WO2008029714A1 - Roulement à rouleaux, structure de support d'arbre à cames, et moteur à combustion interne - Google Patents

Roulement à rouleaux, structure de support d'arbre à cames, et moteur à combustion interne Download PDF

Info

Publication number
WO2008029714A1
WO2008029714A1 PCT/JP2007/066942 JP2007066942W WO2008029714A1 WO 2008029714 A1 WO2008029714 A1 WO 2008029714A1 JP 2007066942 W JP2007066942 W JP 2007066942W WO 2008029714 A1 WO2008029714 A1 WO 2008029714A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
roller bearing
camshaft
ring member
oil
Prior art date
Application number
PCT/JP2007/066942
Other languages
English (en)
French (fr)
Inventor
Shinji Oishi
Akihiko Katayama
Yugo Yoshimura
Katsufumi Abe
Hiroki Tsuchiyama
Noriaki Fujii
Tomoya Fujimoto
Keiko Yoshida
Kiminori Komura
Kazuto Abe
Original Assignee
Ntn Corporation
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006238432A external-priority patent/JP4948095B2/ja
Priority claimed from JP2006238429A external-priority patent/JP5133539B2/ja
Priority claimed from JP2006238433A external-priority patent/JP4948096B2/ja
Priority claimed from JP2006238426A external-priority patent/JP5234705B2/ja
Priority claimed from JP2006238427A external-priority patent/JP5234706B2/ja
Application filed by Ntn Corporation, Honda Motor Co., Ltd. filed Critical Ntn Corporation
Priority to EP07806419.3A priority Critical patent/EP2060807B1/en
Priority to US12/310,676 priority patent/US8132550B2/en
Priority to ES07806419.3T priority patent/ES2683331T3/es
Publication of WO2008029714A1 publication Critical patent/WO2008029714A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L1/0532Camshafts overhead type the cams being directly in contact with the driven valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4694Single-split roller or needle cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • F16C2240/82Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD
    • F16C2240/84Degree of filling, i.e. sum of diameters of rolling elements in relation to PCD with full complement of balls or rollers, i.e. sum of clearances less than diameter of one rolling element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Definitions

  • the present invention relates to a roller bearing for supporting a camshaft, a crankshaft, a rocker shaft and the like for an automobile engine, a camshaft support structure adopting the roller bearing, and an internal combustion engine.
  • a camshaft support structure employed in conventional internal combustion engines for automobiles and motorcycles is described in, for example, Japanese Patent Application Laid-Open No. 2005-90696.
  • the camshaft support structure described in the same publication includes a cam lobe 201a, a cam shaft 201 having a cylindrical journal portion 201b supported by roller bearings 202, and an end large diameter portion 201c. And a plurality of rollers 203, substantially semi-cylindrical holders 204 and 205, and substantially semi-cylindrical race plates 206 and 207, and a cam shaft 201. And a roller bearing 202 rotatably supporting the housing with respect to the housing.
  • the outer diameter of the journal portion 201b is smaller than the maximum diameter of the outer diameter of the cam lobe 201a and the outer diameter of the end large diameter portion 201c. Therefore, the roller bearing 202, which is disposed in the journal portion 201b and rotatably supports the camshaft 201, can not be engaged with the cam shaft 201 in the axial direction.
  • the roller bearing 202 has a plurality of rollers 203, a substantially semi-cylindrical holding body 204, 205 divided in the circumferential direction, and a circumference placed between the cylinder head 208 and the cap 209. And substantially semi-cylindrical race plates 206 and 207 which are bisected in the direction. Further, referring to FIG. 45, the race plate 207 has two protrusions 207a projecting radially outward at both ends in the circumferential direction, and the cap 209 has a recess 209a corresponding to the protrusion 207a.
  • the race plates 206, 207 having the above-described configuration are generally manufactured by pressing a steel plate such as a cold-rolled steel plate (SPC). Further, after forming into a predetermined shape, heat treatment is performed to obtain predetermined mechanical properties such as hardness.
  • SPC cold-rolled steel plate
  • the projection 207a is formed by pushing the radially outer surface by applying a force to the radially inner surface of the race plate 207 in the radial direction.
  • a recess is formed on the inner diameter surface of the race plate 207 which is the raceway surface of the roller 203. This causes vibration to occur when the roller 203 passes over the depression, and causes the surface of the roller 203 to be peeled off early, which hinders smooth rotation of the roller 203.
  • lubricating oil flows into the roller bearing 202 from oil holes (not shown) provided in the race plates 206 and 207 or oil holes (not shown) provided in the camshaft 201.
  • oil holes not shown
  • oil holes not shown
  • oil holes not shown
  • the flow of lubricating oil inside the force bearing is interrupted by the cages 204 and 205, so that it can not be evenly supplied to the entire area of the bearing.
  • the camshaft 201 has an oil passage (not shown) extending axially inward and a portion from the oil passage to the journal portion 201b. A plurality of oil holes (not shown) extending toward the surface are provided.
  • the housing is formed with a plurality of oil supply passages (not shown) and oil grooves (not shown) for supplying lubricating oil from the outside at a position facing the journal portion 201b. The lubricating oil supplied from the oil supply passage provided in the housing flows through the oil groove, the oil hole of the camshaft 201, and the oil passage and is distributed to each part.
  • the oil supply passage of the housing is provided with the roller bearing 202.
  • a part of the lubricating oil supplied to the inside flows out of the gap to the outside of the bearing, and the amount of lubricating oil reaching the oil hole of the camshaft 201 decreases.
  • the amount of lubricating oil which flows through the oil passage and is distributed to the respective parts is also reduced, and the overall lubricity is also reduced.
  • a load biased in a predetermined direction is applied to the camshaft 201 at the time of rotation, an area to which a relatively large load is applied in the circumferential direction (hereinafter referred to as a “load area”) And areas where only relatively small loads are applied (hereinafter referred to as “unloaded areas”). Therefore, it is desirable that lubricating oil supplied from the oil supply channel of the housing be supplied to the load area in a large amount.
  • Another object of the present invention is to provide a roller bearing that supports a camshaft or the like of an automobile engine, and has improved retention of lubricating oil.
  • a roller bearing as a bearing for supporting a camshaft
  • Another object of the present invention is to provide a shaft for supporting a camshaft or the like of an automobile engine.
  • An object of the present invention is to provide a roller bearing which is excellent in lubricity.
  • the roller bearing according to the present invention includes an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • An oil groove extending in the circumferential direction is formed on the outer diameter surface of the outer ring member.
  • roller bearing of the above configuration it is not necessary to form an oil groove on the inner diameter surface of the housing. As a result, it is possible to reduce the number of manufacturing steps and the manufacturing cost of the housing.
  • the circumferential gap formed in the abutment portion of the adjacent outer ring members is relatively small in the other region which is relatively large in the region including the oil groove.
  • the lubricating oil force flowing through the oil groove is forced to flow axially through the circumferential gap between the adjacent outer ring members by the force S.
  • the outer ring member has a hook that protrudes radially inward from the axial end, and a bent that extends axially inward from the tip of the hook.
  • the inner diameter surface of the bent portion functions as a seal surface that prevents the outflow of the lubricating oil from the inner portion of the bearing.
  • the gap ⁇ between the inner diameter surface of the bent portion and the virtual circle inscribed in the plurality of rollers satisfies 5 ⁇ 111 ⁇ 50111.
  • the roller bearing further includes an annular member at a position in contact with the inner diameter surface of the bent portion to prevent the outflow of lubricating oil from the inside of the bearing. This makes it possible to more effectively prevent the outflow of the lubricating oil.
  • the roller has a protrusion projecting from the end face, the outer diameter surface of the bent portion functions as a roller guide for guiding the protrusion, and the rollers are adjacent to each other.
  • a full-roller type bearing arranged to touch.
  • the roller bearing of the above configuration can guide the rotation of the roller by the bent portion. Therefore, the present invention is particularly suitable for a full roller type roller bearing.
  • the load capacity of the roller bearings is increased by adopting the full-roller type.
  • the outer ring member has a collar portion projecting radially inward at an axial end thereof, and a relatively low rigidity reduced portion having a relatively low rigidity at at least a circumferential end of the collar portion. It is provided.
  • the protrusion height of the buttocks at the reduced rigidity portion is lower than the protrusion height of the buttocks in other regions.
  • a holder for holding an interval between adjacent rollers is provided.
  • the cage has an oil passage penetrating in the radial direction.
  • the cage has a pair of ring portions, a plurality of column portions disposed between the pair of ring portions, and a pocket for receiving a roller between adjacent column portions.
  • the oil passage is provided at the column. More preferably, the column further includes an oil groove that circumferentially communicates the adjacent pockets.
  • the cage has a plurality of independent pocket portions for accommodating the rollers, and a connecting portion for circumferentially connecting the plurality of pocket portions, and the oil passage is an adjacent pocket portion Provided between the
  • the retainer has two axially arranged rows of pockets for accommodating the rollers, and an oil passage is provided between the two pocket rows.
  • a camshaft support structure includes a camshaft, a housing for accommodating the camshaft, and a roller bearing for rotatably supporting the camshaft with respect to the housing.
  • An opening of an oil passage through which lubricating oil flows is provided in a region of the housing which accommodates the camshaft.
  • the roller bearing includes an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • An oil groove extending in the circumferential direction is formed on the outer diameter surface of the outer ring member, including the position facing the opening of the oil passage.
  • the camshaft support structure of the above configuration by forming the oil groove in the outer diameter surface of the outer ring member, the number of manufacturing steps and the manufacturing cost of the housing can be reduced.
  • the outer ring member can be manufactured by a progressive press or the like, so adding the oil groove forming process easily does not result in a significant cost increase.
  • roller bearing of the above configuration a certain degree of clearance is provided in the butt portion of the adjacent outer ring members in consideration of manufacturing errors, thermal expansion and the like.
  • the lubricating oil supplied from the oil passage of the housing can also flow into the bearing from this gap, so a camshaft support structure with more excellent lubricity as compared to a bearing using an integral outer ring. You can get
  • the oil groove is formed by coining. By using coining to form oil grooves, high-precision processing becomes possible.
  • the outer ring member is divided into a central region in which a raceway surface in contact with the rollers is formed on the inner diameter surface, and an end region adjacent to the central region, and the oil groove is in the end region. It will be deployed. Thus, by forming the oil groove at a position out of the track surface, smooth rotation of the roller can not be inhibited.
  • An internal combustion engine comprises a housing, a cylinder provided in the housing, a valve for opening and closing an intake passage and an exhaust passage communicating with the cylinder, and a camshaft for controlling the opening and closing timing of the valve. And a roller bearing rotatably supporting the camshaft.
  • the area for housing the housing camshaft is provided with an oil passage opening through which the lubricating oil flows.
  • the roller bearing includes an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • An oil groove extending in the circumferential direction is formed on the outer diameter surface of the outer ring member, including the position facing the opening of the oil passage.
  • camshaft support structure of the above configuration By employing the camshaft support structure of the above configuration, it is possible to obtain an internal combustion engine that is excellent in lubricity and high in reliability.
  • the roller bearing according to the present invention includes an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • the outer ring member has a collar portion that protrudes radially inward from an axial end, and a bent portion that extends inward in the tip force axial direction of the collar portion.
  • the inner diameter surface of the bent portion functions as a seal surface that prevents the outflow of lubricating oil from the inside of the bearing.
  • the lubricating oil inside the bearing is also provided by providing a flange portion projecting radially inward at the axial end of the outer ring member and a bent portion formed by bending the tip of the flange portion inward in the axial direction. It is possible to prevent outflow from the axial clearance. By this, it is possible to obtain a roller bearing with excellent lubricity by force S.
  • the gap ⁇ between the inner diameter surface of the bent portion and the virtual circle inscribed in the plurality of rollers satisfies 5 ⁇ 111 ⁇ 6 ⁇ 50 m.
  • the roller bearing further includes an annular member at a position in contact with the inner diameter surface of the bent portion to prevent the outflow of lubricating oil from the inside of the bearing. This makes it possible to more effectively prevent the outflow of the lubricating oil.
  • the roller has a protrusion projecting from the end face, the outer diameter surface of the bent portion functions as a roller guide for guiding the protrusion, and the rollers are adjacent to each other. It is a full-roller type bearing arranged to contact with.
  • the roller bearing of the above configuration can guide the rotation of the roller by the bent portion. Therefore, the present invention is particularly suitable for a full roller type roller bearing.
  • the load capacity of the roller bearings is increased by adopting the full-roller type.
  • a camshaft support structure includes a camshaft, a housing for accommodating the camshaft, and a roller bearing for rotatably supporting the camshaft with respect to the housing.
  • Ru Focusing on the roller bearing, it comprises an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • the outer ring member has a flange portion projecting radially inward from an axial end, and a bent portion formed by bending the tip of the flange portion inward in the axial direction.
  • the inner diameter surface of the bent portion functions as a seal surface that prevents the outflow of lubricating oil from the inside of the bearing.
  • An internal combustion engine comprises a housing, a cylinder provided in the housing, a valve for opening and closing an intake passage and an exhaust passage communicating with the cylinder, and a camshaft for controlling the opening and closing timing of the valve. And a roller bearing rotatably supporting the camshaft. Focusing on the roller bearing, an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction is provided, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • the outer ring member has an axial end portion force, a collar portion projecting radially inward, and a bent portion formed by bending the tip end of the collar portion inward in the axial direction.
  • the inner diameter surface of the bent portion functions as a seal surface that prevents the outflow of lubricating oil from the inside of the bearing.
  • roller bearing and camshaft support structure By employing the roller bearing and camshaft support structure according to the present invention, it is possible to obtain an internal combustion engine which is excellent in lubricity and high in reliability.
  • the retention property of the lubricating oil of the roller bearing is improved by preventing the outflow of the lubricating oil from the gap in the axial direction of the roller bearing. Further, by adopting such a roller bearing as a bearing for supporting a camshaft, a highly reliable and highly reliable camshaft supporting structure and an internal combustion engine can be obtained.
  • the roller bearing according to the present invention includes an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • the outer ring member has a flange portion projecting radially inward at its axial end, and at least a circumferentially lower end of the flange is provided with a relatively low rigidity reduced portion .
  • the protruding height of the buttocks at the reduced rigidity portion is different in other regions.
  • the height is lower than the protruding height of the ridge.
  • the gap between the outer ring member and the camshaft is reduced by providing the flange portion at the axial end of the outer ring member.
  • the retention of the lubricating oil is improved, and a roller bearing having excellent lubricity can be obtained.
  • the ridge portion restricts the axial movement of the retainer with a force S.
  • the rigidity of the outer ring member is improved by bending the axial end portion of the outer ring member to form the collar portion.
  • the circumferential end of the outer ring member may attack the inner peripheral surface of the housing, which may cause an impression (wear) on the housing. If this wear powder intrudes into the inside of the roller bearing, the lubricating oil may be deteriorated at an early stage, or the raceway surface of the outer ring member or the rolling surface of the roller may be damaged to significantly reduce the lubricity of the roller bearing. Therefore, for example, by setting the protruding height of the ridge at the circumferential end of the outer ring member relatively lower than the other portions, the rigidity of the circumferential end is reduced to avoid such a problem. can do.
  • a camshaft support structure includes a camshaft, a housing for accommodating the camshaft, and a roller bearing for rotatably supporting the camshaft with respect to the housing. Focusing on the roller bearing, it comprises an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • the outer ring member has a flange portion projecting radially inward at an axial end thereof, and a relatively low rigidity reduced portion is provided at least at a circumferential end of the flange.
  • An internal combustion engine comprises a housing, a cylinder provided in the housing, a valve for opening and closing an intake passage and an exhaust passage communicating with the cylinder, and a camshaft for controlling the opening and closing timing of the valve. And a roller bearing rotatably supporting the camshaft. Focusing on the roller bearing, an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction is provided, and a plurality of rollers disposed along the inner diameter surface of the outer ring. Then, the outer ring member has a collar portion projecting radially inward at the axial end portion, and at least a circumferentially rigid end portion of the collar portion is provided with a relatively low rigidity / low rigidity portion. It's done!
  • the roller bearing As described above, it is possible to obtain a highly reliable and highly reliable cam shaft support structure and an internal combustion engine.
  • the lubricating oil retaining property of the roller bearing is improved by providing the flange portion on the outer ring member.
  • the reduced rigidity portion at the circumferential end, it is possible to prevent the circumferential end of the outer ring member from damaging the housing.
  • roller bearing as a bearing for supporting a camshaft, a highly reliable and highly reliable camshaft support structure and an internal combustion engine can be obtained.
  • a camshaft support structure includes a camshaft, a housing for accommodating the camshaft, and a roller bearing for rotatably supporting the camshaft with respect to the housing.
  • An opening of an oil passage through which lubricating oil flows is provided in a region of the housing which accommodates the camshaft.
  • the roller bearing has an arc-shaped outer ring member having an oil hole penetrating from the outer diameter side to the inner diameter side at a position facing the opening of the oil passage, and a collar portion protruding radially inward from the axial end. And a plurality of rollers disposed along the inner diameter surface of the outer ring.
  • the camshaft has a load region on the circumferential direction in which a large load acts when the bearing is used, and a non-load region in which a relatively small load acts when the bearing is used.
  • the flange portion located in the load area when incorporated is provided with an axially penetrating opening.
  • the roller bearing having the above configuration can restrict the axial movement of the cage by providing the flange portion at the axial end of the outer ring member, and can prevent the movement between the outer ring member and the camshaft. Since the gap is reduced, the retention of lubricating oil is improved. In addition, by providing the opening at the flange located in the load area, the lubricating oil inside the bearing mainly flows out from here, so that it is possible to supply the lubricating oil to the load area in a focused manner. As a result, by adopting such a roller bearing, a highly reliable and highly reliable camshaft support structure can be obtained.
  • the opening is arranged at a position deviated from an imaginary line extending in the direction of the maximum load applied to the roller bearing from the camshaft.
  • the rigidity of the roller bearing is reduced to some extent in the area where the opening is provided. Therefore, by providing the opening avoiding the position where the maximum load is applied, the influence of the reduction in rigidity can be reduced.
  • An internal combustion engine comprises a housing, and a cylinder provided in the housing. It has a valve that opens and closes an intake passage and an exhaust passage that communicate with a cylinder, a camshaft that controls the opening and closing timing of the valve, and a roller bearing that rotatably supports the camshaft.
  • the area for housing the housing camshaft is provided with an oil passage opening through which the lubricating oil flows.
  • the roller bearing has an arc-shaped outer ring member having an oil hole penetrating from the outer diameter side to the inner diameter side at a position facing the opening of the oil passage, and a collar portion protruding radially inward from the axial end.
  • the camshaft has a load region on the circumferential direction where a large load acts when the bearing is used, and a non-load region where a relatively small load acts when the bearing is used, and the outer ring member is assembled to the camshaft
  • An axial penetrating opening is provided in the heel portion which is located in the load area when it is folded.
  • camshaft support structure of the above configuration By employing the camshaft support structure of the above configuration, it is possible to obtain an internal combustion engine that is excellent in lubricity and high in reliability.
  • the lubricating oil retaining property of the roller bearing is improved by providing the flange portion on the outer ring member. Further, by providing an opening at the ridge portion located in the load area, it becomes possible to intensively supply lubricating oil to the load area. As a result, the lubricity and cooling of the roller bearings are improved.
  • a roller bearing as a bearing for supporting a camshaft, it is possible to obtain a highly durable and highly reliable camshaft supporting structure and an internal combustion engine.
  • an outer ring formed by connecting a plurality of arc-shaped outer ring members in the circumferential direction, a plurality of rollers disposed along the inner diameter surface of the outer ring, and an interval between adjacent rollers And a holder for holding the The cage has an oil passage penetrating in the radial direction.
  • the present invention As described above, by dividing the outer ring into a plurality of outer ring members, it is possible to apply the present invention to a place where the bearing can not be inserted from the axial direction, like a camshaft. Further, by providing the oil passage penetrating in the radial direction in the cage, the lubricating oil flowing into the roller bearing is uniformly supplied to the entire bearing, so it is possible to obtain a roller bearing having excellent lubricity.
  • the cage has a pair of ring portions, a plurality of column portions disposed between the pair of ring portions, and a pocket for accommodating a roller between adjacent column portions.
  • the oil passage is provided at the column. More preferably, the pillars have oil grooves circumferentially communicating the adjacent pockets. Have.
  • the cage has a plurality of independent pocket portions for accommodating the rollers, and a connecting portion for connecting the plurality of pocket portions in the circumferential direction, and the oil passage is an adjacent pocket portion Provided between the
  • the retainer has two axially arranged rows of pockets for accommodating the rollers, and an oil passage is provided between the two pocket rows.
  • the outer ring member has engaging claws which are bent radially outward to engage the housing at circumferential ends. This can prevent the outer ring from rotating in the housing when the bearing rotates.
  • roller bearing which can be reliably positioned within the housing of the outer ring member and which is excellent in lubricity.
  • FIG. 1 is a view showing a state prior to installation of a camshaft support structure according to an embodiment of the present invention.
  • FIG. 2 is a view showing an outer ring member of a roller bearing according to an embodiment of the present invention.
  • FIG. 3 It is the figure seen from the III direction of FIG.
  • FIG. 4 It is the figure seen from IV direction of FIG.
  • FIG. 5 is an enlarged view of a butting portion of adjacent outer ring members.
  • FIG. 6 is a side view of a cage of a roller bearing according to an embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view including the divided portion of the retainer of FIG.
  • FIG. 8 is an enlarged view of a butt portion when the outer ring member of FIG. 2 is abutted.
  • FIG. 9 is an axial sectional view of the state after the cam shaft support structure of FIG. 1 is assembled.
  • FIG. 10 A sectional view of the state after the installation of the camshaft support structure of FIG. 1 viewed from the radial direction.
  • FIG. 11 The cage of the roller bearing according to one embodiment of the present invention
  • FIG. 6 is a view showing an example of an oil passage penetrating in the radial direction.
  • FIG. 12 is a view of a cage of a roller bearing according to an embodiment of the present invention as viewed from the outer side in the radial direction, showing an example in which oil grooves are provided on the outer diameter surface of a ring portion.
  • Garden 13 A view of a cage of a roller bearing according to an embodiment of the present invention as viewed from the outer side in the radial direction, showing another example of an oil passage penetrating in the radial direction.
  • FIG. 16 is a view showing a part of the manufacturing process of the outer ring member according to the embodiment of the present invention.
  • the upper part is a plan view, and the lower part is a sectional view.
  • FIG. 23 is a cross-sectional view taken along line XXIII-XXIII of FIG.
  • FIG. 24 A view also showing the XXIV direction force of FIG.
  • FIG. 25 It is the figure which also looked at XXV direction force of FIG.
  • FIG. 26 is an axial sectional view of the camshaft support structure of FIG. 21 after installation;
  • FIG. 27 is a cross-sectional view as seen in the radial direction of the state after the cam shaft support structure of FIG. 21 has been assembled; The lower part is a cross-sectional view.
  • Garden 29 is a view showing a state before a cam shaft support structure according to another embodiment of the present invention is incorporated.
  • FIG. 31 This is a cross-sectional view of the state after the incorporation of the camshaft support structure of Fig. 29, viewed from the axial direction.
  • FIG. 32 A sectional view of the state after the incorporation of the camshaft support structure of FIG. 29, viewed from the radial direction.
  • FIG. 33 is a view showing a part of the manufacturing process of the outer ring member of FIG. 30, wherein the upper part is a plan view and the lower part is a cross-sectional view.
  • FIG. 34 is a view showing an outer ring member employed in a roller bearing according to another embodiment of FIG. 30.
  • FIG. 35 is a view showing a state before a cam shaft support structure according to another embodiment of the present invention is installed.
  • FIG. 36 is a view showing an outer ring member of the roller bearing of FIG. 35.
  • FIG. 37 This is a sectional view of the state after the cam shaft support structure of Fig. 35 is assembled, as viewed from the axial direction.
  • FIG. 38 A sectional view of the state after the installation of the camshaft support structure of FIG.
  • FIG. 39 is a view showing an outer ring member according to another embodiment of FIG. 36.
  • FIG. 40 is a view showing a part of the manufacturing process of the outer ring member of FIG. 36, wherein the upper part is a plan view and the lower part is a cross-sectional view.
  • FIG. 41 is a cross-sectional view showing a cylinder of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 42 is a view showing a crankshaft employed in the internal combustion engine of FIG. 41.
  • FIG. 43 is a view showing a cam shaft employed in the internal combustion engine of FIG. 41.
  • FIG. 44 is a view showing a conventional camshaft support structure.
  • FIG. 45 is an enlarged view of a race plate and a cap of the roller bearing of FIG.
  • FIGS. 41 to 43 An internal combustion engine 11 according to an embodiment of the present invention will be described with reference to FIGS. 41 to 43.
  • FIG. 41 is a cross-sectional view showing one of the cylinders of the internal combustion engine 11 according to one embodiment of the present invention
  • FIG. 42 is a view showing a crankshaft 15 used in the internal combustion engine 11
  • an internal combustion engine 11 includes a cylinder block 12 and a cylinder head 13 as housings, a motion conversion mechanism for converting reciprocating motion into rotational motion, and an air-fuel mixture Intake and exhaust mechanism for intake and exhaust of combustion gas, and spark plug as an igniter 2
  • the motion conversion mechanism is accommodated in a cylinder block 12 and is moved via a piston 14 reciprocating within the cylinder 12 a provided in the cylinder block 12, a flywheel (not shown), and a clutch (not shown). And a connecting rod connected at one end to the piston 14 and at the other end to the crankshaft 15 to convert the reciprocating motion of the piston 14 into the rotational motion of the crankshaft 15 And
  • the intake / exhaust mechanism is formed in the cylinder head 13 and communicates with the cylinder 12a.
  • the intake valve 17 has a nozzle stem 17a, a valve head 17b provided at one end of the valve stem 17a, and a valve spring 17c that biases the intake valve 17 in a direction to close the intake passage 13a.
  • a camshaft 19 is connected to the other end of the valve stem 17a.
  • the exhaust valve 18 has the same configuration as the intake valve 17, and thus the description thereof is omitted.
  • crankshaft 15 used in internal combustion engine 11 has crank pin 15c for arranging connecting rod 16 between shaft portion 15a, crank arm 15b and adjacent crank arm 15b. And.
  • the crankshaft 15 is rotatably supported by a needle roller bearing 21 according to an embodiment of the present invention, which will be described later.
  • the number of crank pins 15c is the same as the number of cylinders of the internal combustion engine 11!
  • camshaft 19 used in internal combustion engine 11 includes a shaft 19a and a plurality of cams 19b.
  • the shaft portion 19a is rotatably supported by a needle roller bearing 21 according to an embodiment of the present invention described later.
  • the camshaft 19 is connected to the crankshaft 15 by a timing belt (not shown), and rotates as the crankshaft 15 rotates.
  • the cam 19b Since the cam 19b is connected to the intake valve 17 or the exhaust valve 18, respectively, The same number of valves 17, 18 will be provided. Further, as shown in FIG. 41, the cam 19b includes a relatively large major diameter portion 19c and a relatively small diameter minor diameter portion 19d, and as shown in FIG. The position of the major diameter portion 19c is shifted in the circumferential direction. As a result, the valves 17 and 18 connected to each of the plurality of cams 19 b are shifted in timing and opened and closed, resulting in force S open.
  • a camshaft 19 is disposed on the upper side of the cylinder head 13, and a DOHC (Double Over Head Camshaft) system in which a force, an intake valve 17 side and an exhaust valve 18 side are provided respectively.
  • DOHC Double Over Head Camshaft
  • the internal combustion engine 11 moves between the most raised position (top dead center) and the most lowered position (bottom dead center) in the cylinder 12 a of the internal combustion engine 11 as one step, It is a four-stroke engine that consists of four steps: intake, compression, combustion and exhaust.
  • air mixture refers to a mixture of air (oxygen) and atomized gasoline.
  • the spark plug 20 is ignited with the intake valve 17 and the exhaust valve 18 closed.
  • the compressed air-fuel mixture burns rapidly as it burns, and pushes the piston 14 from top dead center to bottom dead center.
  • Driving force is generated by transmitting this force as rotational motion to crank shaft 15 via connecting rod 16.
  • the driving force is generated only in the combustion step, and in the other steps, the piston 14 reciprocates by the driving force generated in the other cylinder. Therefore, to maintain smooth rotation of the crankshaft 15, it is desirable to shift the timing of the combustion stroke with multiple cylinders! /.
  • FIGS. 1 to 10 a needle roller bearing 21 as a roller bearing according to an embodiment of the present invention, and a cam shaft support structure using the needle roller bearing 21 will be described.
  • 1 and 8 to 10 show the states before and after installation of the camshaft support structure according to an embodiment of the present invention
  • FIGS. 2 to 7 are needle roller bearings according to an embodiment of the present invention
  • Fig. 21 is a diagram illustrating each component of 21.
  • a cam shaft support structure includes a cam shaft 19, a cylinder head 13 as a housing for housing the cam shaft 19, a bearing cap 13 c, and a cam And a needle roller bearing 21 rotatably supporting the shaft 19 with respect to the housing.
  • Needle roller bearing 21 includes an outer ring 22 formed by connecting a plurality of arc-shaped outer ring members 22 a and 22 b in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of outer ring 22. Needle roller 23 and a retainer 24 having a dividing line extending in the axial direction of the bearing at one point on the circumference and holding a plurality of needle rollers 23 at intervals.
  • a needle roller bearing 21 is generally employed as a bearing for supporting the camshaft 19.
  • the needle roller bearing 21 has an advantage that high load capacity and high rigidity can be obtained although the projected area of the bearing is small because the needle roller 23 and the raceway surface are in linear contact. Therefore, it is preferable in that the radial thickness dimension of the support portion can be reduced while maintaining the load capacity.
  • the outer ring member 22a will be described with reference to FIGS. 2 is a side view of the outer ring member 22a, FIG. 3 is a view of FIG. 2 viewed from the direction III, FIG. 4 is a view of FIG. 2 viewed from the direction IV, and FIG. 5 is a view of the adjacent outer ring members 22a and 22b. It is an enlarged view of a mating part. Further, since the outer ring member 22b has the same shape as the outer ring member 22a, the description will be omitted.
  • outer ring member 22a has a semicircular shape with a central angle of 180 °, and has engaging claws 22c bent radially outward at one end in the circumferential direction and And a flange 22d projecting radially inward from both axial ends.
  • the engagement claws 22c engage with the cylinder head 13 to prevent the outer ring member 22a from rotating relative to the housing.
  • the flange portion 22 d restricts the axial movement of the retainer 24 and improves the lubricating oil retention of the bearing.
  • the two outer ring members 22a and 22b are connected in the circumferential direction to form an annular outer ring 22.
  • the axial center portion of the inner diameter surface of the outer ring 22 functions as a raceway surface of the needle roller 23.
  • two engaging claws 22c are provided on both end portions in the axial direction at one circumferential end of outer ring member 22a, and two engaging claws 22c are provided.
  • a substantially V-shaped recess 22e recessed in the circumferential direction is formed between them.
  • the two engaging claws 22c are disposed on a straight line parallel to the rotation axis of the needle roller bearing 21 at both ends apart from the axial center portion which is the raceway surface of the outer ring member 22a. That is, the length L between the two engaging claws 22c is set to be longer than the effective length of the needle roller 23.
  • the effective length of the roller refers to the length of the chamfered portion at both ends from the roller length.
  • two flat portions 22 f having the same width as the axial direction width of the engaging claws 22 c at both axial direction end portions at the other circumferential end of the outer ring member 22 a, Between the two flat portions 22f, a substantially V-shaped convex portion 22g whose tip is arc-shaped and protrudes in the circumferential direction is provided.
  • the recess 22e receives the projection 22g of the adjacent outer ring member when the outer ring members 22a and 22b are connected in the circumferential direction.
  • the needle roller 23 can be smoothly rotated by making the shape of the abutting portion substantially V-shaped.
  • the shape of the abutting portion of the outer ring members 22a and 22b is not limited to the substantially V shape, but may be any shape that allows the needle roller 23 to rotate smoothly, for example, a substantially W shape.
  • a central portion in the axial direction is circular.
  • An oil groove 22i extending in the circumferential direction and an oil hole 22h penetrating from the outer diameter side to the inner diameter side are provided on the bottom wall of the oil groove 22i.
  • the oil groove 22i is provided so as to include the position facing the opening of the oil passage provided in the housing (not shown), and the lubricating oil supplied from the opening passes through the oil groove 22i to be oil It flows into the inside of the bearing from the abutment part of the hole 22h and the adjacent outer ring members 22a and 22b.
  • clearances are provided circumferentially in the abutment portions of adjacent outer ring members 22a and 22b in consideration of thermal expansion and manufacturing errors of outer ring members 22a and 22b.
  • the circumferential gap is set to be relatively small in the other region which is relatively large in the region including the oil groove 22i.
  • the circumferential clearance at the axially central portion is large, and the circumferential clearance at both axial ends is small.
  • the circumferential gap in the region including the oil groove 22i By increasing the circumferential gap in the region including the oil groove 22i, the amount of lubricating oil flowing into the inside of the bearing is increased. As a result, the lubricity of the needle roller bearing 21 is improved. On the other hand, by reducing the circumferential gap in the region where oil groove 22i is not formed, it is possible to suppress the lubricating oil from flowing out in the axial direction through the gap.
  • the circumferential clearances in the region including oil groove 22i and the other regions may be constant depending on the place where it is required.
  • the circumferential gap in the axially central portion gradually decreases toward the largest axial end portions, and has the same size outside the oil groove 22i.
  • FIG. 6 is a side view of the cage 24 and FIG. 7 is a partial cross-sectional view including divided portions of the cage 24.
  • the cage 24 is a substantially C-shape having a dividing line extending in the axial direction of the bearing at one point on the circumference, and a pocket 24c for accommodating the needle rollers 23. Are set at equal intervals in the circumferential direction.
  • the cage 24 is formed by injection molding of a resin material.
  • a recess 24d is provided on the cut end surface 24a on one side in the circumferential direction of the divided portion, and a protrusion 24e corresponding to the recess 24d is provided on the cut end surface 24b on the other side.
  • the engagement of the convex portion 24 e makes it possible to obtain a ring-shaped retainer 24.
  • the width of the opening portion of the concave portion 24d where the width of the tip end portion of the convex portion 24e is larger than that of the root portion is set smaller than that of the deepest portion.
  • the needle rollers 23 are incorporated in each of the pockets 24 c of the retainer 24.
  • the elasticity of the cage 24 is used to unfold the divided portion and incorporate it into the camshaft 19. Further, the recess 24d and the protrusion 24e are engaged to prevent the retainer 24 from being detached.
  • the outer ring member 22a on one side, the camshaft 19 wound and fixed by holding the retainer 24, the outer ring member 22b on the other side, and the bearing cap 13c are assembled in this order.
  • the head 13 and the bearing cap 13c are fixed by bolts or the like.
  • the concave portion 22e of the outer ring member 22a and the convex portion 22g of the outer ring member 22b, and the convex portion 22g of the outer ring member 22a and the concave portion 22e of the outer ring member 22b respectively abut.
  • the engagement claws 22c of the outer ring member 22a are arranged to engage with the engagement grooves 13d provided on the abutment surface with the bearing cap 13c of the cylinder head 13, and the engagement claws of the outer ring member 22b 22c is arranged to engage with an engagement groove 13d provided on the abutting surface of the bearing cap 13c with the cylinder head 13.
  • the outer ring members 22a and 22b can be prevented from rotating inside the housing during the rotation of the bearings.
  • the abutment surface between the cylinder head 13 and the bearing cap 13 c is a surface parallel to the axial direction of the cam shaft 19, that is, the rotation axis of the bearing. Therefore, by arranging the two engaging claws 22c provided on the circumferential end of the outer ring members 22a and 22b in a straight line parallel to the rotation axis of the needle roller bearing 21, the engaging claws 22c can be mounted on the cylinder head. It can be engaged between 13 and bearing cap 13c.
  • the rotation direction of camshaft 19, ie, the revolution direction of needle roller 23, and the projection direction of convex portion 22g of outer ring members 22a and 22b are It is arranged to match. As a result, the needle roller 23 can rotate smoothly.
  • needle roller 23 When the revolution direction of needle roller 23 is reverse to the projecting direction of convex portion 22g of outer ring members 22a and 22b, needle roller 23 is at the tip of convex portion 22g of outer ring members 22a and 22b at the time of bearing rotation. It is because there is a possibility that a collision may generate vibration or the needle roller 23 may be broken.
  • the cylinder head 13 as a housing and the bearing cap 13c
  • An opening 13e of an oil passage for supplying lubricating oil to the area for accommodating the shaft 19 is provided.
  • the cam shaft 19 is formed with an oil passage 19e axially extending inward and an oil hole 19f extending from the oil passage 19e toward the shaft 19a. Therefore, when the needle roller bearing 21 is incorporated, the oil groove 22i formed on the outer diameter surface of the outer ring members 22a and 22b is disposed to face the opening 13e.
  • the camshaft 19, the outer ring 22, the cage 24, the nose, and the housing are concentrically arranged, and the needle roller 23 can be stably rotated.
  • the ability to obtain roller bearing 21 can be S.
  • the needle roller bearing 21 having the above configuration divides the outer ring 22 into two outer ring members 22a and 22b, and divides the cage 24 at one location in the circumferential direction. Since it becomes possible to incorporate it, it is possible to adopt it as a bearing that supports the camshaft 19 with a force S.
  • the oil hole 22h or the adjacent outer ring member 22a, 22 via an oil groove 22i supplied from the opening 13e. It flows into the bearing from the butt portion 22b, and is further distributed to each part through an oil hole 19f of the camshaft 19 and an oil passage 19e.
  • Butt portion, and the path from the opening 13e to the oil path of the housing through the oil groove 22i, and from the opening 13e to the oil path 22i from the opening 13e to the oil path of the housing A return route etc. can be considered.
  • the oil groove 22i is formed on the outer diameter surface of the outer ring members 22a and 22b, and a gap in which the lubricating oil flows between the housing and the needle roller bearing 21 is provided, whereby the lubricity is excellent.
  • the oil hole 22h in the oil groove 22i it is not necessary to align the position of the opening 13e of the housing with the oil hole 22h, so that the incorporation property is improved and the versatility of the bearing is enhanced. According to the present invention, higher effects can be expected by adopting the split-type outer ring 22 in which a gap is generated in the abutting portion.
  • the oil holes 22 h provided in the outer ring members 22 a and 22 b, the lubricating oil that has flowed in is provided on the camshaft 19 through the inside of the needle roller bearing 21. It is discharged from oil hole 19f.
  • the lubricating oil can not pass smoothly through the bearing, the lubricating oil accumulated in the bearing flows out from between the outer ring members 22 a and 22 b and the camshaft 19 to the outside, and the needle roller bearing 21 Does not contribute to lubrication.
  • the basic configuration of the cage shown in FIG. 15 is common to the cage 24 shown in FIGS. 6 and 7, so the description of the common points will be omitted, and the differences will be mainly described.
  • cage 114 has a pair of ring portions 115 a and 115 b and a plurality of pillars between the pair of ring bars 115 a and 115 b, and a pillar I 16
  • the left and right rings I 15a and 115b are connected to form an integral cage 114.
  • the cutting portions 114a and 114b are provided at one place of the rings 115a and 115b, and 114c is formed between adjacent pillars.
  • the column portion 116 is provided with an oil groove 117 communicating the adjacent portions 114c in the circumferential direction, and an oil passage 118 penetrating the column portion 116 in the radial direction.
  • the oil groove 117 is formed by recessing an outer diameter surface at the axial center of the column, and the oil passage 118 penetrates from the bottom wall of the oil groove 117 to the inner diameter side.
  • the cage 114 shown in FIG. 11 is an example in which the oil groove 117 and the oil passage 118 are formed at the axially central portion of the column portion 116.
  • the force is not limited to this. It is possible to In addition, it is possible to adopt any shape such as a rectangular cross section which is not limited to the force shown in the example in which the oil passage 118 has a circular cross section.
  • the holder 124 has a pair of rings 125a and 125b and a plurality of pillars 126 disposed between the pair of rings 125a and 125b. Further, a pocket 124 c for accommodating the needle roller 23 is formed between the adjacent pillars 126.
  • An oil groove 127 extending in the circumferential direction is provided on the outer diameter surface of the pair of ring portions 125a and 125b, and an oil passage 128 penetrating in the radial direction at the axially central portion of the column portion 126.
  • the retainer 124 of the above configuration is a modification of the retainer 114 shown in FIG. 11, and is an example in which the oil groove 127 and the oil passage 128 are provided at different positions.
  • the oil groove 127 on the left and right rings The force shown in the example provided in each of the sections 125a and 125b is not limited to this, and may be provided in only one of them.
  • FIG. 12 shows an example in which the oil groove 127 is provided on the outer diameter surface of the ring portions 125a and 125b, the present invention is not limited to this and may be an inner diameter surface or an end surface in the axial direction. It is also good.
  • cage 134 has a pair of ring portions 135a and 135b, and a plurality of pillars 136 disposed between the pair of ring portions 135a and 135b.
  • a pocket 134c for accommodating the needle roller 23 is formed between the adjacent pillars 136.
  • the column portion 136 is divided at the axial center, and a divided portion is provided with an oil passage 137 through which the lubricating oil can move in the radial and circumferential directions of the cage 134.
  • the cage 134 having the above configuration can increase the oil passage 137 as compared with the cage 114 shown in FIG. 11, the amount S of lubricating oil passing through the inside of the bearing can be further increased.
  • the column portion 136 plays a role of connecting the left and right ring portions 135a and 135b, the oil passage 137 can not be formed in all the column portions 136.
  • the column portion 136 provided with the oil passage 137 and the column portion 136 not provided with the oil passage 137 are alternately arranged.
  • the retainer 144 has a plurality of independent pocket portions 145 for accommodating the needle rollers 23, and a connection portion 146 for circumferentially connecting the plurality of pocket portions 145. And an oil passage 147 is formed between adjacent pocket portions 145.
  • This retainer 144 has only the minimum necessary configuration to maintain the distance between the adjacent needle rollers 23, and is compared with the retainers 114 and 134 as shown in FIGS. 11 and 13. The position of the oil passage 147 and the degree of freedom are very high, and it has an advantage.
  • the cage 154 has a pair of first and second outer ring portions 155 a and 155 b at axially opposite end portions and a pair of first and second outer ring portions at axially central portions.
  • 2 has a plurality of pockets 158 for accommodating the needle rollers 23 in the axial direction, having two inner ring portions 156a, 156b and a plurality of pillars I 57 connecting the four ring members 155a, 155b, 156a, 156b; Between the first outer ring portion 155a and the second inner ring portion 156a (right pocket row 158a) and between the second outer ring portion 155b and the second inner ring portion 156b (left pocket row 158b) It is formed in And oil passage 159 which penetrates retainer 154 in the radial direction is a pocket row of two rows 15 It is formed between 8a and 158b, that is, between the first and second inner ring portions 156a and 156b.
  • the needle roller bearing 21 having excellent lubricity can be obtained.
  • the force of the oil holes 22h of the outer ring members 22a and 22b is also directed to the oil hole 19f of the camshaft 19 and the force described in the example of lubricating oil flowing.
  • the oil hole of the camshaft 19 is not limited thereto. The same can be considered when the lubricating oil flows from 19f toward the oil holes 22h of the outer ring members 22a, 22b.
  • cages 114, 124, 134, 144, 154 can be applied to all rolling bearings including other embodiments described later.
  • a force S showing an example in which the needle roller bearing 21 is adopted as a bearing for supporting the camshaft 19 the present invention relates to another roller bearing, for example, a cylindrical roller bearing rod It can be applied to flat roller bearings as well. The same applies to other embodiments described later.
  • the needle roller bearing 21 in the above-described embodiment is not limited to the force S shown as an example including the outer ring 22, the needle roller 23 and the retainer 24, and the cage 24 is not limited thereto. It may be a full-roller type roller bearing that omits. The same applies to other embodiments described later.
  • the outer ring 22 in the above embodiment is divided into the outer ring members 22a and 22b at two places in the circumferential direction
  • the outer ring 22 can be divided into any number without being limited thereto. It is.
  • three outer ring members having a central angle of 120 ° may be connected in the circumferential direction to form the outer ring.
  • a plurality of outer ring members having different central angles may be combined to form an annular outer ring.
  • force S of any form for the retainer 24 The same applies to other embodiments described later.
  • the example of the cage made of resin having high production efficiency and high elastic deformability has been described as the cage 24 in the above embodiment, cutting by cutting processing without limitation to this is possible. However, it may be a press cage obtained by pressing a steel plate. The same applies to the other embodiments described later.
  • the needle roller bearing 21 in the above embodiment is a bearing that supports the camshaft 19. It can also be widely used as a bearing for supporting the shaft portion 15a of the crankshaft 15 as shown in FIG. The same applies to the other embodiments described later.
  • the present invention can be applied to a single cylinder internal combustion engine as well as a shaft portion 15a of a crankshaft 15 employed in a multi-cylinder engine as shown in FIG. 42, and a force as shown in FIG. It is suitable as a bearing for supporting a portion where the needle roller bearing 21 can not be inserted from the axial direction, like the shaft portion 19b of the shaft 19. The same applies to other embodiments described later.
  • FIG. 16 is a view showing a part of the manufacturing process of the outer ring member 22a, wherein the upper part is a plan view and the lower part is a cross-sectional view. Further, since the method of manufacturing the outer ring member 22b is the same as that of the outer ring member 22a, the description will be omitted.
  • carbon steel having a carbon content of not less than 0.15 wt% and not more than 1. lwt% is used as a starting material.
  • Carbon steel having a carbon content of less than 0.15 wt% needs to be carbonitrided in order to obtain the hardness necessary for the outer ring member 22a before the formation of a carburized hardened layer by quenching treatment. It is important. In the carbonitriding process, the equipment cost is higher than that of each quenching process described later, and as a result, the manufacturing cost of the needle roller bearing 21 is increased. In addition, carbon steel with a carbon content of less than 0.15 wt% may not be able to obtain a sufficient carburized hardened layer even by carbonitriding, and there is a risk that surface-originated peeling may occur early on the raceway surface. . On the other hand, carbon steel with a carbon content of more than 1. lwt% is extremely difficult to process, so the processing accuracy is lowered and the manufacturing cost increases due to the increase in the number of processing steps.
  • the steel plate is punched to form the outer shape of outer ring member 22a (step a). Further, a portion to be the recess 22e and the engaging claw 22c is formed at one end in the longitudinal direction, and a flat portion 22f and a protrusion 22g are formed at the other end.
  • the length in the longitudinal direction of the outer ring member 22a is determined based on the diameter of the camshaft 19, and the length in the short direction is based on the roller length of the needle rollers 23 used. decide. However Since the portion to be the ridge portion 22 d is included in the short direction, the length in the short direction in this step is longer than the axial width dimension of the finished product of the outer ring member 22 a.
  • all the parts may be punched out in a single punching process! /, Or the punching process may be repeated plural times to obtain a predetermined shape.
  • oil grooves 22i are formed on the outer diameter surface of outer ring member 22a by coining (coining) (step b).
  • an outer mold in which a protrusion having the same shape as oil groove 22i is embossed is used as the outer diameter surface of outer ring member 22a
  • an inner mold having a flat surface is used as the inner diameter surface of outer ring member 22a.
  • an oil groove 22i is formed on the outer diameter surface while the inner diameter surface remains flat.
  • an oil hole 22h may be formed by punching at any position on the bottom wall of the oil groove 22i.
  • the circumferential direction end of the outer ring member 22a is bent radially outward by bending to form an engagement claw 22c (step c).
  • the bending angle of the engaging claw 22c is an angle along the engaging groove 13c of the housing.
  • the engaging claws 22c are bent at an angle of 90 ° with respect to the outer ring member 22a! /.
  • a step of bending the outer shape of the outer ring member 22a to a predetermined curvature by bending, and ridge portions 22d projecting radially inward from both axial end portions of the outer ring member 22a are formed.
  • steps (steps d to h) Specifically, leaving the central portion including the connecting portion 26, bending is sequentially performed from both end sides in the longitudinal direction (step d, step e).
  • steps f With respect to both ends in the longitudinal direction subjected to the bending process, the both ends in the short direction are subjected to a bending process to form ridges 22d (step f).
  • step g bending is also performed on the central portion in the longitudinal direction so that the outer shape of the outer ring member 22a has a predetermined curvature.
  • step h the connecting portion 26 is removed to form a ridge 22d at the center in the longitudinal direction.
  • the surface hardness Hv of the inner diameter surface of the outer ring member 22a functioning as a bearing ring needs to be 635 or more.
  • the carbon content of the starting material It is necessary to select an appropriate heat treatment method. Specifically, in the case of a material having a carbon content of not less than 0.15 wt% and not more than 0.5 wt%, carburizing and quenching treatment is carried out, and a material having a carbon content of not less than 0.5 wt% and not more than 1.l wt% In this case, bright quenching or induction hardening is applied.
  • the carburizing and quenching treatment is a heat treatment method utilizing the phenomenon that carbon dissolves in high temperature steel, and while the carbon content is low in the steel, a surface layer (carburized hardened layer) having a large carbon content is obtained. be able to. As a result, the surface is hard and the inside is soft and high in strength and toughness can be obtained. In addition, the equipment cost is low compared to carbonitriding equipment.
  • the bright hardening process refers to a hardening process performed while preventing oxidation of the steel surface by heating in a protective atmosphere or vacuum.
  • the equipment cost is low compared to carbonitriding equipment and carburizing and quenching equipment.
  • Induction hardening is a method of rapidly heating and quenching the surface of steel to form a hardened layer by using the principle of induction heating.
  • the cost of equipment is significantly lower than that of other quenching treatment facilities, and no gas is used in the heat treatment process! /, So it has the advantage of being environmentally friendly. It is also advantageous in that partial hardening treatment can be performed.
  • the step of forming the curvature of the outer shape of the outer ring member 22a and the step of forming the flange portion 22d are not limited to the force S shown as an example.
  • the step of forming the curvature of the outer shape and the step of forming the ridge portion 22d may be performed independently. The same applies to the other embodiments described later.
  • each of the above steps may be performed by a single-use press as separate steps, but may be performed by a progressive press or a transfer press. Thereby, each process can be performed continuously.
  • productivity can be improved by using the manufacturing apparatus of the outer ring member 22a having a processed portion corresponding to all or a part of each of the above steps (steps a to h), and as a result, needle-like It is possible to reduce the product price of roller bearings 21 S.
  • steps a to h the manufacturing apparatus of the outer ring member 22a having a processed portion corresponding to all or a part of each of the above steps (steps a to h)
  • progressive press has a plurality of processing steps in the press, and the material is processed continuously by moving each step by the feeder at the press inlet. It shall refer to the method. Further, in the present specification, when “transfer press” requires a plurality of etching steps, the necessary number of stages for performing each step is provided, and each process item is moved by the transfer device. It refers to the method of processing at the stage. The same applies to the other embodiments described later.
  • the outer ring members 22a and 22b in the above embodiment have a force S representing an example in which the oil groove 22i is disposed in the central region where the raceway surface in contact with the roller 22 is formed on the inner diameter surface. It can be placed at any position without limitation.
  • Needle roller bearings 31, 41, 51 according to another embodiment of the present invention will be described with reference to FIGS. 17 is a cross-sectional view of needle roller bearing 31, FIG. 18 is a partial enlarged view of FIG. 17, FIG. 19 is a cross-sectional view of needle roller bearing 41, and FIG. 20 is an outside of outer ring member 52a of needle roller bearing 51. It is an enlarged view of a diameter side. Further, since the basic configuration of the needle roller bearings 31, 41, 51 is the same as that of the needle roller bearing 21, the description of the common points will be omitted, and the differences will be mainly described.
  • outer ring member 32a employed in needle roller bearing 31 has a central region in which a raceway surface in contact with needle roller 33 is formed on the inner diameter surface. It is divided into an end area 32k (refers to the area surrounded by the broken line 1 and the broken line 1 in FIG. 17) and the end area 32k adjacent to the central area 33 ⁇ 4. . And oil groove 32i is an end area
  • the oil grooves may be provided in only one of the left and right end regions 32k, or may be provided in both.
  • each oil groove 42i is provided on the outer diameter surface thereof. Specifically, one portion is provided at the central portion in the axial direction and one portion is provided at each of both end portions in the axial direction. As described above, the width and depth of each oil groove 42i can be reduced by providing the oil grooves 42i at a plurality of locations, so that the local rigidity reduction of the outer ring member 42a can be prevented.
  • the outer race member 52a employed for the needle roller bearing 51 is provided with a substantially Y-shaped oil groove 52i on the outer diameter surface thereof. That is, the oil groove 52i has a first portion 53 ⁇ 4 extending in the circumferential direction at the axially central portion, and a second portion 52 k bifurcating left and right from the first portion 53 ⁇ 4 and extending in the axial direction at both ends. And. The bifurcated portion of the first portion 53 2 and the second portion 52 k is inclined at a predetermined angle with respect to the bearing rotation axis.
  • the shape of the oil groove 52i in the above embodiment is not limited to a substantially Y-shape, and any shape can be adopted.
  • the groove width of the first portion 53 is made larger than the groove width of the second portion 52k from the viewpoint of the rigidity of the outer ring member 52a and the amount of lubricating oil.
  • FIG. 21 to FIG. 27 needle roller bearing 61 as a roller bearing according to another embodiment of the present invention, and a camshaft support structure using needle roller bearing 61 are described. explain .
  • the basic configuration of the needle roller bearing 61 is the same as that of the needle roller bearing 21, so the description of the common points will be omitted, and the differences will be mainly described.
  • FIG. 21, FIG. 26, and FIG. 27 are diagrams showing the cam shaft support structure before and after installation
  • FIGS. 22 to 25 are diagrams showing the outer ring member 62a. It is.
  • the camshaft supporting structure rotates camshaft 19, cylinder head 13 and bearing cap 13 c as a housing for accommodating camshaft 19, and camshaft 19 with respect to the housing. And a needle roller bearing 61 which supports freely.
  • Needle roller bearing 61 has an outer ring 62 formed by connecting a plurality of arc-shaped outer ring members 62 a and 62 b in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of outer ring 62. And a needle-shaped piece 63.
  • the needle roller bearing 61 according to this embodiment is a full-roller type roller bearing in which adjacent needle rollers 63 are in contact with each other and does not have a cage for holding the needle rollers 63. is there.
  • the outer ring member 62a will be described with reference to FIG. 22 to FIG. 22 is a side view of the outer ring member 62a, FIG. 23 is a cross-sectional view taken along line XXIII-XXIII of FIG. 22, FIG. 24 is a view of FIG. 22 seen from the direction of XXIV, and FIG. 25 is a view of FIG. It is. Further, since the outer ring member 62b has the same shape as the outer ring member 62a, the description will be omitted.
  • outer ring member 62a has a semicircular shape with a central angle of 180 °, and has engaging claw 62c bent radially outward at one end in the circumferential direction. And a flange 62d projecting radially inward from both axial ends.
  • the engagement claw 62c engages with the cylinder head 13 to prevent the outer ring member 62a from rotating relative to the housing.
  • the flange portion 62d restricts the axial movement of the cage 24 and improves the lubricating oil retention of the bearing.
  • the two outer ring members 62a and 62b are connected in the circumferential direction to form an annular outer ring 62. Further, the axial center portion of the inner diameter surface of the outer ring 62 functions as a raceway surface of the needle roller 63.
  • a bent portion 62i which is formed by bending inward in the axial direction by 90 ° is provided at the radially inner end of the collar portion 62d.
  • projecting portions 63a which project in the longitudinal direction are provided on both end surfaces of the needle roller 63.
  • the projecting portion 63a is disposed in a region surrounded by the inner diameter surface of the outer ring member 62a, the inner wall surface of the flange portion 62d, and the outer diameter surface of the bent portion 62i. It rolls while being guided.
  • the gap ⁇ between the inner diameter surface of the bent portion 62i and the virtual circle inscribed in the plurality of needle rollers 63 is set in the range of 5 111 ⁇ ⁇ ⁇ 50 m.
  • two engaging claws 62c are provided at both end portions in the axial direction at one circumferential end of outer ring member 62a, and two engaging claws 62c are provided.
  • a substantially V-shaped recess 62e recessed in the circumferential direction is formed between them.
  • the two engaging claws 62c are disposed on a straight line parallel to the rotation axis of the needle roller bearing 61, at both ends, avoiding the axial center which is the raceway surface of the outer ring member 62a.
  • the length L between the two engaging claws 62c is set so as to increase the effective length of the needle roller 63.
  • the effective length of the roller refers to the length of the chamfered portion at both ends from the roller length.
  • two flat portions 62f having the same width as the axial direction width of engaging claws 62c at both axial direction end portions are provided at the other circumferential end of outer ring member 62a, Between the two flat portions 62f, a substantially V-shaped convex portion 62g whose tip is arc-shaped and protrudes in the circumferential direction is provided.
  • the needle roller 63 can be smoothly rotated by making the shape of the abutting portion substantially V-shaped.
  • the shape of the abutting portion of the outer ring members 62a and 62b is not limited to the substantially V shape, but may be any shape that allows the needle roller 63 to rotate smoothly, for example, a substantially W shape.
  • the outer ring member 62a is provided with an oil hole 62h penetrating from the outer diameter side to the inner diameter side.
  • the oil hole 62h is provided at a position facing an oil passage (not shown) provided in the housing, and supplies lubricating oil to the inside of the needle roller bearing 61.
  • the size, position and number of oil holes 62h depend on the size, position and number of oil passages provided in the housing.
  • the outer diameter surface of the bent portion 62i functions as a roller guide portion for guiding the projecting portion 63a of the needle roller 63, thereby allowing the needle roller 63 to come off or skew. It can be effectively prevented. Furthermore, by providing the bent portion 62i so that the gap ⁇ at the axial end of the needle roller bearing 61 is in the above range, the inner diameter surface of the bent portion 62i prevents the outflow of lubricating oil from the inside of the bearing. Act as a sealing surface. As a result, the amount of lubricating oil flowing from the inside of the bearing through the clearance at the axial end decreases.
  • the needle roller 63 is assembled to each outer ring member 62a, 62b. Specifically, the needle roller 63 can be easily incorporated by inserting the needle roller 63 along the inner diameter surface from the circumferential end of the outer ring member 62a, 62b.
  • the outer ring member 62a on one side, the camshaft 19, the outer ring member 62b on the other side, and the bearing cap 13c are assembled in this order on the cylinder head 13, and the cylinder head 13 and the bearing cap 13c are bolted. Fix with etc.
  • the concave portion 62e of the outer ring member 62a, the convex portion 62g of the outer ring member 62b, and the convex portion 62g of the outer ring member 62a and the concave portion 62e of the outer ring member 62b are disposed to abut each other.
  • the engagement claws 62c of the outer ring member 62a are arranged to engage with the engagement grooves 13d provided on the abutment surface of the cylinder head 13 with the bearing cap 13c, and the engagement claws of the outer ring member 62b are arranged.
  • 62c is arranged to engage with an engagement groove 13d provided on the abutting surface of the bearing cap 13c with the cylinder head 13.
  • the cylinder head 13 as a housing and / or the bearing cap 13 c is provided with an opening 13 e of an oil passage for supplying a lubricating oil to a region for accommodating the camshaft 19.
  • the cam shaft 19 is formed with an oil passage 19e axially extending inward and an oil hole 19f extending from the oil passage 19e toward the shaft 19a. Therefore, the needle roller bearing 61 is disposed such that the oil holes 62h formed in the outer ring members 62a and 62b coincide with the openings 13e formed in the housing.
  • the camshaft 19, the outer ring 62, and the housing are arranged concentrically, and the needle roller 63 can stably rotate and obtain the needle roller bearing 61.
  • S can.
  • the needle roller bearing 61 having the above configuration can be incorporated from the radial direction of the support portion by dividing the outer ring 62 into the two outer ring members 62a and 62b. It can be adopted as
  • the collar portion 62d and the bent portion 62i at both axial ends of the outer ring members 62a and 62b, the lubricating oil inside the needle roller bearing 61 can flow out from the axial gap. It can be prevented. As a result, the amount of lubricating oil supplied from the opening 13e of the housing through the oil holes 62h of the outer ring members 62a and 62b to the oil hole 19f of the camshaft 19 is increased. By this, It is possible to obtain a camshaft support structure and an internal combustion engine excellent in lubricity.
  • an annular member and a annular member are provided at a position in contact with the inner diameter surface of the bending portion 62i between the bending portion 62i and the camshaft 19.
  • a sealing member 67 may be provided.
  • the seal member 67 is inserted from the axial end of the cam shaft 19 and is incorporated into the shaft portion 19a while passing over the cam 19b, so it is desirable that the seal member 67 be formed of a resin material or the like having high elastic deformability. From the viewpoint of preventing the movement of the seal member 67, it is desirable to provide a groove for receiving the seal member 67 on the surface of the cam shaft 19.
  • a force seal member 67 that requires high-precision processing is disposed.
  • the lubricating oil can be prevented from flowing out even if the gap ⁇ between the inner diameter surface of the bent portion 62i and the camshaft 19 is ⁇ > 50 m.
  • the present invention is not limited thereto. It may further have a holder for holding a space.
  • the shape of the cage is not particularly limited, for example, it is possible to use the cage 24 shown in FIGS. 6 and 7 or the cages 1 14, 124, 134, 144, 155 shown in FIGS. S can.
  • FIG. 28 is a view showing a part of the manufacturing process of the outer ring member 62a, wherein the upper part is a plan view and the lower part is a cross-sectional view. Further, the description of the common points with the manufacturing method of the outer ring member 22a will be omitted, and the differences will be mainly described. Specifically, since the composition of the starting material and the heat treatment step are common, the description is omitted. Furthermore, since the manufacturing method of the outer ring member 62b is the same as that of the outer ring member 62a, the description will be omitted.
  • the steel plate is punched to form the outer shape of outer ring member 62a (step a). Further, a portion to be the recess 62e and the engaging claw 62c is formed at one end in the longitudinal direction, and a flat portion 62f and a protrusion 62g are formed at the other end.
  • the length in the longitudinal direction of the outer ring member 62a is determined on the basis of the diameter of the camshaft 19, and the length in the lateral direction is based on the roller length of the needle rollers 63 used. decide.
  • the short side direction includes the portions to be the ridge portion 62d and the bending portion 62i, the length in the short side direction in this step is longer than the axial width dimension of the finished outer ring member 62a. Become.
  • all the parts may be punched out in a single punching process! /, Or the punching process may be repeated plural times to obtain a predetermined shape.
  • the oil hole 62h may be machined simultaneously with the formation of the outer shape.
  • the circumferential direction end of the outer ring member 62a is bent radially outward by bending to form the engagement claw 62c (step b).
  • the bending angle of the engaging claw 62c is an angle along the engaging groove 13c of the housing.
  • the engaging claw 62c is bent at an angle of 90 ° with respect to the outer ring member 62a! /.
  • a step of bending the outer shape of the outer ring member 62a to a predetermined curvature by bending, a flange portion 62d projecting radially inward from both axial end portions of the outer ring member 62a, and a bent portion And 62i forming steps steps c to g. Specifically, leaving the central portion including the connecting portion 66, bending is sequentially performed from both end sides in the longitudinal direction (step c, step d). Next, with respect to both ends in the longitudinal direction subjected to the bending process, the both ends in the short direction are subjected to a bending process to form ridges 62d (step e).
  • the center portion in the longitudinal direction is also bent so that the outer shape of the outer ring member 62a has a predetermined curvature, and the tip of the flange portion 62d is bent inward in the axial direction to form a bent portion 62i (f Process).
  • the connecting portion 66 is removed to form a ridge portion 62d and a bending portion 62i in the longitudinal central portion (step g).
  • a force S showing an example in which the step of forming the curvature of the outer shape of the outer ring member 62a and the step of forming the flange portion 62d and the bent portion 62i are performed in parallel is described.
  • the process of forming the curvature of the outer shape without limitation, and the process of forming the ridge portion 62d and the bending portion 62i may be performed independently.
  • FIGS. 29 to 32 a needle roller bearing 71 as a roller bearing according to another embodiment of the present invention, and a camshaft support structure using the needle roller bearing 71 will be described.
  • the basic configuration of the needle roller bearing 71 is the same as that of the needle roller bearing 21, so the description of the common points will be omitted, and the differences will be mainly described.
  • Fig. 29, Fig. 31 and Fig. 32 show the camshaft support
  • FIG. 30 is a view showing an outer ring member 72a, showing a state before and after installation of the supporting structure.
  • the camshaft support structure rotates the camshaft 19, the cylinder head 13 and the bearing cap 13c as a housing for accommodating the camshaft 19, and the camshaft 19 with respect to the housing. And a needle roller bearing 71 which is freely supported.
  • Needle roller bearing 71 has an outer ring 72 formed by connecting a plurality of arc-shaped outer ring members 72 a and 72 b in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of outer ring 72. Needle roller 73, and a retainer 74 having a dividing line extending in the axial direction of the bearing at one point on the circumference and holding a plurality of needle rollers 73 at a distance.
  • FIG. 30 is a side view of the outer ring member 72a. Further, as viewed in the direction of arrows XXIV in FIG. 30 and in the direction of arrows XXV in FIG. 30, they are the same as in FIGS. 24 and 25, respectively, so the description will be omitted. Further, since the outer ring member 72b has the same shape as the outer ring member 72a, the description will be omitted.
  • outer ring member 72a has a semicircular shape with a central angle of 180 °, and has engaging claws 72c bent outward in the radial direction at one end in the circumferential direction.
  • the flange portion 72d protrudes radially inward over the entire area of both axial end portions.
  • the engagement claw 72c engages with the cylinder head 13 to prevent the outer ring member 72a from rotating with respect to the housing.
  • the flange portion 72d regulates the axial movement of the cage 74 and improves the lubricating oil retention of the bearing.
  • the two outer ring members 72a and 72b are connected in the circumferential direction to form an annular outer ring 72. Further, the axially central portion of the inner diameter surface of the outer ring 72 functions as a raceway surface of the needle roller 73.
  • a relatively low rigidity reduced portion is provided at the circumferential end of the ridge 72d.
  • the outer circumferential member 72a has a portion at a constant projecting height at the circumferentially central portion, and an inclined portion 72i at which the projecting height is gradually lowered toward the end portion at both circumferential edge portions.
  • the boundary between the sectioned and constant projecting height portion and the sloped portion 72i is formed smoothly.
  • the protrusion height of the flange portion 72d (pointing to the inclined portion 72i) at the circumferential end of the outer ring member 72a is greater than the protrusion height of the flange portion 72d at the circumferential center (the thickest portion) It is set low.
  • cage 74 The configuration of cage 74 is common to cage 24 shown in FIG. 6 and FIG. 7, so Is omitted.
  • the needle rollers 73 are assembled in the pockets 74c of the retainer 74, respectively.
  • the elasticity of the retainer 74 is used to unfold the divided portion and incorporate it into the camshaft 19. Further, the recess 74d and the protrusion 74e are engaged to prevent the retainer 74 from being detached.
  • the outer ring member 72a on one side, the cam shaft 19 fixed by winding the retainer 74, the outer ring member 72b on the other side, and the bearing cap 13c are assembled in this order,
  • the head 13 and the bearing cap 13c are fixed by bolts or the like.
  • the concave portion 72e of the outer ring member 72a and the convex portion 72g of the outer ring member 72b, and the convex portion 72g of the outer ring member 72a and the concave portion 72e of the outer ring member 72b respectively abut.
  • the engagement claws 72c of the outer ring member 72a are arranged to engage with the engagement grooves 13d provided on the abutment surface of the cylinder head 13 with the bearing cap 13c, and the engagement claws of the outer ring member 72b are arranged.
  • 72c is arranged to engage with an engaging groove 13d provided on the abutting surface of the bearing cap 13c with the cylinder head 13.
  • the curvature of the outer ring members 72a and 72b prior to installation is set slightly larger than the curvature of the inner peripheral surface of the housing. Then, it is incorporated into the housing while being elastically deformed in the direction to reduce the curvature. At this time, a force is exerted on the outer ring members 72a and 72b to return to the original state (in the direction in which the curvature increases), and as a result, it can be incorporated along the inner peripheral surface of the housing.
  • the cam shaft 19, the outer ring 72, the cage 74, the nose and the housing are concentrically arranged, and the needle roller 73 can be stably rotated.
  • the ability to obtain roller bearing 71 can be S.
  • the needle roller bearing 71 having the above configuration divides the outer ring 72 into two outer ring members 72a and 72b, and divides the cage 74 at one location in the circumferential direction. Since it becomes possible to incorporate it, it is possible to adopt it as a bearing that supports the camshaft 19 with a force S.
  • the curvature of the outer ring members 72a and 72b before installation is set larger than the inner peripheral surface of the housing.
  • a force which always tries to spread outward acts on the circumferential end of the outer ring members 72a and 72b.
  • the flange portion 72d by bending the axial end portions of the outer ring members 72a and 72b, the rigidity is improved as compared with the outer ring member having no flange portion.
  • the circumferential end of the outer ring members 72a and 72b may attack the inner peripheral surface of the housing, causing an impression (abrasion) in the housing.
  • the lubricating oil may be deteriorated at an early stage, or the raceway surface of the outer ring members 72a and 72b or the rolling surface of the needle roller 73 may be damaged.
  • the lubricity of the bearing 71 is significantly reduced.
  • the protruding height of the flange portion 72d at the circumferential end of the outer ring members 72a and 72b is relatively lower than the other portions, the rigidity of the circumferential end is reduced as described above. It is a power S to avoid various problems.
  • the present invention is not limited to this.
  • a step may be provided between the central ridge 72d and the circumferential ridge 72d.
  • the protruding height of the ridge portion 72d at the circumferential end is O mm, that is, the ridge portion 72d is formed at the circumferential end! Shall be included.
  • the protruding height of the flange portion 72d within a certain range is lowered, and the adjacent outer ring members 7
  • the ridges 72d of the outer ring members 72a and 72b adjacent to each other do not overlap each other. It should be distinguished from etc.
  • FIG. 33 is a view showing a part of the manufacturing process of the outer ring member 72a, wherein the upper part is a plan view and the lower part is a cross-sectional view. Further, the description of the common points with the manufacturing method of the outer ring member 22a will be omitted, and the differences will be mainly described. Specifically, since the composition of the starting material and the heat treatment step are common, the description is omitted. Furthermore, the manufacturing method of the outer ring member 72b is the same as that of the outer ring member 72a. Therefore, the description is omitted.
  • the steel plate is punched to form the outer shape of outer ring member 72a (step a). Further, a portion to be the concave portion 72e and the engaging claw 72c is formed at one longitudinal end, and a flat portion 72f and a convex portion 72g are formed at the other lateral end.
  • the length in the longitudinal direction of the outer ring member 72a is determined based on the diameter of the camshaft 19, and the length in the short direction is based on the roller length of the needle rollers 73 used. decide.
  • the portion to be the ridge portion 72d is included in the short direction, the length in the short direction in this step is longer than the axial width dimension of the finished product of the outer ring member 72a.
  • the shape is adjusted in this step so that the protruding height of the ridge portion 72d at the circumferential end is lower than that of the other portions.
  • the circumferential direction end of the outer ring member 72a is bent radially outward by bending to form the engagement claw 72c (step b).
  • the bending angle of the engaging claw 72c is an angle along the engaging groove 13c of the housing.
  • the engaging claw 72c is bent at an angle of 90 ° with respect to the outer ring member 72a!
  • a step of bending the outer shape of the outer ring member 72a to a predetermined curvature by bending, a flange portion 72d projecting radially inward from both axial ends of the outer ring member 72a, and an inclined portion And 72i forming steps steps c to g. Specifically, bending is performed in order from both end sides in the longitudinal direction except for the central portion including the connecting portion 76 (step c, step d). Next, with respect to both ends in the longitudinal direction subjected to the bending process, the both ends in the short direction are subjected to a bending process to form ridges 72d (step e).
  • the connecting portion 76 is removed to form a ridge portion 72d at the center in the longitudinal direction (step g).
  • step a it is not necessary to provide a special step for forming the inclined portion 72i since the dimensions of the portion to be the weir 72d are adjusted.
  • the flange portion 72d in the above embodiment has a force S showing an example in which an inclined portion 72i whose protruding height gradually decreases toward an end in the circumferential direction is provided.
  • any configuration that reduces the stiffness of the circumferential ends of the members 72a, 72b may be employed.
  • an outer ring member 82a according to another embodiment of FIG. 30 will be described.
  • the basic configuration of the outer ring member 82a is the same as that of the outer ring member 72a, so the description of the common points will be omitted, and the differences will be mainly described.
  • the outer ring member 82a has a semicircular shape with a central angle of 180 °, and an engaging claw 82c bent radially outward at one side end in the circumferential direction, and an axis And a flange 82d projecting radially inward over the entire area at both ends in the direction. And, a hole 82i as a reduced rigidity portion is provided at the circumferential direction end of the flange portion 82d. Thus, even by providing the hole 82i axially penetrating the flange portion 82d, the force S is applied to reduce the rigidity of the circumferential end of the flange portion 82d.
  • FIGS. 35 to 38 a needle roller bearing 91 as a roller bearing according to another embodiment of the present invention, and a camshaft support structure using the needle roller bearing 91 will be described.
  • FIGS. 35, 37, and 38 are diagrams showing the state before and after the incorporation of the camshaft support structure
  • FIG. 36 is a diagram showing the outer ring member 92a.
  • the camshaft support structure rotates camshaft 19, cylinder head 13 and bearing cap 13 c as a housing for accommodating camshaft 19, and camshaft 19 with respect to the housing. And a needle roller bearing 91 which is freely supported.
  • Needle roller bearing 91 has an outer ring 92 formed by connecting a plurality of arc-shaped outer ring members 92 a and 92 b in the circumferential direction, and a plurality of rollers disposed along the inner diameter surface of outer ring 92. Needle roller 93, and a cage 94 having a dividing line extending in the axial direction of the bearing at a single point on the circumference and holding a plurality of needle rollers 93 spaced apart.
  • the outer ring member 92a will be described with reference to FIG. FIG. 36 is a side view of the outer ring member 92a. Moreover, since the arrow line view seen from the arrow XXIV of FIG. 36 and the arrow line view seen from the arrow XXV of FIG. 36 are common with FIG. 24 and FIG. 25, respectively, description is abbreviate
  • outer ring member 92a has a semicircular shape with a central angle of 180 °, and is circumferentially
  • An engaging claw 92c bent outward in the radial direction is provided at one side end of the rod, and a flange portion 92d which protrudes inward in the radial direction from both axial end portions.
  • the engagement claws 92c engage with the cylinder head 13 to prevent the outer ring member 92a from rotating relative to the housing.
  • the flange portion 92d restricts the axial movement of the cage 94 and improves the lubricating oil retention of the bearing.
  • a notch 92i as an opening penetrating in the axial direction is provided in a part of the collar 92d.
  • the notch 92i has an arc shape having a predetermined curvature.
  • the two outer ring members 92a and 92b are connected in the circumferential direction to form an annular outer ring 92. Further, the axial center portion of the inner diameter surface of the outer ring 92 functions as a raceway surface of the needle roller 93.
  • the axial movement of the cage 94 can be restricted, and the gap at the axial end is reduced to lubricate the needle roller bearing 91. Oil retention improves. Further, by providing a notch 92i in a part of the flange 92d, the lubricating oil inside the bearing mainly flows out from the notch 92i. Therefore, by arranging the notched portion 92i in the load area of the force transmission shaft 19, it is possible to supply the lubricating oil to the load area in a focused manner.
  • the configuration of the cage 94 is common to the cage 24 shown in FIG. 6 and FIG. 7, so the description will be omitted.
  • the needle rollers 93 are incorporated into the pockets 94c of the retainer 94, respectively.
  • the elasticity of the cage 94 is used to unfold the divided portion and assemble it into the camshaft 19. Further, the recess 94d and the protrusion 94e are engaged to prevent the retainer 94 from being removed.
  • the outer ring member 92b on one side, the camshaft 19 wound and fixed by holding the retainer 94, the outer ring member 92a on the other side, and the bearing cap 13c are assembled in this order.
  • the head 13 and the bearing cap 13c are fixed by bolts or the like.
  • the concave portion 92e of the outer ring member 92a and the convex portion 92g of the outer ring member 92b, and the convex portion 92g of the outer ring member 92a and the concave portion 92e of the outer ring member 92b respectively abut.
  • the engaging claw 92c of the outer ring member 92a is arranged to engage with the engaging groove 13d provided on the abutting surface of the cylinder head 13 with the bearing cap 13c, and the engaging claw 92c of the outer ring member 92b is arranged.
  • 9c is arranged to engage with an engagement groove 13d provided on the abutting surface of the bearing cap 13c with the cylinder head 13.
  • the cylinder head 13 as a housing and the bearing cap 13 c are provided with an opening 13 e of an oil passage for supplying a lubricating oil to a region for accommodating the force shaft 19.
  • the cam shaft 19 is formed with an oil passage 19e axially extending inward and an oil hole 19f extending from the oil passage 19e toward the shaft 19a. Therefore, when assembling the needle roller bearing 91, the oil holes 92h of the outer ring members 92a and 92b and the opening 13e of the housing are disposed so as to coincide with each other. Further, the notch portion 92i formed in the flange portion 92d is disposed in the load area of the camshaft 19.
  • the cam shaft 19, the outer ring 92, the cage 94, the nose and the housing are concentrically arranged, and the needle roller 93 can be stably rotated.
  • the ability to obtain roller bearing 91 can be S.
  • the needle roller bearing 91 having the above configuration divides the outer ring 92 into two outer ring members 92a and 92b, and divides the cage 94 at one location in the circumferential direction. Since it becomes possible to incorporate it, it is possible to adopt it as a bearing that supports the camshaft 19 with a force S.
  • the notch 92 i is disposed at a position out of the virtual line 1 force extending in the direction of the maximum load applied to the needle roller bearing 91 from the camshaft 19. Specifically, the notch 92
  • the notch 92i has a direction of rotation of the camshaft 19 with respect to the imaginary line 1 (in FIG. 37).
  • the “load area” is an area of 90 ° left and right centering on the direction of the maximum load applied from the camshaft 19 to the needle roller bearing 91 (the direction shown by the imaginary line 1 in FIG. 37) Circle in Figure 37
  • the “unloaded area” is the area of 180 ° opposite to the direction of the maximum load (area shown by arc ⁇ in FIG. 37), which is relatively smaller than the loaded area. It does not work! /, It is an area (including the case where the load is 0).
  • the maximum load applied from the camshaft 19 to the needle roller bearing 91 is a force that pushes the valves 17 and 18 downward against the nozzle springs 17c and 18c.
  • the reaction is in the direction opposite to the direction in which the camshaft 19 pushes the valves 17, 18 (the direction of the arrow in FIG. 41).
  • the circular arc-shaped notch 92i is provided at one place is shown. 1S.
  • the shape is not limited to this, and any shape, number, and position may be used.
  • it may have an arbitrary shape such as a rectangle, or may be provided at the circumferential center.
  • it is preferable that the state of FIG. 36 in which the maximum load is located at the circumferential center of the outer ring member 92a.
  • it may be provided only on the flange 92 d on one side or may be provided on the flanges 92 d on both sides.
  • the present invention is not limited to this and can be any form.
  • the opening can be provided at any position of the buttocks.
  • FIG. 39 an outer ring member 102a according to another embodiment of FIG. 36 will be described.
  • the basic configuration is the same as that of the outer ring member 92a shown in FIG. 36, the common points are omitted, and the differences will be mainly described.
  • the outer ring member 102a has an arc shape, and has an engaging claw 102c at one end in the circumferential direction, a flange 102d at both axial ends, and a flange 102d. Open in the circumferential center And a hole 102i as a mouth.
  • the hole 102i is a long hole along the curvature of the ridge portion 102d.
  • the protruding height of the ridge portion 102d becomes constant in the circumferential direction. This improves the function of the holder 94 to move in the axial direction.
  • the hole 102i may have a plurality of small diameter holes. When this outer ring member 102a is incorporated into the force-cushion 19, the imaginary line 1 extending in the direction of the maximum load deviates from the hole 102i.
  • FIG. 40 is a view showing a part of the manufacturing process of the outer ring member 92a, wherein the upper part is a plan view and the lower part is a cross-sectional view. Further, the description of the common points with the manufacturing method of the outer ring member 22a will be omitted, and the differences will be mainly described. Specifically, since the composition of the starting material and the heat treatment step are common, the description is omitted. Furthermore, since the manufacturing method of the outer ring member 92b is the same as that of the outer ring member 92a, the description will be omitted.
  • the steel plate is punched to form the outer shape of outer ring member 92a (step a). Further, a portion to be the recess 92e and the engaging claw 92c is formed at one end in the longitudinal direction, and a flat portion 92f and a projection 92g are formed at the other end. Furthermore, a portion to be a notch 92i is formed at the center of both end portions in the short direction.
  • the length in the longitudinal direction of the outer ring member 92 a is determined based on the diameter of the camshaft 19, and the length in the short direction is based on the roller length of the needle roller 93 used. decide. However, since the portion to be the ridge portion 92 d is included in the short direction, the length in the short direction in this step is longer than the axial width dimension of the finished product of the outer ring member 92 a.
  • all the parts may be punched out in a single punching process! /, Or the punching process may be repeated a plurality of times to obtain a predetermined shape.
  • a progressive press it is preferable to form a pilot hole 95 for determining the processing position of each processing step, and to provide a connecting portion 96 between the adjacent outer ring member.
  • the connecting portion 96 is provided at a position out of the position where the notch portion 92i is formed.
  • the circumferential end of the outer ring member 92a is bent radially outward by bending to form the engagement claw 92c (step b). Bending angle of engaging claw 92c is Hougin The angle along the engagement groove 13c of the hook. In this embodiment, the engaging claw 92c is bent at an angle of 90 ° with respect to the outer ring member 92a!
  • a step of bending the outer shape of the outer ring member 92a to a predetermined curvature by bending, and ridge portions 92d projecting radially inward from both axial end portions of the outer ring member 92a are formed.
  • steps (steps c to g) Specifically, leaving the central portion including the connecting portion 26, bending is sequentially performed from both end sides in the longitudinal direction (step c, step d).
  • steps e with respect to both ends in the longitudinal direction subjected to the bending process, the both ends in the short direction are subjected to a bending process to form ridges 92d (step e).
  • step f bending is also performed on the central portion in the longitudinal direction so that the outer shape of the outer ring member 92a has a predetermined curvature.
  • step f bending is also performed on the central portion in the longitudinal direction so that the outer shape of the outer ring member 92a has a predetermined curvature.
  • step g the connecting part 96 is removed to form a ridge 92 d at the longitudinal center.
  • the present invention is advantageously used for a roller bearing that supports a camshaft of an automobile or motorcycle engine, a camshaft support structure, and an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Rolling Contact Bearings (AREA)

Description

明 細 書
ころ軸受、カムシャフト支持構造および内燃機関
技術分野
[0001] この発明は、自動車エンジン用のカムシャフト、クランクシャフト、およびロッカーシャ フト等を支持するころ軸受、ころ軸受を採用したカムシャフト支持構造および内燃機 関に関するものである。
背景技術
[0002] 従来の自動車および自動二輪車用内燃機関に採用されるカムシャフト支持構造が 、例えば、特開 2005— 90696号公報に記載されている。図 44を参照して、同公報 に記載されているカムシャフト支持構造は、カムローブ 201a、ころ軸受 202により支 持される円筒状のジャーナル部 201b、および端部大径部 201cを有するカムシャフト 201と、シリンダヘッド 208およびキャップ 209で構成されるハウジングと、複数のころ 203、略半円筒状の保持体 204, 205、および略半円筒状のレース板 206, 207とを 有し、カムシャフト 201をハウジングに対して回転自在に支持するころ軸受 202とを備 X·る。
[0003] ここで、ジャーナル部 201bの外径寸法は、カムローブ 201aの外径の最大寸法お よび端部大径部 201cの外径寸法より小さくなつている。そのため、ジャーナル部 201 bに配置されて、カムシャフト 201を回転自在に支持するころ軸受 202は、カムシャフ ト 201の軸方向から揷入することができない。
[0004] そこで、ころ軸受 202は、複数のころ 203と、周方向に二分された略半円筒状の保 持体 204, 205と、シリンダヘッド 208およびキャップ 209の間に酉己置される周方向に 二分された略半円筒状のレース板 206, 207とを有している。また、図 45を参照して 、レース板 207は円周方向両端部それぞれに径方向外側に突出する 2つの突起 20 7aを有し、キャップ 209は突起 207aに対応するくぼみ 209aを有する。
[0005] そして、この突起 207aとくぼみ 209aとを係合させることによって、ころ軸受 202の回 転時に、レース板 207とキャップ 209との間での周方向および軸方向の相対移動を 禁止することができると記載されている。なお、レース板 206とシリンダヘッド 208との 間も同様の構成である。
[0006] 上記構成のレース板 206, 207は、冷間圧延鋼板(SPC)等の鋼板をプレス加工し て製造されるのが一般的である。また、所定の形状に形成後、硬度等の所定の機械 的性質を得るために、熱処理が施される。
[0007] 上記公報に記載されているころ軸受 202において、突起 207aは、レース板 207の 内径面に径方向外側への力を加えて外径面を押し出すことによって形成される。そ の結果、ころ 203の軌道面となるレース板 207の内径面には、くぼみが形成されるこ ととなる。これは、ころ 203がくぼみ上を通過する際に振動が発生したり、ころ 203の 表面が早期に剥離する等、ころ 203のスムーズな回転を阻害する原因となる。
[0008] さらに、ころ軸受 202には、レース板 206, 207に設けられた油穴(図示せず)、また はカムシャフト 201に設けられた油穴(図示せず)から潤滑油が流入する力 軸受内 部の潤滑油の流れが保持器 204, 205に遮られて、軸受全域に均等に供給すること ができないという問題がある。
[0009] なお、この問題は、カムシャフトを支持するころ軸受のみならず、クランクシャフトや ロッカーシャフトを支持する軸受にも同様に起こりうる。
[0010] また、上記に示したようなカムシャフト 201周辺の潤滑構造力 例えば、特開 2000 - 110533号公報に記載されて!/、る。同公報に記載されて!/、る潤滑構造を図 44を 参照して説明すると、カムシャフト 201には、内部に軸方向に伸びるオイル通路(図 示省略)と、オイル通路からジャーナル部 201bの表面に向かって延びる複数の油孔 (図示省略)とが設けられている。一方、ハウジングには、ジャーナル部 201bに対面 する位置に外部から潤滑油を供給する複数の給油路(図示省略)およびオイル溝 ( 図示省略)が形成されている。そして、ハウジングに設けられた給油路から供給される 潤滑油が、オイル溝、カムシャフト 201の油孔、オイル通路を流れて各部に分配され
[0011] 特開 2000— 110533号公報に記載されている潤滑構造において、ハウジングに 設けられるオイル溝を切削加工によって形成する場合、内燃機関の製造工数および 製造コストが増大する。この問題は、特に気筒数の多いエンジンにおいて顕著である 。また、ハウジングを铸造によって製造する場合、熱による型の変形 (だれ)が問題と なる。これは、オイル溝の位置や形状に誤差を生じる原因となる。
[0012] また、上記構成のカムシャフト支持構造において、カムシャフト 201とレース板 206, 207の軸方向端部との間には隙間が形成されているので、ハウジングの給油路から ころ軸受 202の内部に供給された潤滑油の一部がこの隙間から軸受外部に流出し、 カムシャフト 201の油孔に達する潤滑油量が減少する。その結果、オイル通路を流れ て各部に分配される潤滑油量も減少するので、全体としての潤滑性も低下する。
[0013] また、カムシャフト 201には、回転時に所定の方向に偏った荷重が作用するので、 その円周方向において、相対的に大きな荷重が負荷される領域 (以下、「負荷領域」 という)と、相対的に小さな荷重しか負荷されない領域 (以下、「非負荷領域」という)と に区分される。したがって、ハウジングの給油路から供給される潤滑油は、負荷領域 に多く供給されるのが望ましレ、。
発明の開示
[0014] そこで、この発明の目的は、製造工数および製造コストを抑えると共に、潤滑性に 優れたころ軸受を提供することである。また、このようなころ軸受を採用したカムシャフ ト支持構造および内燃機関を提供することを目的とする。
[0015] また、この発明の他の目的は、自動車用エンジンのカムシャフト等を支持する軸受 であって、潤滑油の保持性を向上させたころ軸受を提供することである。このようなこ ろ軸受をカムシャフトを支持する軸受として採用することにより、潤滑性に優れ、信頼 性の高!/、カムシャフト支持構造および内燃機関を提供することを目的とする。
[0016] また、この発明の他の目的は、ころ軸受の潤滑油の保持性を向上させることにより、 潤滑性に優れたころ軸受を提供することである。また、上記のようなころ軸受を採用す ることにより、潤滑性に優れ、信頼性の高いカムシャフト支持構造および内燃機関を 提供することを目的とする。
[0017] また、この発明の他の目的は、ころ軸受の潤滑油の保持性を向上させると共に、潤 滑油を負荷領域に重点的に供給可能なカムシャフト支持構造を提供することである。 また、このようなカムシャフト支持構造を採用した内燃機関を提供することを目的とす
[0018] さらに、この発明の他の目的は、自動車用エンジンのカムシャフト等を支持する軸 受であって、潤滑性に優れたころ軸受を提供することである。
[0019] この発明に係るころ軸受は、円弧形状の外輪部材を円周方向に複数連ねて形成さ れる外輪と、外輪の内径面に沿って配置される複数のころとを備える。そして、外輪 部材の外径面には、円周方向に延びる油溝が形成されている。
[0020] 上記構成のころ軸受を採用することにより、ハウジングの内径面に油溝を形成する 必要がなくなる。その結果、ハウジングの製造工数および製造コストを抑制することが 可能となる。
[0021] 好ましくは、隣接する外輪部材の突合部に形成される円周方向隙間は、油溝を含 む領域で相対的に大きぐその他の領域で相対的に小さい。これにより、油溝を流れ る潤滑油力 隣接する外輪部材の間の円周方向隙間を通って軸方向に流出するの を才卬制すること力 Sでさる。
[0022] 好ましくは、外輪部材は、軸方向端部から径方向内側に突出する鍔部と、鍔部の先 端から軸方向内側に延びる屈曲部とを有する。そして、屈曲部の内径面は、軸受内 部からの潤滑油の流出を防止するシール面として機能する。外輪部材の軸方向端部 に径方向内側に突出する鍔部と、鍔部の先端を軸方向内側に折り曲げて形成される 屈曲部とを設けたことにより、軸受内部の潤滑油が軸方向の隙間から流出するのを 防止すること力 Sできる。これにより、潤滑性に優れたころ軸受を得ることができる。
[0023] 好ましくは、屈曲部の内径面と前記複数のころに内接する仮想円との間の隙間 δ は、 5 ^ 111≤ δ≤50 111を満たす。軸受内部から軸方向端部の隙間を通って流出す る潤滑油量を減少させるには、ころ軸受の軸方向の隙間を上記の範囲内とすること が望ましい。なお、 δ〉50 mとすると、潤滑油の流出を防ぐシール面としての機能 は低い。一方、 δ < 5 111とすると、軸受回転時に屈曲部と回転軸とが接触してスム ーズな回転を阻害するおそれがある。
[0024] さらに好ましくは、ころ軸受は、屈曲部の内径面に接する位置に軸受内部からの潤 滑油の流出を防止する円環状部材をさらに備える。これにより、さらに効果的に潤滑 油の流出を防止することができる。
[0025] 一実施形態として、ころは端面から突出する突出部を有しており、屈曲部の外径面 は、突出部を案内するころ案内部として機能し、ころは隣接するころ軸受が相互に接 触するように配置された総ころ形式の軸受である。上記構成のころ軸受は、屈曲部に よってころの回転を案内することができる。したがって、この発明は総ころ形式のころ 軸受に特に適している。また、総ころ形式とすることにより、ころ軸受の負荷容量が増 大する。
[0026] 好ましくは、外輪部材は、その軸方向端部に径方向内側に突出する鍔部を有し、 少なくとも鍔部の円周方向端部には、相対的に剛性の低い剛性低下部が設けられて いる。
[0027] 一実施形態として、剛性低下部における鍔部の突出高さは、その他の領域におけ る鍔部の突出高さより低くなつている。
[0028] 好ましくは、隣接するころの間隔を保持する保持器とを備える。そして、保持器は径 方向に貫通する油路を有する。保持器に径方向に貫通する油路を設けることにより、 ころ軸受に流入する潤滑油が軸受全体に均等に供給されるので、潤滑性に優れたこ ろ車由受を得ること力できる。
[0029] 一実施形態として、保持器は、一対のリング部と、一対のリング部の間に配置される 複数の柱部と、隣接する柱部の間にころを収容するポケットとを有し、油路は柱部に 設けられる。さらに好ましくは、柱部は隣接するポケットを周方向に連通する油溝をさ らに有する。
[0030] 他の実施形態として、保持器は、ころを収容する複数の独立したポケット部と、複の ポケット部を円周方向に連結する連結部とを有し、油路は隣接するポケット部の間に 設けられる。さらに他の実施形態として、保持器はころを収容する複数のポケットを軸 方向に 2列有しており、油路は 2つのポケット列の間に設けられる。
[0031] この発明に係るカムシャフト支持構造は、カムシャフトと、カムシャフトを収容するハ ウジングと、カムシャフトをハウジングに対して回転自在に支持するころ軸受とを備え る。ハウジングのカムシャフトを収容する領域には、潤滑油が流れる油路の開口が設 けられている。ころ軸受は、円弧形状の外輪部材を円周方向に複数連ねて形成され る外輪と、外輪の内径面に沿って配置される複数のころとを備える。そして、外輪部 材の外径面には、油路の開口に対面する位置を含んで円周方向に延びる油溝が形 成されている。 [0032] 上記構成のカムシャフト支持構造において、油溝を外輪部材の外径面に形成する ことにより、ハウジングの製造工数および製造コストを削減することができる。一方、外 輪部材は順送プレス等によって製造可能であるので、容易に油溝の形成工程を追 加しても大きなコストアップとはならない。
[0033] また、上記構成のころ軸受は、製造誤差や熱膨張等を考慮して隣接する外輪部材 の突合部分にある程度の隙間が設けられてレ、る。ハウジングの油路から供給される 潤滑油は、この隙間からも軸受内部に流入することができるので、一体型の外輪を採 用した軸受と比較して、より潤滑性に優れたカムシャフト支持構造を得ることができる
[0034] 一実施形態として、油溝はコイニング加工によって形成されている。油溝の形成に コイニング加工を採用することにより、高精度の加工が可能となる。
[0035] 好ましくは、外輪部材は、内径面に前記ころと接触する軌道面が形成されている中 央領域と、中央領域に隣接する端部領域とに区分され、油溝は端部領域に配置され る。このように、軌道面となる部分から外れた位置に油溝を形成することにより、ころの スムーズな回転を阻害することがなレ、。
[0036] この発明に係る内燃機関は、ハウジングと、ハウジング内に設けられたシリンダと、 シリンダに連通する吸気路および排気路を開閉する弁と、弁の開閉のタイミングを制 御するカムシャフトと、カムシャフトを回転自在に支持するころ軸受とを備える。ハウジ ングのカムシャフトを収容する領域には、潤滑油が流れる油路の開口が設けられてい る。ころ軸受は、円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、 外輪の内径面に沿って配置される複数のころとを備える。そして、外輪部材の外径面 には、油路の開口に対面する位置を含んで円周方向に延びる油溝が形成されてい
[0037] 上記構成のカムシャフト支持構造を採用することにより、潤滑性に優れ、信頼性の 高い内燃機関を得ることができる。
[0038] この発明によれば、製造工数および製造コストを抑えると共に、潤滑性に優れたこ ろ軸受、およびこのようなころ軸受を採用した信頼性の高いカムシャフト支持構造お よび内燃機関を得ることができる。 [0039] この発明に係るころ軸受は、円弧形状の外輪部材を円周方向に複数連ねて形成さ れる外輪と、外輪の内径面に沿って配置される複数のころとを備える。外輪部材は、 軸方向端部から径方向内側に突出する鍔部と、鍔部の先端力 軸方向内側に延び る屈曲部とを有する。そして、屈曲部の内径面は、軸受内部からの潤滑油の流出を 防止するシール面として機能する。
[0040] 上記構成のように、外輪を複数の外輪部材に分割することにより、カムシャフトのよう に軸受を軸方向から揷入することのできな!/、場所にも適用することが可能となる。ま た、外輪部材の軸方向端部に径方向内側に突出する鍔部と、鍔部の先端を軸方向 内側に折り曲げて形成される屈曲部とを設けたことにより、軸受内部の潤滑油が軸方 向の隙間から流出するのを防止することができる。これにより、潤滑性に優れたころ軸 受を得ること力 Sでさる。
[0041] 好ましくは、屈曲部の内径面と前記複数のころに内接する仮想円との間の隙間 δ は、 5 ^ 111≤ 6≤ 50 mを満たす。軸受内部から軸方向端部の隙間を通って流出す る潤滑油量を減少させるには、ころ軸受の軸方向の隙間を上記の範囲内とすること が望ましい。なお、 δ〉50 mとすると、潤滑油の流出を防ぐシール面としての機能 は低い。一方、 δ < 5 111とすると、軸受回転時に屈曲部と回転軸とが接触してスム ーズな回転を阻害するおそれがある。
[0042] さらに好ましくは、ころ軸受は、屈曲部の内径面に接する位置に軸受内部からの潤 滑油の流出を防止する円環状部材をさらに備える。これにより、さらに効果的に潤滑 油の流出を防止することができる。
[0043] 一実施形態として、ころは端面から突出する突出部を有しており、屈曲部の外径面 は、突出部を案内するころ案内部として機能し、ころは隣接するころ軸受が相互に接 触するように配置された総ころ形式の軸受である。上記構成のころ軸受は、屈曲部に よってころの回転を案内することができる。したがって、この発明は総ころ形式のころ 軸受に特に適している。また、総ころ形式とすることにより、ころ軸受の負荷容量が増 大する。
[0044] この発明に係るカムシャフト支持構造は、カムシャフトと、カムシャフトを収容するハ ウジングと、カムシャフトをハウジングに対して回転自在に支持するころ軸受とを備え る。ころ軸受に注目すると、円弧形状の外輪部材を円周方向に複数連ねて形成され る外輪と、外輪の内径面に沿って配置される複数のころとを備える。外輪部材は、軸 方向端部から径方向内側に突出する鍔部と、鍔部の先端を軸方向内側に折り曲げ て形成される屈曲部とを有する。そして、屈曲部の内径面は、軸受内部からの潤滑油 の流出を防止するシール面として機能する。
[0045] 上記構成のカムシャフト支持構造は、ころ軸受の軸方向の隙間からの潤滑油の流 出量が少ないので、ハウジングの油路から供給される潤滑油の大部分がカムシャフト の油孔に到達する。その結果、潤滑性に優れたカムシャフト支持構造を得ることがで きる。
[0046] この発明に係る内燃機関は、ハウジングと、ハウジング内に設けられたシリンダと、 シリンダに連通する吸気路および排気路を開閉する弁と、弁の開閉のタイミングを制 御するカムシャフトと、カムシャフトを回転自在に支持するころ軸受とを備える。ころ軸 受に注目すると、円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、 外輪の内径面に沿って配置される複数のころとを備える。外輪部材は、軸方向端部 力、ら径方向内側に突出する鍔部と、鍔部の先端を軸方向内側に折り曲げて形成され る屈曲部とを有する。そして、屈曲部の内径面は、軸受内部からの潤滑油の流出を 防止するシール面として機能する。
[0047] この発明に係るころ軸受およびカムシャフト支持構造を採用することにより、潤滑性 に優れ、信頼性の高い内燃機関を得ることができる。
[0048] この発明によれば、ころ軸受の軸方向の隙間からの潤滑油の流出を防止することに より、ころ軸受の潤滑油の保持性が向上する。また、このようなころ軸受をカムシャフト を支持する軸受として採用することにより、耐久性に優れ、信頼性の高いカムシャフト 支持構造および内燃機関を得ることができる。
[0049] この発明に係るころ軸受は、円弧形状の外輪部材を円周方向に複数連ねて形成さ れる外輪と、外輪の内径面に沿って配置される複数のころとを備える。そして、外輪 部材は、その軸方向端部に径方向内側に突出する鍔部を有し、少なくとも鍔部の円 周方向端部には、相対的に剛性の低い剛性低下部が設けられている。
[0050] 一実施形態として、剛性低下部における鍔部の突出高さは、その他の領域におけ る鍔部の突出高さより低くなつている。
[0051] 上記構成のころ軸受は、外輪部材の軸方向端部に鍔部を設けることにより、外輪部 材とカムシャフトとの間の隙間が小さくなる。その結果、潤滑油の保持性が向上し、潤 滑性に優れたころ軸受を得ることができる。また、隣接するころの間隔を保持する保 持器を有するころ軸受においては、鍔部によって保持器の軸方向の移動を規制する こと力 Sでさる。
[0052] ここで、外輪部材の軸方向端部を折り曲げて鍔部を形成したことにより、外輪部材 の剛性が向上する。その結果、外輪部材の円周方向端部がハウジングの内周面を 攻撃して、ハウジングに圧痕(磨耗)が生じるおそれがある。この磨耗粉がころ軸受の 内部に侵入すると、潤滑油が早期に劣化したり、外輪部材の軌道面やころの転動面 を傷つけたりしてころ軸受の潤滑性を著しく低下させる。そこで、例えば外輪部材の 円周方向端部における鍔部の突出高さを他の部分より相対的に低く設定して、円周 方向端部の剛性を低下させることにより、このような問題を回避することができる。
[0053] この発明に係るカムシャフト支持構造は、カムシャフトと、カムシャフトを収容するハ ウジングと、カムシャフトをハウジングに対して回転自在に支持するころ軸受とを備え る。ころ軸受に注目すると、円弧形状の外輪部材を円周方向に複数連ねて形成され る外輪と、外輪の内径面に沿って配置される複数のころとを備える。そして、外輪部 材は、その軸方向端部に径方向内側に突出する鍔部を有し、少なくとも鍔部の円周 方向端部には、相対的に剛性の低い剛性低下部が設けられている。
[0054] この発明に係る内燃機関は、ハウジングと、ハウジング内に設けられたシリンダと、 シリンダに連通する吸気路および排気路を開閉する弁と、弁の開閉のタイミングを制 御するカムシャフトと、カムシャフトを回転自在に支持するころ軸受とを備える。ころ軸 受に注目すると、円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、 外輪の内径面に沿って配置される複数のころとを備える。そして、外輪部材は、その 軸方向端部に径方向内側に突出する鍔部を有し、少なくとも鍔部の円周方向端部に は、相対的に剛性の低!/、剛性低下部が設けられて!/、る。
[0055] 上記構成のようなころ軸受を採用することにより、潤滑性に優れ、信頼性の高いカム シャフト支持構造および内燃機関を得ることができる。 [0056] この発明によれば、外輪部材に鍔部を設けることによりころ軸受の潤滑油保持性が 向上する。また、円周方向端部に剛性低下部を設けることにより外輪部材の円周方 向端部がハウジングを傷つけるのを防止することができる。
[0057] さらに、このようなころ軸受をカムシャフトを支持する軸受として採用することにより、 耐久性に優れ、信頼性の高いカムシャフト支持構造および内燃機関を得ることができ
[0058] この発明に係るカムシャフト支持構造は、カムシャフトと、カムシャフトを収容するハ ウジングと、カムシャフトをハウジングに対して回転自在に支持するころ軸受とを備え る。ハウジングのカムシャフトを収容する領域には、潤滑油が流れる油路の開口が設 けられている。ころ軸受は、油路の開口に対面する位置に外径側から内径側に貫通 する油穴、および軸方向端部から径方向内側に突出する鍔部を有する円弧形状の 外輪部材を円周方向に複数連ねて形成される外輪と、外輪の内径面に沿って配置 される複数のころとを備える。そして、カムシャフトは、その円周方向上に軸受使用時 に大きな荷重が作用する負荷領域と、軸受使用時に相対的に小さな荷重が作用す る非負荷領域とを有し、外輪部材をカムシャフトに組みこんだ時に負荷領域に位置 する鍔部には、軸方向に貫通する開口部が設けられている。
[0059] 上記構成のころ軸受は、外輪部材の軸方向端部に鍔部を設けることにより、保持器 の軸方向への移動を規制することができると共に、外輪部材とカムシャフトとの間の隙 間が小さくなるので潤滑油の保持性が向上する。また、負荷領域に位置する鍔部に 開口部を設けることにより軸受内部の潤滑油は主にここから流出するので、負荷領域 に重点的に潤滑油を供給することが可能となる。その結果、このようなころ軸受を採 用することにより、潤滑性に優れ、信頼性の高いカムシャフト支持構造を得ることがで きる。
[0060] 好ましくは、開口部は、カムシャフトからころ軸受に負荷される最大荷重の方向に延 びる仮想線から外れた位置に配置される。ころ軸受の剛性は開口部を設けた領域で ある程度低下する。そこで、最大荷重が負荷される位置を避けて開口部を設けること により、剛性低下の影響を小さくすることができる。
[0061] この発明に係る内燃機関は、ハウジングと、ハウジング内に設けられたシリンダと、 シリンダに連通する吸気路および排気路を開閉する弁と、弁の開閉のタイミングを制 御するカムシャフトと、カムシャフトを回転自在に支持するころ軸受とを備える。ハウジ ングのカムシャフトを収容する領域には、潤滑油が流れる油路の開口が設けられてい る。ころ軸受は、油路の開口に対面する位置に外径側から内径側に貫通する油穴、 および軸方向端部から径方向内側に突出する鍔部を有する円弧形状の外輪部材を 円周方向に複数連ねて形成される外輪と、外輪の内径面に沿って配置される複数の ころとを備える。そして、カムシャフトは、その円周方向上に軸受使用時に大きな荷重 が作用する負荷領域と、軸受使用時に相対的に小さな荷重が作用する非負荷領域 とを有し、外輪部材をカムシャフトに組みこんだ時に負荷領域に位置する鍔部には、 軸方向に貫通する開口部が設けられている。
[0062] 上記構成のカムシャフト支持構造を採用することにより、潤滑性に優れ、信頼性の 高い内燃機関を得ることができる。
[0063] この発明によれば、外輪部材に鍔部を設けることによりころ軸受の潤滑油保持性が 向上する。また、負荷領域に位置する鍔部に開口部を設けることにより負荷領域に重 点的に潤滑油を供給することが可能となる。その結果、ころ軸受の潤滑性および冷却 性が向上する。また、このようなころ軸受をカムシャフトを支持する軸受として採用す ることにより、耐久性に優れ、信頼性の高いカムシャフト支持構造および内燃機関を 得ること力 Sでさる。
[0064] この発明に係るころ軸受は、円弧形状の外輪部材を円周方向に複数連ねて形成さ れる外輪と、外輪の内径面に沿って配置される複数のころと、隣接するころの間隔を 保持する保持器とを備える。そして、保持器は径方向に貫通する油路を有する。
[0065] 上記構成のように、外輪を複数の外輪部材に分割することにより、カムシャフトのよう に、軸受を軸方向から揷入することのできない場所にも適用することが可能となる。ま た、保持器に径方向に貫通する油路を設けることにより、ころ軸受に流入する潤滑油 が軸受全体に均等に供給されるので、潤滑性に優れたころ軸受を得ることができる。
[0066] 一実施形態として、保持器は、一対のリング部と、一対のリング部の間に配置される 複数の柱部と、隣接する柱部の間にころを収容するポケットとを有し、油路は柱部に 設けられる。さらに好ましくは、柱部は隣接するポケットを周方向に連通する油溝をさ らに有する。
[0067] 他の実施形態として、保持器は、ころを収容する複数の独立したポケット部と、複の ポケット部を円周方向に連結する連結部とを有し、油路は隣接するポケット部の間に 設けられる。さらに他の実施形態として、保持器はころを収容する複数のポケットを軸 方向に 2列有しており、油路は 2つのポケット列の間に設けられる。
[0068] 好ましくは、外輪部材は、円周方向端部にハウジングと係合するように径方向外側 に折り曲げられた係合爪を有する。これにより、軸受回転時に外輪がハウジング内で 回転するのを防止することができる。
[0069] この発明によれば、外輪部材のハウジング内での確実な位置決めが可能で、かつ 、潤滑性に優れたころ軸受を得ることができる。
図面の簡単な説明
[0070] [図 1]この発明の一実施形態に係るカムシャフト支持構造の組込み前の状態を示す 図である。
[図 2]この発明の一実施形態に係るころ軸受の外輪部材を示す図である。
[図 3]図 2の III方向から見た図である。
[図 4]図 2の IV方向から見た図である。
[図 5]隣接する外輪部材の突合部分の拡大図である。
[図 6]この発明の一実施形態に係るころ軸受の保持器の側面図を示す図である。
[図 7]図 6の保持器の分割部分を含む部分断面図である。
[図 8]図 2の外輪部材を突合させたときの突合部分の拡大図である。
[図 9]図 1のカムシャフト支持構造の組込み後の状態を軸方向から見た断面図である
[図 10]図 1のカムシャフト支持構造の組込み後の状態を径方向から見た断面図であ [図 11]この発明の一実施形態に係るころ軸受の保持器を径方向外側から見た図であ つて、径方向に貫通する油路の一例を示す図である。
[図 12]この発明の一実施形態に係るころ軸受の保持器を径方向外側から見た図であ つて、リング部の外径面に油溝を設けた例を示す図である。 園 13]この発明の一実施形態に係るころ軸受の保持器を径方向外側から見た図であ つて、径方向に貫通する油路の他の例を示す図である。
園 14]この発明の一実施形態に係るころ軸受の保持器を径方向外側から見た図であ つて、径方向に貫通する油路の他の例を示す図である。
園 15]この発明の一実施形態に係る複列ころ軸受の保持器を径方向外側から見た 図であって、径方向に貫通する油路の他の例を示す図である。
[図 16]この発明の一実施形態に係る外輪部材の製造工程の一部を示す図であって
、上段は平面図、下段は断面図である。
園 17]図 1の他の実施形態に係るころ軸受を示す図である。
園 18]図 17の部分拡大図である。
園 19]図 1の他の実施形態に係るころ軸受を示す図である。
園 20]図 1のさらに他の実施形態に係るころ軸受を示す図である。
園 21]この発明の他の実施形態に係るカムシャフト支持構造の組込み前の状態を示 す図である。
園 22]図 21のころ軸受の外輪部材を示す図である。
[図 23]図 22の XXIII— XXIIIにおける断面図である。
[図 24]図 22の XXIV方向力も見た図である。
[図 25]図 22の XXV方向力も見た図である。
[図 26]図 21のカムシャフト支持構造の組込み後の状態を軸方向から見た断面図であ
[図 27]図 21のカムシャフト支持構造の組込み後の状態を径方向から見た断面図であ 園 28]図 22の外輪部材の製造工程の一部を示す図であって、上段は平面図、下段 は断面図である。
園 29]この発明の他の実施形態に係るカムシャフト支持構造の組込み前の状態を示 す図である。
園 30]図 29のころ軸受の外輪部材を示す図である。
[図 31]図 29のカムシャフト支持構造の組込み後の状態を軸方向から見た断面図であ [図 32]図 29のカムシャフト支持構造の組込み後の状態を径方向から見た断面図であ
[図 33]図 30の外輪部材の製造工程の一部を示す図であって、上段は平面図、下段 は断面図である。
[図 34]図 30の他の実施形態に係るころ軸受に採用される外輪部材を示す図である。
[図 35]この発明の他の実施形態に係るカムシャフト支持構造の組込み前の状態を示 す図である。
[図 36]図 35のころ軸受の外輪部材を示す図である。
[図 37]図 35のカムシャフト支持構造の組込み後の状態を軸方向から見た断面図であ
[図 38]図 35のカムシャフト支持構造の組込み後の状態を径方向から見た断面図であ
[図 39]図 36の他の実施形態に係る外輪部材を示す図である。
[図 40]図 36の外輪部材の製造工程の一部を示す図であって、上段は平面図、下段 は断面図である。
[図 41]この発明の一実施形態に係る内燃機関のシリンダ 1つを示す断面図である。
[図 42]図 41の内燃機関に採用されるクランクシャフトを示す図である。
[図 43]図 41の内燃機関に採用されるカムシャフトを示す図である。
[図 44]従来のカムシャフト支持構造を示す図である。
[図 45]図 44のころ軸受のレース板とキャップとの拡大図である。
発明を実施するための最良の形態
[0071] 図 41〜図 43を参照して、この発明の一実施形態に係る内燃機関 11を説明する。
なお、図 41はこの発明の一実施形態に係る内燃機関 11のシリンダの 1つを示す断 面図、図 42は内燃機関 11に使用されるクランクシャフト 15を示す図、図 43は内燃機 関 11に使用されるカムシャフト 19を示す図である。
[0072] まず、図 41を参照して、内燃機関 11は、ハウジングとしてのシリンダブロック 12およ びシリンダヘッド 13と、往復運動を回転運動に変換する運動変換機構と、混合気の 吸気および燃焼ガスの排気を行う給排気機構と、点火装置としてのスパークプラグ 2
Figure imgf000017_0001
[0073] 運動変換機構は、シリンダブロック 12に収容され、シリンダブロック 12内に設けられ たシリンダ 12aの内部を往復運動するピストン 14と、フライホイール(図示省略)やクラ ツチ(図示省略)を介してトランスミッション(図示省略)に接続されるクランクシャフト 15 と、一端がピストン 14に接続され他端がクランクシャフト 15に接続されて、ピストン 14 の往復運動をクランクシャフト 15の回転運動に変換するコンロッド 16とを備える。
[0074] 給排気機構は、シリンダヘッド 13に形成され、シリンダ 12aに連通する吸気路 13a および排気路 13bと、シリンダ 12aおよび吸気路 13aの間に配置される弁としての吸 気バルブ 17と、シリンダ 12aおよび排気路 13bの間に配置される弁としての排気バル ブ 18と、吸気バルブ 17および排気バルブ 18の開閉のタイミングを制御するカムシャ フト 19とを備える。
[0075] 吸気バルブ 17は、ノ ノレブステム 17aと、バルブステム 17aの一方側端部に設けられ たバルブヘッド 17bと、吸気バルブ 17を吸気路 13aを閉鎖する方向に付勢するバル ブスプリング 17cとを含み、バルブステム 17aの他方側端部には、カムシャフト 19が接 続される。なお、排気バルブ 18は、吸気バルブ 17と同様の構成であるので、説明を 省略する。
[0076] 図 42を参照して、内燃機関 11に使用されるクランクシャフト 15は、軸部 15aと、クラ ンクアーム 15bと、隣接するクランクアーム 15bの間にコンロッド 16を配置するための クランクピン 15cとを有する。このクランクシャフト 15は、軸部 15aが後述するこの発明 の一実施形態に係る針状ころ軸受 21によって回転自在に支持されている。また、クラ ンクピン 15cは内燃機関 11のシリンダ数と同数設けられて!/、る。
[0077] 図 43を参照して、内燃機関 11に使用されるカムシャフト 19は、軸部 19aと、複数の カム 19bとを含む。軸部 19aは、後述するこの発明の一実施形態に係る針状ころ軸 受 21によって回転自在に支持される。このカムシャフト 19は、クランクシャフト 15とタ イミングベルト(図示省略)によって連結されて、クランクシャフト 15の回転に伴って回 転する。
[0078] カム 19bは、吸気バルブ 17または排気バルブ 18それぞれと接続されているので、 バルブ 17, 18と同数設けられる。また、カム 19bは、図 41に示すように、相対的に径 の大きい長径部 19cと相対的に径の小さい短径部 19dとを含み、複数のカム 19bは、 図 43に示すように、長径部 19cの位置を円周方向にずらして配置される。これにより 、複数のカム 19bそれぞれに接続されるバルブ 17, 18をタイミングをずらして開閉す ること力 S可倉 となる。
[0079] なお、内燃機関 11は、カムシャフト 19が、シリンダヘッド 13の上側に配置され、力、 つ、吸気バルブ 17側と排気バルブ 18側とにそれぞれ設けられる DOHC (Double Over Head Camshaft)方式のエンジンである。
[0080] 次に、この内燃機関の作動原理を説明する。
[0081] まず、この内燃機関 11は、ピストン 14がシリンダ 12a内で最も上昇した位置(上死 点)と最も降下した位置(下死点)との間を移動する工程を 1工程とすると、吸気工程、 圧縮工程、燃焼工程、および排気工程の 4工程からなる 4サイクルエンジンである。
[0082] 吸気工程では、吸気バルブ 17が開いた状態、かつ、排気バルブ 18が閉じた状態 で、ピストン 14が上死点から下死点まで移動する。これにより、シリンダ 12a内部(ビス トン 14の上側の空間を指す、以下同じ)の容積が増加して内部の圧力が低下するの で、混合気が吸気路 13aからシリンダ 12a内部に流入する。なお、混合気とは、空気( 酸素)と霧状にしたガソリンの混合物を指す。
[0083] 圧縮工程では、吸気バルブ 17および排気バルブ 18が閉じた状態で、ピストン 14が 下死点から上死点まで移動する。これにより、シリンダ 12a内部の容積が減少して内 部の圧力が上昇する。
[0084] 燃焼工程では、吸気バルブ 17および排気バルブ 18が閉じた状態で、スパークプラ グ 20を点火する。これにより、圧縮状態の混合気が燃焼することによって急激に膨張 してピストン 14を上死点から下死点まで押し下げる。この力をコンロッド 16を介してク ランクシャフト 15に回転運動として伝達することによって、駆動力が発生する。
[0085] 排気工程では、吸気バルブ 17が閉じた状態、かつ、排気バルブ 18が開いた状態 で、ピストン 14が下死点から上死点まで移動する。これにより、シリンダ 12a内部の容 積が減少して、燃焼ガスが排気路 13bに流出する。なお、この工程でピストン 14が上 死点に達した後は、吸気工程に戻る。 [0086] なお、上記の各工程において、「吸気バルブ 17が開いた状態」とは、カム 19bの長 径部 19cが吸気バルブ 17に当接して、吸気バルブ 17がバルブスプリング 17cに逆ら つて下方に押し下げられた状態を指し、「吸気バルブ 17が閉じた状態」とは、カム 19 bの短径部 19dが吸気バルブ 17に当接して、吸気バルブ 17がバルブスプリング 17c の復元力によって上方に押し上げられた状態を指す。また、排気バルブ 18について も同様であるので、説明は省略する。
[0087] 上記の各工程において、駆動力が発生するのは燃焼工程のみであり、その他のェ 程では、他のシリンダで発生した駆動力によってピストン 14が往復運動する。そのた め、クランクシャフト 15の円滑な回転を維持する観点からは、複数のシリンダで燃焼 行程のタイミングをずらすことが望まし!/、。
[0088] 図 1〜図 10を参照して、この発明の一実施形態に係るころ軸受としての針状ころ軸 受 21と、この針状ころ軸受 21を使用したカムシャフト支持構造を説明する。なお、図 1、図 8〜図 10はこの発明の一実施形態に係るカムシャフト支持構造の組込み前後 の状態を示す図、図 2〜図 7はこの発明の一実施形態に係る針状ころ軸受 21の各構 成要素を示す図である。
[0089] まず、図 1を参照して、この発明の一実施形態に係るカムシャフト支持構造は、カム シャフト 19と、カムシャフト 19を収容するハウジングとしてのシリンダヘッド 13および ベアリングキャップ 13cと、カムシャフト 19をハウジングに対して回転自在に支持する 針状ころ軸受 21とを備える。
[0090] 針状ころ軸受 21は、円弧形状の外輪部材 22a, 22bを円周方向に複数連ねて形 成される外輪 22と、外輪 22の内径面に沿って配置される複数のころとしての針状こ ろ 23と、円周上の一箇所に軸受の軸線方向に延びる分割線を有し、複数の針状ころ 23の間隔を保持する保持器 24とを備える。
[0091] なお、カムシャフト 19を支持する軸受としては、針状ころ軸受 21が採用されるのが 一般的である。針状ころ軸受 21は、針状ころ 23と軌道面とが線接触するので、軸受 投影面積が小さい割に高負荷容量と高剛性が得られる利点を有している。したがつ て、負荷容量を維持しつつ、支持部分の径方向の厚み寸法を削減することができる 点で好適である。 [0092] 図 2〜図 5を参照して、外輪部材 22aを説明する。なお、図 2は外輪部材 22aの側 面図、図 3は図 2を III方向から見た図、図 4は図 2を IV方向から見た図、図 5は隣接 する外輪部材 22a, 22bの突合部分の拡大図である。また、外輪部材 22bは外輪部 材 22aと同一の形状であるので、説明は省略する。
[0093] まず、図 2を参照して、外輪部材 22aは、中心角 180° の半円形状であって、円周 方向の一方側端部に径方向外側に折り曲げられた係合爪 22cと、軸方向の両端部 から径方向内側に突出する鍔部 22dとを有する。係合爪 22cは、シリンダヘッド 13と 係合して外輪部材 22aがハウジングに対して回転するのを防止する。鍔部 22dは、保 持器 24の軸方向への移動を規制すると共に、軸受の潤滑油保持性を向上させる。 そして、この 2つの外輪部材 22a, 22bを円周方向に連ねて円環形状の外輪 22を形 成する。また、外輪 22の内径面の軸方向中央部は、針状ころ 23の軌道面として機能 する。
[0094] また、図 3を参照して、外輪部材 22aの円周方向一方側端部には、軸方向の両端 部に係合爪 22cが 2つ設けられており、 2つの係合爪 22cの間には円周方向に凹ん だ略 V字型の凹部 22eが形成されている。なお、 2つの係合爪 22cは、外輪部材 22a の軌道面となる軸方向中央部を避けて両端部に、かつ、針状ころ軸受 21の回転軸 線と平行な直線上に配置される。すなわち、 2つの係合爪 22cの間の長さ Lは、針状 ころ 23の有効長さはり長く設定されている。なお、本明細書中「ころの有効長さ」とは 、ころ長さから両端の面取り部の長さを除!/、た長さを指すものとする。
[0095] また、図 4を参照して、外輪部材 22aの円周方向他方側端部には、軸方向両端部 に係合爪 22cの軸方向幅と同一幅の 2つの平坦部 22fと、 2つの平坦部 22fの間に 先端が円弧形状で円周方向に突出した略 V字型の凸部 22gとが設けられている。な お、凹部 22eは、外輪部材 22a, 22bを円周方向に連ねたときに隣接する外輪部材 の凸部 22gを受け入れる。このように、突合部分の形状を略 V字型とすることにより、 針状ころ 23がスムーズに回転可能となる。なお、外輪部材 22a, 22bの突合部分の 形状は、略 V字型に限らず、針状ころ 23がスムーズに回転可能な任意の形状、例え ば、略 W型であってもよい。
[0096] また、図 3および図 4を参照して、外輪部材 22aの外径面には、軸方向中央部を円 周方向に延びる油溝 22iと、油溝 22iの底壁に外径側から内径側に貫通する油穴 22 hが設けられている。この油溝 22iは、ハウジング(図示省略)に設けられた油路の開 口部に対面する位置を含むように設けられており、開口部から供給される潤滑油が 油溝 22iを通って油穴 22hや隣接する外輪部材 22a, 22bの突合部分から軸受内部 に流入する。
[0097] さらに、図 5を参照して、隣接する外輪部材 22a, 22bの突合部には、外輪部材 22 a, 22bの熱膨張や製造誤差を考慮して円周方向に隙間が設けられる。そして、この 円周方向隙間は、油溝 22iを含む領域で相対的に大きぐその他の領域で相対的に 小さく設定する。この実施形態においては、軸方向中央部の円周方向隙間が大きく 、軸方向両端部の円周方向隙間が小さい。
[0098] 油溝 22iを含む領域で円周方向隙間を大きくすることにより、軸受内部に流れ込む 潤滑油量が増加する。その結果、針状ころ軸受 21の潤滑性が向上する。一方、油溝 22iが形成されていない領域での円周方向隙間を小さくすることにより、潤滑油がこ の隙間を通って軸方向に流出するのを抑制することができる。
[0099] なお、油溝 22iを含む領域、およびその他の領域における円周方向隙間量は一定 である必要はなぐ場所によって異なっていてもよい。この実施形態においては、軸 方向中央部の円周方向隙間が最も大きぐ軸方向両端部に向かって徐々に小さくな り、油溝 22iより外側では同じ大きさとなっている。
[0100] 次に、図 6および図 7を参照して、保持器 24を説明する。なお、図 6は保持器 24の 側面図、図 7は保持器 24の分割部分を含む部分断面図である。図 6および図 7を参 照して、保持器 24は、円周上の一箇所に軸受の軸線方向に延びる分割線を有する 略 C型形状であって、針状ころ 23を収容するポケット 24cが円周方向の等間隔に設 けられている。また、この保持器 24は、樹脂材料を射出成型して形成される。
[0101] また、分割部分の円周方向一方側の切断端面 24aには凹部 24dが、他方側の切 断端面 24bには凹部 24dに対応する凸部 24eが設けられており、凹部 24dおよび凸 部 24eが係合することにより、円環形状の保持器 24を得ることができる。なお、この実 施形態においては、凸部 24eの先端部分の幅が根元部分より大きぐ凹部 24dは開 口部分の幅が最奥部より小さく設定されている。これにより、凹部 24dと凸部 24eの係 合を確実なものとしている。
[0102] 次に、図 1、図 8〜図 10を参照して、針状ころ軸受 21をカムシャフト 19に組み込む 手順を説明する。
[0103] まず、保持器 24のポケット 24cそれぞれに針状ころ 23を組み込む。次に、保持器 2 4の弾性を利用して分割部分を広げ、カムシャフト 19に組み込む。さらに、凹部 24d と凸部 24eとを係合させて、保持器 24が外れないようにする。
[0104] 次に、シリンダヘッド 13の上に、一方側の外輪部材 22a、保持器 24を巻きつけて固 定したカムシャフト 19、他方側の外輪部材 22b、およびベアリングキャップ 13cの順に 組込み、シリンダヘッド 13とベアリングキャップ 13cとをボルト等で固定する。このとき 、外輪部材 22aの凹部 22eと外輪部材 22bの凸部 22g、外輪部材 22aの凸部 22gと 外輪部材 22bの凹部 22eとがそれぞれ突合するように配置する。
[0105] また、外輪部材 22aの係合爪 22cは、シリンダヘッド 13のベアリングキャップ 13cと の突合面に設けられた係合溝 13dと係合するように配置し、外輪部材 22bの係合爪 2 2cは、ベアリングキャップ 13cのシリンダヘッド 13との突合面に設けられた係合溝 13 dと係合するように配置する。これにより、外輪部材 22a, 22bが、軸受回転中にハウ ジング内部で回転するのを防止することができる。
[0106] ここで、一般的にシリンダヘッド 13とベアリングキャップ 13cとの突合面は、カムシャ フト 19の軸線方向、すなわち軸受の回転軸線と平行な面となる。そこで、外輪部材 2 2a, 22bの円周方向端部に設けた 2つ係合爪 22cを針状ころ軸受 21の回転軸線と 平行な直線状に配置することにより、係合爪 22cをシリンダヘッド 13とベアリングキヤ ップ 13cとの間に係合させることができる。
[0107] なお、図 8を参照して、針状ころ軸受 21は、カムシャフト 19の回転方向、すなわち 針状ころ 23の公転方向と、外輪部材 22a, 22bの凸部 22gの突出方向とがー致する ように配置される。これにより、針状ころ 23がスムーズに回転可能となる。
[0108] 針状ころ 23の公転方向が外輪部材 22a, 22bの凸部 22gの突出方向と逆向きの場 合、軸受回転時に針状ころ 23が外輪部材 22a, 22bの凸部 22gの先端に衝突して 振動が発生したり、針状ころ 23が破損したりする恐れがあるからである。
[0109] さらに、ハウジングとしてのシリンダヘッド 13およびベアリングキャップ 13cには、力 ムシャフト 19を収容する領域に潤滑油を供給する油路の開口 13eが設けられている 。また、カムシャフト 19には、内部に軸方向に伸びるオイル通路 19eと、オイル通路 1 9eから軸部 19aに向かって延びる油孔 19fとが形成されている。そこで、針状ころ軸 受 21を組み込む際には、外輪部材 22a, 22bの外径面に形成された油溝 22iが、開 口 13eに対面するように配置する。
[0110] 上記の組み込み手順とすることにより、カムシャフト 19と、外輪 22と、保持器 24と、 ノ、ウジングとが同心円状に配置され、針状ころ 23が安定して回転可能な針状ころ軸 受 21を得ること力 Sできる。また、上記構成の針状ころ軸受 21は、外輪 22を 2つの外 輪部材 22a, 22bに分割し、保持器 24を円周方向の一箇所で分割したことにより、支 持部分の径方向力も組み込むことが可能となるので、カムシャフト 19を支持する軸受 として採用すること力 Sでさる。
[0111] また、外輪部材 22a, 22bの外径面に油溝 22iを設けることにより、開口 13eから供 給された潤滑油力 油溝 22iを経由して油穴 22hや隣接する外輪部材 22a, 22bの 突合部分から軸受内部に流入し、さらに、カムシャフト 19の油孔 19fとオイル通路 19 eとを通って各部へ分配される。また、潤滑油の他の流路としては、上記と反対にカム シャフト 19の油孔 19fから供給された潤滑油力 S、針状ころ軸受 21の油穴 22hや隣接 する外輪部材 22a, 22bの突合部分、および油溝 22iを通って開口 13eからハウジン グの油路に流出する経路、さらには、開口 13eから油溝 22iを通って他の位置に設け られた開口 13eからハウジングの油路に戻る経路等が考えられる。
[0112] このように、外輪部材 22a, 22bの外径面に油溝 22iを形成してハウジングと針状こ ろ軸受 21との間に潤滑油が流れる隙間を設けることにより、潤滑性に優れた力ムシャ フト支持構造、およびこのようなカムシャフト支持構造を採用した信頼性の高い内燃 機関を得ること力できる。また、油溝 22iの中に油穴 22hを設けたことにより、ハウジン グの開口 13eと油孔 22hとの位置を合わせる必要がなくなるので、組込み性が向上 すると共に、軸受の汎用性が高まる。この発明は、突合部分に隙間を生じる分割型 外輪 22に採用することにより、より高い効果が期待できる。
[0113] 上記構成の針状ころ軸受 21において、外輪部材 22a, 22bに設けられた油穴 22h 力、ら流入した潤滑油は、針状ころ軸受 21の内部を通ってカムシャフト 19に設けられ た油孔 19fから排出される。しかし、潤滑油が軸受内部をスムーズに通過できない場 合、軸受内部に滞留した潤滑油が外輪部材 22a, 22bとカムシャフト 19との間から外 部に流出してしまい、針状ころ軸受 21の潤滑に寄与しない。
[0114] そこで、図 11〜図 15に示すような保持器を採用することができる。なお、図 11〜図
15に示す保持器の基本構成は、図 6および図 7に示す保持器 24と共通するので、 共通点の説明は省略し、相違点を中心に説明する。
[0115] まず、図 11を参照して、保持器 114は、一対のリング部 115a, 115bと、一対のリン グ咅 115a, 115bの間に複数の柱き とを有し、柱き I 16カ左右のリングき I 15a , 115bを連結して、一体型の保持器 114を形成している。また、切断部 114a, 114b は、リングき 115a, 115bの一箇所に設けられており、 114cは、隣接する柱き の 間に形成されている。
[0116] さらに、柱部 116には、隣接する 114cを周方向に連通する油溝 117と、柱部 116 を径方向に貫通する油路 118とが設けられている。なお、油溝 117は、柱部の軸方 向中央部に外径面を凹ませて形成されており、油路 118は、油溝 117の底壁から内 径側に貫通している。
[0117] このように、保持器 1 14に油溝 117ゃ油路 118を設けて、軸受内部を通過する潤滑 油量を増加することにより、潤滑性に優れた針状ころ軸受 21を得ることができる。
[0118] なお、図 11に示す保持器 1 14は、油溝 117および油路 118を柱部 1 16の軸方向 中央部に形成した例を示した力 これに限ることなぐ任意の位置に形成することが 可能である。また、油路 118を円形断面とした例を示した力 これに限ることなぐ矩 形断面等の任意の形状を採用することが可能である。
[0119] 次に、図 12を参照、して、保持器 124は、一対のリングき 125a, 125bと、一対のリン グ部 125a, 125bの間に配置される複数の柱部 126とを有し、隣接する柱部 126の 間に針状ころ 23を収容するポケット 124cが形成されている。そして、一対のリング部 125a, 125bの外径面に円周方向に延びる油溝 127と、柱部 126の軸方向中央部 に径方向に貫通する油路 128とが設けられている。
[0120] 上記構成の保持器 124は、図 11に示す保持器 114の変形例であって、油溝 127と 油路 128とを別の位置に設けた例である。なお、図 12では油溝 127を左右のリング 部 125a, 125bそれぞれに設けた例を示した力 これに限ることなく、どちらか一方に のみ設けてもよい。また、図 12では油溝 127をリング部 125a, 125bの外径面に設け た例を示したが、これに限ることなく、内径面であってもよいし、軸方向外側の端面で あってもよい。
[0121] 次に、図 13を参照して、保持器 134は、一対のリング部 135a, 135bと、一対のリン グ部 135a, 135bの間に配置される複数の柱部 136とを有し、隣接する柱部 136の 間に針状ころ 23を収容するポケット 134cが形成されている。そして、柱部 136は軸 方向中央部で分割されており、分割部分には潤滑油が保持器 134の径方向および 周方向に移動可能な油路 137が設けられている。
[0122] 上記構成の保持器 134は、図 11に示した保持器 114と比較して油路 137を大きく すること力 Sできるので、軸受内部を通過する潤滑油量をさらに増加することができる。 ただし、柱部 136は、左右のリング部 135a, 135bを接続する役割を担っているので 、全ての柱部 136に油路 137を形成することはできない。図 13に示す実施形態では 、油路 137を設けた柱部 136と、油路 137を設けない柱部 136とを交互に配置してい
[0123] 次に、図 14を参照して、保持器 144は、針状ころ 23を収容する複数の独立したポ ケット部 145と、複数のポケット部 145を円周方向に連結する連結部 146とを有し、隣 接するポケット部 145の間に油路 147が形成されている。この保持器 144は、隣接す る針状ころ 23の間隔を保持するために最低限必要な構成のみを有しており、図 11 および図 13に示したような保持器 114, 134と比較すると、油路 147の位置および大 きさの自由度が非常に高レ、とレ、う利点を有してレ、る。
[0124] 次に、図 15を参照して、保持器 154は、軸方向両端部に一対の第 1および第 2外 側リング部 155a, 155bと、軸方向中央部に一対の第 1および第 2内側リング部 156a , 156bと、 4つのリングき 155a, 155b, 156a, 156bを連結する複数の柱咅 I 57と を有し、針状ころ 23を収容する複数のポケット 158が軸方向に 2列、すなわち、第 1 外側リング部 155aと第 2内側リング部 156aとの間(右側ポケット列 158a)、および第 2外側リング部 155bと第 2内側リング部 156bとの間(左側ポケット列 158b)に形成さ れている。そして、保持器 154を径方向に貫通する油路 159は、 2列のポケット列 15 8a, 158bの間、すなわち、第 1および第 2内側リング部 156a, 156bの間に形成され ている。
[0125] 図 11〜図 15のいずれの形態であっても、軸受内部を通過する潤滑油量が増加す るので、潤滑性に優れた針状ころ軸受 21を得ることができる。なお、上記の実施形態 では、外輪部材 22a, 22bの油穴 22h力もカムシャフト 19の油孔 19fに向力、つて潤滑 油が流れる例を説明した力 これに限ることなぐカムシャフト 19の油孔 19fから外輪 部材 22a, 22bの油穴 22hに向力 て潤滑油が流れる場合も同様に考えることがで きる。
[0126] また、図 11〜図 15 ίこ示す保持器 114, 124, 134, 144, 154 (ま、後述する他の実 施形態を含めたあらゆる転がり軸受に適用することができる。
[0127] 上記の実施形態においては、カムシャフト 19を支持する軸受として針状ころ軸受 2 1を採用した例を示した力 S、この発明は、他のころ軸受、例えば、円筒ころ軸受ゃ棒 状ころ軸受にも適用すること力 Sできる。後述する他の実施形態についても同様である
[0128] また、上記の実施形態における針状ころ軸受 21は、外輪 22と、針状ころ 23と、保 持器 24とを含む例を示した力 S、これに限ることなく、保持器 24を省略した総ころ形式 のころ軸受であってもよい。後述する他の実施形態についても同様である。
[0129] また、上記の実施形態における外輪 22は、円周方向の二箇所で外輪部材 22a, 2 2bに分割した例を示したが、これに限ることなぐ任意の個数に分割することが可能 である。例えば、中心角 120° の外輪部材を円周方向に 3つ連ねて外輪を形成して もよい。さらには、互いに中心角の異なる複数の外輪部材を組み合わせて円環形状 の外輪を形成してもよい。同様に、保持器 24についても任意の形態のものを採用す ること力 Sできる。後述する他の実施形態についても同様である。
[0130] また、上記の実施形態における保持器 24は、生産効率が高ぐかつ、弾性変形能 の高い樹脂製保持器の例を示したが、これに限ることなぐ切削加工による削り出し 保持器でもよぐまたは、鋼板をプレス加工したプレス保持器であってもよい。後述す る他の実施形態についても同様である。
[0131] また、上記の実施形態における針状ころ軸受 21は、カムシャフト 19を支持する軸受 としてだけではなぐ図 42に示したようなクランクシャフト 15の軸部 15aやロッカーシャ フト等を支持する軸受としても広く使用することが可能である。後述する他の実施形 態についても同様である。
[0132] さらに、この発明は、単気筒の内燃機関にも適用可能である力 図 42に示すような 多気筒エンジンに採用されるクランクシャフト 15の軸部 15aや、図 43に示すような力 ムシャフト 19の軸部 19bのように、軸方向から針状ころ軸受 21を揷入できない箇所を 支持する軸受として好適である。後述する他の実施形態についても同様である。
[0133] 次に、図 16を参照して、この発明の一実施形態に係る外輪部材 22aの製造方法を 説明する。なお、図 16は、外輪部材 22aの製造工程の一部を示す図であって、上段 は平面図、下段は断面図を示す。また、外輪部材 22bの製造方法は、外輪部材 22a と同様であるので、説明は省略する。
[0134] まず、出発材料としては、炭素含有量が 0. 15wt%以上、 1. lwt%以下の炭素鋼 を使用する。具体的には、炭素含有量が 0. 15wt%以上、 0. 5wt%以下の SCM4 15や S50C等、または、炭素含有量が 0. 5wt%以上、 1. lwt%以下の SAE1070 や SK5等が考えられる。
[0135] なお、炭素含有量が 0. 15wt%未満の炭素鋼は、焼入処理によって浸炭硬化層が 形成されにくぐ外輪部材 22aに必要な硬度を得るためには、浸炭窒化処理を行う必 要がある。浸炭窒化処理は、後述する各焼入処理と比較して設備費用が高額になる ので、結果として、針状ころ軸受 21の製造コストが上昇する。また、炭素含有量が 0. 15wt%未満の炭素鋼では浸炭窒化処理によっても十分な浸炭硬化層が得られな い場合があり、軌道面に表面起点型の剥離が早期に発生する恐れがある。一方、炭 素含有量が 1. lwt%を超える炭素鋼はで加工性が著しく低下するので、加工精度 が低下したり、加工工数の増加による製造コストの上昇が問題となる。
[0136] 図 16を参照して、第 1の工程としては、鋼板を打ち抜き加工して外輪部材 22aの外 形を形成する(a工程)。また、長手方向の一方側端部に凹部 22eおよび係合爪 22c となる部分を形成し、他方側端部に平坦部 22fおよび凸部 22gを形成する。
[0137] このとき、外輪部材 22aの長手方向の長さは、カムシャフト 19の直径に基づいて決 定し、短手方向の長さは、使用する針状ころ 23のころ長さに基づいて決定する。ただ し、短手方向には鍔部 22dとなる部分が含まれているので、この工程での短手方向 の長さは、外輪部材 22aの完成品の軸方向幅寸法より長くなる。
[0138] この工程は、一度の打ち抜き加工で全ての部分を打ち抜!/、てもよ!/、し、打ち抜き加 ェを複数回繰り返して所定の形状を得てもよい。なお、順送プレスを用いる場合には 、各加工工程の加工位置を決めるためのパイロット穴 25を形成すると共に、隣接する 外輪部材との間に連結部 26を設けるとよい。
[0139] 第 2の工程としては、コイニング加工 (圧印加工)によって、外輪部材 22aの外径面 となる面に油溝 22iを形成する(b工程)。具体的には、油溝 22iと同一形状の凸部を 浮き彫りした外型を外輪部材 22aの外径面となる面に、表面が平坦な内型を外輪部 材 22aの内径面となる面にそれぞれ押し当てて加圧することにより、内径面は平坦な 状態のまま外径面に油溝 22iが形成される。このとき、油溝 22iの底壁の任意の位置 に打ち抜き加工によって油穴 22hを形成してもよい。
[0140] 第 3の工程としては、曲げ加工により外輪部材 22aの円周方向端部を径方向外側 に折り曲げて、係合爪 22cを形成する(c工程)。係合爪 22cの曲げ角度は、ハウジン グの係合溝 13cに沿う角度とする。なお、この実施形態では、係合爪 22cが、外輪部 材 22aに対して 90° の角度となるように折り曲げて!/、る。
[0141] 第 4の工程としては、曲げ加工により外輪部材 22aの外形を所定の曲率に曲げるェ 程と、外輪部材 22aの軸方向両端部から径方向内側に突出する鍔部 22dを形成す る工程とを含む(d工程〜 h工程)。具体的には、連結部 26を含む中央部分を残して 、長手方向の両端部側から順に曲げていく(d工程、 e工程)。次に、曲げ加工を施し た長手方向両端部について、短手方向の両端部に曲げ加工を施して鍔部 22dを形 成する(f工程)。次に、外輪部材 22aの外形が所定の曲率となるように、長手方向中 央部についても曲げ加工を行う(g工程)。最後に、連結部 26を除去して、長手方向 中央部に鍔部 22dを形成する(h工程)。
[0142] 上記のプレス加工工程終了後、外輪部材 22aに必要とされる硬度等の所定の機械 的性質を得るために、熱処理を行う。なお、軌道輪として機能する外輪部材 22aの内 径面の表面硬さ Hvは、 635以上が必要となる。
[0143] 外輪部材 22aが十分な深さの硬化層を得るためには、出発材料の炭素含有量によ つて適切な熱処理方法を選択する必要がある。具体的には、炭素含有量が 0. 15wt %以上、 0. 5wt%以下の材料の場合には浸炭焼入処理を、炭素含有量が 0. 5wt %以上、 1. lwt%以下の材料の場合には光輝焼入処理または高周波焼入処理を 施す。
[0144] 浸炭焼入処理は、高温の鋼に炭素が固溶する現象を利用した熱処理方法であつ て、鋼内部は炭素量が低いまま、炭素量の多い表面層(浸炭硬化層)を得ることがで きる。これにより、表面は硬ぐ内部は軟ら力べ靭性の高い性質が得られる。また、浸 炭窒化処理設備と比較して設備費用が安価である。
[0145] 光輝焼入処理は、保護雰囲気や真空中で加熱することによって、鋼表面の酸化を 防止しながら行う焼入処理を指す。また、浸炭窒化処理設備や浸炭焼入処理設備と 比較して設備費用が安価である。
[0146] 高周波焼入処理は、誘導加熱の原理を利用して、鋼表面を急速に加熱、急冷して 焼入硬化層を作る方法である。他の焼入処理設備と比較して設備費用が大幅に安 価であると共に、熱処理工程でガスを使用しな!/、ので環境に優しレヽとレ、うメリットがあ る。また、部分的な焼入処理が可能となる点でも有利である。
[0147] さらに、焼入によって生じた残留応力や内部ひずみを低減し、靭性の向上や寸法 を安定化させるために、上記の焼入処理の後に焼戻を行うのが望ましい。
[0148] なお、この実施形態においては、外輪部材 22aの外形の曲率を形成する工程と、 鍔部 22dを形成する工程とを平行して行う例を示した力 S、これに限ることなく、外形の 曲率を形成する工程と、鍔部 22dを形成する工程とを独立して行ってもよい。後述す る他の実施形態についても同様である。
[0149] また、外輪部材 22aの外径面に油溝 22iを形成する方法として、コイニング加工の 例を示したが、これに限ることなく、プレス加工等の他の冷間加工を採用してもよい。 後述する他の実施形態についても同様である。
[0150] また、上記の第 1の工程から第 4の工程は、この発明に係る外輪部材の製造方法の 一例であって、各工程をさらに細分化してもよいし、必要な工程をさらに追加すること もできる。また、加工工程の順番も任意に入れ替えることができるものとする。後述す る他の実施形態についても同様である。 [0151] さらに、上記の各工程(a工程〜 h工程)は、それぞれ別々の工程として単能プレス で行ってもよいが、順送プレス、または、トランスファプレスによって行うこととしてもよ い。これにより、各工程を連続的に行うことができる。また、上記の各工程 (a工程〜 h 工程)の全部または一部に相当する加工部を有する外輪部材 22aの製造装置を使 用することにより、生産性を高めることができ、結果として針状ころ軸受 21の製品価格 を抑えること力 Sできる。後述する他の実施形態についても同様である。
[0152] なお、本明細書中で「順送プレス」とは、プレス内に複数の加工工程を持ち、材料を プレス入口のフィーダにより各工程を移動させることによって、材料を連続的に加工 する方法を指すものとする。また、本明細書中で「トランスファプレス」とは、複数の加 ェ工程を必要とする場合に、各工程を行うステージを必要数分設け、搬送装置によ つて工程品を移動させながら、各ステージで加工を行う方法を指すものとする。後述 する他の実施形態についても同様である。
[0153] なお、上記の実施形態における外輪部材 22a, 22bは、ころ 22と接触する軌道面 が内径面に形成されている中央領域に油溝 22iを配置した例を示した力 S、これに限る ことなく、任意の位置に配置することができる。図 17〜図 20を参照して、この発明の 他の実施形態に係る針状ころ軸受 31 , 41 , 51を説明する。なお、図 17は針状ころ 軸受 31の断面図、図 18は図 17の部分拡大図、図 19は針状ころ軸受 41の断面図、 図 20は針状ころ軸受 51の外輪部材 52aの外径面の拡大図である。また、針状ころ 軸受 31 , 41 , 51の基本構成は針状ころ軸受 21と共通するので、共通点の説明は省 略し、相違点を中心に説明する。
[0154] まず、図 17および図 18を参照して、針状ころ軸受 31に採用される外輪部材 32aは 、内径面に針状ころ 33と接触する軌道面が形成されている中央領域 3¾ (図 17中の 破線 1で囲まれた領域を指す)と、中央領域 3¾に隣接する端部領域 32k (図 17中の 破線 1と破線 1とで囲まれた領域を指す)とに区分される。そして、油溝 32iは端部領
1 2
域 32kに配置される。
[0155] 具体的には、図 18に示すように、針状ころ 33および保持器 34が軸方向一方側に 最大限偏った状態での針状ころ 33の転動面の端に対応する位置 (破線 1で示す位 置)より軸方向外側であって、かつ外輪部材 32の内径面の屈曲開始点に対応する 位置 (鍔部 32dの折り曲げの基点、破線 1で示す位置)より軸方向内側(図 18中両矢
2
印で示す範囲、端部領域 32k)に油溝 32iを形成するのが望ましい。
[0156] 上記構成とすることにより、軌道面が形成される中央領域 3¾の板厚を減じる必要 がなくなるので、針状ころ 33のスムーズな回転を妨げることがない。この場合、油溝は 、左右の端部領域 32kのどちらか一方にのみ設けてもよいし、両方に設けてもよい。
[0157] 次に、図 19を参照して、針状ころ軸受 41に採用される外輪部材 42aには、その外 径面に 3つの油溝 42iが設けられている。具体的には、軸方向中央部に一箇所と軸 方向両端部にそれぞれ一箇所ずつ設けられている。このように、油溝 42iを複数箇所 に設けることによって各油溝 42iの幅および深さを小さくすることができるので、外輪 部材 42aの局部的な剛性低下を防止することができる。
[0158] さらに、図 20を参照して、針状ころ軸受 51に採用される外輪部材 52aには、その外 径面に略 Y字形状の油溝 52iが設けられている。すなわち、油溝 52iは、軸方向中央 部を円周方向に延びる第 1の部分 5¾と、第 1の部分 5¾から左右に分岐して軸方向 両端部を円周方向に延びる第 2の部分 52kとを有する。そして、第 1の部分 5¾と第 2 の部分 52kとの分岐部分は、軸受回転軸線に対して所定の角度傾斜している。
[0159] 上記構成のように油溝 52iを分岐させることにより、任意の位置への潤滑油の分配 が可能となる。また、第 1の部分 5¾と第 2の部分 52kとの分岐部分を斜めにすること で円周方向における外輪部材 52aの剛性を平準化することができるので、針状ころ 5 3の回転がスムーズになる。
[0160] なお、上記実施形態における油溝 52iの形状は、略 Y字形状に限られず、任意の 形状を採用することが可能である。また、上記の実施形態においては、外輪部材 52a の剛性の観点、および潤滑油量の観点から第 1の部分 5¾の溝幅を第 2の部分 52k の溝幅より大きくしている。
[0161] 次に、図 21〜図 27を参照して、この発明の他の実施形態に係るころ軸受としての 針状ころ軸受 61と、この針状ころ軸受 61を使用したカムシャフト支持構造を説明する 。なお、針状ころ軸受 61の基本構成は針状ころ軸受 21と共通するので、共通点の説 明は省略し、相違点を中心に説明する。また、図 21、図 26、および図 27はカムシャ フト支持構造の組込み前後の状態を示す図、図 22〜図 25は外輪部材 62aを示す図 である。
[0162] まず、図 21を参照して、カムシャフト支持構造は、カムシャフト 19と、カムシャフト 19 を収容するハウジングとしてのシリンダヘッド 13およびベアリングキャップ 13cと、カム シャフト 19をハウジングに対して回転自在に支持する針状ころ軸受 61とを備える。
[0163] 針状ころ軸受 61は、円弧形状の外輪部材 62a, 62bを円周方向に複数連ねて形 成される外輪 62と、外輪 62の内径面に沿って配置される複数のころとしての針状こ ろ 63とを備える。なお、この実施形態に係る針状ころ軸受 61は、隣接する針状ころ 6 3が相互に接触しており、針状ころ 63を保持する保持器を有していない総ころ形式の ころ軸受である。
[0164] 図 22〜図 25を参照して、外輪部材 62aを説明する。なお、図 22は外輪部材 62aの 側面図、図 23は図 22の XXIII— XXIIIにおける断面図、図 24は図 22を XXIV方向 から見た図、図 25は図 22を XXV方向から見た図である。また、外輪部材 62bは外輪 部材 62 aと同一の形状であるので、説明は省略する。
[0165] まず、図 22を参照して、外輪部材 62aは、中心角 180° の半円形状であって、円 周方向の一方側端部に径方向外側に折り曲げられた係合爪 62cと、軸方向の両端 部から径方向内側に突出する鍔部 62dとを有する。係合爪 62cは、シリンダヘッド 13 と係合して外輪部材 62aがハウジングに対して回転するのを防止する。鍔部 62dは、 保持器 24の軸方向への移動を規制すると共に、軸受の潤滑油保持性を向上させる 。そして、この 2つの外輪部材 62a, 62bを円周方向に連ねて円環形状の外輪 62を 形成する。また、外輪 62の内径面の軸方向中央部は、針状ころ 63の軌道面として機 能する。
[0166] また、図 23を参照して、鍔部 62dの径方向内側の先端には、軸方向内側に 90° 折り曲げて形成した屈曲部 62iが設けられている。一方、針状ころ 63の両端面には、 長手方向に突出する突出部 63aが設けられている。この突出部 63aは、外輪部材 62 aの内径面と、鍔部 62dの内側の壁面と、屈曲部 62iの外径面とで囲まれた領域に配 置され、屈曲部 62iの外径面に案内されながら転動する。さらに、屈曲部 62iの内径 面と複数の針状ころ 63に内接する仮想円との間の隙間 δは、 5 111≤ δ≤50 m の範囲内に設定する。 [0167] また、図 23を参照して、外輪部材 62aの円周方向一方側端部には、軸方向の両端 部に係合爪 62cが 2つ設けられており、 2つの係合爪 62cの間には円周方向に凹ん だ略 V字型の凹部 62eが形成されている。なお、 2つの係合爪 62cは、外輪部材 62a の軌道面となる軸方向中央部を避けて両端部に、かつ、針状ころ軸受 61の回転軸 線と平行な直線上に配置される。すなわち、 2つの係合爪 62cの間の長さ Lは、針状 ころ 63の有効長さはり長く設定されている。なお、本明細書中「ころの有効長さ」とは 、ころ長さから両端の面取り部の長さを除!/、た長さを指すものとする。
[0168] また、図 25を参照して、外輪部材 62aの円周方向他方側端部には、軸方向両端部 に係合爪 62cの軸方向幅と同一幅の 2つの平坦部 62fと、 2つの平坦部 62fの間に 先端が円弧形状で円周方向に突出した略 V字型の凸部 62gとが設けられている。
[0169] なお、凹部 62eは、外輪部材 62a, 62bを円周方向に連ねたときに隣接する外輪部 材の凸部 62gを受け入れる。このように、突合部分の形状を略 V字型とすることにより 、針状ころ 63がスムーズに回転可能となる。なお、外輪部材 62a, 62bの突合部分の 形状は、略 V字型に限らず、針状ころ 63がスムーズに回転可能な任意の形状、例え ば、略 W型であってもよい。
[0170] さらに、図 24および図 25を参照して、外輪部材 62aには、外径側から内径側に貫 通する油穴 62hが設けられている。この油穴 62hは、ハウジングに設けられた油路( 図示省略)に対面する位置に設けられて、潤滑油を針状ころ軸受 61内部に供給する 。なお、油穴 62hの大きさ、位置、個数は、ハウジングに設けられた油路の大きさ、位 置、個数に依存する。
[0171] 上記構成の針状ころ軸受 61は、屈曲部 62iの外径面が針状ころ 63の突出部 63a を案内するころ案内部として機能することにより、針状ころ 63の脱落ゃスキューを有 効に防止することができる。さらに、針状ころ軸受 61の軸方向端部の隙間 δが上記 範囲内となるように屈曲部 62iを設けることにより、屈曲部 62iの内径面が軸受内部か らの潤滑油の流出を防止するシール面として機能する。その結果、軸受内部から軸 方向端部の隙間を通って流出する潤滑油量が減少する。
[0172] 次に、図 21、図 26、および図 27を参照して、針状ころ軸受 61をカムシャフト 19に 組み込む手順を説明する。 [0173] まず、各外輪部材 62a, 62bに針状ころ 63を組み込む。具体的には、外輪部材 62 a, 62bの円周方向の端部から内径面に沿って針状ころ 63を揷入することにより、容 易に組み込むことが可能である。
[0174] 次に、シリンダヘッド 13の上に、一方側の外輪部材 62a、カムシャフト 19、他方側の 外輪部材 62b、およびベアリングキャップ 13cの順に組込み、シリンダヘッド 13とベア リングキャップ 13cとをボルト等で固定する。このとき、外輪部材 62aの凹部 62eと外 輪部材 62bの凸部 62g、外輪部材 62aの凸部 62gと外輪部材 62bの凹部 62eとがそ れぞれ突合するように配置する。
[0175] また、外輪部材 62aの係合爪 62cは、シリンダヘッド 13のベアリングキャップ 13cと の突合面に設けられた係合溝 13dと係合するように配置し、外輪部材 62bの係合爪 6 2cは、ベアリングキャップ 13cのシリンダヘッド 13との突合面に設けられた係合溝 13 dと係合するように配置する。これにより、外輪部材 62a, 62bが、軸受回転中にハウ ジング内部で回転するのを防止することができる。
[0176] ここで、ハウジングとしてのシリンダヘッド 13、および/またはベアリングキャップ 13 cには、カムシャフト 19を収容する領域に潤滑油を供給する油路の開口 13eが設けら れている。また、カムシャフト 19には、内部に軸方向に延びるオイル通路 19eと、オイ ル通路 19eから軸部 19aに向かって延びる油孔 19fとが形成されている。そこで、外 輪部材 62a, 62bに形成された油穴 62hとハウジングに形成された開口 13eとが一致 するように針状ころ軸受 61を配置する。
[0177] 上記の組み込み手順とすることにより、カムシャフト 19と、外輪 62と、ハウジングとが 同心円状に配置され、針状ころ 63が安定して回転可能な針状ころ軸受 61を得ること 力 Sできる。また、上記構成の針状ころ軸受 61は、外輪 62を 2つの外輪部材 62a, 62b に分割したことにより、支持部分の径方向から組み込むことが可能となるので、力ムシ ャフト 19を支持する軸受として採用することができる。
[0178] また、外輪部材 62a, 62bの軸方向両端部に鍔部 62dと屈曲部 62iとを設けることに より、針状ころ軸受 61の内部の潤滑油が軸方向の隙間から流出するのを防止するこ とができる。その結果、ハウジングの開口 13eから外輪部材 62a, 62bの油穴 62hを 通ってカムシャフト 19の油孔 19fに供給される潤滑油量が増加する。これにより、潤 滑性に優れたカムシャフト支持構造および内燃機関を得ることができる。
[0179] なお、上記構成のカムシャフト支持構造の変形例として、図 27に示すように、屈曲 部 62iとカムシャフト 19との間の屈曲部 62iの内径面に接する位置に、円環状部材と してのシール部材 67を設けてもよい。このシール部材 67は、カムシャフト 19の軸方 向端部から揷入されて、カム 19bを乗り越えながら軸部 19aに組み込まれるので、弹 性変形能の高い樹脂材料等で形成するのが望ましい。なお、シール部材 67の移動 を防止する観点からは、カムシャフト 19の表面にシール部材 67を受け入れる溝を設 けておくのが望ましい。
[0180] 屈曲部 62iの内径面とカムシャフト 19との間の隙間 δを 5 μ τη≤ δ ≤50〃111とする ためには、高精度の加工が必要となる力 シール部材 67を配置することにより、屈曲 部 62iの内径面とカムシャフト 19との間の隙間 δを δ〉 50 mとしても、潤滑油の流 出を防止することができる。
[0181] 上記の実施形態においては、隣接する針状ころ 63が相互に接触する総ころ形式の 針状ころ軸受 61の例を説明したが、これに限ることなぐ例えば隣接する針状ころ 63 の間隔を保持する保持器をさらに有するものであってもよい。保持器の形状は特に 限定されないが、例えば、図 6および図 7に示す保持器 24、または図 1 1〜図 15に示 す保持器 1 14, 124, 134, 144, 155を使用すること力 Sできる。
[0182] 次に、図 28を参照して、図 22に示す外輪部材 62aの製造方法を説明する。なお、 図 28は、外輪部材 62aの製造工程の一部を示す図であって、上段は平面図、下段 は断面図を示す。また、外輪部材 22aの製造方法との共通点の説明は省略し、相違 点を中心に説明する。具体的には、出発材料の組成、および熱処理工程は共通す るので説明は省略する。さらに、外輪部材 62bの製造方法は、外輪部材 62aと同様 であるので、説明は省略する。
[0183] 図 28を参照して、第 1の工程としては、鋼板を打ち抜き加工して外輪部材 62aの外 形を形成する(a工程)。また、長手方向の一方側端部に凹部 62eおよび係合爪 62c となる部分を形成し、他方側端部に平坦部 62fおよび凸部 62gを形成する。
[0184] このとき、外輪部材 62aの長手方向の長さは、カムシャフト 19の直径に基づいて決 定し、短手方向の長さは、使用する針状ころ 63のころ長さに基づいて決定する。ただ し、短手方向には鍔部 62dおよび屈曲部 62iとなる部分が含まれているので、このェ 程での短手方向の長さは、外輪部材 62aの完成品の軸方向幅寸法より長くなる。
[0185] この工程は、一度の打ち抜き加工で全ての部分を打ち抜!/、てもよ!/、し、打ち抜き加 ェを複数回繰り返して所定の形状を得てもよい。なお、順送プレスを用いる場合には 、各加工工程の加工位置を決めるためのパイロット穴 65を形成すると共に、隣接する 外輪部材との間に連結部 66を設けるとよい。また、外形の形成と同時に油穴 62hを 加工してもよい。
[0186] 第 2の工程としては、曲げ加工により外輪部材 62aの円周方向端部を径方向外側 に折り曲げて、係合爪 62cを形成する (b工程)。係合爪 62cの曲げ角度は、ハウジン グの係合溝 13cに沿う角度とする。なお、この実施形態では、係合爪 62cが、外輪部 材 62aに対して 90° の角度となるように折り曲げて!/、る。
[0187] 第 3の工程としては、曲げ加工により外輪部材 62aの外形を所定の曲率に曲げるェ 程と、外輪部材 62aの軸方向両端部から径方向内側に突出する鍔部 62dおよび屈 曲部 62iを形成する工程とを含む(c工程〜 g工程)。具体的には、連結部 66を含む 中央部分を残して、長手方向の両端部側から順に曲げていく(c工程、 d工程)。次に 、曲げ加工を施した長手方向両端部について、短手方向の両端部に曲げ加工を施 して鍔部 62dを形成する(e工程)。次に、外輪部材 62aの外形が所定の曲率となるよ うに長手方向中央部についても曲げ加工を行うと共に、鍔部 62dの先端を軸方向内 側に屈曲させて屈曲部 62iを形成する(f工程)。最後に、連結部 66を除去して、長手 方向中央部に鍔部 62dおよび屈曲部 62iを形成する(g工程)。
[0188] なお、この実施形態においては、外輪部材 62aの外形の曲率を形成する工程と、 鍔部 62dおよび屈曲部 62iを形成する工程とを平行して行う例を示した力 S、これに限 ることなぐ外形の曲率を形成する工程と、鍔部 62dおよび屈曲部 62iを形成するェ 程とを独立して行ってもょレ、。
[0189] 図 29〜図 32を参照して、この発明の他の実施形態に係るころ軸受としての針状こ ろ軸受 71と、この針状ころ軸受 71を使用したカムシャフト支持構造を説明する。なお 、針状ころ軸受 71の基本構成は針状ころ軸受 21と共通するので、共通点の説明は 省略し、相違点を中心に説明する。また、図 29、図 31、および図 32はカムシャフト支 持構造の組込み前後の状態を示す図、図 30は外輪部材 72aを示す図である。
[0190] まず、図 29を参照して、カムシャフト支持構造は、カムシャフト 19と、カムシャフト 19 を収容するハウジングとしてのシリンダヘッド 13およびベアリングキャップ 13cと、カム シャフト 19をハウジングに対して回転自在に支持する針状ころ軸受 71とを備える。
[0191] 針状ころ軸受 71は、円弧形状の外輪部材 72a, 72bを円周方向に複数連ねて形 成される外輪 72と、外輪 72の内径面に沿って配置される複数のころとしての針状こ ろ 73と、円周上の一箇所に軸受の軸線方向に延びる分割線を有し、複数の針状ころ 73の間隔を保持する保持器 74とを備える。
[0192] 図 30を参照して、外輪部材 72aを説明する。なお、図 30は外輪部材 72aの側面図 である。また、図 30の矢印 XXIVから見た矢視図、および図 30の矢印 XXVから見た 矢視図は、それぞれ図 24および図 25と共通するので、説明は省略する。さらに、外 輪部材 72bは外輪部材 72aと同一の形状であるので、説明は省略する。
[0193] まず、図 30を参照して、外輪部材 72aは、中心角 180° の半円形状であって、円 周方向の一方側端部に径方向外側に折り曲げられた係合爪 72cと、軸方向の両端 部の全域に径方向内側に突出する鍔部 72dとを有する。係合爪 72cは、シリンダへッ ド 13と係合して外輪部材 72aがハウジングに対して回転するのを防止する。鍔部 72 dは、保持器 74の軸方向への移動を規制すると共に、軸受の潤滑油保持性を向上さ せる。そして、この 2つの外輪部材 72a, 72bを円周方向に連ねて円環形状の外輪 7 2を形成する。また、外輪 72の内径面の軸方向中央部は、針状ころ 73の軌道面とし て機能する。
[0194] なお、この鍔部 72dの円周方向端部には、相対的に剛性の低い剛性低下部が設 けられている。具体的には、外輪部材 72aの円周方向中央部において突出高さが一 定の部分と、円周方向両端部において端部方向に向かってなだらかに突出高さが 低くなる傾斜部 72iとに区分され、突出高さが一定の部分と傾斜部 72iとの境界は滑 らかに形成されている。その結果、外輪部材 72aの円周方向端部における鍔部 72d ( 傾斜部 72iの部分を指す)の突出高さは、円周方向中央部 (最厚部)における鍔部 7 2dの突出高さより低く設定されている。
[0195] なお、保持器 74の構成は、図 6および図 7に示す保持器 24と共通するので、説明 は省略する。
[0196] 次に、図 29、図 31、および図 32を参照して、針状ころ軸受 71をカムシャフト 19に 組み込む手順を説明する。
[0197] まず、保持器 74のポケット 74cそれぞれに針状ころ 73を組み込む。次に、保持器 7 4の弾性を利用して分割部分を広げ、カムシャフト 19に組み込む。さらに、凹部 74d と凸部 74eとを係合させて、保持器 74が外れないようにする。
[0198] 次に、シリンダヘッド 13の上に、一方側の外輪部材 72a、保持器 74を巻きつけて固 定したカムシャフト 19、他方側の外輪部材 72b、およびベアリングキャップ 13cの順に 組込み、シリンダヘッド 13とベアリングキャップ 13cとをボルト等で固定する。このとき 、外輪部材 72aの凹部 72eと外輪部材 72bの凸部 72g、外輪部材 72aの凸部 72gと 外輪部材 72bの凹部 72eとがそれぞれ突合するように配置する。
[0199] なお、外輪部材 72aの係合爪 72cは、シリンダヘッド 13のベアリングキャップ 13cと の突合面に設けられた係合溝 13dと係合するように配置し、外輪部材 72bの係合爪 7 2cは、ベアリングキャップ 13cのシリンダヘッド 13との突合面に設けられた係合溝 13 dと係合するように配置する。これにより、外輪部材 72a, 72bが、軸受回転中にハウ ジング内部で回転するのを防止することができる。
[0200] また、組込み前の外輪部材 72a, 72bの曲率は、ハウジングの内周面の曲率より僅 かに大きく設定しておく。そして、曲率を小さくする方向に弾性変形させながらハウジ ングに組み込む。このとき、外輪部材 72a, 72bには元に戻ろう(曲率が大きくなる方 向)とする力が働くので、結果として、ハウジングの内周面に沿うように組み込むことが できる。
[0201] 上記の組み込み手順とすることにより、カムシャフト 19と、外輪 72と、保持器 74と、 ノ、ウジングとが同心円状に配置され、針状ころ 73が安定して回転可能な針状ころ軸 受 71を得ること力 Sできる。また、上記構成の針状ころ軸受 71は、外輪 72を 2つの外 輪部材 72a, 72bに分割し、保持器 74を円周方向の一箇所で分割したことにより、支 持部分の径方向力も組み込むことが可能となるので、カムシャフト 19を支持する軸受 として採用すること力 Sでさる。
[0202] ここで、組込み前の外輪部材 72a, 72bの曲率をハウジングの内周面より大きく設 定したことにより、外輪部材 72a, 72bの円周方向端部には、常に外側に広がろうと する力が働く。また、外輪部材 72a, 72bの軸方向端部を折り曲げて鍔部 72dを形成 したことにより、鍔部を有していない外輪部材と比較して剛性が向上している。その結 果、外輪部材 72a, 72bの円周方向端部がハウジングの内周面を攻撃して、ハウジン グに圧痕(磨耗)が生じるおそれがある。この磨耗粉が針状ころ軸受 71の内部に侵入 すると、潤滑油が早期に劣化したり、外輪部材 72a, 72bの軌道面や針状ころ 73の 転動面を傷つけたりして、針状ころ軸受 71の潤滑性を著しく低下させる。そこで、外 輪部材 72a, 72bの円周方向端部における鍔部 72dの突出高さを他の部分より相対 的に低く設定して、円周方向端部の剛性を低下させることにより、このような問題を回 避すること力 Sでさる。
[0203] なお、上記の実施形態においては、鍔部 72dの円周方向端部に傾斜部 72iを設け た例を示したが、これに限ることなぐ例えば、互いに突出高さの異なる円周方向中 央部の鍔部 72dと円周方向端部の鍔部 72dとの間に段差を設けてもよい。また、この 発明の範囲には、円周方向端部の鍔部 72dの突出高さが Omm、すなわち、円周方 向端部に鍔部 72dが形成されて!/、な!/、ものも含むものとする。
[0204] また、この発明は外輪部材 72a, 72bの円周方向端部の剛性を低下させるために、 ある程度の範囲の鍔部 72dの突出高さを低くしたものであって、隣接する外輪部材 7 2a, 72bを組み合わせたときに隣接する外輪部材 72a, 72bの鍔部 72dが互いに重 なり合わないために、鍔部 72dの端部を切り落としたものや、鍔部 72dの端部に施す 面取り等とは区別されるべきである。
[0205] また、上記の実施形態においては、鍔部 72dの円周方向端部にのみ剛性低下部 を設けた例を示したが、円周方向端部に加えて円周方向中央部にも剛性低下部を 設けることを妨げるあのではなレ、。
[0206] 次に、図 33を参照して、図 30に示す外輪部材 72aの製造方法を説明する。なお、 図 33は、外輪部材 72aの製造工程の一部を示す図であって、上段は平面図、下段 は断面図を示す。また、外輪部材 22aの製造方法との共通点の説明は省略し、相違 点を中心に説明する。具体的には、出発材料の組成、および熱処理工程は共通す るので説明は省略する。さらに、外輪部材 72bの製造方法は、外輪部材 72aと同様 であるので、説明は省略する。
[0207] 図 33を参照して、第 1の工程としては、鋼板を打ち抜き加工して外輪部材 72aの外 形を形成する(a工程)。また、長手方向の一方側端部に凹部 72eおよび係合爪 72c となる部分を形成し、他方側端部に平坦部 72fおよび凸部 72gを形成する。
[0208] このとき、外輪部材 72aの長手方向の長さは、カムシャフト 19の直径に基づいて決 定し、短手方向の長さは、使用する針状ころ 73のころ長さに基づいて決定する。ただ し、短手方向には鍔部 72dとなる部分が含まれているので、この工程での短手方向 の長さは、外輪部材 72aの完成品の軸方向幅寸法より長くなる。また、円周方向端部 における鍔部 72dの突出高さが他の部分より低くなるように、この工程で形状を調整 しておく。
[0209] この工程は、一度の打ち抜き加工で全ての部分を打ち抜!/、てもよ!/、し、打ち抜き加 ェを複数回繰り返して所定の形状を得てもよい。なお、順送プレスを用いる場合には 、各加工工程の加工位置を決めるためのパイロット穴 75を形成すると共に、隣接する 外輪部材との間に連結部 76を設けるとよい。
[0210] 第 2の工程としては、曲げ加工により外輪部材 72aの円周方向端部を径方向外側 に折り曲げて、係合爪 72cを形成する (b工程)。係合爪 72cの曲げ角度は、ハウジン グの係合溝 13cに沿う角度とする。なお、この実施形態では、係合爪 72cが外輪部材 72aに対して 90° の角度となるように折り曲げて!/、る。
[0211] 第 3の工程としては、曲げ加工により外輪部材 72aの外形を所定の曲率に曲げるェ 程と、外輪部材 72aの軸方向両端部から径方向内側に突出する鍔部 72dおよび傾 斜部 72iを形成する工程とを含む(c工程〜 g工程)。具体的には、連結部 76を含む 中央部分を残して長手方向の両端部側から順に曲げていく(c工程、 d工程)。次に、 曲げ加工を施した長手方向両端部について、短手方向の両端部に曲げ加工を施し て鍔部 72dを形成する(e工程)。次に、外輪部材 72aの外形が所定の曲率となるよう に、長手方向中央部についても曲げ加工を行う(f工程)。最後に、連結部 76を除去 して、長手方向中央部に鍔部 72dを形成する(g工程)。なお、第 1の工程 (a工程)に お!/、て鍔部 72dとなる部分の寸法を調整して!/、るので、傾斜部 72iを形成する特別な 工程を設ける必要はない。 [0212] なお、上記の実施形態における鍔部 72dは、円周方向端部に向かって突出高さが 徐々に低くなる傾斜部 72iを設けた例を示した力 S、これに限ることなぐ外輪部材 72a , 72bの円周方向端部の剛性を低下させるあらゆる構成を採用することができる。例 えば、図 34を参照して、図 30の他の実施形態に係る外輪部材 82aを説明する。なお 、外輪部材 82aの基本構成は外輪部材 72aと共通するので、共通点の説明は省略し 、相違点を中心に説明する。
[0213] 図 34を参照して、外輪部材 82aは、中心角 180° の半円形状であって、円周方向 の一方側端部に径方向外側に折り曲げられた係合爪 82cと、軸方向の両端部の全 域に径方向内側に突出する鍔部 82dとを有する。そして、鍔部 82dの円周方向端部 には、剛性低下部としての穴 82iが設けられている。このように、鍔部 82dを軸方向に 貫通する穴 82iを設けることによつても、鍔部 82dの円周方向端部の剛性を低下させ ること力 Sでさる。
[0214] 図 35〜図 38を参照して、この発明の他の実施形態に係るころ軸受としての針状こ ろ軸受 91と、この針状ころ軸受 91を使用したカムシャフト支持構造を説明する。なお 、図 35、図 37、および図 38はカムシャフト支持構造の組込み前後の状態を示す図、 図 36は外輪部材 92aを示す図である。
[0215] まず、図 35を参照して、カムシャフト支持構造は、カムシャフト 19と、カムシャフト 19 を収容するハウジングとしてのシリンダヘッド 13およびベアリングキャップ 13cと、カム シャフト 19をハウジングに対して回転自在に支持する針状ころ軸受 91とを備える。
[0216] 針状ころ軸受 91は、円弧形状の外輪部材 92a, 92bを円周方向に複数連ねて形 成される外輪 92と、外輪 92の内径面に沿って配置される複数のころとしての針状こ ろ 93と、円周上の一箇所に軸受の軸線方向に延びる分割線を有し、複数の針状ころ 93の間隔を保持する保持器 94とを備える。
[0217] 図 36を参照して、外輪部材 92aを説明する。なお、図 36は外輪部材 92aの側面図 である。また、図 36の矢印 XXIVから見た矢視図、および図 36の矢印 XXVから見た 矢視図は、それぞれ図 24および図 25と共通するので、説明は省略する。さらに、外 輪部材 92bは外輪部材 92aと同一の形状であるので、説明は省略する。
[0218] 図 36を参照して、外輪部材 92aは、中心角 180° の半円形状であって、円周方向 の一方側端部に径方向外側に折り曲げられた係合爪 92cと、軸方向の両端部から径 方向内側に突出する鍔部 92dとを有する。係合爪 92cは、シリンダヘッド 13と係合し て外輪部材 92aがハウジングに対して回転するのを防止する。鍔部 92dは、保持器 9 4の軸方向への移動を規制すると共に、軸受の潤滑油保持性を向上させる。また、鍔 部 92dの一部には、軸方向に貫通する開口部としての切欠き部 92iが設けられてい る。なお、この実施形態では、切欠き部 92iは、所定の曲率を有する円弧形状である
[0219] そして、この 2つの外輪部材 92a, 92bを円周方向に連ねて円環形状の外輪 92を 形成する。また、外輪 92の内径面の軸方向中央部は、針状ころ 93の軌道面として機 能する。
[0220] 上記構成のように鍔部 92dを設けることにより、保持器 94の軸方向の移動を規制す ることができると共に、軸方向端部の隙間が減少して針状ころ軸受 91の潤滑油保持 性が向上する。また、鍔部 92dの一部に切欠き部 92iを設けることにより、軸受内部の 潤滑油は主にこの切欠き部 92iから流出する。したがって、この切欠き部 92iを力ムシ ャフト 19の負荷領域に配置することにより、負荷領域に潤滑油を重点的に供給するこ とが可能となる。
[0221] なお、保持器 94の構成は、図 6および図 7に示す保持器 24と共通するので、説明 は省略する。
[0222] 次に、図 35、図 37、および図 38を参照して、針状ころ軸受 91をカムシャフト 19に 組み込む手順を説明する。
[0223] まず、保持器 94のポケット 94cそれぞれに針状ころ 93を組み込む。次に、保持器 9 4の弾性を利用して分割部分を広げ、カムシャフト 19に組み込む。さらに、凹部 94d と凸部 94eとを係合させて、保持器 94が外れないようにする。
[0224] 次に、シリンダヘッド 13の上に、一方側の外輪部材 92b、保持器 94を巻きつけて固 定したカムシャフト 19、他方側の外輪部材 92a、およびベアリングキャップ 13cの順に 組込み、シリンダヘッド 13とベアリングキャップ 13cとをボルト等で固定する。このとき 、外輪部材 92aの凹部 92eと外輪部材 92bの凸部 92g、外輪部材 92aの凸部 92gと 外輪部材 92bの凹部 92eとがそれぞれ突合するように配置する。 [0225] また、外輪部材 92aの係合爪 92cは、シリンダヘッド 13のベアリングキャップ 13cと の突合面に設けられた係合溝 13dと係合するように配置し、外輪部材 92bの係合爪 9 2cは、ベアリングキャップ 13cのシリンダヘッド 13との突合面に設けられた係合溝 13 dと係合するように配置する。これにより、外輪部材 92a, 92bが、軸受回転中にハウ ジング内部で回転するのを防止することができる。
[0226] ここで、ハウジングとしてのシリンダヘッド 13およびベアリングキャップ 13cには、力 ムシャフト 19を収容する領域に潤滑油を供給する油路の開口 13eが設けられている 。また、カムシャフト 19には、内部に軸方向に伸びるオイル通路 19eと、オイル通路 1 9eから軸部 19aに向かって延びる油孔 19fとが形成されている。そこで、針状ころ軸 受 91を組み込む際には、外輪部材 92a, 92bの油孔 92hとハウジングの開口 13eと がー致するように配置する。また、鍔部 92dに形成された切欠き部 92iがカムシャフト 19の負荷領域に位置するように配置する。
[0227] 上記の組み込み手順とすることにより、カムシャフト 19と、外輪 92と、保持器 94と、 ノ、ウジングとが同心円状に配置され、針状ころ 93が安定して回転可能な針状ころ軸 受 91を得ること力 Sできる。また、上記構成の針状ころ軸受 91は、外輪 92を 2つの外 輪部材 92a, 92bに分割し、保持器 94を円周方向の一箇所で分割したことにより、支 持部分の径方向力も組み込むことが可能となるので、カムシャフト 19を支持する軸受 として採用すること力 Sでさる。
[0228] また、外輪部材 92a, 92bの鍔部 92dに切欠き部 92iを設けることにより、軸受内部 の潤滑油の大部分は、切欠き部 92iから流出する。そこで、この切欠き部 92iを負荷 領域に配置することにより、潤滑油を負荷領域に重点的に供給することができる。そ の結果、潤滑性に優れ、信頼性の高いカムシャフト支持構造、および内燃機関 11を 得ること力 Sでさる。
[0229] ただし、切欠き部 92iは、カムシャフト 19から針状ころ軸受 91に負荷される最大荷 重の方向に延びる仮想線 1力 外れた位置に配置される。具体的には、切欠き部 92
3
iを外輪部材 92aの円周方向中央部から外れた位置に配置する。一方、仮想線 1
3 外輪部材 92aの円周方向中央部を通るように外輪部材 92aを組み込む。針状ころ軸 受 91の剛性は切欠き部 92iを設けた領域である程度低下するので、最大荷重点(仮 想線 1と外輪部材 92aとの交点を指す)を避けて切欠き部 92iを設けることにより、岡 IJ
3
性低下の影響を小さくすることができる。
[0230] さらに、切欠き部 92iは、仮想線 1を基準としてカムシャフト 19の回転方向(図 37中
3
の矢印 Aの方向)と反対側に設けるのが望ましい。これにより、最大荷重点には針状 ころ軸受 91の内側および外側から潤滑油が供給されるので、最大荷重点の冷却効 果が向上する。
[0231] なお、「負荷領域」とは、カムシャフト 19から針状ころ軸受 91に負荷される最大荷重 の方向(図 37中の仮想線 1で示す方向)を中心として左右 90° の領域(図 37中の円
3
弧 αで示す 180° の領域)を指す。一方、「非負荷領域」とは、最大荷重の方向と反 対側の 180° の領域(図 37中の円弧 βで示す領域)であって、負荷領域と比較して 相対的に小さな荷重しか作用しな!/、領域である(荷重が 0の場合を含む)。
[0232] また、図 41に示す内燃機関 11において、カムシャフト 19から針状ころ軸受 91に負 荷される最大荷重は、バルブ 17, 18をノ ノレブスプリング 17c, 18cに逆らって下方に 押し下げる力の反作用であり、その方向は、カムシャフト 19がバルブ 17, 18を押す 方向と反対の方向(図 41中の矢印の方向)である。
[0233] 上記の実施形態において、円弧形状の切欠き部 92iを 1箇所に設けた例を示した 1S これに限ることなく、任意の形状、数および位置であってよい。例えば、矩形等の 任意の形状であってよいし、円周方向中央部に設けてもよい。ただし、隣接する外輪 部材 92a, 92bの突合部分は非負荷領域に配置されることが望ましいので、最大荷 重点が外輪部材 92aの円周方向中央部に位置する図 36の状態が望ましい。さらに は、一方側の鍔部 92dにのみ設けてもよいし、両側の鍔部 92dに設けてもよい。
[0234] また、上記の実施形態において、軸方向に貫通する開口部として切欠き部 92iを設 けた例を示したが、これに限ることなく、任意の形態とすることができる。さらに、開口 部は鍔部の任意の位置に設けることができる。例えば、図 39を参照して、図 36の他 の実施形態に係る外輪部材 102aを説明する。ただし、基本構成は、図 36に示す外 輪部材 92aと同様であるので、共通点は省略し、相違点を中心に説明する。
[0235] 図 39を参照して、外輪部材 102aは、円弧形状であって、円周方向の一方側端部 に係合爪 102cと、軸方向両端部に鍔部 102dと、鍔部 102dの円周方向中央部に開 口部としての穴 102iとを有する。なお、この実施形態では、穴 102iは、鍔部 102dの 曲率に沿う長穴である。
[0236] このように、開口部を穴 102iとすることにより、鍔部 102dの突出高さが円周方向で 一定となる。これにより、保持器 94の軸方向の移動する機能が向上する。なお、穴 1 02iは、小径の穴を複数個設ける等してもよい。なお、この外輪部材 102aは、力ムシ ャフト 19に組み込んだときに、最大荷重の方向に延びる仮想線 1が穴 102iから外れ
4
た位置を通るように、傾けて組み込む。
[0237] 次に、図 40を参照して、図 36に示す外輪部材 92aの製造方法を説明する。なお、 図 40は、外輪部材 92aの製造工程の一部を示す図であって、上段は平面図、下段 は断面図を示す。また、外輪部材 22aの製造方法との共通点の説明は省略し、相違 点を中心に説明する。具体的には、出発材料の組成、および熱処理工程は共通す るので説明は省略する。さらに、外輪部材 92bの製造方法は、外輪部材 92aと同様 であるので、説明は省略する。
[0238] 図 40を参照して、第 1の工程としては、鋼板を打ち抜き加工して外輪部材 92aの外 形を形成する(a工程)。また、長手方向の一方側端部に凹部 92eおよび係合爪 92c となる部分を形成し、他方側端部に平坦部 92fおよび凸部 92gを形成する。さらに、 短手方向の両端部の中央部に切欠き部 92iとなる部分を形成する。
[0239] このとき、外輪部材 92aの長手方向の長さは、カムシャフト 19の直径に基づいて決 定し、短手方向の長さは、使用する針状ころ 93のころ長さに基づいて決定する。ただ し、短手方向には鍔部 92dとなる部分が含まれているので、この工程での短手方向 の長さは、外輪部材 92aの完成品の軸方向幅寸法より長くなる。
[0240] この工程は、一度の打ち抜き加工で全ての部分を打ち抜!/、てもよ!/、し、打ち抜き加 ェを複数回繰り返して所定の形状を得てもよい。なお、順送プレスを用いる場合には 、各加工工程の加工位置を決めるためのパイロット穴 95を形成すると共に、隣接する 外輪部材との間に連結部 96を設けるとよい。なお、連結部 96は、切欠き部 92iを形 成する位置から外れた位置に設ける。
[0241] 第 2の工程としては、曲げ加工により外輪部材 92aの円周方向端部を径方向外側 に折り曲げて、係合爪 92cを形成する (b工程)。係合爪 92cの曲げ角度は、ハウジン グの係合溝 13cに沿う角度とする。なお、この実施形態では、係合爪 92cが外輪部材 92aに対して 90° の角度となるように折り曲げて!/、る。
[0242] 第 3の工程としては、曲げ加工により外輪部材 92aの外形を所定の曲率に曲げるェ 程と、外輪部材 92aの軸方向両端部から径方向内側に突出する鍔部 92dを形成す る工程とを含む(c工程〜 g工程)。具体的には、連結部 26を含む中央部分を残して 長手方向の両端部側から順に曲げていく(c工程、 d工程)。次に、曲げ加工を施した 長手方向両端部について、短手方向の両端部に曲げ加工を施して鍔部 92dを形成 する(e工程)。次に、外輪部材 92aの外形が所定の曲率となるように、長手方向中央 部についても曲げ加工を行う(f工程)。最後に、連結部 96を除去して長手方向中央 部に鍔部 92dを形成する(g工程)。
[0243] 上記の各実施形態は、任意の組み合わせが可能である。これにより、組合せによる 相乗効果が期待できる。
[0244] 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可 能である。
産業上の利用可能性
[0245] この発明は、自動車用や自動二輪車用エンジンのカムシャフトを支持するころ軸受 、カムシャフト支持構造、内燃機関に有利に利用される。

Claims

請求の範囲
[1] 円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、
前記外輪の内径面に沿って配置される複数のころとを備え、
前記外輪部材の外径面には、円周方向に延びる油溝が形成されている、ころ軸受
[2] 隣接する前記外輪部材の突合部に形成される円周方向隙間は、
前記油溝を含む領域で相対的に大きぐその他の領域で相対的に小さい、請求項 1に記載のころ軸受。
[3] 前記外輪部材は、
軸方向端部から径方向内側に突出する鍔部と、
前記鍔部の先端を軸方向内側に折り曲げて形成される屈曲部とを有し、 前記屈曲部の内径面は、軸受内部からの潤滑油の流出を防止するシール面として 機能する、請求項 1に記載のころ軸受。
[4] 前記屈曲部の内径面と前記複数のころに内接する仮想円との間の隙間 δは、
5 μ m≤ o ^≥50 ii m
を満たす、請求項 3に記載のころ軸受。
[5] 前記ころ軸受は、前記屈曲部の内径面に接する位置に、軸受内部からの潤滑油の 流出を防止する円環状部材をさらに備える、請求項 3に記載のころ軸受。
[6] 前記ころは、端面から突出する突出部を有しており、
前記屈曲部の外径面は、前記突出部を案内するころ案内部として機能し、 前記ころ軸受は、隣接する前記ころが相互に接触するように配置された総ころ形式 の軸受である、請求項 3に記載のころ軸受。
[7] 前記外輪部材は、その軸方向端部に径方向内側に突出する鍔部を有し、
少なくとも前記鍔部の円周方向端部には、相対的に剛性の低い剛性低下部が設け られている、請求項 1に記載のころ軸受。
[8] 前記剛性低下部における鍔部の突出高さは、その他の領域における前記鍔部の 突出高さより低くなつている、請求項 7に記載のころ軸受。
[9] 前記ころ軸受は、隣接する前記ころの間隔を保持する保持器をさらに備え、 前記保持器は、径方向に貫通する油路を有する、請求項 1に記載のころ軸受。
[10] 前記保持器は、一対のリング部と、前記一対のリング部の間に配置される複数の柱 部と、隣接する前記柱部の間に前記ころを収容するポケットとを有し、
前記油路は、前記柱部に設けられる、請求項 9に記載のころ軸受。
[11] 前記柱部は、隣接する前記ポケットを周方向に連通する油溝をさらに有する、請求 項 10に記載のころ軸受。
[12] 前記保持器は、前記ころを収容する複数の独立したポケット部と、前記複数のボケ ット部を円周方向に連結する連結部とを有し、
前記油路は、隣接するポケット部の間に設けられる、請求項 9に記載のころ軸受。
[13] 前記保持器は、前記ころを収容する複数のポケットを軸方向に 2列有しており、 前記油路は、前記 2つのポケット列の間に設けられる、請求項 9に記載のころ軸受。
[14] 円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、
前記外輪の内径面に沿って配置される複数のころとを備え、
前記外輪部材は、
軸方向端部から径方向内側に突出する鍔部と、
前記鍔部の先端を軸方向内側に折り曲げて形成される屈曲部とを有し、 前記屈曲部の内径面は、軸受内部からの潤滑油の流出を防止するシール面として 機能する、ころ軸受。
[15] 円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、
前記外輪の内径面に沿って配置される複数のころとを備え、
前記外輪部材は、その軸方向端部に径方向内側に突出する鍔部を有し、 少なくとも前記鍔部の円周方向端部には、相対的に剛性の低い剛性低下部が設け られている、ころ軸受。
[16] 円弧形状の外輪部材を円周方向に複数連ねて形成される外輪と、
前記外輪の内径面に沿って配置される複数のころと、
隣接する前記ころの間隔を保持する保持器とを備え、
前記保持器は、径方向に貫通する油路を有する、ころ軸受。
[17] カムシャフトと、 前記カムシャフトを収容するハウジングと、
前記カムシャフトを前記ハウジングに対して回転自在に支持する請求項 1に記載の ころ軸受とを備えるカムシャフト支持構造であって、
前記ハウジングの前記カムシャフトを収容する領域には、潤滑油が流れる油路の開 口が設けられており、
前記油溝は、前記油路の開口に対面する位置を含んで円周方向に延びている、力 ムシャフト支持構造。
[18] 前記油溝は、コイニング加工によって形成されている、請求項 17に記載のカムシャ フト支持構造。
[19] 前記外輪部材は、内径面に前記ころと接触する軌道面が形成されている中央領域 と、前記中央領域に隣接する端部領域とに区分され、
前記油溝は、前記端部領域に配置される、請求項 17に記載のカムシャフト支持構
Λ &。
[20] 前記外輪部材は、前記油路の開口に対面する位置に外径側から内径側に貫通す る油穴と、軸方向端部から径方向内側に突出する鍔部とを有し、
前記カムシャフトは、その円周方向上に軸受使用時に大きな荷重が作用する負荷 領域と、軸受使用時に相対的に小さな荷重が作用する非負荷領域とを有し、前記外 輪部材を前記カムシャフトに組み込んだ時に負荷領域に位置する前記鍔部には、軸 方向に貫通する開口部が設けられている、請求項 17に記載のカムシャフト支持構造
[21] 前記開口部は、前記カムシャフトから前記ころ軸受に負荷される最大荷重の方向に 延びる仮想線から外れた位置に配置される、請求項 20に記載のカムシャフト支持構
[22] カムシャフトと、
前記カムシャフトを収容するハウジングと、
前記カムシャフトを前記ハウジングに対して回転自在に支持するころ軸受とを備え るカムシャフト支持構造であって、
前記ハウジングの前記カムシャフトを収容する領域には、潤滑油が流れる油路の開 口が設けられており、
前記ころ軸受は、前記油路の開口に対面する位置に外径側から内径側に貫通す る油穴、および軸方向端部から径方向内側に突出する鍔部を有する円弧形状の外 輪部材を円周方向に複数連ねて形成される外輪と、前記外輪の内径面に沿って配 置される複数のころとを備え、
前記カムシャフトは、その円周方向上に軸受使用時に大きな荷重が作用する負荷 領域と、軸受使用時に相対的に小さな荷重が作用する非負荷領域とを有し、前記外 輪部材を前記カムシャフトに組み込んだ時に負荷領域に位置する前記鍔部には、軸 方向に貫通する開口部が設けられている、カムシャフト支持構造。 前記ハウジング内に設けられたシリンダと、
前記シリンダに連通する吸気路および排気路を開閉する弁と、
前記弁の開閉のタイミングを制御するカムシャフトと、
前記カムシャフトを回転自在に支持する請求項 1に記載のころ軸受とを備える内燃 機関であって、
前記ハウジングの前記カムシャフトを収容する領域には、潤滑油が流れる油路の開 口が設けられており、
前記油溝は、前記油路の開口に対面する位置を含んで円周方向に延びている、 内燃機関。
PCT/JP2007/066942 2006-09-04 2007-08-30 Roulement à rouleaux, structure de support d'arbre à cames, et moteur à combustion interne WO2008029714A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07806419.3A EP2060807B1 (en) 2006-09-04 2007-08-30 Roller bearing, cam shaft support structure, and internal combustion engine
US12/310,676 US8132550B2 (en) 2006-09-04 2007-08-30 Roller bearing, camshaft support structure, and internal combustion engine
ES07806419.3T ES2683331T3 (es) 2006-09-04 2007-08-30 Rodamiento de rodillos, estructura de soporte de árbol de levas y motor de combustión interna

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006-238433 2006-09-04
JP2006238432A JP4948095B2 (ja) 2006-09-04 2006-09-04 カムシャフト支持構造および内燃機関
JP2006-238429 2006-09-04
JP2006238429A JP5133539B2 (ja) 2006-09-04 2006-09-04 ころ軸受、カムシャフト支持構造および内燃機関
JP2006-238426 2006-09-04
JP2006-238432 2006-09-04
JP2006238433A JP4948096B2 (ja) 2006-09-04 2006-09-04 ころ軸受、カムシャフト支持構造および内燃機関
JP2006238426A JP5234705B2 (ja) 2006-09-04 2006-09-04 ころ軸受
JP2006238427A JP5234706B2 (ja) 2006-09-04 2006-09-04 ころ軸受、カムシャフト支持構造および内燃機関
JP2006-238427 2006-09-04

Publications (1)

Publication Number Publication Date
WO2008029714A1 true WO2008029714A1 (fr) 2008-03-13

Family

ID=39157146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066942 WO2008029714A1 (fr) 2006-09-04 2007-08-30 Roulement à rouleaux, structure de support d'arbre à cames, et moteur à combustion interne

Country Status (4)

Country Link
US (1) US8132550B2 (ja)
EP (2) EP2511552B1 (ja)
ES (2) ES2580956T3 (ja)
WO (1) WO2008029714A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142172A1 (ja) 2008-05-19 2009-11-26 株式会社ジェイテクト 二つ割り外輪、これを用いた二つ割り転がり軸受、転がり軸受の取付構造及び取付方法
JP2010071324A (ja) * 2008-09-16 2010-04-02 Jtekt Corp 二つ割り転がり軸受およびこれを備えた軸受構造
JP2010270904A (ja) * 2009-04-22 2010-12-02 Ntn Corp ニードル軸受及びニードル軸受装置
JP2013087900A (ja) * 2011-10-20 2013-05-13 Jtekt Corp 軸受装置
JP2019011831A (ja) * 2017-06-30 2019-01-24 ダイハツ工業株式会社 オイル供給構造
DE102013225447B4 (de) * 2013-10-02 2020-02-13 Schaeffler Technologies AG & Co. KG Nadellageranordnung
JP2020038000A (ja) * 2018-08-13 2020-03-12 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 軸受支持ハウジングのためのドライブシャフトの軸受支持アセンブリ及び多径キャップ

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080384A (ja) * 2009-10-05 2011-04-21 Otics Corp 車両用エンジン
FR2950944B1 (fr) * 2009-10-06 2011-12-09 Snr Roulements Sa Procede de montage d'un ensemble de roulement sur une piste de roulement formee autour d'un organe d'un palier
US20120137994A1 (en) 2010-12-06 2012-06-07 Hyundai Motor Company Rollerized camshaft support for type 1 direct acting valvetrain and internal combustion engine embodying same
DE102011078434A1 (de) * 2011-06-30 2013-01-03 Schaeffler Technologies AG & Co. KG Lagerung einer Nockenwelle mittels Wälzlagern
US8887682B2 (en) * 2012-12-11 2014-11-18 Mahle International Gmbh Low friction camshaft
JP6529114B2 (ja) * 2015-02-27 2019-06-12 大豊工業株式会社 軸受および軸受装置
US10837488B2 (en) 2018-07-24 2020-11-17 Roller Bearing Company Of America, Inc. Roller bearing assembly for use in a fracking pump crank shaft
DE102018125866B3 (de) * 2018-10-18 2019-06-27 Schaeffler Technologies AG & Co. KG Unwuchtwelle
US10876578B2 (en) * 2019-05-17 2020-12-29 Pratt & Whitney Canada Corp. Bearing assembly with inner rings and method of alignment
JP2022552710A (ja) * 2019-11-08 2022-12-19 サン-ゴバン パフォーマンス プラスティックス コーポレイション 割り軸受、アセンブリ、ならびにそれらの製造方法および使用方法
CN111102028B (zh) * 2019-12-20 2021-04-16 潍柴动力股份有限公司 一种摇臂组件、气门配气结构及发动机
DE102020203923B4 (de) 2020-03-26 2024-10-02 Volkswagen Aktiengesellschaft Brennkraftmaschine mit mindestens einer reibungsarm gelagerten Nockenwelle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639623U (ja) * 1979-09-03 1981-04-13
JPS617621U (ja) * 1984-06-20 1986-01-17 エヌ・テ−・エヌ東洋ベアリング株式会社 分割型針状ころ軸受
JPH058043U (ja) * 1991-07-22 1993-02-02 光洋精工株式会社 軸受の潤滑装置
JPH0550143U (ja) * 1991-12-13 1993-07-02 三菱自動車工業株式会社 クランク・シャフトのベアリング構造
JPH0649825U (ja) * 1992-08-19 1994-07-08 エヌティエヌ株式会社 総ころ軸受
JPH08219161A (ja) * 1995-02-15 1996-08-27 Hino Motors Ltd ローラベアリングの保持器
JP2000110533A (ja) 1998-10-05 2000-04-18 Honda Motor Co Ltd 多気筒エンジンにおけるカムシャフトの潤滑構造
JP2001323935A (ja) * 2000-05-18 2001-11-22 Ntn Corp 保持器付きころおよびこれを用いた減速装置
JP2004108544A (ja) * 2002-09-20 2004-04-08 Ntn Corp ころ軸受
JP2005090696A (ja) 2003-09-19 2005-04-07 Nsk Ltd ころ軸受及び内燃機関
JP2005180459A (ja) * 2003-11-27 2005-07-07 Nsk Ltd ころ軸受、レース板の製造方法及び保持体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306682A (en) * 1963-12-10 1967-02-28 Torrington Co Seal for a roller bearing having thin walled race
JPS422885Y1 (ja) * 1964-03-16 1967-02-21
JPS5639623A (en) 1979-09-10 1981-04-15 Hitachi Denshi Ltd Saw-tooth wave generating circuit
JPS617621A (ja) 1984-06-21 1986-01-14 Matsushita Electric Ind Co Ltd 窒化ガリウム半導体装置の製造方法
JPH058043A (ja) 1991-07-01 1993-01-19 Kubota Corp 時効後の延性にすぐれる耐熱鋳鋼製品の溶接方法
JP2786760B2 (ja) 1991-08-26 1998-08-13 株式会社神戸製鋼所 熱間圧延における鋼板の圧延温度予測方法
JPH0649825A (ja) 1992-07-31 1994-02-22 Japan Tekunoroji:Kk 中空製品の製造型枠
JP2005054833A (ja) * 2002-08-30 2005-03-03 Nsk Ltd 転がり軸受、軸受装置、主軸装置、軸受のグリース補給装置および工作機械用主軸

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639623U (ja) * 1979-09-03 1981-04-13
JPS617621U (ja) * 1984-06-20 1986-01-17 エヌ・テ−・エヌ東洋ベアリング株式会社 分割型針状ころ軸受
JPH058043U (ja) * 1991-07-22 1993-02-02 光洋精工株式会社 軸受の潤滑装置
JPH0550143U (ja) * 1991-12-13 1993-07-02 三菱自動車工業株式会社 クランク・シャフトのベアリング構造
JPH0649825U (ja) * 1992-08-19 1994-07-08 エヌティエヌ株式会社 総ころ軸受
JPH08219161A (ja) * 1995-02-15 1996-08-27 Hino Motors Ltd ローラベアリングの保持器
JP2000110533A (ja) 1998-10-05 2000-04-18 Honda Motor Co Ltd 多気筒エンジンにおけるカムシャフトの潤滑構造
JP2001323935A (ja) * 2000-05-18 2001-11-22 Ntn Corp 保持器付きころおよびこれを用いた減速装置
JP2004108544A (ja) * 2002-09-20 2004-04-08 Ntn Corp ころ軸受
JP2005090696A (ja) 2003-09-19 2005-04-07 Nsk Ltd ころ軸受及び内燃機関
JP2005180459A (ja) * 2003-11-27 2005-07-07 Nsk Ltd ころ軸受、レース板の製造方法及び保持体の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142172A1 (ja) 2008-05-19 2009-11-26 株式会社ジェイテクト 二つ割り外輪、これを用いた二つ割り転がり軸受、転がり軸受の取付構造及び取付方法
EP2278182A1 (en) * 2008-05-19 2011-01-26 JTEKT Corporation Halved outer ring, halved rolling bearing using the same, and structure and method of mounting rolling bearing
CN102037252A (zh) * 2008-05-19 2011-04-27 株式会社捷太格特 剖分外圈、使用剖分外圈的剖分滚动轴承和安装滚动轴承的构造及方法
EP2278182A4 (en) * 2008-05-19 2012-07-04 Jtekt Corp EXTERNAL RING HINGE, ROLLING HALF BEARING USING THE SAME, AND STRUCTURE AND METHOD FOR MOUNTING A BEARING BEARING
US8894292B2 (en) 2008-05-19 2014-11-25 Jtekt Corporation Split outer ring, split rolling bearing using the same ring and construction and method of mounting the same rolling bearing
JP2010071324A (ja) * 2008-09-16 2010-04-02 Jtekt Corp 二つ割り転がり軸受およびこれを備えた軸受構造
JP2010270904A (ja) * 2009-04-22 2010-12-02 Ntn Corp ニードル軸受及びニードル軸受装置
JP2013087900A (ja) * 2011-10-20 2013-05-13 Jtekt Corp 軸受装置
DE102013225447B4 (de) * 2013-10-02 2020-02-13 Schaeffler Technologies AG & Co. KG Nadellageranordnung
JP2019011831A (ja) * 2017-06-30 2019-01-24 ダイハツ工業株式会社 オイル供給構造
JP2020038000A (ja) * 2018-08-13 2020-03-12 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 軸受支持ハウジングのためのドライブシャフトの軸受支持アセンブリ及び多径キャップ

Also Published As

Publication number Publication date
EP2511552B1 (en) 2016-05-04
US8132550B2 (en) 2012-03-13
US20090235887A1 (en) 2009-09-24
ES2580956T3 (es) 2016-08-30
EP2511552A2 (en) 2012-10-17
EP2060807A1 (en) 2009-05-20
EP2511552A3 (en) 2014-04-30
ES2683331T3 (es) 2018-09-26
EP2060807A4 (en) 2010-08-18
EP2060807B1 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
WO2008029714A1 (fr) Roulement à rouleaux, structure de support d&#39;arbre à cames, et moteur à combustion interne
JP5234706B2 (ja) ころ軸受、カムシャフト支持構造および内燃機関
WO2008029713A1 (fr) Roulement à rouleaux, structure de support d&#39;arbre à cames, moteur à combustion interne et procédé d&#39;assemblage du roulement à rouleaux
EP2060753B1 (en) Roller bearing, camshaft supporting structure, and internal combustion engine
JP5234705B2 (ja) ころ軸受
US20100195945A1 (en) Needle roller bearing and crankshaft support structure
JP5106810B2 (ja) カムシャフト支持構造および内燃機関
JP4948095B2 (ja) カムシャフト支持構造および内燃機関
JP5361120B2 (ja) ころ軸受
JP5133539B2 (ja) ころ軸受、カムシャフト支持構造および内燃機関
JP5133537B2 (ja) ころ軸受、カムシャフト支持構造、内燃機関、およびころ軸受の組み込み方法
JP5133538B2 (ja) カムシャフト支持構造および内燃機関
EP2971624B1 (en) Needle roller cam follower for higher mileage applications of light, medium and heavy duty vehicles
JP4627751B2 (ja) 外輪部材の製造装置および外輪部材の製造方法
JP4948096B2 (ja) ころ軸受、カムシャフト支持構造および内燃機関
JP5234704B2 (ja) ころ軸受、カムシャフト支持構造および内燃機関
JP4627750B2 (ja) ころ軸受
JP2008057737A (ja) ころ軸受、カムシャフト支持構造および内燃機関
JP2007218389A (ja) カムフォロア
JP2008297950A (ja) 動弁機構用のカムシャフト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007806419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12310676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE