the powder adheres to the mold during pressing and the molded body breaks without leaving the mold. Therefore, the amount of organic noda should be 1% to 20% by weight with respect to the pulverized powder. Within this range, it is possible to adjust the porosity of the target molded article by adjusting the mixing ratio of the powder and the organic noinda.
  • Normal hexane was used as a solvent for uniformly mixing raffin with the pulverized powder. Normal hexane was mixed with 10% by weight of paraffin powder to dissolve the paraffin, and then the pulverized cobalt (Co) alloy powder was added and further mixed.
  • the pulverized cobalt (Co) alloy powder, organic binder weight is such that 10 vol 0/0 to n-hexane in a Solvent was adjusted hexane amount to normal . If the solute concentration in the solvent is low, drying becomes difficult and granulated powder cannot be produced. On the other hand, if the solute concentration is too high, the powder settles and the solution concentration becomes uneven, making it difficult to obtain a uniform granulated powder. For this reason, it is necessary to adjust so that the solute component with respect to a solvent may be 2 volume%-30 volume%. Thus, crushed Koval By setting the total volume of the (Co) alloy powder and the organic binder in such a range, uniform granulated powder can be obtained.
  • the powder is first added after the wax is mixed in the solvent, but the cobalt (Co) alloy powder pulverized from the beginning may be added and mixed! /, .
  • the powerful organic binder described in the example using paraffin as the organic binder may be isobutyl methacrylate, stearic acid, polybutyl alcohol, or the like.
  • a solvent for using norafine in addition to normal hexane, heptane or isobutane can also be used for dissolution.
  • the paraffin cannot be sufficiently dissolved. Therefore, it is possible to obtain a granulated powder by dispersing it in a powder state.
  • Other solvents include water, ethanol, butanol, propanolol and acetone.
  • the mixed solution was sprayed in an atmosphere in which high-temperature nitrogen was circulated to dry the solvent.
  • the mixed solution is a spherical granulated powder in which the solvent component (normal hexane in the present embodiment) is volatilized and the oxidized metal powder and the organic binder are uniformly dispersed. Since this granulated powder has a small angle of repose, voids are uniformly formed during molding with high fluidity, and a molded product can be obtained without variations in density and resistance value.
  • the average particle size of the granulated powder is preferably 10 ⁇ m to 100 ⁇ m. If the average particle size of the granulated powder is 10 m or less, the flowability of the powder will deteriorate and it will be difficult to uniformly fill the mold. On the other hand, when the granulated powder has a particle size of 100 m or more, the voids remaining after press forming become large and a uniform electrode cannot be obtained immediately.
  • a granulated powder can be obtained by using other methods such as a fluid granulator and a tumbling granulator. it can.
  • FIG. 2 is a cross-sectional view showing the concept of the granulated powder forming step in the present embodiment.
  • the space surrounded by the upper punch 202 of the mold, the lower punch 203 of the mold, and the die 204 of the mold The granulated powder 201 produced in the process is filled.
  • the granulated powder 201 is compression-molded to form a green compact (molded body). In the discharge surface treatment processing described later, this green compact (molded body) is used as a discharge electrode.
  • the pressing pressure and sintering temperature at which the granulated powder is formed vary depending on the resistance value and oxygen concentration of the target electrode, and the heating temperature is in the range of 600 ° C to 1000 ° C.
  • the granulated powder was molded at a pressure of lOOMPa and molded into a size of 100 mm in length, 11 mm in width, and 5 mm in thickness. Prior to molding, the mold was vibrated so that the powder was uniformly filled and then pressure molded. If the molding pressure is less than 50 MPa, voids remain between the granulated powders, and a uniform electrode cannot be obtained. In addition, when the molding pressure exceeds 200 MPa, problems such as cracking of the electrode and inability to peel off the mold force occur. Therefore, the molding pressure is preferably 50 MPa to 200 MPa.
  • the obtained green compact (molded body) is sintered.
  • the temperature of 150 ° C and the force of 400 ° C are also increased from 30 minutes to 2 minutes.
  • the organic binder in the sintered body can be stably and sufficiently removed.
  • organic binders have the property of expanding when heated, and therefore, when heated rapidly, they tend to cause quality defects such as cracking if the electrodes expand. For this reason, it is necessary to maintain the temperature until the organic solder can be completely removed without heating to the sintering temperature at one time.
  • the green compact (molded body) was held in a vacuum furnace for 30 minutes at 200 ° C, and then heated to 300 ° C over 1 hour. Further, the temperature was raised to 700 ° C. over 1 hour, then kept for about 1 hour, and cooled to room temperature to produce a cobalt (Co) alloy electrode having a cobalt (Co) alloy powder strength.
  • the surface resistance of the cobalt (Co) alloy electrode with a length of 100 mm and a width of 11 mm was measured by a four-terminal surface resistivity meter with a distance of 2 mm between the electrodes. 7. was 5 X 10- 3 ⁇ .
  • Fig. 3-1 shows the results of a sliding test using a plurality of electrodes having different resistance values on the electrode surface produced as described above and forming a film by the discharge surface treatment method described later. Indicate. In Figure 3-1, the horizontal axis shows the resistance value ( ⁇ ) on the electrode surface.
  • test pieces (upper test piece 253a and lower test piece 253b) in which the coating 251 was welded to the test piece main body 252 by TIG welding as shown in Fig. 3-2 were prepared.
  • the upper test piece 253a and the lower test piece 253b are arranged so that the coating 251 faces each other, and a load is applied so that the surface pressure becomes 7 MPa.
  • the test was performed by sliding back and forth in the X direction in Fig. 3-2 only for 1 X 10 6 cycles. It should be noted that after the coating is welded to the specimen body 252, grinding is performed to flatten the surface of the coating 251.
  • the wear amount when the resistance value of the electrode surface using an electrode in the range from 5 X 10- 3 ⁇ of 10 X 10- 3 ⁇ is Sukunagu 6 X 10- 3 Omega force in particular abrasion amount is small in the electrodes in the range of 9 X 10- 3 ⁇ . Therefore, the electrode used in the present embodiment, the range resistance of 5 X 10- 3 ⁇ force even 10 X 10- 3 ⁇ electrode surface by the four-terminal method is the proper value, 6 X 10- 3 ⁇ force al 9 X 10—The range of 3 ⁇ is more preferred! / ⁇ .
  • the electrical condition of the discharge surface treatment used in this sliding test is a waveform with a narrow width and a high peak during the discharge pulse period as shown in FIG.
  • the high and peak parts have a current value of about 15A
  • the low part has a current value of about 4A
  • the discharge duration (discharge pulse width) is about 10 ⁇ s.
  • Fig. 4 shows the standard deviation of the resistance of the electrodes measured by the four probe method at both ends in the length direction and at the central three locations.
  • the horizontal axis represents each electrode
  • the vertical axis represents the standard deviation of resistance measured at three points.
  • the resistance of an electrode produced by press molding using a conventional method is shown together.
  • the electrode was prepared by electrode shape: length 100 mm X width 11 mm X thickness 5 mm, press pressure: 1 OOMPa, 700 ° C. X 1 hour sintering in vacuum. From this figure, it is evident that the electrode using the powder according to the present invention has sufficiently small variation in resistance at each position in the length direction.
  • the oxygen concentration of the electrode manufactured in this embodiment was measured by an infrared absorption method, the oxygen concentration was 8 wt%.
  • the electrode oxygen concentration is always the oxygen concentration of the powder used. But they are not equal.
  • the oxygen content of the film is ultimately important, but the oxygen content of the film with excellent wear resistance is 5% to 9% by weight. A film with the highest wear resistance is obtained.
  • the resistance value and oxygen concentration of the electrode are determined by the oxygen concentration of the powder to be used, the amount of binder used in manufacturing the electrode, the pressing pressure, and the sintering temperature. Therefore, it is important to manufacture such that the resistance value and oxygen amount of the electrode are within an appropriate range by appropriately controlling these requirements.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs discharge surface treatment in the present embodiment.
  • the discharge surface treatment apparatus according to the present embodiment includes an electrode 301 made of the granulated powder of the above-described coret (Co) alloy powder, oil that is a working fluid 303, an electrode 301, and a workpiece. 302 is immersed in a force liquid, or a machining fluid supply device (not shown) for supplying a machining fluid 303 between the electrode 301 and the workpiece 302, and a voltage between the electrode 301 and the workpiece 302. And a discharge surface treatment power source 304 that generates a pulsed discharge (arc column 305) by applying a voltage.
  • the members are not shown because they are not directly related to the present invention, such as a driving device that controls the relative position between the discharge surface treatment power supply 304 and the workpiece 302.
  • the electrode 301 and the workpiece 302 are disposed opposite to each other in the force liquid 303 and the discharge surface treatment power supply 304 is placed in the machining liquid 303.
  • the force also generates a pulsed discharge between the electrode 301 and the workpiece 302.
  • a coating film of the electrode material is formed on the workpiece surface by the discharge energy of the nodal discharge, or a coating film of a substance reacted with the electrode material is formed on the workpiece surface by the discharge energy.
  • the polarity is negative on the electrode 301 side and positive on the workpiece 302 side.
  • a discharge arc column 305 is generated between the electrode 301 and the workpiece 302.
  • FIG. 6-1 and 6-2 An example of discharge pulse conditions when performing discharge surface treatment is shown in Figs. 6-1 and 6-2.
  • Fig. 6-1 and Fig. 6-2 are examples of discharge pulse conditions during discharge surface treatment, and
  • Fig. 6-1 shows the voltage waveform applied between the electrode and workpiece during discharge.
  • the figure 6-2 shows the current waveform of the current that flows during discharge.
  • the negative electrode voltage is shown on the horizontal axis (positive).
  • Time t2—tl is the pulse width te.
  • the voltage waveform at time t0 to t2 is repeatedly applied between both electrodes with a pause time to.
  • a pulse voltage is applied between the discharge surface treatment electrode and the workpiece.
  • the electrical conditions of the discharge pulse during the discharge surface treatment are as shown in FIG.
  • a waveform with a current having a narrow width and a high peak is effective in order to break the electrode better with a discharge pulse.
  • the negative voltage of the electrode is shown on the horizontal axis (positive).
  • the electrode is broken by a current having a high peak waveform as shown in FIG. 7, and the melting is advanced by a current having a wide waveform having a low peak as shown in FIG.
  • the film can be formed on the workpiece 302 at a high speed.
  • a current value of about 10 A to 30 A is appropriate for the high peak waveform portion
  • a current value of about 2 A to 6 A for the current value of the wide waveform portion of the low peak width is the discharge duration (discharge pulse width). 4 / z 3-20 s was appropriate. If the current in the wide waveform part of the low peak is lower than 2A, it will be difficult to continue the pulse of the discharge, and the phenomenon of pulse cracking in which the current is interrupted will increase.
  • a test piece as shown in Fig. 8-1 was prepared using a coating formed by discharge surface treatment, and a sliding test was performed.
  • the coating surface 501 formed by the discharge surface treatment using the discharge surface treatment electrode that works in this embodiment as an electrode is applied to the specimen body 502 by TIG welding.
  • Welded specimens (upper specimen 503a and lower specimen 503b) were prepared.
  • the upper test piece 503a and the lower test piece 503b are arranged so that the coating 501 faces each other, and a load is applied so that the surface pressure is 3 MPa to 7 MPa, and the width of 0.5 mm is 1 at a frequency of 40 Hz.
  • the test was performed by sliding back and forth in the X direction in Fig. 8-1 only for X10 6- cycle sliding.
  • grinding is performed to flatten the surface of the film 501.
  • Fig. 8-2 is a characteristic diagram showing the relationship between temperature and the amount of wear on the specimen.
  • the horizontal axis indicates the temperature of the atmosphere in which the sliding test was performed. In this test, the sliding test was performed at a room temperature force in the range of approximately 900 ° C.
  • the vertical axis represents the vertical specimen 503a, the total value of the wear amount of 503b after the sliding test (after 1 X 10 6 cycles slide). This sliding test is performed without lubrication without supplying lubricating oil.
  • a cobalt (Co) alloy coating was formed by welding to produce a test piece as shown in Fig. 8-1, and the result of the sliding test was shown in Fig. 8-2. Show.
  • the low temperature range (about 300 ° C or less) From low to high temperatures (about 700 ° C or higher), the amount of wear is small and it shows excellent wear resistance! In other words, the amount of wear is small and excellent in all temperature ranges of low temperature range (below about 300 ° C), medium temperature range (about 300 ° C to about 700 ° C), and high temperature range (above about 700 ° C). It has excellent wear resistance, and it can be awkward.
  • the metal powder is pulverized and oxidized to have an oxygen content of S4 to 16% by weight.
  • This oxidized metal powder, an organic binder, and a solvent are mixed to prepare a mixed liquid, and the mixed liquid is granulated to form a granulated powder.
  • the granulated powder is further molded and molded.
  • the force described above is used when norafine is used as the wax (organic binder) added to the pulverized powder.
  • acrylic is used as the organic binder to be added to the pulverized powder. It is also possible to use a system of rosin.
  • acrylic resin is used as the organic binder added to the pulverized powder.
  • an average particle diameter of 10 m are commercially available "molybdenum (Mo) 28 weight 0/0, chromium (Cr) 17 by weight 0/0, silicon (Si) 3 wt%, remainder cobalt (Co)",
  • Mo mobdenum
  • Cr chromium
  • Si silicon
  • Co remainder cobalt
  • the cobalt (Co) alloy powder blended at the ratio was made into a powder having an average particle size of about 1.5 / zm by the atomizing method and classification. Thereafter, heat treatment was performed as in the first embodiment.
  • an acrylic wax as a wax (organic binder) was mixed in 8% by weight of the powder to prepare a mixed solution.
  • acrylic wax using BR resin manufactured by Mitsubishi Rayon the solvent acetone was solute concentration for acetone and 15 volume 0/0.
  • BR resin, acetone and pulverized powder were mixed simultaneously with a stirrer.
  • the atomizer was rotated at 100 OO rpm by a spray dryer, and the solution was supplied at 2 kg per hour.
  • the temperature of the nitrogen to be dried was 100 ° C at the inlet temperature and 70 ° C at the outlet temperature. As a result, granulated powder having an average particle size of 20 m to 30 m could be produced.
  • this granulated powder was compression-molded into a shape having an electrode size of 50 mm ⁇ 11 mm ⁇ 5 mm with a pressing pressure of 50 MPa by the same method as in the case of Embodiment 1 to produce a molded body. Thereafter, the compact was heated to produce a cobalt (Co) alloy electrode (discharge surface treatment electrode).
  • Conoret (Co) alloy electrodes discharge surface treatment electrodes
  • a surface resistivity meter using a four-terminal method with an electrode distance of 2 mm. was measured the resistance value, the resistance value was 6. 0 X 10- 3 ⁇ 13 X 10- 3 ⁇ . Further, when the amount of oxygen contained in the cobalt (Co) alloy electrode (discharge surface treatment electrode) was measured by the infrared absorption method, the oxygen concentration was 6% by weight.
  • the method according to the present embodiment described above it is possible to obtain a discharge surface-treated electrode with a small variation in resistivity as in the case of the first embodiment.
  • the film formed by the discharge surface treatment using the discharge surface treatment electrode produced by the method according to the present embodiment is also excellent in wear resistance over a wide temperature range as in the case of the first embodiment. showed that.
  • the discharge surface treatment electrode according to the present embodiment it is possible to form a film having excellent wear resistance in the temperature range from low temperature to high temperature by discharge surface treatment.
  • a surface treatment electrode can be obtained.
  • PVA When used as an organic binder, it can be similarly dissolved using ethanol, propanol, butanol or the like. In this case, it is necessary to carry out in an inert gas during granulation.
  • the mixture was dried and granulated with a spray dryer. At this time, it may be carried out in an inert gas, but since water is used, it can be granulated in the air.
  • the rotation speed of the atomizer was set to 5000 rpm in the air, and the supply amount of the solution was supplied at 2 kg per hour.
  • the drying nitrogen was conducted at an inlet temperature of 140 ° C and an outlet temperature of 110 ° C. As a result, a granulated powder having an average particle size of 80 m was produced. .
  • This powder was molded and heated in the same manner as in the previous embodiment to obtain an electrode.
  • Conoret (Co) alloy electrodes discharge surface treatment electrodes
  • the resistance value was 8.0 ⁇ 10 3 ⁇ .
  • the oxygen concentration was 9% by weight.
  • the discharge surface treatment electrode according to the present embodiment it is possible to form a film having excellent wear resistance in a temperature range from low temperature to high temperature by discharge surface treatment.
  • a surface treatment electrode can be obtained.
  • the raw material powder for the discharge surface treatment electrode is a powder having an average particle diameter of about 10 ⁇ -20 / ⁇ m manufactured by the water atomization method.
  • the effect is not limited to the case where powder produced by water atomization is used.
  • the effect of the present invention is not limited to the case where the average particle size is 10 m to 20 m.
  • the oxide is a material having lubricity such as chromium (Cr), it may not be able to exhibit the lubricity, so use an alloy metal of such a combination. That is not preferable.
  • the technique for manufacturing the electrode by using the powder obtained by oxidizing the metal powder and forming the film has been described, but a method in which the oxide powder is first mixed may also be used.
  • a technique for forming a film by mixing a metal powder and an oxide powder to produce a discharge surface treatment electrode containing a desired amount of oxygen will be described.
  • powder is produced by the water atomization method and classification.
  • an electrode forming process will be described. Improves fluidity when filling the mold with powder in press molding using a mold, improves the transmission of the pressure of the press inside the powder, reduces friction between the mold wall surface and the powder, and is uniform
  • 10% by weight of petroleum wax (paraffin) as an organic binder was added to the above pulverized powder.
  • the amount of organic binder with respect to the pulverized powder must be 1 to 20% by weight.
  • the content of the organic binder when the content of the organic binder is 1% by weight or less, it does not function as a binder, and not only the pressure is not transmitted uniformly during pressing, but the strength of the molded product is low. Becomes very difficult.
  • the content of the organic binder exceeds 20% by weight, there is a problem that the powder adheres to the mold during pressing and the molded body breaks without leaving the mold. Therefore, the amount of organic noda should be 1% to 20% by weight with respect to the pulverized powder. Within this range, it is possible to adjust the porosity of the target molded article by adjusting the mixing ratio of the powder and the organic noinda.
  • Normal hexane was used as a solvent for uniformly mixing raffin with the pulverized powder. Normal hexane was mixed with 10% by weight of paraffin powder to dissolve the paraffin, and then cobalt alloy powder was added and further mixed.
  • the amount of normal hexane was adjusted so that the weight of the cobalt alloy powder and the organic binder (weight of the solute) was: L0 volume% of the normal hexane as the solvent.
  • L0 volume% of the normal hexane as the solvent.
  • the solute concentration with respect to the solvent is low, drying becomes difficult and granulated powder cannot be produced.
  • the solute concentration is too high, the powder settles and the solution concentration becomes uneven, making it difficult to obtain a uniform granulated powder. For this reason, it is necessary to adjust so that the solute component with respect to a solvent may be 2 volume%-30 volume%.
  • uniform granulated powder can be obtained by setting the total volume of the cobalt alloy powder and the organic binder in such a range.
  • the powder is first added after the wax is mixed in the solvent.
  • the powerful organic binder described in the example using paraffin as the organic binder may be isobutyl methacrylate, stearic acid, polybutyl alcohol, or the like.
  • heptane can be used as a solvent when using norafine.
  • the above mixed solution was sprayed into an atmosphere in which high-temperature nitrogen was circulated using a drying granulator generally called a spray dryer as a granulation step, and the solvent was dried.
  • the mixed solution is a spherical granulated powder in which the solvent component (normal hexane in the present embodiment) is volatilized and the oxidized metal powder and the organic binder are uniformly dispersed. Since this granulated powder has a small angle of repose, voids are uniformly formed during molding with high fluidity, and a molded product can be obtained without variations in density and resistance value.
  • the average particle diameter of the granulated powder is preferably 10 ⁇ m to 100 ⁇ m. If the average particle size of the granulated powder is 10 m or less, the flowability of the powder will deteriorate and it will be difficult to uniformly fill the mold. On the other hand, when the granulated powder has a particle size of 100 m or more, the voids remaining after press forming become large and a uniform electrode cannot be obtained immediately.
  • a granulated powder can be obtained by using other methods such as a fluid granulator and a tumbling granulator. it can.
  • FIG. 9 is a cross-sectional view showing the concept of the granulated powder forming step in the present embodiment.
  • the space surrounded by the upper punch 1202 of the mold, the lower punch 1203 of the mold, and the die 1204 of the mold is filled with the granulated powder 1201 produced in the previous step.
  • the granulated powder 1201 is compression molded to form a green compact (molded body).
  • this green compact (molded body) is used as a discharge electrode.
  • the pressing pressure and sintering temperature at which the granulated powder is molded depend on the resistance value and oxygen concentration of the target electrode. Depending on the force, it varies from 50 MPa to 200 MPa, and the heating temperature ranges from 600 ° C to 1000 ° C.
  • the granulated powder was molded at a pressure of lOOMPa and molded into a size of 100 mm in length, 11 mm in width, and 5 mm in thickness. Prior to molding, the mold was vibrated so that the powder was uniformly filled and then pressure molded. If the molding pressure is less than 50 MPa, voids remain between the granulated powders, and a uniform electrode cannot be obtained. In addition, when the molding pressure exceeds 200 MPa, problems such as cracking of the electrode and inability to peel off the mold force occur. Therefore, the molding pressure is preferably 50 MPa to 200 MPa.
  • the obtained green compact (molded body) is sintered, and as a process of removing the organic binder in the electrode during heating, the temperature is 150 ° C and the force is 400 ° C for 30 minutes to 2 minutes. By holding for about an hour, the organic binder in the sintered body can be stably and sufficiently removed.
  • organic binders have the property of expanding when heated, and therefore, when heated rapidly, they tend to cause quality defects such as cracking if the electrodes expand. For this reason, it is necessary to maintain the temperature until the organic solder can be completely removed without heating to the sintering temperature at one time.
  • the green compact (molded body) was held at 200 ° C for 30 minutes in a vacuum furnace, and then heated to 300 ° C over 1 hour. Further, the temperature was raised to 700 ° C. over 1 hour, then kept for about 1 hour, and cooled to room temperature to produce a cobalt (Co) alloy electrode having a cobalt (Co) alloy powder strength.
  • the electrode collapses and melts into a film by the energy of pulsed discharge as described later, the ease of collapse due to discharge is important.
  • the four resistance of the electrode surface by terminal method the range of 5 X 10- 3 ⁇ force et 10 X 10- 3 ⁇ is the proper value, 6 X 1 0 3 ⁇ force 9 X 10 3 I prefer the ⁇ range! / !.
  • Figure 10-1 shows the results of a sliding test using a plurality of electrodes with different resistances on the electrode surface produced as described above and forming a film by the discharge surface treatment method described later. Shown in Figure 10-1, the horizontal axis represents the resistance value ( ⁇ ) on the electrode surface. The vertical axis shows the amount of electrode wear. In addition, the test piece is covered as shown in Fig. 10-2. Test pieces (upper test piece 1253a and lower test piece 1253b) were prepared by welding the membrane 1251 to the test piece main body 1252 by TIG welding.
  • the upper test piece 1253a and the lower test piece 1253b are arranged so that the coating 1251 faces each other, and a load is applied so that the surface pressure becomes 7 MPa. Only IX 10 6 cycles slide were tested by reciprocally sliding in the X direction in FIG. 10-2.
  • the coating is welded to the specimen body 1252 and then ground to make the surface of the coating 1251 flat.
  • the range resistance of 5 X 10- 3 ⁇ force 10 X 10- 3 ⁇ electrode surface by the four-terminal method is the proper value, 6 X 10- 3 ⁇ force range Luo 9 X 10- 3 ⁇ , more preferably! / ⁇ .
  • the electrical condition of the discharge surface treatment used in this sliding test is a waveform having a narrow width and a high peak during the discharge pulse period, as shown in Fig. 14 to be described later.
  • the high and peak parts have a current value of about 15 A
  • the low part has a current value of about 4 A
  • the discharge duration (discharge pulse width) is about 10 ⁇ s.
  • Fig. 11 shows the standard deviations of the resistances of the electrodes measured by the four probe method at both ends in the length direction and at the central three locations.
  • the horizontal axis represents each electrode, and the vertical axis represents the standard deviation of resistance measured at three points.
  • the resistance of the electrode fabricated by press molding using the conventional method is also shown.
  • the electrode was produced by electrode shape: length 100 mm X width 11 mm X thickness 5 mm, press pressure: 100 MPa, 700 ° C. X 1 hour sintering in vacuum. From this figure, it is evident that the electrode using the powder according to the present invention has sufficiently small variation in resistance at each position in the length direction.
  • the oxygen concentration of the electrode manufactured in this embodiment was measured by an infrared absorption method, the oxygen concentration was 10 wt%.
  • the electrode oxygen concentration must be equal to the oxygen concentration of the powder used. In order to achieve excellent wear resistance over a wide temperature range, the oxygen content of the film is ultimately important, but the oxygen content of the film with excellent wear resistance is 5% to 9% by weight. A film with the highest wear resistance is obtained.
  • the resistance value and the oxygen concentration of the electrode are determined by the oxygen concentration of the powder to be used, the amount of the binder used in manufacturing the electrode, the pressing pressure, and the sintering temperature. Therefore, it is important to manufacture such that the resistance value and oxygen amount of the electrode are within an appropriate range by appropriately controlling these requirements.
  • FIG. 12 is a schematic diagram showing a schematic configuration of a discharge surface treatment apparatus that performs discharge surface treatment in the present embodiment.
  • the discharge surface treatment apparatus uses an electrode 1301 made of the above-described granulated powder of the cobalt alloy powder, oil as the machining liquid 1303, an electrode 1301 and a work 1302 as a force.
  • a voltage is applied between the electrode 1301 and the workpiece 1302 and the machining fluid supply device (not shown) that supplies the working fluid 1303 between the electrode 1301 and the workpiece 1302
  • a discharge surface treatment power source 1304 for generating a pulsed discharge (arc column 1305).
  • members are omitted because they are not directly related to the present invention, such as a driving device for controlling the relative position between the discharge surface treatment power source 1304 and the workpiece 1302.
  • the electrode 1301 and the work 1302 are arranged opposite to each other in the force liquid 1303, and the discharge surface treatment power supply 1304 is formed in the machining liquid 1303.
  • the force also generates a pulsed discharge between the electrode 1301 and the workpiece 1302.
  • a coating film of the electrode material is formed on the workpiece surface by the discharge energy of the pulsed discharge, or a coating film of a substance reacted with the electrode material is formed on the workpiece surface by the discharge energy.
  • the polarity is negative on the electrode 1301 side and positive on the work 1302 side.
  • a discharge arc column 1305 is generated between the electrode 1301 and the workpiece 1302.
  • FIG. 13-1 and Figure 13-2 are diagrams showing an example of the discharge conditions during discharge surface treatment.
  • Fig. 13-1 shows the voltage waveform applied between the electrode and the workpiece during discharge.
  • Figure 13-2 shows the current waveform of the current that flows during discharge.
  • the negative electrode voltage is shown on the horizontal axis (positive).
  • Time t2—tl is the pulse width te.
  • the voltage waveform at time t0 to t2 is repeatedly applied between both electrodes with a pause time to. That is, as shown in FIG. 13-1, a pulsed voltage is applied between the discharge surface treatment electrode and the workpiece.
  • the electrical conditions of the discharge pulse during the discharge surface treatment are as shown in FIG.
  • the negative voltage of the electrode is shown on the horizontal axis (positive).
  • the electrode is broken by a current having a high peak waveform as shown in FIG. 14, and melting is advanced by a current having a wide waveform having a low peak width as shown in FIG. It is possible to form a coating on the workpiece 1302 at a high speed.
  • a current value of about 10A to 30A is appropriate for the high peak waveform portion
  • a current value of about 2A to 6A for the current of the wide waveform portion of the low peak width is the discharge duration (discharge pulse width).
  • discharge pulse width discharge pulse width
  • about 4 / zs to 20 / zs was appropriate. If the current in the wide waveform part with a low peak width is lower than 2A, it will be difficult to continue the pulse of the discharge, and the current will be interrupted in the middle.
  • a raw material powder was prepared in the present embodiment.
  • composition "chromium (Cr) 25 weight 0/0, nickel (Ni) 10 weight 0/0, tungsten (W) 7 weight 0/0, the remaining edge Cobalt (Co) alloy powder with an average particle size of 20 ⁇ m was purchased.
  • the cobalt (Co) alloy powder, "chrome (Cr) 25 weight 0/0, nickel (Ni) 10 weight 0/0, tungsten (W) 7 wt%, remainder cobalt (Co)” was formulated in a ratio of The metal is dissolved and manufactured by the water atomization method.
  • An image showing the state of the raw material powder of cobalt (Co) alloy powder is shown in FIG.
  • the image shown in FIG. 15 is an image taken by SEM. In this state, there is almost no oxygen in the powder and it is 1% or less at the maximum.
  • powder having an average particle size of about 20 ⁇ m is used.
  • the size of the powder to be used is not limited to this size. In other words, it is possible to use a powder having an average particle diameter larger than 20 m or a powder having an average particle diameter smaller than 20 m. However, if a powder with an average particle size larger than 20 m is used, it takes a longer time to grind the powder as described below. In addition, when using powders with an average particle size smaller than 20 m, there is only a difference if the amount of powder collected by classification is reduced and the cost is increased.
  • FIG. 16 is a schematic diagram showing an example of the configuration of a swivel jet mill.
  • the swirling jet mill high-pressure air is supplied from an air compressor (not shown) through a buffer tank 101 to form a high-speed swirling flow in the pulverizing chamber 102 of the jet mill.
  • the raw material powder 104 is supplied from the feeder 103 to the crushing chamber 102, and the powder is pulverized by the energy of the high-speed swirling flow.
  • the swirling jet mill is described in, for example, Japanese Patent Application Laid-Open No. 2000-42441, and the details are omitted here.
  • pivoting of the jet mill was used in the form of a force present embodiment to use by the pressure of the air to a pressure of about 0. 5 MPa "chromium (Cr) 25 weight 0/0, nickel (Ni) 10 weight 0/0, data tungsten (W) 7 wt%, in the case of cobalt (Co) alloy powder formulated at a ratio of residual cobalt (Co) "can not pulverized in this general pressure, 1 It was necessary to increase the pressure from OMPa to about 1.6 MPa.
  • Coarse powder 105 which is also pulverized by jet milker, is classified by cyclone 106, and finely pulverized powder 107 is a bag filter 1 Captured by 08.
  • Powder that is not sufficiently pulverized is collected by the cyclone 106, and can be formed into a finely crushed powder frame by putting it into the jet mill again and continuing the powder frame.
  • the powder frame is not limited to a jet mill, but other methods such as a bead mill, a vibration mill, and a ball mill may be used.
  • FIG. 17 is a characteristic diagram showing the relationship between the powder particle size and the concentration of oxygen contained in the powder.
  • the horizontal axis is the average particle size of the powder (D50, which is the particle size equivalent to 50% by volume).
  • the vertical axis represents the oxygen concentration (% by weight) in the powder.
  • the average particle diameter of the powder is a value measured by a particle size distribution measuring apparatus using a laser diffraction / scattering method.
  • the oxygen concentration (% by weight) is a measurement result by an X-ray microanalyzer (EPMA).
  • the oxygen content in the powder is from 16% by weight to 16% by weight. Preferably, it was 6 to 14% by weight. If the amount of oxygen contained in the powder exceeds this range, the strength of the formed film will be weak, and if it exceeds 16% by weight, the powder will be uniformly formed in the following forming process. Is extremely difficult. In addition, when the amount of oxygen contained in the powder is less than the weight percent by weight, the formed coating film is inferior in wear resistance, and it is difficult to reduce wear in the middle temperature range as in the prior art. Based on this, a powder having an average particle diameter D50 of 0.5 to 1.7 / z m was used.
  • a cobalt (Co) alloy powder having an average particle size of about 10 ⁇ m to 20 ⁇ m manufactured by a water atomizing method is pulverized by a swirling jet mill.
  • the method of the jet mill is not limited to this.
  • other types of jet mills include an opposing jet mill that pulverizes powder by jetting it from two opposite directions and collides it, and a collision type that pulverizes powder by hitting it against a wall surface.
  • the same powder can be produced by any method.
  • the step of pulverizing the powder by a jet mill has an important meaning of uniformly oxidizing the powder in addition to further finely pulverizing the alloy powder. Therefore, pulverization must be performed in an oxidizing atmosphere such as an atmospheric atmosphere.
  • an oxidizing atmosphere such as an atmospheric atmosphere.
  • the powder is prevented from being oxidized by using nitrogen as the high-pressure gas used for grinding.
  • a solvent is mixed with powder and pulverization is performed so that the pulverized powder and oxygen are not in contact as much as possible.
  • the present invention it is essential to oxidize the pulverized powder as described above.
  • the method of oxidizing the powder is not limited to the jet mill.
  • Other ball milling methods such as ball mills and vibration mills can achieve the same effects as those of a jet mill if the powder can be ground while oxidizing.
  • ball mills and vibration mills it is necessary to create an environment that is easy to oxidize, such as opening the pots regularly, in order to keep the pots containing the powder sealed. Therefore, there is a drawback that quality variation is difficult to control the state of oxidation, which is easy to occur.
  • the method for producing an electrode for discharge surface treatment according to the present invention is useful for producing an electrode for discharge surface treatment used for forming a film having excellent wear resistance in a temperature range from low temperature to high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

明 細 書
放電表面処理用電極の製造方法および放電表面処理用電極
技術分野
[0001] 本発明は、放電表面処理用電極とその製造技術に関するものであり、特に、金属 粉末または金属合金の粉末を成形した成形体、または該成形体を加熱処理したもの を電極として、油などの液中あるいは気中において、電極と被処理材との間にパルス 状の放電を発生させ、そのエネルギーにより電極材料を溶融して被処理剤に皮膜の 形成を行う放電表面処理にぉ ヽて、酸化した金属の皮膜を被処理材に形成するた めの放電表面処理用電極とその製造技術に関するものである。
背景技術
[0002] 従来、金属表面に他の金属材料ある!/、はセラミックス等の皮膜を形成し、耐摩耗特 性を付与する方法が広く使用されている。一般的には室温から 200°C程度の温度環 境下での使用を目的に使用されることが多ぐそのほとんどの場合、油潤滑と併用さ れている。しかし、航空機エンジン部品のように使用環境が室温から 1000°C程度と いう広い温度範囲での使用用途においては、油潤滑を使用することができない。この ため、材料そのものが有する強度や潤滑性能により耐摩耗の特性を発揮させる必要 がある。
[0003] 航空機エンジン部品等で使用される高温での耐摩耗材としては、コバルト (Co)や モリブデン (Mo)を主成分とするトリバロイゃステライトなどの金属材料がある。これま では被処理材に対し、これらの金属材料の皮膜を肉盛溶接やプラズマ溶射により形 成する方法が用いられている。ただし、これらの皮膜形成方法には、被処理材に熱 変形が生じる、皮膜の密着強度が十分得られない、という問題がある。
[0004] 一方、被処理材の熱変形や強度低下がなぐし力も高い温度においても耐摩耗性 を有する皮膜を形成する技術が開示されている。たとえば、粉末成形体と被処理材と の間にパルス状の放電を発生させることで、電極材料が元となる被膜を形成する技 術が開示されている (たとえば特許文献 1、特許文献 2参照)。これらの特許文献 1、 特許文献 2には、上述の従来の被膜の問題点である、中温域での耐摩耗の問題を 解決するための方法として酸ィ匕物を電極中に混入する方法が開示されている。
[0005] また、放電表面処理に用いる電極を、製造過程で酸ィ匕することなく粉砕し、放電表 面処理電極に供する技術が開示されている (たとえば特許文献 3参照)。この特許文 献 3においては、金属粉末を溶剤中で粉砕し、粉砕された金属粉末および溶剤から なる混合体に、バインダとしてのワックスを混合した後、この混合物を不活性ガス雰囲 気で乾燥かつ造粒した粉末を用いて圧粉体電極を成形する方法が開示されて!、る。
[0006] 特許文献 1:国際公開第 2004Z029329号パンフレット
特許文献 2:国際公開第 2005Z068670号パンフレット
特許文献 3:特開 2005— 213560号公報
特許文献 4:国際公開第 2004Z011696号パンフレット
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、発明者らの研究により、従来使用されている耐摩耗材料は、低温域( 300°C程度以下)および高温域(700°C程度以上)にお ヽては耐摩耗性能を十分発 揮するが、中温域(300°C程度から 700°C程度)においては耐摩耗性能が十分では ないことがわかってきた。
[0008] 図 18は、摺動試験を実施した際の温度と試験片の摩耗量との関係を示した特性図 である。摺動試験は、まず、図 19に示すように従来の耐摩耗材料であるコバルト (Co )合金金属を TIG溶接により試験片本体 812に溶接した試験片(上試験片 813aおよ び下試験片 813b)を作製した。そして、この上試験片 813aと下試験片 813bとを、被 膜 811が対向するように配置し、面圧が 3MPa〜7MPaとなるように荷重をかけなが ら、 0. 5mm幅で 40Hzの周波数で I X 106サイクル摺動だけ、図 19の X方向に往復 摺動させて行った。なお、試験片本体 812にコバルト (Co)合金金属を溶接した後、 研削を行 ヽ、コノ レト(Co)合金金属 811の表面を平坦にして ヽる。
[0009] 図 18の特性図において、横軸は摺動試験を実施した雰囲気の温度を示しており、 室温力も約 900°Cの範囲の温度において試験をしている。また、特性図の縦軸は摺 動試験後(1 X 106サイクル摺動後)の上下試験片 813a、 813bの摩耗量の合計値で ある。なお、この摺動試験は、潤滑油を供給せずに無潤滑で行っている。 [0010] 図 18の特性図より、コバルト (Co)合金金属は、従来、耐摩耗材料として使用されて いた材料であるにもかかわらず、中温域での摩耗量が多いことがわかる。ここで使用 した材料は、 Cr (クロム)、 Mo (モリブデン)、 Si (シリコン)を含んだコバルト(Co)基の 合金材料である。
[0011] 以上は、溶接により施工した材料においての試験結果であるが、特許文献 1や特許 文献 4などに開示されている、パルス状の放電を用いた技術により形成された被膜に おいてもほぼ同様に中温域での摩耗量が大きいことが発明者らの試験によりわかつ てきた。
[0012] 特許文献 1においても開示されている力 これらの現象の理由は以下のように考え られる。すなわち、高温域においては、材料中のクロム(Cr)またはモリブデン(Mo) が高温環境下にさらされるため酸ィ匕し、潤滑性を示す酸化クロムまたは酸ィ匕モリブデ ンを生成するため、潤滑性が現れ、摩耗量が減少する。また、低温域では、材料が低 温であるため強度があり、その強度により摩耗量が少ない。しかしながら、中温域で は、上述した酸ィ匕物による潤滑性もなぐまた温度がある程度高いため材料の強度も 弱くなつているため耐摩耗性が下がり、摩耗量が多くなる。
[0013] 一方、特許文献 2においては、中温域の耐摩耗性能向上のために、酸化物を電極 中に混入する方法が開示されている。この場合、中温域の耐摩耗性能は向上してい るが、酸ィ匕物を電極中に入れることにより被膜の強度が低下し、低温域での耐摩耗 性能が低下する、という問題が生じる。
[0014] 一方、放電表面処理用電極の製造方法に関して、特許文献 3においては、金属を 酸ィ匕させずに粉砕し、造粒したのち電極を作製する方法が開示されている。しかし、 この方法で形成した皮膜は、上記と同様な理由で、中温域での耐摩耗性が十分では ないという問題が生じる。
[0015] さらに、これらの耐摩耗性を有する皮膜の機能を安定して発揮させるためには、均 一な被膜を形成する必要がある。電極自身に割れや、密度、抵抗のばらつきがない 電極で放電表面処理を行わなければ形成される皮膜が不均一となる。しかし、上記 の特許文献 3に開示された方法では、電極に割れが発生する、密度や抵抗値のばら つきが残る、という問題がある。 [0016] 本発明は、上記に鑑みてなされたものであって、低温から高温までの温度範囲で 耐摩耗性に優れた被膜の形成を放電表面処理により行うことが可能な放電表面処理 用電極およびその放電表面処理用電極の製造方法を得ることを目的とする。
課題を解決するための手段
[0017] 上述した課題を解決し、目的を達成するために、本発明にカゝかる放電表面処理用 電極の製造方法は、金属粉末または金属の化合物の粉末または導電性のセラミック の粉末を成形した成形粉体を電極として、加工液中または気中にお!、て電極とヮー クとの間にパルス状の放電を発生させ、そのエネルギーによりワーク表面に電極の材 料力もなる被膜または電極の材料力 Sパルス状の放電のエネルギーにより反応した物 質からなる被膜を形成する放電表面処理に用いられる放電表面処理用電極の製造 方法であって、粉末中の酸素を増加させる酸素量調整工程と、酸素を増加させた粉 末と有機ノインダと溶媒とを混合して混合液を作製する混合工程と、混合液を用いて 造粒を行って造粒粉末を形成する造粒工程と、造粒粉末を成形して酸素濃度が 4重 量%から 16重量%である成形体を作製する成形工程と、を含むことを特徴とする。 発明の効果
[0018] 本発明によれば、低温から高温までの温度範囲で耐摩耗性に優れた被膜の形成 が可能な放電表面処理用電極を、電極の割れ、密度や抵抗値のばらつき無く作製 することが可能である、という効果を奏する。そして、本発明により作製された放電表 面処理用電極を用いて放電表面処理により皮膜を形成することで、被膜の強度を維 持しつつ、低温から高温までの温度範囲において優れた耐摩耗特性を示す被膜を 形成することができる、という効果を奏する。
図面の簡単な説明
[0019] [図 1]図 1は、水アトマイズ法により金屑粉末を製造する方法を説明した図である。
[図 2]図 2は、本発明の実施の形態 1における粉末の成形工程の概念を示す断面図 である。
[図 3-1]図 3— 1は、表面の電気抵抗値が異なる複数の電極により形成した被膜を用 いて摺動試験を実施した際の試験片の電気抵抗値と摩耗量との関係を示す特性図 である。 [図 3-2]図 3— 2は、実施の形態 1にかかる被膜を TIG溶接により試験片本体に溶接 した試験片を示す図である。
[図 4]図 4は、本発明の実施の形態 1にかかる電極における電極面の抵抗の標準偏 差を示す図である。
[図 5]図 5は、本発明の実施の形態 1において放電表面処理を行う放電表面処理装 置の概略構成を示す模式図である。
[図 6-1]図 6— 1は、放電表面処理時における放電のパルス条件の一例を示す図で あり、放電時の電極とワークとの間に力かる電圧波形を示す図である。
[図 6-2]図 6— 2は、放電表面処理時における放電のパルス条件の一例を示す図で あり、放電時に流れる電流の電流波形を示す図である。
[図 7]図 7は、放電表面処理時における放電のパルス条件の一例を示す図である。
[図 8-1]図 8—1は、本発明の実施の形態 1にかかる被膜を TIG溶接により試験片本 体に溶接した試験片を示す図である。
[図 8-2]図 8— 2は、本発明の実施の形態 1にかかる皮膜の温度と摩耗量の関係を溶 接で作製した例と比較した図である。
[図 9]図 9は、本発明の実施の形態 4における粉末の成形工程の概念を示す断面図 である。
圆 10- 1]図 10— 1は、表面の電気抵抗値が異なる複数の電極により形成した被膜を 用いて摺動試験を実施した際の試験片の電気抵抗値と摩耗量との関係を示す特性 図である。
[図 10-2]図 10— 2は、実施の形態 4にかかる被膜を TIG溶接により試験片本体に溶 接した試験片を示す図である。
[図 11]図 11は、本発明の実施の形態 4にかかる電極における電極面の抵抗の標準 偏差を示す図である。
[図 12]図 12は、本発明の実施の形態 4において放電表面処理を行う放電表面処理 装置の概略構成を示す模式図である。
[図 13- 1]図 13— 1は、放電表面処理時における放電のパルス条件の一例を示す図 であり、放電時の電極とワークとの間にカゝかる電圧波形を示す図である。 [図 13-2]図 13— 2は、放電表面処理時における放電のパルス条件の一例を示す図 であり、放電時に流れる電流の電流波形を示す図である。
[図 14]図 14は、放電表面処理時における放電のパルス条件の一例を示す図である
[図 15]図 15は、原料粉末であるコバルト (Co)合金粉末の状態を示す SEM画像であ る。
[図 16]図 16は、旋回式のジェットミルの構成の一例を示す模式図である。
[図 17]図 17は、本発明の実施の形態 5における粉末の粉末粒径と、粉末に含まれる 酸素の濃度と、の関係を示した特性図である。
[図 18]図 18は、従来の耐摩耗材料を用いて摺動試験を実施した際の温度と試験片 の摩耗量との関係を示した特性図である。
[図 19]図 19は、従来の耐摩耗材料を TIG溶接により試験片本体に溶接した試験片 を示す図である。
符号の説明
11 タンディッシュ
12 溶融金属
13 ノズル
14 高圧の水
15 粉末
101 ノ ッファタンク
102 粉砕室
103 フィーダ
104 原料粉末
105 粗粒粉末
106 サイクロン
107 微粉砕粉末
108 バグフィルタ
201 造粒粉末 202 上パンチ
203 下パンチ
204 ダイ
251 被膜
252 試験片本体
253a 上試験片
253b 下試験片
301 電極
302 ワーク
303 加工液
304 放電表面処理用電源
305 アーク柱
501 被膜
502 試験片本体
503a 上試験片
503b 下試験片
811 コノ レト (Co)合金金属
812 試験片本体
813a 上試験片
813b 下試験片
1201 造粒粉末
1202 上パンチ
1203 下パンチ
1204 ダイ
1251 被膜
1252 試験片本体
1253a 上試験片
1253b 下試験片 1301 電極
1302 ワーク
1303 加工液
1304 放電表面処理用電源
1305 アーク柱
発明を実施するための最良の形態
[0021] まず、本発明の概要について説明する。発明者らの研究の結果、酸化させた金属 粉末と、有機バインダおよび溶媒を混合した溶液を乾燥させて造粒粉末とし、この造 粒粉末を用いて放電表面処理用電極を作製することで、密度や抵抗のばらつきがな い電極の作製が可能となり、さらにこの電極を用いて皮膜を形成することにより、低温 力も高温の領域に渡って耐摩耗性に優れた皮膜が形成できることを見出した。
[0022] 従来の発明では金属を酸ィ匕させないことに重点を置いていたが、本発明にかかる 放電表面処理用電極の製造方法では酸素濃度が 4重量%〜16重量%の範囲で酸 化させた金属粉末とすることが重要である。このような粉末を得る方法として、例えば 、まず、金属の酸化物粉末を所定量だけ混合する。つぎに、混合した粉末を大気炉 等の酸化雰囲気にて 100°C〜500°Cの温度で 10分〜 10時間加熱する。そして、酸 化性雰囲気でジェットミルにより粉末の平均粒径を 0. 5〜1. 7 mに制御して粉砕 することで実現できる。
[0023] また、電極割れなどの発生がなぐ密度や抵抗値のばらつきがないものとするため には上記の粉砕して酸化した金属粉末を造粒し、該造粒した粉末を成形し、焼結し て電極を製造する必要がある。このためには、酸化した金属粉末、有機バインダ、溶 媒を適切に選定し、適切な配合比で調整して、スプレードライヤーなどの造粒装置に よって、平均粒径 10 m〜 100 mの造粒粉末とする。ここで用いる酸ィ匕した金属 粉末としては、シリコン(Si)、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル (Ni)、ジ ルコニゥム(Zr)、モリブデン(Mo)、バリウム(Ba)、レニウム(Re)、タングステン(W) 力 選ばれた少なくとも一種以上の元素の酸ィ匕物を含む金属粉末を用いる。
[0024] 造粒粉末の有機バインダとして、ノ《ラフィン、メタクリン酸イソプチル、ステアリン酸、 ポリビュルアルコール(PVA)のうち少なくとも一種を用い、溶媒としては水、エタノー ル、ブタノール、プロパノール、ヘプタン、イソブタン、アセトン、ノルマルへキサンのう ち一種もしくは二種以上を選択して用いる。このとき有機バインダを酸化金属粉末重 量の 1重量%〜20重量%とすることが好ましぐまた、酸化金属粉末と有機バインダ を合せた溶質体積の合計が溶媒に対して、体積比で 2体積%〜30体積%とした溶 液を用いて造粒することが好まし 、。
[0025] 得られた造粒粉末をプレス圧力 50MPa〜200MPaでプレス成形し、成形体を温 度 150°C力も 400°Cの間で 30分から 2時間保持した後、温度 600〜1000°Cで 1〜4 時間焼結する工程により電極を製造する。これにより、電極に割れが発生することを 防止するとともに、密度や抵抗値のばらつきの発生を防止して放電表面処理用電極 を製造することができる。このようにして製造した放電表面処理用電極を用いて放電 表面処理を行うことにより、低温から高温までの温度範囲で耐摩耗性に優れた被膜 を形成することができる。
[0026] また、本発明に力かる放電表面処理用電極は、電極表面の 4端子法により測定した 電極自身の電気抵抗値が 5 X 10— 3 Ω〜10 Χ 10— 3 Ωであること、また、電極中の酸素 濃度が 4. 5重量%〜 10重量%であることを特徴としている。このように構成された本 発明にかかる放電表面処理用電極を用いて放電表面処理を行うことにより、低温か ら高温までの温度範囲で耐摩耗性に優れた被膜を形成することができる。
[0027] 以下に、本発明にかかる放電表面処理用電極および放電表面処理用電極の製造 方法の好適な実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下 の記述により限定されるものではなぐ本発明の要旨を逸脱しない範囲において適宜 変更可能である。また、添付の図面においては、理解の容易のため、各部材におけ る縮尺が異なる場合がある。
[0028] 実施の形態 1.
以下、本発明の第 1の実施の形態について、「Μο (モリブデン) 28重量%、 Cr (クロ ム) 17重量0 /0、 Si (シリコン) 3重量0 /0、 Co (コバルト)残」の材料を例として説明する。 ただし、本発明においてはこの材料だけでなぐ他の材料、例えば他の実施の形態 で説明する材料でも同様の効果が得られるのは!、うまでな!、。
[0029] 図 1は、水アトマイズ法により金屑粉末を製造する方法を説明した図である。水アト マイズ法は、溶融した金属を高圧水により噴霧し、凝固することで、金属粉末を製造 する方法である。まず、 Mo (モリブデン) 28重量0 /0、 Cr (クロム) 17重量0 /0、 Si (シリコ ン) 3重量%、 Co (コバルト)残の割合で調整した金属を溶融させ、タンディッシュと呼 ばれる容器に入れる。タンディッシュ 11から流れ落ちた溶融金属 12は、所定量ずつ ノズル 13と呼ばれる噴霧する穴の部分に注ぎこまれる。この際、高圧の水 14を噴出 することで、溶融金属 12が噴霧状態となり細力べばらされ、同時に凝固しながら下方 ( 図示しない)の容器に粉末 15として回収される。
[0030] 水アトマイズ法では、一般的に平均粒径数 10 μ mから数百 μ mの粒径の粉末が製 造される。一方、本発明では、微細な粉末が必要であるため、水圧を上げることで平 均粒径数 μ mの粉末を製造する。
[0031] し力し、水アトマイズ法のみでは、十分に細かい粉末が得られないため、水アトマイ ズ法により製造された粉末を分級することで、平均粒径 3 m以下の粉末とする。本 実施の形態では、平均粒径 3 μ m以下の粉末について説明するが、平均粒径 1 μ m 程度以下のものがより好ましい。しかし、平均粒径 1 m程度の粉末を分級により製 造する場合には、回収率が極端に低くなり、製造コストが高くなるため、現在のところ 工業的に粉末を作るには、平均粒径 3 m程度がよいところである。なお、本実施の 形態では、水アトマイズ法について説明した力 ガスアトマイズなど他の粉末製造方 法でも技術上は、なんら問題はない。
[0032] 次に、以上の方法で製造された粉末を酸化させる方法について説明する。上記の 水アトマイズ法により得られた平均粒径 3 μ mの粉末を酸化雰囲気に置く。以下の例 では、大気雰囲気のオーブンを使用した。粉末をカーボン製の容器に入れて大気雰 囲気のオーブンに入れ、 500°Cの温度で 24時間加熱した。オーブンのヒーターを切 つた後、大気雰囲気が室温になるまで自然冷却し、粉末を取り出した。この粉末に含 まれる酸素量を測定したところ、 8重量%であった。粉末に含まれる酸素量は、加熱 温度、加熱時間および粉末材料、粉末粒径により変化する。加熱温度が高いほど、 加熱時間が長いほど、粉末粒径が小さいほど、粉末は酸化しやすくなり、粉末に含ま れる酸素量は増える。
[0033] 諸々の実験の結果、粉末に含まれる酸素量は 4重量%から 16重量%、好ましくは 6 重量%から 14重量%力 後の結果力も判断して良いということがわ力つた。粉末に含 まれる酸素量力 Sこの範囲を超えて多 ヽ場合には、形成された被膜の強度が弱くなる 。特に、粉末に含まれる酸素量が 16重量%を超えると、後に示す成形工程において 粉末を均一に成形することが極めて困難になる。また、粉末に含まれる酸素量が 4重 量%よりも少ない場合には、形成された被膜の耐摩耗性が劣り、従来技術のように中 温域での摩耗を減らすことが困難であった。
[0034] 次に、電極の成形工程について説明する。金型を用いたプレス成形において金型 に粉末を充填する際の流動性を改善し、粉末内部へのプレスの圧力の伝わりを良く し、金型壁面と粉末との摩擦を低減して、均一な成形体とするために、有機バインダ として石油ワックス (パラフィン)を上述した粉砕粉末に対して重量比で 10%加えた。 有機バインダの粉砕粉末に対する量は、重量比で 1重量%から 20重量%とすること が必要である。
[0035] ここで、有機バインダの含有量が 1重量%以下の場合には、バインダとしての機能 を果たさず、プレスの際に圧力が均一に伝わらないばかりか、成形体の強度が弱く取 扱いが非常に困難となる。一方、有機バインダの含有量が 20重量%を越えると、プレ スの際に粉末が金型に貼りついて金型から離れずに成形体が割れるなどの問題が ある。このため有機ノインダ量は、粉砕粉末に対して 1重量%から 20重量%とする必 要がある。この範囲であれば粉末と有機ノインダとの配合比を調節することで、目的 とする成形体の空隙率を調整することが可能である。
[0036] ノ《ラフィンを粉砕粉末と均一に混合するための溶媒としては、ノルマルへキサンを 用いた。ノルマルへキサンと、粉末重量の 10重量%のパラフィンと、を混合してパラフ インを溶解した後、粉砕したコバルト (Co)合金粉末を加えてさらに混合した。
[0037] このとき、粉砕したコバルト (Co)合金粉末と、有機バインダ重量 (溶質の重量)が溶 媒であるノルマルへキサンの 10体積0 /0となるように、ノルマルへキサン量を調整した 。溶媒に対する溶質濃度が低い場合には、乾燥が困難となり造粒粉末が作製できな い。一方、溶質濃度が高すぎると、粉末が沈降することにより溶液濃度にムラが発生 するため、均一な造粒粉末を得るのが難しくなる。このため、溶媒に対する溶質成分 は 2体積%〜30体積%となるように調整する必要がある。このように、粉砕したコバル ト (Co)合金粉末と有機バインダとの合計の体積をこのような範囲とすることにより、均 一な造粒粉末を得ることができる。
[0038] なお、本実施の形態では、はじめに溶媒中にワックスを混合した後に粉末を投入し たが、はじめから粉砕したコバルト (Co)合金粉末を投入して混合しても構わな!/、。
[0039] 上記においては有機バインダとしてパラフィンを用いた例について説明した力 有 機バインダは、この他に、メタクリル酸イソブチル、ステアリン酸、ポリビュルアルコー ル等でも良い。
[0040] さらに、ノ ラフィンを使用する際の溶剤としては、ノルマルへキサン以外にヘプタン 、イソブタンを用いても同様に溶解することができる。他の溶剤を用いた場合にはパラ フィンを十分溶解することができないため、粉末の状態で分散させることにより造粒粉 末とすることも可能である。他の溶剤としては、水、エタノール、ブタノール、プロパノ 一ノレ、アセトンなどがある。
[0041] つぎに、造粒工程として一般にスプレードライヤーと呼ばれる乾燥造粒装置を用い て、高温の窒素を循環させた雰囲気に上記混合溶液を噴霧し、溶剤を乾燥させた。 この乾燥の際に、混合溶液は溶媒成分 (本実施の形態ではノルマルへキサン)が揮 発して、酸化した金属粉末と有機バインダとが均一に分散した球状の造粒粉末となる 。この造粒粉末は、安息角が小さいので流動性が高ぐ成形の際に空隙が均一に形 成され、密度や抵抗値のばらつきがな 、成形体を得ることができる。
[0042] 本発明の目的である、均一な密度、抵抗値を有する電極を得るためには、造粒粉 末の平均粒径が 10 μ m〜100 μ mの大きさであることが好ましい。造粒粉末の平均 粒径が 10 m以下である場合には、粉末の流れ性が悪くなり、型に均一に充填する ことが難しくなる。一方、造粒粉末の粒径が 100 m以上である場合には、プレス成 型した際に残る空隙が大きくなりやすぐ均一な電極が得られない。
[0043] なお、本実施の形態では造粒にスプレードライヤーを用いた例により説明したが、 流動造粒機や転動造粒機など、他の方法を用いても造粒粉末を得ることができる。
[0044] つぎに、造粒した粉末の成形工程について図 2を用いて説明する。図 2は、本実施 の形態における造粒粉末の成形工程の概念を示す断面図である。図 2において、金 型の上パンチ 202、金型の下パンチ 203、金型のダイ 204で囲まれた空間には、前 工程で作製した造粒粉末 201が充填される。そして、この造粒粉末 201を圧縮成形 することにより圧粉体 (成形体)を形成する。後に説明する放電表面処理加工におい ては、この圧粉体 (成形体)が放電電極とされる。
[0045] 造粒粉末を成形するプレス圧と焼結温度は、目的とする電極の抵抗値や酸素濃度 により異なる力 50MPa〜200MPa、加熱温度は 600°Cから 1000°Cの範囲とされ る。本実施の形態では、 lOOMPaの圧力で造粒粉末を成形し、長さ 100mm、幅 11 mm、厚み 5mmの大きさに成形した。なお、成形の前に金型に振動を加えて粉末が 均一に充填されるようにした後、加圧成形した。成形圧力が 50MPaより小さいと、造 粒粉末間に空隙が残り、均一な電極とすることができない。また、成形圧力が 200M Paを越えると、電極に割れが生じる、金型力も剥がすことができなくなる、などの問題 を生じる。このため、成形圧力は 50MPa〜200MPaが好ましい。
[0046] 得られた圧粉体 (成形体)に対して焼結を行うが、加熱の際に電極中の有機バイン ダを除去する工程として、温度 150°C力も 400°Cで 30分から 2時間程度保持すること によって、焼結体中の有機バインダを安定して十分除去することが可能になる。一般 に有機バインダは加熱により膨張する性質があるため、急激に加熱すると電極に膨 れゃ割れが生じるなど品質上の欠陥を生じやすい。このため、一度に焼結温度に加 熱せず、有機ノ インダが完全に除去できるまで、ー且保持する必要がある。
[0047] 本実施の形態にお!ヽては、圧粉体 (成形体)を真空炉で 30分間、 200°Cで保持し 、その後 300°Cまで 1時間かけて昇温した。さらに 700°Cまで 1時間で昇温した後、約 1時間保持し、室温まで冷却して、コバルト (Co)合金粉末力 なるコバルト (Co)合金 電極を製造した。
[0048] このコバルト(Co)合金電極のプレスの面に当たる長さ 100mm、幅 11mmの面を 電極間距離 2mmの四端子法による表面抵抗率計により、電極の抵抗値を測定した ところ抵抗値が 7. 5 X 10—3 Ωであった。
[0049] 電極は、後に示すようにパルス状の放電のエネルギにより崩れて溶融し被膜となる ので、放電による崩れやすさが重要になる。このような電極においては、四端子法に よる電極表面の抵抗力、 5 X 10— 3 Ωから 10 X 10— 3 Ωの範囲が適正値であり、 6 X 10 Ω力 9 X 10 3 Ωの範囲がより好まし!/ヽ。 [0050] 上記のようにして製造された電極表面の抵抗値が異なる複数の電極を用いて、後 述する放電表面処理方法により被膜を形成して摺動試験を行った結果を図 3— 1〖こ 示す。図 3—1において、横軸は電極表面の抵抗値(Ω )を示している。また、縦軸は 、電極の摩耗量を示している。また、試験片としては、図 3— 2に示すように被膜 251 を TIG溶接により試験片本体 252に溶接した試験片(上試験片 253aおよび下試験 片 253b)を作製した。
[0051] そして、この上試験片 253aと下試験片 253bとを、被膜 251が対向するように配置 し、面圧が 7MPaとなるように荷重をかけながら、 0. 5mm幅で 40Hzの周波数で 1 X 106サイクル摺動だけ、図 3— 2の X方向に往復摺動させて試験を行った。なお、試験 片本体 252に被膜を溶接した後、研削を行い、被膜 251の表面を平坦にしている。
[0052] 図 3—1からわかるように、電極表面の抵抗値が 5 X 10— 3 Ωから 10 X 10— 3 Ωの範囲 の電極を使用した場合には摩耗量が少なぐ 6 X 10— 3 Ω力も 9 X 10— 3 Ωの範囲の電 極では特に摩耗量が少ない。したがって、本実施の形態において用いる電極として は、四端子法による電極表面の抵抗が 5 X 10— 3 Ω力も 10 X 10— 3 Ωの範囲が適正値 であり、 6 X 10— 3 Ω力ら 9 X 10— 3 Ωの範囲がより好まし!/ヽ。
[0053] なお、この摺動試験に使用した放電表面処理の電気条件は、後述する図 7に示す ように放電パルスの期間中に幅が狭くピークが高 、電流をカ卩えた波形であり、高 、ピ ークの部分は電流値が約 15A、低い部分の電流は電流値が約 4A、放電持続時間( 放電パルス幅)が約 10 μ sの条件である。
[0054] また、図 4に、電極を四端子法により長さ方向の両端と中央の 3ケ所で測定した抵抗 の標準偏差を示す。図 4において、横軸は各電極、縦軸は 3点で測定した抵抗の標 準偏差である。参考のため、従来の方法でプレス成形して作製した電極の抵抗を合 せて示す。電極は、電極形状:長さ 100mm X幅 11mm X厚さ 5mm、プレス圧力: 1 OOMPa、 700°C X 1時間真空中焼結、により作製した。この図から本発明による粉末 を使用した電極は、長さ方向の各位置における抵抗のばらつきが十分小さくなつて いることがわ力る。
[0055] また、本実施の形態で作製した電極の酸素量を赤外線吸収法により測定したところ 、酸素濃度が 8重量%であった。電極酸素濃度は、用いた粉末の酸素濃度とは必ず しも等しくならない。広い温度範囲に渡って優れた耐摩耗性を発揮するためには、最 終的に皮膜の酸素量が重要となるが、耐摩耗性に優れる皮膜の酸素量は 5重量% 〜9重量%で最も耐摩耗性に優れた皮膜が得られている。
[0056] 電極の抵抗値、酸素濃度は、用いる粉末の酸素濃度および電極を製造する際のバ インダ量、プレス圧力、焼結温度により決定される。したがって、これらの要件を適切 に制御して、電極の抵抗値と酸素量が適切な範囲となるように製造することが重要で ある。
[0057] つぎに、以上のようにして作製した電極を用いて放電表面処理方法により被処理材
(ワーク)上に被膜を形成する。本実施の形態において放電表面処理を行う放電表 面処理装置の概略構成を示す模式図を図 5に示す。図 5に示すように本実施の形態 にかかる放電表面処理装置は、上述したコノ レト(Co)合金粉末の造粒粉末からな る電極 301と、加工液 303である油と、電極 301とワーク 302とを力卩ェ液中に浸漬さ せる、または電極 301とワーク 302との間に加工液 303を供給する加工液供給装置( 図示せず)と、電極 301とワーク 302との間に電圧を印加してパルス状の放電(アーク 柱 305)を発生させる放電表面処理用電源 304とを備えて構成されている。なお、図 5においては、放電表面処理用電源 304とワーク 302との相対位置を制御する駆動 装置などの本発明に直接関係のな 、部材は記載を省略して 、る。
[0058] この放電表面処理装置によりワーク表面に被膜を形成するには、電極 301とワーク 302とを力卩ェ液 303の中で対向配置し、加工液 303中において放電表面処理用電 源 304力も電極 301とワーク 302との間にパルス状の放電を発生させる。そして、ノ ルス状の放電の放電エネルギーにより電極材料の被膜をワーク表面に形成し、また は放電エネルギーにより電極材料が反応した物質の被膜をワーク表面に形成する。 極性は、電極 301側がマイナス、ワーク 302側がプラスの極性を使用する。図 5に示 すように放電のアーク柱 305は電極 301とワーク 302との間に発生する。
[0059] このような条件で作製された圧粉体電極を用いて放電表面処理を行!ヽ、被膜を形 成した。放電表面処理を行う場合の放電のパルス条件の一例を図 6— 1と図 6— 2と に示す。図 6— 1と図 6— 2は、放電表面処理時における放電のパルス条件の一例を 示す図であり、図 6—1は、放電時の電極とワークとの間に力かる電圧波形を示し、図 6— 2は、放電時に流れる電流の電流波形を示している。ここで、図 6— 1においては 、電極マイナスの電圧を横軸上 (正)として記載してある。
[0060] 図 6—1に示されるように時刻 tOで両極間に無負荷電圧 uiがかけられる力 放電遅 れ時間 td経過後の時刻 tlに両極間に電流が流れ始め、放電が始まる。このときの電 圧が放電電圧 ueであり、このとき流れる電流がピーク電流値 ieである。そして時刻 t2 で両極間への電圧の供給が停止されると、電流は流れなくなる。
[0061] 時刻 t2— tlがパルス幅 teである。この時刻 t0〜t2における電圧波形を、休止時間 toをおいて繰り返して両極間に印加する。つまり、この図 6—1に示されるように、放 電表面処理用電極とワークとの間に、パルス状の電圧を印カ卩させる。
[0062] 本実施の形態においては放電表面処理時の放電パルスの電気的な条件は、図 6
2に示すような電流波形が矩形波状の条件の場合には、ピーク電流値 ie = 2A〜l 0A、放電持続時間(放電パルス幅) te = 5 s〜20 μ sが適切な条件である力 この 範囲は上記電極の崩れやすさにより前後する場合がある。また、放電のパルスにより 電極をよりよく崩すためには、図 7に示すように放電パルスの期間中に幅が狭くピーク が高い電流を加えた波形が有効であることがわ力つてきた。ここで、図 7においては、 電極マイナスの電圧を横軸上 (正)として記載してある。
[0063] このような電流波形を使用すると、図 7に示すような高いピークの波形の電流により 電極を崩し、図 7に示すような低いピークの幅の広い波形の電流により溶融を進める ことができ、ワーク 302に被膜を速い速度で形成することが可能である。この場合、高 いピークの波形の部分は電流値が 10A〜30A程度が適切であり、低いピークの幅 の広い波形の部分の電流は電流値が 2A〜6A程度、放電持続時間(放電パルス幅 )が 4 /z 3〜20 s程度が適切であった。低いピークの幅の広い波形の部分の電流が 2Aより低いと、放電のパルスを継続することが難しくなり、途中で電流が途切れるパ ルス割れの現象が多くなるようになる。
[0064] 本実施の形態にかかる放電表面処理用電極を電極として放電表面処理により形成 した被膜により図 8—1に示すような試験片を作製し、摺動試験を行った。摺動試験 では、まず、図 8— 1に示すように本実施の形態に力かる放電表面処理用電極を電 極として放電表面処理により形成した被膜 501を TIG溶接により試験片本体 502に 溶接した試験片(上試験片 503aおよび下試験片 503b)を作製した。そして、この上 試験片 503aと下試験片 503bとを、被膜 501が対向するように配置し、面圧が 3MPa 〜7MPaとなるように荷重をかけながら、 0. 5mm幅で 40Hzの周波数で 1 X 106サイ クル摺動だけ、図 8— 1の X方向に往復摺動させて試験を行った。なお、試験片本体 502に被膜を形成した後、研削を行い、被膜 501の表面を平坦にしている。
[0065] 以上のようにして行った摺動試験の結果を図 8— 2に示す。図 8— 2は、温度と試験 片の摩耗量との関係を示した特性図である。図 8— 2の特性図において、横軸は摺 動試験を実施した雰囲気の温度を示しており、本試験では室温力も約 900°Cの範囲 の温度において摺動試験を実施している。また、図 8— 2の特性図において、縦軸は 摺動試験後(1 X 106サイクル摺動後)の上下試験片 503a、 503bの摩耗量の合計値 である。なお、この摺動試験は、潤滑油を供給せずに無潤滑で行っている。
[0066] また、比較例として、コバルト(Co)合金の被膜を溶接により形成して図 8 - 1に示す ような試験片を作製し、摺動試験を行った結果を図 8— 2に合わせて示す。
[0067] 図 8— 2の特性図から、本実施の形態に力かる放電表面処理用電極を電極として 放電表面処理により形成した被膜を用いた場合には、低温域 (300°C程度以下)から 高温域(700°C程度以上)まで摩耗量が少なく、優れた耐摩耗特性を示して!/ヽること がわかる。すなわち、低温域(300°C程度以下)、中温域(300°C程度から 700°C程 度)、および高温域(700°C程度以上)の全ての温度域において摩耗量が少なぐ優 れた耐摩耗特性を示して 、ることがわ力る。
[0068] なお、この摺動試験は、航空機用のガスタービンエンジンの動作環境を模擬して行 つているので、すべての温度での試験はあらかじめ 650°Cの温度に昇温した後に所 定の温度にして行っている。
[0069] 上述したように、本実施の形態に力かる放電表面処理用電極によれば、含有する 酸素量力 S4重量%から 16重量%になるように金属粉末を粉砕して酸ィ匕させ、この酸 化した金属粉末と有機バインダと溶媒とを混合して混合液を作製し、この混合液を用 いて造粒を行って造粒粉末を形成し、さらにこの造粒粉末を成形して成形体を作製 することにより、低温から高温までの温度範囲で耐摩耗性に優れた被膜の形成を放 電表面処理により行うことが可能な放電表面処理用電極を得ることができる。 [0070] 実施の形態 2.
上述した実施の形態 1では、粉砕粉末に対して加えるワックス (有機バインダ)として ノ ラフィンを用いた場合にっ 、て説明した力 本発明にお 、ては粉砕粉末に対して 加える有機バインダとしてアクリル系の榭脂を用いることも可能である。実施の形態 2 では、粉砕粉末に対して加える有機バインダとしてアクリル系の榭脂を用いた場合に ついて説明する。
[0071] 市販されている平均粒径 10 mの「モリブデン(Mo) 28重量0 /0、クロム(Cr) 17重 量0 /0、シリコン (Si) 3重量%、残コバルト (Co)」、の比率で配合されたコバルト (Co) 合金粉末を、アトマイズ法と分級とにより平均粒径 1. 5 /z m程度の粉末にした。その 後、実施の形態 1のように加熱処理した。
[0072] この粉末に対して、ワックス(有機バインダ)としてアクリル系のワックスを重量比で 8 重量%粉末に混入して混合液を作製した。ここで、アクリル系ワックスは三菱レイヨン 製の BRレジンを使用し、溶剤にはアセトンを用い、アセトンに対する溶質濃度を 15 体積0 /0とした。
[0073] その後、 BRレジン、アセトンおよび粉砕した粉末を攪拌機で同時に混合した。次に 、実施の形態 1の場合と同様にスプレードライヤーにより、アトマイザの回転数を 100 OOrpmとし、溶液の供給量を 1時間当たり 2kgで供給した。また乾燥させる窒素の温 度は入口温度 100°C、出口温度 70°Cで行った。この結果、平均粒径 20 m〜 30 mの造粒粉末を製造することができた。
[0074] 続いて、この造粒粉末を実施の形態 1の場合と同様の方法により 50MPaのプレス 圧力で電極サイズ 50mm X 11mm X 5mmの形状に圧縮成形し、成形体を作製した 。その後、成形体を加熱してコバルト (Co)合金電極 (放電表面処理電極)を製造した
[0075] 以上のようにして作製した本実施の形態に力かるコノ レト(Co)合金電極 (放電表 面処理電極)について、電極間距離 2mmの四端子法による表面抵抗率計により電 極表面の抵抗値を測定したところ、抵抗値が 6. 0 X 10—3 Ω〜13 X 10—3 Ωであった。 また、コバルト (Co)合金電極 (放電表面処理電極)が含む酸素量を赤外線吸収法に より測定したところ、酸素濃度が 6重量%であった。 [0076] 上述した本実施の形態に力かる方法においても、実施の形態 1の場合と同様に抵 抗率のばらつきが少ない放電表面処理電極を得ることが可能である。そして、本実施 の形態に力かる方法により作製した放電表面処理電極を用いた放電表面処理により 形成した皮膜も、実施の形態 1の場合と同様に、広い温度範囲に渡って優れた耐摩 耗性を示した。
[0077] したがって、本実施の形態に力かる放電表面処理用電極によれば、低温から高温 までの温度範囲で耐摩耗性に優れた被膜の形成を放電表面処理により行うことが可 能な放電表面処理用電極を得ることができる。
[0078] 実施の形態 3.
上述した実施の形態 2では、粉砕粉末に対して加えるワックス (有機バインダ)として アクリル系の榭脂を用い、アセトンを使用してワックスを溶解した場合について説明し たが、実施の形態 3では、粉砕粉末に対して加える有機ノインダとして水に溶解する PVA (ポリビュルアルコール)を用いた場合にっ 、て説明する。
[0079] 「クロム(Cr) 20重量0 /0、ニッケル(Ni) 10重量%、タングステン (W) 15重量%、残 コノ レト (Co)」の比率で配合されたコノ レト(Co)合金粉末をアトマイズ法と分級とに より平均粒径 1 μ mの粒径の粉末にし、市販の粒径 1 μ mのタングステンカーバイド( WC)を 5重量%加えて混合した。
[0080] 水に PVAをカ卩えた混合体を回転式の攪拌機で混合して PVAを溶融させたものに 、粉砕粉末を加え、混合物をさらに回転式の攪拌機で十分に混合して混合液を作製 した。ここで、水に対する溶質濃度を 10体積%とした。
[0081] なお、 PVAを有機バインダとして使用する場合、エタノール、プロパノール、ブタノ ールなどを用いても同様に溶解することが可能である。この場合には、造粒の際に不 活性ガス中で行う必要がある。
[0082] 次に、実施の形態 2の場合と同様にスプレードライヤーにより乾燥、造粒した。この ときに不活性ガス中で行ってもよいが、水を使用しているため空気中で造粒すること ができる。本実施の形態では空気中でアトマイザの回転数を 5000rpmとして、溶液 の供給量を 1時間当たり 2kgで供給した。また乾燥させる窒素の温度は入口温度 14 0°C、出口温度 110°Cで行った。この結果、平均粒径 80 mの造粒粉末を製造した 。この粉末を前述した実施の形態と同様に成形、加熱して電極とした。
[0083] 以上のようにして作製した本実施の形態に力かるコノ レト(Co)合金電極 (放電表 面処理電極)について、電極間距離 2mmの四端子法による表面抵抗率計により電 極表面の抵抗値を測定したところ、抵抗値が 8. 0 X 10 3 Ωであった。また、コノ レト( Co)合金電極 (放電表面処理電極)が含む酸素量を赤外線吸収法により測定したと ころ、酸素濃度が 9重量%であった。
[0084] 上述した本実施の形態にかかる方法においても、実施の形態 1および実施の形態 2の場合と同様に抵抗率のばらつきが少ない放電表面処理電極を得ることが可能で ある。そして、本実施の形態に力かる方法により作製した放電表面処理電極を用いた 放電表面処理により形成した皮膜も、実施の形態 1および実施の形態 2の場合と同 様に、広い温度範囲に渡って優れた耐摩耗性を示した。
[0085] したがって、本実施の形態に力かる放電表面処理用電極によれば、低温から高温 までの温度範囲で耐摩耗性に優れた被膜の形成を放電表面処理により行うことが可 能な放電表面処理用電極を得ることができる。
[0086] なお、上述した実施の形態では、放電表面処理用電極の原料の粉末は水アトマイ ズ法により製造した平均粒径 10 πι〜20 /ζ m程度の粉末を使用したが、本発明の 効果は、水アトマイズにより製造した粉末を使用した場合に限られるものではない。ま た、本発明の効果は、平均粒径が 10 m〜20 mの場合に限るものではない。
[0087] また、上述した実施の形態では、「モリブデン (Mo) 28重量%、クロム(Cr) 17重量 %、シリコン(Si) 3重量0 /0、残コバルト(Co)」、 「クロム(Cr) 20重量0 /0、ニッケル(Ni) 10重量%、タングステン (W) 15重量%、残コバルト(Co)」、の比率で配合された金 属を溶解して製造されたコバルト (Co)基の合金粉末を使用したが、酸化することで 潤滑性を発揮する成分を含む金属であればコバルト (Co)基には限らない。また、必 ずしも合金である必要もない。ただし材料の組み合わせによっては、クロム(Cr)のよ うに酸ィ匕物が潤滑性を有する材料であっても潤滑性を発揮できな 、場合があるので 、そのような組み合わせの合金金属を使用することは好ましくない。
[0088] たとえば、クロム(Cr)を他の金属と混合してニッケル (Ni)を多く含む合金とすると、 ニッケル (Ni)—クロム(Cr)の金属間化合物を形成し、クロム(Cr)の酸ィ匕を妨げるの で潤滑性が発揮しにくい材料となる、などの現象がおきる。また、合金でなくそれぞれ の元素の粉末を使用する場合には電極、または、被膜中に材料の偏在による不均一 が生じる場合もあったので、混合などに注意が必要である。
[0089] また、上述した実施の形態では、「モリブデン (Mo) 28重量%、クロム(Cr) 17重量 %、シリコン(Si) 3重量0 /0、残コバルト(Co)」、 「クロム(Cr) 20重量0 /0、ニッケル(Ni) 10重量%、タングステン (W) 15重量%、残コバルト(Co)」、の比率で配合された金 属を溶解して製造されたコバルト (Co)基の合金粉末を使用したが、この配合の他に も、シリコン(Si)、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、ジルコニウム( Zr)、モリブデン(Mo)、バリウム(Ba)、レニウム(Re)、タングステン(W)などの酸ィ匕 物を含む材料では、程度の差はあるが同様の効果が得られた。
[0090] 実施の形態 4
実施の形態 1〜3では、金属粉末を酸化させた粉末を用いて電極を製造し、成膜す る技術について説明したが、酸ィ匕物粉末を最初力も混合するという方法でもよい。本 実施の形態では、金属粉末と酸化物粉末とを混合して、所望の量の酸素を含んだ放 電表面処理電極を製造し、成膜を行う技術につ!ヽて説明する。
[0091] 以下、本発明の第 4の実施の形態について、「Mo (モリブデン) 28重量%、Cr (クロ ム) 17重量0 /0、 Si (シリコン) 3重量0 /0、 Co (コバルト)残」の材料を酸ィ匕させた材料相 当の材料を製造する場合を例として説明する。ただし、この材料だけでなぐ他の材 料、例えば他の実施の形態で説明する材料でも同様の効果が得られるのはいうまで ない。
[0092] まず、モリブデン(Mo)とシリコン(Si)とコバルト(Co)とを、おおよそ、「モリブデン( Mo):シリコン(Si):コバルト(Co) = 28 : 3 : 55」の比率で混合し、実施の形態 1に示 したように水アトマイズ法および分級により粉末を製造する。この粉末に酸化クロム (C r 0 )の粉末をおおよそ「Cr 0:金属粉末 = 25 : 83」の比率で混合する。この比率の
2 3 2 3
意味するところは、混合した粉末全体でのクロム (Cr)、モリブデン (Mo)、シリコン (Si )、コバルト(Co)の比率が、 「クロム(Cr):モリブデン(Mo):シリコン(Si):コバルト(C o) = 17: 28: 3: 55」とすることである。以下、本実施の形態にぉ 、ては、この粉末を コバルト合金粉末と呼ぶ。 [0093] 以上の 2種類の粉末をボールミルを用いて 10時間〜 20時間混合することで、均一 に酸素を含んだ混合粉末ができる。
[0094] 次に、電極の成形工程について説明する。金型を用いたプレス成形において金型 に粉末を充填する際の流動性を改善し、粉末内部へのプレスの圧力の伝わりを良く し、金型壁面と粉末との摩擦を低減して、均一な成形体とするために、有機バインダ として石油ワックス (パラフィン)を上述した粉砕粉末に対して重量比で 10%加えた。 有機バインダの粉砕粉末に対する量は、重量比で 1重量%から 20重量%とすること が必要である。
[0095] ここで、有機バインダの含有量が 1重量%以下の場合には、バインダとしての機能 を果たさず、プレスの際に圧力が均一に伝わらないばかりか、成形体の強度が弱く取 扱いが非常に困難となる。一方、有機バインダの含有量が 20重量%を越えると、プレ スの際に粉末が金型に貼りついて金型から離れずに成形体が割れるなどの問題が ある。このため有機ノインダ量は、粉砕粉末に対して 1重量%から 20重量%とする必 要がある。この範囲であれば粉末と有機ノインダとの配合比を調節することで、目的 とする成形体の空隙率を調整することが可能である。
[0096] ノ《ラフィンを粉砕粉末と均一に混合するための溶媒としては、ノルマルへキサンを 用いた。ノルマルへキサンと、粉末重量の 10重量%のパラフィンと、を混合してパラフ インを溶解した後、コバルト合金粉末を加えてさらに混合した。
[0097] このとき、コバルト合金粉末と有機バインダとの重量 (溶質の重量)が溶媒であるノル マルへキサンの: L0体積%となるように、ノルマルへキサン量を調整した。溶媒に対す る溶質濃度が低い場合には、乾燥が困難となり造粒粉末が作製できない。一方、溶 質濃度が高すぎると、粉末が沈降することにより溶液濃度にムラが発生するため、均 一な造粒粉末を得るのが難しくなる。このため、溶媒に対する溶質成分は 2体積%〜 30体積%となるように調整する必要がある。このように、コバルト合金粉末と有機バイ ンダとの合計の体積をこのような範囲とすることにより、均一な造粒粉末を得ることが できる。
[0098] なお、本実施の形態では、はじめに溶媒中にワックスを混合した後に粉末を投入し たが、はじめからコノ レト合金粉末を投入して混合しても構わな!/、。 [0099] 上記においては有機バインダとしてパラフィンを用いた例について説明した力 有 機バインダは、この他に、メタクリル酸イソブチル、ステアリン酸、ポリビュルアルコー ル等でも良い。
[0100] さらに、ノラフィンを使用する際の溶剤としては、ノルマルへキサン以外にヘプタン
、イソブタンを用いても同様に溶解することができる。他の溶剤を用いた場合にはパラ フィンを十分溶解することができないため、粉末の状態で分散させることにより造粒粉 末とすることも可能である。他の溶剤としては、水、エタノール、ブタノール、プロパノ 一ノレ、アセトンなどがある。
[0101] つぎに、造粒工程として一般にスプレードライヤーと呼ばれる乾燥造粒装置を用い て、高温の窒素を循環させた雰囲気に上記混合溶液を噴霧し、溶剤を乾燥させた。 この乾燥の際に、混合溶液は溶媒成分 (本実施の形態ではノルマルへキサン)が揮 発して、酸化した金属粉末と有機バインダとが均一に分散した球状の造粒粉末となる 。この造粒粉末は、安息角が小さいので流動性が高ぐ成形の際に空隙が均一に形 成され、密度や抵抗値のばらつきがな 、成形体を得ることができる。
[0102] 本発明の目的である、均一な密度、抵抗値を有する電極を得るためには、造粒粉 末の平均粒径が 10 μ m〜100 μ mの大きさであることが好ましい。造粒粉末の平均 粒径が 10 m以下である場合には、粉末の流れ性が悪くなり、型に均一に充填する ことが難しくなる。一方、造粒粉末の粒径が 100 m以上である場合には、プレス成 型した際に残る空隙が大きくなりやすぐ均一な電極が得られない。
[0103] なお、本実施の形態では造粒にスプレードライヤーを用いた例により説明したが、 流動造粒機や転動造粒機など、他の方法を用いても造粒粉末を得ることができる。
[0104] つぎに、造粒した粉末の成形工程について図 9を用いて説明する。図 9は、本実施 の形態における造粒粉末の成形工程の概念を示す断面図である。図 9において、金 型の上パンチ 1202、金型の下パンチ 1203、金型のダイ 1204で囲まれた空間には 、前工程で作製した造粒粉末 1201が充填される。そして、この造粒粉末 1201を圧 縮成形することにより圧粉体 (成形体)を形成する。後に説明する放電表面処理加工 においては、この圧粉体 (成形体)が放電電極とされる。
[0105] 造粒粉末を成形するプレス圧と焼結温度は、目的とする電極の抵抗値や酸素濃度 により異なる力 50MPa〜200MPa、加熱温度は 600°Cから 1000°Cの範囲とされ る。本実施の形態では、 lOOMPaの圧力で造粒粉末を成形し、長さ 100mm、幅 11 mm、厚み 5mmの大きさに成形した。なお、成形の前に金型に振動を加えて粉末が 均一に充填されるようにした後、加圧成形した。成形圧力が 50MPaより小さいと、造 粒粉末間に空隙が残り、均一な電極とすることができない。また、成形圧力が 200M Paを越えると、電極に割れが生じる、金型力も剥がすことができなくなる、などの問題 を生じる。このため、成形圧力は 50MPa〜200MPaが好ましい。
[0106] 得られた圧粉体 (成形体)に対して焼結を行うが、加熱の際に電極中の有機バイン ダを除去する工程として、温度 150°C力も 400°Cで 30分から 2時間程度保持すること によって、焼結体中の有機バインダを安定して十分除去することが可能になる。一般 に有機バインダは加熱により膨張する性質があるため、急激に加熱すると電極に膨 れゃ割れが生じるなど品質上の欠陥を生じやすい。このため、一度に焼結温度に加 熱せず、有機ノ インダが完全に除去できるまで、ー且保持する必要がある。
[0107] 本実施の形態においては、圧粉体 (成形体)を真空炉で 30分間、 200°Cで保持し 、その後 300°Cまで 1時間かけて昇温した。さらに 700°Cまで 1時間で昇温した後、約 1時間保持し、室温まで冷却して、コバルト (Co)合金粉末力 なるコバルト (Co)合金 電極を製造した。
[0108] このコバルト(Co)合金電極のプレスの面に当たる長さ 100mm、幅 11mmの面を 電極間距離 2mmの四端子法による表面抵抗率計により、電極の抵抗値を測定した ところ抵抗値が 7. 5 X 10—3 Ωであった。
[0109] 電極は、後に示すようにパルス状の放電のエネルギーにより崩れて溶融し被膜とな るので、放電による崩れやすさが重要になる。このような電極においては、四端子法 による電極表面の抵抗力、 5 X 10— 3 Ω力ら 10 X 10— 3 Ωの範囲が適正値であり、 6 X 1 0 3 Ω力 9 X 10 3 Ωの範囲がより好まし!/ヽ。
[0110] 上記のようにして製造された電極表面の抵抗値が異なる複数の電極を用いて、後 述する放電表面処理方法により被膜を形成して摺動試験を行った結果を図 10— 1 に示す。図 10— 1において、横軸は電極表面の抵抗値(Ω )を示している。また、縦 軸は、電極の摩耗量を示している。また、試験片としては、図 10— 2に示すように被 膜 1251を TIG溶接により試験片本体 1252に溶接した試験片(上試験片 1253aお よび下試験片 1253b)を作製した。
[0111] そして、この上試験片 1253aと下試験片 1253bとを、被膜 1251が対向するように 配置し、面圧が 7MPaとなるように荷重をかけながら、 0. 5mm幅で 40Hzの周波数 で I X 106サイクル摺動だけ、図 10— 2の X方向に往復摺動させて試験を行った。な お、試験片本体 1252に被膜を溶接した後、研削を行い、被膜 1251の表面を平坦 にしている。
[0112] 図 10—1からわかるように、電極表面の抵抗値が 5 X 10— 3 Ωから 10 X 10— 3 Ωの範 囲の電極を使用した場合には摩耗量が少なぐ 6 X 10— 3 Ω力 9 X 10— 3 Ωの範囲の 電極では特に摩耗量が少ない。したがって、本実施の形態において用いる電極とし ては、四端子法による電極表面の抵抗が 5 X 10— 3 Ω力 10 X 10— 3 Ωの範囲が適正 値であり、 6 X 10— 3 Ω力ら 9 X 10— 3 Ωの範囲がより好まし!/ヽ。
[0113] なお、この摺動試験に使用した放電表面処理の電気条件は、後述する図 14に示 すように放電パルスの期間中に幅が狭くピークが高 、電流をカ卩えた波形であり、高 、 ピークの部分は電流値が約 15A、低い部分の電流は電流値が約 4A、放電持続時 間(放電パルス幅)が約 10 μ sの条件である。
[0114] また、図 11に、電極を四端子法により長さ方向の両端と中央の 3ケ所で測定した抵 抗の標準偏差を示す。図 11において、横軸は各電極、縦軸は 3点で測定した抵抗 の標準偏差である。参考のため、従来の方法でプレス成形して作製した電極の抵抗 を合せて示す。電極は、電極形状:長さ 100mm X幅 11mm X厚さ 5mm、プレス圧 力: 100MPa、 700°C X 1時間真空中焼結、により作製した。この図から本発明によ る粉末を使用した電極は、長さ方向の各位置における抵抗のばらつきが十分小さく なっていることがわ力る。
[0115] また、本実施の形態で作製した電極の酸素量を赤外線吸収法により測定したところ 、酸素濃度が 10重量%であった。電極酸素濃度は、用いた粉末の酸素濃度とは必 ずしも等しくならな ヽ。広 ヽ温度範囲に渡って優れた耐摩耗性を発揮するためには、 最終的に皮膜の酸素量が重要となるが、耐摩耗性に優れる皮膜の酸素量は 5重量 %〜9重量%で最も耐摩耗性に優れた皮膜が得られている。 [0116] 電極の抵抗値、酸素濃度は、用いる粉末の酸素濃度および電極を製造する際のバ インダ量、プレス圧力、焼結温度により決定される。したがって、これらの要件を適切 に制御して、電極の抵抗値と酸素量が適切な範囲となるように製造することが重要で ある。
[0117] つぎに、以上のようにして作製した電極を用いて放電表面処理方法により被処理材
(ワーク)上に被膜を形成する。本実施の形態において放電表面処理を行う放電表 面処理装置の概略構成を示す模式図を図 12に示す。図 12に示すように本実施の 形態にかかる放電表面処理装置は、上述したコバルト合金粉末の造粒粉末からなる 電極 1301と、加工液 1303である油と、電極 1301とワーク 1302とを力卩ェ液中に浸 漬させる、または電極 1301とワーク 1302との間に力卩工液 1303を供給する加工液供 給装置(図示せず)と、電極 1301とワーク 1302との間に電圧を印加してパルス状の 放電 (アーク柱 1305)を発生させる放電表面処理用電源 1304とを備えて構成され ている。なお、図 12においては、放電表面処理用電源 1304とワーク 1302との相対 位置を制御する駆動装置などの本発明に直接関係のな 、部材は記載を省略して 、 る。
[0118] この放電表面処理装置によりワーク表面に被膜を形成するには、電極 1301とヮー ク 1302とを力卩ェ液 1303の中で対向配置し、加工液 1303中において放電表面処理 用電源 1304力も電極 1301とワーク 1302との間にパルス状の放電を発生させる。そ して、パルス状の放電の放電エネルギーにより電極材料の被膜をワーク表面に形成 し、または放電エネルギーにより電極材料が反応した物質の被膜をワーク表面に形 成する。極性は、電極 1301側がマイナス、ワーク 1302側がプラスの極性を使用する 。図 12に示すように放電のアーク柱 1305は電極 1301とワーク 1302との間に発生 する。
[0119] このような条件で作製された圧粉体電極を用いて放電表面処理を行!ヽ、被膜を形 成した。放電表面処理を行う場合の放電のパルス条件の一例を図 13— 1と図 13— 2 とに示す。図 13— 1と図 13— 2は、放電表面処理時における放電のノ ルス条件の一 例を示す図であり、図 13— 1は、放電時の電極とワークとの間に力かる電圧波形を示 し、図 13— 2は、放電時に流れる電流の電流波形を示している。ここで、図 13—1に お!ヽては、電極マイナスの電圧を横軸上(正)として記載してある。
[0120] 図 13— 1に示されるように時刻 tOで両極間に無負荷電圧 uiがかけられる力 放電 遅れ時間 td経過後の時刻 tlに両極間に電流が流れ始め、放電が始まる。このときの 電圧が放電電圧 ueであり、このとき流れる電流がピーク電流値 ieである。そして時刻 t 2で両極間への電圧の供給が停止されると、電流は流れなくなる。
[0121] 時刻 t2— tlがパルス幅 teである。この時刻 t0〜t2における電圧波形を、休止時間 toをおいて繰り返して両極間に印加する。つまり、この図 13—1に示されるように、放 電表面処理用電極とワークとの間に、パルス状の電圧を印カ卩させる。
[0122] 本実施の形態においては放電表面処理時の放電パルスの電気的な条件は、図 13
2に示すような電流波形が矩形波状の条件の場合には、ピーク電流値 ie = 2A〜l 0A、放電持続時間(放電パルス幅) te = 5 s〜20 μ sが適切な条件である力 この 範囲は上記電極の崩れやすさにより前後する場合がある。また、放電のパルスにより 電極をよりよく崩すためには、図 14に示すように放電パルスの期間中に幅が狭くピー クが高い電流をカ卩えた波形が有効であることがわ力つてきた。ここで、図 14において は、電極マイナスの電圧を横軸上 (正)として記載してある。
[0123] このような電流波形を使用すると、図 14に示すような高いピークの波形の電流によ り電極を崩し、図 14に示すような低いピークの幅の広い波形の電流により溶融を進め ることができ、ワーク 1302に被膜を速い速度で形成することが可能である。この場合 、高いピークの波形の部分は電流値が 10A〜30A程度が適切であり、低いピークの 幅の広い波形の部分の電流は電流値が 2A〜6A程度、放電持続時間(放電パルス 幅)が 4 /z s〜20 /z s程度が適切であった。低いピークの幅の広い波形の部分の電流 が 2Aより低いと、放電のパルスを継続することが難しくなり、途中で電流が途切れる パルス割れの現象が多くなるようになる。
[0124] 実施の形態 5.
次に、粉末を加熱により酸化させるあるいは酸化物を混合する方法ではなぐ粉末 の粉砕の工程で粉末を参加させる方法について説明する。
[0125] まず、本実施の形態においては原料粉末を用意した。原料粉末としては、組成が「 クロム(Cr) 25重量0 /0、ニッケル(Ni) 10重量0 /0、タングステン (W) 7重量0 /0、残コバ ルト(Co)」の平均粒形が 20 μ mのコバルト(Co)合金粉末を購入した。このコバルト( Co)合金粉末は、「クロム(Cr) 25重量0 /0、ニッケル (Ni) 10重量0 /0、タングステン (W ) 7重量%、残コバルト(Co)」の比率で配合された金属を溶解し、水アトマイズ法によ り製造したものである。原料粉末であるコバルト (Co)合金粉末の状態を示す画像を 図 15に示す。なお、図 15に示す画像は SEMにより撮影した画像である。この状態 では、粉末中の酸素量はほとんどなく最大でも 1%以下である。
[0126] 本実施の形態では、平均粒径を 20 μ m程度の粉末を使用したが、本発明にお ヽ ては使用する粉末の大きさはこの大きさに限られるわけではない。すなわち、平均粒 径が 20 mより大きな粉末でも、また、平均粒径が 20 mより小さな粉末でも使用は 可能である。ただし、平均粒径が 20 mより大きな粉末を使用する場合には、以下に 説明する粉末の粉砕の際に、より長い時間を要する。また、平均粒径が 20 mより小 さな粉末を使用する場合には、分級により回収する粉末の量が少なくなり、コスト高に なると 、う違 、があるだけである。
[0127] つぎに、この粉末を酸化させる工程について説明する。本実施の形態では、粉末を 酸ィ匕させる工程として、大気中、すなわち、酸化雰囲気において、ジェットミルを用い て粉末を粉砕する作業を行った。図 16は旋回式のジェットミルの構成の一例を示す 模式図である。旋回式のジェットミルでは、図示しないエアーコンプレッサからバッフ ァタンク 101を介して高圧の空気を供給し、ジェットミルの粉砕室 102に高速旋回流 を形成する。そして、フィーダ 103から原料粉末 104を粉砕室 102に供給し、この高 速旋回流のエネルギーにより該粉末を粉砕する。なお、旋回式のジェットミルについ ては、たとえば、特開 2000— 42441号公報などに説明があるので、ここでは詳細は 省略する。
[0128] 通常、旋回式のジェットミルでは空気の圧力を 0. 5MPa程度の圧力にして使用す る力 本実施の形態で使用した「クロム (Cr) 25重量0 /0、ニッケル (Ni) 10重量0 /0、タ ングステン (W) 7重量%、残コバルト (Co)」の比率で配合されたコバルト(Co)合金 粉末の場合には、このような一般的な圧力では粉砕できず、 1. OMPaから 1. 6MPa 程度まで圧力を高める必要があった。ジェットミルカも粉砕されて排出された粗粒粉 末 105は、サイクロン 106で分級されて、粉砕された微粉砕粉末 107はバグフィルタ 1 08により捕らえられる。粉砕が不十分な粉末はサイクロン 106で回収され、再度ジェ ットミルに投入して粉枠を続けることにより、細力ゝく粉枠することができる。なお、粉枠 はジェットミルに限らず、ビーズミル、振動ミル、ボールミルなど他の方法を用いても良 いが、粉砕に時間が力かるため効率は悪くなる。
[0129] 旋回式のジェットミルでは、圧縮空気の圧力、粉砕の回数により、粉砕された粉末 の粒径が決まるが、発明者らの実験により、粉砕した粉末に含まれる酸素量は粉砕し た粉末の粒径と極めて強い相関があることがわ力つた。図 17は、粉末粒径と、粉末に 含まれる酸素の濃度と、の関係を示した特性図である。図 17に示した特性図におい て、横軸は粉末の平均粒径 (体積で 50%相当のところの粒径である D50)である。ま た、縦軸は、粉末中の酸素の濃度 (重量%)である。粉末の平均粒径は、レーザ回折 散乱法による粒度分布測定装置により測定した値である。また、酸素の濃度 (重量% )は、X線マイクロアナライザ(EPMA: Electron Probe Micro- Analysis)による測定 結果である。
[0130] 後に示すように、耐摩耗性を発揮させるには、粉末に含まれる酸素量力 重量%か ら 16重量%。好ましくは 6重量%から 14重量%であることがわ力つた。粉末に含まれ る酸素量がこの範囲を超えて多い場合には、形成された被膜の強度が弱くなり、特 に 16重量%を超えるとつぎに示す成形工程で、粉末を均一に成形することが極めて 困難になる。また、粉末に含まれる酸素量力 重量%よりも少ない場合には、形成さ れた被膜の耐摩耗性が劣り、従来技術のように中温域での摩耗を減らすことが困難 であった。このことより粉砕した粉末の平均粒径 D50は 0. 5〜1. 7 /z mの粉末を使 用した。
[0131] その後、実施の形態 1等に示すように電極を成形し、被膜を形成することで、高い 耐摩耗性を有する被膜を形成することができた。
[0132] また、上述した実施の形態では、水アトマイズ法により製造した平均粒径が 10 μ m 〜20 μ m程度のコバルト(Co)合金粉末を、旋回式のジェットミルにより粉末を粉砕 する例を示した力 ジェットミルの方式はこれに限定されるものではない。すなわち、 ジェットミルの他の方式には、粉末を対向する二方向から噴出して衝突させることで 粉砕する対向式ジェットミル、また、粉末を壁面などにぶっけることで粉砕する衝突式 などの方式もあるが、どの方式であっても同様の粉末ができればよいことはいうまでな い。
[0133] ジェットミルにより粉末を粉砕する工程には、合金粉末をさらに微粉化することにカロ えて、粉末を均一に酸ィ匕させるという重要な意味を有している。したがって、粉砕は大 気雰囲気などの酸化雰囲気で行う必要がある。通常、金属粉末を粉砕する場合には できるだけ酸ィ匕しな 、ように注意を払うのが一般的である。たとえばジェットミルを使 用する場合には、粉砕に使用する高圧の気体に窒素を使用するなどして粉末の酸 化を防ぐ。また、他の粉砕方法であるボールミルや振動ミルでは、溶剤を粉末と混合 して粉砕を行 、、粉砕された粉末と酸素とができるだけ接触しな 、ようにするのがー 般的である。
[0134] し力しながら、前述のように本発明にお 、ては、粉砕した粉末を酸ィ匕させることが必 須である。粉末を酸ィ匕させる方法もジェットミルに限るものではない。他の粉砕方法で あるボールミルや振動ミルでも、粉末を酸ィ匕しながら粉砕することができれば、ジエツ トミルの場合と同様の効果が得られる。ただし、ボールミルや振動ミルでは、粉末をい れたポットを密閉状態にするため、定期的にポットを開けるなど、酸化しやすい環境 を作ることが必要である。したがって、酸化の状態の管理が難しぐ品質のばらつきが 生じ易 ヽと 、う欠点を有して 、る。
[0135] また、前述のように一般的にボールミルや振動ミルでは溶剤と粉末とを混合して粉 砕する場合が多 、が、粉末を溶剤と混合した状態では粉砕の過程ではほとんど粉末 の酸ィ匕が進まない。このため、溶剤を入れずに粉砕してみたところ、容器が熱を持つ 、粉末がボールに付着する、など扱いが困難であった。
[0136] また、溶剤と粉末とを混合して粉砕する場合には、粉砕後の乾燥の段階で粉末の 酸化が一気に進む。このため、乾燥の際の雰囲気の酸素濃度と乾燥温度とを変更さ せながら最適な条件を選定する必要があった。ボールミルや振動ミルでの粉砕に比 ベると、ジェットミルでの粉砕は、粉砕した粒径により粉砕した粉末の酸素量すなわち 酸ィ匕の程度がほぼ決まるので、粒径を管理すれば酸ィ匕程度を管理できることになり、 扱いは比較的容易である。
産業上の利用可能性 以上のように、本発明にかかる放電表面処理用電極の製造方法は、低温から高温 までの温度範囲で耐摩耗性に優れた被膜の形成に用いる放電表面処理用電極の 製造に有用である。

Claims

請求の範囲
[1] 金属粉末または金属の化合物の粉末または導電性のセラミックの粉末を成形した 成形粉体を電極として、加工液中または気中において前記電極とワークとの間にパ ルス状の放電を発生させ、そのエネルギーによりワーク表面に前記電極の材料から なる被膜または前記電極の材料が前記パルス状の放電のエネルギーにより反応した 物質からなる被膜を形成する放電表面処理に用いられる放電表面処理用電極の製 造方法であって、
粉末中の酸素を増加させる酸素量調整工程と、
前記酸素を増加させた粉末と有機バインダと溶媒とを混合して混合液を作製する 混合工程と、
前記混合液を用いて造粒を行って造粒粉末を形成する造粒工程と、
前記造粒粉末を成形して酸素濃度が 4重量%から 16重量%である成形体を作製 する成形工程と、
を含むことを特徴とする放電表面処理用電極の製造方法。
[2] 前記酸素量調整工程において、含有する酸素量が 4重量%から 16重量%になるよ うに金属粉末を処理すること
を特徴とする請求項 1に記載の放電表面処理用電極の製造方法。
[3] 前記金属粉末の平均粒径を 0. 5 /ζ πι〜1. 7 mとするように粉砕すること
を特徴とする、請求項 2に記載の放電表面処理電極の製造方法。
[4] 前記金属粉末を酸化雰囲気中で加熱すること
を特徴とする請求項 2に記載の放電表面処理電極の製造方法。
[5] 前記金属粉末に酸化物粉末を混合すること
を特徴とする請求項 2に記載の放電表面処理電極の製造方法。
[6] 前記金属粉末が、シリコン (Si)、クロム(Cr)、鉄 (Fe)、コバルト (Co)、ニッケル (Ni )、ジルコニウム(Zr)、モリブデン(Mo)、バリウム(Ba)、レニウム(Re)、タングステン( W)力 なる群より選ばれた少なくとも一種以上の元素の酸ィ匕物を含む金属粉末であ ること
を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[7] 前記有機ノインダとして、ノ《ラフィン、メタクリン酸イソプチル、ステアリン酸、ポリビ- ルアルコール力 なる群より選ばれた少なくとも一種を用いること
を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[8] 前記有機バインダの混合量を、前記酸化した金属粉末の重量の 1重量%〜20重 量%とすること
を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[9] 前記溶媒として、水、エタノール、ブタノール、プロパノール、ヘプタン、イソブタン、 アセトン、ノルマルへキサン力もなる群より選ばれた少なくとも一種を用いること を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[10] 前記混合液として、前記酸化した金属粉末と前記有機バインダとを合せた溶質成 分の体積の合計が前記溶媒に対する体積比で 2体積%〜30体積%とした混合液を 作製すること
を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[11] 前記造粒粉末の平均粒径を 10 m〜: LOO mとすること
を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[12] 前記造粒粉末を 50MPa〜200MPaの圧力でプレス成形して成形体を作製するこ と
を特徴とする請求項 2に記載の放電表面処理用電極の製造方法。
[13] 前記成形体を 150°C〜400°Cの温度で 30分〜 2時間保持した後に、 600°C〜10 00°Cの温度で 1時間〜 4時間焼結する工程を含むこと
を特徴とする請求項 12に記載の放電表面処理用電極の製造方法。
[14] 金属粉末または金属の化合物の粉末または導電性のセラミックの粉末を成形した 成形粉体を電極として、加工液中または気中において前記電極とワークとの間にパ ルス状の放電を発生させ、そのエネルギーによりワーク表面に前記電極の材料から なる被膜または前記電極の材料が前記パルス状の放電のエネルギーにより反応した 物質からなる被膜を形成する放電表面処理に用いられる放電表面処理用電極にお いて、
4端子法により測定した電極表面の抵抗値が 5 X 10— 3 Ω〜10 Χ 10— であり、且つ 電極中の酸素濃度力 S4重量%〜10重量%であること を特徴とする放電表面処理用電極。
PCT/JP2006/317999 2006-09-11 2006-09-11 Procédé de production d'une électrode pour traitement de surface par décharge électrique et électrode pour traitement de surface par décharge électrique WO2008032359A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020097007458A KR101108818B1 (ko) 2006-09-11 2006-09-11 방전표면처리용 전극의 제조방법 및 방전표면처리용 전극
JP2007505298A JP4602401B2 (ja) 2006-09-11 2006-09-11 放電表面処理用電極の製造方法および放電表面処理用電極
EP06783272A EP2062998B1 (en) 2006-09-11 2006-09-11 Process for producing electrode for electric discharge surface treatment and electrode for electric discharge surface treatment
US11/916,044 US9347137B2 (en) 2006-09-11 2006-09-11 Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment
CN2006800528872A CN101374975B (zh) 2006-09-11 2006-09-11 放电表面处理用电极的制造方法及放电表面处理用电极
PCT/JP2006/317999 WO2008032359A1 (fr) 2006-09-11 2006-09-11 Procédé de production d'une électrode pour traitement de surface par décharge électrique et électrode pour traitement de surface par décharge électrique
TW095134185A TWI299292B (en) 2006-09-11 2006-09-15 Method for making an electrode for dischage processing of surface and electrode thereof
US13/281,884 US20120056133A1 (en) 2006-09-11 2011-10-26 Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317999 WO2008032359A1 (fr) 2006-09-11 2006-09-11 Procédé de production d'une électrode pour traitement de surface par décharge électrique et électrode pour traitement de surface par décharge électrique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/916,044 A-371-Of-International US9347137B2 (en) 2006-09-11 2006-09-11 Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment
US13/281,884 Division US20120056133A1 (en) 2006-09-11 2011-10-26 Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment

Publications (1)

Publication Number Publication Date
WO2008032359A1 true WO2008032359A1 (fr) 2008-03-20

Family

ID=39183433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317999 WO2008032359A1 (fr) 2006-09-11 2006-09-11 Procédé de production d'une électrode pour traitement de surface par décharge électrique et électrode pour traitement de surface par décharge électrique

Country Status (7)

Country Link
US (2) US9347137B2 (ja)
EP (1) EP2062998B1 (ja)
JP (1) JP4602401B2 (ja)
KR (1) KR101108818B1 (ja)
CN (1) CN101374975B (ja)
TW (1) TWI299292B (ja)
WO (1) WO2008032359A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099239A1 (ja) * 2008-02-05 2009-08-13 Suzuki Motor Corporation 放電被覆方法およびそれに用いる圧粉体電極
JP2010234197A (ja) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp 造粒粉末及び放電表面処理用電極の製造方法
WO2010119865A1 (ja) * 2009-04-14 2010-10-21 株式会社Ihi 放電表面処理用電極及びその製造方法
EP2399696A1 (en) * 2009-02-18 2011-12-28 IHI Corporation Electrode manufacturing method and electric discharge surface treatment used therein
KR101406721B1 (ko) 2013-04-03 2014-06-16 한국에너지기술연구원 성능이 향상된 전극 소재용 분말 제조 방법과 이를 이용한 전극과 그 활용.
JP2015140461A (ja) * 2014-01-29 2015-08-03 株式会社Ihi 放電表面処理用の電極及びその製造方法
JP2017024012A (ja) * 2015-07-16 2017-02-02 株式会社キャステム 粉末プレス成形体の製造方法
WO2023223583A1 (ja) * 2022-05-18 2023-11-23 株式会社Ihi 放電表面処理用電極及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130037524A1 (en) * 2010-04-28 2013-02-14 Ihi Corporation Electrode applied to discharge surface treatment and production method thereof
JP5917502B2 (ja) * 2011-05-16 2016-05-18 株式会社東芝 モリブデン造粒粉の製造方法
JP5917503B2 (ja) * 2011-05-19 2016-05-18 株式会社東芝 モリブデン造粒粉の製造方法
KR102367259B1 (ko) * 2013-06-27 2022-02-23 제온 코포레이션 리튬 이온 전지용 전극의 제조 방법
US9805068B1 (en) * 2013-08-30 2017-10-31 Veritas Technologies Llc Systems and methods for facilitating features of system recovery environments during restore operations
CN109804104B (zh) * 2016-11-09 2021-03-30 株式会社Ihi 具备耐磨损被膜的滑动部件和耐磨损被膜的形成方法
CN108513592B (zh) * 2016-12-28 2021-03-02 三菱电机株式会社 放电表面处理电极的制造方法及覆膜体的制造方法
CN111086212B (zh) * 2019-12-25 2021-11-23 杭州喜马拉雅信息科技有限公司 一种复合3d打印头
CN113579231B (zh) * 2021-08-13 2022-11-22 丹阳市无字硬质合金有限公司 一种刻字模设备及其生产工艺
CN115125476B (zh) * 2022-08-29 2023-05-26 山东理工大学 一种钛合金表面原位生成氮化钛耐磨抗蚀层的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042441A (ja) 1998-07-31 2000-02-15 Buishunu:Kk ジェットミル
WO2005068670A1 (ja) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. エンジン部品、高温部品、表面処理方法、ガスタービンエンジン、かじり防止構造、及びかじり防止構造の製造方法
JP2005213560A (ja) 2004-01-29 2005-08-11 Mitsubishi Electric Corp 放電表面処理用電極の製造方法及び放電表面処理用電極
JP2006124741A (ja) * 2004-10-27 2006-05-18 Mitsubishi Electric Corp 放電表面処理方法並びに放電表面処理用電極

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796505A (en) 1952-12-22 1957-06-18 Philco Corp Precision voltage regulating element
GB1182242A (en) 1966-02-11 1970-02-25 United States Borax Chem Improvements in or relating to Nitrides.
JPS521113B1 (ja) 1966-05-16 1977-01-12
US3745296A (en) 1971-08-20 1973-07-10 Kennecott Copper Corp Copper tool material for electrical discharge machining
US3872419A (en) 1972-06-15 1975-03-18 Alexander J Groves Electrical elements operable as thermisters, varisters, smoke and moisture detectors, and methods for making the same
US4451815A (en) 1982-09-27 1984-05-29 General Electric Company Zinc oxide varistor having reduced edge current density
US4452728A (en) 1983-02-18 1984-06-05 Westinghouse Electric Corp. Voltage stable nonlinear resistor containing minor amounts of aluminum, boron and selected alkali metal additives
EP0165821B1 (en) 1984-06-22 1988-11-09 Hitachi, Ltd. Oxide resistor
JPS63209104A (ja) 1987-02-26 1988-08-30 日本碍子株式会社 酸化亜鉛形避雷器素子
JPH01257304A (ja) 1988-04-06 1989-10-13 Murata Mfg Co Ltd 有機正特性サーミスタ
JPH04346632A (ja) 1991-05-21 1992-12-02 Brother Ind Ltd プラズマ切断用電極材料
JP3003405B2 (ja) 1992-08-06 2000-01-31 株式会社村田製作所 導電ペースト及びそれを用いたセラミック電子部品の電極形成方法
DE69413613T2 (de) 1993-07-16 1999-03-18 Toshiba Kawasaki Kk Metalloxid-Widerstand, Leistungswiderstand und Leistungsschalter
JP3271836B2 (ja) 1993-08-31 2002-04-08 科学技術振興事業団 アルミニウム及びその合金の液中放電による表面処理方法
JP3002621B2 (ja) 1993-10-15 2000-01-24 尚武 毛利 放電加工による表面処理方法およびその装置
WO1995034081A1 (en) 1994-06-08 1995-12-14 Raychem Corporation Electrical devices containing conductive polymers
US5818005A (en) * 1997-04-24 1998-10-06 Motorola, Inc. Electrical discharge machining electrode and rapid method for fabricating same
JPH11186006A (ja) 1997-12-22 1999-07-09 Toshiba Corp 非直線抵抗体
JP3907948B2 (ja) * 1998-11-13 2007-04-18 三菱電機株式会社 金型の放電表面処理方法および金型放電表面処理用電極の製造方法および金型放電表面処理用電極
JP2000353804A (ja) 1999-06-11 2000-12-19 Mitsubishi Electric Corp 半導体装置およびその製造方法
WO2001023641A1 (fr) 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electrode de traitement de surface par decharge electrique, son procede de production et procede de traitement de surface par decharge electrique
JP2001176703A (ja) 1999-10-04 2001-06-29 Toshiba Corp 電圧非直線抵抗体及びその製造方法
TW469195B (en) 1999-11-29 2001-12-21 Mitsubishi Electric Corp Electrode for discharge surface treatment process, method for making such electrode, and method for treating a surface with electric discharge
JP3421621B2 (ja) 1999-12-24 2003-06-30 三洋電機株式会社 面光源装置
EP1526191B1 (en) 2002-07-30 2010-07-21 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP4307444B2 (ja) 2002-09-24 2009-08-05 株式会社Ihi 高温部材の擦動面のコーティング方法および高温部材と放電表面処理用電極
EP1643007B1 (en) * 2003-05-29 2014-01-15 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode and process for its manufacture
BRPI0411033A (pt) 2003-06-04 2006-07-18 Mitsubishi Denki Kabishiki Kai eletrodo para um tratamento superficial de descarga elétrica, método para a fabricação do mesmo e método para armazenamento do mesmo
RU2311987C2 (ru) 2005-08-03 2007-12-10 Валерий Павлович Ногтев Шлакообразующая смесь для теплоизоляции металла в промежуточном ковше

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042441A (ja) 1998-07-31 2000-02-15 Buishunu:Kk ジェットミル
WO2005068670A1 (ja) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. エンジン部品、高温部品、表面処理方法、ガスタービンエンジン、かじり防止構造、及びかじり防止構造の製造方法
JP2005213560A (ja) 2004-01-29 2005-08-11 Mitsubishi Electric Corp 放電表面処理用電極の製造方法及び放電表面処理用電極
JP2006124741A (ja) * 2004-10-27 2006-05-18 Mitsubishi Electric Corp 放電表面処理方法並びに放電表面処理用電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2062998A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099239A1 (ja) * 2008-02-05 2009-08-13 Suzuki Motor Corporation 放電被覆方法およびそれに用いる圧粉体電極
EP2399696B1 (en) * 2009-02-18 2017-09-27 IHI Corporation Electrode manufacturing method and electric discharge surface treatment used therein
EP2399696A1 (en) * 2009-02-18 2011-12-28 IHI Corporation Electrode manufacturing method and electric discharge surface treatment used therein
CN102317011A (zh) * 2009-02-18 2012-01-11 株式会社Ihi 电极的制造方法及利用其的放电表面处理
JP2010234197A (ja) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp 造粒粉末及び放電表面処理用電極の製造方法
RU2490094C2 (ru) * 2009-04-14 2013-08-20 АйЭйчАй КОРПОРЕЙШН Электрод для поверхностной обработки разрядом и способ его изготовления
EP2420594A1 (en) * 2009-04-14 2012-02-22 IHI Corporation Discharge surface treatment electrode and method for manufacturing same
EP2420594A4 (en) * 2009-04-14 2013-11-13 Ihi Corp ELECTRODE FOR THE TREATMENT OF A DISCHARGE SURFACE AND METHOD OF MANUFACTURING THEREOF
JP5354010B2 (ja) * 2009-04-14 2013-11-27 株式会社Ihi 放電表面処理用電極及びその製造方法
US9410250B2 (en) 2009-04-14 2016-08-09 Ihi Corporation Discharge surface treatment electrode and method of manufacturing the same
WO2010119865A1 (ja) * 2009-04-14 2010-10-21 株式会社Ihi 放電表面処理用電極及びその製造方法
KR101406721B1 (ko) 2013-04-03 2014-06-16 한국에너지기술연구원 성능이 향상된 전극 소재용 분말 제조 방법과 이를 이용한 전극과 그 활용.
JP2015140461A (ja) * 2014-01-29 2015-08-03 株式会社Ihi 放電表面処理用の電極及びその製造方法
JP2017024012A (ja) * 2015-07-16 2017-02-02 株式会社キャステム 粉末プレス成形体の製造方法
WO2023223583A1 (ja) * 2022-05-18 2023-11-23 株式会社Ihi 放電表面処理用電極及びその製造方法

Also Published As

Publication number Publication date
CN101374975B (zh) 2012-01-11
KR20090086945A (ko) 2009-08-14
JP4602401B2 (ja) 2010-12-22
US20090127110A1 (en) 2009-05-21
TWI299292B (en) 2008-08-01
CN101374975A (zh) 2009-02-25
JPWO2008032359A1 (ja) 2010-01-21
EP2062998A4 (en) 2010-04-14
US20120056133A1 (en) 2012-03-08
US9347137B2 (en) 2016-05-24
KR101108818B1 (ko) 2012-01-31
TW200812732A (en) 2008-03-16
EP2062998A1 (en) 2009-05-27
EP2062998B1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4602401B2 (ja) 放電表面処理用電極の製造方法および放電表面処理用電極
CN107075687B (zh) 涂布主体的方法,用于该方法的颗粒和制备颗粒的方法
JP4705677B2 (ja) 被膜および被膜の形成方法
US7915559B2 (en) Electrode for electric discharge surface treatment, method for manufacturing electrode, and method for storing electrode
JPS63243212A (ja) 細分された球状高融点金属基粉末を製造するための湿式冶金方法
JP4523545B2 (ja) 放電表面処理用電極、放電表面処理装置および放電表面処理方法
JPWO2004111301A1 (ja) 放電表面処理用電極とその評価方法、および放電表面処理方法
WO2011136246A1 (ja) 放電表面処理に適用される電極及びその製造方法
RU2490094C2 (ru) Электрод для поверхностной обработки разрядом и способ его изготовления
JP2015140461A (ja) 放電表面処理用の電極及びその製造方法
JP2002241807A (ja) チタン−アルミ系合金粉末の製造方法
RU2417137C2 (ru) Способ изготовления электрода для электроразрядной обработки поверхности и электрод для электроразрядной обработки поверхности
JP6618749B2 (ja) 溶射用粉末及び溶射皮膜の形成方法
WO2023223583A1 (ja) 放電表面処理用電極及びその製造方法
WO2023105917A1 (ja) 放電表面処理用の電極及びその製造方法
JP5428213B2 (ja) 焼結体の製造方法
US20100061875A1 (en) Combustion Turbine Component Having Rare-Earth Elements and Associated Methods
JP2015067879A (ja) 放電表面処理用電極の製造方法及び放電表面処理方法
JP2005213559A (ja) 放電表面処理用電極及び放電表面処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007505298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11916044

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06783272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200680052887.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006783272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1912/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020097007458

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009113555

Country of ref document: RU

Kind code of ref document: A