WO2008001764A1 - Agent de réticulation contenant une composition de latex et corps moulé réticulé correspondant - Google Patents

Agent de réticulation contenant une composition de latex et corps moulé réticulé correspondant Download PDF

Info

Publication number
WO2008001764A1
WO2008001764A1 PCT/JP2007/062791 JP2007062791W WO2008001764A1 WO 2008001764 A1 WO2008001764 A1 WO 2008001764A1 JP 2007062791 W JP2007062791 W JP 2007062791W WO 2008001764 A1 WO2008001764 A1 WO 2008001764A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cationic
aluminum
rubber latex
latex
Prior art date
Application number
PCT/JP2007/062791
Other languages
English (en)
French (fr)
Inventor
Kazuo Koide
Original Assignee
Four Road Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Four Road Research Ltd. filed Critical Four Road Research Ltd.
Priority to JP2008522585A priority Critical patent/JP4457164B2/ja
Priority to US11/965,629 priority patent/US20080227913A1/en
Publication of WO2008001764A1 publication Critical patent/WO2008001764A1/ja
Priority to US12/052,964 priority patent/US8389620B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • Latex composition containing a crosslinking agent and crosslinked molded article thereof
  • the present invention relates to a novel carboxynole group crosslinking agent, a latex composition containing the crosslinking agent, and a crosslinked molded article of the latex composition or a crosslinked molded article of a product containing the latex composition.
  • a carboxyl group-containing gen-based rubber latex composition using an organometallic compound having two or more hydroxyl groups bonded to a metal atom such as an aluminum atom or a titanium atom as a crosslinking agent and a crosslinked molded product thereof. It relates to hypoallergenic dip products and paper products that have excellent creep resistance, water resistance, solvent resistance and durability.
  • Immersion products such as rubber gloves and finger sacks are used in various fields such as medical treatment (nosocomial infection, prevention of SARS infection, etc.), food processing field (0-157 problem), and electronic parts manufacturing field due to growing interest in safety and health. Widely used in the direction.
  • One of the manufacturing methods for these rubber gloves and finger sack is dip molding.
  • anode coagulation dipping is performed in which a mold made of wood, glass, ceramics, metal or plastic is pre-soaked in a coagulant solution and then immersed in a natural rubber latex composition or a synthetic rubber latex composition.
  • TIG adhesion dipping method in which a mold is dipped in a latex composition and then dipped in a coagulating liquid, and a molded product obtained by these dip molding methods is a dip molded product.
  • Natural rubber latex products have good physical and chemical properties, but there are cases of allergic reactions to users as the natural protein contained in the product is eluted, and synthetic rubber that does not contain protein. Production of products using latex tends to increase.
  • a typical example of synthetic rubber latex is synthetic rubber latex such as acrylonitrile butadiene rubber (NBR rubber), but it is also pointed out that harmful substances such as hydrogen cyanide derived from acrylonitrile may be generated in the combustion exhaust gas.
  • SBR Styrene butadiene rubber
  • JP-A-2001-192918: Patent Document 1 new latex raw materials such as carboxylomer group-containing ionomer elastomers are also attracting attention.
  • Dip molded products are required to have high physical properties. In order to develop advanced physical properties, it is necessary to introduce a crosslinked structure between the polymers.
  • io and a vulcanization accelerator such as zinc oxide are added to form a covalent bond of io between the double bonds of the natural rubber molecule.
  • vulcanization in the case of natural rubber, it is considered that a crosslinked structure is formed in the natural rubber particles, and excellent product properties are exhibited.
  • cluster ion crosslinking refers to a state in which carboxyl groups form clusters and the divalent cation of zinc is neutralized by the entire carboxyl groups forming clusters. Due to the characteristics of this structure, when the rubber is stretched, the cross-linking is shifted. When stress is applied, stress relaxation (creep) occurs in a short time, and when used for a long time, the permanent set becomes large, and the rubber (ND Zakharov, Rubber Chem. And Tech, Rubber Division Acs. Akron, US. Vol36, no3 568-574: Non-patent document 2).
  • Zio bridges the double bonds derived from butadiene by covalent bonds, but has little effect on measured physical properties such as tensile strength, elongation, and hardness. However, it dominates the important properties of rubber products such as the durability, creep resistance, water resistance, and solvent resistance of rubber products, and this is why the vulcanization method is often used in carboxyl synthetic rubber latex. That is why. [0004] As described above, io vulcanization also plays an important role in the gen-based carboxylated synthetic rubber latex. On the other hand, io oxidizes the metal when it comes into contact with the metal. Tend to be refrained from use.
  • Patent 3635060 Patent Document 2
  • aluminum acts as a trivalent cation.
  • rubber products become hard.
  • Patent Document 3 proposes a dip-forming composition substantially free from any of a sulfur-containing vulcanizing agent, a vulcanization accelerator, and zinc oxide. According to studies by the authors, dip products using this composition have the problem of low creep resistance, water resistance, solvent resistance, and strong tackiness.
  • JP-T-2006-517224 discloses a hydrogel patch composition.
  • the hydrogel composition contains a water-soluble polymer gel and a crosslinking agent, and the crosslinking agent contains dihydroxyaluminum acetate.
  • dihydroxyaluminum acetate is a cationic crosslinking agent for water-soluble polymer gels.
  • the cationic cross-linking agent of the gelled composition or the cationic cross-linking agent that gels the composition is the cross-linking agent of carboxyl group-containing gen-based rubber latex, which is most important for the compounded solution to exist stably for a long period of time. Can't be.
  • Patent Document 5 discloses a whitening gel sheet containing as a component an ionic crosslinked product of an anionic water-soluble polymer compound obtained by polymerizing acrylic acid or a derivative thereof.
  • the dihydroxy aluminum aluminoacetate is described as a polyvalent cationic compound, and this cross-linking agent is also a gelling agent for an anionic water-soluble polymer compound. It has become. Therefore, special Similar to Permissible Document 4, it does not disclose a cross-linking agent for carboxynole group-containing gen-based rubber latex which is useful in the present invention.
  • Patent Document 6 contains, as an essential component, a water-soluble titan compound having reactivity with an ionomer resin and a carboxyl group as an example of an ethylene-unsaturated carboxylic acid copolymer.
  • a water-dispersed antifouling paint composition is disclosed, and dihydroxytitanium ratate is described as the water-soluble titanium compound.
  • such an ionomer resin is a special resin that can be neutralized with a divalent or trivalent metal ion, and does not disclose a crosslinking agent for a carboxylate group-containing gen-based rubber latex useful in the present invention.
  • Patent Document 1 JP 2001-192918
  • Patent Document 2 Patent 3635060
  • Patent Document 3 JP 2003-165814
  • Patent Document 4 Special Table 2006—517224
  • Patent Document 5 JP-A-2005-97217
  • Patent Document 6 JP-A-2005-15514
  • Non-special reference 1 P. H. Starmer, Plastics and Rubber Processing and Applications vol. 9 (1988), p209-214
  • Patent Document 2 N. D. Zakharov, Ruober Chem. And Tech. Rubber Division Acs, Akron, US, Vol36, no3 p568—574
  • An object of the present invention is to find an inorganic metal cross-linking agent that can replace zinc oxide.
  • a further object is to discover cross-linking agents that can replace iou and iou vulcanizing agents.
  • properties such as durability, creep resistance, water resistance, and solvent resistance are comparable to conventional vulcanized products, and io, vulcanized vulcanizates, and vulcanization accelerators.
  • It is to provide a hypoallergenic cross-linked molded article that does not contain an accelerator, especially dip products.
  • a latex composition free of zinc oxide is provided. By using such a latex composition, a new product is also provided in the paper processing field.
  • Non-patent Document 1 Non-patent Document 1
  • the present inventor has focused on an organometallic compound having two hydroxyl groups bonded to a metal atom.
  • the organometallic compound should crosslink the carboxyl group.
  • the present inventor added a dihydroxy organoaluminum metal compound or dihydroxy organotitanium compound in which two hydroxyl groups are bonded to an aluminum atom to a latex containing a carboxyl group added with zinc oxide to prove such inference,
  • the dihydroxy organometallic compound crosslinks the carboxyl group.
  • the product was a dip-molded product with excellent durability, creep resistance and water resistance comparable to io vulcanized products. Moreover, the peelability of the product was greatly improved.
  • the lack of creep resistance and water resistance, which are essential defects of cluster ion crosslinking with zinc oxide, could be solved by using a dihydroxy organometallic compound.
  • the hydroxyl group of the dihydroxy organometallic compound is considered to form a metal ester bond with the carboxynole group.
  • hypoallergenic dip product containing no vulcanized vulcanizate or vulcanization accelerator was obtained, and the present invention was completed.
  • dihydroxy organometallic compounds are divalent crosslinks, so products that are soft and have a good texture can be obtained.
  • organoaluminum metal compounds in which two hydroxyl groups are bonded to one metal atom, but also an organoaluminum metal compound having a structure having one hydroxyl group in one aluminum metal atom.
  • a structure in which two hydroxyl groups are bonded to one metal atom and a structure in which one hydroxyl group is bonded to one aluminum metal atom The organoaluminum compound possessed has the same crosslinking ability.
  • a compound having two hydroxyl groups bonded to a titanium atom is also a divalent cross-linking agent and effectively cross-links a carboxyl group-containing gen-based rubber latex.
  • the organometallic cross-linking agent according to the present invention When used, it binds to a carboxyl group that causes hydrogen bonding, so that the tackiness of the product is greatly reduced.
  • the effect of the cross-linking agent having a highly hydrophobic structure is reduced. Is highly effective. Therefore, the present inventor has synthesized a highly hydrophobic organic metal crosslinking agent. When such a cross-linking agent was used, the tackiness of the dip cross-linked molded product was greatly improved.
  • the present inventor attempted to increase the hydrophobicity of the product by adding the organometallic compound according to the present invention and a compound having a hydrophobic structure to the carboxynorogenated rubber latex. It was.
  • an aluminum 'di' soap of carboxylic acid was added.
  • the carboxylic acid di'soap has only one hydroxyl group, so it does not function as a cross-linking agent, but binds to the carboxynole group and has two hydrophobic structures. Becomes higher. Therefore, the non-tackiness of the crosslinked molded product of the latex composition was greatly improved.
  • the organometallic crosslinking agent fixes the carboxylic acid, thereby increasing the hydrophobicity of the crosslinked molded article and contributing to non-tackiness.
  • the product is a dip molded product, it is also fixed to the product by the calcium salt of the coagulant.
  • the carboxylic acid having a hydrophobic group is usually added to the latex as a water-soluble carboxylate salt, but can also be added after being emulsified like a rosin emulsion size.
  • hydrophobic substances such as emulsions or dispersions include petroleum resins, rosin esters, surface sizing agents (rosin esters, styrene males).
  • Inic resin styrene acrylic copolymer, styrene acrylic emulsion, acrylate copolymer, olefin, maleic resin, urethane, AKD, etc.
  • wax low molecular weight polyethylene, low density polyethylene, low
  • molecular weight polypropylene ethylene-based elastomer, ethylene-acetate copolymer emulsion, disk purge, etc.
  • Organic fillers such as styrene polymers and alkyl methacrylate polymers also increase the hydrophobicity of crosslinked molded products Contributes to non-tackiness.
  • organometallic cross-linking agent of the present invention by adding the organometallic cross-linking agent of the present invention and the compound having a hydrophobic structure to the gen-based rubber latex, even if the organometallic cross-linking agent does not have a hydrophobic structure, only internal addition is possible. This makes it possible to make the product non-tacky.
  • the inventor further attempted to add an organoaluminum metal cross-linking agent or an organotitanium metal cross-linking agent to the magnesium hydroxide and / or calcium hydroxide system in which sodium hydroxide and / or potassium hydroxide coexist. .
  • the inventor added a small amount (0.15 part) of hydrophobized ethylhydroxyethyl cellulose to a latex composition to which an organoaluminum metal-based crosslinking agent was added to form a molded body. Decreased, and a refreshing feeling came out on the product surface. In addition, the peelability and water resistance of the product were improved and the stickiness was reduced.
  • the carboxynole groups are blocked with a carboxynole group blocking agent, the crosslinking of the latex proceeds too much, resulting in a rubbery state. It will lose its nature. Therefore, the present inventors believe that if the carboxyl group on the surface of the molded product is blocked, the adhesion between the films can be prevented, and the carboxylate group blocking agent of the product can be prevented by adding an aluminate or aluminum hydroxide gel.
  • Patent Document 2 proposed a surface treatment of the product by using aluminum, but since aluminum acts as a trivalent cation, the product becomes hard and has the disadvantage of limiting the amount of aluminate or aluminum hydroxide gel added. The effect of the surface treatment with the carboxylate group blocking agent was not sufficiently exhibited. In this organometallic crosslinker system, the product has a drawback that it becomes hard, and even if it is alone, the releasability is good, and the surface treatment of the cationic carboxynole group sequestering agent can effectively realize non-tackiness of the product. .
  • the soaked product has a high calcium concentration, and the mold side is lower than the latex side of the film. Therefore, the necessity of surface treatment with a cationic carboxyleno group is high on the opposite side where the immersion type is low. Therefore, it is possible to carry out surface treatment on both sides or to omit surface treatment on one side.
  • non-tackiness of a product means that it passes the heating non-tackiness test described later, but actually it means that the product surfaces do not adhere to each other for almost six months after use.
  • the present invention is as follows.
  • a carboxyl group-containing gen-based rubber latex and two hydroxyl groups bonded to metal atoms A carboxyl group-containing gen-based rubber latex composition comprising one or more organometallic crosslinking agents.
  • Hydrophobic substances include waxes, synthetic waxes, polyolefin waxes, low molecular weight polyolefins, low density polyethylene, olefin thermoplastic elastomers, ethylene acetate butyl copolymer resins, petroleum resins, rosin esters, alkyls It is characterized by being one or more organic compounds selected from ketene dimer, alkenyl succinic anhydride, acrylic resin, alkyl methacrylate polymerization resin, styrene resin, and surface sizing agent (2) A carboxyl group-containing gen-based rubber latex composition.
  • the water-soluble polymer is tamarind gum, carrageenan, carboxymethyl cellulose, methinorescenorellose, ethinorehydroxy ethinoresenorelose, methinorehydroxy pineol pinolecenose, hydrophobized chill hydroxyethyl cellulose, polyethylene oxide, (5)
  • the carboxyl group-containing gen-based rubber latex composition according to (5) which is an ethylene oxide / propylene oxide / random copolymer, a water-soluble polybulassal, or a polybulal alcohol.
  • Cationic carboxyl group blocking agent strength S trivalent or higher cationic metal ion crosslinking agent, cationic aluminum hydroxide sol, divalent zirconium compound, styrene surface sizing agent having quaternary ammonium base , Cationic epichlorohydrin resin, polyamide epoxy resin, and styrene surface sizing agent having chitosan quaternary ammonium base, cationic epichlorohydrin resin, chitosan, and cationic styrene acryl.
  • Polymeric resin cationic styrene acrylic resin, cationic acrylic copolymer resin, cationic olefin-maleic acid resin, cationic urethane resin, or cationic long-chain alkyl-containing polymer release agent (10) Bridge molded body.
  • a gene comprising one or more organometallic compounds having a structure selected from the group of the following formulas [1], [2], [3], [4] and [5] Rubber latex organic metal cross-linking agent.
  • R represents a saturated or unsaturated aliphatic group or an aromatic group.
  • R is a saturated or unsaturated divalent aliphatic group, or divalent
  • R is a saturated or unsaturated divalent aliphatic group
  • R represents a saturated or unsaturated aliphatic group
  • R represents a hydrogen atom or saturated or unsaturated Represents an aliphatic group.
  • the present invention provides a new carboxyl group crosslinking agent capable of imparting properties equivalent to io vulcanization.
  • the rubber latex used in the present invention is a carboxyl group-containing gen-based latex.
  • carboxyl group-containing gen-based rubber latex examples include carboxy-modified NBR, ruboxyl-modified SBR, carboxy-modified MBR, etc.
  • conjugated gen It is preferably a gen-based rubber latex obtained by emulsion polymerization of 30 to 80% by weight of a monomer and 10 to 69.5% by weight of another ethylenically unsaturated monomer copolymerizable therewith. .
  • examples of the ethylenically unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid, maleic acid, and the like, and one or more of them can be used.
  • methacrylic acid is preferred.
  • Conjugated monomers include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and the like. It is possible to use S above. 1,3-butadiene is particularly preferred.
  • organometallic crosslinking agent containing two or more hydroxyl groups bonded to a metal atom examples include a compound containing two or more hydroxyl groups bonded to an aluminum atom or two or more hydroxyl groups bonded to a titanium atom.
  • the compound examples include the above.
  • a compound having a structure in which an aluminum atom is bonded to a carboxyl group of a carboxylic acid and two or more hydroxyl groups bonded to the aluminum atom are included.
  • Examples of such a compound include a compound having a dihydroxyaluminum structure in which two hydroxyl groups are attached to an aluminum atom bonded to a carboxyl group of a carboxylic acid, as shown below. These two hydroxyl groups crosslink the carboxyl group of the polymer. Therefore, it is a divalent cross-linking agent as in the case.
  • R represents a saturated or unsaturated aliphatic group or an aromatic group.
  • the dihydroxyaluminum organic compound is generally not limited to the force S obtained as a dihydroxy aluminum salt of a carboxylic acid.
  • the carboxylic acid may be any kind such as aliphatic carboxylic acid, aromatic carboxylic acid, and alicyclic carboxylic acid.
  • the amino group may be a carboxylic acid having a substituent such as a hydroxyl group.
  • octylic acid (C8) dihydroxyaluminum examples include octylic acid (C8) dihydroxyaluminum, octanoic acid (C8) dihydride.
  • examples include roxyaluminum, force puric acid (CIO) dihydroxyaluminum, and naphthenic acid dihydroxyaluminum.
  • carboxylic acid a dihydroxyaluminum salt of a carboxylic acid having a functional group such as an amino group or a hydroxyl group can also be used as the crosslinking agent of the present invention. is there.
  • the present metal crosslinking agent is present by polymerization.
  • dihydroxyaluminum lactate is said to be a pentamer in a solid state.
  • Such a polymer is also included in the organometallic crosslinking agent of the present invention.
  • the present compound is considered to be highly safe.
  • the above-mentioned glycine dihydroxy alcohol or dihydroxy aluminum acetyl salicylate is used in medicine as an antacid.
  • an aluminum atom is bonded to each of two carboxyl groups of the dibasic carboxylic acid, and two hydroxyl groups are bonded to each aluminum atom. Also included are compounds having a dihydroxyaluminum structure in which is bonded.
  • dihydroxyaluminum structure of polybasic carboxylic acid it is equivalent to polybasic A plurality of dihydroxyaluminum structures are formed.
  • n is an integer of 2 or more
  • R is a saturated or unsaturated divalent aliphatic group, or a divalent aromatic
  • the dibasic carboxylic acid may be any kind of aliphatic carboxylic acid, aromatic carboxylic acid, alicyclic carboxylic acid and the like. Also, a carboxylic acid having a substituent such as an amino group or a hydroxyl group may be used. Specific examples of dibasic carboxylic acids include adipic acid, 2,4-jetyldaltalic acid, azelaic acid, sebacic acid, etc. Higher dibasic acids include C12, C20, ⁇ 22 from Okamura Oil Co., Ltd. Di'carboxylic acid, Westvaco's 021 di'carboxylic acid is known. In addition, dimer acid (C36 dibasic acid) is synthesized from tall oil fatty acid or soybean oil fatty acid.
  • the organometallic crosslinking agent containing two or more hydroxyl groups bonded to an aluminum atom as described above includes, for example, sodium hydroxide or carboxylic acid by adding a hydroxide such as sodium hydroxide or potassium hydroxide to the carboxylic acid. It is obtained by preparing an aqueous solution of a carboxylate such as potassium acid and reacting it with aluminum nitrate.
  • Examples of the compound containing two or more hydroxyl groups bonded to a titanium atom include dihydroxybis (hydroxycarboxylate) titanium or an ester thereof.
  • Dihydroxybis (hydroxycarboxylate) titanium can be synthesized according to Example 1 of JP 2000-351787 (Patent Document 7).
  • dihydroxybis (hydroxyisobutyrate) titanium is prepared by dissolving ⁇ -hydroxyisobutyric acid in isopropanol and slowly dropping isopropoxytitanium corresponding to a molar ratio of 2: 1. Stirring is continued at the room temperature after completion of the dropwise addition. After the suspension is formed into a white suspension, the stirring is stopped, and isopropanol is distilled off by a rotary evaporator to obtain dihydroxybis (hydroxyisoptylate) titanium.
  • R is a saturated or unsaturated aliphatic group, and R is a hydrogen atom or a saturated or unsaturated aliphatic group.
  • sizing agents examples include rosin based on abietic acid and its isomers, hydrogenated rosin, disproportionated rosin, and reinforced rosin obtained by maleating or fumarating rosin.
  • alkenyl succinates known as synthetic sizing agents, are used as surfactants and synthetic sizing agents, and these are obtained by adding anhydrous maleic acid to C12, C16, and C18 olefin oligomers. And produced by hydrolysis with alkali. These are di'carboxylic acids.
  • An organoaluminum metal compound having a structure of the above sizing agents:! ⁇ 4, such as dihydroxyaluminum rosin acid arqueer succinic acid aluminum compound, can also be used as the crosslinking agent of the present invention.
  • composition of the present invention comprises a carboxyl group-containing gen-based rubber latex and the organometallic crosslinking agent.
  • the addition amount of the organometallic cross-linking agent is generally not less than 0.3 part to 2 parts per 100 parts by weight of latex. From 0.5 part to 1. 5 parts is more preferred.
  • the composition is made alkaline, preferably p, using ammonia or the like for the stability of the carboxynole group-containing gen-based rubber latex composition. It is preferable to set it to H9-: 10.
  • the present inventor instead of imparting hydrophobicity to the cross-linking agent, the hydrophobic substance, the hydrophobic group-containing carboxylic acid or a salt thereof, the hydrophobic group-containing aluminum carboxylate, di soap, or trip 'We considered adding one or more organic compounds selected from soaps or metal carboxylates containing hydrophobic groups to carboxyl group-containing gen-based rubber latex to impart hydrophobicity to the cross-linked molded product. .
  • a water-soluble organometallic crosslinking agent was used, water resistance and peelability could be imparted to the crosslinked product.
  • the carboxynole group-containing gen-based rubber latex composition of the present invention further comprises a hydrophobic substance, a hydrophobic group-containing carboxylic acid or a salt thereof, a hydrophobic group-containing carboxylic acid anoroleum di'soap or tri-soap or hydrophobic. It may contain one or two or more organic compounds selected from carboxylic acid group metal carboxylate.
  • the amount of hydrophobic substance, hydrophobic group-containing carboxylic acid or salt thereof, hydrophobic group-containing carboxylate anorium / di-soap or tri-soap or hydrophobic group-containing metal carboxylate is not particularly limited, but latex It is preferable to contain 0.5 to 2.0 parts by weight per 100 parts by weight, and more preferably 0.5 to 1.0 parts by weight.
  • Hydrophobic substances include waxes, synthetic waxes, polyolefin waxes, low molecular weight polyolefins, low density polyethylene, olefinic thermoplastic elastomers, ethylene acetate butyl copolymer resins, petroleum resins, rosin Examples thereof include esters, alkyl ketene dimers, alkenyl succinic anhydrides, acrylic resins, alkyl methacrylate polymerization resins, and styrene resins.
  • Hydrophobic group-containing carboxylic acids or salts thereof include rosins, reinforced rosin, disproportionated mouth gin, dimer acid, petroleum resin sizing agent, alkenyl succinic acid, tall oil fatty acid, higher fatty acid, dibasic acid or polybasic acid Or a salt thereof.
  • hydrophobic group-containing carboxylic acid those that are emulsified like rosin ester, which is effective to be added as a water-soluble salt, can be added as an acid.
  • carboxylic acid aluminum 'di' soap or various hydrophobic group-containing carboxylic acid metal stalagmites impart water resistance and peelability to the cross-linked molded product, contributing to non-tackiness of the product.
  • hydrophobic compound as described above is separately added to a carboxyl group-containing gen-based rubber latex.
  • water-soluble dihydroxyaluminum organometallic compound with low hydrophobicity eg dihydroxyaluminum lactate
  • low molecular dihydroxyaluminum organometallic compound eg tetrahydroxyaluminum adipate
  • the carboxyl group-containing gen-based rubber latex composition of the present invention may further contain a water-soluble polymer in order to prevent slime on the surface of the dip-molded product.
  • water-soluble polymers include natural tamarind gum, carrageenan, semi-synthetic power norevoximethinoresenorelose, methinoresenorelose, ethinorehydroxyethinoresenorelose, mesopolyethylene oxide, ethylene Oxides.
  • Propylene oxides ⁇ Random copolymers, water-soluble polybulacetals, polybulal alcohols and the like. Water-soluble polymers that do not cause tailing are also effective.
  • the viscosity of the composition increases when a water-soluble polymer is added, it is necessary to select the degree of polymerization of the polymer, the amount added, the latex concentration, etc. so that the viscosity is 40 cps or less.
  • tamarind gum, carrageenan, carboxymethylcellulose, methylcellulose, ethinorehydroxyethinoresenorelose, methinorehydroxypropinoresenorelose, hydrophobized chill hydroxyethylcellulose, polyethylene oxide, ethylene oxide 'propylene oxide' Random copolymer, water-soluble polyvinyl acetal, polyvinyl alcohol, etc. have good strength S, and also vary depending on the nature of the latex raw material.
  • the amount of the water-soluble polymer is not particularly limited, but it is preferable to contain 0.05 to 0.25 parts by weight per 100 parts by weight of latex. 0:! To 0.2 parts by weight More preferably.
  • the carboxyl group-containing gen rubber latex composition of the present invention may further contain colloidanol magnesium hydroxide and / or calcium hydroxide.
  • Colloidal magnesium hydroxide can be produced as magnesium hydroxide in which sodium hydroxide and / or potassium hydroxide coexist by reacting a water-soluble magnesium salt with a strong alkali such as potassium hydroxide or sodium hydroxide.
  • a salt may be added to the alkali or an alkali may be added to the salt, it is desirable to react at a low concentration and at a high pH as much as possible. In practice, it is preferable to add to the raw latex so that the latex concentration is about 30% or less and the composition pH is about 9.2 to 9.8.
  • the amount of applied force of colloidal magnesium hydroxide varies depending on the nature of the latex, and is preferably about 0.2 to 0.5 parts in terms of MgO.
  • a magnesium hydroxide suspension can be prepared and used in place of colloidal magnesium hydroxide in the same manner as the preparation of the following dispersed calcium hydroxide.
  • calcium hydroxide reacts with a water-soluble calcium salt and a strong alkali such as potassium hydroxide or sodium hydroxide to coexist with sodium hydroxide and / or potassium hydroxide. Can be manufactured.
  • calcium hydroxide with the same effect can be adjusted by adding calcium hydroxide or sodium hydroxide to the generated calcium hydroxide and dispersing it with a disperser.
  • the amount of calcium hydroxide added is about the same as that of colloidal magnesium hydroxide in molar equivalents.
  • an organoaluminum metal compound having a structure in which two hydroxyl groups are bonded to the aluminum atom or an organotitanium metal compound-based carboxyl group cross-linking agent is added to the carboxyl group-containing gen-based rubber latex, as in the case of zinc oxide, the polymer chain It was considered that the pendant half-ester bonds to the carboxynole group present in the compound, and the blended composition existed stably for 6 months without forming so-called bukkake. Therefore, such a composition can be prepared by the raw material manufacturer and sold to the user.
  • composition of the present invention may contain zinc oxide.
  • the amount of zinc oxide added depends on the type of latex S, and 0.7 to 2.0 parts by weight is preferred per 100 parts by weight of latex. 1.0 to 1.5 parts by weight is more preferred.
  • the sulfur-containing vulcanizing agent and the vulcanization accelerator are substantially not contained. It is particularly preferable that the substance is not contained in the dip molding composition at all, but specifically, 0.2% by weight per 100 parts by weight of Gen rubber latex (solid content) for each substance. Part or less is preferred.
  • the dip molding composition of the present invention may be adjusted to a pH of rubber latex such as natural rubber latex or isoprene rubber latex, potassium hydroxide, sodium hydroxide, ammonia water or the like, if necessary.
  • Agents such as titanium dioxide, phthalic anhydride, benzoic acid, salicylic acid, magnesium carbonate, anti-aging agents such as styrenated phenols, imidazoles, norodisilane, first yellow, phthalocyanine blue, ultramarine blue, etc. You may mix
  • each component when obtaining the composition of the present invention by adding each of the above components, the timing of adding each component is not particularly limited, and each component may be added simultaneously, or several components may be added. After adding the minutes, the remaining components may be added after a while.
  • any of the conventionally known dip-molding methods such as a direct dipping method, an anode adhesion dipping method, and a teag dipping method can be applied.
  • the shape of the dip-molded product is not particularly limited, but for example, the shape of a glove or the like is exemplified.
  • the carboxyl group of the carboxyl group-containing gen-based rubber latex is preferably crosslinked with an organometallic crosslinking agent by heating at 100 to 150 ° C. That is, the cross-linked molded article of the present invention can be produced by mixing each of the above components to obtain a composition and heating it.
  • the mold is immersed in a coagulation liquid, and then pulled up and dried so that a coagulant is attached to the mold surface.
  • the coagulation liquid is obtained by dissolving a calcium salt such as calcium chloride, calcium nitrate, or calcium acetate in water or a hydrophilic organic solvent such as alcohol or ketone. Calcium in the coagulation liquid The concentration of the solution is usually 5 to 50% by weight, preferably 10 to 30% by weight. If necessary, the coagulation liquid may contain nonionic and anionic surfactants, and fillers such as calcium carbonate, talc and silica gel.
  • the mold to which the coagulant is attached is dipped into the copolymer latex composition for dip molding and pulled up. At this time, the coagulant and the copolymer latex react to form a rubbery film on the mold. The obtained film is washed with water, dried, and then peeled off from the mold to form a dip-formed product.
  • the cross-linked molded product of the carboxyl group-containing gen-based rubber latex composition may be subjected to a surface treatment in order to prevent adhesion between the molded product films.
  • a surface treatment agent used for surface treatment, trivalent or higher cationic metal ion crosslinking agents (polyaluminum hydroxide salt, water-soluble aluminum are used in inorganic systems where cationic carboxynole group blocking agents are preferred. Salt, water-soluble titanium hydride compound, etc.) and cationic aluminum hydroxide sol (alumina sol) and other inorganic compounds are effective.
  • a divalent zirconium compound is also made non-tacky. It is thought that this is because the effect of the organoaluminum metal crosslinking agent of the present invention is great.
  • Cationic petroleum resin and cationic alkyl ketene dimer are effective as the organic surface treatment agent.
  • organic polymer surface treatment agents include styrene-based surface sizing agents having quaternary ammonium bases, cationic epichlorohydrin resins (polyamide epichlorohydrin resins, polyamide enmine cyclonehydrin).
  • Styrene-based surface sizing agent having cationic base, polyepoxymine chlorohydrin, aromatic formaldehyde resin, polyamide epoxy resin, and chitosan quaternary ammonium base, cationic epiclor Cationic polymers such as hydrin resins (polyamide epichlorohydrin resin, polyamidoamine chlorohydrin resin, polyamine cyclohydrin resin, polyamide urea formaldehyde resin, etc.) and chitosan are effective.
  • hydrin resins polyamide epichlorohydrin resin, polyamidoamine chlorohydrin resin, polyamine cyclohydrin resin, polyamide urea formaldehyde resin, etc.
  • cationic polymers used as surface sizing agents such as cationic styrene acrylic copolymer resins, cationic styrene acrylate emulsion resins, cationic acrylic copolymer resins, cationic olefin resins.
  • High cationic properties such as acid resins, cationic urethane resins, and cationic long-chain alkyl-containing polymer release agents
  • the molecule functions as a carboxylate group blocking agent and also functions as a release agent.
  • the concentration of the surface treatment agent used is not particularly limited. For example, a solution of 0.:! To 2.0%, preferably 0.2 to: 1.0% can be used.
  • the surface treatment is preferably performed on both surfaces of the crosslinked molded body.
  • the carboxyl group crosslinking agent according to the present invention can replace the sulfur-containing vulcanizing agent. Furthermore, a remarkable feature of the dip-molded product according to the present invention is that the tackiness of the product is greatly reduced.
  • the dip-molded article produced in this manner is hypoallergenic because it does not substantially contain io and vulcanization accelerator. Furthermore, it is possible to manufacture products that do not substantially contain the heavy metal zinc, and it is possible to manufacture dip-molded products that can be used in a wide range of fields such as the medical field, food field, and electronic component manufacturing field.
  • synthesis method of the crosslinking agent used in the present specification will be described.
  • the synthesis method or the crosslinking agent is merely an example, and the present invention is not limited to the synthesis method or the crosslinking agent.
  • Reagent octylic acid is dissolved in sodium hydroxide, and a 5% aqueous solution of sodium octylate is prepared and heated to 65 ° C in advance.
  • a 5% aqueous solution of sodium octylate is slowly added dropwise to the above aqueous aluminum nitrate solution while stirring. After dropping, continue stirring at 65 ° C for 1 hour.
  • the resulting suspension of dihydroxyaluminum octylate is allowed to stand, and the next day, the supernatant is removed and filtered.
  • the product was washed with water to the extent that the methanol nitrate did not remain, replaced with ethyl alcohol, washed, and then air-dried to obtain a product.
  • the aluminum content of the product was measured, it was 13.4%, which corresponds to a theoretical aluminum content (13.2%). Therefore, this substance is a monosoap of carboxylic acid.
  • a 5% aqueous solution of rosin phosphate was prepared, and dihydroxyaluminum rosinate was synthesized in the same manner as in 1 above.
  • This substance is a mono-soap of rosin acid and corresponds to chemical structure 1 above.
  • SA-NA Dibasic carboxylic acid, sodium sebacate 5 manufactured by Toyotomi Oil Company. Prepare a 0 / water solution and heat to 65 ° C in advance.
  • aluminium sebacate (I) This substance corresponds to a mono-soap of dibasic carboxylic acid and corresponds to chemical structure 2 above.
  • the aluminum sebacate sarcophagus is synthesized by the method described in 1) (aluminum sebacate sarcophagus (II)).
  • the sodium sebacate concentration should be adjusted so that the aluminum sarcophagus concentration is 1% of the theoretical amount.
  • This aluminum sarcophagus (aluminum sebacate (II)) has half the amount of aluminum nitrate-added calorie and is equivalent to aluminum sebacate di soap, and has the chemical structure 3 and / or 4. It is considered to have a structure. In any case, it has two or more hydroxyl groups bonded to aluminum atoms.
  • the present aluminum sarcophagus (aluminum sebacate (III)) is a mixture of compounds having the structures of chemical structures 2, 3 and 4 in which the amount of calories added with aluminum nitrate is intermediate between 1) and 2). it is conceivable that.
  • DIACID reaction product of tall oil fatty acid and acrylic acid, DIACID-1550, manufactured by Harima Chemicals
  • DIACID reaction product of tall oil fatty acid and acrylic acid
  • DIACID tetrahydroxyaluminum sarcophagus having two dihydroxyaluminum structures corresponding to the chemical structure 2 is obtained in the same manner as in 3.1) above.
  • This substance corresponds to a monosoap of dibasic acids.
  • Starlight PMC alkenyl succinic anhydride (GS_L, C12ASA) was added to the same amount of potassium hydroxide. When the solution is added to the aqueous solution in three equal parts, it hydrolyzes while generating heat. Finally, a 20% alkenyl succinic acid potassium salt solution was prepared. Dilute the C12 alkenyl succinate solution to 5% and adjust to 65 ° C.
  • C12 alkenyl succinate is used in the same manner as described in 3.3) except that 1 mol of potassium nitrate is added to a C12 alkenyl succinate solution. Synthesize succinate aluminum stalagmite.
  • This aluminum sarcophagus is an addition of 1.5 mole equivalent of aluminum nitrate per mole of dibasic acid, and it is thought that the compounds corresponding to the chemical structures 2, 3, and 4 are mixed.
  • the reagent, adipic acid was added to an equal volume of aqueous potassium hydroxide solution to prepare a 5% aqueous adipate solution.
  • aqueous potassium hydroxide solution To this potassium adipate solution, further add potassium hydroxide sufficient to neutralize the nitric acid produced by the reaction, and heat to 50 ° C.
  • Glycine dihydroxyaluminum was obtained from Kyowa Chemical (Glycinal).
  • Dihydroxytitanium ratate was obtained from Matsumoto Pharmaceutical Co., Ltd. (Orgatechs TC-31
  • Dihydroxyaluminum lactate was obtained from Taki Chemical (M_160P).
  • carboxyl soot-containing latex composition The carboxyl group-containing gen-based synthetic rubber latex has various forces S, and in this example, a carboxyl-modified NBR, which is a representative example, was used. Of course, the present invention is not limited to carboxyl-modified NBR.
  • N K-223 manufactured by Nippon A & L Co., Ltd. was used as the carboxyl-modified NBR. NK-223 manufactured by Nippon A & L Co., Ltd. was used. Various physical properties of N K-223 are described below.
  • the amount of potassium hydroxide is adjusted so that it is 1.0 part and 1.5 parts excess with respect to the equivalent of neutralizing the salt and magnesium.
  • the concentration of the colloidal magnesium hydroxide produced is adjusted by adding the suspension to the latex and adding water to the potassium hydroxide solution so that the latex concentration of the latex composition becomes a predetermined concentration.
  • the pH of the latex composition is about 9.3.
  • the pH of the latex composition is about 9.7.
  • Colloidal magnesium hydroxide is also prepared in the same manner when potassium hydroxide solution is added to hydrated magnesium hexahydrate solution.
  • a magnesium hydroxide suspension can be prepared in the same manner as the preparation of calcium hydroxide below and used instead of colloidal magnesium hydroxide.
  • zinc oxide may be added first, and an organometallic cross-linking agent may be added after aging for 1 day.
  • the specified organometallic crosslinker to the latex and age for 1 day. Thereafter, the colloidal magnesium hydroxide prepared as described above is continuously stirred for 10 minutes, and then allowed to stand for 30 minutes, and then added to the latex to which the organometallic crosslinking agent has been added so as to have a predetermined addition amount. . Note that the order of addition of the organometallic crosslinking agent and colloidal magnesium hydroxide can be reversed.
  • a predetermined amount of water-soluble polymer is added to the latex composition prepared in 1), 2) or 3) above. If the water-soluble polymer dissolves slowly in water, add a surfactant to dissolve it. It was. In this experiment, Kao-made Emargen 1108 was used, but the present invention is not limited to such a surfactant.
  • a 15% strength aqueous solution of calcium nitrate was prepared as a coagulation solution, dipped in a mold for gloves that had been pre-dried at 80 ° C for 2 seconds, pulled up, then leveled and dried under rotation (80 ° CX 2 Minutes). Subsequently, the handbag mold was immersed in the dip molding compositions of the following comparative examples and examples for 2 seconds, pulled up, and then dried horizontally (80 ° C. ⁇ 2 minutes) under rotation. Next, the mold for glove was immersed in warm water at 40 ° C. for 3 minutes, washed, and then heated at 120 ° C. for 20 minutes to obtain a solid coating on the surface of the glove mold. Finally, the solid coating was removed from the glove mold to obtain a glove-shaped dip-molded product.
  • the tensile strength and elongation of each dip-formed product were measured by a conventional method.
  • Glove fingers were cut with scissors and continuously worn on the fingers, and tested for suitability for durability, creep resistance, water resistance, and the like. Durability is expressed in days, worn continuously on the finger. The test was stopped if the creep resistance was insufficient and the rubber film expanded and expanded. Water resistance was judged by the degree of whitening of rubber film when worn. X was markedly whitened. ⁇ , depending on the degree of whitening
  • NK-223 100 parts by weight (in terms of solid content), 0.44 parts of ammonia (3% aqueous ammonia solution) and 1.2 parts of Bayer active zinc white were added. Thereafter, deionized water was added to adjust the latex concentration to 33% to obtain a comparative dip-forming composition.
  • Table 1 shows the test results for each compact.
  • Comparative Example 1 is a crosslinking of zinc oxide alone and is a typical cluster ion crosslinking system. Looking at the results, the surface measurement properties such as tensile strength and elongation are not much different from the results of the examples, but because the creep resistance is low, the rubber stretches in the wearing test, durable in 2 days. Sex test was discontinued. A particularly conspicuous feature is that the rubber film becomes whitish due to the sweat of the hand after being worn for several hours, indicating that the water resistance is low. The result of the peel test shows that the rubber film is completely If you try to peel it off, the film will break.
  • Examples 1 to 7 are organic aluminum metal cross-linking agents having a dihydroxyaluminum structure having the chemical structure 1, and the tensile strength and elongation of the molded product are not significantly different from those of Comparative Example 1. As with Xio vulcanization, the characteristics of the divalent crosslinker are good.
  • Example 1 the rubber films adhered to each other and had difficulty in peeling in Example 1. However, with any cross-linking agent, peeling was possible at an addition rate of 0.5 part or more, and as the addition rate increased. Peeling off.
  • Example 8 is an organoaluminum metal cross-linking agent to which 1.0 part of aluminum sebacate sarcophagus (I) having two dihydroxyaluminum structures corresponding to the chemical structure 2 corresponding to the mono-soap of sebacic acid was added. Although it is a single additive system, it also exhibits strength, and has very good wearability such as durability, creep resistance, and water resistance, and excellent peelability. Organic Aluminum Metal Crosslinker Power Clear evidence for cross-linking carboxyl groups.
  • Examples 9 to 19 are examples of dicarboxylic acid-based aluminum stalagmite crosslinkers. Durability, creep resistance, water resistance, and peelability are good in strength. The tensile strength is high and the tensile strength is high.
  • Water resistance tends to be better when the carbon chain is longer. It is considered that the hydrophobicity of the cross-linking agent after cross-linking is affected. The peelability is also good accordingly.
  • Example 11 the steps of washing and drying were performed after synthesizing tetrahydroxyaluminum selenite (I) having two dihydroxyaluminum structures corresponding to the chemical structure 2 corresponding to the mono-soap of sebacic acid.
  • This is an example in which the suspension of aluminum sarcophagus is directly added to the latex.
  • ammonia addition There was no noticeable effect on the properties of the molded film, etc., just by adding 0.2 parts. If the supernatant of the suspension is removed after synthesis, the amount of ammonia added will be further reduced.
  • organoaluminum-based crosslinking agent can be synthesized at the production site of the latex molded body and added to the latex to produce a crosslinked molded body.
  • Example 20 is an example of a dihydroxy organoaluminum metal cross-linking agent (glycine dihydroxyaluminum) having an amino group in the side chain.
  • Example 21 is an example of dihydroxytitanium ratate (manufactured by Matsumoto Pharmaceutical Co., Ltd., ORGATICS TC-310). This compound also has two hydroxyl groups bonded to titanium and, like the dihydroxy organoaluminum metal compound, is an effective cross-linking agent for carboxylate-modified latex.
  • Example 22 is an example of dihydroxybis (hydroxyisoptylate) titanium. This compound also has two hydroxyl groups bonded to titanium.
  • C12 alkenyl succinate aluminum limestone 0.3 parts (Example 23), dihydroxyaluminum rosinate 0.3 parts (Example 24), C12 alkenyl succinate aluminum limestone 1.0 parts (Example 25), 1 ⁇ 0 parts of dihydroxyaluminum rosinate (Example 26) or 0 ⁇ 3 parts of dihydroxytitanium latate (Example 27) were added to 100 parts by weight of ⁇ -223, and the following day, A dip-molding composition was added by adding Koylidanol magnesium hydroxide (0.4 in the working columns 23, 24 and 27, 0.2 part in the working columns 25 and 26 (in terms of MgO)). The latex concentration was adjusted to 30%.
  • Table 2 shows the test results of the dip-molded products of Examples 23 to 27.
  • Examples 23 and 24 show that the addition of a small amount of organoaluminum metal cross-linking agent to colloidal magnesium hydroxide improves the creep resistance and water resistance of the colloidal magnesium hydroxide system.
  • Examples 25 and 26 show that, when the organoaluminum metal crosslinking agent alone is added, the tensile strength is low, but sufficient strength can be obtained by adding colloidal magnesium hydroxide.
  • dihydroxytitanium ratate of Example 27 is the same as that of the organoaluminum metal crosslinking agent.
  • Tetrahydroxyaluminum sebacate having two dihydroxyaluminum structures ⁇ (1) 0.75 parts and 0.5 parts ammonia are added to 100 parts by weight ⁇ -223, and the next day, 1.2 parts zinc oxide is added. Next, 0.15 parts of hydrophobized chilled hydroxyethyl cellulose (manufactured by Akzo Nobel, Benolemonol _200, Emanoregen 1108, 0.5% melting angle at night) was added to prepare a dip molding composition. The latex concentration was adjusted to 30%. A dip-molding composition was prepared in the same manner as in Example 28, except that 0.15 part of water-soluble polybulucetal (ESREC KW_3, manufactured by Sekisui Chemical Co., Ltd.) was added as the water-soluble polymer.
  • ESREC KW_3 water-soluble polybulucetal
  • a dip molding composition was prepared in the same manner as in Example 28 except that 0.15 part of tamarind gum (Dariroid 3S, manufactured by Dainippon Pharmaceutical Co., Ltd.) was added as the water-soluble polymer.
  • a dip-molding composition was prepared in the same manner as in Example 28, except that 0.15 part of PVA (Denkapoval B-20) was added as a water-soluble polymer.
  • a composition for date molding was prepared in the same manner as in Example 28 except that 0.1 part of ethylene oxide-propylene oxide random polymer (Alcox EP-10, Meisei Chemical) was added as a water-soluble polymer.
  • a dip-molding composition was prepared in the same manner as in Example 33, except that 0.15 part of water-soluble polybulucetal (ESREC KW-3, manufactured by Sekisui Chemical Co., Ltd.) was added as the water-soluble polymer.
  • ESREC KW-3 water-soluble polybulucetal
  • a dip-molding composition was prepared in the same manner as in Example 33 except that 0.15 part of tamarind gum (Dariroid 3S, manufactured by Dainippon Pharmaceutical Co., Ltd.) was added as a water-soluble polymer.
  • tamarind gum Dariroid 3S, manufactured by Dainippon Pharmaceutical Co., Ltd.
  • a dip molding composition was prepared in the same manner as in Example 33, except that 0.15 part of PVA (Denkapoval B-20) was added as a water-soluble polymer.
  • Table 3 shows the test results of the dip-formed products of Examples 28 to 36.
  • Example 37 shows that the aluminum nitrate (in terms of Al 2 O) is 0.5. It was dissolved in a calcium nitrate coagulation solution so as to be a 0 solution, and a molded product was prepared with the coagulation solution (treatment on the mold side cationic carboxyl group blocking agent).
  • Example 39 is a polyamidoamine epichlorohydrin condensation reaction product (WS402 0, manufactured by Hoshiko PMC) 0.5% in the coagulation liquid, and polyaluminum hydroxide chloride (Alfine 83, Daimei Chemical Co., Ltd.) on the outer surface side treatment. Using a 1% (Al 2 O equivalent) solution, a surface-treated molded film was produced.
  • Example 40 0.5% of water-soluble chitosan (manufactured by Dainichi Seiki Kogyo Co., Ltd.) was dissolved in calcium nitrate coagulation liquid, and surface treatment was performed using water-soluble chitosan 1% liquid for the outer surface side treatment. A membrane was prepared. A surface-treated molded film was prepared in the same manner as in Example 37 except that the sex group and acid were dissolved in the coagulation liquid.
  • water-soluble chitosan manufactured by Dainichi Seiki Kogyo Co., Ltd.
  • Example 41 aluminum nitrate was dissolved in a calcium nitrate coagulation solution so as to be a 0.5% ( ⁇ 1 liter equivalent) solution, and a molded product was produced using the coagulation solution. After leaching the molded film, after drying at 80 ° C for 1 minute, immerse the molded film in 1% liquid of Polymeralon 360 (Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base), 90 ° The mixture was dried at C for 2 minutes, followed by another 1 minute, followed by heat drying as usual.
  • Polymeralon 360 Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base
  • Example 42 a surface-treated molded film was produced in the same manner as in Example 41 except that 0.5% (in terms of ZrO) of zirconium nitrate was dissolved in the coagulation liquid.
  • Example 43 a cationic polyamidoamine chlorohydrin condensation reaction product (WS4020, manufactured by Seiko PMC) 0.5% in the coagulation liquid, and polyaluminum hydroxide chloride 1% (A1 O in the outer surface treatment) Using the liquid, a surface-treated molded film was prepared.
  • WS4020 cationic polyamidoamine chlorohydrin condensation reaction product 0.5% in the coagulation liquid
  • polyaluminum hydroxide chloride 1% A1 O in the outer surface treatment
  • the cationic carboxyl group blocking agent treatment was performed in the film-forming process.
  • the product can be processed by immersing it in the cationic carboxyleno group blocking agent solution. .
  • CI 2 alkenyl succinic acid aluminum salt 1 to 0 parts was added to 100 parts by weight of 223-223, and 0.2 parts of colloidal magnesium hydroxide (MgO equivalent) was added the next day to obtain a dip-molding composition.
  • the latex concentration was adjusted to 30%.
  • Example 44 aluminum nitrate was dissolved in a calcium nitrate coagulation solution so as to be a 0.5% (A1 O equivalent) solution, and a molded article was produced using the coagulation solution. After leaching of the molded film, after drying at 80 ° C for 1 minute, polymeralon 360 (Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base) is immersed in a 1% solution, and 90 ° C And then dried for 1 minute, followed by heating for 1 minute.
  • polymeralon 360 Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base
  • Example 45 a surface-treated molded film was produced in the same manner as in Example 44 except that 0.5% (in terms of ZrO) of zirconium nitrate was dissolved in the coagulation liquid.
  • Example 46 a cationic polyamidoamine chlorohydrin condensation reaction product (WS4020, manufactured by Seiko PMC) 0.5% in the coagulation liquid, and polyaluminum hydroxide chloride 1% (A1 O in the outer surface side treatment) Using the liquid, a surface-treated molded film was prepared.
  • WS4020 cationic polyamidoamine chlorohydrin condensation reaction product 0.5% in the coagulation liquid
  • polyaluminum hydroxide chloride 1% A1 O in the outer surface side treatment
  • Example 47 0.5% of water-soluble chitosan (manufactured by Dainichi Seiki Kogyo Co., Ltd.) was dissolved in calcium nitrate coagulating liquid, and surface treatment was performed using 1% liquid water-soluble chitosan for the outer surface treatment. A membrane was prepared.
  • Example 48 aluminum nitrate was dissolved in a calcium nitrate coagulation solution so as to be a 0.5% (A1 O equivalent) solution, and a molded product was produced using the coagulation solution. After leaching the molded film, after drying at 80 ° C for 1 minute, immerse the molded film in 1% liquid of Polymeralon 360 (Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base), 90 ° Dry for 2 minutes at C and reach for another 1 minute Thereafter, it was dried by heating as usual.
  • Polymeralon 360 Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base
  • Example 49 a surface-treated molded film was produced in the same manner as in Example 48, except that 0.5% (in terms of ZrO) of zirconium nitrate was dissolved in the coagulation liquid.
  • Example 50 a cationic polyamidoamine epichlorohydrin condensation reaction product (WS4020, manufactured by Seiko PMC) 0.5% in the coagulation liquid, and an alumina sol (alumina sol 100, manufactured by Nissan Chemical Co., Ltd.) 1 for the outer surface side treatment 1 Using a% (Al 2 O equivalent) solution, a surface-treated molded film was produced.
  • WS4020 cationic polyamidoamine epichlorohydrin condensation reaction product 0.5% in the coagulation liquid
  • an alumina sol alumina sol 100, manufactured by Nissan Chemical Co., Ltd.
  • NK-223 100 parts by weight of dihydroxytitanium lactate having the structure of general formula (3) (Matsumoto Pharmaceutical Co., Ltd., ORGATICS TC_310) 0.8 parts and ammonia 0.6 parts mixture added
  • 0.2 part of colloidal magnesium hydroxide in terms of MgO was added to obtain a dip molding composition. The latex concentration was adjusted to 30%.
  • Example 51 polyaluminum hydroxide chloride (Alphain 83, manufactured by Daimei Chemical Co., Ltd.) was dissolved in a calcium nitrate coagulation solution so as to be a 0.5% (A1 O equivalent) solution, and the molded product was obtained from the coagulation solution. Produced. After leaching of the molded film, after drying at 80 ° C for 1 minute, polymeron 360 (made by Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base) is immersed in a 1% solution, and 90 ° C And dried for 2 minutes, followed by leaching for 1 minute, and then heat drying as usual.
  • polymeron 360 made by Arakawa Chemical Co., Ltd., styrene surface sizing agent with quaternary ammonium base
  • Example 52 a surface-treated molded film was produced in the same manner as in Example 51 except that 0.5% (in terms of ZrO) of zirconium nitrate was dissolved in the coagulation liquid.
  • Example 53 a cationic polyamidoamine chlorohydrin condensation reaction product (WS4020, manufactured by Seiko PMC) 0.5% in the coagulation liquid, and polyaluminum hydroxide chloride 1% (A1 O in the outer surface side treatment) Using the liquid, a surface-treated molded film was prepared.
  • WS4020 cationic polyamidoamine chlorohydrin condensation reaction product 0.5% in the coagulation liquid
  • polyaluminum hydroxide chloride 1% A1 O in the outer surface side treatment
  • Example 54 0.5% of water-soluble chitosan (manufactured by Dainichi Seigyo Kogyo Co., Ltd.) was dissolved in calcium nitrate coagulating liquid, and surface-treated using 1% liquid of water-soluble chitosan for the outer surface treatment. A membrane was prepared.
  • Table 5 shows the test results of the dip-formed products of Examples 44 to 54. [0079] ⁇
  • Examples 37 to 54 are experiments of surface treatment of a dip-molded product with a carboxylate group blocking agent.
  • the carboxynole groups are blocked with a carboxynole group blocking agent, the crosslinking of the latex proceeds too much, resulting in a rubbery state. It will lose its nature. Therefore, it is considered that adhesion between membranes can be prevented by blocking the carboxyl group only on the surface of the molded body. Therefore, surface treatment of products is effective.
  • NK-220 manufactured by Nippon A & L was used as the carboxy-modified NBR.
  • the amount of bound methacrylic acid in this latex is 4.5%, less than 6% of NK-223.
  • the basic composition of latex 1.5 parts of Bayer active zinc white and 0.4 parts of ammonia were blended with 100 parts by weight of NK-220, and then an organometallic crosslinking agent and a hydrophobic substance were added.
  • an organometallic cross-linking agent tetrahydroxyaluminum adipate synthesized with water-soluble dihydroxyaluminum lactate (Taki Chemical, M_160P) was used. The amount of organometallic crosslinking agent added was 1.1 parts per latex in both cases.
  • the amount of the hydrophobic substance added was 0.75 part. Details of each hydrophobic substance are shown in Table 6.
  • the latex concentration of the prepared solution was 30%.
  • the production of dip-molded products is almost the same as that for gloves, but the mold was used by sandblasting a test tube with a diameter of 16 mm.
  • the concentration of the coagulation liquid is a force S with calcium nitrate tetrahydrate 450 g / 1000 g because the glass-type coagulation liquid holding power is small.
  • Examples 55 to 56 are a water-soluble organometallic cross-linking agent (dihydroxyaluminum lactate) or a hydrophobic group-containing organometallic cross-linking agent (tetrahydroxyaluminum adipate). One part was added to prepare a preparation solution having a latex concentration of 30%.
  • Examples 57-68 are water-soluble organometallic crosslinkers (dihydroxyaluminum lactate) or those containing no hydrophobic groups, organometallic crosslinkers (tetrahydroxyaluminum adipate) 1.1 parts and various hydrophobic compounds. 75 parts was added to 100 parts by weight of NK-220 to prepare a preparation solution having a latex concentration of 30%.
  • Table 6 shows the results of molded products prepared from such dip molding compositions.
  • hydrophobic compound is as follows.
  • Example 57 Aluminum octylate di-soap (Hope Pharmaceutical: Otatop Aluminum A)
  • Example 58 Disproportionated rosin (Harima Kasei: Bandeis T-25K)
  • Example 59 ⁇ _21 di'carboxylic acid (Harima Kasei: DIACID 1550)
  • Example 60 Potassium C-12 alkyl succinate (Starlight PMC: GS 1945)
  • Example 61 Mixture of paraffin wax and low molecular weight polyethylene (Nippon Seiki: XEM5036) (melting point, 114 ° C, particle size 4 ⁇ )
  • Example 62 Styrene-based polymer (Sidenology: Cybinol PG-1) (particle size 0.6 to 0.7 im)
  • Example 63 alkyl methacrylate polymer (Syden Chemical: Cybinol PG-2) (particle size 3-5 ⁇ mj
  • Example 64 Low molecular weight polyethylene (Mitsui Chemicals: Chemipearl W4005) (Particle size 0.6 / im)
  • Example 65 Ethylene thermoplastic elastomer (Mitsui Chemicals: Chemipearl A100) (Particle size 4 ⁇ m)
  • Example 66 Ethylene vinyl acetate copolymer resin (Mitsui Chemicals: Chemipearl V300) (particle size 6 ⁇ m)
  • Example 67 Low density polyethylene (Mitsui Chemicals: Chemipearl M200) (Particle size 6 ⁇ m)
  • Example 68 Petroleum resin emulsion (Toho Chemical: TFE-22)
  • potassium hydroxide 1.5 parts of large latex was added instead of activated zinc white.
  • 0.35 parts of calcium hydroxide MgO conversion, CaO conversion, 0.49 parts
  • water-soluble organometallic crosslinker dihydroxyaluminum lactate
  • hydrophobic substance 75 parts was added to 100 parts by weight of NK-220 to prepare a preparation solution having a latex concentration of 30%.
  • Table 7 shows the results of molded products prepared from such dip molding compositions.
  • Example 69 C-12 potassium alkenyl succinate (Starlight PMC: GS 1945)
  • Example 70 Petroleum resin emulsion (Toho Chemical: TFE-22)
  • Example 71 Low molecular weight polyethylene (Mitsui Chemicals: Chemipearl W4005) (particle size 0. ⁇ ⁇ ⁇ ) [0087] ⁇
  • Examples 55 and 56 are the quality of a molded article of a latex composition to which only a water-soluble organometallic crosslinking agent and a low molecular weight organometallic crosslinking agent were added. Tensile strength, water resistance, durability and creep resistance are good, but non-tackiness is not enough.
  • Examples 57 to 66 are systems in which various hydrophobic group-containing compounds are added to water-soluble dihydroxyaluminum lactate. Good tensile strength, water resistance, durability, and creep resistance, and the product is non-tacky.
  • Examples 67 and 68 are cases in which low molecular weight and poor hydrophobicity are used, and tetrahydroxyaluminum adipate is used as a cross-linking agent. In the system to which the group-containing compound is added, the product is non-tacky.
  • the product can be made non-tacky by adding the hydrophobic group-containing compound.
  • Examples 69 to 71 are systems in which calcium hydroxide dispersed by adding potassium hydroxide is added instead of activated zinc white, but a water-soluble organometallic crosslinking agent and a hydrophobic group-containing compound are added. In these systems, the product is non-tacky.
  • the present invention provides a novel compound having two or more hydroxyl groups bonded to aluminum atoms.
  • an organometallic compound having two or more hydroxyl groups bonded to titanium atoms to the carboxyl group-containing latex, a molding composition having high mechanical stability and few aggregates can be obtained.
  • the molding composition of the present invention it is possible to obtain a dip-molded product having excellent durability, creep resistance, water resistance, and peelability, and in the medical, food processing field and electronic component manufacturing. Rubber gloves that are widely used in various fields such as fields can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

明 細 書
架橋剤を含むラテックス組成物およびその架橋成形体
技術分野
[0001] 本発明は、新規なカルボキシノレ基架橋剤および該架橋剤を含有するラテックス組 成物ならびに該ラテックス組成物の架橋成形体又は該ラテックス組成物を含有する 製品の架橋成形体に関する。具体的には、アルミニウム原子またはチタン原子など の金属原子に結合した 2個以上の水酸基を有する有機金属化合物を架橋剤として 使用したカルボキシル基含有ジェン系ゴムラテックス組成物およびその架橋成形体 であり、クリープ耐性、耐水性、耐溶剤性、耐久性に優れた低アレルギー性ディップ 製品、紙製品等に関するものである。
背景技術
[0002] ゴム手袋、指サック等の浸漬製品等は、安全衛生に対する関心の高まりから医療( 院内感染、 SARS感染予防など)、食品加工分野 (〇-157問題)および電子部品製 造分野など各方面において広く使用されている。これらゴム手袋、指サック等の製造 方法の 1つとしてディップ成形法が挙げられる。ディップ成形法としては、木材、ガラ ス、陶磁、金属又はプラスチックなどから作られた型を予め凝固剤液に浸漬した後、 天然ゴムラテックス組成物や合成ゴムラテックス組成物に浸漬するアノード凝着浸漬 法や、型をラテックス組成物に浸漬した後、凝固液に浸漬するティーグ凝着浸漬法な どが知られており、これらのディップ成形法により得られる成形物がディップ成形品で ある。
ディップ成形用ラテックスの代表的なものとして、天然ゴムラテックスがある。天然ゴ ムラテックス製品は、良好な物理的、化学的性質を有するが、製品に含有される天然 タンパク質の溶出に伴レ、、使用者にアレルギー反応を起こす事例があり、タンパク質 を含まない合成ゴムラテックスを使用する製品の生産が増加する傾向にある。
合成ゴムラテックスの代表例は、アクリロニトリル 'ブタジエンゴム(NBRゴム)などの 合成ゴムラテックスであるが、燃焼排ガス中にアクリロニトリルに由来するシアン化水 素等の有害物質が発生する可能性も指摘され、スチレン.ブタジエンゴム(SBR)、 ( 特開 2001— 192918号:特許文献 1)、カルボキシノレ基含有アイオノマー系エラスト マー等の新たなラテックス原料も注目されてレ、る。
ディップ成形品には、高度な物性が要求される。高度な物性を発現する為には、ポ リマー間に架橋構造を導入する必要がある。
天然ゴムの場合には、ィォゥと、酸化亜鉛などの加硫促進剤を添加し、天然ゴム分 子の二重結合間にィォゥの共有結合を形成する。いわゆるィォゥ加硫では、天然ゴ ムの場合には天然ゴム粒子内でも架橋構造が形成されると考えられており、優れた 製品物性が発現される。
ジェン系カルボキシルイ匕合成ゴムラテックスの場合にも、天然ゴムの場合と同様の ィォゥ加硫法が一般的に採用されている。しかし、添加される各薬品の役割は、天然 ゴムラテックスの加硫の場合とはかなり異なる。すなわち、酸化亜鉛は、水と接触する と、水酸基が表面に生成し、この水酸基がラテックス粒子のカルボキシノレ基と反応し 、 (P. H. Starmer、 Plastics and Rubber Processing and Applications、 9(1988)209-21 4 :非特許文献 1)、ペンダント半塩を形成し、さらに加熱乾燥過程を経過するとクラス ターイオン架橋を形成すると考えられている。この亜鉛架橋により、引張り強度、伸び 、硬さ等の表面的な測定物性は決定されており、この点はィォゥ架橋が製品物性を 決定している天然ゴムラテックスの場合との大きな相違点である。
ここで、クラスターイオン架橋とは、カルボキシル基がクラスターを形成し、亜鉛の 2 価のカチオンを、クラスターを形成しているカルボキシル基全体で中和している状態 を言う。この構造の特徴から、ゴムが伸ばされると、架橋がずれることになり、ストレス を掛けると、短時間の間に応力緩和(クリープ)が起こり、長時間使用すると、永久歪 が大きくなつて、ゴムが伸びてしまう(N. D. Zakharov、 Rubber Chem. and Tech, R ubber Division Acs. Akron, US. Vol36, no3 568—574 :非特許文献 2)。
一方、ィォゥは、ブタジエンに由来する二重結合間を共有結合で架橋するが、引張 り強度、伸び、硬さ等の測定物性に対する影響は小さい。しかし、ゴム製品の耐久性 、クリープ耐性、耐水性、耐溶媒性等、ゴム製品の重要な性質を支配しており、これ がカルボキシルイ匕合成ゴムラテックスにおいてもィォゥ加硫法が多く採用されている 理由である。 [0004] 以上のように、ィォゥ加硫はジェン系カルボキシル化合成ゴムラテックスにおいても 重要な役割を果たしているが、一方においては金属と接触するとィォゥが金属を酸 化するため、電子部品製造分野においては、使用が控えられる傾向にある。
また、近年では、手袋などのディップ成形品に含まれる加硫促進剤に対する遅延 型アレルギーに基づく接触皮膚炎の発症も増加傾向にあり、加硫促進剤を使用しな いディップ成形品の開発が求められている。
さらには、食品分野においては、ゴム手袋から溶出する重金属である亜鉛溶出量 の規制が強化される傾向にある。
ところで、ィォゥ、加硫促進剤を使用しない架橋法としては、本発明者等のアルミン 酸塩等を使用する方法があるが(特許 3635060:特許文献 2)、アルミニウムは 3価の カチオンとして働くため、ゴム製品が硬くなる欠点がある。
また、特開 2003— 165814 (特許文献 3)には、含ィォゥ加硫剤、加硫促進剤、酸化 亜鉛をいずれも実質的に含まないディップ成形用組成物が提案されているが、本発 明者等の検討によると、この組成物を使用したディップ製品は、クリープ耐性、耐水 性、耐溶剤性が低ぐ粘着性が強いという問題点がある。
[0005] なお、特表 2006— 517224 (特許文献 4)は、ヒドロゲルパッチ組成物を開示してい る。該ヒドロゲル組成物は、水溶性高分子ゲルと架橋剤を含んでなり、該架橋剤に酢 酸ジヒドロキシアルミニウムを含ませている。し力 し、酢酸ジヒドロキシアルミニウムは、 水溶性高分子ゲルのカチオン性架橋剤であると解される。しかし、ゲル化した組成物 のカチオン性架橋剤または組成物をゲル化するカチオン性架橋剤は、配合液が長 期間安定に存在することが最も重要なカルボキシル基含有ジェン系ゴムラテックスの 架橋剤にはなりえない。また係る架橋剤が水溶性高分子ゲルにレ、かなる作用機作を 有するかについても記載がない。
また、特開 2005-97217 (特許文献 5)は、アクリル酸またはその誘導体を重合して なるァニオン性水溶性高分子化合物の多価カチオン性化合物によるイオン架橋体を 成分とする美白ゲルシートを開示している力 多価カチオン性化合物としてジヒドロキ シアルミニウムァミノアセテートが記載されてレ、る力 S、この架橋剤もァニオン性水溶性 高分子化合物のゲル化剤であり、 24時間静置してゲル化している。したがって、特 許文献 4と同様、本発明に力かるカルボキシノレ基含有ジェン系ゴムラテックスの架橋 剤を開示するものではない。
さらに、特開 2005-15514 (特許文献 6)は、エチレン—不飽和カルボン酸共重合 体を具体例とするアイオノマー樹脂とカルボキシル基との反応性を有する水溶性チタ ン化合物を必須成分として含有する水分散型防鲭塗料用組成物を開示しており、そ の水溶性チタン化合物として、ジヒドロキシチタンラタテートが記載されている。しかし 、係るアイオノマー樹脂は、 2価または 3価の金属イオンで中和できる特殊な樹脂で あり、本発明に力かるカルボキシノレ基含有ジェン系ゴムラテックスの架橋剤を開示す るものではない。
特許文献 1 :特開 2001— 192918号
特許文献 2:特許 3635060
特許文献 3 :特開 2003— 165814
特許文献 4 :特表 2006— 517224
特許文献 5:特開 2005-97217
特許文献 6 :特開 2005-15514
非特午文献 1: P. H. Starmer、 Plastics and Rubber Processing and Applications vol. 9 (1988)、 p209-214
特許文献 2 : N. D. Zakharov、 Ruober Chem. and Tech. Rubber Division Acs, Ak ron, US, Vol36, no3 p568— 574
発明の開示
[0006] 本発明の目的は、酸化亜鉛を代替しうる無機金属架橋剤を発見することである。ま た更なる目的は、ィォゥ、含ィォゥ加硫剤を代替し得る架橋剤を発見することである。 これら架橋剤を使用することにより、耐久性、クリープ耐性、耐水性、耐溶剤性等、従 来のィォゥ加硫製品に匹敵する物性をもち、しかも、ィォゥ、含ィォゥ加硫物、加硫促 進剤を含まない低アレルギー性架橋成形体、特に、ディップ製品を提供することにあ る。さらに、酸化亜鉛を含まないラテックス組成物を提供する。係るラテックス組成物 を利用することにより、紙加工分野にも新たな製品を提供する。
[0007] 本発明者は、酸化亜鉛の架橋形成挙動に注目した。即ち、上述したように、酸化亜 鉛は、水と接触すると、表面に水酸基が部分的に生成し、この水酸基がカルボキシ ル化ラテックスのカルボキシノレ基を架橋する(非特許文献 1)。
[0008] このような酸化亜鉛の反応機構は、金属原子に結合した水酸基がカルボキシル基 と反応する可能性を示唆してレ、る。
そこで、本発明者は、金属原子に結合した水酸基を二個有する有機金属化合物に 着目した。もし、酸化亜鉛と同様に、金属原子に結合した水酸基がカルボキシノレ基と 反応するとすれば、係る有機金属化合物はカルボキシル基を架橋するはずである。 本発明者は、係る推論を実証すベぐ酸化亜鉛を添加したカルボキシル基を含有 するラテックスに、アルミニウム原子に 2個の水酸基が結合したジヒドロキシ有機アルミ ニゥム金属化合物またはジヒドロキシ有機チタン化合物を添加し、ディップ成形品を 作製したところ、係るジヒドロキシ有機金属化合物がカルボキシル基を架橋することを 見出した。しかも驚いたことに、製品は、ィォゥ加硫製品に匹敵する耐久性、クリープ 耐性、耐水性に優れたディップ成形品であった。しかも、製品の剥離性も大幅に改善 されていた。
ここに、酸化亜鉛によるクラスターイオン架橋の本質的な欠点であるクリープ耐性、 耐水性の不足は、ジヒドロキシ有機金属化合物の使用により、解決することができた。 ジヒドロキシ有機金属化合物の水酸基は、カルボキシノレ基と金属エステル結合を形 成すると考えられる。
これに伴い、含ィォゥ加硫物、加硫促進剤を含まない低アレルギー性ディップ製品 が得られ、本発明が完成した。
また、ィォゥ加硫の場合と同様、ジヒドロキシ有機金属化合物は 2価の架橋であるか ら、柔軟で風合いの良い製品が得られる。
さらに、上記ジヒドロキシ有機アルミニウム金属化合物単独添加でも、実用可能な物 理的性能を有する製品を製造することができる。
[0009] また、 1個の金属原子に 2個の水酸基が結合したジヒドロキシ有機アルミニウム金属 化合物ばかりではなぐ 1個のアルミニウム金属原子に 1個の水酸基を有する構造が 分子内に複数ある有機アルミニウム金属化合物、 1個の金属原子に 2個の水酸基が 結合した構造と 1個のアルミニウム金属原子に 1個の水酸基が結合した構造を複数 有する有機アルミニウム化合物も同様の架橋能力を持つ。
さらに、チタン原子に結合した 2個の水酸基を有する化合物も、 2価の架橋剤であり 、カルボキシル基含有ジェン系ゴムラテックスを効果的に架橋することが判明した。
[0010] カルボキシル基含有ジェン系ゴムラテックス架橋成形体、特にディップ成形体にと つては、製品の非粘着性が重要な要求品質であり、通常は、製品の粉打ち、または 塩素化によって対処してレ、る。
本発明に係る有機金属架橋剤を使用すると、水素結合を引き起こすカルボキシノレ 基に結合するので、製品の粘着性が大幅に低下するが、その効果は、疎水性の高い 構造を有する架橋剤の方が効果が高い。そこで、本発明者は、疎水性の高い有機金 属架橋剤の合成を行った。係る架橋剤を使用すると、ディップ架橋成形体の粘着性 は大幅に改善された。
[0011] 次に、本発明者は、本発明に係る有機金属化合物と、疎水性構造を有する化合物 をカルボキシノレ化ジェン系ゴムラテックスに添加することにより、製品の疎水性を高め ることを試みた。
まず、カルボン酸のアルミニウム 'ジ'ソープを添加した。カルボン酸のジ 'ソープは、 水酸基を 1個しか有していないので、架橋剤としては機能しなレ、が、カルボキシノレ基 には結合し、さらに疎水性構造を 2個有するので、疎水性が高くなる。したがって、係 るラテックス組成物の架橋成形体の非粘着性は、大幅に向上した。
[0012] また、疎水性基を含有するカルボン酸塩をラテックスに添加すると、本有機金属架 橋剤が該カルボン酸を定着し、架橋成形体の疎水性を高め、非粘着性化に貢献す る。製品がディップ成形品の場合には、凝固剤のカルシウム塩によっても製品に固定 される。
疎水性基を有するカルボン酸は、通常、水溶性カルボン酸塩としてラテックスに添 加されるが、ロジンェマルジヨンサイズ剤の様に、ェマルジヨン化して添加することもで きる。
[0013] さらに、本発明者は、ェマルジヨン化、デイスパージヨン化した疎水性物質をラテック スに添加することを考えた。係る疎水性物質のェマルジヨン、またはデイスパージヨン としては、石油樹脂、ロジンエステル、表面サイズ剤(ロジンエステル系、スチレンマレ イン酸樹脂系、スチレンアクリル共重合体系、スチレンアクリルェマルジヨン系、アタリ ル共重合体系、ォレフイン.マレイン酸樹脂系、ウレタン系、 AKD系等)、ワックス、低 分子量ポリエチレン、低密度ポリエチレン、低分子量ポリプロピレン、エチレン系エラ ストマー、エチレン—酢酸ビュル共重合体のェマルジヨン、デイスパージヨン等がある また、スチレン重合体、メタクリル酸アルキル重合体等の有機填料も架橋成形体の 疎水性を高め、製品の非粘着性化に貢献する。
以上のように、本発明の有機金属架橋剤と疎水性構造を有する化合物をジェン系 ゴムラテックスに添加することにより、有機金属架橋剤が疎水性構造を持たない場合 であっても、内添のみで製品の非粘着性化が可能になった。
[0014] 本発明者は、さらに水酸化ナトリウムおよび/または水酸化カリウムが共存する水 酸化マグネシウムおよび/または水酸化カルシウム系に有機アルミニウム金属架橋 剤または有機チタン金属架橋剤を添加することを試みた。
その結果、クリープ耐性、耐水性が良好な成形体を得ることができた。
[0015] 上記剥離性、耐水性を有し、さらに強度が発現するジェン系ゴムラテックス組成物 を紙に内添、含浸、あるいは塗工すると、ラテックス等に由来する耐水性不足、粘着 性、強度不足等が改善され、耐ブロッキング性、耐水性、湿し水に耐える表面強度( ウエットピック抵抗性、湿潤摩擦抵抗性)を有する紙が製造できる。
[0016] つぎに、ディップ成形体の場合、成形体の表面に一種のヌメリ感があり、また、使用 中にヌメリ感が出てくる。これは、乳化剤として使用される界面活性剤またはそのカル シゥム塩であると考えられ、これらの物質が、製造中または使用中に製品表面にプリ ードアウトして、表面に弱い粘着性をあたえる。
係る界面活性剤のブリードアウトを防止するためには、保護コロイドとして作用する 水溶性ポリマーを添加することが効果的である。
水溶性ポリマーを使用すると、タリーミングという現象が起こることが知られているが 、タリーミングが起こると、ラテックス層と水層が分離する。この現象から分かるように、 水溶性ポリマーをラテックスに添加すると、いわゆる保護コロイドを形成し、ラテックス 粒子とフリーの界面活性剤が隔離され、リーチング等の製造工程で界面活性剤の放 出が促進され、界面活性剤のブリードアウトが抑制される。このため、界面活性剤また はそのカルシウム塩によるいわゆるヌメリ感がなくなり、粘着性も減少する。
本発明者は、有機アルミニウム金属系架橋剤を添加したラテックス組成物に、疎水 化処理したェチルヒドロキシェチルセルロースを少量 (0. 15部)添加して、成形体を 形成したところ、ヌメリ感が減少し、製品表面にさっぱり感が出てきた。さらに、製品の 剥離性、耐水性が向上し、粘つき感が減少した。
[0017] ディップ成形体の場合、成形体膜同士の癒着を防止することは極めて重要である が、現状は、表面の塩素化、表面コート等によって癒着を防止している。
本発明者は、成形体膜同士の癒着は、水素結合等の化学結合によると考えるが、 カルボキシノレ基封鎖剤で全てのカルボキシノレ基を封鎖すると、ラテックスの架橋が進 みすぎて、ゴム的性質を失ってしまう。そこで、本発明者等は、成形体の表面のカル ボキシル基を封鎖すれば、膜同士の癒着は防止できると考え、アルミン酸塩または水 酸化アルミニウムゲル添加系で、製品のカルボキシノレ基封鎖剤による製品の表面処 理を提案した(特許文献 2)が、アルミニウムが 3価のカチオンとして作用するため、製 品が硬くなり、アルミン酸塩または水酸化アルミニウムゲル添加量を制限される欠点 があり、カルボキシノレ基封鎖剤表面処理では、効果が十分に発揮されなかった。 本有機金属架橋剤系では、製品が硬くなる欠点はなぐ単独でも剥離性が良好で あることもあり、カチオン性カルボキシノレ基封鎖剤表面処理で製品の非粘着性化を 効果的に実現できた。
浸漬製品の粘着性は、カルシウム濃度の高レ、型側がフィルムのラテックス側より低 レ、。したがって、カチオン性カルボキシノレ基による表面処理の必要性は、浸漬型側が 低ぐ反対側が高い。そこで、両面の表面処理をすることも、片側の表面処理を省くこ とも可能である。
ここで、製品の非粘着性とは、後述する加熱非粘着性試験で合格することを言うが 、実際には、製造後使用までのほぼ 6ヶ月間、製品表面が相互に接着しないことを言 う。
[0018] すなわち、本発明は以下のとおりである。
(1)カルボキシル基含有ジェン系ゴムラテックスと、金属原子に結合した水酸基を二 個又はそれ以上含有する有機金属架橋剤とを含む、カルボキシル基含有ジェン系 ゴムラテックス組成物。
(2)さらに疎水性物質、疎水性基含有カルボン酸またはその塩、疎水性基含有カル ボン酸アルミニウム 'ジ'ソープまたはトリ'ソープ、および疎水性基含有カルボン酸金 属石鹼から選ばれた一または二以上の有機化合物を含有することを特徴とする、 (1 )のカルボキシル基含有ジェン系ゴムラテックス組成物。
(3)疎水性物質が、ワックス類、合成ワックス類、ポリオレフイン系ワックス類、低分子 量ポリオレフイン、低密度ポリエチレン、ォレフィン系熱可塑性エラストマ一、エチレン 酢酸ビュル共重合樹脂、石油樹脂、ロジンエステル、アルキルケテンダイマー、アル ケニル無水コハク酸、アクリル系樹脂、メタクリル酸アルキル重合樹脂、およびスチレ ン系樹脂、表面サイズ剤から選ばれた一または二以上の有機化合物であることを特 徴とする(2)のカルボキシル基含有ジェン系ゴムラテックス組成物。
(4)疎水性基含有カルボン酸またはその塩力 ロジン類、強化ロジン、不均化ロジン 、ダイマー酸、石油樹脂サイズ剤、アルケニルコハク酸、トール油脂肪酸、高級脂肪 酸、二塩基酸、多塩基酸またはそれらの塩であることを特徴とする(2)のカルボキシ ル基含有ジェン系ゴムラテックス組成物。
(5)さらに水溶性ポリマーを含有することを特徴とする、(1)〜(4)のレ、ずれかのカル ボキシル基含有ジェン系ゴムラテックス組成物。
(6)水溶性ポリマーが、タマリンドガム、カラギーナン、カルボキシメチルセルロース、 メチノレセノレロース、ェチノレヒドロキシェチノレセノレロース、メチノレヒドロキシプ口ピノレセノレ ロース、疎水化工チルヒドロキシェチルセルロース、ポリエチレンオキサイド、エチレン オキサイド.プロピレンオキサイド.ランダム共重合体、水溶性ポリビュルァセタール、 ポリビュルアルコールであることを特徴とする(5)のカルボキシル基含有ジェン系ゴム ラテックス組成物。
(7)水酸化マグネシウムおよび/または水酸化カルシウムをさらに含有することを特 徴とする(1)〜(6)のいずれかのカルボキシノレ基含有ジェン系ゴムラテックス組成物
(8)金属原子がアルミニウムまたはチタンであることを特徴とする(1)〜(7)のいずれ かのカルボキシル基含有ジェン系ゴムラテックス組成物。
(9) (1)〜(8)のいずれかのカルボキシル基含有ジェン系ゴムラテックス組成物を架 橋および成形してなる架橋成形体。
(10)カチオン性カルボキシル基封鎖剤で表面処理されたことを特徴とする(9)の架 橋成形体。
(11)カチオン性カルボキシル基封鎖剤力 S、三価以上のカチオン性金属イオン架橋 剤、カチオン性水酸化アルミニウムゾル、二価のジルコニウム化合物、第 4級アンモニ ゥム塩基を有するスチレン系表面サイズ剤、カチオン性ェピクロルヒドリン系樹脂、ポ リアミドエポキシ樹脂、およびキトサン第 4級アンモニゥム塩基を有するスチレン系表 面サイズ剤、カチオン性ェピクロルヒドリン系樹脂、キトサン、カチオン性スチレンァク リル共重合体系樹脂、カチオン性スチレンアクリルェマルジヨン系樹脂、カチオン性 アクリル共重合体系樹脂、カチオン性ォレフイン'マレイン酸系樹脂、カチオン性ウレ タン系樹脂、またはカチオン性長鎖アルキル含有ポリマー剥離剤である、(10)の架 橋成形体。
(12)浸漬製品であることを特徴とする(9)〜(11)のいずれかの架橋成形体。
(13)下記式 [1]、 [2]、 [3]、 [4]および [5]の群から選ばれた構造を有する一また は二以上の有機金属化合物からなることを特徴とするジェン系ゴムラテックス有機金 属架橋剤。
[化 1]
0H
R-C00-A1 [ 1 ]
(Rは飽和もしくは不飽和の脂肪族基、または芳香族基を示す。 )
[化 2] OH OH
A1-00C-R.-C00-A1 [ 2 ]
OH OH
Figure imgf000012_0001
OH [ 3 ]
(nは、 2又はそれ以上の整数、 Rは飽和もしくは不飽和の 2価脂肪族基、または 2価
1
芳香族基を示す。 )
[化 3]
0H
I
H00C-R C00-Al [-00C-R C00-Al-] m00C-R C00 - Al [ 4 ]
I I I
OH OH OH
(mは 0、 1またはそれ以上の整数、 Rは飽和もしくは不飽和の 2価脂肪族基、または
1
2価芳香族基を示す。 )
[化 4]
R2 OH R2 R3OOC-CH-O-T1-O-CH-COOR3 [ 5 ]
OH
(Rは飽和または不飽和脂肪族基を示し、 Rは水素原子または飽和もしくは不飽和 の脂肪族基を示す。 )
[0019] 本発明は、ィォゥ加硫並みの特性を付与することのできる新たなカルボキシル基架 橋剤を提供する。
係る架橋剤を含有するラテックス組成物を利用すると、ィォゥ、加硫促進剤を含有し ない低アレルギー性ディップ成形品を得ることができ、医療、食品分野、電子部品分 野等で広く利用することができる。また、紙カ卩ェ分野等に新たな用途を開発すること ができる。
発明を実施するための最良の形態
[0020] 以下に、本発明を詳細に説明する。
本発明に利用されるゴムラテックスは、カルボキシル基含有ジェン系ラテックスであ る。
カルボキシル基含有ジェン系ゴムラテックスとしては、カルボキシル変性 NBR、力 ルボキシル変性 SBR、カルボキシル変性 MBR等が挙げられる力 特に、エチレン性 不飽和カルボン酸系単量体 0.:!〜 20重量%、共役ジェン系単量体 30〜80重量% およびこれらと共重合可能な他のエチレン性不飽和単量体 10〜69. 5重量%を乳 化重合して得られたジェン系ゴムラテックスであることが好ましい。
ここで、エチレン性不飽和カルボン酸系単量体としては、アクリル酸、メタクリル酸、 クロトン酸、フマール酸、ィタコン酸、マレイン酸などが挙げられ、 1種または 2種以上 用いることができる。特にメタクリル酸が好ましい。
また、共役ジェン系単量体としては、 1 , 3_ブタジエン、 2_メチル一1 , 3 _ブタジ ェン、 2, 3—ジメチル一 1, 3_ブタジエンなどが挙げられ、 1種または 2種以上用い ること力 Sできる。特に 1, 3_ブタジエンが好ましい。
さらに、共重合可能な他のエチレン性不飽和単量体としては、メタタリロニトリノレ、 ひ —クロルアクリロニトリル、 a —ェチルアクリロニトリルなどシアン化ビュル系単量体、ス チレン、 aーメチルスチレンなどの芳香族ビニル系単量体、アクリル酸メチル、アタリ ノレ酸ェチル、アクリル酸ブチル、アクリル酸 2—ヒドロキシェチル、メタクリル酸メチル、 メタクリル酸 2—ヒドロキシェチル、メタクリル酸グリシジルなどの不飽和カルボン酸ァ ルキルエステル系単量体、アクリルアミド、メタクリロアミド、 N, N—ジメチルアクリルァ ミド、 N—メチロールアクリルアミドなどのエチレン系不飽和カルボン酸アミド系単量体 、メチルアミノエチル (メタ)アタリレート、ジメチルアミノエチル (メタ)アタリレート、 2- ビエルピリジンなどのエチレン系不飽和アミン系単量体、酢酸ビエルなどのカルボン 酸ビュルエステル類などが挙げられ、そのうちの 1種または 2種以上用いることができ る。
[0021] 金属原子に結合した水酸基を二個以上含有する有機金属架橋剤としては、例えば 、アルミニウム原子に結合した水酸基を 2個又はそれ以上含む化合物やチタン原子 に結合した水酸基を 2個又はそれ以上含む化合物などが挙げられる。
[0022] 好ましくは、カルボン酸のカルボキシル基にアルミニウム原子が結合し、該アルミ二 ゥム原子に結合した水酸基を 2個又はそれ以上含む構造を有する化合物が挙げら れる。
そのような化合物としては、以下に示すように、カルボン酸のカルボキシル基に結合 したアルミニウム原子に 2個の水酸基が付いたジヒドロキシアルミニウム構造を有する 化合物が挙げられる。この 2個の水酸基が、ポリマーのカルボキシル基を架橋する。 したがって、ィォゥと同様、二価の架橋剤である。
[化 5]
0H
I
R-C00-A1 (化学構造 1 )
(Rは飽和もしくは不飽和の脂肪族基、または芳香族基を示す。 )
上記ジヒドロキシアルミニウム有機化合物は、一般にはカルボン酸のジヒドロキシァ ルミニゥム塩として得られる力 S、それに限定されるものではない。カルボン酸は、脂肪 族カルボン酸、芳香族カルボン酸、脂環式カルボン酸等種類を問わない。また、アミ ノ基ゃ水酸基などの置換基を有するカルボン酸でもよい。
具体例としては、ォクチル酸(C8)ジヒドロキシアルミニウム、オクタン酸(C8)ジヒド ロキシアルミニウム、力プリン酸(CIO)ジヒドロキシアルミニウム、ナフテン酸ジヒドロキ シアルミニウム等がある。カルボン酸には、アミノ基、水酸基等の官能基を有するカル ボン酸のジヒドロキシアルミニウム塩も本発明の架橋剤として使用することができる。 ある。
[0023] なお、本金属架橋剤は、重合して存在することが知られており、たとえば、乳酸ジヒ ドロキシアルミニウムは、固体では 5量体であるとされている。かかる重合体も本発明 の有機金属架橋剤に含まれる。
[0024] 本化合物は、安全性が高いと考えられる。例えば、上述したグリシンジヒドロキシァ ノレミニゥム、またはァセチルサリチル酸ジヒドロキシアルミニウムは、制酸剤として医薬 に使用されている。
[0025] アルミニウム原子に結合した水酸基を 2個又はそれ以上含む有機金属架橋剤とし ては、二塩基性カルボン酸の 2つのカルボキシル基のそれぞれにアルミニウム原子 が結合し、各アルミニウム原子に 2つの水酸基が結合したジヒドロキシアルミニウム構 造を有する化合物も挙げられる。
二塩基性カルボン酸のジヒドロキシアルミニウム構造(カルボン酸のモノ'ソープに 相当する)の場合には、ジヒドロキシアルミニウム構造が 2個存在すると考えられる(ィ匕 学構造 2)。
[化 6]
OH 0H
I I
A1-00C-R -C00-A1 (化学構造 2 )
I I
OH 0H この場合もカルボキシル基の架橋剤として機能するが、以下の実験の結果からは、 架橋成形体の引張り強度を向上させる効果が認められた。
多塩基性カルボン酸のジヒドロキシアルミニウム構造の場合には、多塩基性に相当 するジヒドロキシアルミニウム構造が複数生成する。
二塩基性カルボン酸の 2個のジヒドロキシアルミニウム構造を有するカルボン酸アル ミニゥム塩を合成するためには、二塩基性カルボン酸 1モルあたり、理論上 2モルの水 溶性アルミニウム塩が必要である。
し力、し、二塩基性カルボン酸 1モルに対し、 1モルの水溶性アルミニウム塩しか添加 しない場合には、以下の化学構造 3および/または 4の化合物(二塩基性カルボン 酸の一方のカルボキシノレ基にアルミニウム原子が結合し、該アルミニウム原子に 1つ の水酸基が結合した構造を繰り返し単位とするポリマー)が生成する力 いずれの化 合物もアルミニウム原子に結合した水酸基を 2以上有するので、カルボキシル基を架 橋する機能を有すると考えられる。
環状ポリマー
[化 7]
Figure imgf000016_0001
OH ( nは、 2又はそれ以上の整数)
(化学構造 3 ) 鎖状ポリマー(末端のアルミニウム原子には 2つの水酸基が結合する)
[化 8]
0H
I
H00C-R,-C00-A1 [-00C-R,-C00-A1-] m00C- Rt- C00- Al (mは 0、 1又はそれ以上の整数) OH OH OH
(化学構造 4 ) 二塩基酸塩で 1モルから 2モル水溶性アルミニウム塩を添カ卩した場合には、化学構 造 2、 3、および 4の構造を有する混合物が生成すると考えられる。
化学構造 2〜4において、 Rは飽和もしくは不飽和の 2価脂肪族基、または 2価芳香
1
族基を示す。 [0027] 二塩基性カルボン酸は、脂肪族カルボン酸、芳香族カルボン酸、脂環式カルボン 酸等種類を問わない。また、アミノ基ゃ水酸基などの置換基を有するカルボン酸でも よレ、。二塩基性カルボン酸として具体的には、アジピン酸、 2, 4—ジェチルダルター ル酸、ァゼライン酸、セバシン酸等がある力 高級二塩基酸としては、岡村製油の C1 2、 C20、〇22ジ'カルボン酸、 Westvacoの〇21ジ'カルボン酸が知られている。ま た、トール油脂肪酸、または大豆油脂肪酸から、ダイマー酸(C36二塩基酸)が合成 されている。
[0028] 上記のようなアルミニウム原子に結合した水酸基を 2個以上含む有機金属架橋剤 は、例えば、カルボン酸に水酸化ナトリウムまたは水酸化カリウムなどの水酸化物を 添加してカルボン酸ナトリウムまたはカルボン酸カリウムなどのカルボン酸塩の水溶液 を調製し、そこに硝酸アルミニウムを反応させることによって得られる。
[0029] チタン原子に結合した水酸基を 2個以上含む化合物としては、ジヒドロキシビス(ヒド ロキシカルボキシラート)チタンまたはそのエステルなどが挙げられる。
ジヒドロキシビス(ヒドロキシカルボキシラート)チタンは、特開 2000-351787 (特許文 献 7)の実施例 1に従って合成することができる。例えば、ジヒドロキシビス(ヒドロキシ イソブチラート)チタンは、イソプロパノールに α _ヒドロキシイソ酪酸を溶解させ、モル 比 2 : 1に相当するイソプロポキシチタンをゆっくり滴下する。滴下終了後室温で撹拌 を続け、白色懸濁液になつてから撹拌を止め、ロータリーエバポレーターでイソプロ パノールを溜去してジヒドロキシビス (ヒドロキシイソプチラート)チタンを得る。
同様にして、グリコール酸、乳酸、 α -ヒドロキシ酪酸、 α _ヒドロキシイソ酪酸、 /3 —ヒ ドロキシプロピオン酸、 βーヒドロキシ酪酸、 βーヒドロキシイソ酪酸、 Ίーヒドロキシ 酪酸、グリセリック酸、タート口ニック酸、リンゴ酸、酒石酸、メソ酒石酸、クェン酸等のヒ ドロキシカルボン酸力、ら該当するジヒドロキシビス(ヒドロキシカルボキシラート)チタン が合成できる。
ジヒドロキシチタンラタテートは、以下の化学構造 5 (R =CH、 R =H)に示すように
、チタン金属原子に結合した 2個の水酸基を有する。この化合物をアンモニアをカロえ てからカルボキシノレ化ジェン系ゴムラテックスに添カ卩したところ、ラテックスは長期間 安定に存在し、架橋剤として上記アルミニウム金属化合物と同様の効果を示した。 [化 9]
R 2 OH R 2
I I I
Rgooc-CH-o-Ti-o-CH-COORg (化学構造 5 )
Rは飽和または不飽和脂肪族基であり、 Rは水素原子または飽和もしくは不飽和の 脂肪族基である。
[0030] なお、有機アルミニウム架橋剤の架橋体に耐水性、剥離性を付与するためには、架 橋剤に疎水性を付与することが望ましい。このようなカルボン酸原料として、紙に使用 されるサイズ剤が注目される。
使用できるサイズ剤には、まず、ァビエチン酸及びその異性体を主成分とするロジ ン、水素化ロジン、不均化ロジン、ロジンをマレイン化またはフマール化した強化ロジ ンなどがある。
また、合成サイズ剤として知られるアルケニルコハク酸塩は、界面活性剤、合成サイ ズ剤として使用されており、これらは、 C12、 C16、 C18のォレフインオリゴマーに無 水マレイン酸を付カ卩し、アルカリで加水分解して製造される。これらは、ジ 'カルボン 酸である。
ロジン酸ジヒドロキシアルミニウムゃァルケエルコハク酸系アルミニウム化合物など、 上記サイズ剤の化学構造:!〜 4の構造を有する有機アルミニウム金属化合物も本発 明の架橋剤として使用できる。
[0031] 本発明の組成物は、カルボキシル基含有ジェン系ゴムラテックスと上記有機金属架 橋剤を含む。
有機金属架橋剤の添加量は、架橋剤の分子量が大幅に異なるので、一概に言え なレ、が、ラテックス 100重量部当り 0. 3部から 2部が好ましぐ 0. 5部から 1. 5部がより 好ましい。
有機金属架橋剤が酸性を示す場合、カルボキシノレ基含有ジェン系ゴムラテックス 組成物の安定性のために、アンモニア等を用いて組成物をアルカリ性、好ましくは p H9〜: 10にしておくことが好ましい。
[0032] 次に、本発明者は、架橋剤に疎水性を付与する代わりに、疎水性物質、疎水性基 含有カルボン酸またはその塩、疎水性基含有カルボン酸アルミニウム ·ジ ·ソープまた はトリ'ソープまたは疎水性基含有カルボン酸金属石鹼から選ばれた一またはニ以 上の有機化合物をカルボキシル基含有ジェン系ゴムラテックスに添加して、架橋成 形体に疎水性を付与することを考えた。このようにすると、水溶性の有機金属架橋剤 を使用しても、架橋体に耐水性、剥離性を付与することができた。
すなわち、本発明のカルボキシノレ基含有ジェン系ゴムラテックス組成物は、さらに 疎水性物質、疎水性基含有カルボン酸またはその塩、疎水性基含有カルボン酸ァ ノレミニゥム ·ジ 'ソープまたはトリ ·ソープまたは疎水性基含有カルボン酸金属石鹼から 選ばれた一または二以上の有機化合物を含有するものであってもよい。
疎水性物質、疎水性基含有カルボン酸またはその塩、疎水性基含有カルボン酸ァ ノレミニゥム ·ジ 'ソープまたはトリ ·ソープまたは疎水性基含有カルボン酸金属石鹼の 添加量は特に制限されないが、ラテックス 100重量部あたり 0. 5〜2. 0重量部含有さ せることが好ましく、 0. 5〜: 1. 0重量部含有させることがより好ましい。
[0033] 疎水性物質としては、ワックス類、合成ワックス類、ポリオレフイン系ワックス類、低分 子量ポリオレフイン、低密度ポリエチレン、ォレフィン系熱可塑性エラストマ一、ェチレ ン酢酸ビュル共重合樹脂、石油樹脂、ロジンエステル類、アルキルケテンダイマー、 アルケニル無水コハク酸、アクリル系樹脂、メタクリル酸アルキル重合樹脂、スチレン 系樹脂等が挙げられる。
疎水性基含有カルボン酸またはその塩としては、ロジン類、強化ロジン、不均化口 ジン、ダイマー酸、石油樹脂サイズ剤、アルケニルコハク酸、トール油脂肪酸、高級 脂肪酸、二塩基酸または多塩基酸またはそれらの塩が挙げられる。なお、疎水性基 含有カルボン酸としては、水溶性の塩として添カ卩することが有効である力 ロジンエス テルの様にェマルジヨン化されているものは、酸として添加できる。
また、カルボン酸のアルミニウム 'ジ'ソープまたは各種疎水性基含有カルボン酸金 属石鹼は、架橋成形体に耐水性、剥離性を付与し、製品の非粘着性化に寄与する。
[0034] なお、上記のような疎水性化合物を別個にカルボキシル基含有ジェン系ゴムラテツ タスに添加する場合には、有機金属架橋剤として、疎水性の低い水溶性ジヒドロキシ アルミニウム有機金属化合物 (例:乳酸ジヒドロキシアルミニウム)、低分子ジヒドロキシ アルミニウム有機金属化合物 (例:アジピン酸テトラヒドロキシアルミニウム)等を使用す ること力 Sできる。
[0035] 本発明のカルボキシノレ基含有ジェン系ゴムラテックス組成物は、ディップ成形体表 面のヌメリを防止するために、さらに水溶性ポリマーを含有するものであってもよい。 水溶性ポリマーとしては、天然物系のタマリンドガム、カラギーナン、半合成系の力 ノレボキシメチノレセノレロース、メチノレセノレロース、ェチノレヒドロキシェチノレセノレロース、メ 系のポリエチレンオキサイド、エチレンオキサイド .プロピレンオキサイド ·ランダム共重 合体、水溶性ポリビュルァセタール、ポリビュルアルコール等が挙げられる。タリーミ ングを起こさない水溶性ポリマーでも効果がある。
しかし、水溶性ポリマーを添加すると、組成物の粘度が上昇するので、粘度が 40cp s以下になるよう、ポリマーの重合度、添加量、ラテックス濃度等を選択する必要があ る。
また、多くの場合、ラテックス原料よりも剛直な分子であるから、製品の物性に影響 が少なレ、範囲で選択することが好ましレ、。
実験では、タマリンドガム、カラギーナン、カルボキシメチルセルロース、メチルセル ロース、ェチノレヒドロキシェチノレセノレロース、メチノレヒドロキシプロピノレセノレロース、疎 水化工チルヒドロキシェチルセルロース、ポリエチレンオキサイド、エチレンオキサイド 'プロピレンオキサイド 'ランダム共重合体、水溶性ポリビエルァセタール、ポリビエル アルコール等が良好であった力 S、ラテックス原料の性質によっても異なる。
水溶性ポリマーの添力卩量は特に制限されなレ、が、ラテックス 100重量部あたり 0. 0 5〜0. 25重量部含有させることが好ましぐ 0. :!〜 0. 2重量部含有させることがより 好ましい。
[0036] 本発明のカルボキシル基含有ジェン系ゴムラテックス組成物は、さらに、コロイダノレ 水酸化マグネシウムおよび/または水酸化カルシウムをさらに含有するものであって あよい。 コロイダル水酸化マグネシウムは、水溶性マグネシウム塩と水酸化カリウムまたは水 酸化ナトリウム等の強アルカリを反応させて、水酸化ナトリウムおよび/または水酸化 カリウムが共存する水酸化マグネシウムとして製造することができる。アルカリに塩を 添加しても、塩にアルカリを添加してもよいが、なるべく低濃度で、高 pHで反応させる ことが望ましい。実際には、原料ラテックスに添加して、ラテックス濃度を 30%程度ま たはそれ以下にし、組成物 pHを 9. 2〜9. 8程度になるようにすることが好ましいが、 原料ラテックスのカルボキシノレ基含量、粒子表面に存在するカルボキシル基量、ラテ ッタスの安定度等、ラテックスの性質によって異なる。また、コロイダル水酸化マグネシ ゥムの添力卩量もラテックスの性質によって異なる力 MgO換算で 0. 2から 0. 5部程度 が好ましい。
また、以下の分散水酸化カルシウムの調製と同様にして、水酸化マグネシウム懸濁 液を調製し、コロイダル水酸化マグネシウムの代わりに使用することができる。
水酸化カルシウムは、コロイダル水酸化マグネシウムと同様に、水溶性カルシウム 塩と水酸化カリウムまたは水酸化ナトリウム等の強アルカリを反応させて、水酸化ナト リウムおよび/または水酸化カリウムが共存する水酸化カルシウムとして製造すること ができる。
さらに、生石灰を消和し、生成した水酸化カルシウムに水酸化カリウムまたは水酸 化ナトリウムを添加し、分散機で分散することにより、同等の効果を持つ水酸化カルシ ゥムを調整することが出来る。水酸化カルシウムの添加量は、モル当量でコロイダル 水酸化マグネシウムの場合と同程度である。
上記アルミニウム原子に 2個の水酸基が結合した構造を有する有機アルミニウム金 属化合物または有機チタン金属化合物系カルボキシル基架橋剤をカルボキシル基 含有ジェン系ゴムラテックスに添加すると、酸化亜鉛の場合と同様、ポリマー鎖に存 在するカルボキシノレ基にペンダント半エステル結合するものと考えられ、配合組成物 は、いわゆるブッの生成もなぐ 6ヶ月間安定に存在した。したがって、係る組成物を 原料メーカー側で調製し、ユーザーに販売することができる。
なお、上記組成物には、必要に応じて、老化防止剤、防腐剤、分散剤、増粘剤など を適宜添加することができる。 [0038] 本発明の組成物は酸化亜鉛を含むものであってもよレ、。酸化亜鉛の添加量はラテ ッタスの種類にもよる力 S、ラテックス 100重量部あたり 0. 7〜2. 0重量部が好ましぐ 1 . 0〜: 1. 5重量部がより好ましい。
なお、本発明に係る組成物をディップ (浸漬)成形用組成物として使用する場合に は、含硫黄加硫剤および加硫促進剤については実質的に含まないことが好ましぐさ らにこれらの物質については、ディップ成形用組成物中に全く含まれないことが特に 好ましいが、具体的には、いずれの物質についても、ジェン系ゴムラテックス(固形分 ) 100重量部に対して 0. 2重量部以下の使用が好ましい。
[0039] また、本発明のディップ成形用組成物には、必要に応じて、天然ゴムラテックス、ィ ソプレンゴムラテックスなどのゴムラテックス、水酸化カリウム、水酸化ナトリウム、アン モニァ水などの pH調整剤、二酸化チタン、無水フタル酸、安息香酸、サリチル酸、炭 酸マグネシウムなどの充填剤、スチレン化フエノール、イミダゾール類、ノ ラフヱ二レン ジァミンなどの老化防止剤、ファーストイェロー、フタロシアンブルー、群青などの着 色剤などを適宜配合してもよい。
なお、上記各成分を添加して本発明の組成物を得る際には、各成分を添加する順 番ゃタイミングは特に制限されず、各成分を同時に添加してもよいし、いくつかの成 分を添加した後、しばらく時間をおいてから残りの成分を添加してもよい。
[0040] 上記ディップ成形用組成物を使用してディップ成形品を得るためには、例えば直接 浸漬法、アノード凝着浸漬法、ティーグ浸漬法など従来公知のディップ成形法がい ずれも適用される。ディップ成形品の形状は特に制限されないが、例えば、手袋等の 形状が例示される。ディップ成形後、好ましくは 100〜150°Cで加熱することによって 、有機金属架橋剤によるカルボキシル基含有ジェン系ゴムラテックスのカルボキシル 基の架橋が達成される。すなわち、上記の各成分を混合して組成物を得、それをカロ 熱することによって本発明の架橋成形体を製造することができる。
[0041] 以下、アノード凝着浸漬法について簡単に説明する。まず、型を凝固液に浸漬し、 引き上げて乾燥することにより型表面に凝固剤が付着した状態にする。凝固液は、塩 化カルシウム、硝酸カルシウム、酢酸カルシウムなどのカルシウム塩を水、またはアル コール、ケトンなどの親水性有機溶媒に溶解させたものである。凝固液中のカルシゥ ム濃度は、通常 5〜50重量%、好ましくは 10〜30重量%である。凝固液には必要に 応じてノニオン、ァニオン界面活性剤などの界面活性剤、炭酸カルシウム、タルク、シ リカゲルなどの充填剤を配合してもよレ、。っレ、で凝固剤が付着した型をディップ成形 用共重合体ラテックス組成物中に浸漬し、引き上げる。この時、凝固剤と共重合ラテ ッタスが反応して型上にゴム状皮膜が形成される。得られた皮膜を水洗、乾燥した後 、型から剥離すればディップ成形品となる。
なお、カルボキシル基含有ジェン系ゴムラテックス組成物の架橋成形体は成形体 膜同士の癒着を防止するために、表面処理されたものであってもよい。表面処理に 使用する非粘着性表面処理剤としては、カチオン性のカルボキシノレ基封鎖剤が好ま しぐ無機系では、三価以上のカチオン性金属イオン架橋剤(ポリ水酸化アルミニウム 塩、水溶性アルミニウム塩、水溶性チタンィヒ合物等)、カチオン性水酸化アルミニウム ゾル(アルミナゾル)等の無機系化合物が有効である力 S、本発明では、 2価のジルコ ニゥム化合物によっても非粘着性化する。本発明の有機アルミニウム金属架橋剤の 効果が大きいためであると考えられる。
有機系表面処理剤としては、カチオン性石油樹脂、カチオン性アルキルケテンダイ マーが有効である。
有機高分子系表面処理剤としては、第 4級アンモニゥム塩基を有するスチレン系表 面サイズ剤、カチオン性ェピクロルヒドリン系樹脂(ポリアミドェピクロルヒドリン樹脂、 ポリアミド了ミンェピクロノレヒドリン樹月旨、ポリ了ミンェピクロノレヒドリン樹月旨、ポリアミド尿 素ホルムアルデヒド樹脂等)、ポリアミドエポキシ樹脂、およびキトサン第 4級アンモニ ゥム塩基を有するスチレン系表面サイズ剤、カチオン性ェピクロルヒドリン系樹脂(ポリ アミドエピクロノレヒドリン樹脂、ポリアミドアミンェピクロルヒドリン樹脂、ポリアミンェピク 口ルヒドリン樹脂、ポリアミド尿素ホルムアルデヒド樹脂等)、キトサン等のカチオン性ポ リマーが有効である。
また、表面サイズ剤等として使用されるカチオン性高分子、例えばカチオン性スチ レンアクリル共重合体系樹脂、カチオン性スチレンアクリルェマルジヨン系樹脂、カチ オン性アクリル共重合体系樹脂、カチオン性ォレフイン'マレイン酸系樹脂、カチオン 性ウレタン系樹脂、カチオン性長鎖アルキル含有ポリマー剥離剤等のカチオン性高 分子は、カルボキシノレ基封鎖剤として機能する共に、剥離剤としても機能する。 表面処理剤の使用濃度は特に制限されないが、例えば、 0.:!〜 2. 0%、好ましく は 0. 2〜: 1. 0%の溶液が使用できる。
なお、表面処理は架橋成形体の両面に施すことが好ましい。
[0043] 上記カルボキシル基含有ジェン系ゴムラテックスに上記有機金属架橋剤を添加す ることによって得られる組成物を単独、または、疎水性物質、親水性ポリマー、水酸化 マグネシウム 'カルシウム、または酸化亜鉛をさらに添加した組成物を使用して定法 に従いディップ成形品を作製したところ、きわめて耐久性のある製品が得られた。特 筆すべきは、ディップ成形品の着用試験をしたところ、ィォゥ加硫製品と同様、タリー プ耐性、耐水性が優れていたことである。
一方、酸化亜鉛のみを配合したディップ製品は、短時日のうちに製品が伸び、さら に汗によって耐水性が低下し、白ィ匕した。
このような事実から、本発明に係るカルボキシル基架橋剤は、含ィォゥ加硫剤を置 換し得る事が明らかである。さらに本発明によるディップ成形品の顕著な特徴は、製 品の粘着性が大幅に低減したことである。
また、このようにして作製したディップ成形品は、実質的にィォゥ、加硫促進剤を含 有しないので、低アレルギー性である。さらに、重金属である亜鉛を実質的に含有し ない製品の製造も可能であり、医療分野、食品分野、電子部品製造分野等、広い分 野で使用できるディップ成形品の製造が可能である。
実施例
[0044] 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を 超えない限り、これらの実施例に限定されるものではない。なお実施例中、割合を示 す部おょび%は特に断りのない限り重量基準によるものである。
[0045] 以下、本明細書で使用した架橋剤の合成法を記載する。尚、係る合成法または架 橋剤は、一例を示すに過ぎず、本発明は、係る合成法または架橋剤に限定されるも のではない。
[0046] 新規架橋剤の合成
以下、本明細書で使用した新規架橋剤の合成法を記載する。尚、係る合成法また は架橋剤は、一例を示すに過ぎず、本発明は、係る合成法または架橋剤に限定され るものではない。
[0047] 1.ォクチル酸ジヒドロキシアルミニウムの合成
試薬ォクチル酸を水酸化ナトリウムに溶解し、ォクチル酸ナトリウム 5%水溶液を調 製し、予め 65°Cに加熱する。
別途、ォクチル酸ナトリウム 1モルに対し、 1. 05モルに相当する硝酸アルミニウムを 秤量し、硝酸アルミニウム水溶液を調製する。水溶液の量は、ォクチル酸ジヒドロキシ アルミニウム生成理論量が 1 %になるように調整する。該硝酸アルミニウム水溶液も予 め 65°Cに加熱する。
上記硝酸アルミニウム水溶液に、ォクチル酸ナトリウム 5%水溶液を撹拌しながらゆ つくり滴下する。滴下後、 65°Cで 1時間、撹拌を続ける。ォクチル酸ジヒドロキシアルミ 二ゥムの生成した懸濁液をそのまま静置し、翌日、上澄みを除き、ろ過する。硝酸ァ ノレミニゥムが残存しない程度まで水で洗浄し、エチルアルコールで置換 ·洗浄後、風 乾して製品とした。生成物のアルミニウム含有量を測定したところ、 13. 4%であり、ほ ぼ理論量のアルミニウム含有量(13· 2%)に相当する。したがって、本物質は、カル ボン酸のモノ ·ソープである。
[0048] 2.ロジン酸ジヒドロキシアルミニウムの合成
ロジン酸力リウム 5 %水溶液を調製し、以後上記 1と同様にしてロジン酸ジヒドロキシ アルミニウムを合成した。本物質は、ロジン酸のモノ'ソープであり、前記化学構造 1に 該当する。
[0049] 3.セバシン酸系アルミニウム金属化合物の合成
1)豊年製油社製二塩基カルボン酸、セバシン酸ナトリウム(SA—NA) 5。/0水溶液を 調製し、予め 65°Cに加熱する。
セバシン酸ナトリウム 1モルに対し、 2. 05モルに相当する硝酸アルミニウムを秤量し 、上記同様に硝酸アルミニウム水溶液を調製し、予め、 65°Cに加熱する。
上記硝酸アルミニウム水溶液に、セバシン酸ナトリウム 5%水溶液を撹拌しながらゆ つくり滴下し、滴下後 65°Cで 1時間、撹拌を続ける。その後、上記と同様にして、前記 化学構造 2のジヒドロキシアルミニウム構造を 2個有するセバシン酸テトラヒドロキシァ ノレミニゥム粉末を得る(セバシン酸アルミニウム石鹼(I) )。本物質は、二塩基カルボン 酸のモノ'ソープに相当し、前記化学構造 2に該当する。
2)セバシン酸ナトリウム 1モルに対して、半量の 1 · 025モルに相当する硝酸アルミ二 ゥム 5。/。水溶液を、セバシン酸ナトリウム水溶液に添加した以外は、 1)に記載した方 法でセバシン酸アルミニウム石鹼を合成する(セバシン酸アルミニウム石鹼 (II) )。な お、セバシン酸ナトリウムの濃度は、アルミニウム石鹼濃度が理論量で 1%になるよう に調製する。
本アルミニウム石鹼 (セバシン酸アルミニウム石鹼 (II) )は、硝酸アルミニウム添カロ量 が 1)の半量であり、セバシン酸アルミニウムのジ 'ソープに相当し、前記化学構造 3お よび/または 4の構造を有すると考えられる。いずれにしても、アルミニウム原子に結 合した水酸基を 2個または 2個以上有する。
3)セバシン酸ナトリウム 1モルに対し、 1. 525モルに相当する硝酸アルミニウム 5%水 溶液を、セバシン酸ナトリウム溶液に添加した以外は、 1)に記載した方法でセバシン 酸アルミニウム石鹼を合成する(セバシン酸アルミニウム石鹼(I)とセバシン酸アルミ ニゥム石鹼(II)の混合物、セバシン酸アルミニウム石鹼(III) )。なお、セバシン酸ナトリ ゥムの濃度は、アルミニウム石鹼濃度が理論量で 1%になるように調製する。
本アルミニウム石鹼(セバシン酸アルミニウム石鹼(III) )は、硝酸アルミニウム添カロ 量が 1)と 2)の中間量であり、前記化学構造 2、 3、 4の構造を有する化合物の混合物 であると考えられる。
[0050] 4.二塩基酸 DIACID (トール油脂肪酸とアクリル酸の反応生成物、 DIACID—155 0、ハリマ化成社製)系アルミニウム化合物の合成。
ハリマ化成社製二塩基カルボン酸、 DIACID (トール油脂肪酸とアクリル酸の反応 生成物)を水酸化カリウム液に溶解し、 5%水溶液を調製した。
以後、上記 3. 1)と同様にして、前記化学構造 2に該当するジヒドロキシアルミニウム 構造を 2個有する DIACIDテトラヒドロキシアルミニウム石鹼を得る。本物質は、二塩 基酸のモノ ·ソープに相当する。
[0051] 5.アルケニルコハク酸系アルミニウム化合物の合成
星光 PMC社製アルケニル無水コハク酸(GS_L、 C12ASA)を等量の水酸化カリ ゥム水溶液に三等分して投入すると、発熱しながら加水分解する。最終的に 20%ァ ルケニルコハク酸カリウム塩溶液を調製した。この C12アルケニルコハク酸カリウム溶 液を 5%に希釈し、 65°Cに調整する。
C12ァルケニルコハク酸カリウム 1モルに対して、 1. 525モルに相当する硝酸アル ミニゥム 5%水溶液を C12アルケニルコハク酸カリウム溶液に添カ卩した以外は、 3. 3) に記載した方法で C 12アルケニルコハク酸アルミニウム石鹼を合成する。
本アルミニウム石鹼は、二塩基酸 1モルあたり、 1. 5モル相当の硝酸アルミニウムの 添加であり、前記化学構造 2、 3、 4に該当する化合物が混在するものと考えられる。
[0052] 6.アジピン酸系アルミニウム化合物の合成
試薬アジピン酸を等量の水酸化力リウム水溶液に添加し、 5 %アジピン酸力リウム溶 液を調製した。このアジピン酸カリウム液に、反応で生成する硝酸を中和するに足る 水酸化カリウムをさらに添加し、 50°Cに加熱する。
アジピン酸カリウム 1モルに対して、 2· 05モルに相当する水で希釈した硝酸アルミ ニゥム水溶液を、水酸化カリウムを添加したアジピン酸カリウム液に撹拌しながらゆつ くり滴下し、 50°Cで 1時間、撹拌しながら反応を続ける。反応後、水酸化カリウムで pH 5. 5に調整し、遠心分離機でジヒドロキシアルミニウム構造を 2個有するアルミニウム 化合物を分離する (アジピン酸テトラヒドロキシアルミニウム)。なお、アジピン酸カリウム の濃度は、アルミニウム石鹼濃度が理論量で 1 %になるように調製する。
本アルミニウム石鹼は、二塩基酸 1モルに対し、 2モルの硝酸アルミニウムの添加で あり、前記化学構造 2に相当するアルミニウム原子に 2個の水酸基を有する構造が 2 個あると考えられる。
[0053] 7.ジヒドロキシビス(ヒドロキシイソブチラート)チタンは特開 2000-351787の実施例 1 に従って合成した。
グリシンジヒドロキシアルミニウムは協和化学より入手した(グリシナール)。
ジヒドロキシチタンラタテートは松本製薬工業社より入手した (オルガチックス TC— 31
0)。
乳酸ジヒドロキシアルミニウムは多木化学より入手した(M_ 160P)。
[0054] カルボキシル某含有ラテックス組成物の作製 カルボキシル基含有ジェン系合成ゴムラテックスは多様である力 S、本実施例では、 その代表であるカルボキシル変性 NBRを使用した。本発明は、カルボキシル変性 NB Rに限定されるものではないことは当然である。
カルボキシル変性 NBRとしては、 日本エイアンドエル社製、 NK- 223を使用した。 N K- 223の諸物性を以下に記載する。
固形分 44-46%
pH 8. 8-9. 5
粘度/ mPa' s 最大 300
粒子径 /應 100-150
比重 約 1
Tg/°C -25
結合アクリロニトリル量 /% 28
メタクリル酸量 /% 6
乳ィ匕システム ァニオン性
コロイダル水酸化マグネシウム等の調製
塩化マグネシウム · 6水塩の 5%溶液を調製し、常温で水酸化カリウム溶液に撹拌し ながら添加する。塩ィ匕マグネシウム · 6水塩の量は、ラテックス固形分当たりの添カロ当 量である。
水酸化カリウムの量は、塩ィ匕マグネシウムを中和する当量に対し、 1. 0部及び 1. 5 部過剰になるように調整する。生成するコロイダル水酸化マグネシウムの濃度は、懸 濁液をラテックスに添加し、ラテックス組成物のラテックス濃度が、所定の濃度になる ように水酸化カリウム液に水を添加して調整する。
使用した NBRラテックスの場合、過剰の水酸化カリウムが 1. 0部の場合、ラテックス 組成物の pHは、ほぼ、 9. 3程度である。過剰の水酸化カリウムが 1. 5部の場合、ラ テックス組成物の pHは、ほぼ、 9. 7程度である。
水酸化カリウム溶液を塩ィヒマグネシウム · 6水塩溶液に添加する場合にも同様にし てコロイダル水酸化マグネシウムを調製する。
他の水溶性マグネシウム塩を使用する場合にも、同様にしてコロイダル水酸化マグ ネシゥム懸濁液を調製する。
また、以下の水酸化カルシウムの調製と同様にして、水酸化マグネシウム懸濁液を 調製し、コロイダル水酸化マグネシウムの代わりに使用することができる。
水酸化カルシウムの調製
定法どおり、生石灰を消和して 25。/0水酸化カルシウム懸濁液を調製し、その後所 定量の水酸化カリウム添カ卩して、ボールミルで 24時間分散し、水酸化カルシウム懸 濁液を調製する。
[0056] 2) ^m^m^ (有 ϋアルミニウム )! 喬吝 i たは有機チタン ι 剤)添 加系ラテックス組成物の作製
ラテックスに、所定の有機金属架橋剤を添加し、 1日熟成する。その後、酸化亜鉛を 添加する場合には、バイエル活性亜鉛華を所定量添加する。さらに、調製液 pHを所 定の pHにするようにアンモニアを添カ卩し、組成物ラテックス濃度を 33%に調整した。 その結果、 6ヶ月経過しても沈殿物の生成、粘度の上昇等の現象が認められなかつ た。即ち、カルボキシノレ変性 NBRに本架橋剤を添加した組成物は、長期間安定であ る。
尚、必要に応じ、酸化亜鉛を先に添加し、 1日熟成後有機金属架橋剤を添加する 場合もある。
[0057] 3)有機金属架橋剤 (有機アルミニウム余属架橋剤または有機チタン金属架橋剤)お よびコロイダル水酸化マグネシウム添加系ラテックス組成物の作製
ラテックスに、所定の有機金属架橋剤を添加し、 1日熟成する。その後、上記のよう にして調製したコロイダル水酸化マグネシウムを 10分間撹拌を継続し、その後、 30分 静置した後、上記有機金属架橋剤を添加したラテックスに所定添加量になるように添 加する。なお、上述の有機金属架橋剤とコロイダル水酸化マグネシウムの添加順序 は、逆にすること力 Sできる。
[0058] 4) ¾ 1 1 吝1|:¾よびコ Ρィダル 7k ィ マグネシウム カロ ラテックス細.成,物に 水溶性ポリマーを添加したラテックス組成物の作製
上記 1)、 2)または 3)で調製したラテックス組成物に、水溶性ポリマーを所定量添加 する。水溶性ポリマーの水への溶解が遅い場合には、界面活性剤を添加して溶解し た。本実験では、花王製ェマルゲン 1108を使用したが、本発明は、係る界面活性剤 に限定されるものではない。
[0059] ディップ成形品の製造
別に凝固液として濃度 15%の硝酸カルシウム水溶液を調製し、 80°Cで予備乾燥し ておいた手袋用モールドを 2秒間浸漬し、引き上げた後、水平にして回転下に乾燥( 80°C X 2分)させた。引き続き、下記比較例及び実施例のディップ成形組成物に手 袋用モールドを 2秒間浸漬し、引き上げた後、水平にして回転下で乾燥 (80°C X 2分 )させた。次にその手袋用モールドを 40°Cの温水に 3分間浸漬して、洗浄した後、 12 0°Cで 20分間加熱処理して手袋用モールドの表面に固形皮膜物を得た。最後にこ の固形皮膜物を手袋用モールドから剥がし、手袋形状のディップ成形品を得た。
[0060] ディップ成形品の評価法
定法により、各ディップ成形品の引張り強度、伸びを測定した。
1)耐久性および耐水性試験
手袋の指を鋏で切断して、指に連続着用し、耐久性、クリープ耐性、耐水性等の着 用適性テストを行った。耐久性は、指に連続着用し、 日数で表した。クリープ耐性が 不足し、ゴム膜が膨張して伸びた場合には、試験を中止した。耐水性は、着用時のゴ ム膜白化の程度で判定した。 白化が激しいものを Xとした。 白化の程度に応じ、△、
〇、◎に分類した。
2)剥離性試験
プラスチックフィルムの間に 2枚の手袋を重ね、 170 X 210mm断面、 3kgの加重を かけ、 1週間放置し、手袋が剥離するかどうか剥離試験を行った。剥離できずに膜が 癒着したものを X、剥離するものの、力を必要とするものを△、剥離に困難性がない ものを〇、剥離が容易なものを◎とした。
3)非粘着性試験
手袋同士が互いに接するように、 2枚に重ねた手袋の上下にガラス板を置き、 90°C 、 60分間、乾燥器で加熱した。手袋を取り出し、手袋が剥離できずに膜が癒着したも のを X、剥離するものの、力を必要とするものを△、剥離に困難性がないものを〇、 剥離が容易なものを◎とした。 [0061] (有 ¾娜編)
比較例 1
NK-223、 100重量部(固形分換算)にアンモニア 0· 4部(3%アンモニア水溶液) 、バイエル活性亜鉛華 1. 2部を添加した。その後、脱イオン水をカ卩えてラテックス濃 度を 33%に調製し、比較用ディップ成形用組成物とした。
ΝΚ-223, 100重量部(固形分換算)にアンモニア 0. 4部(3。/。アンモニア水溶液) 、を添加した。その後、脱イオン水をカ卩えてラテックス濃度 33。/0に調製し、比較用ディ ップ成形用組成物とした。
[0062] (有 藤翻系)
ディップ成 ,开 紹.成 , )のィ乍
例:!〜 4
ΝΚ-223、 100重量部(固形分換算)にアンモニア 0· 5部(3%アンモニア水溶液) 、一般式(1)の構造を 1個有する化合物、ォクチル酸ジヒドロキシアルミニウムを 0· 2 5、 0. 5、 0. 75、 1. 0部各々添カ卩し、翌日活性亜鉛華 (バイエル:酸化亜鉛) 1 · 2部 を添加した。
その後、脱イオン水をカ卩えてラテックス濃度を 33%に調製し、ディップ成形用組成 物とした。
実施例 5〜22
実施例 5〜22は、表 1に示すようにして、原料ラテックスに各種有機金属架橋剤を 添加して、ディップ成形用組成物とした。
各成形体の試験結果を表 1に示す。
[0063] M
比較例 1は、酸化亜鉛単独の架橋であり、典型的なクラスターイオン架橋系である。 結果を見ると、引張り強度、伸び等、表面的な測定物性は、実施例の結果と大差は ないが、クリープ耐性が低いために、着用試験でゴムが伸びてしまレ、、 2日で耐久性 試験を中止した。特に目立つ特徴は、数時間の着用で、手の汗によりゴム膜が白ィ匕 することであり、耐水性が低レ、ことが分かる。剥離性試験の結果は、ゴム膜が完全に 癒着してしまレ、、無理に剥がそうとすると、膜が破断してしまう。
実施例 1から 7は、前記化学構造 1のジヒドロキシアルミニウム構造を有する有機ァ ルミニゥム金属架橋剤であり、成形体の引張り強度、伸びは、比較例 1と大差がない 。ィォゥ加硫の場合と同様に、二価の架橋剤の特徴がよくでている。
着用後のゴム膜の白化は、実施例 1のォクチル酸ジヒドロキシアルミニウム 0. 25部 添加で認められなくなつている。
着用後のゴム膜の伸び (クリープ耐性)は、実施例 1で僅かに認められる。そこで、 耐久性試験としては、 1週間で着用を打ち切った。
実施例 2から 4については、膜の白化、伸びはほとんど認められない。着用耐久性 は、連続着用で 2週間以上 (実際には 2週間着用しても全く問題がなかったので、試 験を 2週間で打ち切った。)で、実用上全く心配のない水準であった。
剥離試験は、実施例 1では、ゴム膜相互が粘着し、剥離に困難性があるが、いずれ の架橋剤でも添加率 0. 5部以上では、剥離が可能であり、添加率の上昇に伴って剥 離が良好になる。
実施例 8は、セバシン酸のモノ'ソープに相当する前記化学構造 2に相当するジヒド ロキシアルミニウム構造を 2個有するセバシン酸アルミニウム石鹼(I)を 1 · 0部添加し た有機アルミニウム金属架橋剤単独添加系であるが、強度も発現し、さらに耐久性、 クリープ耐性、耐水性等、着用適性はきわめて良好であり、剥離性も優れている。有 機アルミニウム金属架橋剤力 カルボキシル基を架橋する明白な証拠である。
実施例 9〜: 19は、ジ 'カルボン酸系アルミニウム石鹼架橋剤の実施例である。耐久 性、クリープ耐性、耐水性、剥離性は、力なり良好である力 伸びが多少小さぐ引張 り強度が高めである。
耐水性は、炭素鎖の長いものの方が、良い傾向にある。架橋後の架橋剤の疎水性 が影響しているものと考えられる。剥離性もそれに伴って良好である。
実施例 11は、セバシン酸のモノ'ソープに相当する前記化学構造 2に相当するジヒ ドロキシアルミニウム構造を 2個有するセバシン酸テトラヒドロキシアルミニウム石鹼(I) を合成後、洗浄、乾燥の工程を省略し、アルミニウム石鹼の懸濁液を直接ラテックス に投入した実施例である。比較の対象となる実施例 8と比較すると、アンモニアの添 加量が 0. 2部増加しただけで、成形体膜の性質その他に目立った影響は出ていな レ、。合成後、懸濁液の上澄みを除去すれば、アンモニアの添カ卩量もさらに減少する であろう。
このことは、ラテックス成形体の製造現場で有機アルミニウム系架橋剤を合成し、ラ テックスに添加して架橋成形体を製造できることを示している。
実施例 20は、側鎖にアミノ基を有するジヒドロキシ有機アルミニウム金属架橋剤(グ リシンジヒドロキシアルミニウム)の実施例である。
実施例 21は、ジヒドロキシチタンラタテート(松本製薬工業社製、オルガチックス TC — 310)の実施例である。本化合物もチタンに結合した 2個の水酸基があり、ジヒドロ キシ有機アルミニウム金属化合物と同様に、カルボキシノレ変性ラテックスの効果的な 架橋剤である。
実施例 22は、ジヒドロキシビス(ヒドロキシイソプチラート)チタンの実施例である。本 化合物もチタンに結合した 2個の水酸基を有する。
[表 1]
Figure imgf000034_0001
(有Iアルミニウム )! +コロイダル 7f マグネシウム系)
実施例 23 27
C12ァルケニルコハク酸アルミニウム石鹼 0. 3部(実施例 23)、ロジン酸ジヒドロキ シアルミニウム 0. 3部(実施例 24)、 C12ァルケニルコハク酸アルミニウム石鹼 1. 0部 (実施例 25)、ロジン酸ジヒドロキシアルミニウム 1 · 0部(実施例 26)、またはジヒドロキ シチタンラタテート 0· 3部(実施例 27)を ΝΚ-223 100重量部に添カ卩し、翌日、コロ イダノレ水酸ィ匕マグネシウム(実施 ί列 23, 24, 27では 0. 4咅 実施列 25, 26では 0. 2 部(MgO換算))を添加し、ディップ成形用組成物とした。ラテックス濃度は、 30%に 調整した。
実施例 23〜 27のディップ成形品の試験結果を表 2に示す。
[0066] M
実施例 23と 24は、コロイダル水酸化マグネシウムに少量の有機アルミニウム金属 架橋剤を添加すると、コロイダル水酸化マグネシウム系のクリープ耐性、耐水性が改 善されることを示してレ、る。
実施例 25と 26は、有機アルミニウム金属架橋剤単独添加では、引張り強度が、低 めであるが、コロイダル水酸化マグネシウムの添カ卩で、十分な強度が得られることを 示している。
実施例 27のジヒドロキシチタンラタテートの場合も、有機アルミニウム金属架橋剤の 場合と同様である。
これらの実験から、重金属である亜鉛化合物を使用せずに、ラテックス成形体が得 られることがわかる。
即ち、無ィォゥ、無加硫促進剤、無亜鉛華の環境にやさしい製品の製造が可能で ある。
[0067] [表 2]
00
Figure imgf000036_0002
化合物(7): C12アルケニルコハク酸アルミニウム石験 化合物(2):ロジン酸ジヒドロキシアルミニウム 化合物(9):ジヒドロキシチタンラクテート
Figure imgf000036_0001
ジヒドロキシアルミニウム構造を 2個有するセバシン酸テトラヒドロキシアルミニウム石 鹼(1) 0. 75部とアンモニア 0. 5部を ΝΚ-223 100重量部に添加し、翌日酸化亜鉛 1. 2部を添加する。次に、疎水化工チルヒドロキシェチルセルロース(ァクゾノーベル 社製、ベノレモ ノレ ΕΠΜ_200、エマノレゲン 1108、 0. 5%夜に溶角军) 0. 15部を添カロ し、ディップ成形用組成物とした。ラテックス濃度は、 30%に調整した。 水溶性ポリマーとして、水溶性ポリビュルァセタール(エスレック KW_ 3、積水化学 社製) 0. 15部を添加した以外、実施例 28と同様にして、ディップ成形用組成物を作 製した。
^^130
水溶性ポリマーとして、タマリンドガム(ダリロイド 3S、大日本製薬社製) 0. 15部を 添加した以外、実施例 28と同様にして、ディップ成形用組成物を作製した。 水溶性ポリマーとして、 PVA (デンカポバール B— 20) 0. 15部を添カ卩した以外、実 施例 28と同様にして、ディップ成形用組成物を作製した。 水溶性ポリマーとして、エチレンオキサイド-プロピレンオキサイドランダムポリマー( アルコックス EP-10,明成化学) 0.1部を添加した以外、実施例 28と同様にして、デイツ プ成形用組成物を作製した。
評価
水溶性ポリマーをラテックスに添加すると、いわゆる保護コロイドを形成し、ラテック ス粒子とフリーの界面活性剤が隔離され、リーチング等の製造工程で界面活性剤の 放出が促進され、界面活性剤のマイグレーションが抑制される。このため、界面活性 剤またはそのカルシウム塩によるいわゆるヌメリ感がなくなり、粘着性も減少する。 特に、疎水性のある水溶性ポリマーを使用すると、製品の表面にさっぱり感が出て くる。
表 3より、本実施例で使用した水溶性ポリマーは、添加量が少ないにもかかわらず、 いずれも製品の剥離性、耐水性、粘つき感が減少している。
[0070] (有機アルミニウム余属架橋剤 +コロイダル水酸化マグネシウム +水溶性ポリマー添
MM. モノ ·ソープとジ ·ソープが混在する C12ァルケニルコハク酸アルミニウム石鹼 1. 0 部とアンモニア 0. 2部を NK-223 100重量部に添加し、翌日コロイダル水酸化マグ ネシゥム 0. 2部(Mg〇換算)を添加する。次に、疎水化工チルヒドロキシェチルセル ロース(ァクゾノーベル社製、ベノレモコノレ EHM- 200、エマノレゲン 1108、 0. 5%液に 溶解) 0. 15部を添加し、ディップ成形用組成物とした。ラテックス濃度は、 30%に調 整した。
^^134
水溶性ポリマーとして、水溶性ポリビュルァセタール(エスレック KW- 3、積水化学 社製) 0. 15部を添加した以外、実施例 33と同様にして、ディップ成形用組成物を作 製した。
実 例 35
水溶性ポリマーとして、タマリンドガム(ダリロイド 3S、大日本製薬社製)を 0. 15部 添加した以外、実施例 33と同様にして、ディップ成形用組成物を作製した。
実 例 36
水溶性ポリマーとして、 PVA (デンカポバール B-20)を 0. 15部添加した以外、実 施例 33と同様にして、ディップ成形用組成物を作製した。
実施例 28〜36のディップ成形品の試験結果を表 3に示す。
[0071] MM
水溶性ポリマーをラテックスに添加すると、いわゆる保護コロイドを形成し、ラテック ス粒子とフリーの界面活性剤が隔離され、リーチング等の製造工程で界面活性剤の 放出が促進され、界面活性剤のマイグレーションが抑制される。このため、界面活性 剤またはそのカルシウム塩によるいわゆるヌメリ感がなくなり、粘着性も減少する。 特に、疎水性のある水溶性ポリマーを使用すると、製品の表面にさっぱり感が出て くる。 本実施例で使用した水溶性ポリマーは、添加量が少ないにもかかわらず、いずれも 製品の剥離性、耐水性、粘つき感が減少している。
[表 3]
Figure imgf000040_0001
化合物(3):セバシン酸テトラヒドロキシアルミニウム石鹼(I) 化合物(7) : C12ァルケニルコハク酸アルミニウム石鹼
[0073] (有機アルミニウム余属架橋剤 +カチオン件カルボキシル某封鎖剤表面処理系) 実施例 37〜40
ジヒドロキシアルミニウム構造を 2個有するセバシン酸テトラヒドロキシアルミニウム石 鹼(1) 0. 75部を NK-223 100重量部に添加し、翌日、酸化亜鉛 1. 2部およびアン モニァ 0. 5部を添加して、ディップ成形用組成物を作製した。
成形品を作製する際、実施例 37は、硝酸アルミニウム (Al O換算)が 0. 5。/0液に なるよう硝酸カルシウム凝固液に溶解し、その凝固液で成形品を作製した (型側カチ オン性カルボキシル基封鎖剤処理)。成形膜のリーチング後、 80°Cで 1分乾燥後、ポ リマロン 360 (荒川化学社製、第 4級アンモニゥム塩基を有するスチレン系表面サイズ 剤) 1 %液に成形膜を浸漬し (外表面側カチオン性カルボキシル基封鎖剤処理)、 90 °Cで 2分乾燥し、さらに 1分リーチングを行レ、、以後、通常どおり、加熱乾燥を行った 実施例 38は、凝固液に硝酸ジルコニウムを 0. 5% (ZrO換算)溶解した以外は、 実施例 37と同様にして、表面処理した成形膜を作製した。
実施例 39は、凝固液にポリアミドアミンェピクロルヒドリン縮合反応生成物 (WS402 0、星光 PMC社製) 0. 5%、外表面側処理にポリ水酸化アルミニウムクロライド(アル ファイン 83、大明化学社製) 1 % (Al O換算)液を使用して、表面処理した成形膜を 作製した。
実施例 40は、水溶性キトサン (大日精ィ匕工業社製) 0. 5%を硝酸カルシウム凝固 液に溶解し、外表面側処理に水溶性キトサン 1%液を使用して、表面処理した成形 膜を作製した。凝固液に性基と酸溶解した以外は、実施例 37と同様にして、表面処 理した成形膜を作製した。
[0074] (有Iアルミニウム )! + 牛ポ マー + 系)
実施例 41〜43
ジヒドロキシアルミニウム構造を 2個有するセバシン酸テトラヒドロキシアルミニウム石 鹼(1) 0. 75部を NK- 223 100重量部に添カ卩し、翌日、酸化亜鉛 1. 2部、アンモニ ァ 0· 5部と疎水化工チルヒドロキシェチルセルロース(ァクゾノーベル社製、ベルモコ ノレ EHM_200、エマノレゲン 1108、 0. 5%ί夜に溶角早) 0. 15部を添カロし、ディップ成形 用組成物とした。ラテックス濃度は、 30%に調整した。
実施例 41は、硝酸アルミニウムが 0. 5% (Α1 Ο換算)液になるよう硝酸カルシウム 凝固液に溶解し、その凝固液で成形品を作製した。成形膜のリーチング後、 80°Cで 1分乾燥後、ポリマロン 360 (荒川化学社製、第 4級アンモニゥム塩基を有するスチレ ン系表面サイズ剤)、 1 %液に成形膜を浸漬し、 90°Cで 2分乾燥し、さらに 1分リーチ ングを行い、以後、通常どおり、加熱乾燥を行った。
実施例 42は、凝固液に硝酸ジルコニウムを 0. 5% (ZrO換算)溶解した以外は、 実施例 41と同様にして、表面処理した成形膜を作製した。
実施例 43は、凝固液にカチオン性ポリアミドアミンェピクロルヒドリン縮合反応生成 物(WS4020、星光 PMC社製) 0. 5%、外表面側処理にポリ水酸化アルミニウムクロ ライド 1 % (A1 O換算)液を使用して、表面処理した成形膜を作製した。
試験結果を表 4に示す。
尚、本実験ではカチオン性カルボキシル基封鎖剤処理を成膜工程で行ったが、製 品を型から外した後に製品をカチオン性カルボキシノレ基封鎖剤液に浸漬して処理す ること力 Sできる。
[表 4]
Figure imgf000043_0002
化合物(3):セバシン酸亍トラヒドロキシアルミニウム石鹼 (I)
Figure imgf000043_0001
CI 2アルケニルコハク酸アルミニウム石鹼 1 · 0部を ΝΚ-223 100重量部に添加し 、翌日、コロイダル水酸化マグネシウム 0.2部(Mg〇換算)を添加し、ディップ成形用 組成物とした。ラテックス濃度は、 30%に調整した。
実施例 44は、硝酸アルミニウムが 0. 5% (A1 O換算)液になるよう硝酸カルシウム 凝固液に溶解し、その凝固液で成形品を作製した。成形膜のリーチング後、 80°Cで 1分乾燥後、ポリマロン 360 (荒川化学社製、第 4級アンモニゥム塩基を有するスチレ ン系表面サイズ剤) 1 %液に成形膜を浸漬し、 90°Cで 2分乾燥し、さらに 1分リーチン グを行い、以後、通常どおり、加熱乾燥を行った。
実施例 45は、凝固液に硝酸ジルコニウムを 0. 5% (ZrO換算)溶解した以外は、 実施例 44と同様にして、表面処理した成形膜を作製した。
実施例 46は、凝固液にカチオン性ポリアミドアミンェピクロルヒドリン縮合反応生成 物(WS4020、星光 PMC社製) 0. 5%、外表面側処理にポリ水酸化アルミニウムクロ ライド 1 % (A1 O換算)液を使用して、表面処理した成形膜を作製した。
実施例 47は、水溶性キトサン (大日精ィ匕工業社製) 0. 5%を硝酸カルシウム凝固 液に溶解し、外表面側処理に水溶性キトサン 1 %液を使用して、表面処理した成形 膜を作製した。
(有機アルミニウム余属架橋剤 +コロィダル水酸化マグネシウム +水溶性ポリマー + 実施例 48〜50
C12アルケニルコハク酸アルミニウム石鹼 1. 0部を NK-223 100重量部に添加し 、翌日、コロイダル水酸化マグネシウム 0.2部(Mg〇換算)を添加し、さらに、疎水化 ェチルヒドロキシェチルセルロース(ァクゾノーベル社製、ベルモコル EHM-200、ェ マノレゲン 1108、 0. 5%液に溶解) 0. 15部を添カ卩し、ディップ成形用組成物とした。 ラテックス濃度は、 30%に調整した。
実施例 48は、硝酸アルミニウムが 0. 5% (A1 O換算)液になるよう硝酸カルシウム 凝固液に溶解し、その凝固液で成形品を作製した。成形膜のリーチング後、 80°Cで 1分乾燥後、ポリマロン 360 (荒川化学社製、第 4級アンモニゥム塩基を有するスチレ ン系表面サイズ剤)、 1 %液に成形膜を浸漬し、 90°Cで 2分乾燥し、さらに 1分リーチ ングを行い、以後、通常どおり、加熱乾燥を行った。
実施例 49は、凝固液に硝酸ジルコニウムを 0. 5% (ZrO換算)溶解した以外は、 実施例 48と同様にして、表面処理した成形膜を作製した。
実施例 50は、凝固液にカチオン性ポリアミドアミンェピクロルヒドリン縮合反応生成 物(WS4020、星光 PMC社製) 0. 5%、外表面側処理にアルミナゾル(アルミナゾル 100、 日産化学社製) 1 % (Al O換算)液を使用して、表面処理した成形膜を作製し た。
(有Iチタン )! +コロイダル 7k マグネシウム + 系) 実施例 51〜 54
NK- 223, 100重量部に、一般式(3)の構造を有するジヒドロキシチタンラクテ一 ト(松本製薬工業社製、オルガチックス TC_ 310) 0. 8部とアンモニア 0. 6部の混合 物を添加し、翌日、コロイダル水酸化マグネシウム 0. 2部(MgO換算)を添加し、ディ ップ成形用組成物とした。ラテックス濃度は、 30%に調整した。
実施例 51は、ポリ水酸化アルミニウムクロライド(アルファイン 83、大明化学社製)が 0. 5% (A1 O換算)液になるよう硝酸カルシウム凝固液に溶解し、その凝固液で成 形品を作製した。成形膜のリーチング後、 80°Cで 1分乾燥後、ポリマロン 360 (荒川化 学社製、第 4級アンモニゥム塩基を有するスチレン系表面サイズ剤) 1 %液に成形膜 を浸漬し、 90°Cで 2分乾燥し、さらに 1分リーチングを行レ、、以後、通常どおり、加熱 乾燥を行った。
実施例 52は、凝固液に硝酸ジルコニウムを 0. 5% (ZrO換算)溶解した以外は、 実施例 51と同様にして、表面処理した成形膜を作製した。
実施例 53は、凝固液にカチオン性ポリアミドアミンェピクロルヒドリン縮合反応生成 物(WS4020、星光 PMC社製) 0. 5%、外表面側処理にポリ水酸化アルミニウムクロ ライド 1 % (A1 O換算)液を使用して、表面処理した成形膜を作製した。
実施例 54は、水溶性キトサン(大日精ィヒ工業社製) 0. 5%を硝酸カルシウム凝固 液に溶解し、外表面側処理に水溶性キトサン 1%液を使用して、表面処理した成形 膜を作製した。
実施例 44〜54のディップ成形品の試験結果を表 5に示す。 [0079] 籠
実施例 37〜54は、カルボキシノレ基封鎖剤によるディップ成形体の表面処理の実 験である。
本発明者は、成形体膜同士の癒着は、水素結合等の化学結合によると考えるが、 カルボキシノレ基封鎖剤で全てのカルボキシノレ基を封鎖すると、ラテックスの架橋が進 みすぎて、ゴム的性質を失ってしまう。そこで、成形体の表面だけのカルボキシノレ基 を封鎖すれば、膜同士の癒着は防止できると考えられる。そのために、製品の表面 処理が有効である。
実施例 37〜54の実験により、カルボキシノレ基封鎖剤による効果は認められるが、 特に 2価のカチオンに過ぎないジノレコニゥム化合物によっても、非粘着性化できるこ とが分かった。
[0080] [表 5]
Figure imgf000047_0001
化合物(7): C12アルケニルコハク酸アルミ 化合物(9):ジヒドロキシチタンラクテート
[0081] (疎水性物晳等添加系)
以下の実施例では、カルボキシ変性 NBRとして、 日本エイアンドエル社製 NK— 2 20を使用した。本ラテックスの結合メタクリル酸量は 4. 5%で、 NK— 223の 6%に比 ベて少ない。
ラテックスの基本配合は、 NK— 220 100重量部にバイエル活性亜鉛華 1. 5部と アンモニア 0. 4部を配合し、その後、有機金属架橋剤と疎水性物質等を添加した。 有機金属架橋剤としては、水溶性の乳酸ジヒドロキシアルミニウム (多木化学、 M_ 160P)と合成したアジピン酸テトラヒドロキシアルミニウムを使用した。有機金属架橋 剤の添加量は、両者とも、ラテックス当たり、 1. 1部とした。
また、疎水性物質等の添加量は、 0. 75部とした。各疎水性物質の詳細は、表 6に 示す。
調製液のラテックス濃度は、 30%とした。
[0082] ディップ成形品の製造
ディップ成形品の製造は、手袋の場合とほぼ同じであるが、型は、径 16mmの試験 管をサンドブラストで砂打ちして使用した。また、凝固液の濃度は、硝酸カルシウム · 4 水塩 450g/1000gとした力 S、これはガラス型の凝固液保持力が小さいためである。 ガラス型を凝固液に 2分浸漬し、ドライヤーで乾燥後、ラテックス調製液に 10秒浸 漬し、 75°Cで 3分乾燥し、 50°Cのお湯で 3分リーチングを行い、その後、 95°Cで 3分 、 110°Cで 10分乾燥し、最後に生成した固形皮膜物を型から剥がし、指サック状の ディップ成形品を得た。
[0083] 非粘着性試験
本法の成形品の非粘着性試験は、生成した固形皮膜物を型力 剥がす際、膜を型 の上に巻き上げて外し、膜を巻き上げたまま乾燥機に入れ、 90°Cで 60分乾燥する。 その後、試料を乾燥機力 取り出し、巻き戻るかどうかを試験する。容易に巻き戻れ ば◎、巻き戻れば〇、抵抗はある力 巻き戻れば△、巻き戻らなければ Xとした。
[0084] 実施例 55〜 56
実施例 55〜56は、水溶性有機金属架橋剤(乳酸ジヒドロキシアルミニウム)または 疎水性基を含有しなレ、有機金属架橋剤(アジピン酸テトラヒドロキシアルミニウム) 1. 1部を添加し、ラテックス濃度 30%の調製液を作製した。
[0085] (疎水性物晳等添加系)
実施例 57〜 68
実施例 57〜68は、水溶性有機金属架橋剤(乳酸ジヒドロキシアルミニウム)または 疎水性基を含有しなレ、有機金属架橋剤(アジピン酸テトラヒドロキシアルミニウム) 1 . 1部と各種疎水性化合物 0. 75部を NK—220 100重量部に添カ卩し、ラテックス濃 度 30%の調製液を作製した。
係るディップ成形用組成物から作製した成形品の結果を表 6に示す。
なお、用レ、た疎水性化合物は以下のとおりである。
実施例 57:ォクチル酸アルミニウム ·ジ ·ソープ(ホープ製薬:オタトープアルミ A) 実施例 58:不均化ロジン (ハリマ化成:バンデイス T- 25K)
実施例 59 :〇_ 21ジ'カルボン酸(ハリマ化成: DIACID 1550)
実施例 60: C- 12ァルケエルコハク酸カリウム(星光 PMC:GS 1945)
実施例 61:パラフィンワックスと低分子量ポリエチレン混合物(日本精鐡: XEM5036 ) (融点、 1 14°C、粒子径 4 μ ΐη)
実施例 62 :スチレン系重合体 (サイデンィ匕学:サイビノール PG- 1 ) (粒子径 0. 6〜0. 7 i m)
実施例 63 :メタクリル酸アルキル重合体 (サイデン化学:サイビノール PG- 2) (粒子径 3〜5 μ mj
実施例 64 :低分子量ポリエチレン(三井化学:ケミパール W4005) (粒子径 0. 6 /i m) 実施例 65:エチレン系熱可塑性エラストマ一(三井化学:ケミパール A100) (粒子径 4 μ m)
実施例 66:エチレン酢酸ビニル共重合樹脂(三井化学:ケミパール V300) (粒子径 6 μ m)
実施例 67 :低密度ポリエチレン (三井化学:ケミパール M200) (粒子径 6 μ m) 実施例 68:石油樹脂ェマルジヨン (東邦化学: TFE— 22)
[0086] (水酸化カルシウム +疎水性物晳等添加系)
実施例 69〜71は、活性亜鉛華の代わりに水酸化カリウム(大ラテックス 1. 5部)を添 加して分散した水酸化カルシウム 0. 35部(MgO換算、 CaO換算、 0. 49部)を添加し、 さらに水溶性有機金属架橋剤(乳酸ジヒドロキシアルミニウム) 1. 0部と疎水性物質 0. 75部を NK— 220 100重量部に添カ卩し、ラテックス濃度 30%の調製液を作製した。 係るディップ成形用組成物から作製した成形品の結果を表 7に示す。
実施例 69: C- 12アルケニルコハク酸カリウム(星光 PMC:GS 1945)
実施例 70:石油樹脂ェマルジヨン (東邦化学: TFE - 22)
実施例 71 :低分子量ポリエチレン(三井化学:ケミパール W4005) (粒子径 0. β μ τη) [0087] Μ
実施例 55および 56は、水溶性有機金属架橋剤および低分子量有機金属架橋剤 のみを添加したラテックス組成物の成形品の品質である。引張強度、耐水性、耐久性 、クリープ耐性は良好であるが、非粘着性が十分でない。
実施例 57〜66は、水溶性乳酸ジヒドロキシアルミニウムに、各種の疎水性基含有 化合物を添加した系である。引張強度、耐水性、耐久性、クリープ耐性が良好である とともに、製品が非粘着性化している。
実施例 67および 68は、低分子で疎水性が乏しレ、アジピン酸テトラヒドロキシアルミ 二ゥムを架橋剤とした場合であるが、この架橋剤単独では非粘着性が劣るが、各種の 疎水性基含有化合物を添加した系では、製品が非粘着性化している。
このように、有機金属架橋剤が疎水性構造を持たなくても、疎水性基含有化合物を 添加することにより、製品を非粘着性化することができる。
また、実施例 69〜71は、活性亜鉛華の代わりに水酸化カリウムを添加して分散し た水酸化カルシウムを添加した系であるが、水溶性有機金属架橋剤と疎水性基含有 化合物を添加した系では、製品が非粘着性化している。
[0088] [表 6] 〔〕〔^〕00897
Figure imgf000051_0001
化合物(11):乳酸ジヒドロキシアルミェゥム 化合物(12):アジピン酸テトラヒドロキシアルミニウム
邀)¾ (φふ£#¾:U c,-,
Figure imgf000052_0001
産業上の利用可能性
上記の通り、本発明は、アルミニウム原子に結合した 2個以上の水酸基を有する新 規で、安全なカルボキシル基架橋剤を提供する。また、チタン原子に結合した 2個以 上の水酸基を有する有機金属化合物をカルボキシル基含有ラテックスに添加するこ とにより、機械的安定性が高ぐ凝集物の少ない成形用組成物が得られる。また本発 明の成形用組成物を用いることにより、耐久性、耐クリープ性、耐水性に優れ、剥離 性を兼ね備えたディップ成形品を得ることができ、医療、食品加工分野および電子部 品製造分野など各方面において広く使用されるゴム手袋等を得ることができるもので ある。
さらに、上記組成物を紙等に内添、含浸、塗工することにより、耐ブロッキング性、 耐水性、耐久性に優れた紙製品等を得ることができる。

Claims

請求の範囲
[1] カルボキシル基含有ジェン系ゴムラテックスと、金属原子に結合した水酸基を二個又 はそれ以上含有する有機金属架橋剤とを含む、カルボキシル基含有ジェン系ゴムラ テックス組成物。
[2] さらに疎水性物質、疎水性基含有カルボン酸またはその塩、疎水性基含有カルボン 酸アルミニウム 'ジ'ソープまたはトリ'ソープ、および疎水性基含有カルボン酸金属石 鹼から選ばれた一またはそれ以上の有機化合物を含有することを特徴とする、請求 項 1に記載のカルボキシノレ基含有ジェン系ゴムラテックス組成物。
[3] 疎水性物質が、ワックス類、合成ワックス類、ポリオレフイン系ワックス類、低分子量ポ リオレフイン、低密度ポリエチレン、ォレフィン系熱可塑性エラストマ一、エチレン酢酸 ビエル共重合樹脂、石油樹脂、ロジンエステル、アルキルケテンダイマー、アルケニ ル無水コハク酸、アクリル系樹脂、メタクリル酸アルキル重合樹脂、およびスチレン系 樹脂、表面サイズ剤から選ばれた一またはそれ以上の有機化合物であることを特徴 とする請求項 2記載のカルボキシル基含有ジェン系ゴムラテックス組成物。
[4] 疎水性基含有カルボン酸またはその塩が、ロジン類、強化ロジン、不均化ロジン、ダ イマ一酸、石油樹脂サイズ剤、ァルケニルコハク酸、トール油脂肪酸、高級脂肪酸、 二塩基酸、多塩基酸またはそれらの塩であることを特徴とする請求項 2記載のカルボ キシル基含有ジェン系ゴムラテックス組成物。
[5] さらに水溶性ポリマーを含有することを特徴とする、請求項 1〜4のいずれか一項に記 載のカルボキシル基含有ジェン系ゴムラテックス組成物。
[6] 水溶性ポリマーが、タマリンドガム、カラギーナン、カルボキシメチルセルロース、メチ ス、疎水化工チルヒドロキシェチルセルロース、ポリエチレンオキサイド、エチレンォキ サイド.プロピレンオキサイド.ランダム共重合体、水溶性ポリビュルァセタール、ポリビ ニルアルコールであることを特徴とする請求項 5記載のカルボキシル基含有ジェン系 ゴムラテックス組成物。
[7] 水酸化マグネシウムおよび/または水酸化カルシウムをさらに含有することを特徴と する請求項 1〜6のいずれか一項に記載のカルボキシル基含有ジェン系ゴムラテック ス組成物。
[8] 金属原子がアルミニウムまたはチタンであることを特徴とする請求項 1〜7のいずれか 一項に記載のカルボキシノレ基含有ジェン系ゴムラテックス組成物。
[9] 請求項 1〜8のいずれか一項に記載のカルボキシル基含有ジェン系ゴムラテックス組 成物を架橋および成形してなる架橋成形体。
[10] カチオン性カルボキシル基封鎖剤で表面処理されたことを特徴とする請求項 9記載 の架橋成形体。
[11] カチオン性カルボキシル基封鎖剤力 三価以上のカチオン性金属イオン架橋剤、力 チオン性水酸化アルミニウムゾル、二価のジルコニウム化合物、第 4級アンモニゥム 塩基を有するスチレン系表面サイズ剤、カチオン性ェピクロルヒドリン系樹脂、ポリアミ ドエポキシ樹脂、およびキトサン第 4級アンモニゥム塩基を有するスチレン系表面サイ ズ剤、カチオン性ェピクロルヒドリン系樹脂、キトサン、カチオン性スチレンアクリル共 重合体系樹脂、カチオン性スチレンアクリルェマルジヨン系樹脂、カチオン性アタリノレ 共重合体系樹脂、カチオン性ォレフイン'マレイン酸系樹脂、カチオン性ウレタン系榭 脂、またはカチオン性長鎖アルキル含有ポリマー剥離剤である、請求項 10に記載の 架橋成形体。
[12] 浸漬製品であることを特徴とする請求項 9〜: 11のいずれか一項に記載の架橋成形 体。
[13] 下記式(1)、(2)、(3)、(4)および(5)から選ばれた構造を有する一またはそれ以上 の有機金属化合物からなることを特徴とするジェン系ゴムラテックス有機金属架橋剤
[化 1]
0H
I
R-C00-A1 ( 1 )
(Rは飽和もしくは不飽和の脂肪族基、または芳香族基を示す。 ) [化 2]
OH OH
I I
A1-0OC-R -COO-A1 ( 2 )
I I
OH OH
400C - Ri-COO - Al
I
OH ( 3 )
( ま、 2又はそれ以上の整数、 は飽和もしくは不飽和の 2価脂肪族基、または 2価 芳香族基を示す。 )
[化 3]
0H
I
H00C- R COO- Al [-00C-R C00-Al-] m00C-R C00-Al ( 4 )
I I I
OH OH OH
(mは 0、 1又はそれ以上の整数、 Rは飽和もしくは不飽和の 2価脂肪族基、または 2
1
価芳香族基を示す。 )
[化 4]
R2 OH R2 R3OOC-CH-O-T1-O-CH-COOR3 ( 5 )
(Rは飽和または不飽和脂肪族基を示し、 Rは水素原子または飽和もしくは不飽和
2 3
の脂肪族基を示す。 )
PCT/JP2007/062791 2006-06-30 2007-06-26 Agent de réticulation contenant une composition de latex et corps moulé réticulé correspondant WO2008001764A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008522585A JP4457164B2 (ja) 2006-06-30 2007-06-26 架橋剤を含むラテックス組成物およびその架橋成形体
US11/965,629 US20080227913A1 (en) 2006-06-30 2007-12-27 Latex composition comprising a cross-linking agent and molded product thereof
US12/052,964 US8389620B2 (en) 2006-06-30 2008-03-21 Dip forming latex composition containing crosslinking agent and dip formed article obtained therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-180764 2006-06-30
JP2006180764 2006-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/965,629 Continuation-In-Part US20080227913A1 (en) 2006-06-30 2007-12-27 Latex composition comprising a cross-linking agent and molded product thereof

Publications (1)

Publication Number Publication Date
WO2008001764A1 true WO2008001764A1 (fr) 2008-01-03

Family

ID=38845528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062791 WO2008001764A1 (fr) 2006-06-30 2007-06-26 Agent de réticulation contenant une composition de latex et corps moulé réticulé correspondant

Country Status (3)

Country Link
US (1) US20080227913A1 (ja)
JP (2) JP4457164B2 (ja)
WO (1) WO2008001764A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098008A1 (ja) * 2009-02-28 2010-09-02 日本ゼオン株式会社 ディップ成形用組成物及びディップ成形体
KR101297871B1 (ko) * 2009-06-12 2013-08-19 주식회사 엘지화학 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
JP2015532675A (ja) * 2012-08-30 2015-11-12 ショーワ ベスト グローブ, インコーポレイテッド 生分解性組成物、方法およびその用途
JP2017149949A (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 ラテックス組成物および膜成形体
JP2019504164A (ja) * 2015-12-30 2019-02-14 トップ グローブ インターナショナル センディリアン ベルハッドTop Glove International Sdn Bhd ニトリルゴム製品
WO2019088305A1 (ja) * 2017-10-31 2019-05-09 有限会社 フォアロード・リサーチ 架橋剤および架橋剤を含むポリマー組成物ならびにその架橋成形物
WO2020066742A1 (ja) * 2018-09-28 2020-04-02 日本ゼオン株式会社 重合体ラテックスおよび積層体
CN111978936A (zh) * 2020-08-14 2020-11-24 中国石油天然气集团有限公司 钻井液用抗高温纳米乳胶封堵防塌剂及其制备方法
JPWO2019159780A1 (ja) * 2018-02-16 2021-02-12 日本ゼオン株式会社 ラテックス組成物および膜成形体
US10988601B2 (en) 2016-12-09 2021-04-27 Lg Chem, Ltd. Carboxylic acid-modified nitrile-based copolymer latex and latex composition for dip molding comprising same
WO2022168831A1 (ja) 2021-02-04 2022-08-11 ミドリ安全株式会社 ディップ成形用アルミニウム架橋剤、ディップ成形用組成物、手袋、及び手袋の製造方法
CN115108806A (zh) * 2022-05-17 2022-09-27 西卡德高(广州)企业管理有限公司 一种防水保护层材料及其制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506695B1 (de) * 2008-11-14 2009-11-15 Kemira Chemie Ges Mbh Zusammensetzung zur papierleimung
JP5558876B2 (ja) * 2009-09-18 2014-07-23 東海ゴム工業株式会社 誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ
CN102575069B (zh) * 2010-03-23 2014-06-25 东海橡塑工业株式会社 导电性交联体及其制造方法、以及使用其的转换器、挠性布线板、电磁波屏蔽体
JP6022281B2 (ja) 2011-10-11 2016-11-09 住友理工株式会社 トランスデューサ
JP2014162804A (ja) * 2013-02-21 2014-09-08 Nec Corp セルロース系樹脂組成物
US10414908B2 (en) 2014-03-28 2019-09-17 Zeon Corporation Composition for dip molding and dip-molded article
US10793705B2 (en) 2014-11-06 2020-10-06 Top Glove Sdn. Bhd. Latex formulation for making elastomeric products
MY163265A (en) * 2014-11-06 2017-08-21 Top Glove Sdn Bhd Latex formulation for making elastomeric products
JP6459564B2 (ja) * 2015-01-29 2019-01-30 日本ゼオン株式会社 ディップ成形用合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体
KR101964278B1 (ko) 2015-11-24 2019-04-01 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
KR102069829B1 (ko) * 2015-11-30 2020-01-23 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
JP6769445B2 (ja) * 2016-01-27 2020-10-14 日本ゼオン株式会社 ラテックス組成物
AU2016390428C1 (en) * 2016-01-29 2022-07-28 Skinprotect Corporation Sdn Bhd Elastomeric articles, compositions, and methods for their production
EP3421534B1 (en) * 2016-02-25 2020-11-11 Zeon Corporation Method for manufacturing gloves
JP6930525B2 (ja) * 2016-02-25 2021-09-01 日本ゼオン株式会社 手袋の製造方法
AT518307B1 (de) * 2016-03-04 2020-04-15 Semperit Ag Holding Verfahren zum Herstellen eines Prophylaxeartikels
AT518357B1 (de) * 2016-03-04 2018-09-15 Semperit Ag Holding Verfahren zum Herstellen eines Prophylaxeartikels
US11236218B2 (en) 2016-09-30 2022-02-01 Zeon Corporation Latex composition and film molded body
WO2018088327A1 (ja) * 2016-11-10 2018-05-17 日本ゼオン株式会社 合成ポリイソプレンラテックス
MY196814A (en) 2016-12-19 2023-05-03 Midori Anzen Co Ltd Glove dipping composition, method for manufacturing gloves, and gloves
EP3434437B1 (en) 2017-07-25 2021-09-29 Skinprotect Corporation SDN BHD Elastomeric gloves and methods for their production
JP7238879B2 (ja) * 2018-02-16 2023-03-14 日本ゼオン株式会社 ディップ成形体の製造方法
KR101920009B1 (ko) 2018-03-08 2018-11-19 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
KR20210039303A (ko) * 2019-09-30 2021-04-09 탑 글러브 인터내셔널 에스디엔. 비에이치디. 탄성중합체성 물품
US11760867B2 (en) 2019-12-23 2023-09-19 Church & Dwight Co., Inc. Polymer compositions and articles coated therewith
JP7505273B2 (ja) * 2020-06-05 2024-06-25 日清紡ホールディングス株式会社 海洋生分解促進剤
CN111883697B (zh) * 2020-07-17 2022-07-05 东莞华誉精密技术有限公司 一种电池盖多工位压合工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993424A (ja) * 1972-11-11 1974-09-05
JPS503800B1 (ja) * 1967-08-21 1975-02-10
JPS5161544A (ja) * 1974-10-04 1976-05-28 Goodrich Co B F
JPS53134847A (en) * 1977-04-28 1978-11-24 Denki Kagaku Kogyo Kk Curable liquid polymer composition
JPS53136052A (en) * 1977-05-02 1978-11-28 Denki Kagaku Kogyo Kk Curable liquid polymer composition
JPH02150462A (ja) * 1988-12-02 1990-06-08 Nippon Soda Co Ltd 表面処理剤
JPH09241434A (ja) * 1996-03-08 1997-09-16 Nichias Corp 加硫ゴム組成物及び加硫ゴム成形品
WO2000073367A1 (fr) * 1999-05-28 2000-12-07 Suzuki Latex Industry Co., Ltd. Produits de latex non collants
JP2005015514A (ja) * 2003-06-23 2005-01-20 Mitsui Chemicals Inc 水分散型防錆塗料用組成物
JP2005097217A (ja) * 2003-09-26 2005-04-14 Sekisui Plastics Co Ltd 美白用ゲルシート
WO2006057392A1 (ja) * 2004-11-29 2006-06-01 Zeon Corporation ディップ成形用組成物及びディップ成形品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351787A (ja) * 1999-06-07 2000-12-19 Mitsubishi Gas Chem Co Inc 水溶性チタン錯体水溶液の保存法
US20050031884A1 (en) * 2000-11-28 2005-02-10 Kazuo Koide Latex products
US7887842B2 (en) * 2003-02-07 2011-02-15 Teikoku Pharma Usa, Inc. Methods of administering a dermatological agent to a subject

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503800B1 (ja) * 1967-08-21 1975-02-10
JPS4993424A (ja) * 1972-11-11 1974-09-05
JPS5161544A (ja) * 1974-10-04 1976-05-28 Goodrich Co B F
JPS53134847A (en) * 1977-04-28 1978-11-24 Denki Kagaku Kogyo Kk Curable liquid polymer composition
JPS53136052A (en) * 1977-05-02 1978-11-28 Denki Kagaku Kogyo Kk Curable liquid polymer composition
JPH02150462A (ja) * 1988-12-02 1990-06-08 Nippon Soda Co Ltd 表面処理剤
JPH09241434A (ja) * 1996-03-08 1997-09-16 Nichias Corp 加硫ゴム組成物及び加硫ゴム成形品
WO2000073367A1 (fr) * 1999-05-28 2000-12-07 Suzuki Latex Industry Co., Ltd. Produits de latex non collants
JP2005015514A (ja) * 2003-06-23 2005-01-20 Mitsui Chemicals Inc 水分散型防錆塗料用組成物
JP2005097217A (ja) * 2003-09-26 2005-04-14 Sekisui Plastics Co Ltd 美白用ゲルシート
WO2006057392A1 (ja) * 2004-11-29 2006-06-01 Zeon Corporation ディップ成形用組成物及びディップ成形品

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098008A1 (ja) * 2009-02-28 2010-09-02 日本ゼオン株式会社 ディップ成形用組成物及びディップ成形体
JPWO2010098008A1 (ja) * 2009-02-28 2012-08-30 日本ゼオン株式会社 ディップ成形用組成物及びディップ成形体
JP5472286B2 (ja) * 2009-02-28 2014-04-16 日本ゼオン株式会社 ディップ成形用組成物及びディップ成形体
KR101297871B1 (ko) * 2009-06-12 2013-08-19 주식회사 엘지화학 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
US8835552B2 (en) 2009-06-12 2014-09-16 Lg Chem, Ltd. Latex for dip molding, composition for dip molding, preparation method of dip molded product, and dip molded product prepared thereby
US9388302B2 (en) 2009-06-12 2016-07-12 Lg Chem, Ltd. Latex for dip molding, composition for dip molding, preparation method of dip molded product, and dip molded product prepared thereby
JP2015532675A (ja) * 2012-08-30 2015-11-12 ショーワ ベスト グローブ, インコーポレイテッド 生分解性組成物、方法およびその用途
JP2019504164A (ja) * 2015-12-30 2019-02-14 トップ グローブ インターナショナル センディリアン ベルハッドTop Glove International Sdn Bhd ニトリルゴム製品
JP2017149949A (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 ラテックス組成物および膜成形体
US10988601B2 (en) 2016-12-09 2021-04-27 Lg Chem, Ltd. Carboxylic acid-modified nitrile-based copolymer latex and latex composition for dip molding comprising same
JP7260172B2 (ja) 2017-10-31 2023-04-18 有限会社フォアロード・リサーチ 架橋剤および架橋剤を含むポリマー組成物ならびにその架橋成形物
US11339271B2 (en) 2017-10-31 2022-05-24 Yugenkaisha Four Road Research Crosslinking agent, polymer composition containing crosslinking agent, and crosslinked product of same
JPWO2019088305A1 (ja) * 2017-10-31 2020-07-16 有限会社フォアロード・リサーチ 架橋剤および架橋剤を含むポリマー組成物ならびにその架橋成形物
WO2019088305A1 (ja) * 2017-10-31 2019-05-09 有限会社 フォアロード・リサーチ 架橋剤および架橋剤を含むポリマー組成物ならびにその架橋成形物
JP7351289B2 (ja) 2018-02-16 2023-09-27 日本ゼオン株式会社 ラテックス組成物および膜成形体
JPWO2019159780A1 (ja) * 2018-02-16 2021-02-12 日本ゼオン株式会社 ラテックス組成物および膜成形体
CN112739761B (zh) * 2018-09-28 2023-07-14 日本瑞翁株式会社 聚合物胶乳及层叠体
JPWO2020066742A1 (ja) * 2018-09-28 2021-09-24 日本ゼオン株式会社 重合体ラテックスおよび積層体
JP7459796B2 (ja) 2018-09-28 2024-04-02 日本ゼオン株式会社 重合体ラテックスおよび積層体
CN112739761A (zh) * 2018-09-28 2021-04-30 日本瑞翁株式会社 聚合物胶乳及层叠体
WO2020066742A1 (ja) * 2018-09-28 2020-04-02 日本ゼオン株式会社 重合体ラテックスおよび積層体
US11827790B2 (en) 2018-09-28 2023-11-28 Zeon Corporation Polymer latex and layered product
EP3858910A4 (en) * 2018-09-28 2022-06-22 Zeon Corporation POLYMER LATEX AND COATING PRODUCT
CN111978936A (zh) * 2020-08-14 2020-11-24 中国石油天然气集团有限公司 钻井液用抗高温纳米乳胶封堵防塌剂及其制备方法
JP7166499B1 (ja) * 2021-02-04 2022-11-07 ミドリ安全株式会社 ディップ成形用アルミニウム架橋剤、ディップ成形用組成物、手袋、及び手袋の製造方法
WO2022168831A1 (ja) 2021-02-04 2022-08-11 ミドリ安全株式会社 ディップ成形用アルミニウム架橋剤、ディップ成形用組成物、手袋、及び手袋の製造方法
CN115108806A (zh) * 2022-05-17 2022-09-27 西卡德高(广州)企业管理有限公司 一种防水保护层材料及其制备方法
CN115108806B (zh) * 2022-05-17 2023-08-25 西卡德高(广州)企业管理有限公司 一种防水保护层材料及其制备方法

Also Published As

Publication number Publication date
JPWO2008001764A1 (ja) 2009-11-26
JP4647026B2 (ja) 2011-03-09
JP2010059441A (ja) 2010-03-18
US20080227913A1 (en) 2008-09-18
JP4457164B2 (ja) 2010-04-28

Similar Documents

Publication Publication Date Title
WO2008001764A1 (fr) Agent de réticulation contenant une composition de latex et corps moulé réticulé correspondant
US8389620B2 (en) Dip forming latex composition containing crosslinking agent and dip formed article obtained therefrom
JP7240361B2 (ja) ディップ成形用組成物、手袋の製造方法及び手袋
JP7225162B2 (ja) 手袋、ディップ成形用組成物及び手袋の製造方法
EP1209186B1 (en) Nontacky latex products
JP7359496B2 (ja) 架橋剤および架橋剤を含むポリマー組成物ならびにその架橋成形物
JP2009155634A (ja) 架橋剤を含むラテックス組成物およびその架橋成形体ならびにラテックス架橋成形体用表面処理液
CN1214060C (zh) 橡胶制品用聚合物涂料
JP2000512684A (ja) 軟質ニトリルゴムの調合物
JPWO2018117109A1 (ja) 手袋用ディップ組成物、手袋の製造方法及び手袋
TW202146559A (zh) 浸漬成形用組成物、手套之製造方法以及手套
JP2010209163A (ja) 架橋剤および架橋剤を含むポリマー組成物ならびにその架橋成形体
JP7270738B2 (ja) ディップ成形用組成物、手袋の製造方法及び手袋
JP2020037635A (ja) 手袋用ディップ組成物、手袋の製造方法、及び手袋
JP2011195691A (ja) 水性分散体及び塗膜、積層体並びに水性分散体の製造方法
JP2002161171A (ja) 非粘着性ラテックス製品
JPWO2002044262A1 (ja) ラテックス製品
JP2003171469A (ja) キトサン水溶液の製造方法、抗菌性コーティング剤及び抗菌性フィルム又は抗菌性シート
JP3580907B2 (ja) アイオノマー組成物及びその薄膜ならびにその被膜が形成された成形品
JP3799117B2 (ja) 生分解性キトサン含有組成物およびその製造方法
JP2002069255A (ja) 樹脂組成物、その製造法および用途
WO2021010343A1 (ja) ディップ成形用架橋剤、ディップ成形用組成物、及び手袋
JP6984609B2 (ja) 合成ポリイソプレンラテックスの製造方法
TWI792752B (zh) 包含由用於浸漬成型的乳膠組成物衍生的層之浸漬成型物件
CA3206403A1 (en) Aluminum crosslinking agent for dip molding, dip molding composition, gloves, and method for producing gloves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522585

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767597

Country of ref document: EP

Kind code of ref document: A1