WO2008013000A1 - Inverseur - Google Patents

Inverseur Download PDF

Info

Publication number
WO2008013000A1
WO2008013000A1 PCT/JP2007/061785 JP2007061785W WO2008013000A1 WO 2008013000 A1 WO2008013000 A1 WO 2008013000A1 JP 2007061785 W JP2007061785 W JP 2007061785W WO 2008013000 A1 WO2008013000 A1 WO 2008013000A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
inverter
inverter device
current
unit
Prior art date
Application number
PCT/JP2007/061785
Other languages
English (en)
French (fr)
Inventor
Kenichi Sakakibara
Hitoshi Haga
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2007277980A priority Critical patent/AU2007277980B2/en
Priority to US12/374,931 priority patent/US7907427B2/en
Priority to CN2007800275290A priority patent/CN101490944B/zh
Priority to ES07745072T priority patent/ES2702360T3/es
Priority to EP07745072.4A priority patent/EP2051362B1/en
Publication of WO2008013000A1 publication Critical patent/WO2008013000A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an inverter device, and more particularly to an inverter device having an LC filter that suppresses only a carrier current component of an inverter at a DC link portion between a diode bridge and an inverter portion.
  • the inverter device having a downsized LC filter in the DC link section, it is assumed that the DC voltage is pulsated at 6 times the power supply frequency.
  • the harmonic frequency of the power supply pulsation component is Since the resonance frequency of the filter is close, it is difficult to separate them, and there is a problem that low-order distortion is generated in the input current by smoothing the DC voltage.
  • an object of the present invention is to provide an inverter device that can suppress distortion of an input current while suppressing vibration, in an inverter device having an LC filter in a DC link portion.
  • an inverter device of the present invention provides:
  • a diode bridge that rectifies the input three-phase AC voltage into a DC voltage; an inverter unit that converts the DC voltage converted by the diode bridge into an AC voltage and outputs the AC voltage;
  • An LC filter having an inductance element connected between one output terminal of the diode bridge and one input terminal of the inverter unit, and a capacitance element connected between the input terminals of the inverter unit;
  • a voltage detection unit that detects a voltage across the inductance element of the LC filter, and a transfer characteristic of the input / output voltage of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit
  • a control unit that controls the inverter unit so that the characteristics become close to
  • the control unit force controls the inverter unit such that the transfer characteristic of the input / output voltage of the inverter unit becomes a characteristic close to a first-order lag system.
  • distortion of the input current can be suppressed while suppressing vibration.
  • the output current target value of the diode bridge becomes a direct current, and control without interfering with the resonance frequency of the LC filter becomes possible.
  • control unit has a first-order lag-based transfer characteristic of the input / output voltage of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the input current of the inverter section is controlled so that the characteristics become close to.
  • the gain setting according to the constant of the reactance element of the LC filter makes the control system closer to the first-order lag system and improves stability.
  • control unit has a first-order lag-based transfer characteristic of the input / output voltage of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the voltage control rate of the inverter unit is controlled so as to be close to the characteristic.
  • the damping coefficient is determined by controlling the voltage control rate of the control unit power inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the control system becomes a characteristic close to the first-order lag system and the stability is improved.
  • the relationship between the AC load current and the DC load current can be directly controlled by the voltage control rate, a high-speed response can be achieved and a more stable operation can be achieved.
  • the inverter unit is vector-controlled by the control unit.
  • the inverter unit is vector-controlled by the control unit, speed control can be easily performed with stable operation.
  • the inverter device of the present invention in the inverter device having the LC filter in the DC link portion, it is possible to suppress distortion of the input current while suppressing vibration.
  • vibration suppression is performed based on the voltage across the inductance element, the output current target value of the diode bridge becomes direct current, and control without interfering with the resonance frequency of the LC filter becomes possible.
  • the control unit controls the input current of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the control system becomes a characteristic close to a first-order lag system and stability is improved.
  • the voltage control rate of the control unit force inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the damping coefficient is increased, and by setting the gain according to the constant of the reactance element of the LC filter, the control system becomes a characteristic close to the first-order lag system and the stability is improved. Since the relation of the DC load current can be controlled by the voltage control rate, a high-speed response can be achieved and a more stable operation is possible.
  • the speed control can be easily performed with a stable operation.
  • FIG. 1 is a configuration diagram of a conventional inverter device.
  • FIG. 2A is a diagram showing a DC voltage of the inverter device.
  • FIG. 2B is a diagram showing a line current of the inverter device.
  • FIG. 3 is a diagram for explaining transfer characteristics when a damping resistor is inserted in the inverter device.
  • FIG. 4 is a block diagram of the inverter device.
  • FIG. 5A is a diagram showing a transient analysis result of the input current of the inverter device.
  • FIG. 5B is a diagram showing a transient analysis result of the input current of the inverter device.
  • FIG. 5C is a diagram showing a transient analysis result of the input current of the inverter device.
  • FIG. 5D is a diagram showing a transient analysis result of input current of the inverter device.
  • FIG. 6A is a diagram showing a transient analysis result of DC voltage of the inverter device.
  • FIG. 6B is a diagram showing the results of transient analysis of the DC voltage of the inverter device.
  • FIG. 6C is a diagram showing a transient analysis result of the DC voltage of the inverter device.
  • FIG. 6D is a diagram showing a transient analysis result of the DC voltage of the inverter device.
  • FIG. 7 is a Bode diagram of the inverter device.
  • FIG. 8 is a diagram showing a resonance system and HPF characteristics.
  • FIG. 9 is a diagram for explaining transfer characteristics when vibration suppression control is performed on the inverter device of the present invention.
  • FIG. 10A is a block diagram of the inverter device.
  • FIG. 10B is a block diagram of the inverter device.
  • FIG. 10C is a block diagram of the inverter device.
  • FIG. 10D is a block diagram of the inverter device.
  • FIG. 11 is a diagram showing a transfer function of the inverter device.
  • FIG. 12 is a Bode diagram showing the transfer characteristics of the vibration suppression system of the inverter device.
  • FIG. 13 is a Bode diagram showing the secondary system phase advance transfer characteristics of the inverter device.
  • FIG. 14A is a diagram showing a transient analysis result of the input current of the inverter device.
  • FIG. 14B is a diagram showing a result of transient analysis of the input current of the inverter device.
  • FIG. 14C is a diagram showing a transient analysis result of the input current of the inverter device.
  • FIG. 14D is a diagram showing a transient analysis result of the input current of the inverter device.
  • FIG. 15A is a diagram showing a transient analysis result of DC voltage of the inverter device.
  • FIG. 15B is a diagram showing the results of transient analysis of the DC voltage of the inverter device.
  • FIG. 15C is a diagram showing the results of transient analysis of the DC voltage of the inverter device.
  • FIG. 15D is a diagram showing a result of transient analysis of the DC voltage of the inverter device.
  • FIG. 16A is a diagram for explaining the transfer characteristics of the inverter device used for resonance suppression by the voltage control rate of the present invention.
  • FIG. 16B is a diagram for explaining the transfer characteristics of the inverter device used for resonance suppression by the voltage control rate of the present invention.
  • FIG. 16C is a diagram for explaining the transfer characteristics of the inverter device used for resonance suppression by the voltage control rate of the present invention.
  • FIG. 17 is a block diagram of the inverter device.
  • FIG. 18 is a block diagram of the inverter device according to the first embodiment of the present invention.
  • FIG. 19 is a configuration diagram of an inverter device according to a second embodiment of the present invention.
  • FIG. 1 shows reference 1 (“3. Direct AC power conversion circuit with DC link (Current status and problems of direct AC power conversion circuit technology and related technologies)”, IEEJ Technical Report No. 998, 2005. February 2
  • the main circuit configuration of an inverter device with an LC filter in the DC link section shown on the 5th) is shown.
  • this inverter device is composed of a diode bridge 11 comprising six diodes D1 to D6 constituting a three-phase diode bridge circuit and six switching elements S1 to S6 constituting a three-phase bridge circuit.
  • the inverter unit 12 is provided.
  • the inverter device includes an inductor L as an example of an inductance element connected between the positive output terminal of the diode bridge 11 and the positive input terminal of the inverter unit 12 and the input terminal of the inverter unit 12. And a capacitor C as an example of a capacitance element connected to.
  • the inductor L and capacitor C constitute an LC filter.
  • the diode bridge 11 rectifies the three-phase AC voltage from the three-phase AC power source 10 into direct current, and the rectified DC voltage is converted into a predetermined three-phase AC voltage by the inverter unit 12 and output to the motor 13.
  • the components of the inverter device shown in FIG. 1 are the same as those of a normal voltage-type inverter device with a DC reactor.
  • the capacitance of the capacitor C of the LC filter in the DC link section is as small as 1Z100 or less, and the resonance frequency of the LC filter is also set to about several kHz that attenuates the carrier current component of the inverter device, which is one digit higher than the conventional
  • the inductance of reactor L is also set to a small value.
  • the capacitance of the LC filter capacitor in the DC link section of a voltage-type inverter device with a normal DC reactor is set to 20000 / z F
  • the inductance of the reactor is set to lmH
  • the resonance frequency is set to about 113Hz.
  • the capacity of the capacitor C of the LC filter in the DC link section of the inverter shown in Fig. 1 is 4.4 F
  • the inductance of the rear tuttle L is 0.5 mH
  • the resonance frequency is 3.4 kHz.
  • the rear link L and capacitor C of the DC link section do not have the effect of smoothing the commercial frequency component, and as shown in the waveform of the DC voltage (Vdc) in Fig. 2A, the DC link section has a minimum phase voltage.
  • the potential of the maximum phase with respect to the phase is generated and pulsates at a frequency 6 times the commercial frequency.
  • a direct current flows between the lines of the maximum and minimum phases. Therefore, when the input current of the inverter is constant, as shown in the line current waveform in Fig. 2B. ° Energized waveform.
  • the output voltage with respect to the pulsating voltage of the LC filter can be expressed by a well-known secondary system of the following equation.
  • FIG. 3 shows an equivalent circuit of the inverter device of FIG. 1 in which a damping resistor Rd is inserted on the inverter side.
  • 14 is a current source that simply represents the inverter unit.
  • the transfer function G (s) of the inverter device is expressed as follows.
  • the attenuation characteristic 6 of the LC filter is set by setting the damping resistor Rd. Can improve.
  • V is a DC voltage output from the diode bridge
  • V is an output voltage of the inverter unit
  • L is an inductance
  • C is a capacitance
  • s is a Laplace variable
  • the resonance is suppressed by inserting only an HPF (Noise Pass Filter) in the feedback path and detecting only the voltage caused by the resonance. is doing.
  • HPF Noise Pass Filter
  • FIG. 4 shows a block diagram of the inverter device of Reference 2 (Japanese Patent Laid-Open No. 9-172783) described in “Background Art”.
  • FIGS. 5A to 5D and FIGS. 6A to 6D show the transient analysis results when the HPF cutoff frequency is changed to 60 OHz and the gain G is changed to 0, 0.2, 0.4, and 0.6. .
  • the inverter unit is simply used as a current source, and the voltage resonance component is added to the current command via the HPF and gain G shown in Fig. 4.
  • the inverter device needs to have a pulsating flow in which the DC voltage has a frequency six times the commercial frequency, but the pulsating flow component includes harmonics as shown in the waveforms of FIGS. 6A to 6D. Because it is a distorted wave, when resonance suppression control is performed by detecting DC voltage, it becomes difficult to separate the resonance component and the harmonic component by the LC filter, and the current waveform is distorted.
  • vibration suppression by DC voltage detection is difficult to apply to an inverter device that requires a pulsating voltage.
  • FIG. 9 shows an inverter device using the voltage V across the rear tuttle L of the present invention to suppress resonance.
  • FIG. 9 shows a configuration diagram for explaining the transfer characteristics.
  • reference numeral 15 denotes a current source that simply represents the inverter unit.
  • FIGS. 10A to 10D are block diagrams in which the characteristics of the resonance system are obtained when the voltage across the rear tuttle L is used for resonance suppression, and the control system is equivalently converted in the order of FIGS. 10A to 10D. As a result, it turns out that the system eventually becomes a series system with phase advance force as well as the secondary system shown in Fig. 10D.
  • FIG. 11 shows the block diagrams of FIGS. 10A to 10D in terms of transfer functions. Since the second item is a secondary system, the attenuation characteristic can be improved by the gain k, and one item is the phase. Since it is an advance, it is possible to achieve a characteristic close to a stable first-order lag system.
  • the transfer function shown in Fig. 11 is essentially a characteristic of the first-order lag system.
  • Fig. 13 is a board diagram showing the transfer characteristics of the secondary system and the phase lead when the gain is 0.03 to 0.09, and it can be seen that the poles and the cut-off frequency are almost the same.
  • Fig. 12 is a Bode diagram showing the transfer characteristic of the vibration suppression system. When the gain is low, the damping characteristic is improved, and when the gain is increased, a stable characteristic close to the first-order lag system is obtained. Can do.
  • FIGS. 14A to 14D and FIGS. 15A to 15D show the results of transient analysis when the gain G is changed to 0, 0.03, 0.06, and 0.09.
  • 14A to 14D and 15A to 15D show the transient analysis results of the inverter device that uses the voltage V across the rear tail L to suppress resonance.
  • the inverter unit is simulated by a current source, but it can be applied when the input average current is a direct current.
  • the present invention can be applied not only to the current control system of the synchronous motor but also to the vector control of the induction motor, and may be a DC chopper.
  • FIG. 16A shows a configuration diagram for explaining the transfer characteristics of the inverter device using the voltage control rate of the present invention for resonance suppression.
  • 16 is a current source on the input side.
  • An inverter unit having a DC power source on the output side is represented, and 17 represents a current source (load) connected to the DC power source of the inverter unit 16.
  • the load current is I
  • Ld the voltage control rate of the inverter 16.
  • FIG. 16C is represented by the block diagram shown in FIG. Assuming that the current source is constant, constants corresponding to the resistance R and the suppression gain k are given in the configuration of the block diagram shown in FIG. 10A. 16A to 16C and FIG. 17, therefore, the method of counting the suppression value in the voltage control rate of the inverter device, the suppression value is applied to the current control system of the inverter device shown in FIGS. 9 and 10A to 10D. Although the gain and control gain are different, the transfer function corresponds to the transfer function shown in Fig. 11.
  • the block diagram shown in FIG. 17 has the same shape because it is simply expressed by a voltage source and LCR on the assumption that the current control system is controlled at high speed.
  • the current control of the inverter device shown in FIG. 9 and FIG. 10A to FIG. 10D is performed by damping the LC filter by controlling the effective current of the AC load using the q axis control system and changing the DC current.
  • the voltage control rate of the inverter device shown in FIGS. 16A to 16C and 17 controls the relationship between the voltage (current) of the AC load and the DC load. By varying the voltage control rate in this way, the DC power can be varied similarly.
  • the inverter device of the present invention in the inverter device having the LC filter in the DC link portion, it is possible to suppress the distortion of the input current while suppressing the vibration.
  • a voltage detection unit that detects the voltage across the inductance element of the LC filter is provided, and the control unit controls the input current of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the damping coefficient can be increased, and the gain can be set according to the constant of the reactance element of the LC filter to make the control system close to the first-order lag system and improve the characteristics and stability.
  • a voltage detection unit that detects the voltage across the inductance element of the LC filter is provided, and the control unit controls the voltage control rate of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • the control unit controls the voltage control rate of the inverter unit based on the voltage across the inductance element detected by the voltage detection unit.
  • FIG. 18 is a block diagram of the inverter device according to the first embodiment of the present invention.
  • the inverter device includes a diode bridge 21 composed of six diodes D11 to D16 that constitute a three-phase diode bridge circuit, and six switching elements S11 to constitute a three-phase bridge circuit.
  • An inverter unit 22 composed of S16 and a control unit 100 for controlling the inverter unit 22 are provided.
  • the inverter device includes an inductor L as an example of an inductance element connected between the positive output terminal of the diode bridge 21 and the positive input terminal of the inverter unit 22, and the input terminal of the inverter unit 22.
  • Capacitor C as an example of a capacitance element connected to the
  • An LC filter is composed of the inductor L and the dc sensor C.
  • a three-phase AC voltage (not shown) is rectified to a DC voltage, and the rectified DC voltage is converted into a desired three-phase AC voltage by the inverter unit 22 and output to the motor 23.
  • control unit 100 of the inverter device includes:
  • Adder / subtracter that outputs the difference signal by subtracting the rotational angular velocity ⁇ from the rotational angular velocity target value ⁇ * 1
  • the PI controller 102 that performs PI control on the difference signal from the adder / subtractor 101 and the voltage V across the inductor L detected by the voltage detector 24 are multiplied by a gain k.
  • the adder / subtractor 104 that also subtracts the signal force from the PI controller 102 and outputs the current target value I *.
  • a PI controller 109 for performing PI control on the signal from the adder / subtractor 106;
  • a multiplier 110 that multiplies the d-axis current value I by ⁇ L (L: d-axis inductance);
  • a PI controller 112 that performs PI control on the signal from the adder / subtractor 108;
  • An adder / subtractor 113 for subtracting the signal from the PI controller 109 and the signal from the multiplier 111 and outputting a d-axis voltage
  • An adder / subtractor 114 for adding the signal from the multiplier 110 to the signal from the PI controller 123; a multiplier 115 for multiplying the rotational angular velocity ⁇ by an induced voltage coefficient ke;
  • An adder / subtractor 116 for adding the signal from the multiplier 115 to the signal from the adder / subtractor 114 and outputting a q-axis voltage
  • a PWM modulation unit 117 that outputs a PWM control signal to the inverter unit 22 is provided.
  • the inverter device having the above configuration is a method of adding a suppression value to the current control system, and controls the effective current of the AC load and varies the DC current to suppress the dubbing to the LC filter.
  • FIG. 19 shows a configuration diagram of the inverter device according to the second embodiment of the present invention.
  • This inverter device has the same configuration as the inverter device of the second embodiment except for the control unit.
  • control unit 200 of the inverter device includes:
  • Adder / subtracter that outputs the difference signal by subtracting the rotational angular velocity ⁇ from the rotational angular velocity target value ⁇ * 1
  • a PI controller 102 for performing PI control on the difference signal from the adder / subtractor 101;
  • the voltage V across the inductor L detected by the voltage detector 24 is multiplied by the gain k.
  • Adder / subtractor 106 that subtracts d-axis current value I from d-axis current target value I * from converter 105 above
  • the current target value I * from the adder / subtracter 104 is multiplied by cos ⁇ * ( ⁇ *: current phase target value).
  • a PI controller 109 for performing PI control on the signal from the adder / subtractor 106;
  • a multiplier 110 that multiplies the d-axis current value I by ⁇ L (L: d-axis inductance);
  • a PI controller 112 that performs PI control on the signal from the adder / subtractor 108;
  • An adder / subtractor 114 for adding the signal from the multiplier 110 to the signal from the PI controller 123; a multiplier 115 for multiplying the rotational angular velocity ⁇ by an induced voltage coefficient ke;
  • An adder / subtractor 116 that adds the signal from the multiplier 115 to the signal from the adder / subtractor 114 and outputs a q-axis voltage V;
  • the initial value of the voltage control rate k force is also subtracted from the signal (kV) from the multiplier 103,
  • An adder / subtractor 121 that outputs a characteristic value k *;
  • the PWM control signal is sent to the inverter unit 22.
  • a PWM modulation unit 120 for outputting a signal.
  • the inverter device having the above configuration is a method of adding a suppression value to the voltage control rate, and by changing the voltage control rate, the DC power is similarly changed to the LC filter. Damping is suppressed.
  • the power supply pulsation component and the power supply fundamental wave component are included by detecting the voltage across the inductance element of the LC filter. Resonance suppression control can be performed without delay, reliability can be improved (overcurrent and overvoltage avoidance) and current waveform can be improved by the stability of the control system.
  • the DC motor vector control inverter device has been described.
  • an inverter device using an AC motor as a load may be used.
  • the load side of the inverter device of the present invention may be a load that sends active power rather than a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

明 細 書
インバータ装置
技術分野
[0001] この発明は、インバータ装置に関し、詳しくはダイオードブリッジとインバータ部との 間の直流リンク部にインバータのキヤリャ電流成分のみを抑制する LCフィルタを有す るインバータ装置に関する。
背景技術
[0002] 従来、インバータの代表的な主回路構成としては、整流回路、平滑回路を介して商 用交流を一旦直流電圧に変換し、電圧形インバータ部により交流電圧を得る構成が 一般に用いられている。ここで、平滑回路においては商用周波数による電圧脈動を 平滑化するために大型のコンデンサやリアタトルが必要となることから、インバータ部 の体積増やコスト増を招いている。このため、 LCフィルタを小型化し、インバータのキ ャリャ電流成分のみを抑制する主回路構成が提案されている。(例えば、電気学会技 術報告第 998号の「3.直流リンク付き直接形交流電力変換回路 (直接形交流電力変 換回路技術とその関連技術の現状と課題)」 (文献 1)参照)。
[0003] 一方、直流リンク部に LCフィルタを持つインバータ装置においては負荷変動、出力 周波数変動に対して、 LCフィルタの共振周波数で直流電圧が脈動する場合がある ことが、知られており、 HPF (ノヽィパスフィルタ)にて直流電圧の振動成分を検出し、ィ ンバータ側の電流制御系にて振動を抑制するインバータ装置が提案されて 、る。(例 えば、特開平 9 172783号公報 (文献 2)参照)。
[0004] 上記直流リンク部に小型化 LCフィルタを有するインバータ装置では、直流電圧を 電源周波数の 6倍で脈動させることを前提としており、上記の振動抑制法では電源脈 動成分の高調波周波数とフィルタの共振周波数が近くなるために両者の分離が困難 となり、直流電圧が平滑ィ匕されることにより、入力電流に低次の歪を発生させるという 問題がある。
発明の開示
発明が解決しょうとする課題 [0005] そこで、この発明の課題は、直流リンク部に LCフィルタを有するインバータ装置に ぉ 、て、振動を抑制しつつ入力電流の歪を抑制できるインバータ装置を提供するこ とにある。
課題を解決するための手段
[0006] 上記課題を解決するため、この発明のインバータ装置は、
入力された三相交流電圧を直流電圧に整流するダイオードブリッジと、 上記ダイオードブリッジにより変換された上記直流電圧を交流電圧に変換して出力 するインバータ部と、
上記ダイオードブリッジの一方の出力端と上記インバータ部の一方の入力端との間 に接続されたインダクタンス素子と、上記インバータ部の入力端間に接続されたキヤ パシタンス素子とを有する LCフィルタと、
上記 LCフィルタの上記インダクタンス素子の両端電圧を検出する電圧検出部と、 上記電圧検出部により検出された上記インダクタンス素子の両端電圧に基づいて、 上記インバータ部の入出力電圧の伝達特性が一次遅れ系に近 、特性になるように 上記インバータ部を制御する制御部と
を備えたことを特徴とする。
[0007] 上記構成によれば、直流リンク部に LCフィルタを有するインバータ装置において、 上記制御部力 インバータ部の入出力電圧の伝達特性が一次遅れ系に近い特性に なるようにインバータ部を制御することによって、振動を抑制しつつ入力電流の歪を 抑制できる。また、インダクタンス素子の両端電圧に基づいて振動抑制を行うため、 ダイオードブリッジの出力電流目標値が直流となり、 LCフィルタの共振周波数と干渉 することなぐ制御が可能となる。
[0008] また、一実施形態のインバータ装置では、上記制御部は、上記電圧検出部により 検出された上記インダクタンス素子の両端電圧に基づいて、上記インバータ部の入 出力電圧の伝達特性が一次遅れ系に近 、特性になるように上記インバータ部の入 力電流を制御する。
[0009] 上記実施形態によれば、上記電圧検出部により検出されたインダクタンス素子の両 端電圧に基づいて、上記制御部力インバータ部の入力電流を制御することによって 、減衰係数を高めると共に、 LCフィルタのリアクタンス素子の定数に応じたゲイン設 定により、制御系を一次遅れ系に近 ヽ特性とし安定性を改善する。
[0010] また、一実施形態のインバータ装置では、上記制御部は、上記電圧検出部により 検出された上記インダクタンス素子の両端電圧に基づいて、上記インバータ部の入 出力電圧の伝達特性が一次遅れ系に近 、特性になるように上記インバータ部の電 圧制御率を制御する。
[0011] 上記実施形態によれば、上記電圧検出部により検出されたインダクタンス素子の両 端電圧に基づいて、上記制御部力インバータ部の電圧制御率を制御することによつ て、減衰係数を高めると共に、 LCフィルタのリアクタンス素子の定数に応じたゲイン 設定により、制御系を一次遅れ系に近い特性とし安定性を改善する。また、直接的に 交流負荷電流と直流負荷電流の関係を電圧制御率により制御できるため、高速な応 答ができ、より安定した動作が可能となる。
[0012] また、一実施形態のインバータ装置では、上記インバータ部は、上記制御部により ベクトル制御される。
[0013] 上記実施形態によれば、上記インバータ部は制御部によりベクトル制御されるので 、安定した動作で速度制御が容易にできる。
発明の効果
[0014] 以上より明らかなように、この発明のインバータ装置によれば、直流リンク部に LCフ ィルタを有するインバータ装置にお 、て、振動を抑制しつつ入力電流の歪を抑制す ることができると共に、インダクタンス素子の両端電圧に基づいて振動抑制を行うため 、ダイオードブリッジの出力電流目標値が直流となり、 LCフィルタの共振周波数と干 渉することなぐ制御が可能となる。
[0015] また、一実施形態のインバータ装置によれば、電圧検出部により検出されたインダ クタンス素子の両端電圧に基づいて、上記制御部がインバータ部の入力電流を制御 すること〖こよって、減衰係数を高めると共に、 LCフィルタのリアクタンス素子の定数に 応じたゲイン設定により、制御系を一次遅れ系に近い特性とし安定性を改善する。
[0016] また、一実施形態のインバータ装置によれば、上記電圧検出部により検出されたィ ンダクタンス素子の両端電圧に基づ 、て、上記制御部力インバータ部の電圧制御率 を制御することによって、減衰係数を高めると共に、 LCフィルタのリアクタンス素子の 定数に応じたゲイン設定により、制御系を一次遅れ系に近い特性とし安定性を改善 すると共に、直接的に交流負荷電流と直流負荷電流の関係を電圧制御率により制御 できるため、高速な応答ができ、より安定した動作が可能となる。
[0017] また、一実施形態のインバータ装置によれば、上記インバータ部は制御部によりべ タトル制御されるので、安定した動作で速度制御が容易にできる。
図面の簡単な説明
[0018] [図 1]図 1は従来のインバータ装置の構成図である。
[図 2A]図 2Aは上記インバータ装置の直流電圧を示す図である。
[図 2B]図 2Bは上記インバータ装置の線電流を示す図である。
[図 3]図 3は上記インバータ装置にダンピング抵抗を挿入したときの伝達特性を説明 するための図である。
[図 4]図 4は上記インバータ装置のブロック線図である。
[図 5A]図 5Aは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 5B]図 5Bは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 5C]図 5Cは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 5D]図 5Dは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 6A]図 6Aは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 6B]図 6Bは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 6C]図 6Cは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 6D]図 6Dは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 7]図 7は上記インバータ装置のボード線図である。
[図 8]図 8は共振系と HPF特性を示す図である。
[図 9]図 9はこの発明のインバータ装置に振動抑制制御を行った場合の伝達特性を 説明するための図である。
[図 10A]図 10Aは上記インバータ装置のブロック線図である。
[図 10B]図 10Bは上記インバータ装置のブロック線図である。
[図 10C]図 10Cは上記インバータ装置のブロック線図である。 [図 10D]図 10Dは上記インバータ装置のブロック線図である。
[図 11]図 11は上記インバータ装置の伝達関数を示す図である。
[図 12]図 12は上記インバータ装置の振動抑制系の伝達特性を示すボード線図であ る。
[図 13]図 13は上記インバータ装置の二次系、位相進みの伝達特性を示すボード線 図である。
[図 14A]図 14Aは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 14B]図 14Bは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 14C]図 14Cは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 14D]図 14Dは上記インバータ装置の入力電流の過渡解析結果を示す図である。
[図 15A]図 15Aは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 15B]図 15Bは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 15C]図 15Cは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 15D]図 15Dは上記インバータ装置の直流電圧の過渡解析結果を示す図である。
[図 16A]図 16Aはこの発明の電圧制御率による共振抑制に用いたインバータ装置の 伝達特性を説明するための図である。
[図 16B]図 16Bはこの発明の電圧制御率による共振抑制に用いたインバータ装置の 伝達特性を説明するための図である。
[図 16C]図 16Cはこの発明の電圧制御率による共振抑制に用いたインバータ装置の 伝達特性を説明するための図である。
[図 17]図 17は上記インバータ装置のブロック線図である。
[図 18]図 18はこの発明の第 1実施形態のインバータ装置の構成図である。
[図 19]図 19はこの発明の第 2実施形態のインバータ装置の構成図である。
発明を実施するための最良の形態
[0019] この発明のインバータ装置を図示の実施の形態により詳細に説明する前に、この発 明のインバータ装置の動作原理について説明する。
[0020] 図 1は文献 1(「3.直流リンク付き直接形交流電力変換回路 (直接形交流電力変換 回路技術とその関連技術の現状と課題)」、電気学会技術報告第 998号、 2005年 2月 2 5日)に示された直流リンク部に LCフィルタを有するインバータ装置の主回路構成を 示している。このインバータ装置は、図 1に示すように、三相ダイオードブリッジ回路を 構成する 6つのダイオード D1〜D6からなるダイオードブリッジ 11と、三相ブリッジ回 路を構成する 6つのスイッチング素子 S 1〜S6からなるインバータ部 12とを備えて ヽ る。また、上記インバータ装置は、ダイオードブリッジ 11の正極側出力端とインバータ 部 12の正極側入力端との間に接続されたインダクタンス素子の一例としてのインダク タ Lと、上記インバータ部 12の入力端間に接続されたキャパシタンス素子の一例とし てのコンデンサ Cとを備えて ヽる。上記インダクタ Lとコンデンサ Cで LCフィルタを構 成して 、る。上記ダイオードブリッジ 11により三相交流電源 10からの三相交流電圧 を直流に整流し、整流された直流電圧をインバータ部 12により所定の三相交流電圧 に変換してモータ 13に出力する。
[0021] この図 1に示すインバータ装置の構成要素は、通常の直流リアタトル付き電圧形ィ ンバータ装置と同様である。ただし、直流リンク部の LCフィルタのコンデンサ Cの容量 は従来の 1Z100以下と小さぐ LCフィルタの共振周波数もインバータ装置のキヤリ ャ電流成分を減衰させるベぐ数 kHz程度と従来の一桁以上高く設定されており、リ ァクトル Lのインダクタンスも小さな値に設定されている。例えば、通常の直流リアタト ル付き電圧形インバータ装置の直流リンク部の LCフィルタのコンデンサの容量は 20 00 /z F、リアタトルのインダクタンスは lmH、共振周波数は 113Hz程度に設定される のに対して、図 1に示すインバータ装置の直流リンク部の LCフィルタのコンデンサ C の容量は 4.4 F、リアタトル Lのインダクタンスは 0.5mH、共振周波数は 3.4kHzで ある。
[0022] このため、直流リンク部のリアタトル L、コンデンサ Cは商用周波数成分を平滑させる 作用がなく、図 2Aの直流電圧 (Vdc)の波形に示すように、直流リンク部には相電圧の 最小相を基準とした最大相の電位が発生し、商用周波数の 6倍周波数で脈動するこ ととなる。また、入力電流についても同様に、最大相と最小相との線間に直流電流が 通流することから、インバータ部の入力電流が一定の場合、図 2Bの線電流の波形に 示すような 120° 通電波形となる。
[0023] ここで、上記インバータ装置において、 LCフィルタの脈流電圧に対する出力電圧 の伝達特性は、一般に良く知られた次式の二次系で表すことができる。
[0024] 図 3は図 1のインバータ装置の等価回路にインバータ部側にダンピング抵抗 Rdを挿 入したものを示しており、図 3において、 14はインバータ部を簡易的に表す電流源で ある。
[0025] 図 3に示すように、ダンピング抵抗 Rdを挿入することにより、インバータ装置の伝達 関数 G(s)は次のとおりに表され、ダンピング抵抗 Rdの設定によって LCフィルタの減 衰特性 6を改善できる。
Figure imgf000009_0001
1
f =
Figure imgf000009_0002
[0026] ここで、 Vはダイオードブリッジから出力される直流電圧、 Vはインバータ部の出力 電圧、 Lはインダクタンス、 Cはキャパシタンス、 sはラプラス変数である。
[0027] 上記文献 2(特開平 9— 172783号公報)では、インバータ部の出力電圧を検出して 、電流制御系にて負荷電流 iを変化させることにより、次式のように等価的にダンピン グ抵抗を挿入したものとして 、る。
1
ιη = -V, = GV.
[0028] また、ここではダイオードブリッジの出力電圧 Vが直流であるから、フィードバック経 路に HPF (ノヽィパスフィルタ)を挿入して、共振に起因する電圧のみを検出することで 、共振を抑制している。
[0029] 図 4は [背景技術]で説明した文献 2(特開平 9— 172783号公報)のインバータ装置 のブロック線図を示して 、る。
[0030] 次に、図 5A〜図 5D,図 6A〜図 6Dを用いてインバータ装置に対して従来方式を適 用した結果について示す。図 5A〜図 5D,図 6A〜図 6Dは HPFの遮断周波数を 60 OHz、ゲイン Gを 0、 0.2, 0.4、 0.6に変えた場合の過渡解析結果を示したものである 。また、インバータ部は簡易的に電流源とし、電流指令に図 4に示した HPFとゲイン Gを介して電圧共振成分を加算して 、る。
[0031] 上記インバータ装置は、直流電圧が商用周波数の 6倍の周波数の脈流状とする必 要があるが、脈流成分は、図 6A〜図 6Dの波形に示すように高調波を含む歪波であ るため、直流電圧検出により共振抑制制御を図った場合、 LCフィルタによる共振成 分と高調波成分の分離が困難となり、電流波形に歪が生じる。
[0032] 図 5Bに示すように、ゲインが 0.2の場合、共振電流は抑制されている力 図 6A〜 図 6Dに示すように電圧波形の補償により、脈流電圧に歪が生じるため、結果として 相の切り替わりのタイミングで波形に振動が生じている。さらに、ゲインを上げて抑制 を試みた場合、図 7のボード線図に示すように、 HPFの遮断周波数付近 (HPFと共 振系の特性は図 8参照)に極が生じて逆に波形を悪化させる結果となる。
[0033] このように、直流電圧検出による振動抑制は、脈流電圧を必要とするインバータ装 置にお 、て適用は困難となる。
[0034] 以上の結果は、直流電位と線間電圧波形の電位差によりリアタトル Lに歪電流が流 れることを示しており、共振が無い場合においてはリアタトル Lに流れる電流は直流と なることから、本発明では、リアタトル Lへの印加電圧を検出することで共振を抑制し た。
[0035] 図 9はこの発明のリアタトル Lの両端電圧 Vを共振抑制に用いたインバータ装置の し
伝達特性を説明するための構成図を示しており、図 9において、 15はインバータ部を 簡易的に表す電流源である。
[0036] 図 10A〜図 10Dはリアタトル Lの両端電圧を共振抑制に用いた場合にっ 、て共振 系の特性を求めたブロック線図であり、図 10Aから図 10Dの順に制御系を等価変換 していくと、最終的には図 10Dに示す二次系と位相進み力もなる直列の系となること が分かる。
[0037] また、図 11は図 10A〜図 10Dのブロック線図を伝達関数で示したものであり、二項 目は二次系であるからゲイン kにより減衰特性を改善でき、一項目は位相進みである から、両者により安定な一次遅れ系に近い特性にすることができる。図 11に示す伝 達関数は実質的に一次遅れ系の特性である。 [0038] 図 13はゲイン 0.03〜0.09とした場合の二次系、位相進みの伝達特性を示すボー ド線図であるが、極、遮断周波数はほぼ一致することが分かる。
[0039] 図 12は振動抑制系の伝達特性を示すボード線図であるが、ゲインが低い場合には 減衰特性が改善され、さらに、ゲインを上げると一次遅れ系に近い安定な特性とする ことができる。
[0040] 図 14A〜図 14D,図 15A〜図 15Dはゲイン Gを 0、 0.03, 0.06、 0.09に変えた場 合の過渡解析結果を示したものである。図 14A〜図 14D,図 15A〜図 15Dはリアタト ル Lの両端電圧 Vを共振抑制に用いたインバータ装置の過渡解析結果を示して ヽ
L
る。図 14A〜図 14D,図 15A〜図 15Dに示すように、ゲインが低い場合において僅 かに入力電流、直流電圧とも歪が観測される力 一次遅れ系に近い特性が得られる ようゲインを上げると、電流は共振の無い 120° 通電波形が得られ、電圧についても 線間電圧による脈流成分と一致する結果となる。
[0041] なお、図 14A〜図 14D,図 15A〜図 15Dの過渡解析結果では、インバータ部を電 流源により模擬したが、入力平均電流が直流となる場合に適用可能であり、図 18に 示した同期電動機の電流制御系はもとより誘導電動機のベクトル制御にも適用でき、 直流のチヨッパであっても良い。
[0042] 次に、図 16Aはこの発明の電圧制御率を共振抑制に用いたインバータ装置の伝達 特性を説明するための構成図を示しており、図 16Aにおいて、 16は入力側の電流 源と出力側の直流電源とを有するインバータ部を表し、 17はそのインバータ部 16の 直流電源に接続された電流源 (負荷)を表している。ここで、負荷電流を I
Ldとし、インバ ータ部 16の電圧制御率を Dとする。
[0043] 図 16Aに示す電圧制御率による振動抑制系において、電圧制御率の初期値 D*= 1すると、図 16Bに示すようにインバータ部の入力側の電流源が、
D= l -kV
L
DI =1 I kV
Ld Ld Ld L
で示す関係となる。このため、図 16Bに示す回路を図 16Cに示す等価回路に置き換 えることができる。
[0044] このため、図 16Cは図 17に示すブロック線図で表され、インバータ部の二次側の電 流源を一定とすると、図 10Aに示すブロック線図の構成において抵抗 R、抑制ゲイン kに相当する定数が与えられることがわかる。したがって、この図 16A〜図 16C,図 17 に示すインバータ装置の電圧制御率に抑制値をカ卩える方式は、図 9,図 10A〜図 10 Dに示すインバータ装置の電流制御系に抑制値を加える方式と制御ゲインが異なる ものの、図 11に示す伝達関数に相当する伝達関数となることが分かる。
[0045] 図 17に示すブロック線図は、電流制御系が高速に制御されている前提で電圧源と LCRで簡易的に表現しているため、同じ形となる。
[0046] 図 9,図 10A〜図 10Dに示すインバータ装置の電流制御は、 q軸制御系を用いて交 流負荷の有効電流分を制御し、直流電流を変動させることで、 LCフィルタに対する ダンピング抑制を行うのに対して、図 16 A〜図 16C,図 17に示すインバータ装置の 電圧制御率は、交流負荷と直流負荷の電圧 (電流)の関係を制御する。このように電 圧制御率を変動させることによって、同様に直流電力を変動させることができる。
[0047] したがって、図 9,図 10A〜図 10Dに示すインバータ装置では、電流制御系帯域の 制約により、応答に遅れが生じる力 図 16A〜図 16C,図 17に示す電圧制御率を共 振抑制に用いたインバータ装置では、直接的に交流負荷電流と直流負荷電流の関 係を制御できるため高速である。
[0048] この発明のインバータ装置によれば、直流リンク部に LCフィルタを有するインバー タ装置において、振動を抑制しつつ入力電流の歪を抑制することができる。
[0049] また、 LCフィルタのインダクタンス素子の両端電圧を検出する電圧検出部を備えて 、その電圧検出部により検出されたインダクタンス素子の両端電圧に基づいて、制御 部がインバータ部の入力電流を制御することによって、減衰係数を高めると共に、 LC フィルタのリアクタンス素子の定数に応じたゲイン設定により、制御系を一次遅れ系に 近 、特性とし安定性を改善することができる。
[0050] または、 LCフィルタのインダクタンス素子の両端電圧を検出する電圧検出部を備え て、その電圧検出部により検出されたインダクタンス素子の両端電圧に基づいて、制 御部がインバータ部の電圧制御率を制御することによって、減衰係数を高めると共に 、 LCフィルタのリアクタンス素子の定数に応じたゲイン設定により、制御系を一次遅 れ系に近い特性とし安定性を改善すると共に、直接的に交流負荷電流と直流負荷 電流の関係を電圧制御率により制御できるため、高速な応答ができ、より安定した動 作が可能となる。
[0051] また、インバータ部が制御部によりベクトル制御されるインバータ装置にこの発明を 適用することによって、安定した動作で速度制御が容易にできる。
[0052] 次に、この発明のインバータ装置を図示の実施の形態により詳細に説明する。
[0053] 〔第 1実施形態〕
図 18はこの発明の第 1実施形態のインバータ装置の構成図を示している。
[0054] このインバータ装置は、図 18に示すように、三相ダイオードブリッジ回路を構成する 6つのダイオード D11〜D16からなるダイオードブリッジ 21と、三相ブリッジ回路を構 成する 6つのスイッチング素子 S11〜S16からなるインバータ部 22と、上記インバー タ部 22を制御する制御部 100を備えている。また、上記インバータ装置は、ダイォー ドブリッジ 21の正極側出力端とインバータ部 22の正極側入力端との間に接続された インダクタンス素子の一例としてのインダクタ L と、上記インバータ部 22の入力端間
dc
に接続されたキャパシタンス素子の一例としてのコンデンサ C と、上記インダクタ L
dc dc の両端電圧 Vを検出する電圧検出部 24とを備えている。上記インダクタ L とコンデ し dc ンサ C で LCフィルタを構成している。上記ダイオードブリッジ 21により三相交流電源 dc
(図示せず)からの三相交流電圧を直流に整流し、整流された直流電圧をインバータ 部 22により所望の三相交流電圧に変換してモータ 23に出力する。
[0055] また、このインバータ装置の制御部 100は、
回転角速度目標値 ω *から回転角速度 ω を減算して差信号を出力する加減算器 1
re re
01と、
上記加減算器 101からの差信号について PI制御を行う PI制御器 102と、 上記電圧検出器 24により検出されたインダクタ L の両端電圧 Vにゲイン kを乗算す
dc し
る乗算器 103と、
上記 PI制御器 102からの信号力も減算して電流目標値 I *を出力する加減算器 104
a
と、
上記加減算器 104からの電流目標値 I *に - 3ϊη β *( β * :電流位相目標値)を乗算し
a
て、 d軸電流目標値 I *を出力する変換部 105と、 上記変換部 105からの d軸電流目標値 I *から d軸電流値 Iを減算する加減算器 106
d d
と、
上記加減算器 104からの電流目標値 I *に cos β *( j8 *:電流位相目標値)を乗算して、
a
q軸電流目標値 I *を出力する変換部 107と、
上記変換部 107からの q軸電流目標値 I *から q軸電流値 Iを減算する加減算器 108 と、
上記加減算器 106からの信号について PI制御を行う PI制御器 109と、
上記 d軸電流値 Iに ω L (L: d軸インダクタンス)を乗算する乗算部 110と、
d re d d
上記 q軸電流値 Iに ω L (L: q軸インダクタンス)を乗算する乗算部 111と、
q re q q
上記加減算器 108からの信号について PI制御を行う PI制御器 112と、
上記 PI制御器 109からの信号と乗算部 111からの信号を減算して d軸電圧を出力す る加減算器 113と、
上記 PI制御器 123からの信号に乗算部 110からの信号を加算する加減算器 114と、 上記回転角速度 ω に誘起電圧係数 keを乗算する乗算器 115と、
re
上記加減算器 114からの信号に乗算器 115からの信号を加算して q軸電圧を出力す る加減算器 116と、
上記加減算器 113からの d軸電圧と加減算器 116からの q軸電圧に基づいて、イン バータ部 22に PWM制御信号を出力する PWM変調部 117とを有する。
[0056] 上記構成のインバータ装置は、電流制御系に抑制値を加える方式であり、交流負 荷の有効電流分を制御し、直流電流を変動させることにより、 LCフィルタに対するダ ンビング抑制を行う。
[0057] 〔第 2実施形態〕
図 19はこの発明の第 2実施形態のインバータ装置の構成図を示している。このイン バータ装置は、制御部を除いて第 2実施形態のインバータ装置と同一の構成をして いる。
[0058] また、このインバータ装置の制御部 200は、
回転角速度目標値 ω *から回転角速度 ω を減算して差信号を出力する加減算器 1
re re
01と、 上記加減算器 101からの差信号について PI制御を行う PI制御器 102と、
上記電圧検出器 24により検出されたインダクタ L の両端電圧 Vにゲイン kを乗算す
dc し
る乗算器 103と、
上記 PI制御器 102からの電流目標値 I *に - 5ίη β \ β * :電流位相目標値)を乗算し
a
て、 d軸電流目標値 I *を出力する変換部 105と、
d
上記変換部 105からの d軸電流目標値 I *から d軸電流値 Iを減算する加減算器 106
d d
と、
上記加減算器 104からの電流目標値 I *に cos β *( β * :電流位相目標値)を乗算して、
a
q軸電流目標値 I *を出力する変換部 107と、
上記変換部 107からの q軸電流目標値 I *から q軸電流値 Iを減算する加減算器 108 と、
上記加減算器 106からの信号について PI制御を行う PI制御器 109と、
上記 d軸電流値 Iに ω L (L: d軸インダクタンス)を乗算する乗算部 110と、
d re d d
上記 q軸電流値 Iに ω L (L: q軸インダクタンス)を乗算する乗算部 111と、
q re q q
上記加減算器 108からの信号について PI制御を行う PI制御器 112と、
上記 PI制御器 109からの信号と乗算部 111からの信号を減算して d軸電圧 Vを出力
id する加減算器 113と、
上記 PI制御器 123からの信号に乗算部 110からの信号を加算する加減算器 114と、 上記回転角速度 ω に誘起電圧係数 keを乗算する乗算器 115と、
re
上記加減算器 114からの信号に乗算器 115からの信号を加算して q軸電圧 Vを出 力する加減算器 116と、
電圧制御率の初期値 k力も乗算器 103からの信号 (kV)を減算して、電圧制御率目
s
標値 k *を出力する加減算器 121と、
s
上記加減算器 113からの d軸電圧 Vと加減算器 116からの q軸電圧 Vおよび加減
id iq
算器 121からの電圧制御率目標値 k *に基づいて、インバータ部 22に PWM制御信
s
号を出力する PWM変調部 120とを有する。
上記構成のインバータ装置は、電圧制御率に抑制値をカ卩える方式であり、電圧制 御率を変動させることによって、同様に直流電力を変動させて、 LCフィルタに対する ダンピング抑制を行う。
[0060] 上記第 1,第 2実施形態の直流リンク部に LCフィルタを有するインバータ装置にお いて、 LCフィルタのインダクタンス素子の両端電圧を検出することにより、電源脈動 成分および電源基本波成分を含むことなぐ共振抑制制御を可能とし、制御系の安 定ィ匕による信頼性向上 (過電流、過電圧回避)と電流波形を改善することができる。
[0061] また、上記第 1,第 2実施形態では、 DCモータのベクトル制御のインバータ装置に ついて説明したが、 ACモータを負荷とするインバータ装置でもよい。また、この発明 のインバータ装置の負荷側がモータでなくともよぐ有効電力を送り込む負荷であれ ばよい。

Claims

請求の範囲
[1] 入力された三相交流電圧を直流電圧に整流するダイオードブリッジ (11, 21)と、 上記ダイオードブリッジ (11, 21)により変換された上記直流電圧を交流電圧に変換 して出力するインバータ部 (12,22)と、
上記ダイオードブリッジ (11, 21)の一方の出力端と上記インバータ部 (12,22)の一方 の入力端との間に接続されたインダクタンス素子 (L,L )と、上記インバータ部 (12, 22)
dc
の入力端間に接続されたキャパシタンス素子 (C,C )とを有する LCフィルタと、
dc
上記 LCフィルタの上記インダクタンス素子 (L )の両端電圧を検出する電圧検出部 (
dc
24)と、
上記電圧検出部 (24)により検出された上記インダクタンス素子の両端電圧に基づ V、て、上記インバータ部 (12,22)の入出力電圧の伝達特性が一次遅れ系に近 ヽ特 性になるように上記インバータ部 (12,22)を制御する制御部 (100,200)と
を備えたことを特徴とするインバータ装置。
[2] 請求項 1に記載のインバータ装置において、
上記制御部 (100)は、上記電圧検出部 (24)により検出された上記インダクタンス素 子の両端電圧に基づいて、上記インバータ部 (22)の入出力電圧の伝達特性が一次 遅れ系に近 、特性になるように上記インバータ部 (22)の入力電流を制御することを 特徴とするインバータ装置。
[3] 請求項 1に記載のインバータ装置において、
上記制御部 (200)は、上記電圧検出部 (24)により検出された上記インダクタンス素 子の両端電圧に基づいて、上記インバータ部 (22)の入出力電圧の伝達特性が一次 遅れ系に近 、特性になるように上記インバータ部 (22)の電圧制御率を制御すること を特徴とするインバータ装置。
[4] 請求項 1に記載のインバータ装置において、
上記インバータ部 (12,22)は、上記制御部 (100,200)によりベクトル制御されること を特徴とするインバータ装置。
PCT/JP2007/061785 2006-07-24 2007-06-12 Inverseur WO2008013000A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2007277980A AU2007277980B2 (en) 2006-07-24 2007-06-12 Inverter
US12/374,931 US7907427B2 (en) 2006-07-24 2007-06-12 Inverter
CN2007800275290A CN101490944B (zh) 2006-07-24 2007-06-12 逆变器装置
ES07745072T ES2702360T3 (es) 2006-07-24 2007-06-12 Inversor
EP07745072.4A EP2051362B1 (en) 2006-07-24 2007-06-12 Inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-200584 2006-07-24
JP2006200584A JP4067021B2 (ja) 2006-07-24 2006-07-24 インバータ装置

Publications (1)

Publication Number Publication Date
WO2008013000A1 true WO2008013000A1 (fr) 2008-01-31

Family

ID=38981315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061785 WO2008013000A1 (fr) 2006-07-24 2007-06-12 Inverseur

Country Status (9)

Country Link
US (1) US7907427B2 (ja)
EP (1) EP2051362B1 (ja)
JP (1) JP4067021B2 (ja)
KR (1) KR101074553B1 (ja)
CN (1) CN101490944B (ja)
AU (1) AU2007277980B2 (ja)
ES (1) ES2702360T3 (ja)
TR (1) TR201818524T4 (ja)
WO (1) WO2008013000A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085464A (ja) * 2011-09-26 2013-05-09 Daikin Ind Ltd 電力変換装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009241150B2 (en) * 2008-04-28 2013-10-24 Daikin Industries,Ltd. Inverter control device and power conversion device
JP4654423B2 (ja) * 2008-07-22 2011-03-23 独立行政法人産業技術総合研究所 電力変換装置
WO2010032761A1 (ja) * 2008-09-22 2010-03-25 ダイキン工業株式会社 電力変換器及びその制御方法並びにダイレクトマトリックスコンバータ
TR201910608T4 (tr) * 2008-09-22 2019-08-21 Daikin Ind Ltd Doğrudan tip ac güç dönüştürücü veya doğrudan matris dönüştürücü kontrolü için güç kontrol yöntemi.
US8179701B2 (en) * 2009-01-09 2012-05-15 Yaskawa America, Inc. Variable frequency drive soft charge circuit
JP4877411B1 (ja) * 2010-09-30 2012-02-15 ダイキン工業株式会社 リンク電圧測定方法
JP5961949B2 (ja) * 2011-01-18 2016-08-03 ダイキン工業株式会社 電力変換装置
JP5257533B2 (ja) * 2011-09-26 2013-08-07 ダイキン工業株式会社 電力変換装置
CN103828213B (zh) 2011-09-26 2017-02-22 大金工业株式会社 电力转换器控制方法
US8605469B2 (en) 2012-02-13 2013-12-10 Yasakawa America, Inc. AC side soft charge circuit for variable frequency drives
CN103378742B (zh) * 2012-04-18 2016-02-03 台达电子企业管理(上海)有限公司 变流器系统及其控制方法
JP5664589B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生コンバータおよび電力変換装置
JP5939035B2 (ja) * 2012-05-25 2016-06-22 ダイキン工業株式会社 電力変換装置
JP5928216B2 (ja) * 2012-07-19 2016-06-01 ダイキン工業株式会社 インバータ制御装置
JP6035976B2 (ja) * 2012-08-08 2016-11-30 ダイキン工業株式会社 電力変換装置の制御装置
JP5712987B2 (ja) * 2012-09-27 2015-05-07 ダイキン工業株式会社 電力変換装置の制御方法
CN104704733B (zh) 2012-10-10 2017-05-03 大金工业株式会社 直接型电力转换装置以及直接型电力转换装置的控制方法
JP5975864B2 (ja) * 2012-12-18 2016-08-23 株式会社日立製作所 電力変換装置
JP6194694B2 (ja) * 2013-08-26 2017-09-13 ダイキン工業株式会社 電力変換装置
JP5742980B1 (ja) * 2014-02-19 2015-07-01 ダイキン工業株式会社 電力変換装置の制御方法
JP5817947B1 (ja) * 2014-06-19 2015-11-18 ダイキン工業株式会社 電力変換制御装置
CN104092238B (zh) * 2014-06-24 2016-08-24 许昌学院 基于调制波直接处理的逆变器电流不对称偏差的控制方法
WO2016035982A1 (ko) * 2014-09-05 2016-03-10 삼성전자주식회사 인버터 회로 및 이를 이용한 공기조화기 및 냉장고
JP5920520B1 (ja) 2014-12-17 2016-05-18 ダイキン工業株式会社 充放電回路、充放電回路の制御方法、充放電回路の制御装置、及び直接形電力変換器
JP6499752B2 (ja) * 2015-04-07 2019-04-10 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP6583109B2 (ja) * 2016-04-12 2019-10-02 株式会社デンソー 交流電動機の制御装置
JP6729249B2 (ja) * 2016-09-30 2020-07-22 ダイキン工業株式会社 電力変換器の制御装置
JP6729250B2 (ja) * 2016-09-30 2020-07-22 ダイキン工業株式会社 電力変換器の制御装置
WO2019088131A1 (ja) 2017-10-30 2019-05-09 ダイキン工業株式会社 電力変換装置
KR102506359B1 (ko) * 2020-12-29 2023-03-06 알에스오토메이션주식회사 전압 왜곡 보상부가 구비된 서보 드라이브 장치
JP7108224B1 (ja) * 2021-03-31 2022-07-28 ダイキン工業株式会社 電力変換装置、空気調和機及び冷凍装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961475A (ja) * 1982-09-30 1984-04-07 Toshiba Corp 電力変換装置
JPH04322168A (ja) * 1991-04-19 1992-11-12 Toshiba Corp 電力変換装置
JPH09172783A (ja) 1995-12-19 1997-06-30 Toshiba Corp Npcインバータ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522514A (en) 1967-12-13 1970-08-04 Trw Inc Current sensing circuit for filtered static inverters
US4545002A (en) * 1983-06-28 1985-10-01 General Electric Company Thyristor voltage limiter for current source inverter
JPH04188206A (ja) * 1990-11-22 1992-07-06 Hitachi Ltd 電源装置
JP3249380B2 (ja) * 1995-06-13 2002-01-21 株式会社東芝 電力変換装置
DE19545262B4 (de) * 1995-11-25 2004-08-05 Alstom Power Conversion Gmbh Einrichtung zum Betrieb einer mehrgerüstigen Walzstraße
US5790396A (en) 1995-12-19 1998-08-04 Kabushiki Kaisha Toshiba Neutral point clamped (NPC) inverter control system
US6636107B2 (en) * 2000-03-28 2003-10-21 International Rectifier Corporation Active filter for reduction of common mode current
JP4013483B2 (ja) * 2001-02-13 2007-11-28 株式会社日立製作所 電力変換器の制御装置
JP2005287137A (ja) * 2004-03-29 2005-10-13 Honda Motor Co Ltd 平滑コンデンサの放電装置
CN1610230A (zh) * 2004-11-05 2005-04-27 北京工业大学 一种交流升压方式的三相功率因数校正电路
CN1665116A (zh) * 2004-12-31 2005-09-07 中原工学院 二相正交矢量控制式电磁搅拌器逆变电源
US7190143B2 (en) * 2005-05-27 2007-03-13 Rockwell Automation Technologies, Inc. Pulse width modulation (PWM) rectifier with variable switching frequency
CN1794553A (zh) * 2005-11-28 2006-06-28 广州电器科学研究院 数字化高频软开关电镀电源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961475A (ja) * 1982-09-30 1984-04-07 Toshiba Corp 電力変換装置
JPH04322168A (ja) * 1991-04-19 1992-11-12 Toshiba Corp 電力変換装置
JPH09172783A (ja) 1995-12-19 1997-06-30 Toshiba Corp Npcインバータ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085464A (ja) * 2011-09-26 2013-05-09 Daikin Ind Ltd 電力変換装置

Also Published As

Publication number Publication date
ES2702360T3 (es) 2019-02-28
EP2051362A4 (en) 2016-08-10
EP2051362A1 (en) 2009-04-22
EP2051362B1 (en) 2018-09-19
US7907427B2 (en) 2011-03-15
KR20090018663A (ko) 2009-02-20
CN101490944A (zh) 2009-07-22
AU2007277980B2 (en) 2010-06-24
JP4067021B2 (ja) 2008-03-26
AU2007277980A1 (en) 2008-01-31
CN101490944B (zh) 2011-07-20
US20090237961A1 (en) 2009-09-24
JP2008029151A (ja) 2008-02-07
TR201818524T4 (tr) 2019-01-21
KR101074553B1 (ko) 2011-10-17

Similar Documents

Publication Publication Date Title
WO2008013000A1 (fr) Inverseur
EP1808953B1 (en) Polyphase current supplying circuit and driver apparatus
JP5664589B2 (ja) 電源回生コンバータおよび電力変換装置
JP6276368B2 (ja) 力率改善コンバータ及びその制御方法
JP3123079B2 (ja) Pwm制御変換器の制御装置
JP5742980B1 (ja) 電力変換装置の制御方法
JP4760000B2 (ja) 多相電流供給回路、駆動装置、圧縮機、及び空気調和機
JP2008113514A (ja) 電源回路、及びこれに用いる制御回路
KR20100124816A (ko) 컨버터의 제어 방법
JP2019068675A (ja) 交流−直流変換装置
US10374513B2 (en) AC-DC converter
CN105932870B (zh) 用于pfc电流整形的方法和控制电路
JP5939035B2 (ja) 電力変換装置
JP5591215B2 (ja) 電力変換装置
JP2012044830A (ja) 電力変換装置
CN109983683A (zh) 对变流器的输出电流的调节
Qiu et al. High performance current source inverter fed induction motor drive with minimal harmonic distortion
JP4370946B2 (ja) 三相整流装置
JP2004173496A (ja) 誘導電動機制御装置
JP6194694B2 (ja) 電力変換装置
KR102586189B1 (ko) 전기자동차용 영구자석 동기전동기의 고효율 운전 제어 장치 및 그 제어 방법
JP5140618B2 (ja) 三相電力変換装置
KR100565263B1 (ko) 입력전압 센서리스형 능동필터의 제어방법 및 입력전압예측방법
JP6340970B2 (ja) 制御装置
JPH0681512B2 (ja) 電流形pwm変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027529.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 12374931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007277980

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007745072

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007277980

Country of ref document: AU

Date of ref document: 20070612

Kind code of ref document: A