WO2008029893A1 - Agent d'étanchéité pour cristaux liquides, procédé de fabrication de panneau d'affichage à cristaux liquides utilisant l'agent d'étanchéité pour cristaux liquides, et panneau d'affichage à cristaux liquides - Google Patents

Agent d'étanchéité pour cristaux liquides, procédé de fabrication de panneau d'affichage à cristaux liquides utilisant l'agent d'étanchéité pour cristaux liquides, et panneau d'affichage à cristaux liquides Download PDF

Info

Publication number
WO2008029893A1
WO2008029893A1 PCT/JP2007/067437 JP2007067437W WO2008029893A1 WO 2008029893 A1 WO2008029893 A1 WO 2008029893A1 JP 2007067437 W JP2007067437 W JP 2007067437W WO 2008029893 A1 WO2008029893 A1 WO 2008029893A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
general formula
compound
carbon atoms
Prior art date
Application number
PCT/JP2007/067437
Other languages
English (en)
French (fr)
Inventor
Takahisa Miyawaki
Daiki Taneichi
Hiroshi Naruse
Shinichiro Ichikawa
Noboru Kawasaki
Masatoshi Takagi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to KR1020097007123A priority Critical patent/KR101060877B1/ko
Priority to JP2008533205A priority patent/JP5184361B2/ja
Priority to KR1020117003259A priority patent/KR101049998B1/ko
Priority to CN2007800331021A priority patent/CN101512421B/zh
Publication of WO2008029893A1 publication Critical patent/WO2008029893A1/ja
Priority to HK09110181.9A priority patent/HK1132335A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/26Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having one or more free hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • Liquid crystal sealing agent Liquid crystal sealing agent, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
  • the present invention relates to a liquid crystal sealant, a method for manufacturing a liquid crystal display panel using the same, and a liquid crystal display panel.
  • a liquid crystal display panel has a structure in which liquid crystal is sealed between two transparent substrates bonded with a liquid crystal sealant, and controls the orientation of the liquid crystal by applying a voltage to the liquid crystal. It is a device that displays an image by adjusting the modulation of light transmitted through the substrate.
  • a liquid crystal display panel is a liquid crystal display in which a liquid crystal display panel is manufactured by injecting liquid crystal into a liquid crystal cell having an injection port disposed between two substrates and then sealing the injection port. It has been manufactured mainly by the injection method (see, for example, Patent Document 1).
  • Patent Document 1 a liquid crystal display panel is manufactured by injecting liquid crystal into a liquid crystal cell having an injection port disposed between two substrates and then sealing the injection port. It has been manufactured mainly by the injection method (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Document 1
  • the liquid crystal sealant is cured, a low productivity is a serious problem because heat treatment for several hours is necessary at a temperature of 120 to 150 ° C.
  • a liquid crystal dropping method has attracted attention as a method of manufacturing a liquid crystal display panel that replaces the liquid crystal injection method.
  • the liquid crystal dropping method first, a frame-shaped seal pattern is formed on one of the two substrates using a liquid crystal sealant using dispenser or screen printing; in this frame or on the other substrate. A small amount of liquid crystal is dripped; in high vacuum, the two substrates are superposed with the liquid crystal sealant uncured; the liquid crystal sealant between the two substrates is irradiated with ultraviolet rays, A method of manufacturing a liquid crystal display panel by pre-curing and then after-curing the liquid crystal sealant by heating. is there.
  • the liquid crystal directly comes into contact with the uncured liquid crystal sealing agent, so that the components of the liquid crystal sealing agent are eluted into the liquid crystal and the liquid crystal is easily contaminated. If the liquid crystal is contaminated in this way, the display performance of the liquid crystal display panel is remarkably deteriorated, which is a serious problem. Liquid crystal contamination is also caused when uncured portions remain in the cured liquid crystal sealant. This is because an uncured liquid crystal sealant component is eluted from the uncured portion into the liquid crystal. If an uncured part remains in the cured liquid crystal sealant, not only the liquid crystal is contaminated, but also the adhesive strength between the substrate constituting the liquid crystal display panel and the cured liquid crystal sealant is lowered.
  • the curing proceeds to every corner in a short time, and the curability is high and good so that the uncured portion in the cured product can be suppressed to an extremely small amount.
  • a proposal for a liquid crystal sealant having low solubility in liquid crystals is desired.
  • liquid crystal sealants with improved adhesive strength.
  • a liquid crystal sealant is proposed! /, (For example, see Patent Document 4).
  • an acrylated epoxy resin having a (meth) aryl group and a hydroxyl group is included, and the number of the (meth) acryl group is larger than the number of the hydroxyl groups! /, A liquid crystal sealant has been proposed! /, E.g. (see Patent Document 5).
  • Patent Document 1 International Publication No. 2004/039885 Pamphlet
  • Patent Document 2 JP 2001-133794 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-214626
  • Patent Document 4 Patent No. 3162179
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-195978
  • such partially acrylated epoxy resins have low curability and low molecular weight, and therefore easily contaminate liquid crystals with high solubility in liquid crystals. .
  • high viscosity stability near room temperature is regarded as important, and it is preferable that the viscosity stability is high. The reason for this is that if the viscosity of the liquid crystal sealant is stable and does not fluctuate near room temperature, it is easy to form a seal pattern with a desired line width on the substrate and at the time of manufacturing a liquid crystal display panel. Yield can be increased.
  • the partially methacrylated epoxy resin has a low viscosity stability near room temperature, and is therefore preferable as a raw material for liquid crystal sealants.
  • the first object of the present invention is to provide a liquid crystal sealant that has high curability, low solubility in liquid crystals, and high viscosity stability. .
  • a liquid crystal display panel that prevents contamination of the liquid crystal and has a high adhesive strength between the cured liquid crystal sealant and the substrate constituting the liquid crystal display panel is obtained.
  • the second object is to provide a method that can be manufactured while maintaining high productivity.
  • the present inventors have focused on the molecular weight of a compound used as a raw material for a liquid crystal sealant, and solved the above problems by using a compound having a high molecular weight within a predetermined range.
  • the present inventors have found that the present invention can be accomplished and have completed the present invention.
  • R to R each independently represents a hydrogen atom or a methyl group, provided that both R and R
  • X and X are each independently an alkylene group having 1 to 10 carbon atoms or a general formula (I
  • One of X and X is an alkylene group having 1 to 10 carbon atoms; the other is general
  • A represents a group represented by the general formula (I 3a), (I 3b) or (I 3c);
  • Each P independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms; an alkyl group having 1 to 10 carbon atoms; an alkoxy group having 10 carbon atoms; or a nitro group;
  • j represents an integer of 0 or 1
  • k and 1 each represent an integer of 0 to 10;
  • Y and Y each independently represent an alkylene group having 1 to 10 carbon atoms
  • represents an integer of 1 to 10;
  • Y and Y each independently represent an alkylene group having 1′′10 carbon atoms.
  • Y binds to ⁇ of the acryloyl group in the general formula (I).
  • R and R are each independently an alkyl group having 1 to 4 carbon atoms
  • Z is a single bond, O group, S group, S02— group, one C (R) (R) group, or
  • R and R are each independently a hydrogen atom.
  • r and s each independently represent an integer of 0 to 4.
  • R 1, R 2, R 3, and R are each independently a hydrogen atom, alkyl having 1 to 4 carbon atoms
  • R and R each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the component (a) is obtained by reacting (i) an epoxy compound having 3 or 4 glycidyl groups in the molecule with (ii) a (meth) acrylic acid derivative having a carboxyl group. It is a compound having a (meth) atallyloyl group and a glycidyl group obtained [;! ] To [3]! /, The liquid crystal sealant according to any one of the above.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • liquid crystal sealant according to [4] which is a compound represented by phosphoric acid, general formula (ii 1), or general formula (ii 2).
  • R represents a hydrogen atom or a methyl group
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the following general formula (t2),
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms.
  • Y and Y each independently represent an alkylene group having 1 to 10 carbon atoms
  • ⁇ ⁇ represents an taliloyl group in the general formula (ii 1)
  • n an integer of 1 to 10;
  • R and R each independently represent a hydrogen atom or a methyl group
  • X represents a group represented by the following general formula (t3), X is an alkylene group having 1 to 10 carbon atoms;
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms
  • i and j each independently represents an integer of 0 or 1.
  • Y and Y each independently represent an alkylene group having 1 to 10 carbon atoms
  • the CO group is bonded to O of the taliloyl group in the general formula (ii 2).
  • the blending amount of the component (a) is 5 to 90 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • the liquid crystal sealant according to any one of [1] to [9]!
  • liquid crystal sealant in addition to high viscosity stability and curability, high adhesion strength between the cured liquid crystal sealant and the substrate constituting the liquid crystal display panel, and further, contamination of the liquid crystal is prevented.
  • An obtained liquid crystal sealant can be provided.
  • the liquid crystal sealant of the present invention it is possible to provide a method for manufacturing a liquid crystal display panel that can obtain a high quality liquid crystal display panel while maintaining high productivity.
  • the liquid crystal sealant of the present invention comprises (a) a compound containing (meth) acryloyl group and glycidyl group in the molecule and having a number average molecular weight of 500 to 2000, (b) a thermal latent curing agent, (c) a radical It comprises a polymerization initiator and (d) a filler.
  • a thermal latent curing agent e.g., a thermal latent curing agent
  • a radical It comprises a polymerization initiator
  • a filler e.g., a filler.
  • a compound having a (meth) atalyloyl group and a glycidyl group in the molecule and having a number average molecular weight of 500 to 2000 is an intramolecular Atariloyl group Or a compound containing a methacryloyl group and a glycidyl group and having a number average molecular weight in the range of 500 to 2,000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the component (a) of the present invention contains a (meth) attalyloyl group exhibiting latent curability, and therefore has high viscosity stability even in a low temperature region such as around room temperature.
  • a component (a) is used as a raw material for the liquid crystal sealant, a good liquid crystal sealant with high curability can be obtained.
  • Such a liquid crystal sealant has high storage stability and applicability to the substrate, and cures to every corner even in a place such as a light shielding area.
  • the component (a) of the present invention has its number average molecular weight adjusted within the range of 500-2000. Therefore, it has the characteristic that the solubility with respect to a liquid crystal is suppressed low. In general, a high molecular weight compound tends to have a high viscosity. However, when the number average molecular weight is adjusted within the above range, a low-viscosity liquid crystal sealant is suppressed while suppressing liquid crystal contamination. You can get power S. Further, from the viewpoint of lowering the solubility in the liquid crystal and lowering the viscosity, the number average molecular weight of the component (a) is preferably 800 to 1800.
  • the first component (a) includes at least one allyloyl group, methacryloyl group, and epoxy group in the molecule. It is preferable that the compound is one or more compounds having both. The higher the content of highly reactive epoxy groups, etc., the better the strength and curability of such compounds. In addition, the higher the molecular weight of the compound (a) that can be a component, the more liquid crystal contamination is prevented.
  • the amount of the component (a) used is preferably 5 to 90 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. 60 parts by mass is more preferable.
  • the characteristics of the component (a) as described above are preferably reflected as the characteristics of the liquid crystal sealant, and the adhesive strength between the cured liquid crystal sealant and the substrate constituting the liquid crystal display panel is high and good. A liquid crystal display panel having excellent display properties can be obtained.
  • the ⁇ component of the present invention is preferably a compound represented by the following general formula a) (also referred to as “first ⁇ component”).
  • R to R each independently represent a hydrogen atom or a methyl group
  • both R and R are not methyl groups, and both R and R are methyl.
  • X and X are each independently an alkylene group having 1 to 10 carbon atoms or a general formula (I
  • One of X and X is an alkylene group having 1 to 10 carbon atoms; the other is general
  • A represents a group represented by the general formula (I 3a), (I 3b) or (I 3c);
  • Each P independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms; an alkyl group having 1 to 10 carbon atoms; an alkoxy group having 10 carbon atoms; or a nitro group;
  • Y and Y each independently represent an alkylene group having 1 to 10 carbon atoms
  • is the atalyloyl group in the general formula (I).
  • represents an integer of 1 to 10;
  • ⁇ and ⁇ each independently represent an alkylene group having 1 to 10 carbon atoms
  • is the atalyloyl group in the general formula (I).
  • R and R are each independently an alkyl group having 14 carbon atoms
  • Z is a single bond, O group, S group, SO— group, one C (R) (R) group, or
  • R and R are each independently a hydrogen atom.
  • Child a C 14 alkyl group or a phenyl group
  • r and s each independently represents an integer of 04.
  • R 1, R 2, R 3, and R are each independently a hydrogen atom, alkyl having 1 to 4 carbon atoms
  • R and R each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the formula (I) is obtained by reacting (i) benzenedicarboxylic acid anhydride or benzenetetracarboxylic acid anhydride with (ii) hydroxyl group-containing (meth) acrylate. It can be synthesized by forming an ester group and a carboxyl group, and (iii) binding a polyvalent glycidyl ether to the carboxyl group formed by the above reaction.
  • Examples of (i) benzenedicarboxylic anhydride, benzenetetracarboxylic dianhydride, or benzenetricarboxylic anhydride include phthalic anhydride, dodecenyl phthalic anhydride, otatur phthalic anhydride, 1, 2, 4, 5 Contains benzenetetracarboxylic dianhydride. These compounds may be used alone or in combination of two or more.
  • Examples of the (ii) hydroxyl group-containing (meth) acrylate include hydroxyalkyl (carbon number
  • Examples of the (iii) polyvalent glycidyl ether include phenol nopolac-type glycidyl ether, biphenyl nopolac-type glycidyl ether, cresol nopolac-type glycidyl ether, bisphenol no A-type glycidyl ether, Bisphenol Nore AD type glycidyl ether, Bisphenol Nore F type glycidinoreatenore, Diphenenoleatenole type glycidyl ether, Sulfide type glycidyl ether, Oxysulfide type glycidyl ether, Fluorene type glycidyl ether, Adamantyl type glycidinore type , Resornoresin-type glycidinorenotere, force-teconole-type glycidinoreutere, and hydroquinone-type glycidyl ether. These compounds can be phenol
  • the compound represented by the general formula (I) is required to contain at least one of an allyloyl group, a methacryloyl group, and a glycidyl group in the molecule.
  • reaction temperature means the temperature in the reaction mixture which mixed the various raw materials of the 1st (a) component.
  • the temperature in the reaction mixture can be easily measured by using a thermometer or the like.
  • a catalyst is preferably used from the viewpoint of promoting the reaction.
  • the catalyst used here include an organic phosphine compound, a tertiary amine compound, a quaternary ammonium salt compound, an organic phosphorus salt compound, an imidazole compound, and an organometallic compound.
  • Examples of the organic phosphine compound include triphenylphosphine.
  • Examples of the tertiary amine compound include triethylamine and triethanolamine.
  • Examples of the quaternary ammonium salt compounds include trimethyl ammonium chloride, triethyl chloride. Nylammonium chloride is included.
  • Examples of the organic phosphorus salt compound include tetrabutylphosphonium bromide and tetraphenylphosphonium bromide.
  • Examples of the imidazole compound include 2-methylimidazole.
  • Examples of the organic metal compound include cobalt otatenate.
  • the amount of the catalyst used is preferably an amount sufficient to promote the reaction. Specifically, the amount of the catalyst used is preferably 0.0;! To 5.0% by mass with respect to the total mass of the reaction mixture.
  • a polymerization inhibitor may be added to the reaction mixture as necessary.
  • the polymerization inhibitor means a compound that suppresses or stops the progress of the polymerization reaction in the reaction mixture.
  • the polymerization inhibitor is not particularly limited, and a known compound may be appropriately selected and used.
  • Preferred examples of the polymerization inhibitor include hydroquinone, methylhydroquinone, hydroquinone monomethylol ether, phenothiazine, p-t-butylcateconole, p-benzoquinone, and naphthoquinone. These compounds may be used alone or in combination of two or more.
  • organic solvent may be added to the reaction mixture! Preferable! /
  • organic solvents include aromatic solvents such as toluene and xylene; ketone solvents such as cyclohexanone; and forces S including glycol solvents such as propylene glycol monomethyl ether. No. These organic solvents may be used alone or in combination of two or more.
  • Preferred examples of the ⁇ component of the present invention include G) in addition to the first ⁇ component.
  • the method for producing the second component (a) of the present invention is not particularly limited. For example, one or two glycidyl groups in (i) the glycidyl group in component (ii) and the carboxyl group in component (ii) And a method of reacting with.
  • the component (i) used as a raw material for the second component (a) is composed of 3 or 4 groups in the molecule. It is not particularly limited as long as it is a compound having a lysidyl group! /, But is preferred as a raw material for liquid crystal sealants! /,
  • the molecular weight force of component (i) is 00 to 800. Certain compounds are preferred.
  • Preferred examples of the component (i) having such a molecular weight include compounds represented by the following general formula (i 1), (i 2), (i 3) or (i 4)
  • R in the general formula (i 1) represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R in the general formula (i 2) represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • Methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, S-butyl group, t-butyl group, pentyl group, isopentyl group, t-pentyl group, hexyl group, heptyl group, octyl group, 2- Ethylhexyl group, Noel group, and decyl group are included.
  • a hydrogen atom, a methyl group, and an ethyl group are more preferable, and a hydrogen atom is more preferable.
  • a trifunctional epoxy compound represented by the general formula (i 1) and a compound represented by the general formula (i 2) may be either a commercially available product or a synthetic product.
  • the synthesis method is not particularly limited. In the case of synthesizing these compounds, for example, synthesis is carried out by reacting a epinucleohydrin with a trinuclear or tetranuclear compound of a nopolac-type compound obtained by a condensation reaction of a phenol derivative and formalin according to a known epoxidation reaction. can do.
  • Examples of the known epoxidation reaction include a method known as an industrial production method of an existing epoxy compound available as an industrial raw material.
  • the compounds represented by the general formulas (i 3) and (i 4) are not particularly limited, and may be commercially available products or synthetic products.
  • the component (ii) of the present invention has a high reactivity of the liquid crystal sealant when the component (a) has a high molecular weight and the component (a) is used as a raw material for a liquid crystal sheet agent. From the standpoint of achieving both high viscosity stability and acrylic acid, methacrylic acid, a compound represented by the following general formula (ii 1) or general formula (ii 2) is preferred! /.
  • R represents a hydrogen atom or a methyl group
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the following general formula (t2),
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms.
  • alkylene group having 1 to 10 carbon atoms that are preferable as X in the general formula (ii 1) include
  • X is an alkylene group having 2 to 6 carbon atoms or a group represented by the general formula (t2)
  • Examples of preferable alkylene groups having 1 to 20 carbon atoms as X in the general formula (ii 1) include
  • Methylene group ethylene group, methylethylene group, trimethylene group, tetramethylene group, pentamethylene group, cyclopentylene group, hexamethylene group, cyclohexylene group, heptamethylene group, otatamethylene group, nonamethylene group, decamethylene group, nonamethylene group , Dodecamethylene group, pentadecamethylene group, hexadecamethylene group, and octadecamethylene group.
  • Examples of preferred alkenylene groups having 2 to 6 carbon atoms as X in the general formula (ii 1) include
  • CH 2 —CH ⁇ CH—CH— group is included.
  • X methylene group, ethylene
  • trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group and other alkylene groups having 1 to 6 carbon atoms, and CH CH group are preferred methylene group, ethylene group, trimethylene group, tetramethylene group, etc. More preferably, it is an alkylene group having 1 to 4 carbon atoms and a CH ⁇ CH— group.
  • Y and Y each independently represent an alkylene group having 1 to 10 carbon atoms
  • n an integer of 1 to 10.
  • Examples include methylene, ethylene, methylethylene, trimethylene, tetramethylene, pentamethylene, cyclopentylene, hexamethylene, cyclohexylene, heptamethylene, otatamethylene, nonamethylene, and Contains a decamethylene group.
  • an alkylene group having 2 to 6 carbon atoms is preferred.
  • N in the general formula (t2) represents an integer of 1 to 10, more preferably an integer of !!-6.
  • R and R each independently represent a hydrogen atom or a methyl group
  • X represents a group represented by the following general formula (t3), X is an alkylene group having 1 to 10 carbon atoms;
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms
  • i and j each independently represents an integer of 0 or 1.
  • Y and Y each independently represent an alkylene group having 1 to 10 carbon atoms
  • the CO group is bonded to O of the taliloyl group in the general formula (ii 2).
  • Examples of preferable alkylene groups having 1 to 20 carbon atoms as X in the general formula (ii 2) include
  • Examples of preferable alkenylene groups having 2 to 6 carbon atoms as X in the general formula (ii 2) include
  • CH CH group
  • CH CH— CH — group
  • CH CH— CH — CH — group
  • X is a methylene group, ethylene
  • Y and Y in the general formula (t3) correspond to the above X.
  • Y and Y in the general formula (t3) correspond to the above X.
  • alkylene groups include methylene, ethylene, methylethylene, trimethylene, tetramethylene, pentamethylene, cyclopentylene, hexamethylene, cyclohexylene, hepta. Methylene group, otatamethylene group, nonamethylene group and decamethylene group are included. Among these, the alkylene group is more preferably an alkylene group having 2 to 6 carbon atoms.
  • the compound represented by the general formula (ii 1) may be produced industrially, the “(meth) acrylic acid derivative having a hydroxy group” shown in schemes 1 to 3 as described later. And “a compound having two carboxyl groups” can be easily produced by an esterification reaction.
  • the carboxyl group include a precursor that can be a carboxyl group such as an acid halide group or an acid anhydride group.
  • the reaction of the following scheme 1 is a partial esterification reaction of a compound represented by the general formula (ii la) having two carboxyl groups and a compound represented by the general formula (ii lb) having a hydroxy group. is there.
  • the partial esterification reaction means a reaction in which only a part of a carboxyl group of a compound having a plurality of carboxyl groups in the molecule is esterified with a compound having a hydroxy group.
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the general formula (t2),
  • R represents a hydrogen atom or a methyl group.
  • the reaction rate can be grasped by a known analysis means.
  • Preferred examples of the analytical means for measuring the reaction rate include liquid chromatography, thin layer chromatography, and IR analysis equipment.
  • an esterification reaction is performed while appropriately measuring the reaction rate. I prefer to advance.
  • an esterification catalyst may be used from the viewpoint of promoting the reaction.
  • the esterification catalyst means a catalyst that activates an esterification reaction between a carboxylic acid and an alcohol.
  • Preferred examples of such esterification catalysts include minerals. Acids, organic acids, and Lewis acids are included but are not particularly limited, and known compounds may be used as esterification catalysts.
  • the mineral acid include hydrochloric acid and sulfuric acid.
  • organic acids include methane sulfonic acid, benzene sulfonic acid, and p-toluene sulfonic acid.
  • the Lewis acid include boron trifluoride and aluminum trichloride.
  • the amount of the esterification catalyst used is preferably an amount sufficient to accelerate the partial esterification reaction. From the viewpoint of promoting the partial esterification reaction, the amount of the esterification catalyst used is preferably 0.00;! To 50% by mass with respect to the total mass of the reaction mixture. It is more preferable to set it as the mass%.
  • water is generated during the reaction. At this time, in order to promote such a reaction, it is preferable to remove water as a by-product from the reaction mixture.
  • the method for removing water from the reaction mixture is not particularly limited.
  • a solvent having a boiling point similar to that of water such as benzene or toluene, is used to azeotrope water with this solvent, molecular sieves, etc.
  • a method using a dehydrating agent is included.
  • the reaction of Scheme 1 may be performed in the absence of a solvent or in a solvent inert to the reaction.
  • the solvent preferably used in Scheme 1 include, but are not particularly limited to, a hydrocarbon solvent, a keton solvent, an ester solvent, an ether solvent, and a halogen solvent.
  • Examples of the hydrocarbon solvent include n-hexane, benzene, or toluene.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, or methyl isobutyl ketone.
  • Examples of the ester solvent include ethyl acetate or butyl acetate.
  • Examples of the ether solvent include jetyl ether, tetrahydrofuran or dioxane.
  • Examples of the halogen solvent include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, or perchlene. These solvents may be used alone or in combination of two or more.
  • the reaction temperature of Scheme 1 is not particularly limited, but is preferably substantially constant in the range of 50 to 150 ° C from the viewpoint of efficiently and sufficiently advancing the partial esterification reaction in a short time. 70 to 120 ° C is more preferable.
  • the reaction time of Scheme 1 is the reaction temperature, the type and combination of the compound represented by the general formula (ii la), the compound represented by the general formula (ii lb), or the reaction solvent, There is no particular limitation as long as it is set appropriately according to the amount used. Considering the progress of the partial esterification reaction, etc., it is preferably within the range of several minutes to 100 hours, more preferably 0.5 to 50 hours;! To 20 hours It is particularly preferred.
  • reaction of Scheme 2 is performed between a compound represented by the general formula (ii 1 c) having two acid halide groups and a compound represented by the general formula (ii lb) having a hydroxy group. It is a partial esterification reaction and a two-stage reaction in which the acid halide group remaining in the reaction mixture is hydrolyzed to produce the final target compound of the general formula (ii 1).
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the general formula (t2),
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms
  • R represents a hydrogen atom or a methyl group
  • COL represents an acid halide group, in which L represents halogen (C or Br).
  • reaction rate can be measured using a known analysis means. If the reaction rate is measured appropriately while proceeding with Scheme 2, the reaction is stopped or advanced at the desired reaction rate stage. It becomes possible.
  • force and analytical means include liquid chromatography, thin layer chromatography, or IR analyzers.
  • the partial esterification reaction may be performed in the absence of a solvent or in a solvent inert to the reaction.
  • solvents include hydrocarbon solvents, ketone solvents, ester solvents, ether solvents, and halogen solvents.
  • Examples of the hydrocarbon solvent include n-hexane, benzene, or toluene.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, or methyl isobutyl ketone.
  • Examples of the ester solvent include ethyl acetate or butyl acetate.
  • Examples of the ether solvent include jetyl ether, tetrahydrofuran or dioxane.
  • Examples of the halogen solvent include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, or perchlene. These solvents may be used alone or in combination of two or more.
  • hydrogen halide for example, hydrogen chloride
  • Such hydrogen halide is preferably removed from the reaction mixture as much as possible because it may deteriorate the properties of the reaction product.
  • the method for removing the hydrogen halide is not particularly limited, and a known method may be used, but a dehydrohalogenating agent is useful because it is easy to handle.
  • the dehydrohalogenating agent include organic base compounds or inorganic base compounds.
  • the organic base compounds include triethylamine, pyridine, picoline, dimethylaniline, jetylaniline, 1,4-diazabicyclo [2.2.2] octane (DAB CO), and 1,8-diazabicyclo [5.4.0. ] Includes Wundeker 7-Yen (DBU).
  • the inorganic base compound include sodium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide, and magnesium oxide. These compounds may be used alone or in combination of two or more.
  • the amount of the dehydrohalogenating agent to be used is not particularly limited, and is preferably an amount sufficient to remove hydrogen or rogenide produced in the reaction mixture. From this perspective, The amount of the dehydrohalogenating agent to be used is from 0.;! To 10 mol per mol of hydroxy group. S is preferable, more preferably from 0.5 to 5 mol; Is particularly preferred.
  • the hydrolysis reaction which is the second stage reaction, is performed by adding water to the reaction mixture obtained at the end of the first stage partial esterification reaction.
  • the method for adding water to the reaction mixture after completion of the partial esterification reaction is not particularly limited, and water may be added all at once or dropwise. Among these, the latter method by dropping is preferable from the viewpoint of gradually progressing the reaction.
  • the amount of water used in the hydrolysis reaction is preferably 1 to 100 mol with respect to 1 mol of the acid halide group remaining in the reaction mixture. More preferably, it is 5-50 mol.
  • the hydrolysis reaction is performed by confirming the reaction rate in the reaction mixture by a known analysis means when dropping water, and continuing or stopping the dropping of water at a desired reaction rate.
  • the reaction can be allowed to proceed or be stopped.
  • analytical means include liquid chromatography, thin layer chromatography, and IR analyzers.
  • the force that hydrogen halide (for example, hydrogen chloride) is generated as a by-product due to the reaction between the remaining acid halide and added water.
  • hydrogen halide for example, hydrogen chloride
  • the method for removing the hydrogen halide is not particularly limited. However, from the viewpoints of workability and easy availability, a dehydrogenation and hydrogenation agent is preferably used.
  • Examples of the dehydrohalogenating agent include organic base compounds or inorganic base compounds.
  • examples of the organic base compound include triethylamine, pyridine, picoline, dimethylaniline, jetylaniline, 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,8-diazabicyclo [5 ⁇ 4. 0] Wunde force 1—Yen (DBU) is included.
  • examples of the inorganic base compound include sodium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide, and magnesium oxide. These compounds can be used alone or in combination. May be used.
  • the amount of the dehydrohalogenating agent used is not particularly limited, and is preferably an amount that can sufficiently remove the hydrogen halide present in the reaction mixture. From such a viewpoint, the amount of the dehydrohalogenating agent used is preferably 0.5 to 10 mol per 1 mol of the remaining acid halide group; more preferably 5 to 5 mol. .
  • the reaction temperature during the partial esterification reaction and hydrolysis reaction is not particularly limited. However, from the viewpoint of promoting the partial esterification reaction, the reaction temperature should be approximately constant within a range of 78 to 150 ° C. It is more preferable to be 20-100 ° C, and it is particularly preferable to be 0-80 ° C! /.
  • the reaction time is the reaction temperature, the type of solvent used or a combination thereof, the compound represented by the general formula (ii lb) and the compound represented by the general formula (ii lc).
  • the reaction time is 1 to 20 hours because this reaction can be promoted without lowering the productivity.
  • the reaction of Scheme 3 involves the ring-opening reaction between a compound represented by the general formula (ii le) having an acid anhydride group and a compound represented by the general formula (ii lb) having a hydroxy group.
  • Stealization reaction In the reaction of Scheme 3, the compound represented by the general formula (ii 1) in which the carboxyl group remains by the ring-opening esterification reaction can be easily obtained! /. Therefore, in the schemes !! to 3, it is also preferable as a method for producing the compound represented by the general formula (ii 1).
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the general formula (t2),
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • the compounding ratio of the acid anhydride group and the hydroxy group is not particularly limited, but from the viewpoint of accelerating the ring-opening esterification reaction, the amount of the hydroxy group used is adjusted to be acid.
  • the ring-opening esterification reaction may be performed in the absence of a solvent or in a solvent inert to the reaction.
  • solvents include, but are not limited to, hydrocarbon solvents, ketone solvents, ester solvents, ether solvents, halogen solvents, and polar solvents.
  • Examples of the hydrocarbon solvent include n-hexane, benzene, toluene or xylene.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Examples of the ester solvent include ethyl acetate or butylacetate.
  • Examples of the ether solvent include jetyl ether, tetrahydrofuran, or dioxane.
  • Examples of the halogen-based solvent include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, or perchlene.
  • polar solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, dimethyl sulfoxide, and sulfolane. These solvents may be used alone or in combination of two or more.
  • a catalyst for activating the reaction may be used as necessary.
  • catalysts include organic phosphine compounds, tertiary amine compounds, quaternary ammonium salt compounds, organic phosphorus salt compounds, imidazole compounds, and organic metal compounds.
  • Examples of the organic phosphine compound include triphenylphosphine.
  • Examples of the tertiary amine compound include triethylamine and triethanolamine.
  • Examples of the quaternary ammonium salt compounds include trimethyl ammonium chloride, triethyl chloride. Nylammonium chloride is included.
  • Examples of the organic phosphorus salt compound include tetrabutylphosphonium bromide and tetraphenylphosphonium bromide.
  • Examples of the imidazole compound include 2-methylimidazole.
  • Examples of the organic metal compound include cobalt otatenate. These compounds may be used alone or in combination of two or more.
  • the amount of the catalyst used is preferably in the range of 0.01 to 10.0% by mass with respect to the mass of the reaction mixture from the viewpoint of obtaining a sufficient reaction rate during the reaction. -5. More preferably 0% by mass.
  • the reaction temperature in the ring-opening esterification reaction is not particularly limited, and should be substantially constant in the range of 0 ° C to 200 ° C from the viewpoint of efficiently and effectively proceeding with the reaction. Is preferably 0 to; more preferably 150 ° C.
  • the reaction time is the reaction temperature, the amount of the compound represented by the general formula (ii lb), the amount of the compound represented by the general formula (ii le), or the type of solvent. It may be set as appropriate according to the combination or the like, and is not particularly limited! /. From the viewpoint of allowing the reaction to proceed efficiently and effectively, it is preferably set to several minutes to several tens of hours.
  • reaction may be allowed to proceed or stopped at any reaction rate while the reaction rate is confirmed by a known analysis means.
  • force and analytical means include liquid chromatography, thin layer chromatography, and IR analyzers.
  • the compound represented by the general formula (ii 2) is a compound represented by the general formula (ii lb) used in the above schemes;! To 3 and a hydroxy group represented by the following general formula (ii-2a). It is produced by substituting a (meth) atalyloyl derivative having:
  • R and R each independently represent a hydrogen atom or a methyl group
  • X represents a group represented by the general formula (t3), and X represents an alkylene group having 1 to 10 carbon atoms.
  • i and j each independently represents an integer of 0 or 1.
  • R and R each independently represent a hydrogen atom or a methyl group
  • X represents a group represented by the general formula (t3), and X represents an alkylene group having 1 to 10 carbon atoms.
  • i and j each independently represents an integer of 0 or 1.
  • the reaction of Scheme 4 above is a ring-opening ester of a compound represented by the general formula (ii 2b) having a glycidyl ether group and a compound represented by the general formula (ii 2c) having an alcohol group.
  • This is a reaction for synthesizing a (meth) ataryloyl derivative represented by the above general formula (ii 2a) having a hydroxy group by a hydration reaction.
  • the ring-opening esterification reaction of Scheme 4 may be performed in the absence of a solvent or in a solvent inert to such a reaction.
  • solvents include hydrocarbon solvents such as n hexane, benzene, toluene or xylene; ketone solvents such as acetone, methyl ethyl ketone or methyl isobutyl ketone; jetyl ether, tetrahydrofuran or Ester solvents such as dioxane; Halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, or parkrene; N, N dimethylformamide, N, N dimethylacetamide, N, N dimethyl Imidazolidinone, dimethylsulfoxy Sid and polar solvents such as sulfolane are included. These solvents can be used alone or in combination.
  • a catalyst that acts on the activation of the reaction may be used.
  • catalysts include organic phosphine compounds such as triphenylphosphine; tertiary amines such as triethylamine triethanolamine; fourth compounds such as trimethylammonium chloride and triethylbenzylammonium chloride.
  • Class Ammonium salts Organophosphorus salts such as tetrabutylphosphonium bromide and tetraphenylphosphonium bromide; Imidazoles such as 2-methylimidazole; Organometallic compounds such as cobalt otathenate.
  • the amount of the catalyst used is preferably 0.01 to 10% by mass with respect to the total mass of the reaction mixture in Scheme 4 from the viewpoint of obtaining a sufficient reaction rate during the reaction. More preferably, the content is 0.0%;! To 5.0% by mass. In the present invention, when a plurality of types of activated solvents are used, the total amount used is regarded as the amount used of the catalyst.
  • the reaction temperature in the ring-opening esterification reaction is not particularly limited as long as it is sufficient to cause the reaction to proceed.
  • the reaction temperature should be substantially constant in the range of 0 to 200 ° C. S is preferable, and 0 to 150 ° C is more preferable.
  • the reaction time in the ring-opening esterification reaction is the reaction temperature or the amount of the compound represented by the general formula (ii 2b) used as a raw material and the amount of the compound represented by the general formula (ii 2c), Alternatively, it is not particularly limited as long as it is appropriately set according to the type and combination of the solvent and catalyst, the amount used, and the like. From the viewpoint of sufficiently proceeding the force and the reaction, it is usually preferably several minutes to several tens of hours.
  • reaction may be allowed to proceed or stopped at any reaction rate while the reaction rate is confirmed by a known analysis means.
  • analytical means include liquid chromatography, thin layer chromatography, and IR analyzers.
  • the preferred second component (a) of the present invention is the force S obtained by the reaction shown in the following scheme 5, for example. 36]
  • X represents an alkylene group having 1 to 20 carbon atoms or an alkkenylene group having 2 to 6 carbon atoms
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the general formula (t2),
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • the reaction of Scheme 5 is a compound represented by the above general formula (i 1) having three glycidyl groups.
  • the compound and the compound represented by the general formula (ii 1) having a carboxyl group are used as raw materials, and sequentially subjected to a ring-opening esterification reaction, whereby the glycidyl group and (meth)
  • This is a reaction (also referred to as “sequential ring-opening esterification reaction”) which has an attailoyl group and produces a compound represented by the general formula (iii 2).
  • a compound represented by the general formula (i 1) is used as a starting material, and one glycidyl group possessed by the compound and the general formula (ii 1)
  • a ring-opening esterification reaction occurs with a carboxyl group in the represented compound to produce a compound of general formula (iii-1), which is a bifunctional epoxy resin.
  • the compound represented by the general formula (iii-1) and the compound represented by the general formula (ii 1) undergo a ring-opening esterification reaction, and finally represented by the general formula (iii 2).
  • the resulting compound is produced.
  • the compound represented by the general formula (iii 2) is a preferable high molecular weight compound in order to keep the solubility in liquid crystals low.
  • it since it has a glycidyl group in the molecule and is highly reactive to epoxy curing agents, it exhibits high curability even in places such as light shielding areas.
  • the mixing ratio of the glycidyl group and the carboxyl group is not particularly limited.
  • the compound of the general formula (iii 1) which is a product in the middle of the reaction, and the final It is necessary to leave a glycidinole group in the compound of the general formula (iii 2), which is the target product. Therefore, it is preferable that the amount of carboxyl group used be less than the amount of glycidyl group used.
  • the use amount of the compound represented by the general formula (ii 1) is set to! To 2.8 mono relative to 1 mol of the compound represented by the general formula (i 1). Strength ⁇ preferably, 1.3 to 2.5 monolayer is more preferable.
  • X represents an alkylene group having 1 to 10 carbon atoms or a group represented by the general formula (t2),
  • R represents a hydrogen atom or a methyl group.
  • reaction rate can be confirmed by a known analysis means.
  • analytical means include liquid chromatography, thin layer chromatography, and IR analyzers.
  • the sequential ring-opening esterification reaction may be performed in the absence of a solvent or in a solvent inert to such a reaction.
  • solvents include hydrocarbon solvents, ketone solvents, ester solvents, ether solvents, halogen solvents, and polar solvents.
  • Examples of the hydrocarbon solvent include n-hexane, benzene, toluene or xylene.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Examples of the ester solvent include ethyl acetate or butylacetate.
  • Examples of the ether solvent include jetyl ether, tetrahydrofuran, and the like. Or dioxane.
  • Examples of the halogenated solvent include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, or perchlene.
  • polar solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, dimethyl sulfoxide, and sulfolane. These solvents may be used alone or in combination of two or more.
  • a catalyst that acts on the activation of such reaction may be used as necessary.
  • catalysts include organic phosphine compounds, tertiary amine compounds, quaternary ammonium salt compounds, organic phosphorus salt compounds, imidazole compounds, and organometallic compounds.
  • examples of the organic phosphine compound include triphenylphosphine.
  • examples of the tertiary amine compound include triethylamine and triethanolamine.
  • examples of the quaternary ammonium salt compound include trimethylammonium chloride and triethylbenzylammonium chloride.
  • examples of the organic phosphorus salt compound include tetrabutylphosphonium bromide and tetraphenylphosphonium bromide.
  • Examples of the imidazole compound include 2-methylimidazole.
  • examples of the organometallic compound include cobalt otatenate. These compounds may be used alone or in combination of two or more.
  • the amount of the catalyst used is preferably 0.01 to 10% by mass with respect to the total mass of the reaction mixture in Scheme 5, from the viewpoint of obtaining a sufficient reaction rate during the reaction. More preferably, the content is 0.01 to -5. 0% by mass.
  • the reaction temperature in the sequential ring-opening esterification reaction is not particularly limited as long as it is sufficient to cause the reaction to proceed.
  • the reaction temperature is substantially constant within a range of 0 to 200 ° C. It is preferably 0 to; more preferably 150 ° C.
  • the reaction time in the sequential ring-opening esterification reaction is particularly limited as long as it is appropriately set according to the reaction temperature, the amount of the compound used, the type or combination of the solvent or catalyst, the amount used, and the like. Not. From the viewpoint of promoting force and reaction, it is preferably set to several minutes to several tens of hours.
  • a ring-opening esterification reaction is carried out to form a dull molecule in the molecule.
  • the form for producing such a compound having a sidyl group and a (meth) attalyloyl group is not limited to the above. That is, the general formula (i 2), (i 3) or (i 4) can be used as the starting material ⁇ component in addition to the general formula (i 1), and the general formula (ii As the component (ii) represented by 1), acrylic acid or methacrylic acid can be used in addition to the compound represented by the general formula (ii 1). These compounds may be appropriately selected and used in combination.
  • the component (a) of the present invention preferably has a Fedors theoretical solubility parameter (SP value) in the range of 10 to 13 (cal / cm 3 ) 1/2 .
  • SP value a Fedors theoretical solubility parameter
  • the theoretical solubility parameter used in the present invention is preferably based on the calculation method devised by Fedors (Journal of the Adhesion Society of Japan) , Vol. 22, no. 10 (1986) (53) (566) (Journal of Adhesion Society of Japan). In this calculation method, since the density value is unnecessary, the solubility parameter can be easily calculated.
  • the Fedors theoretical solubility parameter (SP value) is calculated by the following formula.
  • the theoretical solubility parameter (SP value) can be calculated based on the sum of the molar fractions of the respective raw materials to be mixed. it can .
  • the theoretical solubility parameter calculated here is preferably within the above-mentioned range.
  • the heat latent curing agent of the present invention may be mixed with a main agent such as an epoxy resin.
  • a main agent such as an epoxy resin.
  • This is a curing agent that does not react with functional groups such as epoxy groups under normal storage conditions (room temperature, visible light, etc.), but reacts with functional groups by heat or light.
  • the viscosity stability of the liquid crystal sealant is improved.
  • the viscosity and stability of the liquid crystal sealant at room temperature are well maintained. Therefore, when a liquid crystal sealant is filled in a dispenser on a screen printing machine and a seal pattern is drawn on a substrate, it takes a long time. It can be used stably. Thus, when the pot life of the liquid crystal sealant is increased, the productivity for manufacturing the liquid crystal display panel can be improved.
  • thermal latent curing agent of the present invention a thermal latent epoxy curing agent that acts as an epoxy group in the component (a) and a curing accelerator for the epoxy resin (e) described later is preferably used.
  • the heat latent epoxy resin is a compound having an epoxy group as a functional group and having heat latent.
  • the heat latent curing agent of the present invention known ones can be used. Of these, amine-based thermal latent curing agents having an amino group in the molecule are preferred!
  • the amine-based latent heat curing agent means a compound having an amino group in the molecule and exhibiting heat potential. Such amine-based thermal latent curing agents do not react with epoxy groups around room temperature, but react rapidly with epoxy groups when heated. In general, a cured product obtained by reacting an amine-based thermal latent curing agent with an epoxy resin is a crosslinked polymer, and therefore has low solubility in liquid crystals.
  • the curing rate by the amine varies depending on the type of amine, the amount of the amine, and the type of epoxy resin.
  • the amine heat latent curing agent preferably used in the present invention is not particularly limited, and may be appropriately selected from known compounds as amine heat latent curing agents.
  • amine-based heat latent curing agents include organic acid dihydrazide compounds, imidazoles and their derivatives, dicyandiamide, aromatic amines, epoxy-modified polyamines and polyaminoureas. These may be used alone or in combination of two or more.
  • the heat latent curing agent those having a melting point or a softening point temperature by the ring-and-ball method of 75 ° C or higher are particularly preferable! Liquid crystal seals containing such thermal latent curing agents When the liquid crystal display panel is produced, the agent has a longer usable time because the viscosity stability at room temperature is better maintained.
  • Examples of the amine thermal latent curing agent having a melting point or a softening point temperature of 75 ° C or higher by the ring and ball method include a dicyandiamide compound, an organic acid dihydrazide, and an imidazole derivative.
  • Examples of the dicyandiamide compounds include dicyandiamide (melting point: 209 ° C).
  • Examples of the organic acid dihydrazide include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboxyl) 5 isopropyl hydantoin (melting point 120 ° C.).
  • Examples of the imidazole derivatives include 2,4 diamino-6- [2, -ethylimidazolyl (1,)]-ethyltriazine (melting point 215 to 225 ° C), 2 phenylimidazole (melting point 137 to 147 ° C). ) Is included. These compounds may be used alone or in combination of two or more.
  • the blending amount of the heat-latent curing agent is from! To 25 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. Power S is preferable, and the compounding amount is 5 to 15 parts by mass. Is more preferable.
  • the blending amount of the thermal latent curing agent is within the above range, the viscosity stability of the liquid crystal sealant is good. Further, when such a liquid crystal sealant is applied to a liquid crystal display panel, the adhesive strength between the cured liquid crystal sealant and the substrate is high, so that the adhesion reliability of the liquid crystal display panel is improved. It is preferable that the thermal latent curing agent used in the present invention is subjected to a high purity treatment by a water washing method, a recrystallization method or the like! /.
  • the liquid crystal sealant of the present invention containing such a heat-latent curing agent is useful as a one-pack type.
  • a one-component type liquid crystal sealant is a uniform mixture of the main component such as an epoxy resin and a curing accelerating component such as a thermal latent hardener in advance, before it is used for storage stability.
  • “Excellent storage stability” means that the curing reaction hardly progresses even when the liquid crystal sealant is stored at room temperature or lower! Specifically, the rate of increase in viscosity when the liquid crystal sealant is stored at 25 ° C. for 5 days is preferably not more than twice the viscosity of the liquid crystal sealant before storage.
  • the radical polymerization initiator of the present invention absorbs energy by light or heat and refers to a compound which generates Examples of the radical polymerization initiator include a photo radical polymerization initiator and a thermal radical polymerization initiator.
  • a radical photopolymerization initiator as the component (c).
  • the photoradical polymerization initiator refers to a compound that generates radicals when irradiated with light, that is, a compound that absorbs light energy and decomposes to generate radical species. Since the liquid crystal sealant containing such a photo-radical polymerization initiator can be cured by light irradiation, when used in a liquid crystal dropping method, a curing treatment such as after-curing is not required, and the liquid layer Since the curing time of the sealant can be shortened, productivity can be improved.
  • the radical photopolymerization initiator is not particularly limited, and a known compound can be used. Examples include benzoin compounds, acetophenone compounds, benzophenone compounds, thixatone compounds, ⁇ -acyloxime ester compounds, benzoin compounds, benzoin ether compounds, phenyl daloxylate compounds, benzyl compounds. Products, azo compounds, anthraquinones compounds, diphenyl sulfide compounds, acyl phosphine oxide compounds, organic dye compounds, and iron phthalocyanine compounds. You may use these individually or in combination of multiple types.
  • a thermal radical polymerization initiator may be used as the component (c).
  • a thermal radical polymerization initiator refers to a compound that generates radicals when heated, that is, a compound that absorbs thermal energy and decomposes to generate radical species.
  • a thermal radical polymerization initiator When such a thermal radical polymerization initiator is used in combination with a photo radical polymerization agent to prepare a liquid crystal sealant, after the substrates are bonded together, they are temporarily cured by light and then further heated. The liquid crystal sealant can be cured sufficiently over time. At this time, if the liquid crystal sealant is cured only with light, the liquid layer sealant may remain as an uncured part in the light shielding area where light is not directly irradiated. It can be cured to every corner of the liquid crystal sealant whether or not it exists. For this reason, when a liquid crystal sealant is applied to a liquid crystal display panel, the liquid crystal display panel has a very low liquid-contamination property and an excellent adhesive strength between the cured liquid crystal sealant and the substrate. Get rid of it.
  • the thermal radical polymerization initiator is not particularly limited, and a known compound can be used. So examples of these include organic peroxides, azo compounds, substituted ethane compounds, benzoin compounds, benzoin ether compounds, and acetophenone compounds.
  • Examples of organic peroxides are classified into ketone peroxides, peroxyketals, hydride peroxides, dialkyl peroxides, peroxyesters, disilver oxides, and baroxydicarbonates. Compounds are included.
  • Examples of organic peroxides are shown below. The force and the numbers in Tsuko are the 10-hour half-life temperatures (see Wako Pure Chemicals Catalog, API Corporation Catalog, and the aforementioned Polymer Handbook).
  • Examples of ketone peroxides include methyl ethyl ketone peroxide (109 ° C) and cyclohexanoperoxide (100 ° C).
  • Examples of the azo compound include a water-soluble azo thermal radical polymerization initiator, an oil-soluble azo thermal radical polymerization initiator, and a polymer azo thermal radical polymerization initiator.
  • Examples of water-soluble azo thermal radical polymerization initiators include 2, 2'-azobis [2- (2 imidazoline-2 yl) propane] disulfate dihydrate (46 ° C), 2, 2, -azobis [N- (2-carboxyethyl) -2 methylpropionamidine] noidate (57 ° C), 2,2, -azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazoline-2- Ino] propane ⁇ dihydride chloride (60 ° C), 2,2, -azobis (1 imino 1 pyrrolidino2 ethylpropane) dihydride chloride (67 ° C), 2,2, azobis [2 methyl-N— (2 hydride) Mouth Kichetil) propionamide] (87 ° C), 2,2, -azobis [2- (2 imidazoline-2-yl) propane] dihydride Mouth chloride (44 ° C), 2,2'-azobis (2 methylpropionamidine) dihydride Mouth chloride
  • oil-soluble azo-based thermal radical polymerization initiators include 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (30 ° C), dimethyl-2,2'-azobis (2 methylpropio Nate) (66 ° C), 1, -azobis (cyclohexane-1-carbonitryl) (88 ° C), 1,1,1 [(cyanol 1-methylethyl) azo] formamide (104 ° C), 2, 2, -azobis (N-cyclohexyl 2-methylpropionamide) (111 ° C), 2, 2, monoazobis (2,4-dimethylvaleronitrile) (51 ° C), 2, 2, -azobis (2 —Methylbutyronitrile) (67 ° C) 2, 2, 1azobis [N— (2 propenyl) 2 methylpropionamide] (96 ° C), 2, 2, 1azobis (N butyl 2-methylpropionamide) (110 ° C) included It is.
  • polymer azo thermal radical polymerization initiator examples include polydimethylsiloxane unit-containing polymer azo thermal radical polymerization initiator, polyethylene glycol unit-containing polymer azo thermal radical polymerization initiator. included. These thermal radical polymerization initiators may be used alone or in combination of two or more types.
  • the amount of component (c) is preferably 0.0;! To 5 parts by mass with respect to 100 parts by mass of the liquid crystal sealant. .
  • the blending amount of the radical polymerization initiator is 0.01 parts by mass or more, the liquid crystal sealant is cured in a short time by irradiating the liquid crystal sealant with appropriately selected light or heat. That power S.
  • the blending amount of component (c) is 5 parts by mass or less, a coated product of the liquid crystal sealant is good and a cured product that is uniformly cured by light irradiation can be obtained.
  • the filler of the present invention is used for the purpose of improving the adhesion reliability of the liquid crystal sealant by controlling the viscosity of the liquid crystal sealant, improving the strength of the cured product obtained by curing the liquid crystal sealant, or suppressing the linear expansion. Refers to the filler.
  • Fillers that can be preferably used in the present invention are not particularly limited, and include known ones that can be commonly used in the field of electronic materials.
  • Examples of fillers include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate, kaolin, talc, Inorganic fillers such as asbestos powder, quartz powder, mica, glass fiber, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride are included.
  • the filler of the present invention was obtained by copolymerizing methyl methacrylate, polystyrene, monomers constituting them and other monomers as long as the characteristics of the liquid crystal sealant were not impaired! /
  • Known organic fillers such as copolymers, polyester fine particles, polyurethane fine particles, and rubber fine particles may be used.
  • inorganic fillers are preferable from the viewpoint of improving linear expansion coefficient and shape retention. .
  • silicon dioxide and talc are more preferable because of their high UV transparency.
  • the filler used in the liquid crystal sealant of the present invention may be an epoxy resin graft-modified with a silane coupling agent or the like.
  • the shape of the filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape.
  • the maximum particle size of the filler is preferably 6 m or less, more preferably 2 m or less.
  • the particle size of the filler can be measured by a laser diffraction method. If a liquid crystal sealant containing a filler having such a particle size is used in a method for producing a liquid crystal display panel, a liquid crystal cell having very good cell gap dimensional stability can be formed.
  • the blending amount of the filler is 1 to 40 parts by mass with respect to 100 parts by mass of the liquid crystal sealant excluding the filler S, preferably 10 to 30 parts by mass.
  • the liquid crystal sealing agent in which the blending amount of the filler is adjusted has good applicability to the substrate.
  • the filler may be used in combination with a photocurable resin.
  • the liquid crystal sealant in which the filler and the photocurable resin are used in combination has good photocurability and cures in a short time. Further, since the width of the cell gap is kept substantially constant, the dimensional stability is improved.
  • the liquid crystal sealant of the present invention further contains (e) an epoxy resin and (f) an acrylic compound, or (e) an epoxy resin or (f) an acrylic compound! obviously! / ⁇
  • the epoxy resin of the present invention refers to a compound having one or more epoxy groups in the molecule.
  • Preferred examples of the epoxy resin used for the liquid crystal sealant of the present invention include aromatic polyvalent glycidyl ether compounds, nopolac resins, nopolac type polyvalent glycidyl ether compounds, and glycidyl ether compounds.
  • aromatic polyvalent glycidyl ether compound examples include aromatic diol compounds and compounds obtained by reaction of diol compounds obtained by modifying them with various darlicols and epichlorohydrin.
  • aromatic diol compound examples include bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, and bisphenol AD type epoxy resin.
  • Dalicall Examples include ethylene glycol, propylene glycol, alkylene glycol
  • Examples of the nopolac resin include a compound derived from phenol or talesol and formaldehyde.
  • Examples of the nopolac-type polyvalent glycidyl ether compound include compounds obtained by the reaction of polyphenol compounds typified by polyalkylphenol and copolymers thereof and epichlorohydrin.
  • Examples of the glycidyl ether compound include xylylene phenol resin.
  • cresol nopolac type epoxy resin cresol nopolac type epoxy resin, phenol nopolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, triphenol methane type epoxy Resin, triphenyl ethane type epoxy resin, trisphenol type epoxy resin, dicyclopentagen type epoxy resin, biphenyl type epoxy resin are included.
  • particularly preferred epoxy resins include these acrylic rubber-modified epoxy resins. In the liquid crystal sealant of the present invention, these epoxy resins can be used alone or in combination of two or more.
  • the epoxy resin used in the present invention preferably has a softening point temperature force of 0 ° C or higher measured by a ring and ball method and has a weight average molecular weight of 1000 to 10,000. More preferred.
  • Such an epoxy resin has low solubility and diffusibility in liquid crystals. Therefore, a liquid crystal display panel manufactured with a liquid crystal sealant using a strong epoxy resin has good display properties.
  • the weight average molecular weight of the epoxy resin is, for example, gel permeation chromatography.
  • GPC can be measured using polystyrene as a standard. Furthermore, epoxy resins that have been purified by molecular distillation or the like and from which impurities have been removed are preferably used.
  • the compounding amount of the epoxy resin is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal sealant.
  • Such a liquid crystal sealant has good heat resistance. However, if the blending amount is less than 5 parts by mass, the curing rate becomes slow, and if it exceeds 50 parts by mass, the heat resistance of the liquid crystal sealant may be lowered.
  • the acrylic compound of the present invention refers to a compound having one or more acrylic groups in the molecule.
  • the acrylic compound of the present invention includes (meth) acrylic resins such as methacrylic resins.
  • examples of the acrylic compound include, but are not particularly limited to, an acrylic ester and / or a methacrylic ester monomer, or an oligomer thereof.
  • the liquid crystal sealant containing an acrylic compound has extremely good water resistance. Therefore, when applied to a liquid crystal display panel, the liquid crystal sealant is cured with a cured product of the liquid crystal sealant and the substrate constituting the liquid crystal display panel. A high-quality liquid crystal display panel with extremely high adhesive strength and excellent moisture resistance reliability can be obtained.
  • acrylic compound (f) component include the following.
  • Diarylate and / or dimetatalylate such as polyethylene glycol, propylene glycol, polypropylene glycol; ditalariate and / or dimetatalylate of tris (2-hydroxyethyl) isocyanurate; 4 moles per mole of neopentyl glycol Diatalylate and / or dimetatalylate of a diol obtained by adding the above ethylene oxide or propylene oxide; Diatalylate of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A and / or Dimetatalylate: Diol or tritalylate of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane and / or Is di- or trimetatalylate; bisphenolate A1 mol of diol diacrylate and / or dimetatalylate obtained by adding 4 mol or more of ethylene oxide or propy
  • acrylic compound (f) component examples include cresol nopolac type epoxy resin, phenol nopolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and triphenol methane type epoxy. It is obtained by reacting all epoxy groups such as resin, triphenol type epoxy resin, trisphenol type epoxy resin, dicyclopentagen type epoxy resin, biphenyl type epoxy resin with (meth) acrylate. In addition, a resin obtained by completely (meth) acrylating an epoxy resin is also included. These compounds may be used alone or in combination of two or more.
  • the acrylic compound (f) component is included in the liquid crystal sealant, it is preferably used in combination with the epoxy resin (e) component. At this time, it is preferable that the amount of component (e) is 20 to 200 parts by mass with respect to 100 parts by mass of component (f)! If such a liquid crystal sealant is cured by light or heat, a cured product having a high glass transition temperature (Tg) can be obtained.
  • Tg of the cured liquid crystal sealant can be measured with a dynamic viscoelasticity measuring device (DMA). Also, for the purpose of obtaining a high purity liquid crystal sealant, it is preferable to use the component (f) that has been highly purified by a water washing method!
  • Examples of the (meth) acryl-modified epoxy resin preferably used in the present invention are obtained by reacting an epoxy resin with (meth) acrylic acid or phenyl methacrylate, for example, in the presence of a basic catalyst. Resin.
  • Examples of the epoxy resin include bisphenol type epoxy resin and nopolac type epoxy resin.
  • the (meth) acryl-modified epoxy resin having both an epoxy group and a (meth) acryl group in the skeleton exhibits high compatibility with the component (e). Therefore, the liquid crystal sealant containing the (meth) acryl-modified epoxy resin and the component (e) has a high glass transition temperature (Tg), and is excellent in durability and heat resistance. Further, a cured product of the liquid crystal sealant and a liquid crystal surface Adhesive strength with the substrate constituting the display panel is increased.
  • Tg glass transition temperature
  • Examples of the epoxy resin used as a raw material for the (meth) acryl-modified epoxy resin include a cresol nopolac type epoxy resin, a phenol nopolac type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, Examples include triphenol methane type epoxy resin, triphenol ethane type epoxy resin, trisphenol type epoxy resin, dicyclopentagen type epoxy resin, and biphenyl type epoxy resin.
  • the (meth) aryl-modified epoxy resin is highly purified by a molecular distillation method, a washing method, or the like.
  • liquid crystal sealant of the present invention may contain an additive as necessary.
  • additives that are preferably used in the present invention include thermal radical polymerization initiators, coupling agents such as silane coupling agents, ion trapping agents, ion exchange agents, leveling agents, pigments, dyes, plasticizers, and extinguishing agents. Contains foam. These additives can be used alone or in combination, depending on the application.
  • a spacer or the like may be included in order to secure a gap in the liquid crystal cell.
  • the spacer may be included in the liquid crystal sealant, or may be used by previously applying to the substrate constituting the liquid crystal display panel.
  • an organic solvent may be included in order to improve the dispensability and screen printability. It is preferable that the organic solvent has high compatibility with the epoxy resin of component (e) and has a boiling point in the range of 140 to 220 ° C, and further inert to the epoxy group.
  • organic solvents include ketone solvents, ether solvents, and acetate solvents. These may be used alone or in combination of two or more.
  • the method for preparing the liquid crystal sealant of the present invention is not particularly limited, and a known technique can be used.
  • means for mixing the components of the liquid crystal sealant include a double-arm stirrer, a roll kneader, a twin screw extruder, a ball mill kneader, and a planetary stirrer, but are not particularly limited.
  • a known kneading machine may be used. Mix well by any method The liquid crystal sealing agent thus filtered is filtered to remove impurities. Then, after vacuum defoaming treatment, glass bottles and plastic containers are hermetically filled and stored and transported as necessary.
  • liquid crystal display panel of this invention Next, the manufacturing method of the liquid crystal display panel of this invention is demonstrated.
  • the liquid crystal sealant of the present invention described above can also be applied to the liquid crystal injection method and the liquid crystal dropping method.
  • the manufacturing method of the liquid crystal display panel of this invention regarding a liquid crystal injection system and a liquid crystal dropping system is demonstrated one by one.
  • the method for producing a liquid crystal display panel of the present invention is a method for producing a liquid crystal display panel produced by bonding two opposing substrates together with a liquid crystal sealant.
  • the liquid crystal of the present invention A step of preparing one or more substrates having a frame-shaped display region formed so that the pixel array region is surrounded by a sealant; and (2) in the display region in an uncured state or the other substrate.
  • a liquid crystal sealant is applied to one of the two substrates to prepare a substrate on which a frame-shaped display region is arranged.
  • the frame constituted by the liquid crystal sealant is formed so as to surround the pixel array region.
  • the liquid crystal sealant according to the present invention as described above is useful as the liquid crystal sealant.
  • the liquid crystal sealant also acts as an adhesive to bond the two substrates with a certain distance just by forming a frame such as a display area.
  • examples of the method of applying the liquid crystal sealant on the substrate are not particularly limited to the force including application by a dispenser and application by screen printing, and a known technique may be used. When manufacturing a small liquid crystal display panel, application by screen printing is preferable from the viewpoint of improving productivity.
  • Examples of the two substrates used in the liquid crystal display panel include a glass substrate on which TFTs are formed in a matrix, a substrate on which color filters and a black matrix are formed.
  • Examples of substrate materials include glass, polycarbonate, polyethylene terephthalate, and polyester.
  • An alignment film may be formed on the opposing surface of each substrate.
  • the alignment film is not particularly limited, and for example, a film made of a known organic alignment agent or inorganic alignment agent can be used.
  • a spacer may be sprayed on the substrate in advance.
  • the spacer is generally made of spherical silica particles and is effective in maintaining a uniform cell gap.
  • an in-plane spacer that has been dispersed on a substrate in advance or a spacer that is included in a liquid crystal sealant is used.
  • the type and size of the spacer is not particularly limited, and a known one may be used according to the desired cell gap size.
  • an appropriate amount of liquid crystal is dropped on the inside of the frame serving as an uncured display region or on the other substrate.
  • the other substrate onto which the liquid crystal is dropped is a substrate different from the substrate including the display region.
  • the liquid crystal may be dropped in a region that can become a display region when the substrates are overlapped with each other.
  • the amount of liquid crystal to be dropped is adjusted according to the size of the frame so that the dropped liquid crystal fits in the frame. If the liquid crystal is dropped into the frame in this way, the capacity of the liquid crystal does not exceed the capacity of the empty cell surrounded by the frame and the substrate after bonding. Therefore, excessive pressure is not applied to the frame, and the seal forming the frame is not broken.
  • the substrate force on which the liquid crystal is dropped is superimposed on the other substrate.
  • the superposition is preferably performed under reduced pressure by a vacuum bonding apparatus or the like.
  • step (4) either light and heat, or light or heat is applied to the liquid crystal sealant sandwiched between the two substrates.
  • radicals are generated inside the liquid crystal sealant by the action of the radical polymerization initiator, and the curing reaction between the main agent and the curing agent is promoted, so that the liquid crystal sealant is cured.
  • the type of light applied to the liquid crystal sealing agent, the irradiation time, or the temperature and time during heating are not particularly limited, and are appropriately selected according to the composition of the liquid crystal sealing agent. That's fine.
  • the heating temperature may be 40 to 90 ° C., and the heating time may be 1 to 120 minutes. preferable. Further, if necessary, after the liquid crystal sealant is heat-cured once, after-curing may be performed at 110 to 150 ° C. for 30 to 90 minutes.
  • the heating means for the liquid crystal sealing agent include known heating devices such as an oven, a hot plate, and a hot press, but are not particularly limited.
  • the present invention may include, after the step (3), a step of returning the two superimposed substrates from the reduced pressure to the atmospheric pressure. If the substrates stacked in this way under reduced pressure are returned to the atmospheric pressure environment from under reduced pressure, a pressure difference will occur between the inside and outside of the frame. Since they are pressed, the substrates are bonded together.
  • a plurality of frames are formed on a substrate by a liquid crystal sealant, and the two substrates are bonded to each other.
  • a method of cutting out separate liquid crystal display panels by cutting the outer periphery is adopted.
  • the present invention is also suitable for such a method.
  • the liquid crystal sealant of the present invention has high viscosity stability, low solubility in liquid crystal and high curability, an ⁇ component, a thermal latent curing agent, and a radical polymerization initiator. And the filer is included!
  • a liquid crystal display panel is manufactured using such a liquid crystal sealant by the liquid crystal dropping method, even if there is a light-shielding area, the curing proceeds sufficiently and the work is performed while maintaining high storage stability and coating properties. Can proceed.
  • there are very few uncured parts in the cured liquid crystal sealant and as a result, contamination of the liquid crystal is prevented, and the adhesive strength between the cured liquid crystal sealant and the substrate is high! A display panel is obtained.
  • the degree to which the liquid crystal display panel is contaminated ! that is, the degree of liquid crystal contamination of the liquid crystal display panel can be evaluated by the ⁇ point, which is the difference between the points.
  • the saddle point is the temperature at which the liquid crystal undergoes a phase transition from the nematic phase to the isotropic phase (isotropic phase).
  • the phase transition temperature can be measured from the inflection point of the exothermic peak using a differential thermal analyzer.
  • It is the difference between the "stained! /, Na! /, NI point of the liquid crystal" and the "NI point of the contaminated liquid crystal".
  • the absolute value of the ⁇ NI point increases.
  • the absolute value of the ⁇ point is low. Therefore, the smaller the ⁇ NI point, the lower the liquid crystal contamination! /.
  • the compounds synthesized in the following Synthesis Examples 1 to 10 were used. Among them, the compounds synthesized in Synthesis Examples;! To 4 correspond to the first component (a), and the compounds synthesized in Synthesis Examples 7 to 10 correspond to the second component (a). . Further, the compounds synthesized in Synthesis Examples 5 and 6 have a predetermined organic group in the molecule, but their number average molecular weight deviates from the range of 500 to 2000! /.
  • the acid value of the reaction mixture collected at an arbitrary stage during the synthesis was calculated by the following method, and the progress of the reaction was appropriately confirmed from the calculated acid value.
  • the acid value is determined by dissolving a sample taken appropriately from the reaction mixture in a diethyl ether / ethanol solution and adding a phenolphthalein ethanol solution; until the resulting solution is colorless, an ethanol solution of KOH (0. 1N) was dropped; calculated from the amount of KOH consumed.
  • the number average molecular weight of the final product obtained in each synthesis example was measured by the following method.
  • the number average molecular weight was measured by 1) measurement by gel permeation chromatography (GPC) using polystyrene as a standard, and 2) measurement by electrolytic desorption mass spectrometry (FD-MS method).
  • Hydroquinone monomethyl ether (0.1 lg) was added to a 500 ml four-necked flask equipped with a stirrer, a gas introduction tube, a thermometer, and a cooling tube. The resulting mixture was heated to 80 ° C., and then reacted while blowing dry air until the acid value became 2 mgKOH / g or less.
  • the reaction product was diluted with 1000 g of ethyl acetate, washed with ultrapure water 5 times, and concentrated. Subsequently, the reaction product was subjected to column separation with silica gel to obtain Compound A2.
  • the compound A2 was a compound containing a (meth) atalyloyl group and a glycidyl group.
  • the number average molecular weight of compound A2 obtained as a single peak was 733.
  • the number average molecular weight of Compound A 2 was confirmed to be the same molecular weight with a single peak in the FD-MS method.
  • reaction solution was diluted with 1000 g of ethyl acetate, washed with ultrapure water 5 times and concentrated.
  • 0.1 g of hydroquinone monomethyl ether as a polymerization inhibitor was added to 500 ml of four Roflasco equipped with a stirrer, a gas introduction tube, a thermometer, and a cooling tube. The obtained mixture was heated to 80 ° C., and further reacted with blowing dry air until the acid value became 2 mgKOH / g or less.
  • the reaction product was diluted with 1000 g of ethyl acetate, washed with ultrapure water 5 times, and concentrated. Subsequently, this reaction product was subjected to column separation with silica gel to obtain Compound A3.
  • a methacryloyl group was obtained.
  • a compound containing a glycidyl group was obtained.
  • the number average molecular weight of compound A3 obtained as a single peak was 591.
  • the number average molecular weight of Compound A3 was confirmed to be the same molecular weight with a single peak in the FD-MS method.
  • Synthesis Example 4 a compound A4 having a (meth) atalyloyl group and a glycidyl group was synthesized by reacting a carboxylic acid derivative with bisphenoxyethanol fluorenediglycidyl ether.
  • reaction mixture in which the dropping of the solution was completed was held for 1 hour while cooling with ice, and then the reaction mixture was filtered to remove unreacted sodium hydride. After this, 185 g (2 mol) of epichlorohydrin, 5 g of tetramethylammonium chloride, 0.1 g of hydroquinone monomethyl ether were added to the reaction mixture, mixed, and then blown with dry air at 70 ° C. Stir for 3 hours.
  • reaction mixture after completion of the reaction was washed five times with ultrapure water, and then heated and depressurized at 120 ° C to distill off excess impurities such as epichlorohydrin.
  • a reaction product (A4a) of 6-xanolide adduct of hydroxyethyl acrylate and epichlorohydrin was obtained.
  • 206 g (0.4 mol) of this reaction product (A4a) was mixed with 6-((6-Atalyloxy) hexanoyloxy) hexanoic acid (Alonics M-5 300 Tojo).
  • reaction product (Made by Synthesis Co., Ltd.) (Molecular weight 300) 120g (0.4 mol), Triptylammonium bromide 0 ⁇ 6g as a catalyst and Hydroquinone monomethyl ether 0 ⁇ lg as a polymerization inhibitor were mixed and added to 80 ° C. After warming, the reaction product was reacted until the acid value was 2 mgKOH / g or less while blowing dry air to obtain a reaction product (A4b).
  • reaction product (A4b) 163 g (0.2 mol) of the obtained reaction product (A4b), 61 g (0.2 mol) of 4-methacryloyloxytyltrimellitic anhydride, 0.5 g of phenothiazine as a polymerization inhibitor, Were mixed, heated to 80 ° C. and reacted for 1 hour, then further heated to 130 ° C. and reacted for 2 hours to obtain a reaction product (A4c).
  • reaction product (A4c) 112g (0.1 mol), bisphenoxyethanol full orange glycidyl ether (BPEF-G made by Osaka Gas Chemical Co., Ltd., molecular weight 550) 55g (0.1 mol), catalyst
  • BPEF-G bisphenoxyethanol full orange glycidyl ether
  • catalyst As a polymerization inhibitor, 0.2 g of tributylammonium bromide as a polymerization inhibitor and 0 lg of hydroquinone monomethyl ether were placed in a 300 ml four-necked flask equipped with a stirrer, a gas introduction tube, a thermometer, and a cooling tube, and mixed. Warmed to ° C. The reaction was continued until the acid value was 2 mgKOH / g or less while blowing dry air. The obtained reaction product was subjected to column separation with silica gel to obtain compound A4.
  • the compound A4 was a compound containing a (meth) atalyloyl group and a daricidyl group.
  • the number average molecular weight of compound A4 obtained as a single peak was 1670.
  • the number average molecular weight of Compound A4 was confirmed to be the same molecular weight with a single peak in the FD-MS method.
  • the obtained compound A5 As a result of analyzing the obtained compound A5 by HPLC and NMR, it was confirmed that it was a bisphenol A type epoxy resin modified with 50% strength S methacryloyl of the epoxy group. Further, as a result of GPC analysis of the obtained compound A5, the number average molecular weight was 427.
  • Synthesis Example 6 an epoxy resin in which bisphenol F-type epoxy resin was modified with attalyloyl was synthesized.
  • Synthesis Example 7 a compound A 7 having a (meth) ataryloyl group and a glycidyl group was synthesized by reacting a phenol nopolac type trifunctional epoxy resin with a (meth) acrylic acid derivative.
  • SR phenol nopolac type trifunctional epoxy resin
  • i 1 a compound represented by the general formula (i 1) was added to a 2000 ml four-necked flask equipped with a stirrer, a gas introduction tube, a thermometer, and a cooling tube.
  • compound B1 described below 73.3 g ( 0.3 mol)
  • the reaction was continued for 15 hours until The compound B1 used here is a reaction product of 2-hydroxyethyl methacrylate and succinic anhydride.
  • a phenol nopolac type tetrafunctional epoxy resin (YL 7284 Japan Epoxy) was used as the compound represented by the general formula (i 2).
  • Resin Co., Ltd., number average molecular weight 636) 318 g (0.5 mol), compound Bl described later 104 g (0.45 mol) and compound B2 110 g (0.45 mol), tributyl ammonium bromide as catalyst 2.
  • 0.05 g of phenothiazine was added as a polymerization inhibitor, and the mixture was heated and mixed at 80 ° C. Further, while blowing dry air, the reaction was allowed to proceed for 15 hours until the acid value reached 2 mg KO H / g or less.
  • the compound B2 used here is a reaction product of 4-hydroxybutyl acrylate and succinic anhydride.
  • a phenol nopolac type tetrafunctional epoxy resin (YL-7284) is used as the compound represented by the general formula (i 2).
  • a phenol nopolac type tetrafunctional epoxy resin (YL-7284) is used as the compound represented by the general formula (i 2).
  • i 2 Made by Japan Epoxy Resin Co., Ltd., FD-MS method number average molecular weight 636) 318 g (0.5 mol), compound B3 (described later) 425 g (0.9 mol), tributyl ammonium bromide 2.
  • the diluted reaction solution was washed 10 times with 600 g / l of ultrapure water 10 times, and concentrated until the electric conductivity of the aqueous phase was 1 aSm or less.
  • A9 was obtained.
  • the number average molecular weight was 1770.
  • Synthesis Example 10 a trifunctional epoxy resin was reacted with a (meth) acrylic acid derivative to synthesize an epoxy resin having a (meth) attalyloyl group and a glycidyl group.
  • a compound represented by the above general formula (i 4) is a trifunctional epoxy resin, VG— 3102 (Mitsui Chemicals) FD-MS method average molecular weight 460) 184g (0.40mol), Compound B1 92g (0.40mol) and Compound B2 97.6g (0.40mol)
  • tryp and tilammonium bromide 2 ⁇ 0 g as hornworm media and 0 ⁇ 05 g of phenothiazine as polymerization inhibitor were added and mixed by heating at 80 ° C. The reaction was continued for 8 hours while blowing dry air until the acid value reached 2 mgKOH / g or less.
  • a 2000 ml four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and condenser tube was charged with 120 g (l. 2 mol) of succinic anhydride and 6-hexanolide 3-monoacrylate of purified 2-hydroxyethyl methacrylate. 472 g (l. Omol) of the attached carotenoid and 0.05 g of phenothiazine as a polymerization inhibitor were mixed, heated to 110 ° C. and reacted for 5 hours.
  • the purified 6-hexanolide 3-mole adduct of 2-hydroxyethyl methacrylate is a commercially available 6-hexanolide 3-mole adduct of 2-hydroxyethyl methacrylate (Platacel FM3 manufactured by Daicel Chemical Co., Ltd.). This is a column purified product.
  • reaction product was diluted with 2000 g of toluene, washed with 1000 g of ultrapure water 10 times, and then concentrated to obtain 584 g of compound B3.
  • compound B3 which is a reaction product of the target force prolatatone 3 mol-modified metatalylate and succinic anhydride, was obtained.
  • thermal latent curing agents (i) 1,3 bis (hydrazinocarboethyl) 5-isopropylhydantoin (Amicure VDH—J Ajinomoto Fine-Techno Co., Ltd.), (ii) adipic acid dihydrazide (ADH Japan) Two types (Finechem Co., Ltd.) were appropriately selected and used.
  • radical polymerization initiator 1-hydroxy acts as photo radical polymerization initiator Cyclohexyl phenyl-ketone (Irgacure 184 Ciba Specialty Chemicals) was used.
  • spherical silica (primary average particle size 0 ⁇ 7 m) (manufactured by Admafine A-802 Admatex Co., Ltd.) was used.
  • epoxy resin o cresol nopolac type solid epoxy resin (EOCN-10 20 -75 manufactured by Nippon Kayaku Co., Ltd.) was used.
  • component (f) dimetatalylate of bisphenol A type resin (epoxy ester 3 000M manufactured by Kyoeisha Chemical Co., Ltd.) is diluted with toluene and ultrapure water and washed 12 times.
  • component (i) dimetatalylate of bisphenol A type resin (epoxy ester 3 000M manufactured by Kyoeisha Chemical Co., Ltd.) is diluted with toluene and ultrapure water and washed 12 times.
  • Bisphenol A, EO adduct diacrylate (Biscoat # 700, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was diluted with toluene and ultrapure water and washed 12 times. By repeating, a highly purified compound was appropriately selected and used.
  • ⁇ -glycidoxytrimethoxysilane ( ⁇ 403 Shin-Etsu Chemical Co., Ltd.) commercially available as a silane coupling agent was used.
  • the viscosity stability of the liquid crystal sealant, the adhesive strength of the liquid crystal sealant, and the display property of the liquid crystal display panel were measured and evaluated, and the characteristics of the liquid crystal sealant were evaluated. . Details of each measurement are shown below.
  • the adhesive strength of the liquid crystal sealant was measured and evaluated in two ways: (1) adhesive strength of light and heat-cured liquid crystal sealant, and (2) adhesive strength of heat-cured liquid crystal sealant.
  • the display properties of the liquid crystal display panel are as follows: (1) a liquid crystal display panel manufactured as usual, (2) a display property of a liquid crystal display panel with a light-shielding area, and (3) a liquid crystal manufactured only by thermosetting. Three patterns of display panel displayability were measured and evaluated.
  • the viscosity value of the liquid crystal sealant at 25 ° C was measured using a vertical viscometer. Viscosity measurement Occasionally, 100 parts by mass of the liquid crystal sealant was placed in a polyethylene container and sealed, and then stored at 25 ° C for 5 days. Subsequently, after a predetermined period, a viscosity value of 25 ° C. was measured with an E-type viscometer. Then, using the measured value, the change rate of the viscosity value after 25 ° C / 5 days when the viscosity value before sealing was set to 100 was calculated.
  • the liquid crystal sealing agent 1 mass 0/0 were added glass fibers 5 m, was screen printed on the 25 mm X 45 m m X 5mm thick circular diameter lmm on an alkali-free glass.
  • the same glass paired with this substrate was bonded to a cross and fixed with a jig, and then an ultraviolet ray irradiation device (manufactured by Usio Electric Co., Ltd.) was used to irradiate ultraviolet rays of 100 mW / cm 2.
  • the liquid crystal sealant was cured. At this time, the illuminance energy of ultraviolet rays was set to 2000 mJ.
  • a test piece in which the liquid crystal sealant was cured by light was heat-treated at 120 ° C for 60 minutes using an oven to prepare a test piece.
  • the plane tensile strength of the finished specimen is flattened by pulling it in a direction parallel to the glass bottom using a tensile testing machine (Model 210 manufactured by Intesco) with a tensile speed of 2 mm / min. Tensile strength was measured.
  • the adhesive strength was evaluated in two stages according to the magnitude of the plane tensile strength. That is, when the tensile strength was 1OMPa or more, the adhesive strength was good ( ⁇ ), and when the tensile strength was less than lOMPa, the adhesive strength was low and inferior (X).
  • liquid crystal sealing agent 1 mass 0/0 were added glass fibers 5 m, 25mm X 45m m X thickness screen printed on the alkali-free glass of 5mm in a circle with a diameter of lmm, similar glass comprising a pair Was fixed to the cross.
  • the two bonded substrates were heat-treated at 120 ° C. for 60 minutes using an oven, and the liquid crystal sealant was cured only by thermal curing to prepare a test piece.
  • the plane tensile strength of the completed specimen is measured using a tensile tester (Model 210 manufactured by Intesco). It measured using. At this time, the measurement of the plane tensile strength and the evaluation of the lateral determination result were the same as the method described in the above (A) Adhesive strength of the light and thermosetting liquid crystal sealant.
  • a liquid crystal material (MLC-11 900-000 manufactured by Merck & Co., Inc.) corresponding to the panel internal capacity after bonding the substrates together is dispensed onto the glass substrate paired with the substrate on which the seal pattern is formed. was dripped precisely. Subsequently, under a reduced pressure of 90 Pa, the two glass substrates are overlapped so that the liquid crystal is sealed, and then an ultraviolet ray irradiation device (manufactured by Usio Electric Co., Ltd.) is used to emit ultraviolet rays of lOOmW / cm 2 . Irradiated to cure the liquid crystal sealant. At this time, the irradiation energy of ultraviolet rays was set to 2000 mJ.
  • a metal halide lamp was used as the light source.
  • an ultraviolet integrated light meter (UVR-T35 Topcon Co., Ltd.) having a measurement wavelength range of 300 to 390 nm and a peak sensitivity wavelength of 365 nm was used. Further, after the liquid crystal sealing agent was cured by light, the liquid crystal sealing agent was further cured by heat treatment at 120 ° C. for 60 minutes.
  • a liquid crystal display panel was obtained by attaching a deflection film to each of both surfaces of the two bonded substrates. This liquid crystal display panel was driven by driving a voltage of 5 V with a DC power supply. At this time, it is visually observed whether the liquid crystal display function in the vicinity of the seal formed by the liquid crystal sealant functions normally from the beginning of driving, and the display properties of the liquid crystal display panel are determined in two stages according to a predetermined standard. evaluated.
  • the display property is assumed to be good ( ⁇ ), and the display device is located at a distance of 0.3 mm or more from the vicinity of the sealing toward the inside of the frame. In this case, the display performance is markedly bad! /, (X).
  • liquid crystal material (MLC—11900—000) that corresponds to the capacity of the panel after the fortune-telling
  • a liquid crystal display panel was obtained by attaching a deflecting film to both surfaces of the two bonded substrates.
  • the liquid crystal display panel was driven by applying a voltage of 5 V to the liquid crystal display panel with a DC power supply. At this time, it is visually observed whether the liquid crystal display function in the vicinity of the seal formed by the liquid crystal sealant functions normally from the beginning of driving, and the display properties of the liquid crystal display panel are determined in two stages according to a predetermined standard. evaluated.
  • the criteria for evaluating the display properties of the liquid crystal display panel are the same as those described above, so that Is omitted.
  • a liquid crystal sealant (P1) was prepared by subjecting the obtained filtrate to a vacuum defoaming treatment.
  • a liquid crystal sealant (P2) was prepared in the same manner as in Example 1 except that 52 parts by mass of compound A2 was used instead of compound A1 as component (a).
  • a liquid crystal sealant (P3) was prepared in the same manner as in Example 1 except that 52 parts by mass of compound A3 was used instead of compound A1 as component (a).
  • a liquid crystal sealant (P4) was prepared in the same manner as in Example 1 except that 52 parts by mass of compound A4 was used instead of compound A1 as component (a).
  • the kneaded product was filtered with a filter having a mesh opening of 10 ⁇ m (manufactured by MSP-10-E10S ADVANTEC).
  • a liquid crystal sealant (P5) was prepared by subjecting the obtained filtrate to a vacuum defoaming treatment.
  • component (e) 6 parts by mass of O cresol nopolac epoxy resin (EOCN-1020-75 manufactured by Nippon Kayaku Co., Ltd.) and high purity treated epoxy ester (3000M manufactured by Kyoeisha Chemical Co., Ltd.) 6 mass A uniform solution was prepared by heating and dissolving in the part.
  • component (a) 9 parts by mass of compound A2, 26 parts by mass of compound A5, 26 parts by mass of compound A-6, and as component (c) act as photoradical polymerization initiators.
  • 1-Hydroxymonocyclohexyl-phenyl ketone (Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.) 2 parts by mass, as component (b), 1,3-bis (hydrazinocarboxyl) 5-isopropylhydantoin ( Amicure VDH—J Ajinomoto Fine Techno Co., Ltd.) 10 parts by mass, (d) component as spherical silica (Admafine A-802, Admatechs) 14 parts by mass, and (g) as component ⁇ — 1 part by mass of glycidoxypropyltrimethoxysilane (KBM403, Shin-Etsu Chemical Co., Ltd.) was added and premixed with a mixer.
  • this kneaded product was filtered with a filter having a mesh size of 10 m (manufactured by MSP-10-E10S ADVANTEC).
  • a liquid crystal sealant (P6) was prepared by subjecting the obtained filtrate to a vacuum defoaming treatment.
  • component (a) 81 parts by mass of compound A2 and as component (b) 1, 3 bis (hydrazinocarbon) 1) 5-isopropylhydantoin (Amicure VDH—J Ajinomoto Fine Techno Co., Ltd.) 10 parts by mass, (d) component, spherical silica (Admafine A—802 manufactured by Admatechs Co., Ltd.) 8 parts by mass, and As component (g), 1 part by mass of ⁇ -glycoxypropyltrimethoxysilane ( ⁇ 403 Shin-Etsu Chemical Co., Ltd.) was premixed with a mixer.
  • this kneaded product was filtered with a filter having an opening of lO ⁇ m (MSP-10-E10S ADVANTEC Co., Ltd.).
  • a liquid crystal sealant (P7) was prepared by subjecting the obtained filtrate to a vacuum defoaming treatment.
  • component (e) o Cresol nopolac epoxy resin (EOCN-1020-75 manufactured by Nippon Kayaku Co., Ltd.) 5 parts by mass of (f) component bisphenol A, EO adduct diatalylate ( Viscoat # V700 (Osaka Organic Chemical Co., Ltd.) Heated and dissolved in 10 parts by mass to obtain a uniform solution.
  • component bisphenol A EO adduct diatalylate
  • Viscoat # V700 Osaka Organic Chemical Co., Ltd.
  • this kneaded product was filtered with a filter (MSP-10-E10S ADVANTEC Co., Ltd.) having an opening of 10 m.
  • a liquid crystal sealant (P8) was prepared by subjecting the obtained filtrate to a vacuum defoaming treatment.
  • a liquid crystal sealant (P9) was prepared in the same manner as in Example 1 except that 52 parts by mass of Compound A8 was used as the component (a) instead of Compound A1.
  • a liquid crystal sealant (P10) was prepared in the same manner as in Example 1, except that 52 parts by mass of compound A9 was used as component (a) instead of compound A1. [Example 11]
  • a liquid crystal sealant (P11) was prepared in the same manner as in Example 1 except that 52 parts by mass of the compound A10 was used instead of the compound A1.
  • o-cresol nopolac epoxy resin (EOCN-1020-75 manufactured by Nippon Kayaku Co., Ltd.) 15 parts by mass of bisphenol A, EO adduct dichlorate (Biscoat # V700 Osaka) Organic Chemical Industry Co., Ltd.) Heated and dissolved in 22 parts by mass to obtain a homogeneous solution, and further cooled.
  • 20 parts by mass of Compound A7 as component (a) and 1-hydroxymonocyclohexyl-phenyl-ketone (Irgacure 184 Cibasper) act as photoradical initiator as component (c). 2 parts by weight, manufactured by Shatichemanore Co., Ltd.
  • component (b) adipic acid dihydrazide (Amicure ADH, manufactured by Nippon Finechem Co., Ltd.) 15 parts by weight, and as component (d), spherical silica (Admafine A-802 Matex Ltd.) 25 parts by weight, and (as g) component, I - glycidoxypropyltrimethoxysilane (Kappabetamyu 403 Shin-Etsu Chemical Co., Ltd.) was added 1 part by weight, were premixed in a mixer.
  • the kneaded product was filtered through a filter having an opening of lO ⁇ m (MSP-10-E10S ADVANTEC Co., Ltd.).
  • a liquid crystal sealant (P12) was prepared by subjecting the obtained filtrate to vacuum defoaming treatment.
  • a liquid crystal sealant (Q1) was prepared in the same manner as in Example 1 except that 52 parts by mass of compound A5 was used instead of compound A1 as component (a).
  • a liquid crystal sealant (Q2) was prepared in the same manner as in Example 1 except that 52 parts by mass of Compound A6 was used as the component (a) instead of Compound A1.
  • a liquid crystal sealant (Q3) was prepared in the same manner as in Example 1 except that 26 parts by mass of compound A5 and 26 parts by mass of compound A6 were used as component (a) instead of compound A1.
  • a liquid crystal sealant (Q4) was prepared in the same manner as in Example 1 except that 62 parts by mass of epoxy ester 3000M was used instead of the compound Al and epoxy ester 3000M used in Example 1. .
  • a liquid crystal sealant (Q5) was prepared in the same manner as in Example 8, except that 52 parts by mass of compound C1 synthesized by the following synthesis method was used as component (a) instead of compound A7.
  • a 500 ml four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and condenser tube is 175 g of bisphenol A type epoxy resin (Epiclon 850CRP manufactured by Dainippon Ink and Chemicals), 43 g of methacrylic acid, and triethanol as a catalyst.
  • Compound C1 was obtained by mixing 0.2 g of amine and 0.2 g of hydroquinone monomethyl ether as a polymerization inhibitor and heating and stirring the mixture at 110 ° C. for 5 hours while blowing dry air. The obtained compound C1 was repeatedly washed with ultrapure water 12 times.
  • a liquid crystal sealant (Q6) was prepared in the same manner as in Example 8 except that 52 parts by mass of compound C2 synthesized by the following synthesis method was used as component (a) instead of compound A7.
  • a 500 ml four-necked flask equipped with a stirrer, gas inlet tube, thermometer, and condenser tube is 175 g of bisphenol A type epoxy resin (Epiclon 850CRP manufactured by Dainippon Ink and Chemicals), 37 g of acrylic acid, and triethanol as a catalyst.
  • 0.2 g of amine was mixed with 0.2 g of hydroxy monomethyl ether as a polymerization inhibitor. The mixture was heated and stirred at 110 ° C. for 12 hours while blowing dry air to obtain compound C2.
  • the obtained compound C2 was repeatedly washed with ultrapure water 12 times.
  • Compound C2 was analyzed by HPLC and NMR. % Was bisphenol A-type epoxy resin modified with talyloyl.
  • Compound C2 was subjected to FD-MS analysis. As a result, the number average molecular weight was 412.
  • a liquid crystal sealant (Q7) was prepared in the same manner as in Example 1, except that 26 parts by mass of the compound C1 and 26 parts by mass of the compound C2 were used as the component (a) instead of the compound A1.
  • the liquid crystal sealants to which the liquid crystal sealants P1 to P12 are applied to the present invention are the above-mentioned viscosity stability, adhesive strength, and liquid crystal display using the same. Good evaluation results were confirmed for each of the items of display near the panel seal and display near the light shielding area. Furthermore, even when the liquid crystal sealant was cured with heat alone, it was confirmed that the adhesive strength was high and the display properties of the liquid crystal display panel were excellent.
  • the liquid crystal sealant of the present invention is excellent in viscosity stability and curability. For this reason, the possibility that the line width of the seal pattern is narrowed or the number of times the liquid crystal sealant is replaced in a device such as a dispenser is kept low, thereby increasing the yield and shortening the curing time of the liquid crystal display panel. It can be manufactured while planning.
  • the liquid crystal sealant that is strong and has a low solubility in liquid crystals is also suitable for the liquid crystal dropping method.

Description

明 細 書
液晶シール剤、およびそれを用いた液晶表示パネルの製造方法、ならび に液晶表示パネノレ
技術分野
[0001] 本発明は、液晶シール剤、およびそれを用いた液晶表示パネルの製造方法、なら びに液晶表示パネルに関する。
背景技術
[0002] 近年、ブロードバンド化の進展、デジタルカメラや携帯電話などの小型電子機器の発 展に伴い、薄型 ·軽量 ·低消費電力という面で、フラットパネルディスプレイである液晶 表示パネルの需要が例外的な伸長を遂げてレ、る。液晶表示パネルは、液晶シール 剤によって貼り合わされた 2枚の透明基板の間に液晶が封入された構造を有してお り、上記液晶に対して電圧を印加することにより液晶の配向を制御し、基板に透過さ せた光の変調を調節することによって画像を表示する装置である。
[0003] 従来、液晶表示パネルは、 2枚の基板の間に配置された注入口を有する液晶セル 内に液晶を注入した後、注入口を封止することにより液晶表示パネルを製造する液 晶注入方式によって主に製造されてきた (例えば、特許文献 1参照)。ただし、液晶表 示パネルの需要増大に伴って、現在、液晶表示パネルの製造分野では生産性の向 上が強く求められているのに対して、液晶注入方式では液晶の注入に時間がかかる こと、また液晶シール剤を硬化させる際に 120〜; 150°Cの温度で数時間の加熱処理 が必要であること、などの理由から生産性の低さが大きな問題となっている。
[0004] そこで、最近では、液晶注入方式に替わる液晶表示パネルの製造方法として、液 晶滴下方式が注目されている。液晶滴下方式とは、先ず、 2枚の基板のいずれか一 方に、デイスペンサまたはスクリーン印刷を用いて液晶シール剤により枠状のシール ノ ターンを形成し;かかる枠内、またはもう一方の基板上に、微量の液晶を滴下し;高 真空中において、液晶シール剤が未硬化の状態で 2枚の基板を重ね合わせ; 2枚の 基板の間にある液晶シール剤に対して紫外線を照射し、仮硬化させた後に、加熱に よって液晶シール剤をァフタキュアすることにより液晶表示パネルを製造する方法で ある。
[0005] この液晶滴下方式によれば、液晶セル内へ液晶を封入する時間が短ぐまた光と 加熱圧締とを併用させて液晶シール剤を硬化させるために液晶シール剤の硬化時 間も短縮されるから、液晶注入方式よりも生産性が向上する。このような液晶注滴下 方式に用いられる液晶シール剤としては、光および熱硬化性の液晶シール剤が提案 されている(例えば、特許文献 2、 3参照)。
[0006] ただし、液晶滴下方式では、未硬化状態の液晶シール剤に液晶が直接に接触す るために、液晶シール剤の成分が液晶に溶出し、液晶が汚染されやすい。このように 液晶が汚染されると、液晶表示パネルの表示性が著しく低下するので大きな問題と なる。また、液晶の汚染は、液晶シール剤の硬化物中に未硬化部分が残っている場 合にも引き起こされる。未硬化部分から、未硬化状態の液晶シール剤成分が液晶に 溶出するためである。液晶シール剤の硬化物中に未硬化部分が残ると、液晶が汚染 されるだけでなく液晶表示パネルを構成する基板と液晶シール剤の硬化物との接着 強度が低くなり、液晶表示パネルの品質低下を招く可能性が高い。したがって、液晶 の汚染防止および前記接着強度の高さの観点から、短時間のうちに隅々まで硬化が 進み、硬化物中の未硬化部分が極めて少なく抑えられるように硬化性が高く良好で あり、かつ液晶に対する溶解度が低い液晶シール剤の提案が望まれている。
[0007] 今までに、接着強度を向上させた液晶シール剤として、ビスフエノール A型エポキシ 樹脂とアクリル酸またはメタクリル酸とを反応させて得られる部分アクリル化またはメタ クリル化されたエポキシ樹脂を成分とする液晶シール剤が提案されて!/、る(例えば、 特許文献 4参照)。また、液晶の汚染を防止し得る液晶シール剤として、(メタ)アタリ ル基および水酸基を有するアクリル化エポキシ樹脂を含み、前記 (メタ)アクリル基の 数が前記水酸基の数よりも多!/、液晶シール剤が提案されて!/、る(例えば、特許文献 5 参照)。
特許文献 1:国際公開第 2004/039885号パンフレット
特許文献 2:特開 2001— 133794号公報
特許文献 3:特開 2002— 214626号公報
特許文献 4:特許第 3162179号 特許文献 5:特開 2005— 195978号公報
発明の開示
発明が解決しょうとする課題
[0008] しかし、特許文献 4に記載されて!/、るような部分アクリル化エポキシ樹脂は硬化性が 低ぐかつ低分子量体であるために、液晶に対する溶解度が高ぐ液晶を汚染しや すい。また、液晶シール剤では、室温付近での粘度安定性の高さが重要視されてお り、当該粘度安定性は高いことが好ましい。その理由として、室温付近において液晶 シール剤の粘度が変動せずに安定して!/、ると、所望とする線幅のシールパターンを 基板上に形成し易ぐかつ液晶表示パネルの製造時における歩留まりを上げることが できる。これに対して、前記部分メタクリル化エポキシ樹脂は、室温付近での粘度安 定性が低!/、から液晶シール剤の原料として好ましくなレ、。
[0009] さらに、特許文献 5に記載されているようなアクリル化エポキシ樹脂は粘度安定性が 高く良好であるものの、一方では硬化性が低いために液晶シール剤の硬化物中に 未硬化部分が残りやすい。そのために、液晶の汚染や、液晶シール剤の硬化物と液 晶表示パネルを構成する基板との接着強度の低さが問題視される。
[0010] したがって、本発明は、硬化性が高ぐかつ液晶に対する溶解度が低く抑えられて いるとともに、粘度安定性の高さが保持された液晶シール剤を提供することを第一の 目的とする。また、本発明の液晶シール剤を用いることにより、液晶の汚染が防止さ れ、かつ力、かる液晶シール剤の硬化物と液晶表示パネルを構成する基板との接着 強度が高い液晶表示パネルを、生産性の高さを保持しながら製造することができる 方法を提することを第二の目的とする。
課題を解決するための手段
[0011] 本発明者らは、鋭意検討重ねた結果、液晶シール剤の原料として用いられる化合 物の分子量に着目し、所定の範囲で高分子量化された化合物を用いることにより、 上記課題が解決できることを見出し、本発明を完成させるに至った。
[0012] すなわち、上記課題は、本発明の液晶シール剤によって解決される。
[1] (a)分子内に (メタ)アタリロイル基およびグリシジル基を有し、数平均分子量 力 S500〜2000である化合物と、(b)熱潜在性硬化剤と、(c)ラジカル重合開始剤と、 (d)フイラと、を含む液晶シール剤。
[2] 前記(a)成分が、下記の一般式 (I)で表される化合物である [ 1 ]に記載の液晶 シール剤。
[化 1]
Figure imgf000005_0001
前記一般式 (ι)中の、
R 〜R はそれぞれ独立して水素原子またはメチル基を表し、ただし R と R の両
11 16 13 14 方がメチル基であることはなぐ R と R の両方力 Sメチル基になることはなく;
15 16
X および X はそれぞれ独立して炭素数 1〜; 10のアルキレン基または一般式 (I
11 12
1 )で表される基を表し;
X および X はいずれか一方が炭素数 1〜; 10のアルキレン基、他の一方が一般
13 14
式 (I 2)で表される基を表し;
Aは一般式(I 3a)、 (I 3b)または(I 3c)で表される基を表し;
Pはそれぞれ独立して水素原子、炭素数 1〜; 10のアルキル基、炭素数 1〜; 10のァ ルコキシ基、またはニトロ基を表し;
a、 bおよび cはそれぞれ独立して 0〜3の整数を表し、 dが 1〜3の整数を表し、 mが 0〜4の整数を表し、ここで a + b + c + d + m= 6であり、かつ a、 bおよび cが同時に 0 になることはなく;
jが 0または 1の整数、 kおよび 1が 0〜; 10の整数をそれぞれ表す。
[化 2] o
'一 ,十 0~C- (1-1) 前記一般式 (I 1 )中の、 Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
21 22
Υ は前記一般式 (I)中のアタリロイル基の οと結合し、
21
ηは 1〜; 10の整数を表す。
[化 3コ
ο ο
— C-Y3l-C-0-Y»— …(ト 2)
前記一般式(I 2)中の、
Y および Y はそれぞれ独立して炭素数 1' '10のアルキレン基を表し
31 32
Y は前記一般式 (I)中のァクリロイル基の〇と結合する。
32
[化 4]
Figure imgf000006_0001
前記一般式(I 3a)中の、
R および R はそれぞれ独立して炭素数 1〜4のアルキル基、炭素数
41 42
コキシ基またはニトロ基を表し、
Zは単結合、 O 基、 S 基、 S02—基、 C (R ) (R )一基、または下記
43 44
の一般式 (tl)で示される基を表し、ここで R および R はそれぞれ独立して水素原
43 44
子、炭素数 1〜4のアルキル基またはフエ二ル基を表し、
rおよび sはそれぞれ独立して 0〜4の整数を表す。
[化 5]
Figure imgf000006_0002
寒 (ト 3b)
Figure imgf000007_0001
前記一般式 (I 3b)中の、
R 、R 、R 、および R はそれぞれ独立して水素原子、炭素数 1〜4のアルキル
51 52 53 54
基、炭素数 1〜4のアルコキシ基またはニトロ基を表す。
[化 7]
Figure imgf000007_0002
前記一般式(I 3c)中の、
R および R はそれぞれ独立して水素原子または炭素数 1〜4のアルキル基を表
61 62
す。
[3] 前記一般式 (I)が、分子内に、 1個以上のアタリロイル基と、メタクリロイル基と、 エポキシ基とを併せ持つ 1種以上の化合物である [1]または [2]に記載の液晶シー ル剤。
[4] 前記(a)成分が、(i)分子内に 3または 4個のグリシジル基を有するエポキシ化 合物と、(ii)カルボキシル基を有する(メタ)アクリル酸誘導体と、を反応させて得られ る(メタ)アタリロイル基、およびグリシジル基を有する化合物である [;!]〜 [3]の!/、ず れかに記載の液晶シール剤。
[5] 前記 (i)成分が、一般式 (i 1)、 (i 2)、 (i 3)、または (i 4)で表される化 合物である [4]に記載の液晶シール剤。
[化 8]
Figure imgf000008_0001
[化 11]
Figure imgf000009_0001
前記一般式(i 4)中の、
R は水素原子または炭素数 1〜; 10のアルキル基を表し、
81
R は水素原子またはメチル基を表す。 [6] 前記 (B)成分力 S、アクリル酸、メタタリ
82
ル酸、一般式 (ii 1)、または一般式 (ii 2)で表される化合物である [4]に記載の液 晶シール剤。
[化 12]
Figure imgf000009_0002
前記一般式 (ii 1)中の、
R は水素原子またはメチル基を表し、
91
X は炭素数 1〜; 10のアルキレン基または下記の一般式 (t2)で表される基を表し、
41
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表す。
42
[化 13]
Figure imgf000009_0003
前記一般式 (t2)中の、 Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
51 52
Υ は前記一般式 (ii 1)中のアタリロイル基を表し、
51
nは 1〜; 10の整数を表す。
[化 14]
(i i- 2〉
Figure imgf000010_0001
前記一般式(ii 2)中の、
R および R はそれぞれ独立して水素原子またはメチル基を表し、
92 93
X は下記の一般式 (t3)で表される基を表し、 X は炭素数 1〜; 10のアルキレン基
61 62
を表し、
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
63
iおよび jはそれぞれ独立して 0または 1の整数を表す。
[化 15]
o II o Ii
C-Y71-C-O-Y72— (t3) 前記一般式 (t3)中の、
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
71 72
CO基は前記一般式 (ii 2)中のアタリロイル基の Oと結合する。
[7] (e)エポキシ樹脂または (f)アクリル化合物のいずれか一方をさらに含む [1]
〜 [6]の!/、ずれかに記載の液晶シール剤。
[8] 前記 (c)成分が、光ラジカル重合開始剤である [1]〜 [7]のいずれかに記載 の液晶シール剤。
[9] 前記 (c)成分が、熱ラジカル重合開始剤である [1]〜 [7]のいずれかに記載 の液晶シール剤。
[10] 前記(a)成分の配合量が、液晶シール剤 100質量部に対して 5〜90質量部 である [1]〜 [9]の!/、ずれかに記載の液晶シール剤。
[0013] また、上記課題は、本発明の液晶表示パネルの製造方法、およびこれにより得られ る液晶表示パネルによって解決される。
[11] 対向する 2枚の基板を、液晶シール剤を介して貼り合わせることにより製造さ れる液晶表示パネルの製造方法にお!/、て、 [1]〜[; 10]の!/、ずれか一項に記載の液 晶シール剤によって、画素配列領域が包囲されるように形成された枠状の表示領域 を有する 1枚以上の基板を準備する工程と、未硬化状態の前記表示領域内、または もう一方の基板の上に液晶を滴下する工程と、前記液晶が滴下された基板と、もう一 方の基板とを重ね合わせる工程と、前記 2枚の基板に挟まれた液晶シール剤に対し て光および熱、あるいは光または熱のいずれか一方を与える工程と、を含む液晶表 示パネルの製造方法。
[12] 上記の [11]に記載の液晶表示パネルの製造方法により得られる液晶表示 パネル。
発明の効果
[0014] 本発明により、粘度安定性および硬化性の高さに加えて、液晶シール剤の硬化物 と液晶表示パネルを構成する基板との接着強度の高さ、さらには液晶の汚染を防止 し得る液晶シール剤を提供することができる。また、本発明の液晶シール剤を用いる ことにより、生産性の高さを保持しながら高品質の液晶表示パネルを得ることができる 液晶表示パネルの製造方法を提供することができる。
発明を実施するための最良の形態
[0015] 次に、本発明を詳細に説明する。本発明の液晶シール剤は、(a)分子内に (メタ)ァ クリロイル基およびグリシジル基を含み、数平均分子量が 500〜2000である化合物 、(b)熱潜在性硬化剤、(c)ラジカル重合開始剤、(d)フイラ、を含むことを特徴とする 。以下に、本発明の液晶シール剤に用いられる各成分について説明する。
[0016] [ (a)分子内に (メタ)アタリロイル基およびグリシジル基を有し、数平均分子量が 500 〜2000である化合物]
本発明の(a)分子内に (メタ)アタリロイル基およびグリシジル基を有し、数平均分子 量が 500〜2000である化合物(「(a)成分」とも!/、う)とは、分子内にアタリロイル基ま たはメタクリロイル基、およびグリシジル基とを含み、数平均分子量が 500〜2000の 範囲内で最適化された化合物をいう。前記数平均分子量は、ゲルパーミエーシヨンク 口マトグラフィー(GPC)でポリスチレンを標準として測定できる。
[0017] 上述のように本発明の(a)成分は、潜在硬化性を示す (メタ)アタリロイル基を含むた めに、室温付近のような低温領域であっても粘度安定性が高い。その一方で、分子 内に反応性が高レヽグリシジノレ基を有して!/、るから、 (a)成分を液晶シール剤の原料と すると、硬化性が高く良好な液晶シール剤が得られる。このような液晶シール剤は、 保存安定性や基板に対する塗布性が高ぐかつ遮光エリアのような場所でも短時間 のうちに隅々まで硬化が進行する。その結果として、液晶の汚染が防止され、かつ液 晶シール剤の硬化物と基板との接着強度が高ぐ表示性が良好な液晶表示パネル を生産性の高さを保持しながら製造することができる。
[0018] また、本発明の(a)成分は、その数平均分子量が 500〜2000の範囲内で調整さ れている。そのために、液晶に対する溶解度が低く抑えられている特徴を有する。一 般的に、高分子量化された化合物は粘度が高くなる傾向にあるが、数平均分子量が 上記範囲内で調整されていると、液晶汚染性を抑制しつつ、低粘度の液晶シール剤 を得ること力 Sできる。さらに液晶に対する溶解度を低くし、かつ低粘度とする観点から 、(a)成分の数平均分子量は 800〜; 1800であることが好ましい。
[0019] 液晶シール剤の硬化性の向上および液晶汚染性の低下を両立させる観点から、第 一の(a)成分としては、分子内に少なくとも 1個のアタリロイル基、メタクリロイル基、お よびエポキシ基を併せ持つ 1種以上の化合物であることが好ましい。反応性の高いェ ポキシ基などの含有数が多いほど、力、かる化合物の硬化性は向上する。また、(a)成 分となり得る化合物が高分子量化されるほど、液晶汚染性が防止される。
[0020] 液晶シール剤の原料として(a)成分を用いる場合、(a)成分の使用量は、液晶シー ル剤 100質量部に対して 5〜90質量部とすることが好ましぐ 20〜60質量部とするこ とがより好ましい。これにより、上述したような(a)成分の特徴が好ましく液晶シール剤 の特性として反映されると共に、液晶シール剤の硬化物と液晶表示パネルを構成す る基板との接着強度が高く良好となり、表示性に優れる液晶表示パネルを得ることが できる。 [0021] [第一の(a)成分]
本発明の ω成分としては、下記の一般式 a)で表される化合物(「第一の ω成分」 ともレ、う)であることが好ましレ、。
[0022] [化 16]
Figure imgf000013_0001
[0023] 前記一般式 (I)中の、
R 〜R はそれぞれ独立して水素原子またはメチル基を表し、
16
ただし、 R と R の両方がメチル基であることはなぐかつ R と R の両方がメチル
13 14 15 16
基になることはなく;
X および X はそれぞれ独立して炭素数 1〜; 10のアルキレン基または一般式 (I
11 12
1)で表される基を表し;
X および X はいずれか一方が炭素数 1〜; 10のアルキレン基、他の一方が一般
13 14
式 (I 2)で表される基を表し;
Aは一般式(I 3a)、 (I 3b)または(I 3c)で表される基を表し;
Pはそれぞれ独立して水素原子、炭素数 1〜; 10のアルキル基、炭素数 1〜; 10のァ ルコキシ基、またはニトロ基を表し;
a、 bおよび cが 0〜3の整数を表し、 dが 1〜3の整数を表し、 mが 0〜4の整数を表し 、ここで a + b + c + d+m= 6であり、かつ a、 bおよび cが同時に 0になることはなく; jが 0または 1の整数、 kおよび 1が 0〜; 10の整数をそれぞれ表す。
[0024] [化 17] o
-Y21+O-C-Y22 (ト 1) 前記一般式 (I 1)中の、 Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
21 22
Υ は前記一般式 (I)中のアタリロイル基の
21 οと結合し、
ηは 1〜; 10の整数を表す。
[0025] [化 18]
ο ο
— C-Y31-C - O- Y32 · - (Ι-2) 前記一般式(I 2)中の、
Υ および Υ はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
31 32
Υ は前記一般式 (I)中のアタリロイル基の
32 οと結合する。
[0026] [化 19]
(卜 3a)
Figure imgf000014_0001
前記一般式(I 3a)中の、
R および R はそれぞれ独立して炭素数 1 4のアルキル基、炭素数
41 42
コキシ基またはニトロ基を表し、
Zは単結合、 O 基、 S 基、 SO—基、 C (R ) (R )一基、または下記
2 43 44
の一般式 (tl)で示される基を表し、ここで R および R はそれぞれ独立して水素原
43 44
子、炭素数 1 4のアルキル基またはフエ二ル基を表し、
rおよび sはそれぞれ独立して 0 4の整数を表す。
[化 20]
Figure imgf000014_0002
[0028] [化 21] • · · (匪— 3b)
Figure imgf000015_0001
前記一般式 (I 3b)中の、
R 、R 、R 、および R はそれぞれ独立して水素原子、炭素数 1〜4のアルキル
51 52 53 54
基、炭素数 1〜4のアルコキシ基またはニトロ基を表す。
[0029] [化 22]
Figure imgf000015_0002
前記一般式 U— 3c)中の、
R および R はそれぞれ独立して水素原子または炭素数 1〜4のアルキル基を表
61 62
す。
[0030] 式(I)で表される化合物は、(i)ベンゼンジカルボン酸無水物またはベンゼンテトラ カルボン酸無水物に、(ii)ヒドロキシル基含有(メタ)アタリレートを反応させて、カルボ ン酸エステル基とカルボキシル基とを生成させ、(iii)前記反応により生成したカルボ キシル基に多価グリシジルエーテルを結合させることによって合成可能である。
[0031] 前記(i)ベンゼンジカルボン酸無水物、ベンゼンテトラカルボン酸二無水物、または ベンゼントリカルボン酸無水物の例には、無水フタル酸、ドデセニル無水フタル酸、 オタテュル無水フタル酸、 1 , 2, 4, 5 ベンゼンテトラカルボン酸二無水物が含まれ る。これらの化合物は、単独で、あるいは複数種を組み合わせて用いてもよい。
[0032] 前記(ii)ヒドロキシル基含有(メタ)アタリレートの例には、ヒドロキシアルキル(炭素数
2〜6) (メタ)アタリレート、ポリアルキレン(炭素数 2〜6)ダリコールモノ(メタ)アタリレ ート、グリセローノレモノ(メタ)アタリレート、グリセローノレジアタリレート、グリセローノレァ タリレートメタアタリレート、ペンタエリスリトールトリ(メタ)アタリレート、シクロへキサンジ メタノールモノ (メタ)アタリレート;またはこれらのラタトン (炭素数 4〜8)変性またはァ ルキレン (炭素数 2〜6)オキサイド変性化合物が含まれる。これらの化合物は、単独 で、あるいは複数種を組み合わせて用いてもょレ、。
[0033] 前記(iii)多価グリシジルエーテルの例には、フエノールノポラック型のグリシジルェ 一テル、ビフエニルノポラック型のグリシジルエーテル、クレゾールノポラック型のグリ シジルエーテル、ビスフエノーノレ A型のグリシジルエーテル、ビスフエノーノレ AD型の グリシジルエーテル、ビスフエノーノレ F型のグリシジノレエーテノレ、ジフエニノレエーテノレ 型のグリシジルエーテル、スルフイド型のグリシジルエーテル、ォキシスルフイド型の グリシジルエーテル、フルオレン型のグリシジルエーテル、ァダマンチル型のグリシジ ノレエーテノレ、レゾノレシン型のグリシジノレエーテノレ、力テコーノレ型のグリシジノレエーテ ル、ハイドロキノン型のグリシジルエーテルが含まれる。これらの化合物は、単独で、 あるいは複数種を組み合わせて用いてもょレ、。
[0034] 前記一般式 (I)で表される化合物は、分子内にアタリロイル基またはメタクリロイル基 、およびグリシジル基を含むことを必須とする。
[0035] ベンゼンジカルボン酸無水物またはベンゼンテトラカルボン酸無水物と、ヒドロキシ ル基含有 (メタ)アタリレートとの反応物に、多価グリシジルエーテルを結合させる反応 では、反応を促進させる観点から、反応温度を 40〜180°Cの範囲内の略一定とする ことが好ましぐ 50〜; 130°Cとすることがより好ましい。上記の反応温度は、第一の(a )成分の各種原料を混ぜ合わせた反応混合物内の温度を意味する。反応混合物内 の温度は、温度計などを用いることにより容易に測定できる。
[0036] 多価グリシジルエーテルを結合させる反応では、反応促進の観点から触媒を用い ることが好ましい。ここで用いられる触媒の好ましい例には、有機ホスフィン化合物、 3 級ァミン類化合物、第 4級アンモユウム塩類化合物、有機リン塩類化合物、イミダゾー ル類化合物、有機金属化合物が含まれる。
[0037] 前記有機ホスフィン化合物の例には、トリフエニルフォスフィンが含まれる。前記 3級 アミン類化合物の例には、トリェチルァミン、トリエタノールァミンが含まれる。前記第 4 級アンモニゥム塩類化合物の例には、トリメチルアンモニゥムクロライド、トリェチルベ ンジルアンモニゥムクロライドが含まれる。前記有機リン塩類化合物の例には、テトラ ブチルホスホニゥムブロマイド、テトラフェニルホスホニゥムブロマイドが含まれる。前 記イミダゾール類化合物の例には、 2-メチルイミダゾールが含まれる。また、前記有 機金属化合物の例には、オタテン酸コバルトが含まれる。
[0038] 前記触媒の使用量は、反応を促進させるのに十分な量であることが好ましい。具体 的には、触媒の使用量を反応混合物の全質量に対して 0. 0;!〜 5. 0質量%とするこ とが好ましい。
[0039] 前記反応混合物には、必要に応じて重合禁止剤を入れてもよい。重合禁止剤とは 、反応混合物中の重合反応の進行を抑制し、あるいは停止させる化合物を意味する 。重合禁止剤は特に限定されず、公知の化合物を適宜選択し、使用すればよい。重 合禁止剤の好ましい例には、ヒドロキノン、メチルハイドロキノン、ヒドロキノンモノメチ ノレエーテル、フエノチアジン、 p— t—ブチルカテコーノレ、 p—べンゾキノン、およびナ フトキノンが含まれる。これらの化合物は、単独で、あるいは複数種を組み合わせて 用いてもよい。
[0040] また、反応混合物には有機溶媒を添加してもよ!/、。好まし!/、有機溶媒の例には、ト ルェン、キシレンなどの芳香族系溶媒;シクロへキサノンなどのケトン系溶媒;プロピレ ングリコールモノメチルエーテルなどのグリコール系溶媒が含まれる力 S、特に限定さ れない。これらの有機溶媒は、単独で、あるいは複数種を組み合わせて用いてもよい
[0041] [第二の(a)成分]
本発明の ω成分の好ましい例には、前記第一の ω成分のほかに、 G)分子内に
3または 4個のグリシジル基を有するエポキシ化合物と、 (ii)カルボキシル基を有する
(メタ)アクリル酸誘導体とを反応させて得られる (メタ)アタリロイル基、およびグリシジ ル基を有する化合物(「第二の(a)成分」とも!/、う)が含まれる。
[0042] 本発明の第二の(a)成分を製造する方法は特に限定されず、例えば、(i)成分中の グリシジル基のうち 1または 2つのグリシジル基と(ii)成分中のカルボキシル基とを反 応させる方法が挙げられる。
[0043] 第二の(a)成分の原料として使用される前記 (i)成分は、分子内に 3または 4個のグ リシジル基を有する化合物であればよく特に限定されな!/、が、液晶シール剤の原料 として好まし!/、 (a)成分を得るためには、(i)成分の分子量力 00〜800である化合 物が好ましい。このような分子量を持つ(i)成分として好ましい例には、下記一般式 (i 1)、 (i 2)、 (i 3)または (i 4)で表される化合物が含まれる
[化 23]
Figure imgf000018_0001
前記一般式 (i 1)中の R は水素原子または炭素数 1〜; 10のアルキル基を表す。
71
[0045] [化 24]
Figure imgf000018_0002
前記一般式 (i 2)中の R は水素原子または炭素数 1〜; 10のアルキル基を表す。
71
[0046] [化 25]
Figure imgf000019_0001
Figure imgf000019_0002
前記一般式(i 4)中の、
R は水素原子または炭素数 1〜; 10のアルキル基を表し、
81
R は水素原子またはメチル基を表す。
82
[0048] 前記 R および前記 R で表される炭素数;!〜 10のアルキル基の例には、水素原子
71 81
、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 S ブ チル基、 t ブチル基、ペンチル基、イソペンチル基、 t ペンチル基、へキシル基、 ヘプチル基、ォクチル基、 2—ェチルへキシル基、ノエル基、およびデシル基が含ま れる。中でも、水素原子、メチル基、ェチル基であることが好ましぐ水素原子であるこ とがより好ましい。
[0049] 前記一般式 (i 1)で表される 3官能エポキシ化合物や、前記一般式 (i 2)で表さ れる 4官能エポキシ化合物は、市販品、または合成品のどちらでもよい。かかるェポ キシ化合物を合成する場合、その合成方法は特に限定されない。これらの化合物を 合成する場合、例えば、フエノール誘導体とホルマリンとの縮合反応により得られるノ ポラック型化合物の 3核体または 4核体に、ェピハロヒドリンを、公知のエポキシ化反 応に従って反応させることにより合成することができる。また、上記公知のエポキシ化 反応の例には、工業原料として入手可能な既存のエポキシ化合物の工業的製造方 法として知られている方法が含まれる。
[0050] さらに、前記一般式 (i 3)および一般式 (i 4)で表される化合物も特に限定され ず、市販品、あるいは合成品のどちらでもよい。
[0051] 本発明の(ii)成分は、前記(a)成分の高分子量化、および前記(a)成分を液晶シー ノレ剤の原料とした場合に、その液晶シール剤の反応性の高さと粘度安定性の高さと を両立させる観点から、アクリル酸、メタクリル酸、下記一般式 (ii 1)、または一般式 (ii 2)で表される化合物であることが好まし!/、。
[0052] [化 27]
Figure imgf000020_0001
前記一般式 (ii 1)中の、
R は水素原子またはメチル基を表し、
91
X は炭素数 1〜; 10のアルキレン基または下記の一般式 (t2)で表される基を表し、
41
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表す。
42
前記一般式(ii 1)中の X として好ましい炭素数 1〜; 10のアルキレン基の例には、
41
メチレン基、エチレン基、メチルエチレン基、トリメチレン基、テトラメチレン基、ペンタメ チレン基、シクロペンチレン基、へキサメチレン基、シクロへキシレン基、ヘプタメチレ ン基、オタタメチレン基、ノナメチレン基、およびデカメチレン基が含まれる。中でも、
X は、炭素数 2〜6のアルキレン基、または前記一般式 (t2)で表される基であること
41
が好ましい。 [0054] 前記一般式(ii 1)中の X として好ましい炭素数 1〜20のアルキレン基の例には、
42
メチレン基、エチレン基、メチルエチレン基、トリメチレン基、テトラメチレン基、ペンタメ チレン基、シクロペンチレン基、へキサメチレン基、シクロへキシレン基、ヘプタメチレ ン基、オタタメチレン基、ノナメチレン基、デカメチレン基、ノナメチレン基、ドデカメチ レン基、ペンタデカメチレン基、へキサデカメチレン基、およびォクタデカメチレン基 が含まれる。
[0055] 前記一般式(ii 1)中の X として好ましい炭素数 2〜6のァルケ二レン基の例には
42
、—CH = CH 基、—CH = CH— CH —基、—CH = CH— CH—CH —基、
2 2 2
CH -CH = CH-CH—基が含まれる。中でも、 X としては、メチレン基、エチレン
2 2 42
基、トリメチレン基、テトラメチレン基、ペンタメチレン基、へキサメチレン基などの炭素 数 1〜6のアルキレン基、および CH = CH 基が好ましぐメチレン基、エチレン基 、トリメチレン基、テトラメチレン基などの炭素数 1〜4のアルキレン基、 CH = CH— 基であることがより好ましい。
[0056] [化 28]
Figure imgf000021_0001
前記一般式 (t2)中の、
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
51 52
Y は前記一般式 (ii 1)中のアタリロイル基の oと結合し、
51
nは 1〜10の整数を表す。
[0057] 前記一般式(t2)中の Y および Y として好ましい炭素数 1〜10のアルキレン基の
51 52
例には、メチレン基、エチレン基、メチルエチレン基、トリメチレン基、テトラメチレン基 、ペンタメチレン基、シクロペンチレン基、へキサメチレン基、シクロへキシレン基、へ プタメチレン基、オタタメチレン基、ノナメチレン基、およびデカメチレン基が含まれる 。中でも炭素数 2〜6のアルキレン基が好ましい。また、前記一般式 (t2)中の nは 1〜 10の整数を表すが、より好ましくは;!〜 6の整数である。
[0058] [化 29]
Figure imgf000022_0001
前記一般式(ii 2)中の、
R および R はそれぞれ独立して水素原子またはメチル基を表し、
92 93
X は下記の一般式 (t3)で表される基を表し、 X は炭素数 1〜; 10のアルキレン基
61 62
を表し、
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
63
iおよび jはそれぞれ独立して 0または 1の整数を表す。
[0059] [化 30]
Figure imgf000022_0002
前記一般式 (t3)中の、
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
71 72
CO基は前記一般式 (ii 2)中のアタリロイル基の Oと結合する。
[0060] 前記一般式(ii 2)中の R および R として好ましい炭素数 1〜10のアルキレン基
61 62
の例には、メチレン基、エチレン基、メチルエチレン基、トリメチレン基、テトラメチレン 基、ペンタメチレン基、シクロペンチレン基、へキサメチレン基、シクロへキシレン基、 ヘプタメチレン基、オタタメチレン基、ノナメチレン基、およびデカメチレン基が含まれ
[0061] 前記一般式(ii 2)中の X として好ましい炭素数 1〜20のアルキレン基の例には、
63
メチレン基、エチレン基、メチルエチレン基、トリメチレン基、テトラメチレン基、ペンタメ チレン基、シクロペンチレン基、へキサメチレン基、シクロへキシレン基、ヘプタメチレ ン基、オタタメチレン基、ノナメチレン基、デカメチレン基、ノナメチレン基、ドデカメチ レン基、ペンタデカメチレン基、へキサデカメチレン基、およびォクタデカメチレン基 が含まれる。 [0062] 前記一般式(ii 2)中の X として好ましい炭素数 2〜6のァルケ二レン基の例には
63
、— CH = CH 基、 CH = CH— CH —基、 CH = CH— CH — CH —基、お
2 2 2 よび CH - CH = CH - CH一基が含まれる。また、 X は、メチレン基、エチレン
2 2 53
基、トリメチレン基、テトラメチレン基、ペンタメチレン基、へキサメチレン基などの炭素 数 1〜6のアルキレン基、 CH = CH 基であることが好ましぐメチレン基、ェチレ ン基、トリメチレン基、テトラメチレン基などの炭素数 1〜4のアルキレン基、 CH = C H 基であることがより好ましい。
[0063] 前記一般式(t3)中の Y および Y は、上記 X に該当する。 Y および Y として
71 72 61 71 72 好ましいアルキレン基の例には、メチレン基、エチレン基、メチルエチレン基、トリメチ レン基、テトラメチレン基、ペンタメチレン基、シクロペンチレン基、へキサメチレン基、 シクロへキシレン基、ヘプタメチレン基、オタタメチレン基、ノナメチレン基、およびデ カメチレン基が含まれる。中でも、アルキレン基としては、炭素数 2〜6のアルキレン基 であることがより好ましい。
[0064] [一般式 (ii 1 )で表される化合物の製造方法]
前記一般式 (ii 1 )で表される化合物は、工業的に製造されている場合もあるが、 後述するようなスキーム 1〜3で示される「ヒドロキシ基を有する (メタ)アクリル酸誘導 体」と、「2個のカルボキシル基を有する化合物」とのエステル化反応により容易に製 造することもできる。ここで、前記カルボキシル基の例には、酸ハライド基や酸無水物 基のようなカルボキシル基となり得る前駆体も含まれる。
[0065] [スキーム 1 ]
下記スキーム 1の反応は、 2個のカルボキシル基を有する一般式(ii l a)で表され る化合物と、ヒドロキシ基を有する一般式 (ii lb)で表される化合物との部分エステ ル化反応である。部分エステル化反応とは、分子内に複数個のカルボキシル基を有 する化合物のカルボキシル基の一部分のみを、ヒドロキシ基を有する化合物でエステ ル化させる反応を意味する。
[0066] [化 31] O
O— X4i— OH O 0
龍 纏 R" '"(iMb) > y o- «個
- .•(ii-1a) R " - (iM)
スキーム 1 前記スキーム 1中の、
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
42
X は炭素数 1〜; 10のアルキレン基または前記一般式 (t2)で表される基を表し、
41
R は水素原子またはメチル基を表す。
91
[0067] スキーム 1の反応において、前記一般式(ii la)で表される化合物と、前記一般式
(ii- lb)で表される化合物との量比は特に限定されな!/、が、最終目的物である一般 式 (ii 1)の化合物中にカルボキシル基を残す必要があるために、ヒドロキシル基の 使用量をカルボキシル基の全量よりも少なくすることが好ましい。具体的には、前記 一般式 (ii la)で表される化合物の物質量を Mlとし、前記一般式 (ii lb)で表さ れる化合物の物質量を M2とするとき、 Ml/M2 = lであることが好ましい。
[0068] スキーム 1の反応において、ヒドロキシ基の使用量をカルボキシル基の全量よりも多 くすると、スキーム 1にかかる反応混合物中でエステル化反応が過度に促進されるた めに、最終目的物中にカルボキシル基を部分的に残すことが困難となる。この場合、 最終目的物中に 1個のカルボキシル基が残るように反応途中でエステル化反応を停 止させることが必要となる力 所望とする反応率の段階で反応を停止させることは容 易ではないため、各有機基の使用量を適宜調整することが好ましい。
[0069] 前記反応率は、公知の分析手段によって把握することができる。反応率を測定する 分析手段の好ましい例には、液体クロマトグラフィ、薄層クロマトグラフィ、および IR分 析装置が含まれる。また、スキーム 1では、最終目的物である一般式 (ii 1)で表され る化合物をより的確に、かつ精製収率を高くして製造するために、適宜反応率を測定 しながらエステル化反応を進めることが好ましレ、。
[0070] スキーム 1の部分エステル化反応では、反応を促進させる観点から、エステル化触 媒を用いてもよい。エステル化触媒とは、カルボン酸とアルコールとのエステル化反 応を活性化させる触媒を意味する。このようなエステル化触媒の好ましい例には、鉱 酸、有機酸、およびルイス酸が含まれるが特に限定されず、エステル化触媒として公 知の化合物を用いればよい。前記鉱酸の例には塩酸や硫酸が含まれる。有機酸の 例には、メタンスルホン酸、ベンゼンスルホン酸、 p—トルエンスルホン酸が含まれる。 また、前記ルイス酸の例には、三フッ化ホウ素、および三塩化アルミニウムが含まれる
[0071] 上記エステル化触媒の使用量は、力、かる部分エステル化反応を促進させるために 十分な量であることが好ましい。部分エステル化反応を促進させる観点から、エステ ル化触媒の使用量は、反応混合物の全質量に対して 0. 00;!〜 50質量%とすること が好ましぐ 0. 0;!〜 30質量%とすることがより好ましい。
[0072] また、前記部分エステル化反応では、反応時に水が生成する。このとき、かかる反 応を促進させるためには、反応混合物中から副生成物である水を取り除くことが好ま しい。反応混合物中から水を取り除く方法は特に限定されないが、例えば、ベンゼン やトルエンのように沸点が水と同じ程度である溶媒を用いて、この溶媒とともに水を共 沸させる方法や、モレキュラーシーブスなどの脱水剤を用いる方法が含まれる。
[0073] スキーム 1の反応は、無溶媒中、あるいは力、かる反応に対して不活性な溶媒中で行 なってもよい。スキーム 1で好ましく用いられる溶媒の例には、炭化水素系溶媒、ケト ン系溶媒、エステル系溶媒、エーテル系溶媒、およびハロゲン系溶媒が含まれるが 特に限定されない。
[0074] 前記炭化水素系溶媒の例には、 n—へキサン、ベンゼン、またはトルエンが含まれ る。前記ケトン系溶媒の例には、アセトン、メチルェチルケトン、またはメチルイソブチ ルケトンが含まれる。前記エステル系溶媒の例には、酢酸ェチルまたは酢酸ブチル が含まれる。前記エーテル系溶媒の例には、ジェチルエーテル、テトラヒドロフランま たはジォキサンが含まれる。また、前記ハロゲン系溶媒の例には、ジクロロメタン、クロ 口ホルム、四塩化炭素、 1 , 2—ジクロロェタンまたはパークレンが含まれる。これらの 溶媒は、単独で、あるいは複数種を組み合わせて使用してもよい。
[0075] スキーム 1の反応温度は、特に限定されないが、短時間で効率よくかつ十分に前記 部分エステル化反応を進める観点から、 50〜150°Cの範囲内で略一定とすることが 好ましぐ 70〜; 120°Cとすることがより好ましい。 [0076] スキーム 1の反応時間は、反応温度や、前記一般式 (ii la)で表される化合物、前 記一般式 (ii lb)で表される化合物、あるいは反応溶媒などの種類や組み合わせ、 使用量に応じて適宜設定すればよぐ特に限定されない。かかる部分エステル化反 応の進行具合などを考慮すると、数分〜 100時間の範囲内とすることが好ましぐ 0. 5〜50時間とすることがより好ましぐ;!〜 20時間とすることが特に好ましい。
[0077] [スキーム 2]
下記に示すとおり、スキーム 2の反応は、 2個の酸ハライド基を有する一般式 (ii 1 c)で表される化合物と、ヒドロキシ基を有する一般式 (ii lb)で表される化合物との 部分エステル化反応、および反応混合物中に残存している酸ハライド基を加水分解 させて最終目的物である一般式 (ii 1)の化合物を生成させる二段階反応である。
[0078] [化 32]
LOC-X«-COL 嫩 0-X ,-O-C-X i-C0OH
Figure imgf000026_0001
- (ίΜ )
スキーム 2 スキーム 2中の、
X は炭素数 1〜; 10のアルキレン基または前記一般式 (t2)で表される基を表し、
41
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
42
R は水素原子またはメチル基を表し、
91
COLは酸ハライド基を表しており、この中で Lはハロゲン(Cほたは Br)を表す。
[0079] スキーム 2では、最終目的物中にカルボキシル基を残す必要がある。そのために、 スキーム 2の一段階反応である前記部分エステル化反応において、ヒドロキシ基の量 を酸ハライド基の全量よりも少なくすることが好ましい。ここで、ヒドロキシ量を酸ハライ ド基の全量よりも多くすると、所望とする反応率の段階で反応を停止させる必要があ る。ただし、所望とする反応率で精確に反応を停止させることは困難であるから好まし くない。
[0080] 前記反応率は、公知の分析手段を用いて測定可能である。スキーム 2を進めている 間に反応率を適宜測定すると、所望の反応率の段階で反応を停止または進行させる ことが可能となる。力、かる分析手段の例には、液体クロマトグラフィ、薄層クロマトダラ フィ、または IR分析装置が含まれる。
[0081] 前記部分エステル化反応は、無溶媒中、あるいはかかる反応に対して不活性な溶 媒中で行なってもよい。このような溶媒の例には、炭化水素系溶媒、ケトン系溶媒、ェ ステル系溶媒、エーテル系溶媒、ハロゲン系溶媒が含まれる。
[0082] 前記炭化水素系溶媒の例には、 n—へキサン、ベンゼンまたはトルエンが含まれる 。前記ケトン系溶媒の例には、アセトン、メチルェチルケトンまたはメチルイソブチルケ トンが含まれる。前記エステル系溶媒の例には、酢酸ェチル、または酢酸ブチルが含 まれる。前記エーテル系溶媒の例には、ジェチルエーテル、テトラヒドロフランまたは ジォキサンが含まれる。また、前記ハロゲン系溶媒の例には、ジクロロメタン、クロロホ ルム、四塩化炭素、 1 , 2—ジクロロェタン、またはパークレンが含まれる。これらの溶 媒は、単独で、あるいは複数種を組み合わせて用いてもよい。
[0083] 前記部分エステル化反応では、酸ハロゲン基とヒドロキシ基との反応によって副生 成物としてハロゲン化水素(例えば、塩化水素など)が生成する。このようなハロゲン 化水素は、反応生成物の特性を低下させるおそれがあるために、反応混合物中から できる限り取り除くことが好ましい。ハロゲン化水素を取り除く方法は特に限定されず 、公知の方法を用いればよいが、取り扱いが容易であるなどの特徴から、脱ハロゲン 化水素剤が有用である。
[0084] 脱ハロゲン化水素剤の好ましい例には、有機塩基化合物、あるいは無機塩基化合 物が含まれる。前記有機塩基化合物の例には、トリェチルァミン、ピリジン、ピコリン、 ジメチルァニリン、ジェチルァニリン、 1 , 4ージァザビシクロ [2· 2. 2]オクタン(DAB CO)、および 1 , 8—ジァザビシクロ [5· 4. 0]ゥンデカー 7—ェン(DBU)が含まれる 。また、無機塩基化合物の例には、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム 、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、および酸化マ グネシゥムが含まれる。これらの化合物は、単独で、あるいは複数種を組み合わせて 用いてもよい。
[0085] 前記脱ハロゲン化水素剤の使用量は特に限定されず、反応混合物中に生成した ノ、ロゲン化水素を取り除くのに十分な量であることが好ましい。このような観点から、 脱ハロゲン化水素剤の使用量は、ヒドロキシ基 1モルに対して 0. ;!〜 10モルであるこ と力 S好ましく、 0. 5〜5モルであることがより好ましぐ;!〜 3モルであることが特に好ま しい。
[0086] スキーム 2におレ、て二段階目の反応である加水分解反応は、一段階目の部分エス テル化反応終了時に得られる反応混合物中に水を加えることで行われる。部分エス テル化反応が終了した後の反応混合物中に水を加える方法は、特に限定されず、水 を一括で加えてもよいし、あるいは滴下してもよい。中でも、反応を徐々に進行させる 観点から、滴下による後者の方法が好ましい。
[0087] 前記加水分解反応における水の使用量は、加水分解反応を促進させる観点から、 反応混合物中に残存する酸ノヽライド基 1モルに対して 1〜; 100モルであることが好ま しぐ 5〜50モルであることがより好ましい。
[0088] 前記加水分解反応は、水を滴下する際に公知の分析手段によって反応混合物中 の反応率を確認し、所望とする反応率で水の滴下を続行、または停止させることによ り、反応を進行させ、または停止させることができる。分析手段の例には、液体クロマ トグラフィ、薄層クロマトグラフィ、および IR分析装置が含まれる。
[0089] また、前記加水分解反応では、残存する酸ハロゲン化物と添加する水との反応によ つて副生成物としてハロゲン化水素(例えば、塩化水素など)が生成する力 ハロゲン 化水素は反応生成物の特性を低下させるおそれがある。そのために、反応混合物中 に生成したハロゲン化水素はできる限り取り除くことが好ましい。ハロゲン化水素を取 り除く方法は特に限定されないが、作業性や入手が容易であるなどの観点から、脱 ノ、ロゲン化水素剤が好ましく用いられる。
[0090] 前記脱ハロゲン化水素剤の例には、有機塩基化合物、あるいは無機塩基化合物が 含まれる。具体的に、前記有機塩基化合物の例には、トリェチルァミン、ピリジン、ピ コリン、ジメチルァニリン、ジェチルァニリン、 1 , 4ージァザビシクロ [2· 2. 2]オクタン (DABCO)、 1 , 8—ジァザビシクロ [5· 4. 0]ゥンデ力一 7—ェン(DBU)が含まれる 。一方で、前記無機塩基化合物の例には、炭酸水素ナトリウム、炭酸ナトリウム、炭酸 カリウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、酸化 マグネシウムが含まれる。これらの化合物は、単独で、あるいは複数種を組み合わせ て用いてもよい。
[0091] 前記脱ハロゲン化水素剤の使用量は特に限定されず、反応混合物中に存在する ハロゲン化水素を十分に取り除くことができる量とすることが好ましい。このような観点 から、脱ハロゲン化水素剤の使用量は、残存する酸ハライド基 1モルに対して 0. 5〜 10モルとすることが好ましぐ;!〜 5モルとすることがより好ましい。
[0092] スキーム 2において、前記部分エステル化反応および加水分解反応時の反応温度 は特に限定されないが、部分エステル化反応を促進させる観点から、 78〜150°C の範囲内で略一定とすることが好ましぐ 20〜100°Cとすることがより好ましぐ 0〜 80°Cとすることが特に好まし!/、。
[0093] 前記部分エステル化反応において反応時間は、反応温度や、使用する溶媒の種 類やその組み合わせ、一般式 (ii lb)で表される化合物および一般式 (ii lc)で 表される化合物の使用量などに応じて適宜設定すればよぐ特に限定されない。か 力、る反応を促進させる観点から、通常は数分〜 100時間とすることが好ましぐ 30分 〜50時間であることがより好ましい。このとき、反応時間を 1〜20時間とすると、生産 性を低下させることなくかかる反応を促進させることができるので特に好ましい。
[0094] [スキーム 3]
下記に示すとおり、スキーム 3の反応は、酸無水物基を有する一般式 (ii le)で表 される化合物と、ヒドロキシ基を有する一般式 (ii lb)で表される化合物との開環ェ ステル化反応である。スキーム 3の反応は、開環エステル化反応によってカルボキシ ル基が残存した前記一般式 (ii 1)で表される化合物が得られやす!/、。そのために、 スキーム;!〜 3の中では、前記一般式 (ii 1)で表される化合物の製造方法としてもつ とも好ましい。
[0095]
Figure imgf000029_0001
スキーム 3 スキーム 3中の、
X は炭素数 1〜; 10のアルキレン基または前記一般式 (t2)で表される基を表し、
41
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
42
R は水素原子またはメチル基を表す。
91
[0096] 前記開環エステル化反応において、酸無水物基とヒドロキシ基との配合比は特に 限定されないが、力、かる開環エステル化反応を促進させる観点から、ヒドロキシ基の 使用量を、酸無水物基 1モルに対して 0.;!〜 10モルとすること力 S好ましく、 0. 5〜5 モノレとすること力 り好ましく、 0· 8〜3モルとすることが特に好ましい。
[0097] 前記開環エステル化反応は、無溶媒中で、あるいは反応に対して不活性な溶媒中 で行なってもよい。このような溶媒の例には、炭化水素系溶媒、ケトン系溶媒、エステ ル系溶媒、エーテル系溶媒、ハロゲン系溶媒、極性溶媒が含まれるが特に限定され ない。
[0098] 前記炭化水素系溶媒の例には、 n—へキサン、ベンゼン、トルエンまたはキシレン が含まれる。前記ケトン系溶媒の例には、アセトン、メチルェチルケトンまたはメチルイ ソブチルケトンが含まれる。前記エステル系溶媒の例には、酢酸ェチルまたは酢酸ブ チルが含まれる。前記エーテル系溶媒の例には、ジェチルエーテル、テトラヒドロフラ ンまたはジォキサンが含まれる。前記ハロゲン系溶媒の例には、ジクロロメタン、クロ口 ホルム、四塩化炭素、 1 , 2—ジクロロェタンまたはパークレンが含まれる。また、前記 極性溶媒の例には、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N, N—ジメチルイミダゾリジノン、ジメチルスルホキシド、およびスルホランが含まれる。こ れらの溶媒は、単独で、あるいは複数種を組み合わせて用いてもよい。
[0099] 前記開環エステル化反応では、必要に応じてかかる反応を活性化させる触媒を用 いてもよい。このような触媒の例には、有機ホスフィン化合物、 3級ァミン類化合物、第 4級アンモニゥム塩類化合物、有機リン塩類化合物、イミダゾール類化合物、有機金 属化合物類が含まれる。
[0100] 前記有機ホスフィン化合物の例には、トリフエニルフォスフィンが含まれる。前記 3級 アミン類化合物の例には、トリェチルァミン、トリエタノールァミンが含まれる。前記第 4 級アンモニゥム塩類化合物の例には、トリメチルアンモニゥムクロライド、トリェチルベ ンジルアンモニゥムクロライドが含まれる。前記有機リン塩類化合物の例には、テトラ ブチルホスホニゥムブロマイド、テトラフェニルホスホニゥムブロマイドが含まれる。前 記イミダゾール類化合物の例には、 2—メチルイミダゾールが含まれる。また、前記有 機金属化合物の例には、オタテン酸コバルトが含まれる。これらの化合物は、単独で 、あるいは複数種を組み合わせて用いてもよい。
[0101] 前記触媒の使用量は、反応に際して十分な反応速度を得る観点から、反応混合物 の質量に対して 0. 01-10. 0質量%の範囲内とすることが好ましぐ 0. 01-5. 0質 量%とすることがより好ましい。
[0102] 前記開環エステル化反応において反応温度は、特に限定されず、かかる反応を効 率よくかつ効果的に進行させる観点から、 0°C〜200°Cの範囲内で略一定とすること が好ましぐ 0〜; 150°Cとすることがより好ましい。
[0103] 前記開環エステル化反応において反応時間は、反応温度や一般式 (ii lb)で表 される化合物、一般式 (ii le)で表される化合物などの使用量、あるいは溶媒の種 類や組み合わせなどに応じて適宜設定すればよく特に限定されな!/、。かかる反応を 効率よくかつ効果的に進行させる観点から、数分〜数 10時間とすることが好ましい。
[0104] また、スキーム 3では、公知の分析手段によって反応率を確認しながら、任意の反 応率で反応を進行させ、または停止させてもよい。力、かる分析手段の例には、液体ク 口マトグラフィ、薄層クロマトグラフィ、および IR分析装置が含まれる。
[0105] [一般式 (ii 2)で表される化合物]
次に、前記一般式 (ii 2)で表される化合物について説明する。前記一般式 (ii 2 )であらわされる化合物は、上記スキーム;!〜 3で用いられる一般式 (ii lb)で表され る化合物を、下記の一般式 (ii— 2a)で表されるヒドロキシ基を有する (メタ)アタリロイル 誘導体へと代替することによって製造される。
[0106]
Figure imgf000031_0001
前記一般式(ii 2a)中の、
R および R はそれぞれ独立して水素原子またはメチル基を表し、
92 93
X は前記一般式 (t3)で表される基を表し、 X は炭素数 1〜; 10のアルキレン基を
61 62
表し、
iおよび jはそれぞれ独立して 0または 1の整数を表す。
[0107] [スキーム 4]
前記一般式 (ii 2a)で表される化合物は、下記のスキーム 4に従って製造される。
[0108] [化 35]
Figure imgf000032_0001
スキ一ム 4
スキーム 4において、
R および R はそれぞれ独立して水素原子またはメチル基を表し、
92 93
X は前記一般式 (t3)で表される基を表し、 X は炭素数 1〜; 10のアルキレン基を
61 62
表し、
iおよび jはそれぞれ独立して 0または 1の整数を表す。
[0109] 上記スキーム 4の反応は、グリシジルエーテル基を有する前記一般式 (ii 2b)で表 される化合物と、アルコール基を有する前記一般式 (ii 2c)で表される化合物との開 環エステル化反応により、ヒドロキシ基を有する前記一般式 (ii 2a)で表される (メタ) アタリロイル誘導体を合成する反応である。
[0110] スキーム 4の開環エステル化反応は、無溶媒中で、またはかかる反応に対して不活 性な溶媒中で行なってもよい。このような溶媒の例には、 n へキサン、ベンゼン、ト ルェンまたはキシレンなどの炭化水素系溶媒;アセトン、メチルェチルケトンまたはメ チルイソブチルケトンなどのケトン系溶媒;ジェチルエーテル、テトラヒドロフランまた はジォキサンなどのエステル系溶媒;ジクロロメタン、クロ口ホルム、四塩化炭素、 1 , 2 —ジクロロェタンまたはパークレンなどのハロゲン系溶媒; N, N ジメチルホルムアミ ド、 N, N ジメチルァセトアミド、 N, N ジメチルイミダゾリジノン、ジメチルスルホキ シド、およびスルホランなどの極性溶媒が含まれる。これらの溶媒は、単独で、あるい は複数種を組み合わせて用いてもょレ、。
[0111] 前記開環エステル化反応では、必要に応じて力、かる反応の活性化に作用する触媒 を用いてもよい。このような触媒の例には、トリフエニルフォスフィンなどの有機ホスフィ ン化合物;トリェチルァミントリエタノールァミンなどの 3級ァミン類;トリメチルアンモニ ゥムクロライド、トリェチルベンジルアンモニゥムクロライドなどの第 4級アンモニゥム塩 類;テトラブチルホスホニゥムブロマイド、テトラフェニルホスホニゥムブロマイドなどの 有機リン塩類; 2-メチルイミダゾールなどのイミダゾール類;オタテン酸コバルトなどの 有機金属化合物類が含まれる。これらの触媒は、単独で、あるいは複数種を組み合 わせて用いてもよい。
[0112] 前記触媒の使用量は、反応に際して十分な反応速度を得る観点から、スキーム 4に おける反応混合物の全質量に対して 0. 01〜; 10. 0質量%とすることが好ましぐ 0. 0;!〜 5. 0質量%とすることがより好ましい。本発明では、複数種の活性化溶媒を用 いる場合、それらの総使用量を前記触媒の使用量とみなす。
[0113] 前記開環エステル化反応における反応温度は、特に限定されず、かかる反応を進 行させるために十分な温度であればよい。前記反応温度は、 0〜200°Cの範囲で略 一定とすること力 S好ましく、 0〜 150°Cとすることがより好ましレ、。
[0114] 前記開環エステル化反応における反応時間は、反応温度や原料として用いられる 前記一般式 (ii 2b)で表される化合物、および一般式 (ii 2c)で表される化合物の 使用量、あるいは溶媒や触媒などの種類や組み合わせ、使用量などに応じて適宜設 定すればよぐ特に限定されない。力、かる反応を十分に進行させる観点から、通常は 数分〜数 10時間とすることが好ましい。
[0115] また、スキーム 4では、公知の分析手段によって反応率を確認しながら、任意の反 応率で反応を進行させ、または停止させてもよい。分析手段の例には、液体クロマト グラフィ、薄層クロマトグラフィ、および IR分析装置が含まれる。
[0116] [スキーム 5]
本発明の好ましい第二の(a)成分は、例えば、下記スキーム 5に示す反応により得 ること力 Sでさる。 36]
Figure imgf000034_0001
上記スキーム 5にお 、て、
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
42
X は炭素数 1〜 10のアルキレン基または上記一般式 (t2)で表される基を表し、
41
R は水素原子または炭素数 1〜 10のアルキル基を表し、
71
R は水素原子またはメチル基を表す。
91
スキーム 5の反応は、 3個のグリシジル基を有する前記一般式 (i 1)で表される化 合物と、カルボキシル基を有する前記一般式 (ii 1)で表される化合物とを原料とし、 逐次に開環エステル化反応させることによって、最終的に分子内にグリシジル基およ び (メタ)アタリロイル基を有しており一般式 (iii 2)で表される化合物を生成させる反 応(「逐次開環エステル化反応」ともレ、う)である。
[0119] 前記逐次開環エステル化反応では、先ず、前記一般式 (i 1)で表される化合物を 出発原料とし、この化合物が有する 1個のグリシジル基と、前記一般式 (ii 1)で表さ れる化合物中のカルボキシル基とが開環エステル化反応し、 2官能エポキシ樹脂で ある一般式 (iii— 1)の化合物が生成する。そして、さらに一般式 (iii— 1)で表される化 合物と、一般式 (ii 1)で表される化合物とが開環エステル化反応し、最終的に一般 式 (iii 2)で表される化合物が生成する。
[0120] 前記一般式 (iii 2)で表される化合物は、液晶に対する溶解度が低く抑える上で 好ましい高分子量体である。また分子内にグリシジル基を有しており、エポキシ硬化 剤に対する反応性が高いから、遮光エリアのような場所であっても高い硬化性を示す
[0121] 前記逐次開環エステル化反応において、グリシジル基とカルボキシル基との配合比 は、特に限定されないが、スキーム 5では反応途中の生成物である前記一般式 (iii 1)の化合物、および最終目的物である前記一般式 (iii 2)の化合物中にグリシジノレ 基を残すことが必要である。そのために、カルボキシル基の使用量をグリシジル基の 使用量よりも少なくすること力好ましい。具体的には、前記一般式 (ii 1)で表される 化合物の使用量を、前記一般式 (i 1)で表される化合物 1モルに対して;!〜 2. 8モ ノレとすること力《好ましく、 1. 3〜2. 5モノレとすることカより好ましい。
[0122] これに対して、スキーム 5において、カルボキシル基の使用量をグリシジル基の使用 量よりも多くすると、反応が促進されるために、一般式 (i 1)で表される化合物が有 する 3個のグリシジル基が全てのカルボキシル基と開環エステル化反応し、下記の一 般式 (iv)で表されるような化合物が生成する可能性が極めて高い。一般式 (iv)で表 される化合物は、高分子量体であるから液晶に対する溶解度は低く抑えられている 一方で、エポキシ硬化剤との反応性が高いグリシジル基を有していない。そのために 、力、かる化合物は硬化性の低さが懸念されるから、液晶シール剤の原料としては不 適である。
[0123] 一般式 (iii 1 )で表される化合物、および一般式 (iii 2)で表される化合物中に部 分的にグリシジル基を残すために、所望の反応率の段階で反応を停止させる必要が ある力 S、精確に所望の反応率で反応を停止させることは困難である。よって、スキー ム 5を行う際には、グリシジル基とカルボキシル基との配合比を上記のように調整して おくことが好ましい。
[0124] [化 37]
Figure imgf000036_0001
' '•(iv)
前記一般式 Uv)中の X は、
42
炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
X は炭素数 1〜; 10のアルキレン基または上記一般式 (t2)で表される基を表し、
41
R は水素原子またはメチル基を表す。
91
[0125] 前記反応率は、公知の分析手段によって確認することが可能である。前記分析手 段の例には、液体クロマトグラフィ、薄層クロマトグラフィ、および IR分析装置が含まれ
[0126] 前記逐次開環エステル化反応は、無溶媒中で、あるいはかかる反応に対して不活 性な溶媒中で行なってもよい。このような溶媒の例には、炭化水素系溶媒、ケトン系 溶媒、エステル系溶媒、エーテル系溶媒、ハロゲン系溶媒、極性溶媒が含まれる。
[0127] 前記炭化水素系溶媒の例には、 n へキサン、ベンゼン、トルエンまたはキシレン が含まれる。前記ケトン系溶媒の例には、アセトン、メチルェチルケトンまたはメチルイ ソブチルケトンが含まれる。前記エステル系溶媒の例には、酢酸ェチルまたは酢酸ブ チルが含まれる。前記エーテル系溶媒の例には、ジェチルエーテル、テトラヒドロフラ ン、またはジォキサンが含まれる。前記ハロゲン系溶媒の例には、ジクロロメタン、クロ 口ホルム、四塩化炭素、 1 , 2—ジクロロェタンまたはパークレンが含まれる。また、前 記極性溶媒の例には、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N , N—ジメチルイミダゾリジノン、ジメチルスルホキシド、およびスルホランが含まれる。 これらの溶媒は、単独で、あるいは複数種を組み合わせて用いてもよい。
[0128] 前記逐次開環エステル化反応では、必要に応じて力、かる反応の活性化に作用する 触媒を用いてもよい。このような触媒の例には、有機ホスフィン化合物、 3級ァミン類 化合物、第 4級アンモユウム塩類化合物、有機リン塩類化合物、イミダゾール類化合 物、有機金属化合物が含まれる。
[0129] 前記触媒のうち、前記有機ホスフィン化合物の例にはトリフエニルフォスフィンが含 まれる。前記 3級ァミン類化合物の例にはトリエチルァミン、トリエタノールァミンが含ま れる。前記第 4級アンモニゥム塩類化合物の例にはトリメチルアンモニゥムクロライド、 トリェチルベンジルアンモニゥムクロライドが含まれる。前記有機リン塩類化合物の例 にはテトラブチルホスホニゥムブロマイド、テトラフェニルホスホニゥムブロマイドが含ま れる。前記イミダゾール類化合物の例には、 2-メチルイミダゾールが含まれる。前記 有機金属化合物の例にはオタテン酸コバルトが含まれる。これらの化合物は、単独で 、あるいは複数種を組み合わせて用いてもよい。
[0130] 前記触媒の使用量は、反応に際して十分な反応速度を得る観点から、スキーム 5に おける反応混合物の全質量に対して 0. 01〜; 10. 0質量%とすることが好ましぐ 0. 01 -5. 0質量%とすることがより好ましい。
[0131] 前記逐次開環エステル化反応における反応温度は特に限定されず、かかる反応を 進行させるために十分な温度であればよいが、前記反応温度を 0〜200°Cの範囲内 で略一定とすることが好ましぐ 0〜; 150°Cとすることがより好ましい。
[0132] 前記逐次開環エステル化反応における反応時間は、反応温度や使用する化合物 の使用量、あるいは溶媒や触媒などの種類や組み合わ、使用量などに応じて適宜設 定すればよぐ特に限定されない。力、かる反応を促進させる観点から、数分から数 10 時間とすることが好ましい。
[0133] スキーム 5で示されるように逐次開環エステル化反応させることにより、分子内にダリ シジル基および (メタ)アタリロイル基を有するような化合物を製造する形態は、上記 に限定されるものではない。すなわち、出発原料である ω成分として、一般式 (i 1 ) のほかに、一般式 (i 2)、(i 3)または (i 4)を使用することができるし、また、一般 式(ii 1 )で表されるような前記(ii)成分としては、前記一般式(ii 1 )で表される化合 物のほかに、アクリル酸、メタクリル酸を使用することができる。これらの化合物は、適 宜選択し、組み合わせて用いればよい。
[0134] 本発明の(a)成分は、 Fedorsの理論溶解度パラメータ(SP値)が 10〜; 13 (cal/c m3) 1/2の範囲にあることが好ましい。溶解度パラメータ(SP値)の算出方法には、さま ざまな手法や計算方法が存在するが、本発明で用いられる理論溶解度パラメータは 、 Fedorsが考案した計算方法に基づくものが好ましい(日本接着学会誌、 vol. 22、 no. 10 (1986) (53) (566) (Journal of Adhesion Society of Japan)など参 照)。当該計算方法では、密度の値が不要であるために、溶解度パラメータが容易に 算出可能である。上記 Fedorsの理論溶解度パラメータ(SP値)は、以下の式で算出 される。
[0135] 國
S P値 = ( Σ Δ e 1 /Σ Δ V 1 ) 1 2
ただし、 ∑A e I = ( Δ Η - R T) 、 ∑ Δ v 1 =モル容量の和 ここで、溶解度パラメータ(SP値)が上記範囲内にあると、(a)成分の前記一般式 (i 1 )で表される化合物の液晶に対する溶解度が小さくなり、液晶を汚染する可能性 が低く抑えられるので、液晶表示パネルの表示性が高く良好となる。
[0136] 本発明の(a)成分を複数の化合物を原料として合成する場合、理論溶解度パラメ ータ(SP値)は、混合される各原料のモル分率の和に基づいて算出することができる 。ここで算出される理論溶解度パラメータは、上述の範囲内であることが好ましい。
[0137] 以下に、液晶シール剤の原料として上述した(a)成分と併用され得る成分について 説明する。
[0138] (b)熱潜在性硬化剤
本発明の熱潜在性硬化剤とは、エポキシ樹脂などの主剤と混合されていても、かか る樹脂を通常保存する状態(室温、可視光線下など)ではエポキシ基などの官能基と 反応しないが、熱や光によって官能基に対して反応活性を呈する硬化剤をいう。
[0139] このような熱潜在性硬化剤を液晶シール剤に含ませることにより、液晶シール剤の 粘度安定性が向上する。これにより、力、かる液晶シール剤の室温での粘度安定性が 良好に保持されるから、液晶シール剤をスクリーン印刷機ゃデイスペンサに充填し、 基板にシールパターンを描画する際に、長時間にわたって安定して用いることができ る。このように液晶シール剤の可使時間が長くなると、液晶表示パネルの製造にかか る生産性の向上が実現されうる。
[0140] 本発明の熱潜在性硬化剤としては、(a)成分中のエポキシ基および後述する(e)ェ ポキシ樹脂の硬化促進剤として作用する熱潜在性エポキシ硬化剤が好ましく用いら れる。熱潜在性エポキシ樹脂とは、官能基としてエポキシ基を備えており、熱潜在性 を有する化合物をいう。
[0141] 本発明の熱潜在性硬化剤としては、公知のものを用いることができる。中でも、分子 内にアミノ基を有するアミン系熱潜在性硬化剤が好まし!/、。アミン系熱潜在性硬化剤 は、分子内にアミノ基を有し、熱潜在性を示す化合物を意味する。このようなアミン系 熱潜在性硬化剤は、室温付近でエポキシ基と反応しないのに対して、熱を与えること によりエポキシ基と急速に反応する。また、一般に、アミン系熱潜在性硬化剤とェポキ シ樹脂とが反応して得られる硬化物は架橋高分子であるために、液晶に対する溶解 度が低い。ァミンによる硬化速度は、ァミンの種類、配合量、あるいはエポキシ樹脂の 種類などによって異なる。ただし、本発明で好ましく用いられるアミン系熱潜在性硬化 剤は特に限定されず、アミン系熱潜在性硬化剤として公知の化合物の中から適宜選 択して用いればよい。
[0142] アミン系熱潜在性硬化剤の好まし!/、例には、有機酸ジヒドラジド化合物、イミダゾー ルおよびその誘導体、ジシアンジアミド、芳香族ァミン、エポキシ変性ポリアミンおよ びポリアミノウレアなどが含まれる。これらは、単独で、または複数種を組み合わせて 用いてもよい。
[0143] さらに、熱潜在性硬化剤としては、その融点または環球法による軟化点温度が 75 °C以上であるものが特に好まし!/、。このような熱潜在性硬化剤を含ませた液晶シール 剤は、室温での粘度安定性がより良好に保持されるために、液晶表示パネルを製造 する場合の可使時間がよりいつそう長くなる。
[0144] 融点または環球法による軟化点温度が 75°C以上であるアミン系熱潜在性硬化剤 の例には、ジシアンジアミド類化合物、有機酸ジヒドラジド、およびイミダゾール誘導 体が含まれる。
[0145] 前記ジシアンジアミド類化合物の例には、ジシアンジアミド(融点 209°C)が含まれる 。前記有機酸ジヒドラジドの例には、アジピン酸ジヒドラジド(融点 181°C)、 1 , 3 ビ ス(ヒドラジノカルボェチル) 5 イソプロピルヒダントイン(融点 120°C)が含まれる。 前記イミダゾール誘導体の例には、 2, 4 ジアミノー 6— [2,ーェチルイミダゾリルー( 1,)]—ェチルトリァジン(融点 215〜225°C)、 2 フエ二ルイミダゾール(融点 137〜 147°C)が含まれる。これらの化合物は、単独で、あるいは複数種を組み合わせて用 いてもよい。
[0146] 熱潜在性硬化剤の配合量は、液晶シール剤 100質量部に対して;!〜 25質量部で あること力 S好ましく、力、かる配合量が 5〜; 15質量部であることがより好ましい。熱潜在 性硬化剤の配合量が前記範囲にあると、液晶シール剤の粘度安定性が良好である。 また、かかる液晶シール剤を液晶表示パネルに適用させた場合には、硬化させた液 晶シール剤と基板との接着強度が高レ、ので、液晶表示パネルの接着信頼性が向上 する。本発明に用いられる熱潜在性硬化剤には、水洗法、再結晶法などにより、高純 度化処理が施されて!/、ることが好まし!/、。
[0147] このような熱潜在性硬化剤を含む本発明の液晶シール剤は、一液タイプとして有用 である。一液タイプの液晶シール剤とは、エポキシ樹脂などの主成分と熱潜在性硬 化剤のような硬化促進成分とが使用する前の段階であらかじめ均一に混合されてお り、保存安定性に優れる液晶シール剤をいう。保存安定性に優れるとは、液晶シール 剤を室温以下で保存しても硬化反応がほとんど進行しな!/、ことを意味する。具体的 には、液晶シール剤を 25°Cで 5日間保存したときの粘度の増加率力 保存前の液晶 シール剤の粘度の 2倍以下であることが好ましい。
[0148] (c)ラジカル重合開始剤
本発明のラジカル重合開始剤とは、光または熱によるエネルギーを吸収してラジカ ルを発生する化合物をいう。ラジカル重合開始剤の例には、光ラジカル重合開始剤、 熱ラジカル重合開始剤が含まれる。
[0149] 本発明では、前記 (c)成分として、光ラジカル重合開始剤を用いることが好ましい。
光ラジカル重合開始剤とは、光照射を受けてラジカルを発生する化合物、すなわち、 光エネルギーを吸収し、分解してラジカル種を発生する化合物をいう。このような光ラ ジカル重合開始剤を含む液晶シール剤は、光照射による硬化が可能となるので、液 晶滴下方式に用いた場合には、ァフタキュアなどの硬化処理が不要であり、かつ液 層シール剤の硬化時間を短縮できるので、生産性の向上が実現されうる。
[0150] 光ラジカル重合開始剤は、特に限定されず公知の化合物を用いることができる。そ の例には、ベンゾイン系化合物、ァセトフヱノン類化合物、ベンゾフヱノン類化合物、 チォキサトン類化合物、 α ァシロキシムエステル類化合物、ベンゾイン類化合物、 ベンゾインエーテル類化合物、フエニルダリオキシレート類化合物、ベンジル類化合 物、ァゾ系化合物、アントラキノン類化合物、ジフエニルスルフイド系化合物、ァシル ホスフィンォキシド系化合物、有機色素系化合物、鉄 フタロシアニン系化合物が含 まれる。これらは単独で、または複数種を組み合わせて用いてもよい。
[0151] 本発明では、上記のように前記 (c)成分として熱ラジカル重合開始剤を用いてもよ い。熱ラジカル重合開始剤とは、加熱されてラジカルを発生する化合物、すなわち、 熱エネルギーを吸収し、分解してラジカル種を発生する化合物をレ、う。
[0152] このような熱ラジカル重合開始剤を、光ラジカル重合剤と併用して液晶シール剤を 調製すると、基板を貼り合わせた後、光により仮硬化させてからさらに加熱することに より、短時間のうちに液晶シール剤を十分に硬化させることができる。このとき、液晶 シール剤を光のみで硬化させると、光が直接に照射されない遮光エリアでは、液層シ ール剤が未硬化部分として残ることがある力 硬化時に熱を用いると、遮光エリアで あるか否かに関わらず液晶シール剤の隅々まで硬化させることができる。そのために 、力、かる液晶シール剤を液晶表示パネルに適用させた場合には、液晶汚染性が極 めて低ぐかつ硬化させた液晶シール剤と基板との接着強度に優れた液晶表示パネ ノレを得ることカでさる。
[0153] 熱ラジカル重合開始剤は、特に限定されず公知の化合物を用いることができる。そ の例には、有機過酸化物、ァゾ化合物、置換エタン化合物、ベンゾイン類化合物、ベ ンゾインエーテル類化合物、ァセトフヱノン類化合物が含まれる。
[0154] 有機過酸化物の例には、ケトンパーオキサイド、パーォキシケタール、ハイド口パー オキサイド、ジアルキルパーオキサイド、パーォキシエステル、ジァシルバーォキサイ ド、バーオキシジカーボネートに分類される化合物が含まれる。
[0155] 有機過酸化物の例を以下に示す。力、つこ内の数字は 10時間半減期温度である(和 光純薬カタログ、エーピーアイコーポレーションカタログ、および前述のポリマーハン ドブック参照)。また、ケトンパーオキサイド類の例には、メチルェチルケトンパーォキ サイド(109°C)、シクロへキサノパーオキサイド(100°C)が含まれる。
[0156] ァゾ化合物の例には、水溶性ァゾ系熱ラジカル重合開始剤、油溶性ァゾ系熱ラジ カル重合開始剤、高分子ァゾ系熱ラジカル重合開始剤が含まれる。
[0157] 水溶性ァゾ系熱ラジカル重合開始剤の例には、 2, 2'ーァゾビス [2—(2 イミダゾ リンー2 ィル)プロパン]ジスルフェートジハイドレート(46°C)、 2, 2,ーァゾビス [N 一(2 カルボキシェチル)ー2 メチルプロピオンアミジン]ノヽイドレート(57°C)、 2, 2,ーァゾビス { 2—[1一(2—ヒドロキシェチル)ー2—イミダゾリンー2—ィノレ]プロパン }ジハイド口クロライド(60°C)、 2, 2,ーァゾビス(1 イミノー 1 ピロリジノー 2 ェチ ルプロパン)ジハイド口クロライド(67°C)、 2, 2,ーァゾビス [2 メチルー N— (2 ヒド 口キシェチル)プロピオンアミド] (87°C)、 2, 2,ーァゾビス [2—(2 イミダゾリンー2 ィル)プロパン]ジハイド口クロライド(44°C)、 2, 2'—ァゾビス(2 メチルプロピオ ンアミジン)ジハイド口クロライド(56°C)、 2, 2,ーァゾビス [2—(2 イミダゾリン 2— ィル)プロパン] (61°C)、 2, 2,ーァゾビス { 2 メチルー N—[l , 1 ビス(ヒドロキシメ チル)ー2 ヒドロキシェチル]プロピオンアミド、} (80°C)が含まれる。
[0158] 油溶性ァゾ系熱ラジカル重合開始剤の例には、 2, 2'ーァゾビス(4ーメトキシ—2, 4ージメチルバレロニトリル)(30°C)、ジメチルー 2, 2'ーァゾビス(2 メチルプロピオ ネート)(66°C)、 1 , —ァゾビス(シクロへキサン一 1—カルボ二トリル)(88°C)、 1 , 1, 一 [ (シァノー 1ーメチルェチル)ァゾ]ホルムアミド(104°C)、 2, 2,ーァゾビス(N —シクロへキシル 2 メチルプロピオンアミド)(111°C)、 2, 2,一ァゾビス(2, 4— ジメチルバレロニトリル)(51°C)、 2, 2,ーァゾビス(2—メチルブチロニトリル) (67°C) 、 2, 2,一ァゾビス [N— (2 プロぺニル) 2 メチルプロピオンァミド] (96°C)、 2, 2,一ァゾビス(N ブチル 2—メチルプロピオンアミド)(110°C)が含まれる。
[0159] 高分子ァゾ系熱ラジカル重合開始剤の例には、ポリジメチルシロキサンユニット含 有高分子ァゾ系熱ラジカル重合開始剤、ポリエチレングリコールユニット含有高分子 ァゾ系熱ラジカル重合開始剤が含まれる。また、これらの熱ラジカル重合開始剤は、 単独で、または複数種を組み合わせて用いてもよ!/、。
[0160] ラジカルを発生させるエネルギーの種類が光または熱に関わらず、(c)成分の配合 量は、液晶シール剤 100質量部に対して 0. 0;!〜 5質量部であることが好ましい。ラ ジカル重合開始剤の配合量を 0. 01質量部以上とすると、適宜選択された光や熱を 液晶シール剤に照射することによって、力、かる液晶シール剤を短時間のうちに硬化さ せること力 Sできる。また、(c)成分の配合量を 5質量部以下とすると、液晶シール剤の 塗布性が良好であり、かつ光照射によって均一に硬化した硬化物が得られる。
[0161] (d)フイラ
本発明のフイラとは、液晶シール剤の粘度制御や液晶シール剤を硬化させた硬化 物の強度向上、または線膨張性を抑えることによって液晶シール剤の接着信頼性を 向上させるなどの目的で用いられる充填剤をいう。
[0162] 本発明で好ましく用いることができるフイラは、特に限定されず、電子材料分野で通 常的に使用され得る公知のものが含まれる。フイラの例には、炭酸カルシウム、炭酸 マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム 、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化珪素、チタン 酸カリウム、カオリン、タルク、アスベスト粉、石英粉、雲母、ガラス繊維、タルク、ガラス ビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケィ素などの無機 フイラが含まれる。
[0163] 本発明のフイラとしては、液晶シール剤の特性を損なわな!/、範囲であれば、ポリメタ クリル酸メチル、ポリスチレン、これらを構成するモノマと他のモノマとを共重合させて 得た共重合体、ポリエステル微粒子、ポリウレタン微粒子、ゴム微粒子などの公知の 有機フイラを用いてもよい。
[0164] 中でも、線膨張率、形状保持性を向上させるという観点からは無機フイラが好ましい 。このような無機フイラの中では、 UV透過性が高いことなどの理由から、二酸化ケィ 素、タルクがより好ましい。また、無機または有機に係らず、本発明の液晶シール剤 に用いられるフイラは、エポキシ樹脂ゃシランカップリング剤などでグラフト変性された ものでもよい。
[0165] フイラの形状は、特に限定されず、球状、板状、針状などの定形物、または非定形 物のいずれでもよい。また、フイラの最大粒径は、好ましくは 6 m以下であり、さらに 好ましくは 2 m以下である。フイラの粒径は、レーザ回折法によって測定され得る。 このような粒径のフイラを含む液晶シール剤を液晶表示パネルの製造方法に用いれ ば、セルギャップの寸法安定性が非常に良好な液晶セルが形成され得る。
[0166] フイラの配合量は、フイラを除く液晶シール剤 100質量部に対して 1〜40質量部と すること力 S好ましく、 10〜30質量部とすることがより好ましい。このようにフイラの配合 量が調整された液晶シール剤は、基板に対する塗布性が良好である。また、フイラは 、光硬化性樹脂と併用してもよい。このようにフイラと光硬化性樹脂とが併用された液 晶シール剤は、光硬化性が良好であり、短時間で硬化する。さらに、セルギャップの 幅が略一定に保持されるために、寸法安定性が良好となる。
[0167] 本発明の液晶シール剤には、(e)エポキシ樹脂、および (f)アクリル化合物、あるい は(e)エポキシ樹脂または (f )アクリル化合物の!/、ずれか一方をさらに含ませてもよ!/ヽ
[0168] (e)エポキシ樹脂
本発明のエポキシ樹脂とは、分子内にエポキシ基を 1つ以上有する化合物をいう。 本発明の液晶シール剤に用いられる好ましレ、エポキシ樹脂の例には、芳香族多価グ リシジルエーテル化合物、ノポラック樹脂、ノポラック型多価グリシジルエーテル化合 物、グリシジルエーテル化合物類が含まれる。
[0169] 前記芳香族多価グリシジルエーテル化合物の例には、芳香族ジオール類化合物 およびそれらを各種ダリコールで変性したジオール類化合物とェピクロルヒドリンとの 反応で得られる化合物が含まれる。前記芳香族ジオール類化合物の例には、ビスフ ェノール A型エポキシ樹脂、ビスフエノール S型エポキシ樹脂、ビスフエノール F型ェ ポキシ樹脂、ビスフエノール AD型エポキシ樹脂が含まれる。また、前記ダリコールの 例には、エチレングリコール、プロピレングリコール、アルキレングリコールが含まれる
[0170] 前記ノポラック樹脂の例には、フエノールまたはタレゾールとホルムアルデヒドとから 誘導された化合物が含まれる。前記ノポラック型多価グリシジルエーテル化合物の例 には、ポリアルケユルフェノールやそのコポリマーなどで代表されるポリフエノール類 化合物とェピクロルヒドリンとの反応で得られた化合物が含まれる。また、前記グリシ ジルエーテル化合物の例には、キシリレンフエノール樹脂が含まれる。
[0171] 中でも好ましレヽ(e)エポキシ樹脂の例には、クレゾールノポラック型エポキシ樹脂、 フエノールノポラック型エポキシ樹脂、ビスフエノール A型エポキシ樹脂、ビスフエノー ル F型エポキシ樹脂、トリフエノールメタン型エポキシ樹脂、トリフエノールエタン型ェ ポキシ樹脂、トリスフェノール型エポキシ樹脂、ジシクロペンタジェン型エポキシ樹脂 、ビフエニル型エポキシ樹脂が含まれる。特に好ましいエポキシ樹脂の例には、これ らのアクリルゴム変性エポキシ樹脂が含まれる。本発明の液晶シール剤には、これら のエポキシ樹脂を単独で、あるいは複数種を組み合わせて用いることができる。
[0172] また、本発明に用いられるエポキシ樹脂は、環球法によって測定される軟化点温度 力 0°C以上であることが好ましぐかつその重量平均分子量が 1000〜; 10000であ ることがより好ましい。このようなエポキシ樹脂は、液晶に対する溶解性や拡散性が低 い。そのため、力、かるエポキシ樹脂が用いられた液晶シール剤によって製造される液 晶表示パネルは、表示性が良好である。
[0173] エポキシ樹脂の重量平均分子量は、例えば、ゲルパーミエーシヨンクロマトグラフィ
(GPC)によりポリスチレンを標準として測定することができる。さらに、エポキシ樹脂と しては、分子蒸留法などによって高純度化され、不純物が取り除かれたものが好まし く用いられる。
[0174] エポキシ樹脂の配合量は、液晶シール剤 100質量部に対して 5〜50質量部とする ことが好ましぐ 10〜30質量部とすることがより好ましい。このような液晶シール剤は、 耐熱性が良好である。ただし、かかる配合量が 5質量部未満であると硬化速度が遅く なり、 50質量部を超えると液晶シール剤の耐熱性が低下する場合がある。
[0175] (f)アクリル化合物 本発明のアクリル化合物とは、分子内に 1個以上のアクリル基を有する化合物をい う。本発明のアクリル化合物には、メタクリル樹脂のような (メタ)アクリル樹脂も含まれ る。アクリル化合物の例には、アクリル酸エステルおよび/またはメタクリル酸エステ ノレモノマー、またはこれらのオリゴマーが含まれるが特に限定されず、公知の化合物 が含まれる。このようにアクリル化合物を含ませた液晶シール剤は耐水性が極めて良 好となるから、液晶表示パネルに適用させると、力、かる液晶シール剤の硬化物と液晶 表示パネルを構成する基板との接着強度が極めて高ぐかつ耐湿信頼性に優れた 高品質の液晶表示パネルが得られる。
[0176] アクリル化合物(f)成分の好ましい例には、以下のものが含まれる。
[0177] ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコールなどのジァ タリレートおよび/またはジメタタリレート;トリス(2—ヒドロキシェチル)イソシァヌレート のジアタリレートおよび/またはジメタタリレート;ネオペンチルグリコール 1モルに 4モ ル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールの ジアタリレートおよび/またはジメタタリレート;ビスフエノール A1モルに 2モルのェチ レンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアタリレート および/またはジメタタリレート;トリメチロールプロパン 1モルに 3モル以上のエチレン オキサイド若しくはプロピレンオキサイドを付加して得たトリオールのジまたはトリアタリ レートおよび/またはジまたはトリメタタリレート;ビスフエノーノレ A1モルに 4モル以上 のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジァク リレートおよび/またはジメタタリレート;トリス(2—ヒドロキシェチル)イソシァヌレートト リアタリレートおよび/またはトリメタタリレート;トリメチロールプロパントリアタリレートお よび/またはトリメタタリレート、またはそのオリゴマー;ペンタエリスリトールトリアタリレ ートおよび/またはトリメタタリレート、またはそのオリゴマー;ジペンタエリスリトールの ポリアタリレートおよび/またはポリメタタリレート;トリス(アタリ口キシェチル)イソシァヌ レート;力プロラタトン変性トリス(アタリ口キシェチル)イソシァヌレート;力プロラタトン変 性トリス(メタクリロキシェチル)イソシァヌレート;アルキル変性ジペンタエリスリトール のポリアタリレートおよび/またはポリメタタリレート;力プロラタトン変性ジペンタエリス リトールのポリアタリレートおよび/またはポリメタタリレート;ヒドロキシビバリン酸ネオ ペンチルダリコールジアタリレートおよび/またはジメタタリレート;力プロラタトン変性 ヒドロキシビバリン酸ネオペンチルダリコールジアタリレートおよび/またはジメタクリレ ート;エチレンオキサイド変性リン酸アタリレートおよび/またはジメタタリレート;ェチレ ンオキサイド変性アルキル化リン酸アタリレートおよび/またはジメタタリレート;ネオ ペンチノレグノレコーノレ、トリメチローノレプロパン、ペンタエリスリトーノレのオリゴァクリレー トおよび/またはオリゴメタタリレートが含まれる。
[0178] また、アクリル化合物(f)成分の例には、クレゾールノポラック型エポキシ樹脂、フエ ノールノポラック型エポキシ樹脂、ビスフエノール A型エポキシ樹脂、ビスフエノール F 型エポキシ樹脂、トリフエノールメタン型エポキシ樹脂、トリフエノールェタン型ェポキ シ樹脂、トリスフエノール型エポキシ樹脂、ジシクロペンタジェン型エポキシ樹脂、ビフ ェニル型エポキシ樹脂などの全てのエポキシ基を、(メタ)アタリレート酸と反応させて 得られる、エポキシ樹脂を完全に (メタ)アクリル化した樹脂も含まれる。これらの化合 物は、単独で、あるいは複数種を組み合わせて用いてもよい。
[0179] アクリル化合物(f)成分を液晶シール剤に含ませる場合には、エポキシ樹脂 (e)成 分と併用させることが好ましい。このとき、(e)成分の配合量が(f)成分 100質量部に 対して 20〜200質量部であることが好まし!/、。このような液晶シール剤を光や熱によ つて硬化させれば、ガラス転移温度 (Tg)が高い硬化物が得られる。液晶シール剤の 硬化物の Tgは、動的粘弾性測定装置 (DMA)で測定することができる。また、高純 度の液晶シール剤を得るなどの目的から、(f)成分は、水洗法などによって高純度化 させたものを使用することが好まし!/、。
[0180] 本発明で好ましく用いられる(メタ)アクリル変性エポキシ樹脂の例には、エポキシ樹 脂と(メタ)アクリル酸やフエニルメタタリレートとを、例えば、塩基性触媒下で反応させ て得られる樹脂が含まれる。前記エポキシ樹脂の例には、ビスフエノール型エポキシ 樹脂ゃノポラック型エポキシ樹脂が含まれる。
[0181] 骨格内にエポキシ基と (メタ)アクリル基とを併せ持つ(メタ)アクリル変性エポキシ樹 脂は、前記(e)成分に対して高い相溶性を示す。したがって、(メタ)アクリル変性ェポ キシ樹脂と、前記 (e)成分とを含有する液晶シール剤は、ガラス転移温度 (Tg)が高く 、耐久性および耐熱性が高く優れる。さらに、その液晶シール剤の硬化物と、液晶表 示パネルを構成する基板との接着強度が高くなる。
[0182] (メタ)アクリル変性エポキシ樹脂の原料となるエポキシ樹脂の例には、クレゾールノ ポラック型エポキシ樹脂、フエノールノポラック型エポキシ樹脂、ビスフエノール A型ェ ポキシ樹脂、ビスフエノール F型エポキシ樹脂、トリフエノールメタン型エポキシ樹脂、 トリフエノールェタン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ジシクロペン タジェン型エポキシ樹脂、ビフエニル型エポキシ樹脂が含まれる。また、(メタ)アタリ ル変性エポキシ樹脂は、分子蒸留法、洗浄法などによって高純度化されていることが 好ましい。
[0183] (g)その他の添加剤
また、本発明の液晶シール剤には、必要に応じて添加剤を含ませてもよい。本発明 で好ましく用いられる添加剤の例には、熱ラジカル重合開始剤、シランカップリング剤 などのカップリング剤、イオントラップ剤、イオン交換剤、レべリング剤、顔料、染料、 可塑剤、消泡剤が含まれる。これらの添加剤は、用途に応じて単独で、または複数種 を組み合わせて用いてもょレ、。
[0184] また、液晶セルのギャップを確保するために、スぺーサ一などを含ませてもよい。ス ぺーサ一は、液晶シール剤に含ませてもよいし、予め液晶表示パネルを構成する基 板に塗布して用いてもよい。
[0185] 熱硬化性シール剤を調製する場合には、デイスペンス塗布性やスクリーン印刷性を 向上させるために有機溶媒を含ませてもよい。力、かる有機溶媒は、(e)成分のェポキ シ樹脂に対する相溶性が高ぐかつ沸点が 140〜220°Cの範囲内であって、さらに はエポキシ基に対して不活性であることが好ましい。このような有機溶媒の例には、ケ トン系溶媒、エーテル系溶媒、およびアセテート系溶媒が含まれる。これらは単独で 、あるいは複数種を組み合わせて用いてもよい。
[0186] [液晶シール剤の調製方法]
本発明の液晶シール剤を調製する方法は、特に限定されず、公知の技術を用いる ことができる。また、液晶シール剤の各成分を混合する手段の例には、双腕式攪拌 機、ロール混練機、 2軸押出機、ボールミル混練機、遊星式撹拌機が含まれるが、特 に限定されず、公知の混鍊機械を用いればよい。いずれかの方法により好適に混合 された液晶シール剤は、フィルタでろ過され、不純物が取り除かれる。そして、真空脱 泡処理が施されてからガラス瓶やポリ容器に密封充填され、必要に応じて貯蔵、輸 送される。
[0187] [液晶表示パネルの製造方法]
次に、本発明の液晶表示パネルの製造方法について説明する。前述した本発明の 液晶シール剤は、液晶注入方式および液晶滴下方式の!/ヽずれにも適用可能である 。以下に、液晶注入方式および液晶滴下方式に関する本発明の液晶表示パネルの 製造方法について順次説明する。
[0188] 本発明の液晶表示パネルの製造方法は、対向する 2枚の基板を、液晶シール剤を 介して貼り合わせることにより製造される液晶表示パネルの製造方法において、 (1) 本発明の液晶シール剤によって画素配列領域が包囲されるように形成された枠状の 表示領域を有する 1枚以上の基板を準備する工程と、(2)未硬化状態の前記表示領 域内、またはもう一方の基板の上に液晶を滴下する工程と、(3)前記液晶が滴下され た基板と、もう一方の基板とを重ね合わせる工程と、(4)前記 2枚の基板に挟まれた 液晶シール剤に光および熱、あるいは光または熱のいずれか一方を与える工程と、 を含む。
[0189] (1)の工程では、 2枚の基板のうちいずれか一方に液晶シール剤を塗布して、枠状 の表示領域を配置した基板を準備する。ここで、液晶シール剤によって構成される枠 は、画素配列領域が包囲されるように形成される。
[0190] 前記液晶シール剤としては、上述のような本発明にかかる液晶シール剤が有用で ある。液晶シール剤は、表示領域などの枠を形成するだけでなぐ 2枚の基板を一定 の間隔を開けて貼り合わせるための接着剤としても作用する。また、基板上に液晶シ 一ル剤を塗布する方法の例には、デイスペンサによる塗布やスクリーン印刷による塗 布が含まれる力 特に限定されず、公知の技術を用いればよい。小型の液晶表示パ ネルを製造する場合には、生産性の向上という観点から、スクリーン印刷による塗布 が好ましい。
[0191] 液晶表示パネルに用いられる 2枚の基板の例には、 TFTがマトリックス状に形成さ れたガラス基板や、カラーフィルタ、ブラックマトリクスが形成された基板が含まれる。 基板の材質の例には、ガラスやポリカーボネート、ポリエチレンテレフタレート、ポリエ
Figure imgf000050_0001
[0192] 各基板の対向する面には、配向膜が形成されていてもよい。配向膜としては、特に 限定されず、例えば、公知の有機配向剤や無機配向剤からなるものを用いることが できる。また、基板には、予めスぺーサ一が散布されていてもよい。スぺーサ一は、真 球状のシリカ粒子が一般的に用いられ、セルギャップを均一に保つ上で有効である。 通常は、予め基板上に散布した状態の面内スぺーサ一であるか、或いは液晶シー ル剤に含ませたスぺーサ一が用いられる。なお、スぺーサ一の種類やサイズは特に 限定されず、所望とするセルギャップの大きさなどに応じて、公知のものを用いればよ い。
[0193] (2)の工程では、未硬化状態の表示領域となる枠の内側、またはもう一方の基板の 上に、適量の液晶が滴下される。ここで、液晶が滴下されるもう一方の基板とは、表示 領域を含む基板とは異なる基板を!/、う。もう一方の基板の上に液晶を滴下する場合 には、基板同士を重ね合わせたときに表示領域となり得る領域内に液晶を滴下すれ ばよい。
[0194] また、滴下する液晶は、滴下された液晶が、枠内に収まるように枠のサイズに応じて 液晶の滴下量を調節することが好ましい。このようにして枠内に液晶を滴下すれば、 液晶の容量が貼り合せ後の枠と基板とで囲まれる空のセルの容量を超えることがな い。そのため、枠に過剰の圧力がかからず、かつ枠を形成するシールが破れることが ない。
[0195] (3)の工程では、液晶が滴下された基板力 もう一方の基板と重ね合わされる。ここ で、重ね合わせは、真空貼り合せ装置などにより減圧下で行われることが好ましい。 減圧下において重ね合わせた 2枚の基板を後の工程で大気圧へ戻すことにより、気 圧差を利用して基板同士を貼り合せることができる。
[0196] (4)の工程では、 2枚の基板に挟まれた液晶シール剤に光および熱、あるいは光ま たは熱のいずれか一方が与えられる。これにより液晶シール剤の内部では、ラジカノレ 重合開始剤の作用によりラジカルが発生し、主剤と硬化剤との硬化反応が促進され るために液晶シール剤の硬化が進行する。 [0197] 前記(4)の工程において、液晶シール剤に与える光の種類、照射時間、あるいは 加熱時の温度や時間などは特に限定されず、液晶シール剤の組成などに応じて適 宜選択すればよい。例えば、熱により液晶シール剤を硬化させる場合には、液晶シ ール剤の硬化を促進させる観点から、加熱温度を 40〜90°Cとし、加熱時間を 1〜; 12 0分とすることが好ましい。また、必要に応じて、一度、液晶シール剤を加熱硬化させ た後に、 110〜; 150°Cで、 30〜90分のァフタキュアを行ってもよい。液晶シール剤 の加熱手段の例には、オーブン、ホットプレート、およびホットプレスなどの公知の加 熱装置が含まれるが、特に限定されない。
[0198] 本発明は、(3)の工程の後に、重ね合わせた 2枚の基板を減圧下から大気圧に戻 す工程を含んでもよい。このように減圧下において重ね合わせた基板同士を、減圧 下から大気圧の環境へと戻せば、その枠の内側と外側とにおいて気圧差が発生する ために、 2枚の基板をその両外側から押圧されるので、基板同士が貼り合わされる。
[0199] また、最近の液晶滴下方式では、生産性の向上を目的として、基板の上に液晶シ ール剤によって複数の枠を形成し、 2枚の基板同士を貼り合わせた後に、枠の外周 を切断することにより別々の液晶表示パネルを切り出す方法が採用されている。この ような方法にも、本発明は好適である。
[0200] 本発明の液晶シール剤は、粘度安定性が高く保持されており、液晶に対する溶解 度が低ぐかつ硬化性が高い ω成分と、熱潜在性を有する硬化剤と、ラジカル重合 開始剤と、フイラとが含まれて!/、る。このような液晶シール剤を用いて液晶滴下方式に より、液晶表示パネルを製造すると、遮光エリアがある場合でも、硬化が十分に進み 、かつ保存安定性や塗布性の高さを保持しながら作業を進めることができる。これに より、液晶シール剤の硬化物中には未硬化部分が極めて少ないから、結果として、液 晶の汚染が防止され、かつ液晶シール剤の硬化物と基板との接着強度が高!、液晶 表示パネルが得られる。
[0201] 液晶表示パネルにお!/、て液晶が汚染される程度、つまり液晶表示パネルの液晶汚 染性は、 ΝΙ点の差である Δ ΝΙ点により評価することができる。 ΝΙ点とは、液晶がネマ チック相からァイソトロピック相(等方相)へ相転移するときの温度である。相転移温度 とは、示差熱分析装置を用いて発熱ピークの変曲点から測定できる。 Δ ΝΙ点は、「汚 染されて!/、な!/、液晶の NI点」と「汚染された液晶の NI点」の差である。液晶汚染性が 高レ、原料あるレ、は液晶シール剤が液晶と混合されると、 Δ NI点の絶対値は大きくな る。その一方で、原料あるいは液晶シール剤の液晶汚染性が低い場合には、 Δ ΝΙ 点の絶対値は低くなる。したがって、 Δ NI点が小さレ、ほど液晶汚染性が低!/、ことを意 味する。
実施例
[0202] 以下に、本発明に係る実施例および比較例を挙げて、本発明をより詳細に説明す る。ただし、本発明は以下に示す形態に限定されるものではない。
[0203] (a)分子内に (メタ)アタリロイル基およびグリシジル基を含み、数平均分子量が 500 〜2000である化合物
(a)成分としては、下記の合成例 1〜; 10で合成した化合物をそれぞれ用いた。この 中で、合成例;!〜 4で合成された化合物は前記第一の(a)成分に該当し、合成例 7〜 10で合成された化合物は前記第二の(a)成分に該当する。また、合成例 5、 6で合成 した化合物は、分子内に所定の有機基を有しているが、その数平均分子量が 500〜 2000の範囲を逸脱して!/、る。
[0204] 各合成例では、合成途中の任意の段階で採取した反応混合物の酸価を下記の方 法により算出し、算出された酸価の値から、反応の進行の程度を適宜に確認しながら 合成反応を進行させた。当該酸価は、反応混合物から適宜に採取したサンプルをジ ェチルエーテル.エタノール溶液に溶解させて、かつフエノールフタレインエタノール 溶液を添加し;得られた溶液が無色になるまで KOHのエタノール溶液(0. 1N)を滴 下して;消費された KOHの量から算出した。
[0205] また、各合成例で得られた最終目的物の数平均分子量を下記の方法により測定し た。数平均分子量の測定は、 1)ポリスチレンを標準とするゲルパーミエーシヨンクロマ トグラフィー (GPC)による測定、および 2)電解脱離質量分析法 (FD-MS法)による 測定を行った。
[0206] [合成例 1]
合成例 1では、グリセロールアタリレートメタタリレート変性フタル酸とビスフエノール F ジグリシジルエーテルとを反応させることにより(メタ)アタリロイル基とグリシジル基とを 含む化合物 Alを合成した。
[0207] 先ず、攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコに 無水フタノレ酸 74g (0. 5mol)、グリセローノレアタリレートメタタリレート 271g (0. 5mol) 、触媒としてトリブチルアンモニゥムブロマイド 0. 7g、重合禁止剤としてフエノチアジ ン 0. 5gを混合し、 80°Cに加温して 1時間反応させ、さらに 130°Cに加温し、 2時間反 応させた。
[0208] この反応生成物 276g (0. 4mol)に、ビスフエノール F型エポキシ樹脂(ェポトート Y DF- 8170C 東都化成(株)製)を 125g (0. 4mol)、触媒としてトリブチルアンモニ ゥムブロマイド 0· 6g、重合禁止剤としてヒドロキノンモノメチルエーテル 0· lgを、攪 拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコに入れ、 80°C で加熱混合し、さらに乾燥空気を吹き込みながら、酸価が 2mgKOH/g以下になる まで反応させた。続いて、この反応生成物をシリカゲルでカラム分離し、化合物 A1を 得た。得られた化合物 A1を、 HPLC、 NMR分析した結果、(メタ)アタリロイル基およ びグリシジル基を含有する化合物であることを確認した。
[0209] また、化合物 A1の数平均分子量を GPCによって測定したところ、単一ピークとして 得られた化合物 A1の数平均分子量は 689であった。さらに化合物 A1の数平均分子 量を FD— MS法によって測定したところ、単一ピークで同じ分子量(689)となった。
[0210] [合成例 2]
合成例 2では、 2—ヒドロキシェチルアタリレート変性した 4ーメタクリロイルォキシェ チルトリメリト酸とビスフエノール Fジグリシジルエーテルとを下記の方法で反応させる ことにより(メタ)アタリロイル基とグリシジル基とを有する化合物 A2を合成した。
[0211] 先ず、攪拌機、気体導入管、温度計、冷却管を備えた 1000mlの四つ口フラスコに
4ーメタクリロイノレォキシェチノレトリメリト酸無水物 152g (0. 5mol)に 2—ヒドロキシェ チルアタリレート 58g (0. 5mol)、触媒としてトリブチルアンモニゥムブロマイド 0· 7g、 重合禁止剤としてフエノチアジン 0. 5gを混合し、 80°Cに加温して 1時間反応させ、さ らに、 130°Cに加温し、 2時間反応させた。続いて、この反応生成物 168g (0. 4mol) 、ビスフエノール F型エポキシ樹脂(ェポトート YDF— 8170C 東都化成 (株)製)を 1 25g (0. 4mol)、触媒としてトリブチルアンモニゥムブロマイド 0· 6g、重合禁止剤とし てヒドロキノンモノメチルエーテル 0. lgを、攪拌機、気体導入管、温度計、冷却管を 備えた 500mlの四つ口フラスコに加えた。得られた混合物を 80°Cに加温した後、乾 燥空気を吹き込みながら、酸価が 2mgKOH/g以下になるまで反応させた。
[0212] この反応物を酢酸ェチル 1000gで希釈し、超純水による水洗を 5回繰り返した後に 濃縮した。続いて、この反応生成物をシリカゲルでカラム分離し、化合物 A2を得た。 得られた化合物 A2を HPLC、 NMR分析した結果、(メタ)アタリロイル基およびグリシ ジル基を含有する化合物であることを確認した。また、化合物 A2を GPC分析した結 果、単一ピークとして得られた化合物 A2の数平均分子量は 733であった。化合物 A 2の数平均分子量は、 FD— MS法においても単一ピークで同じ分子量であることを 確認した。
[0213] [合成例 3]
合成例 3では、 2—ヒドロキシメタタリレート変性フタル酸とビスフエノール Fジグリシジ ルエーテルとを下記の方法で反応させることによりメタクリロイル基およびグリシジル 基を有する化合物 A3を合成した。
[0214] 先ず、攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコに 無水フタノレ酸 74g (0. 5mol)、 2—ヒドロキシェチノレメタタリレート 65g (0. 5mol)、角虫 媒としてトリブチルアンモニゥムブロマイド 0. 7g、重合禁止剤としてフエノチアジン 0. 5gを混合し、 80°Cに加温して 1時間反応させ、さらに、 130°Cに加温し、 2時間反応 させた。反応後、反応液を酢酸ェチル 1000gで希釈し、超純水による水洗を 5回繰り 返した後に濃縮した。この反応生成物 l l lg (0. 4mol)、ビスフエノール F型エポキシ 樹脂(ェポトート YDF— 8170C 東都化成 (株)製)を 125g (0. 4mol)、触媒としてト リブチルアンモニゥムブロマイド 0· 6g、重合禁止剤としてヒドロキノンモノメチルエー テル 0. lgを、攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つロフラス コに加えた。得られた混合物を 80°Cに加温した後、さらに乾燥空気を吹き込みなが ら、酸価が 2mgKOH/g以下になるまで反応させた。
[0215] この反応物を酢酸ェチル 1000gで希釈し、超純水による水洗を 5回繰り返した後に 濃縮した。続いて、この反応生成物をシリカゲルでカラム分離し、化合物 A3を得た。 得られた化合物 A3の組成を HPLC、 NMRによって分析した結果、メタクリロイル基 およびグリシジル基を含有する化合物であることを確認した。また、化合物 A3を GPC 分析した結果、単一ピークとして得られた化合物 A3の数平均分子量は 591であった 。化合物 A3の数平均分子量は、 FD— MS法においても、単一ピークで同じ分子量 であることを確認、した。
[0216] [合成例 4]
合成例 4では、カルボン酸誘導体とビスフエノキシエタノールフルオレンジグリシジ ルエーテルとを反応させることにより(メタ)アタリロイル基およびグリシジル基を有する 化合物 A4を合成した。
[0217] 先ず、 2—ヒドロキシェチルアタリレートの 6—へキサノリド付加物(ダイセル化学製' 商名プラクセル FA3)を、シリカゲルを用いてカラム精製した。攪拌機、気体導入管、 温度計、冷却管、ロート管を備えた 1000mlの五つ口フラスコに、ナトリウムハイドライ ド 48gとトルエン 200gを加え、窒素気流下で氷冷した。精製した 2—ヒドロキシェチル アタリレートの 6—へキサノリド付加物 229g (0.5mol)をトルエン 200g中に溶かした 溶液を 2時間かけて滴下した。
[0218] そして、当該溶液の滴下が完了した反応混合物を氷冷しながら 1時間保持した後 に、この反応混合物を濾過し、未反応のナトリウムハイドライドを除去した。この後、反 応混合物に、ェピクロルヒドリン 185g (2mol)、テトラメチルアンモニゥムクロライド 5g ヒドロキノンモノメチルエーテル 0. lgを加え、混合した後、乾燥空気を吹き込みなが ら、 70°Cで 3時間攪拌した。
[0219] この後、反応が終了した反応混合物を超純水で 5回洗浄した後に、 120°Cで加熱 減圧することにより、過剰のェピクロルヒドリンなどの不純物を留去し、 2—ヒドロキシェ チルアタリレートの 6 キサノリド付加物とェピクロルヒドリンとの反応生成物(A4a) を得た。続いて、この反応生成物(A4a) 206g (0.4mol)と、あら力、じめカラム精製し た 6—((6—アタリロイルォキシ)へキサノィルォキシ)へキサン酸(ァロニックス M— 5 300 東亞合成 (株)製)(分子量 300) 120g (0. 4mol)と、触媒としてトリプチルアン モニゥムブロマイド 0· 6gと、重合禁止剤としてヒドロキノンモノメチルエーテル 0· lgと を混合し、 80°Cに加温した後、乾燥空気を吹き込みながら、酸価が 2mgKOH/g以 下になるまで反応させて、反応生成物 (A4b)を得た。 [0220] 続けて、得られた反応生成物(A4b) 163g (0. 2mol)と、 4ーメタクリロイルォキシェ チルトリメリト酸無水物 61g (0. 2mol)と、重合禁止剤としてフエノチアジン 0. 5gとを 混合し、 80°Cに加温して 1時間反応させた後、さらに 130°Cに加温し、 2時間反応さ せることにより反応生成物 (A4c)を得た。そして、この反応生成物 (A4c) 112g (0. 1 mol)、ビスフエノキシエタノールフルオレンジグリシジルエーテル(BPEF-G 大阪瓦 斯化学(株)製、分子量 550) 55g (0. lmol)、触媒としてトリブチルアンモニゥムブ ロマイド 0. 2g、重合禁止剤としてヒドロキノンモノメチルエーテル 0· lgを、攪拌機、 気体導入管、温度計、冷却管を備えた 300mlの四つ口フラスコ内に入れて混合し、 80°Cに加温した。乾燥空気を吹き込みながら、酸価が 2mgKOH/g以下になるまで 反応させた。得られた反応生成物をシリカゲルでカラム分離し、化合物 A4を得た。
[0221] 得られた化合物 A4を HPLC、 NMR分析した結果、(メタ)アタリロイル基およびダリ シジル基を含有する化合物であることを確認した。また、化合物 A4を GPC分析した 結果、単一ピークとして得られた化合物 A4の数平均分子量は 1670であった。さらに 、化合物 A4の数平均分子量は、 FD— MS法においても、単一ピークで同じ分子量 であることを確認、した。
[0222] [合成例 5]
合成例 5では、ビスフエノール A型エポキシ樹脂をメタクリロイル変性させたエポキシ 樹脂を合成した。
[0223] 先ず、攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコに ビスフエノール A型エポキシ樹脂(ェピクロン 850CRP 大日本インキ化学工業(株) 製)を 175g、メタクリル酸: 43g、触媒としてトリエタノールァミン: 0· 2g、重合禁止剤と してヒドロキノンモノメチルエーテル: 0· 2gを混合し、乾燥空気を吹き込みながら、 11 0°C、 5時間加熱攪拌してメタクリル変性ビスフエノール A型エポキシ樹脂を得た。得 られた樹脂を超純水で 12回洗浄処理を繰り返すことにより、化合物 A5を得た。得ら れた化合物 A5を HPLC、 NMRで分析した結果、エポキシ基の 50%力 Sメタクリロイル 変性されたビスフエノール A型エポキシ樹脂であることを確認した。また、得られた化 合物 A5を GPC分析した結果、数平均分子量は 427であった。
[0224] [合成例 6] 合成例 6では、ビスフエノール F型エポキシ樹脂をアタリロイル変性させたエポキシ 樹脂を合成した。
[0225] 先ず、攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコに ビスフエノール F型エポキシ樹脂(ェピクロン 850CRP 大日本インキ化学工業(株) 製)を 175g、アクリル酸: 37g、触媒としてトリエタノールァミン: 0· 2g重合禁止剤とし てヒドロキノンモノメチルエーテル: 0. 2gを混合し、乾燥空気を吹き込みながら、 110 °C、 12時間加熱攪拌してアクリル変性ビスフエノール A型エポキシ樹脂を得た。得ら れた樹脂を、超純水にて 12回洗浄処理を繰り返した。この樹脂を HPLC、 NMRで 分析した結果、エポキシ基の 50%がアタリロイル変性されたビスフエノール A型ェポ キシ樹脂 (化合物 A6)を得た。得られた化合物 A6を GPC分析した結果、数平均分 子量は 412であった。
[0226] [合成例 7]
合成例 7では、フエノールノポラック型 3官能エポキシ樹脂と(メタ)アクリル酸誘導体 とを反応させることにより、(メタ)アタリロイル基およびグリシジル基を有する化合物 A 7を合成した。
[0227] 先ず、攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに 前記一般式 (i 1)で表される化合物としてフエノールノポラック型 3官能エポキシ樹 脂(SR— HP3 阪本薬品工業 (株)製、 FD— MSによる数平均分子量 474) 142. 4 g (0. 3mol)、メタクリル酸を 20. 7g (0. 3mol)、後述する化合物 B1を 73. 3g (0. 3 mol)、触媒としてトリブチルアンモニゥムブロマイド 1. 45g、重合禁止剤としてフエノ チアジン 0. Olgを入れ、 80°Cで加熱混合し、さらに乾燥空気を吹き込みながら、酸 価が 2mgKOH/g以下になるまで 15時間反応させた。ここで使用した化合物 B1は 、 2—ヒドロキシェチルメタアタリレートと無水コハク酸との反応生成物である。
[0228] 得られた反応液 232gを、トルエン 900gおよび酢酸ェチル 300gに希釈した。希釈 した反応液を、超純水 300g/l回によって水洗する作業を 10回繰り返し、水相の電 気伝導度が 1 a Sん m以下になるまで濃縮することにより、 222gの化合物 A7を得た 。得られた化合物 A7を FD— MS分析した結果、数平均分子量は 804であった。
[0229] [合成例 8] 合成例 8では、フエノールノポラック型 4官能エポキシ樹脂と(メタ)アクリル酸誘導体 とを反応させることにより、(メタ)アタリロイル基およびグリシジル基を有するエポキシ 樹脂を合成した。
[0230] 攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに前記 一般式 (i 2)で表される化合物としてフエノールノポラック型 4官能エポキシ樹脂 (Y L 7284 ジャパンエポキシレジン(株)製、数平均分子量 636) 318g (0. 5mol)、 後述する化合物 Blを 104g (0. 45mol)および化合物 B2を 110g (0. 45mol)、触媒 としてトリブチルアンモニゥムブロマイド 2. lg、重合禁止剤としてフエノチアジン 0. 05 gを入れ、 80°Cで加熱混合した。さらに乾燥空気を吹き込みながら、酸価が 2mgKO H/g以下になるまで 15時間反応させた。ここで使用した化合物 B2は、 4ーヒドロキ シブチルアタリレートと無水コハク酸との反応生成物である。
[0231] 得られた反応液 530gを、トルエン 1200gおよび酢酸ェチル 600gを用いて希釈し た。そして、この希釈した反応液を、超純水 500g/l回によって水洗する作業を 10 回繰り返し、水相の電気伝導度が 1 a Sん m以下になるまで濃縮することにより、 509 gの化合物 A8を得た。得られた化合物 A8を FD— MS分析した結果、数平均分子量 は 1111であった。
[0232] [合成例 9]
合成例 9では、下記の方法でフエノールノポラック型 4官能エポキシ樹脂と (メタ)ァ クリル酸誘導体とを反応させることにより、(メタ)アタリロイル基およびグリシジル基を 有するエポキシ樹脂を合成した。
[0233] 攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに前記 一般式 (i 2)で表される化合物としてフエノールノポラック型 4官能能エポキシ樹脂( YL- 7284 ジャパンエポキシレジン(株)製、 FD— MS法による数平均分子量 636 ) 318g (0. 5mol)、後述する化合物 B3を 425g (0. 9mol)、触媒としてトリブチルァ ンモニゥムブロマイド 2. lg、重合禁止剤としてフエノチアジン 0. 05gを入れ、 80°Cで 加熱混合し、さらに乾燥空気を吹き込みながら、酸価が 2mgKOH/g以下になるま で 15時間反応させた。ここで使用した化合物 B3は、力プロラタトン 3モル変性メタタリ レートと無水コハク酸との反応生成物である。 [0234] 得られた反応液 740gを、トルエン 1200gおよび酢酸ェチル 600gを用いて希釈し た。そして、この希釈した反応液を、超純水 600g/l回によって水洗する作業を 10 回繰り返し、水相の電気伝導度が 1 a Sん m以下になるまで濃縮することにより、 730 gの化合物 A9を得た。得られた化合物 A9を FD— MS分析した結果、数平均分子量 は 1770であった。
[0235] [合成例 10]
合成例 10では、 3官能エポキシ樹脂と、(メタ)アクリル酸誘導体とを反応させること により(メタ)アタリロイル基およびグリシジル基を有するエポキシ樹脂を合成した。
[0236] 攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに、前記 一般式 (i 4)で表される化合物として 3官能エポキシ樹脂である VG— 3102 (三井 化学(株)製、 FD— MS法による数平均分子量 460) 184g (0. 40mol)、後述する化 合物 B1を 92g (0. 40mol)およびィ匕合物 B2を 97. 6g (0. 40mol)、角虫媒としてトリプ、 チルアンモニゥムブロマイド 2· 0g、重合禁止剤としてフエノチアジン 0· 05gを入れ、 80°Cで加熱混合した。乾燥空気を吹き込みながら、酸価が 2mgKOH/g以下にな るまで 8時間反応させた。
[0237] 得られた反応液 370gを、トルエン 900gおよび酢酸ェチル 300gを用いて希釈した 。そして、この希釈した反応液を、超純水 300g/l回によって水洗する作業を 10回 繰り返し、水相の電気伝導度が 3 Sん m以下になるまで濃縮することにより、 361g の化合物 A10を得た。得られた化合物 A10を FD— MS分析した結果、数平均分子 量は 934であった。
[0238] 以下、上述した合成例で使用した (メタ)アクリル酸誘導体 (B1〜B3)の合成例を説 明する。
[0239] [化合物 B1の合成]
攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに無水コ ノヽク酸 420g (4. 2mol)、 2 ヒドロキシェチノレメタアタリレート 656g (5· Omol)、重合 禁止剤としてフエノチアジン 0. 05gを混合し、 110°Cに加温して 5時間反応させた。こ の反応生成物を、トルエン 2500gで希釈し、超純水 800gによる水洗を 6回繰り返し た後に濃縮し、 850gの化合物 B1を得た。得られた化合物 B1を HPLC、 NMR分析 した結果、 目的の 2—ヒドロキシェチルメタアタリレートと無水コハク酸の反応生成物 である化合物 B1が得られていることを確認した。
[0240] [化合物 B2の合成]
攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに無水コ ノヽク酸 480g (4. 8mol)、 4 ヒドロキシブチルアタリレート 577g (4mol)、重合禁止 剤としてフエノチアジン 0. 05gを混合し、 110°Cに加温して 5時間反応させた。この反 応生成物を、トルエン 2000gで希釈し、超純水 lOOOgによる水洗を 5回繰り返した後 に濃縮し、 920gの化合物 B2を得た。得られた化合物 B2を HPLC、 NMRで分析し た結果、 目的の 4ーヒドロキシブチルアタリレートと無水コハク酸の反応生成物である 化合物 B2が得られて!/、ることを確認した。
[0241] [化合物 B3の合成]
攪拌機、気体導入管、温度計、冷却管を備えた 2000mlの四つ口フラスコに、無水 コノヽク酸 120g (l . 2mol)、精製した 2 ヒドロキシェチルメタタリレートの 6 へキサノ リド 3モノレ付カロ物 472g (l . Omol)、重合禁止剤としてフエノチアジン 0. 05gを混合し 、 110°Cに加温して 5時間反応させた。精製した 2 ヒドロキシェチルメタタリレートの 6 へキサノリド 3モル付加物とは、市販品の 2 ヒドロキシェチルメタタリレートの 6— へキサノリド 3モル付加物(プラタセル FM3 ダイセル化学 (株)製)のカラム精製物で ある。
この反応生成物を、トルエン 2000gで希釈し、超純水 1000gによる水洗を 10回繰 り返した後に濃縮し、 584gの化合物 B3を得た。得られた化合物 B3を HPLC、 NMR 分析した結果、 目的の力プロラタトン 3モル変性メタタリレートと無水コハク酸との反応 生成物である化合物 B3が得られていることを確認した。
[0242] (b)熱潜在性硬化剤
熱潜在性硬化剤として、 (i) 1,3ビス(ヒドラジノカルボェチル) 5—イソプロピルヒダ ントイン (アミキュア VDH— J 味の素ファインテクノ (株)製)、(ii)アジピン酸ジヒドラジ ド (ADH 日本ファインケム(株)製)の 2種類を適宜選択し、用いた。
[0243] (c)ラジカル重合開始剤
ラジカル重合開始剤としては、光ラジカル重合開始剤として作用する 1ーヒドロキシ シクロへキシル フエニルーケトン(ィルガキュア 184 チバスぺシャリティ 'ケミカル ズ (株)製)を用いた。
[0244] (d)フイラ
フイラとしては、球状シリカ(1次平均粒子径 0· 7 m) (アドマファイン A— 802 アド マテックス (株)製)を用いた。
[0245] (e)エポキシ樹脂
エポキシ樹脂としては、 o クレゾールノポラック型固形エポキシ樹脂(EOCN— 10 20 - 75 日本化薬 (株)製)を用いた。
[0246] (f)アクリル化合物
(f)成分としては、 (i)ビスフエノール A型樹脂のジメタタリレート(エポキシエステル 3 000M 共栄社化学 (株)製)を、トルエン、および超純水を用いて希釈、洗浄を 12回 繰り返すことにより高純度化処理した化合物、(ii)ビスフエノール A、 EO付加物ジァク リレート(ビスコート # 700 大阪有機化学工業 (株)製)を、トルエン、および超純水を 用いて希釈、洗浄を 12回繰り返すことにより高純度化処理した化合物を適宜選択し 、用いた。
[0247] (g)その他の添加剤
添加剤としては、シランカップリング剤として市販されている γ グリシドキシトリメト キシシラン (ΚΒΜ403 信越化学工業 (株)製)を用レ、た。
[0248] また、各実施例および比較例では、液晶シール剤の粘度安定性、液晶シール剤の 接着強度、液晶表示パネルの表示性をそれぞれ測定、評価し、液晶シール剤の特 性を評価した。各測定の詳細を以下に示す。前記液晶シール剤の接着強度は、 (1) 光および熱硬化させた液晶シール剤の接着強度、(2)熱硬化させた液晶シール剤 の接着強度の 2種類を測定、評価した。また、液晶表示パネルの表示性は、サンプ ルとして(1)通常通りに作製した液晶表示パネル、 (2)遮光エリアを付した液晶表示 パネルの表示性、(3)熱硬化のみで作製した液晶表示パネルの表示性、の 3パター ンを測定、評価した。
[0249] [液晶シール剤の粘度安定性]
Ε型粘度計を用いて液晶シール剤の 25°Cにおける粘度値を測定した。粘度測定 時には、液晶シール剤 100質量部をポリエチレン製の容器に入れ、密封した後に、 2 5°Cにて 5日間保管した。続いて、所定期間経過後に、 E型粘度計にて 25°Cの粘度 値を測定した。そして、測定された値を用いて、密封前の粘度値を 100とした場合の 25°C/5日経過後における粘度値の変化率を算出した。このとき、かかる変化率が 2 0%以下の場合を、粘度安定性が高く良好である(〇)とし、 20%を超える変化があつ た場合を、粘度安定性が低く不良である(X )として、液晶シール剤の粘度安定性を 2段階で評価した。
[0250] [液晶シール剤の接着強度]
1.光および熱硬化させた液晶シール剤の接着強度
先ず、 5 mのガラスファイバを 1質量0 /0添加した液晶シール剤を、 25mm X 45m m X厚さ 5mmの無アルカリガラス上に直径 lmmの円状にスクリーン印刷した。次に 、この基板と対となる同様のガラスを十字に貼り合わせてから冶具で固定したところに 、紫外線照射装置(ゥシォ電機 (株)製)を用いて、 100mW/cm2の紫外線を照射し 、液晶シール剤を硬化させた。このとき、紫外線の照度エネルギーを 2000mJとした。
[0251] 光によって液晶シール剤を硬化させた試験片を、オーブンを用いて 120°C、 60分 加熱処理することにより試験片を作製した。完成した試験片の平面引張強度を、引 張試験機 (モデル 210 インテスコ(株)製)を用いて、引張速度を 2mm/分とし、ガ ラス底面に対して平行な方向に引き剥がすことにより平面引張強度を測定した。ここ で、かかる接着強度は、平面引張強度の大きさに応じて 2段階で評価した。すなわち 、引張強度が lOMPa以上となる場合を接着強度が良好である(〇)とし、引張強度 が lOMPa未満となる場合を接着強度が低く劣る( X )とした。
[0252] 2.熱硬化させた液晶シール剤の接着強度
先ず、 5 mのガラスファイバを 1質量0 /0添加した液晶シール剤を、 25mm X 45m m X厚さ 5mmの無アルカリガラス上に直径 lmmの円状にスクリーン印刷し、対となる 同様のガラスを十字に貼り合わせて固定した。次に、この貼り合わせた 2枚の基板を 、オーブンを用いて 120°C、 60分加熱処理し、熱硬化のみで液晶シール剤を硬化さ せることにより試験片を作製した。
[0253] 完成した試験片の平面引張強度を、引張試験機 (モデル 210 インテスコ (株)製) を用いて測定した。このとき、平面引張強度の測定、側定結果の評価は、前述の (A) 光および熱硬化させた液晶シール剤の接着強度で説明した方法と同じとした。
[0254] [液晶表示パネルの表示性]
1.光および熱硬化させて作製した液晶表示パネルの表示性
透明電極および配向膜を付した 40mmX 45mmガラス基板(RT— DM88PIN E HC (株)製)上に、 5 mのガラスファイバを 1質量0 /0添加した液晶シール剤を用レ、て 、 0. 5mmの泉幅、 50 mの厚みで 35mm X 40mmの枠型を描画した。描画には、 ディスぺンサ(ショットマスター 武蔵エンジニアリング (株)製)を用いた。
[0255] 次に、基板同士を貼り合わせ後のパネル内容量に相当する液晶材料 (MLC— 11 900-000 メルク (株)製)を、シールパターンを形成した基板と対となるガラス基板 にデイスペンサにて精密に滴下した。続いて、 90Paの減圧下で、 2枚のガラス基板を 液晶が封止されるように重ね合わせてから、紫外線照射装置 (ゥシォ電機 (株)製)を 用いて、 lOOmW/cm2の紫外線を照射し、液晶シール剤を硬化させた。このとき、 紫外線の照射エネルギーを 2000mJとした。光源には、メタルハライドランプを使用し た。積算光量の測定には、 300〜390nmの測定波長範囲を有し、ピーク感度波長 が 365nmの紫外線積算光量計 (UVR— T35 トプコン (株)製)を用いた。また、光 によって液晶シール剤を硬化させた後には、さらに、 120°C、 60分、加熱処理するこ とにより液晶シール剤を硬化させた。
[0256] 貼り合わされた 2枚の基板の両面に、それぞれ偏向フィルムを貼り付けて液晶表示 パネルとした。この液晶表示パネルに対して、直流電源装置にて 5Vの電圧を駆ける ことにより、液晶表示パネルを駆動させた。このとき、液晶シール剤によって形成され たシール近傍の液晶表示機能が駆動初期から正常に機能するか否かを目視によつ て観察し、所定の基準によって液晶表示パネルの表示性を 2段階で評価した。ここで 、シールの際まで液晶表示機能が発揮されている場合を表示性が良好である(〇)と し、シールの際付近から枠の内側に向かって 0. 3mm以上離れたところまで表示機 能が発揮されてレ、な!/、場合を表示性が著しく悪!/、( X )とした。
[0257] 2.遮光エリアを付した液晶表示パネルの表示性
透明電極および配向膜を付した 40mmX 45mmガラス基板(RT— DM88PIN E CH (株)製)上に、 5 mのガラスファイバを 1質量0 /0添加した液晶シール剤を用レ、て 、 0. 5mmの泉幅、 50 mの厚みで 35mm X 40mmの枠型を描画した。描画には、 ディスぺンサ(ショットマスター 武蔵エンジニアリング (株)製)を用いた。
[0258] 次に、貝占り合わせ後のパネル内容量に相当する液晶材料 (MLC— 11900— 000
メルク(株)製)を、デイスペンサにて精密に滴下した。続いて、 90Paの減圧下で 2 枚のガラス基板を重ね合わせてから、荷重をかけて固定し、さらに、前面となる基板 のシール部分を、アルミテープを用いて紫外線が直接に照射されないように被覆した 。そして、前記液晶表示パネルの測定方法と同じ方法により、液晶シール剤を光およ び熱によって硬化させることにより遮光エリアを付した液晶表示パネルを作製した。
[0259] 完成した液晶表示パネルの表示機能を、前述した「1.光および熱硬化させて作製 した液晶表示パネルの表示性の評価方法」と同じ方法で測定、評価した。ここで、液 晶表示パネルの表示性を評価する基準は前述と同じであるために詳細な説明は省 略する。
[0260] 3.熱硬化のみで作製した液晶表示パネルの表示性
透明電極および配向膜を付した 40mmX 45mmガラス基板(RT— DM88PIN E CH (株)製)上に、 5 mのガラスファイバを 1質量0 /0添加した液晶シール剤を用レ、て 、 0. 5mmの泉幅、 50 mの厚みで 35mm X 40mmの枠型を描画した。描画には、 ディスぺンサ(ショットマスター 武蔵エンジニアリング (株)製)を用いた。
[0261] 次に、貝占り合わせ後のパネル内容量に相当する液晶材料 (MLC— 11900— 000
メルク(株)製)を、デイスペンサにて精密に滴下した。続いて、 90Paの減圧下で 2 枚のガラス基板を重ね合わせてから、オーブンを用いて 120°C、 60分加熱し液晶シ 一ル剤を硬化させた。
[0262] 貼り合わされた 2枚の基板の両面に、それぞれ偏向フィルムを貼り付けて液晶表示 パネルとした。この液晶表示パネルに対して、直流電源装置にて 5Vの電圧をかける ことにより、液晶表示パネルを駆動させた。このとき、液晶シール剤によって形成され たシール近傍の液晶表示機能が駆動初期から正常に機能するか否かを目視によつ て観察し、所定の基準によって液晶表示パネルの表示性を 2段階で評価した。ここで 、液晶表示パネルの表示性を評価する基準は、前述の方法と同じであるために説明 は省略する。
[0263] [実施例 1]
(e)成分として、 o クレゾールノポラックエポキシ樹脂(EOCN— 1020— 75 日本 化薬 (株)製) 5質量部を、高純度処理したエポキシエステル(3000M 共栄社化学( 株)製) 10質量部に加熱溶解させて均一溶液を調製した。冷却されたこの溶液に、 ( a)成分として、化合物 A1を 52質量部、(c)成分として、光ラジカル開始剤として作用 する 1ーヒドロキシ シクロへキシル フエ二ノレ ケトン(ィルガキュア 184 チバスぺ シャティケミカル (株)製) 2質量部、(b)成分として、 1 , 3 ビス(ヒドラジノカルボェチ ノレ)一 5—イソプロピルヒダントイン(アミキュア VDH— J 味の素ファインテクノ (株)製) 10質量部、(d)成分として、球状シリカ(アドマファイン A—8〇2、アドマテックス(株) 製) 20質量部、(g)成分として、 γ—グリシドキシプロピルトリメトキシシラン (KBM40 3 信越化学工業 (株)製) 1質量部を加え、ミキサーで予備混合した。さらに、 3本口 ールで固体原料が 5 m以下になるまで混練し、 目開き 10 mのフィルタ(MSP— 1 0-E10S ADVANTEC (株)製)でろ過した。得られたろ液を真空脱泡処理するこ とによって液晶シール剤 (P1)を調製した。
[0264] [実施例 2]
(a)成分として、化合物 A1の代わりに、化合物 A2を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤 (P2)を調製した。
[0265] [実施例 3]
(a)成分として、化合物 A1の代わりに、化合物 A3を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤 (P3)を調製した。
[0266] [実施例 4]
(a)成分として、化合物 A1の代わりに、化合物 A4を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤 (P4)を調製した。
[0267] [実施例 5]
(e)成分として、 o クレゾールノポラックエポキシ樹脂(EOCN— 1020— 75 日本 化薬 (株)製) 5質量部を、高純度処理したエポキシエステル(3000M 共栄社化学( 株)製) 24質量部に加熱溶解させて均一溶液を調製した。冷却されたこの溶液に、 ( a)成分として、化合物 A2を 20質量部、(c)成分として、光ラジカル重合開始剤として 作用する 1ーヒドロキシ シクロへキシル フエ二ノレ ケトン(ィルガキュア 184 チバ スぺシャティケミカル (株)製) 5質量部、(b)成分として、 1 , 3—ビス(ヒドラジノカルボ ェチル)ー5—イソプロピルヒダントイン(アミキュア VDH— J 味の素ファインテクノ(株 )製)15質量部、(d)成分として、球状シリカ(アドマファイン A— 802 アドマテックス( 株)製) 30質量部、および (g)その他の添加剤として、 γ リシドキシプロピルトリメト キシシラン (ΚΒΜ403 信越化学工業 (株)製) 1質量部を加え、ミキサーで予備混合 した。続けて、 3本ロールを用いて固体原料が 5 m以下になるまで混練した後に、 目開き 10 ^ mのフィルタ(MSP— 10— E10S ADVANTEC (株)製)で混練物をろ 過した。得られたろ液を真空脱泡処理することによって液晶シール剤 (P5)を調製し た。
[0268] [実施例 6]
(e)成分として、 O クレゾールノポラックエポキシ樹脂(EOCN— 1020— 75 日 本化薬 (株)製) 6質量部を、高純度処理したエポキシエステル(3000M 共栄社化 学 (株)製) 6質量部に加熱溶解させて、均一溶液を調製した。冷却されたこの溶液に 、(a)成分として、化合物 A2を 9質量部、化合物 A5を 26質量部、化合物 A— 6を 26 質量部、(c)成分として、光ラジカル重合開始剤として作用する 1—ヒドロキシ一シクロ へキシル—フエニル ケトン(ィルガキュア 184 チバスぺシャティケミカル(株)製) 2 質量部、(b)成分として、 1 , 3—ビス(ヒドラジノカルボェチル) 5—イソプロピルヒダ ントイン (アミキュア VDH— J 味の素ファインテクノ (株)製) 10質量部、(d)成分とし て、球状シリカ(アドマファイン A— 802、アドマテックス社製) 14質量部、および(g) 成分として、 γ—グリシドキシプロピルトリメトキシシラン (KBM403 信越化学工業( 株)製) 1質量部を加え、ミキサーで予備混合した。続けて、 3本ロールを用いて固体 原料が 5 m以下になるまで混練した後に、この混練物を目開き 10 mのフィルタ( MSP- 10-E10S ADVANTEC (株)製)でろ過した。得られたろ液を真空脱泡 処理することにより液晶シール剤 (P6)を調製した。
[0269] [実施例 7]
(a)成分として、化合物 A2を 81質量部、(b)成分として、 1 , 3 ビス(ヒドラジノカル ボェチル)一 5—イソプロピルヒダントイン(アミキュア VDH— J 味の素ファインテクノ( 株)製) 10質量部、(d)成分として、球状シリカ(アドマファイン A— 802 アドマテック ス (株)製) 8質量部、および (g)成分として、 γ—グリシキシプロピルトリメトキシシラン (ΚΒΜ403 信越化学工業 (株)製) 1質量部を、ミキサーで予備混合した。続けて、 3本ロールを用いて固体原料が 5 m以下になるまで混練した後に、この混練物を目 開き lO ^ mのフィルタ(MSP— 10— E10S ADVANTEC (株)製)でろ過した。得 られたろ液を真空脱泡処理することによって液晶シール剤 (P7)を調製した。
[0270] [実施例 8]
(e)成分として、 o クレゾールノポラックエポキシ樹脂(EOCN— 1020— 75 日本 化薬 (株)製) 5質量部を、(f)成分である高純度処理したビスフエノール A、 EO付加 物ジアタリレート(ビスコート #V700 大阪有機化学工業 (株)製) 10質量部に加熱 溶解させて均一溶液とした。冷却されたこの溶液に、(a)成分として、化合物 A7を 52 質量部、(c)成分として、光ラジカル重合開始剤として作用する 1—ヒドロキシ一シクロ へキシル—フエニル ケトン(ィルガキュア 184 チバスぺシャティケミカル(株)製) 2 質量部、(b)成分として、アジピン酸ジヒドラジド(アミキュア ADH 日本ファインケム( 株)製) 10質量部、(d)成分として、球状シリカ(アドマファイン A— 802 アドマテック ス (株)製) 20質量部、および (g)成分として、 γ—グリシドキシプロピルトリメトキシシ ラン (ΚΒΜ403 信越化学工業 (株)製) 1質量部を加えて、ミキサーで予備混合した 。続けて、 3本ロールを用いて固体原料が 5 m以下になるまで混練した後に、この 混練物を目開き 10 mのフィルタ(MSP— 10— E10S ADVANTEC (株)製)でろ 過した。得られたろ液を真空脱泡処理することによって液晶シール剤 (P8)を調製し た。
[0271] [実施例 9]
(a)成分として、化合物 A1の代わりに、化合物 A8を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤 (P9)を調製した。
[0272] [実施例 10]
(a)成分として、化合物 A1の代わりに、化合物 A9を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤 (P10)を調製した。 [0273] [実施例 11]
(a)成分として、化合物 A1の代わりに、化合物 A10を 52質量部用いた以外は、す ベて実施例 1と同様にして液晶シール剤(P11)を調製した。
[0274] [実施例 12]
(e)成分として、 o—クレゾールノポラックエポキシ樹脂(EOCN— 1020— 75 日本 化薬 (株)製) 15質量部を、高純度処理したビスフエノール A、 EO付加物ジァクリレー ト(ビスコート #V700 大阪有機化学工業 (株)製) 22質量部に加熱溶解させて均一 溶液とし、さらに冷却した。冷却された溶液に、(a)成分として、化合物 A7を 20質量 部、(c)成分として、光ラジカル開始剤として作用する 1—ヒドロキシ一シクロへキシル —フエ二ル―ケトン(ィルガキュア 184 チバスぺシャティケミカノレ(株)製) 2質量部、( b)成分として、アジピン酸ジヒドラジド(アミキュア ADH 日本ファインケム (株)製) 15 質量部、(d)成分として、球状シリカ(アドマファイン A— 802 アドマテックス (株)製) 25質量部、および(g)成分として、 Ί—グリシドキシプロピルトリメトキシシラン (ΚΒΜ 403 信越化学工業 (株)製) 1質量部を加えて、ミキサーで予備混合した。続けて、 3 本ロールを用いて固体原料が 5 πι以下になるまで混練した後に、この混練物を目 開き lO ^ mのフィルタ(MSP— 10— E10S ADVANTEC (株)製)でろ過した。得 られたろ液を真空脱泡処理することによって液晶シール剤 (P12)を調製した。
[0275] [比較例 1]
(a)成分として、化合物 A1の代わりに、化合物 A5を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤(Q1)を調製した。
[0276] [比較例 2]
(a)成分として、化合物 A1の代わりに、化合物 A6を 52質量部用いた以外は、すべ て実施例 1と同様にして液晶シール剤 (Q2)を調製した。
[0277] [比較例 3]
(a)成分として、化合物 A1の代わりに、化合物 A5を 26質量部および化合物 A6を 26質量部用いた以外は、すべて実施例 1と同様にして液晶シール剤(Q3)を調製し た。
[0278] [比較例 4] (a)成分として、実施例 1で用いた化合物 Alとエポキシエステル 3000Mとの代わり に、エポキシエステル 3000Mを 62質量部用いた以外は実施例 1と同様にして液晶 シール剤 (Q4)を調製した。
[0279] [比較例 5]
(a)成分として、化合物 A7の代わりに、下記の合成法によって合成した化合物 C1 を 52質量部用いた以外はすべて実施例 8と同様にして液晶シール剤(Q5)を調製し た。
[0280] [化合物 C1の合成]
攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコにビスフエ ノール A型エポキシ樹脂(ェピクロン 850CRP 大日本インキ化学工業社製)を 175g 、メタクリル酸を 43g、触媒としてトリエタノールアミンを 0· 2g、重合禁止剤としてヒドロ キノンモノメチルエーテルを 0. 2g混合し、乾燥空気を吹き込みながら、混合物を 110 °C、 5時間加熱攪拌することにより化合物 C1を得た。この得られた化合物 C1は、超 純水で 12回洗浄処理を繰り返した。化合物 C1を HPLC、 NMR分析した結果、ェポ キシ基の 50%がメタクリロイル変性されたビスフエノール A型エポキシ樹脂であること を確認した。また、化合物 C1を FD— MS分析した結果、数平均分子量は 426であつ た。
[0281] [比較例 6]
(a)成分として、化合物 A7の代わりに、下記の合成法によって合成した化合物 C2 を 52質量部用いた以外は、すべて実施例 8と同様にして液晶シール剤(Q6)を調製 した。
[0282] [化合物 C2の合成]
攪拌機、気体導入管、温度計、冷却管を備えた 500mlの四つ口フラスコにビスフエ ノール A型エポキシ樹脂(ェピクロン 850CRP 大日本インキ化学工業社製)を 175g 、アクリル酸を 37g、触媒としてトリエタノールアミンを 0· 2g、重合禁止剤としてヒドロキ ノンモノメチルエーテル 0. 2gを混合した。乾燥空気を吹き込みながら、混合物を 110 °C、 12時間加熱攪拌して化合物 C2を得た。得られた化合物 C2は、超純水で 12回 洗浄処理を繰り返した。化合物 C2を HPLC、 NMR分析した結果、エポキシ基の 50 %がアタリロイル変性されたビスフエノール A型エポキシ樹脂であることを確認した。ま た、化合物 C2を FD— MS分析した結果、数平均分子量は 412であった。
[0283] [比較例 7]
(a)成分として、化合物 A1の代わりに、前記化合物 C1を 26質量部、化合物 C2を 2 6質量部用いた以外は、すべて実施例 1と同様にして液晶シール剤(Q7)を調製した
[0284] [比較例 8]
実施例 8で用いた化合物 A7の代わりに、ビスフエノール A型エポキシ樹脂のジァク リレートであるエポキシエステル(3000A 共栄社化学 (株)製)を 52質量部用いた以 外は、すべて実施例 8と同様にして液晶シール剤 (Q8)を調製した。
[0285] 実施例;!〜 12、比較例 1〜8で得られた液晶シール剤による各評価結果を、表 1、 2 に纏めて示す。
[0286] [表 1]
Figure imgf000071_0001
L£ L90/L00Zd /lDd VL £686蘭 OOZ OAV
Figure imgf000073_0001
[0288] 表 1、 2に示されたように、本発明に力、かる液晶シール剤 P1〜P12を適用した液晶 シール剤は、上記の粘度安定性、接着強度、およびそれを用いた液晶表示パネル のシール近傍の表示性、遮光エリアのシール近傍の表示性の各項目において、良 好な評価結果が確認された。さらに、力、かる液晶シール剤を熱のみで硬化させた場 合にも、接着強度が高ぐかつ液晶表示パネルの表示性が優れていることが確認さ れ 。
[0289] これに対して、比較例 1〜6のように、(メタ)アクリル基およびエポキシ基を併せ持つ た化合物ではある力 数平均分子量が 500を下回る化合物を原料とした液晶シール 剤は、いずれも粘度安定性が低ぐまたシール近傍に液晶の表示ムラが発生したた めに表示性が低ぐ各実施例よりも劣ることが確認された。また、比較例 4, 8のように 、本発明の構造とは異なるメタアクリル化エポキシ樹脂を原料とした液晶シール剤は 、いずれも粘度安定性および接着強度ともに低ぐ著しく劣っていることが確認された
産業上の利用可能性
[0290] 本発明の液晶シール剤は粘度安定性や硬化性が高く良好である。そのために、シ ールパターンの線幅が細くなつたり、デイスペンサなどの装置に液晶シール剤を入れ 替える回数が増えたりする可能性が低く抑えられるので、歩留まりを上げて液晶表示 パネルを硬化時間の短縮を図りながら製造できる。また、力、かる液晶シール剤は、液 晶に対する溶解度が低く抑えられているので、液晶滴下方式にも好適である。
[0291] 本出願は、 2006年 9月 7日出願の出願番号 JP2006— 243057、JP2006— 2430 59、および 2006年 12月 26日出願の出願番号 JP2006— 350198、JP2006— 350 317に基づく優先権を主張する。これらの出願明細書に記載された内容は、すべて 本願明細書に援用される。

Claims

請求の範囲
[1] (a)分子内に (メタ)アタリロイル基およびグリシジル基を有し、数平均分子量が 500 〜2000である化合物と、
(b)熱潜在性硬化剤と、
(c)ラジカル重合開始剤と、
(d)フイラと、を含む液晶シール剤。
[2] 前記(a)成分が、下記の一般式 (I)で表される化合物である請求項 1に記載の液晶 シール剤。
[化 1]
Figure imgf000075_0001
[前記一般式 (I)中の、
R 〜R はそれぞれ独立して水素原子またはメチル基を表し、ただし R と R の両
11 16 13 14 方がメチル基であることはなぐかつ R と R の両方がメチル基になることはなく;
15 16
X および X はそれぞれ独立して炭素数 1〜; 10のアルキレン基または下記一般式
11 12
(I 1)で表される基を表し;
X および X はいずれか一方が炭素数 1〜; 10のアルキレン基、他の一方が下記
13 14
一般式 (I 2)で表される基を表し;
Aは下記一般式(I 3a)、 (I 3b)または(I 3c)で表される基を表し; Pはそれぞれ独立して水素原子、炭素数 1〜; 10のアルキル基、炭素数 1〜; 10のァ ルコキシ基、またはニトロ基を表し;
a、 bおよび cはそれぞれ独立して 0〜3の整数を表し、 dが 1〜3の整数を表し、 mが
0〜4の整数を表し、ここで a + b + c + d + m= 6であり、かつ a、 bおよび cのすべてが
0になることはなく; jが 0または 1の整数、 kおよび 1が 0〜; 10の整数をそれぞれ表す]
[化 2]
Figure imgf000076_0001
[前記一般式 (I 1)中の
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
21 22
Y は前記一般式 (I)中のアタリロイル基の
21 oと結合し、
nは 1〜 10の整数を表す]
[化 3コ ο o
― C-丫 3广 C- O— Yw— ■ ·■ (ト 2)
[前記一般式(I 2)中の、
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
31 32
Y は前記一般式 (I)中のアタリロイル基の oと結合する]
32
[化 4]
Figure imgf000076_0002
[前記一般式 (I 3a)中の、
R および R はそれぞれ独立して炭素数 1〜4のアルキル基、炭素数
41 42
コキシ基またはニトロ基を表し、
Zは単結合、 O 基、 S 基、 SO—基、 C (R ) (R )一基、または下記
2 43 44
の一般式 (tl)で示される基を表し、ここで R および R はそれぞれ独立して水素原
43 44
子、炭素数 1〜4のアルキル基またはフエ二ル基を表し、
rおよび sはそれぞれ独立して 0〜4の整数を表す] [化 5]
Figure imgf000077_0001
[化 6]
(ト 3b)
Figure imgf000077_0002
[前記一般式 (I 3b)中の、
R 、R 、R 、および R はそれぞれ独立して水素原子、炭素数 1'
51 52 53 54
基、炭素数 1〜4のアルコキシ基またはニトロ基を表す]
[化 7]
Figure imgf000077_0003
[前記一般式 (I 3c)中の、
R および R はそれぞれ独立して水素原子または炭素数 1〜4のアルキル基を表
61 62
す]
[3] 前記一般式 (I)で表される化合物が、分子内に、 1個以上のアタリロイル基と、メタク リロイル基と、エポキシ基とを併せ持つ 1種以上の化合物である請求項 1に記載の液 晶シール剤。
[4] 前記(a)成分が、(i)分子内に 3または 4個のグリシジル基を有するエポキシ化合物 と、(ii)カルボキシル基を有する(メタ)アクリル酸誘導体とを反応させて得られる(メタ) アタリロイル基、およびグリシジル基を有する化合物である請求項 1に記載の液晶シ
—ル剤 o
[5] 前記 (i)成分が、下記一般式 (i— 1)、 (i— 2)、 (i— 3)、または (i— 4)で表される化 合物である請求項 4に記載の液晶シール剤。
[化 8]
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000078_0003
[化 11]
Figure imgf000079_0001
[前記一般式 (i 4)中の、
R は水素原子または炭素数 1〜; L0のアルキル基を表し、
81
R は水素原子またはメチル基を表す]
82
[6] 前記 (ii)成分が、アクリル酸、メタクリル酸、下記の一般式 (ίί 1)、または一般式 (ίί
2)で表される化合物である請求項 4に記載の液晶シール剤。
[化 12]
)
Figure imgf000079_0002
R91
[前記一般式(ii 1)中の
R は水素原子またはメチル基を表し、
91
X は炭素数 1〜; 10のアルキレン基または下記の一般式 (t2)で表される基を表し
41
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表す]
42
[化 13]
Figure imgf000079_0003
[前記一般式(t2)中の、
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し
51 52
Y は前記一般式 (ii 1)中のアタリロイル基の oと結合しており、
51
nは 1〜10の整数を表す] [化 14]
' · · (ϋ— 2〉
Figure imgf000080_0001
[前記一般式(ii 2)中の
R および R はそれぞれ独立して水素原子またはメチル基を表し、
92 93
X は下記の一般式 (t3)で表される基を表し、 X は炭素数 1〜; 10のアルキレン基
61 62
を表し、
X は炭素数 1〜20のアルキレン基または炭素数 2〜6のァルケ二レン基を表し、
63
iおよび jはそれぞれ独立して 0または 1の整数を表す]
[化 15]
0 o
—— C-Y71-C-O-Y72— '■ · (t 3 )
[前記一般式 (t3)中の、
Y および Y はそれぞれ独立して炭素数 1〜; 10のアルキレン基を表し、
71 72
CO基は前記一般式 (ii 2)中のアタリロイル基の Oと結合する]
[7] (e)エポキシ樹脂または (f )アクリル化合物の!/、ずれか一方をさらに含む請求項 1に 記載の液晶シール剤。
[8] 前記 (c)成分が、光ラジカル重合開始剤である請求項 1に記載の液晶シール剤。
[9] 前記 (c)成分が、熱ラジカル重合開始剤である請求項 1に記載の液晶シール剤。
[10] 前記(a)成分の含有量力 液晶シール剤 100質量部に対して 5〜90質量部である 請求項 1に記載の液晶シール剤。
[11] 対向する 2枚の基板を、液晶シール剤を介して貼り合わせることにより製造される液 晶表示パネルの製造方法にお!/、て、
請求項 1に記載の液晶シール剤によって画素配列領域が包囲されるように形成さ れた枠状の表示領域を有する 1枚以上の基板を準備する工程と、 未硬化状態の前記表示領域内、またはもう一方の基板の上に液晶を滴下する工程 と、
前記液晶が滴下された基板と、もう一方の基板とを重ね合わせる工程と、 前記 2枚の基板に挟まれた液晶シール剤に対して光および熱、あるいは光または 熱の!/、ずれか一方を与える工程と、
を含む液晶表示パネルの製造方法。
前記 11に記載の液晶表示パネルの製造方法により得られる液晶表示パネル。
PCT/JP2007/067437 2006-09-07 2007-09-06 Agent d'étanchéité pour cristaux liquides, procédé de fabrication de panneau d'affichage à cristaux liquides utilisant l'agent d'étanchéité pour cristaux liquides, et panneau d'affichage à cristaux liquides WO2008029893A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097007123A KR101060877B1 (ko) 2006-09-07 2007-09-06 액정 실링제, 그것을 사용한 액정 표시 패널의 제조 방법 및 액정 표시 패널
JP2008533205A JP5184361B2 (ja) 2006-09-07 2007-09-06 液晶シール剤、およびそれを用いた液晶表示パネルの製造方法、ならびに液晶表示パネル
KR1020117003259A KR101049998B1 (ko) 2006-09-07 2007-09-06 액정 실링제, 그것을 사용한 액정 표시 패널의 제조 방법 및 액정 표시 패널
CN2007800331021A CN101512421B (zh) 2006-09-07 2007-09-06 液晶密封剂、使用其的液晶显示面板的制造方法、以及液晶显示面板
HK09110181.9A HK1132335A1 (en) 2006-09-07 2009-11-02 Liquid crystal sealing agent, method for manufacturing liquid crystal display panel using the liquid crystal sealing agent, and liquid crystal display panel

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-243057 2006-09-07
JP2006-243059 2006-09-07
JP2006243059 2006-09-07
JP2006243057 2006-09-07
JP2006-350198 2006-12-26
JP2006350317 2006-12-26
JP2006-350317 2006-12-26
JP2006350198 2006-12-26

Publications (1)

Publication Number Publication Date
WO2008029893A1 true WO2008029893A1 (fr) 2008-03-13

Family

ID=39157319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067437 WO2008029893A1 (fr) 2006-09-07 2007-09-06 Agent d'étanchéité pour cristaux liquides, procédé de fabrication de panneau d'affichage à cristaux liquides utilisant l'agent d'étanchéité pour cristaux liquides, et panneau d'affichage à cristaux liquides

Country Status (6)

Country Link
JP (2) JP5184361B2 (ja)
KR (2) KR101060877B1 (ja)
CN (2) CN101914349B (ja)
HK (2) HK1132335A1 (ja)
TW (2) TWI473829B (ja)
WO (1) WO2008029893A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179796A (ja) * 2006-12-26 2008-08-07 Mitsui Chemicals Inc (メタ)アクリロイル基およびグリシジル基を有する化合物、および当該化合物を含む重合性組成物
WO2009128470A1 (ja) * 2008-04-18 2009-10-22 積水化学工業株式会社 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子
JP2010199174A (ja) * 2009-02-24 2010-09-09 Univ Of Tokyo 金属と樹脂との接着方法、及びそれを用いた回路形成部品の製法、並びに回路形成部品
JP2013041063A (ja) * 2011-08-12 2013-02-28 Sekisui Chem Co Ltd 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
JP2013257568A (ja) * 2008-03-26 2013-12-26 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5490726B2 (ja) * 2009-07-13 2014-05-14 株式会社Adeka 液晶滴下工法用シール剤
JP2015036712A (ja) * 2013-08-12 2015-02-23 株式会社ジャパンディスプレイ 液晶表示パネルの製造方法
WO2017183583A1 (ja) * 2016-04-20 2017-10-26 積水化学工業株式会社 液晶表示素子用シール剤、液晶表示素子用シール剤の製造方法、上下導通材料、及び、液晶表示素子
WO2019013154A1 (ja) * 2017-07-14 2019-01-17 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP7127990B2 (ja) 2016-12-15 2022-08-30 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2023176843A1 (ja) * 2022-03-18 2023-09-21 積水化学工業株式会社 液晶表示素子用シール剤及び液晶表示素子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757522B2 (ja) * 2011-07-22 2015-07-29 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
WO2013024844A1 (ja) * 2011-08-18 2013-02-21 積水化学工業株式会社 エポキシ化合物、エポキシ化合物の混合物、硬化性組成物及び接続構造体
JP5598642B1 (ja) 2013-11-13 2014-10-01 Dic株式会社 液晶表示装置
JP6535002B2 (ja) * 2014-07-17 2019-06-26 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
WO2016013214A1 (ja) * 2014-07-24 2016-01-28 三井化学株式会社 液晶シール剤、および液晶表示パネルの製造方法
KR101811645B1 (ko) 2014-08-01 2017-12-26 디아이씨 가부시끼가이샤 액정 표시 장치
CN107710060B (zh) * 2016-01-26 2021-11-12 积水化学工业株式会社 液晶显示元件用密封剂、上下导通材料及液晶显示元件
JP6235766B1 (ja) * 2016-05-13 2017-11-22 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6601634B2 (ja) * 2017-03-31 2019-11-06 協立化学産業株式会社 変性樹脂及びそれを含む硬化性樹脂組成物
JP6601633B2 (ja) * 2017-03-31 2019-11-06 協立化学産業株式会社 (メタ)アクリレート樹脂及びそれを含む硬化性樹脂組成物
JP2020105238A (ja) * 2018-12-26 2020-07-09 Dic株式会社 液晶組成物及び液晶表示素子
CN116909061A (zh) * 2021-03-19 2023-10-20 三井化学株式会社 液晶密封剂、液晶显示面板的制造方法及液晶显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095759A (ja) * 1995-06-22 1997-01-10 Matsushita Electric Ind Co Ltd 液晶シール材及び液晶表示装置
JP2005037792A (ja) * 2003-07-18 2005-02-10 Shin Etsu Chem Co Ltd 液晶表示素子用シール剤組成物
JP2005054164A (ja) * 2003-07-24 2005-03-03 Sekisui Chem Co Ltd 光熱硬化性樹脂組成物、液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置
JP2005179657A (ja) * 2003-11-28 2005-07-07 Shin Etsu Chem Co Ltd 液晶表示装置用シール剤組成物
JP2006039096A (ja) * 2004-07-26 2006-02-09 Three Bond Co Ltd 液晶表示装置用組成物
WO2006120998A1 (ja) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583198B2 (en) * 1997-11-28 2003-06-24 Hitachi Chemical Company, Ltd. Photo curable resin composition and photosensitive element
JP3583326B2 (ja) * 1999-11-01 2004-11-04 協立化学産業株式会社 Lcdパネルの滴下工法用シール剤
JP2006124698A (ja) * 2001-05-16 2006-05-18 Sekisui Chem Co Ltd 硬化性樹脂組成物、表示素子用シール剤及び表示素子用封口剤
CN100449379C (zh) * 2002-09-19 2009-01-07 三井化学株式会社 液晶密封剂组合物及使用它的液晶显示板的制造方法
JP2004143383A (ja) * 2002-10-28 2004-05-20 Nikko Materials Co Ltd 固形シランカップリング剤組成物、その製造方法およびそれを含有する樹脂組成物
US7438958B2 (en) * 2002-11-01 2008-10-21 Mitsui Chemicals, Inc. Sealant composition for liquid crystal and process for producing liquid-crystal display panel with the same
JP2004189942A (ja) * 2002-12-12 2004-07-08 Shin Etsu Chem Co Ltd シリコーン変性アクリレート系樹脂および光硬化型樹脂組成物
JP4576928B2 (ja) * 2003-08-29 2010-11-10 チッソ株式会社 光学活性な液晶性化合物、組成物及びそれらの重合体
JP2005195978A (ja) * 2004-01-08 2005-07-21 Sekisui Chem Co Ltd 液晶表示素子用硬化性樹脂組成物、液晶表示素子用シール剤及び上下導通材料
JP4668538B2 (ja) * 2004-02-20 2011-04-13 積水化学工業株式会社 硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
WO2005085943A1 (ja) * 2004-03-09 2005-09-15 Sekisui Chemical Co., Ltd. 液晶滴下工法用遮光シール剤、上下導通材料、及び、液晶表示素子
JP4241452B2 (ja) * 2004-03-18 2009-03-18 三井化学株式会社 光硬化性樹脂組成物およびこれを含む液晶シール剤組成物
JP4405325B2 (ja) * 2004-06-23 2010-01-27 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
JP3857281B2 (ja) * 2004-07-08 2006-12-13 積水化学工業株式会社 液晶表示素子用硬化性樹脂組成物
JP2008003260A (ja) * 2006-06-21 2008-01-10 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP5109324B2 (ja) * 2006-10-10 2012-12-26 Dic株式会社 シール剤用光硬化性組成物、液晶シール剤、及び液晶パネル
JP5153123B2 (ja) * 2006-11-20 2013-02-27 三井化学株式会社 液晶滴下工法用シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
JP5172321B2 (ja) * 2006-12-26 2013-03-27 三井化学株式会社 液晶シール剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095759A (ja) * 1995-06-22 1997-01-10 Matsushita Electric Ind Co Ltd 液晶シール材及び液晶表示装置
JP2005037792A (ja) * 2003-07-18 2005-02-10 Shin Etsu Chem Co Ltd 液晶表示素子用シール剤組成物
JP2005054164A (ja) * 2003-07-24 2005-03-03 Sekisui Chem Co Ltd 光熱硬化性樹脂組成物、液晶表示素子用シール剤、液晶表示素子用封口剤、液晶表示素子用上下導通材料及び液晶表示装置
JP2005179657A (ja) * 2003-11-28 2005-07-07 Shin Etsu Chem Co Ltd 液晶表示装置用シール剤組成物
JP2006039096A (ja) * 2004-07-26 2006-02-09 Three Bond Co Ltd 液晶表示装置用組成物
WO2006120998A1 (ja) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179796A (ja) * 2006-12-26 2008-08-07 Mitsui Chemicals Inc (メタ)アクリロイル基およびグリシジル基を有する化合物、および当該化合物を含む重合性組成物
JP5508001B2 (ja) * 2008-03-26 2014-05-28 積水化学工業株式会社 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2013257567A (ja) * 2008-03-26 2013-12-26 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2013257568A (ja) * 2008-03-26 2013-12-26 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JPWO2009128470A1 (ja) * 2008-04-18 2011-08-04 積水化学工業株式会社 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子
JP2011059700A (ja) * 2008-04-18 2011-03-24 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子
KR101194202B1 (ko) 2008-04-18 2012-10-25 세키스이가가쿠 고교가부시키가이샤 액정 적하 공법용 시일제, 액정 패널용 봉구제, 상하 도통 재료 및 액정 표시 소자
CN102007447B (zh) * 2008-04-18 2013-01-23 积水化学工业株式会社 液晶滴下工艺用密封剂、液晶面板用封口剂、上下导通材料及液晶显示元件
JP4616404B2 (ja) * 2008-04-18 2011-01-19 積水化学工業株式会社 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子
WO2009128470A1 (ja) * 2008-04-18 2009-10-22 積水化学工業株式会社 液晶滴下工法用シール剤、液晶パネル用封口剤、上下導通材料及び液晶表示素子
JP2010199174A (ja) * 2009-02-24 2010-09-09 Univ Of Tokyo 金属と樹脂との接着方法、及びそれを用いた回路形成部品の製法、並びに回路形成部品
JP5490726B2 (ja) * 2009-07-13 2014-05-14 株式会社Adeka 液晶滴下工法用シール剤
JP2013041063A (ja) * 2011-08-12 2013-02-28 Sekisui Chem Co Ltd 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
JP2015036712A (ja) * 2013-08-12 2015-02-23 株式会社ジャパンディスプレイ 液晶表示パネルの製造方法
WO2017183583A1 (ja) * 2016-04-20 2017-10-26 積水化学工業株式会社 液晶表示素子用シール剤、液晶表示素子用シール剤の製造方法、上下導通材料、及び、液晶表示素子
JPWO2017183583A1 (ja) * 2016-04-20 2019-02-21 積水化学工業株式会社 液晶表示素子用シール剤、液晶表示素子用シール剤の製造方法、上下導通材料、及び、液晶表示素子
JP7053262B2 (ja) 2016-04-20 2022-04-12 積水化学工業株式会社 液晶表示素子用シール剤の製造方法
JP7127990B2 (ja) 2016-12-15 2022-08-30 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2019013154A1 (ja) * 2017-07-14 2019-01-17 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JPWO2019013154A1 (ja) * 2017-07-14 2020-05-07 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP7053471B2 (ja) 2017-07-14 2022-04-12 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2023176843A1 (ja) * 2022-03-18 2023-09-21 積水化学工業株式会社 液晶表示素子用シール剤及び液晶表示素子
JP7402382B1 (ja) 2022-03-18 2023-12-20 積水化学工業株式会社 液晶表示素子用シール剤及び液晶表示素子

Also Published As

Publication number Publication date
TW200825113A (en) 2008-06-16
HK1132335A1 (en) 2010-02-19
TWI473829B (zh) 2015-02-21
TW201329128A (zh) 2013-07-16
CN101512421A (zh) 2009-08-19
KR20090067159A (ko) 2009-06-24
HK1148300A1 (en) 2011-09-02
CN101914349A (zh) 2010-12-15
KR101049998B1 (ko) 2011-07-19
JPWO2008029893A1 (ja) 2010-01-21
JP2013130873A (ja) 2013-07-04
JP5184361B2 (ja) 2013-04-17
CN101914349B (zh) 2014-03-19
CN101512421B (zh) 2011-05-11
KR101060877B1 (ko) 2011-08-31
JP5624634B2 (ja) 2014-11-12
KR20110036112A (ko) 2011-04-06
TWI405785B (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2008029893A1 (fr) Agent d'étanchéité pour cristaux liquides, procédé de fabrication de panneau d'affichage à cristaux liquides utilisant l'agent d'étanchéité pour cristaux liquides, et panneau d'affichage à cristaux liquides
JP5172321B2 (ja) 液晶シール剤
JP4548415B2 (ja) 紫外線硬化型組成物
JP4224526B1 (ja) 液晶シール剤、ならびにこれに用いられる(メタ)アクリル酸エステル化合物およびその製造方法
TWI387618B (zh) 液晶密封劑及液晶面板
JPWO2004090621A1 (ja) 液晶シール剤およびそれを用いた液晶表示セル
WO2008016122A1 (fr) Matière d'étanchéité pour cristaux liquides, procédé pour la production d'écrans à cristaux liquides avec celle-ci et écrans à cristaux liquides
JP5571436B2 (ja) 液晶シール剤、それを用いた液晶表示パネルの製造方法、及び液晶表示パネル
JP2008088167A (ja) (メタ)アクリロイル基およびグリシジル基を含有する化合物、当該化合物を含む重合性組成物、ならびに当該化合物の製造方法に関する。
JP4241452B2 (ja) 光硬化性樹脂組成物およびこれを含む液晶シール剤組成物
JP5736613B2 (ja) 低溶出性エポキシ樹脂及びその部分エステル化エポキシ樹脂、その製造方法、並びにそれを含む硬化性樹脂組成物
JP6310852B2 (ja) グリシジルエーテル系化合物、液晶シール剤及びグリシジルエーテル系化合物の製造方法
TWI336417B (ja)
JP2007297470A (ja) 硬化性組成物、その硬化物、液晶表示素子用シール剤、液晶表示素子、及びビニル基含有エポキシ樹脂
JP4845667B2 (ja) 液晶シール剤、それを用いた液晶表示パネルの製造方法及び液晶表示パネル
KR20140043789A (ko) 신규 (메트)아크릴 수지 및 그것을 사용한 수지 조성물
JP5748273B2 (ja) 液晶シール剤及びそれを用いた液晶表示セル
JP5032340B2 (ja) 液晶シール剤およびこれを用いた液晶パネルの製造方法
JP2006039096A (ja) 液晶表示装置用組成物
JP5897679B2 (ja) 低溶出性エポキシ樹脂及びその部分エステル化エポキシ樹脂、その製造方法、並びにそれを含む硬化性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033102.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533205

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097007123

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07806878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020117003259

Country of ref document: KR