JP7270738B2 - ディップ成形用組成物、手袋の製造方法及び手袋 - Google Patents
ディップ成形用組成物、手袋の製造方法及び手袋 Download PDFInfo
- Publication number
- JP7270738B2 JP7270738B2 JP2021533045A JP2021533045A JP7270738B2 JP 7270738 B2 JP7270738 B2 JP 7270738B2 JP 2021533045 A JP2021533045 A JP 2021533045A JP 2021533045 A JP2021533045 A JP 2021533045A JP 7270738 B2 JP7270738 B2 JP 7270738B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- epoxy
- dip
- cross
- glove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
- A41D19/04—Appliances for making gloves; Measuring devices for glove-making
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/02—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C41/14—Dipping a core
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L13/00—Compositions of rubbers containing carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Moulding By Coating Moulds (AREA)
Description
上記のようにエラストマーの粒子内は親油性であるのに対し、その粒子の外側は親水性であると考えられることから、エラストマー粒子内に配向するカルボキシル基と、エラストマー粒子の外側に配向するカルボキシル基とでは、架橋に関与できる架橋剤の性質が異なると考えられる。具体的には、親油性の架橋剤はエラストマー粒子内にまで入り込めるので、エラストマー粒子内に配向するカルボキシル基と架橋反応することで架橋構造を形成できるのに対し、親水性の架橋剤はエラストマー粒子の外側に配向するカルボキシル基と架橋反応することで架橋構造を形成できると考えられる。
従来技術では、エラストマー粒子内とエラストマー粒子の外側の親水性の違いに着目して、性質が異なる架橋剤、具体的には親水性のものと親油性のものを併用することは検討されてこなかった。
そこで、本発明では、性質が異なる架橋剤を併用することにより、従来技術では得られなかった良好な物性、例えば、引張強度、疲労耐久性、および応力保持率が良好なディップ成形品、具体的には手袋を得ること、またそのディップ成形品の作製に用いるディップ成形用組成物等を提供することを課題とする。
[1](メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーと、ポリカルボジイミドと、エポキシ架橋剤と、水と、及びpH調整剤とを少なくとも含むディップ成形用組成物であって、
前記エラストマーにおいて、(メタ)アクリロニトリル由来の構造単位が12~36重量%、不飽和カルボン酸由来の構造単位が2~10重量%、及びブタジエン由来の構造単位が50~75重量%であり、
前記エポキシ架橋剤は、1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤を含み、
前記ポリカルボジイミドは、分子構造内に親水性セグメントを含むポリカルボジイミドを少なくとも1種含むものである、ディップ成形用組成物。
[2]前記エポキシ架橋剤の下記測定方法によるMIBK/水分配率が27%以上である、[1]に記載のディップ成形用組成物。
MIBK/水分配率測定方法:試験管に水5.0g、メチルイソブチルケトン(MIBK)5.0gおよびエポキシ架橋剤0.5gを精秤し、23℃±2℃で3分間攪拌、混合した後、1.0×103Gで10分間遠心分離し、水層とMIBK層に分離させる。次いで、MIBK層を分取、計量し、次式によりMIBK/水分配率を算出する。
MIBK/水分配率(%)=(分配後MIBK層重量(g)-分配前MIBK重量(g))/架橋剤添加重量(g)×100
上記測定を3回行い、平均値をMIBK/水分配率とする。
[3]前記pH調整剤がアルカリ金属の水酸化物である、[1]または[2]に記載のディップ成形用組成物。
[4]さらにエポキシ架橋剤の分散剤を含む、[1]~[3]のいずれかに記載のディップ成形用組成物。
[5]前記エポキシ架橋剤の分散剤が、一価の低級アルコール、以下の式(1)で表されるグリコール、以下の式(2)で表されるエーテル、以下の式(3)で表されるエステルからなる群から選択される1種以上である、[4]に記載のディップ成形用組成物。
HO-(CH2CHR1-O)n1-H (1)
[式(1)中、R1は、水素またはメチル基を表し、n1は1~3の整数を表す。]
R2O-(CH2CHR1-O)n2-R3 (2)
[式(2)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、R3は、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
R2O-(CH2CHR1-O)n3-(C=O)-CH3 (3)
[式(3)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。]
[6]ディップ成形用組成物に対するエポキシ架橋剤の添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上、5.0重量部以下であり、ディップ成形用組成物に対するポリカルボジイミドの添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上、5.0重量部以下である、[1]~[5]のいずれかに記載のディップ成形用組成物。
[7]前記ディップ成形用組成物における、酸化亜鉛の含有量が、前記エラストマー100重量部に対して0.5重量部以下である、[1]~[6]のいずれかに記載のディップ成形用組成物。
[8](1)手袋成形型を、カルシウムイオンを含む凝固剤液中に浸して、該凝固剤を手袋成形型に付着させる工程、
(2)pH調整剤によりpHを9.5~12.0に調整した[1]~[7]のいずれか1つに記載のディップ成形用組成物を撹拌する工程、
(3)前記(1)の凝固剤が付着した手袋成形型を、前記(2)の工程を経たディップ成形用組成物に浸漬し、手袋成形型にディップ成形用組成物を凝固させ、膜を形成させるディッピング工程、
(4)手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作製するゲリング工程、
(5)手袋成形型上に形成された硬化フィルム前駆体から不純物を除去するリーチング工程、
(6)前記リーチング工程の後に、手袋の袖口部分に巻きを作るビーディング工程、
(7)硬化フィルム前駆体を加熱及び乾燥し、硬化フィルムを得る、キュアリング工程、
を含み、上記(3)~(7)の工程を上記の順序で行う、手袋の製造方法。
[9]上記(3)及び(4)の工程をその順序で2回繰り返す、[8]に記載の手袋の製造方法。
[10]上記(6)と(7)の工程の間に、前記硬化フィルム前駆体を(7)の工程の温度よりも低温で加熱及び乾燥するプリキュアリング工程をさらに含む、[8]または[9]に記載の手袋の製造方法。
[11][8]~[10]のいずれかに記載された製造方法により作製された、手袋。
本明細書において、「疲労耐久性」とは、手袋が、使用者(作業者)の汗により性能が劣化して破断することに対する耐性を意味する。その具体的な評価方法については後述する。
また、疲労耐久性については、通常、手袋の指股部分が破れやすいため、指股部分が90分を超えることを実用上の合格ラインとしているが、本発明においては、陶板上でフィルムを作製し、疲労耐久性を見ているため、手のひら部分に相当する疲労耐久性で見ることになる。手のひら部分と指股部分の疲労耐久性については、下式で変換可能である。
式(手のひら疲労耐久性(分)+21.43)÷2.7928=指股疲労耐久性(分)
よって、本発明における疲労耐久性試験の合格ラインは240分とする。
また、本発明においては、引張強度はMPaで表示しており、破断時荷重(N)を試験片の断面積で除した値であり、厚みによる影響を除いた数値であり、合格ラインを通常の薄手手袋(3.2g超~4.5g:膜厚60μm超~90μm)では20MPaとしている。一方、EN規格(EN 455)では、破断時荷重6Nを基準としており、より薄手の手袋(2.7~3.2g:膜厚50~60μm)の手袋においては、35MPaを超える性能が要求される。
(1)ディップ成形用組成物の概要
本実施形態のディップ成形用組成物は、特定のエラストマーと、特定のエポキシ架橋剤と、特定のポリカルボジイミドと、水と、pH調整剤とを少なくとも含み、さらに必要に応じて金属架橋剤等を含むものである。
このディップ成形用組成物は、手袋用のディッピング液としてpH9.5~12.0程度に調整され、各固形分はマチュレーションによって攪拌され、ほぼ均一に分散していると考えられるエマルションである。
ディップ成形用組成物は、XNBR(カルボキシル化(メタ)アクリロニトリルブタジエンエラストマー)を含有するラテックスであり、XNBRが水系エマルションとして粒子径50~250nm程度の粒子を形成している。粒子内と粒子外では環境が大きく異なり、粒子内はブタジエン残基、(メタ)アクリロニトリル残基、(メタ)アクリル酸等から構成される炭化水素を主成分としているため、親油性である。一方、粒子外は、水および水溶性成分(例えばpH調整剤、他)から構成されているため、粒子外は親水性を有している。
エラストマーの粒子外側に配向するカルボキシル基は、ディップ成形用組成物に含まれるポリカルボジイミドと反応することで架橋構造を形成する。
一方、粒子外の親水性領域にエポキシ架橋剤が留まるときは、加水分解により失活してしまうことを考えると、水と接触を避けることができる粒子内の親油性領域に、より多く入ることのできるエポキシ架橋剤の方が失活を免れ、その結果、多くの架橋構造の形成に寄与すると考えられる。
エラストマーは、(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に少なくとも含む。このエラストマーを、カルボキシル化(メタ)アクリロニトリルブタジエンエラストマー又は単に「XNBR」とも記す。またエラストマーとしてXNBRを用いて得た手袋のことを単に「XNBR手袋」ともいう。
ブタジエン由来の構造単位は、1,3-ブタジエン由来の構造単位であることが好ましい。
その他の重合性モノマー由来の構造単位は、エラストマー中に30重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であることが一層好ましい。
乳化重合時の水は、固形分が30~60重量%である量で含まれることが好ましく、固形分が35~55重量%となる量で含まれることがより好ましい。
エラストマー合成後の乳化重合液を、そのまま、ディップ成形用組成物のエラストマー成分として用いることができる。
<ムーニー粘度(ML(1+4)(100℃))によるエラストマーの選択>
手袋は、種々の架橋剤による架橋部分を除いた相当の部分が、凝固剤であるカルシウムで架橋されている(凝固剤としてカルシウムイオンを含むものを用いた場合)。本発明で金属架橋剤を使用しない場合、引張強度はカルシウム架橋によって保持される。
カルシウム架橋による引張強度はエラストマーのムーニー粘度の高さにほぼ比例することがわかっている。有機架橋剤を用いる架橋を行わない場合でムーニー粘度が80のエラストマーを用いた場合は約15MPa、ムーニー粘度が100の場合は約20MPaの引張強度になる。したがって、ムーニー粘度が100~150程度のエラストマーを選択することが好適である。
ムーニー粘度の上限は、ムーニー粘度そのものの測定限界が220であり、ムーニー粘度が高すぎると成形加工性の問題が生じるので、概ね220である。一方、ムーニー粘度が低すぎるエラストマーを用いた場合には引張強度が出ない。
エポキシ架橋剤がエラストマー鎖内部(粒子内)に侵入しやすくするためには、エラストマー鎖の分岐が少なく、直鎖状であるエラストマーが好適である。分岐の少ないエラストマーは、各ラテックスメーカーにおいてその製造時に各種の工夫がなされているが、概して言えば、重合温度の低いコールドラバー(重合温度5~25℃)の方がホットラバー(重合温度25~50℃)より好ましいと考えられる。
本発明の実施形態に用いるエラストマーにおいては、ゲル分率は少ない方が好ましい。
メチルエチルケトン(MEK)不溶解分の測定では、40重量%以下であることが好ましく、10重量%以下であることがより好ましい。ただし、MEK不溶解分は、ムーニー粘度のような引張強度との相関性はない。
なお、このことは、エラストマーのアセトン可溶成分が多いエラストマーが好適であるとも言え、これによってエポキシ架橋剤が親油性環境であるエラストマー粒子内に侵入して保護されるので、エラストマーの疲労耐久性も高くなると考えられる。
本発明の実施形態に用いるエラストマーは、水系エマルションとして粒子径50~250nm程度の粒子を形成している。エラストマーには、水との親和性が比較的高いものと低いものがあり水との親和性が低いほど、粒子間の水の抜けやすさ(離水性)が高くなり、離水性が高いほどエラストマー粒子間の架橋が円滑に行われる。
このため、離水性の高いXNBRを使用すれば架橋温度もより低くすることができる。
本発明の実施形態に用いるエラストマーにおいて、燃焼ガスの中和滴定法により検出される硫黄元素の含有量は、エラストマー重量の1重量%以下であることが好ましい。
硫黄元素の定量は、エラストマー試料0.01gを空気中、1350℃で10~12分間燃焼させて発生する燃焼ガスを、混合指示薬を加えた過酸化水素水に吸収させ、0.01NのNaOH水溶液で中和滴定する方法により行うことができる。
(a)本発明の実施形態にかかるエポキシ架橋剤
本発明の実施形態にかかるエポキシ架橋剤は、1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するものであり、MIBK/水分配率が27%以上、より好ましくは50%以上であるエポキシ架橋剤である。
以下、順を追って説明する。
i.1分子中に3個以上のエポキシ基を有するエポキシ化合物
1分子中に3個以上のエポキシ基を有するエポキシ化合物は、通常複数のグリシジルエーテル基と、脂環族、脂肪族又は芳香族の炭化水素を有する母骨格を持つもの(以下「3価以上のエポキシ化合物」ともいう)である。3価以上のエポキシ化合物は、3個以上のグリシジルエーテル基を有するエポキシ化合物を好ましく挙げることができる。3個以上のグリシジルエーテル基を有するエポキシ化合物は、通常、エピハロヒドリンと1分子中に3個以上の水酸基を持つアルコールとを反応させて製造することができる。
1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤としては、その他ポリグリシジルアミン、ポリグリシジルエステル、エポキシ化ポリブタジエン、エポキシ化大豆油等を挙げることができる。
3価以上のエポキシ化合物の中でも、ポリグリシジルエーテルを用いることが好ましい。
具体的には、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ソルビトールトリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ジグリセロールトリグリシジルエーテルから選択される少なくとも一種を含むエポキシ架橋剤を用いることが好ましく、中でもトリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、グリセロールトリグリシジルエーテル、ジグリセロールトリグリシジルエーテル及びペンタエリスリトールテトラグリシジルエーテルの中から選択される少なくとも一種を含むエポキシ架橋剤を用いることがさらに好ましい。また、ソルビトール骨格を有さないエポキシ化合物を含むエポキシ架橋剤を用いることが好ましい。
エポキシ架橋剤の中でも、グリシジルエーテル基を有するエポキシ化合物を含むものについては、一般にアルコールの水酸基とエピハロヒドリンを以下のように反応させて製造することができる。なお、以下の(I)では、説明を簡略化するために、アルコールとして1価のものを使用し、エピハロヒドリンとしてエピクロロヒドリンを使用している。
そのため、例えば、3価のエポキシ架橋剤は、2価及び3価のエポキシ化合物の混合物となることが一般的である。通常、3価のエポキシ架橋剤といわれているものも、主成分である3価のエポキシ化合物の含有率は50%程度といわれている。
また、エポキシ架橋剤には水に溶けにくいものがあり、これは、エポキシ化合物の構造中に含まれる塩素等の影響が大きい。
本発明において使用するエポキシ架橋剤は、グリシジルエーテル基を有するエポキシ化合物を含むものである場合、通常、エピハロヒドリンと、3個以上の水酸基を有するアルコールとを反応させて得られる3価以上のエポキシ化合物を含有するエポキシ架橋剤である。
より具体的には、ディップ成形品の良好な引張強度、疲労耐久性、および応力保持率の観点から、ナガセケムテックス社製デナコールEx-313、Ex-314、Ex-321、Ex-321B、Ex-411、Ex-421、Ex-612、Ex-622等の製品が挙げられる。
なお、エピハロヒドリンとして、エピクロロヒドリン、エピブロモヒドリン、及びエピアイオダイトヒドリンから選ばれる一種以上を使用することができる。これらの中でもエピクロロヒドリンを用いることが好ましい。また、3価以上のエポキシ架橋剤と、2価のエポキシ架橋剤を混ぜて使用することができる。あるいは、3価以上のエポキシ架橋剤を製造する際に、3個以上の水酸基を有するアルコールと、2個の水酸基を有するアルコールを混合して反応させることもできる。
従来から用いられていた2価のエポキシ架橋剤では、エポキシ化合物の1分子で2つのカルボキシル基間を架橋する2点架橋であったのに対し、本発明の実施形態で用いるエポキシ架橋剤に含まれるエポキシ化合物は、1分子で3以上のカルボキシル基間を架橋する多点架橋ができることが特徴である。これによりエラストマー分子間の架橋が多くなって、従来の2点架橋の手袋に比較して、圧倒的な疲労耐久性をもたらしていると考えられる。より良好な疲労耐久性を得るために、エポキシ架橋剤に含まれるエポキシ化合物の1分子中に含まれるエポキシ基の数の上限値は、特に限定されないが、例えば8を挙げることができる。また、従来メインとして使用されている2価のエポキシ化合物だとエポキシ基が1つ失活するだけでエポキシ化合物が架橋機能を失ってしまう。
これに対し、本発明において用いる3価以上のエポキシ化合物を含むエポキシ架橋剤だと、エポキシ化合物のエポキシ基の1つが失活しても、2個以上のエポキシ基が残存するので、架橋機能が残ることになる。これにより、本発明は従来の2価のエポキシ化合物を用いた場合と比べてより効率的に架橋を行うことができる。
これにより、従来に比べて少ない添加量のエポキシ架橋剤で同一性能の手袋が得られる。
以下の式(II)で示すように、エポキシ架橋は以下の反応により生じる。なお、以下(II)で示すエポキシ化合物は説明を簡略化する観点から1価のものを用いている。
ディップ成形用組成物に含まれるXNBRの粒子内の親油性環境下で失活を免れていたエポキシ架橋剤は、硬化フィルム前駆体となり、キュアリング工程において全体が親油環境となって加熱されたとき、粒子外に突き出たXNBRのカルボキシル基と反応する。このとき、離水性の良いXNBRを選定することにより架橋効率が上がり、架橋温度を下げることができる。
<平均エポキシ基数>
上述のように3価以上のエポキシ架橋剤であっても、2価のエポキシ化合物も副反応として含まれることがあるので、各製品を評価するうえでは、平均エポキシ基数を把握して3価のエポキシ基を有する化合物の割合を把握しておくことが重要である。
平均エポキシ基数は、エポキシ架橋剤に含まれる各エポキシ化合物をGPCにより特定し、それぞれのエポキシ化合物の1分子中のエポキシ基の数に、該エポキシ化合物のモル数を乗じて得たエポキシ基数を、各エポキシ化合物について求め、それらの合計値をエポキシ架橋剤に含まれる全てのエポキシ化合物に含まれる全てのエポキシ化合物の合計モル数で割って得られる。
本発明の実施形態に用いるエポキシ架橋剤の平均エポキシ基数は2.0を超えるものであり、手袋の良好な疲労耐久性を得る観点から、平均エポキシ基数が2.3以上であることが好ましく、2.5以上がより好ましい。一方、平均エポキシ基数の上限については特段制限されないが、例えば10.0以下を挙げることができる。
好適な疲労耐久性を得る観点から、エポキシ架橋剤のエポキシ当量は、100g/eq.以上230g/eq.以下であることが好ましい。エポキシ当量が同程度であっても、3価のエポキシ架橋剤の方が、2価のエポキシ架橋剤に比較して疲労耐久性が良い傾向がある。
エポキシ架橋剤のエポキシ当量は、エポキシ架橋剤の平均分子量を平均エポキシ基数で除した値であり、エポキシ基1個当たりの平均重量を示す。この値は過塩素酸法により計測することができる。
また、水中分散性の観点から、エポキシ架橋剤が含有するエポキシ化合物の分子量は150~1500であることが好ましく、175~1400であることがより好ましく、200~1300であることがより好ましい。
エポキシ架橋剤の添加量は、エラストマー間に充分な架橋構造を導入して疲労耐久性を確保する観点から、エポキシ化合物の1分子中のエポキシ基の数や純度にも依るが、エラストマー100重量部に対して0.2重量部以上を挙げることができる。実用的には、極薄(2.7g手袋、膜厚50μm程度)であってもエラストマー100重量部に対して0.4重量部以上で十分な性能の手袋を製造できる。一方、添加量が過剰量となるとかえってエラストマーの特性を低下させる恐れがあることから、エポキシ架橋剤のディップ成形用組成物への添加量の上限は、エラストマーを100重量部に対して5重量部であることが好ましいと考えられる。
一方、本発明においては、薄手手袋の場合、エポキシ架橋剤の添加量はエラストマー100重量部に対して0.4~1.0重量部が好ましく、0.5~0.7重量部がより好ましい。
ただし、厚手手袋(膜厚200超~300μm程度)の場合のように、亜鉛を減らすときには、さらにエポキシ架橋剤の添加量を増やすことも考えられる。
本発明において、下記測定方法によるMIBK/水分配率が27%以上、好ましくは50%以上、さらに好ましくは70%以上のエポキシ架橋剤を用いることで、応力保持率の高いディップ成形物を得るためのディップ成形用組成物が得られると考えられる。
まず、試験管に水約5.0g、MIBK約5.0g、エポキシ架橋剤約0.5gを精秤して加える。MIBKの重量をM(g)、エポキシ架橋剤の重量をE(g)とする。
この混合物を23℃±2℃の温度下で3分間良く攪拌混合した後、1.0×103Gの条件で10分間遠心分離し、水層とMIBK層に分ける。次いで、MIBK層の重量を測定し、これをML(g)とする。
MIBK/水分配率(%)=(ML(g)-M(g))/E(g)×100
なお、本明細書におけるMIBK/水測定法については、水とMIBKの重量を基準に計測したが、MIBKが水を若干溶解するため、実験数値としてマイナス%が出るが、同一基準で計測しているので、基準として採用可能であると考えた。
上述したエポキシ架橋剤は、ディップ成形用組成物中において均一な分散状態に保つ必要がある。一方、本発明の実施形態におけるMIBK/水分配率が27%以上のエポキシ架橋剤においては、MIBK/水分配率が高いものほどラテックス溶液に架橋剤を添加するのが難しく、また分散しにくいという問題があることが分かってきた。
特に、MIBK/水分配率が50%以上のエポキシ架橋剤は、水に溶かしたときに白濁が見られるので、分散剤による分散を行うことが好ましい。
HO-(CH2CHR1-O)n1-H (1)
(式(1)中、R1は、水素またはメチル基を表し、n1は1~3の整数を表す。)
R2O-(CH2CHR1-O)n2-R3 (2)
[式(2)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、R3は、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
R2O-(CH2CHR1-O)n3-(C=O)-CH3 (3)
[式(3)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。]
式(1)で表されるグリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどを挙げることができる。
式(2)で表されるエーテルの内、グリコールエーテルとしては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテルなどが挙げられる。また、式(2)で表されるエーテルとして、n2=0のエーテルも用いることができる。
式(3)で表されるエステルとしては、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどを挙げることができる。
上記のエポキシ架橋剤の分散剤を用いる場合は、一種のみを用いてもよく、2種以上を組み合わせて用いてもよい。なお、上記分散剤は、予め水と混合せずに使用することが好ましい。
上記の中でも、メタノール、エタノール、ジエチレングリコールを用いることが好ましく、揮発性、引火性の観点からジエチレングリコールを用いることが特に好ましい。
ジエチレングリコールは、親水性の高いグリコール基とエーテル構造を有すると同時に親油性のある炭化水素構造が含まれ、水にもエラストマーにも溶けやすいので好適であると推測される。
ディップ成形用組成物を調製する際に、水溶率が低いエポキシ架橋剤を用いる場合には、予めそのエポキシ架橋剤をエポキシ架橋剤の分散剤に溶解させた上で、ディップ成形用組成物の他の構成成分と混合することが好ましい。
本発明の実施形態に係るディップ成形用組成物は、架橋剤としてポリカルボジイミドを含有する。本発明の実施形態で用いるポリカルボジイミドは、カルボキシル基との架橋反応を行う中心部分とその端部に付加した親水性セグメントからなる。また、一部の端部は、封止剤で封止されていてもよい。
以下、ポリカルボジイミドの各部分について説明する。
まず、本発明の実施形態において使用するポリカルボジイミドの中心部分の化学式を原料となるジイソシアネートの形で以下に示す。
(1)OCN-(R1-(N=C=N)-)m-R1-NCO
上記式(1)の-N=C=N-はカルボジイミド基でありXNBRのカルボキシル基と反応する。
式中、R1は後述するジイソシアネートにより例示される。
mは、4~20の整数であり、重合度(ポリカルボジイミドの1分子あたりのカルボジイミド官能基数)を示す。mを4以上とすることにより、本発明の実施形態で用いるエラストマー(XNBR)のカルボキシル基間を多点架橋することができ、これで本発明の実施形態で用いるエラストマー(XNBR)を大きくまとめられることによって従来の2点架橋の架橋剤に比べ、非常に良好な疲労耐久性が得られる要因になっていると考えられる。
ポリカルボジイミドの上記中心部分は、通常ジイソシアネートの脱炭酸縮合により生じたものであり、両末端にイソシアネート残基を有する。
ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート、又はこれらの混合物を挙げることができる。具体的には1,5-ナフチレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、4,4-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネート、及びテトラメチルキシリレンジイソシアネートなどを例示できる。耐候性の観点より、脂肪族または脂環族ジイソシアネートの脱二酸化炭素を伴う縮合反応により生成するポリカルボジイミドを配合することが好適である。すなわち、上記ジイソシアネートは二重結合を持たないため、これらから生成したポリカルボジイミドは紫外線等による劣化が起きにくい。
ジイソシアネートの種類の代表的なものはジシクロヘキシルメタン-4,4’-ジイソシアネートである。
カルボジイミド基は、水と反応しやすいため本発明の実施形態にかかるディップ成形用組成物中では、本発明の実施形態に用いるエラストマー(XNBR)との反応力を失わないよう水から保護する目的で、ポリカルボジイミドの一部には、親水性セグメントを末端(イソシアネート基)に付加することが必須である。
親水性セグメントの構造を下式(2)に示す。
(2)R2-O-(CH2-CHR3-O-)n-H
上記式(2)中、R2は炭素数1~4のアルキル基、R3は水素原子又はメチル基であり、nは5~30の整数である。
親水性セグメントは、ディップ成形用組成物(ディップ液)中(水中)においては、水と反応しやすいポリカルボジイミドの中心部分を取り巻いてカルボジイミド基を保護する機能を持つ(シェル/コア構造)。
一方、乾燥すると親水性セグメントが開いてカルボジイミド基が現れ、反応できる状態になる。そのため、本発明のディップ成形による手袋製造においては、後述するキュアリング工程のときにはじめて水分量を低下させ、親水性セグメントを開いてカルボジイミド基をXNBRのカルボキシル基と架橋させることが重要である。この目的で、後述する保湿剤をゲリング工程において、離漿性の高いXNBRを乾燥させないためにディップ成形用組成物に加えることも有効である。
なお、親水性セグメントは、中心部分の両端にあってもよいし片方にあってもよい。また親水性セグメントを有するものと有しないものの混合物でもよい。
親水性セグメントを付加していない端部は、封止剤で封止されている。
封止剤の式は以下の式(3)で示される。
(3)(R4)2N-R5-OH
上記式(3)中、R4は炭素数が6以下のアルキル基であり、入手性の観点から、4以下のアルキル基であることが好ましい。R5は炭素数1~10のアルキレン、又はポリオキシアルキレンである。
本発明の実施形態で用いるポリカルボジイミドにおける、カルボジイミド官能基数は、4以上であることが好ましい。カルボジイミド官能基数が4以上であることで、多点架橋が確実に行われ、実施上必要な疲労特性が満たされる。
カルボジイミド官能基数の数値については、後述するポリカルボジイミド当量と、数平均分子量の値から求めることができる。
1分子あたりのカルボジイミド官能基数=ポリカルボジイミドの平均重合度(数平均分子量/カルボジイミド当量)は3.8以上であり、さらに好ましくは9以上である。これは本発明の実施形態にかかる手袋の特徴である多点架橋の構造を適切に形成し、高い疲労耐久性を手袋に持たせるために必要である。
ポリカルボジイミドの分子量は、数平均分子量で500~5000が好ましく、1000~4000であればなおよい。
数平均分子量の測定は、GPC法(ポリスチレン換算により算出)により次のように行うことができる。
測定装置:東ソー株式会社製 HLC-8220GPC
カラム:Shodex KF-G+KF-805Lx 2本+KF-800D
溶離液:THF
測定温度:カラム恒温槽40℃
流速:1.0mL/min
濃度:0.1重量/体積%
溶解性:完全溶解
前処理 試料を窒素風乾後、70℃、16時間真空乾燥を行い、調整する。
測定前に0.2μmフィルタでろ過する
検出器:示差屈折計(RI)
数平均分子量は、単分散ポリスチレン標準試料を用いて換算する。
カルボジイミド当量は、シュウ酸を用いた逆滴定法により定量されたカルボジイミド基濃度から次式(I)で算出される値である。
カルボジイミド当量=カルボジイミド基の式数(40)×100/カルボジイミド基濃度(%) (I)
本発明の実施形態にかかるディップ成形用組成物における、上記のポリカルボジイミドの添加量は、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上5.0重量部以下を挙げることができ、0.3重量部以上2.5重量部以下であることが好ましく、0.3重量部以上2.0重量部以下であることがより好ましい。含有量の範囲については、5.0重量部を超えると採算性が悪化するのに対し、0.2重量部以上という少ない添加量でも他の硫黄系手袋を超える高い応力保持率を持たせることができることを検証している。
ディップ成形用組成物は、後述するマチュレーション工程の段階でアルカリ性に調整しておく必要がある。アルカリ性にする理由のひとつは、架橋を十分に行うために、エラストマーの粒子から-COOHを-COO-として粒子の外側に配向させ、粒子間架橋を十分に行わせるためである。
好ましいpHの値は9.5~12.0であり、pHが低くなると-COOHの粒子外への配向が少なくなり架橋が不十分となり、pHが高くなりすぎるとラテックスの安定性が悪くなる。
pH調整剤としては、アンモニア、アンモニウム化合物、アミン化合物及びアルカリ金属の水酸化物から得られる一種以上を使用できる。これらの中でも、pH調整やゲリング条件などの製造条件が容易であるため、アルカリ金属の水酸化物を用いることが好ましく、その中でも水酸化カリウム(以下、KOHともいう)が最も使用しやすい。以下、実施例ではpH調整剤はKOHを主に使用して説明する。
pH調整剤の添加量は、ディップ成形用組成物中のエラストマー100重量部に対して0.1~4.0重量部程度を挙げることができるが、通常、工業的には1.8~2.0重量部程度を使用する。なお、pH測定時の温度は30℃とする。
本発明の実施形態にかかる手袋を構成するエラストマーにおいては、凝固剤としてカルシウムイオンを含むものを用いた場合、カルシウムのイオン結合と組み合わされた架橋構造を持っている。
カルシウムは、人の汗を模した人工汗液中ですぐに溶出しやすいので引張強度が低下しやすい。また、カルシウムイオンは、他の金属架橋剤である酸化亜鉛またはアルミニウム錯体に比べイオン半径が大きく有機溶媒の非透過性が不十分である。そのため、亜鉛架橋またはアルミニウム架橋によって一部のカルシウム架橋を置換しておくことは有効であると考えられる。また、酸化亜鉛またはアルミニウム錯体の量を増やすことによって引張強度、耐薬性をコントロールすることができる。特に架橋後のアルミニウムは、人工汗液のような汗を模した溶液中に非常に溶出しにくいという利点がある。
酸化亜鉛を用いたイオン結合による架橋では、手袋に高い応力保持率をもたらすことは難しい。
アルミニウムは、イオン半径が上記の中で最も小さく、耐薬性、引張強度を出すには最適であるが、あまり多く添加すると手袋が硬くなりすぎるので、その取り扱いは難しい。
二価金属酸化物、例えば酸化亜鉛、及び/またはアルミニウム錯体の添加量は、ディップ成形用組成物中のエラストマー100重量部に対して、通常、2.0重量部以下であり、好ましくは1.0重量部以下であり、応力保持率を良好にする観点で、実質的に添加しないことが好ましい。実質的に添加しないとは、ディップ成形用組成物におけるこれらの含有量が検出限界以下ということである。
しかし、アルミニウム塩の水溶液は中性~弱塩基性の時は水酸化アルミニウムのゲルとなってしまい、架橋剤として用いることができない。それを解決するために、配位子として多塩基性ヒドロキシカルボン酸を用いた手法が考えられる。ここでの多塩基性ヒドロキシカルボン酸としては、クエン酸、リンゴ酸、酒石酸、乳酸などの水溶液が利用できる。
この中では、手袋の引張強度、疲労耐久性の点からはリンゴ酸が、アルミニウム水溶液の安定性の点からは、クエン酸を配位子として用いることが好ましい。
ディップ成形用組成物は、上記の成分と水を含むものであり、それ以外にも、通常は、その他の任意成分を含んでいる。ディップ成形用組成物における水の含有量は、通常、78~92重量%を挙げることができる。
本実施形態の手袋は、以下の製造方法により好ましく製造することができる。
すなわち、
(1)凝固剤付着工程(手袋成形型に凝固剤を付着させる工程)、
(2)マチュレーション工程(ディップ成形用組成物を調整し、攪拌する工程)、
(3)ディッピング工程(手袋成形型をディップ成形用組成物に浸漬する工程)、
(4)ゲリング工程(手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作る工程)、
(5)リーチング工程(手袋成形型上に形成された硬化フィルム前駆体から不純物を除去する工程)、
(6)ビーディング工程(手袋の袖口部分に巻きを作る工程)、
(7)プリキュアリング工程、(硬化フィルム前駆体をキュアリング工程よりも低温で加熱及び乾燥する工程)ただし、本工程は任意工程である。
(8)キュアリング工程(架橋反応に必要な温度で加熱及び乾燥する工程)
を含み、上記(3)~(8)の工程を上記の順序で行う手袋の製造方法である。
また、上記の製造方法において、上記(3)(4)の工程を2回繰り返す、いわゆるダブルディッピングによる手袋の製造方法も含む。
(1)凝固剤付着工程
(a)モールド又はフォーマ(手袋成形型)を、凝固剤及びゲル化剤としてCa2+イオンを5~40重量%、好ましくは8~35重量%含む凝固剤溶液中に浸す。ここで、モールド又はフォーマの表面に凝固剤等を付着させる時間は適宜定められ、通常、10~20秒間程度である。凝固剤としては、カルシウムの硝酸塩又は塩化物が用いられる。エラストマーを析出させる効果を有する他の無機塩を用いてもよい。中でも、硝酸カルシウムを用いることが好ましい。この凝固剤は、通常、5~40重量%含む水溶液として使用される。
また、凝固剤を含む溶液は離型剤としてステアリン酸カリウム、ステアリン酸カルシウム、鉱油、又はエステル系油等を0.5~2重量%程度、例えば1重量%程度含むことが好ましい。
(b)凝固剤溶液が付着したモールド又はフォーマを炉内温度110℃~140℃程度のオーブンに1~3分入れ、乾燥させ手袋成形型の表面全体又は一部に凝固剤を付着させる。この時注意すべきは、乾燥後の手型の表面温度は60℃程度になっており、これが以降の反応に影響する。
(c)カルシウムは、手袋成形型の表面に膜を形成するための凝固剤機能としてばかりでなく、最終的に完成した手袋の相当部分の架橋機能に寄与している。後で添加される金属架橋剤は、このカルシウムの架橋機能の弱点を補強するためのものともいえる。
(a)ディップ成形用組成物のpH調整剤の項目で説明したように、本発明の実施形態にかかるディップ成形用組成物をpH9.5~12.0に調整し、攪拌する工程である。この工程により、ディップ成形用組成物中の成分が分散・均一化すると考えられる。
(b)実際の手袋の製造工程においては、通常大規模なタンクで本工程を行うため、マチュレーションにも24時間程度かかることがある。これをディップ槽に流し、ディッピングしていくがディップ槽の水位が下がるのに応じて継ぎ足していく。
前記マチュレーション工程で、攪拌した本発明の実施形態にかかるディップ成形用組成物(ディップ液)をディップ槽に流し入れ、このディップ槽中に上記凝固剤付着工程で凝固剤を付着、乾燥した後のモールド又はフォーマを通常、1~60秒間、25~35℃の温度条件下で浸漬する工程である。
この工程で凝固剤に含まれるカルシウムイオンにより、ディップ成形用組成物に含まれるエラストマーをモールド又はフォーマの表面に凝集させて膜を形成させる。
(a)従来の硫黄架橋手袋においては、ゲリングオーブンで100℃近くまで加熱することが常識であった。これは、ラテックスの架橋を若干進ませて、後のリーチングの時に膜が変形しないように一定程度ゲル化するためであった。同時に、膜中にカルシウムを分散させ、後にカルシウム架橋を十分にさせる目的もあった。
これに対し、本発明のようにポリカルボジイミドとエポキシ架橋剤を用いる場合のゲリング条件は、ポリカルボジイミドが乾燥して開環しないようにする条件を用いる。
通常、20℃~70℃程度の温度範囲内で20秒以上である。
この条件はpH調整剤としてKOHを使用する場合の条件であり、pH調整剤としてアンモニア化合物やアミン化合物を使用するときは、これとは異なる条件を採用してもよい。
(b)一般量産においてエポキシ架橋剤を使用する際のゲリング条件は、すでにモールド又はフォーマがある程度の温度を有していることや、工場内の周囲温度が50℃程度である場合が多いことなどから定められたものである。さらに、ゲリング工程の温度の上限については、品質を上げるため、あえて加熱するケースも想定したものである。
また、ゲリング工程の時間については、通常1分30秒~4分を挙げることもできる。
(a)リーチング工程は、硬化フィルム前駆体の表面に析出したカルシウムや、余剰の水溶性物質等の後のキュアリングに支障となる不純物を水洗除去する工程である。通常は、フォーマを40~60℃の温水に1.5~4分程度接触させる。具体的な接触方法として水に浸漬することが挙げられる。
(b)金属架橋剤として酸化亜鉛及び/又はアルミニウム錯体をディップ成形用組成物が含む場合、リーチング工程のもう1つの役割は、それまでアルカリ性に調整していた硬化フィルム前駆体を水洗して中性に近づけ、硬化フィルム前駆体中に含まれている酸化亜鉛又はアルミニウム錯イオンをZn2+、Al3+にし、後のキュアリング工程で金属架橋を形成できるようにすることである。
リーチング工程が終了した硬化フィルム前駆体の手袋の袖口端部を巻き上げて適当な太さのリングを作り、補強する工程である。リーチング工程後の湿潤状態で行うと、ロール部分の接着性が良い。
(a)前記ビーディング工程の後、硬化フィルム前駆体を後のキュアリング工程よりも低温で加熱及び乾燥する工程である。通常、この工程では60~90℃で30秒間~5分間程度、加熱及び乾燥を行う。プリキュアリング工程を経ずに高温のキュアリング工程を行うと、水分が急激に蒸発し、手袋に水膨れのような凸部ができて、品質を損なうことがあるが、本工程を経ずにキュアリング工程に移行してもよい。
(b)本工程を経ずに、キュアリング工程の最終温度まで温度を上げることもあるが、キュアリングを複数の乾燥炉で行いその一段目の乾燥炉の温度を若干低くした場合、この一段目の乾燥はプリキュアリング工程に該当する。
(a)キュアリング工程は、高温で加熱及び乾燥し、最終的に架橋を完成させ、手袋としての硬化フィルムにする工程である。ポリカルボジイミドとエポキシ架橋剤を用いる手袋は、高温でないと架橋が不十分となるので、90~150℃で10~30分、好ましくは15~30分程、加熱及び乾燥させる。キュアリング工程の好ましい温度としては、100~140℃を挙げることができる。
(a)このキュアリング工程において、手袋の架橋は完成するが、この手袋はXNBRのカルボキシル基とカルシウム架橋、ポリカルボジイミドによる架橋、エポキシ架橋剤による架橋とから形成されている。
手袋の製造方法について、上記ではいわゆるシングルディッピングの説明を行った。これに対し、ディッピング工程とゲリング工程を2回以上行うことがあり、これを通常ダブルディッピングという。
ダブルディッピングは、厚手手袋(膜厚200超~300μm程度)を製造するときや、薄手手袋の製造方法においても、ピンホールの生成防止等の目的で行われる。
(1)本実施形態における手袋の構造
第1の実施形態における手袋は(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーの硬化フィルムからなる手袋であって、前記エラストマーは不飽和カルボン酸由来の構造単位が有するカルボキシル基と、ポリカルボジイミドとの架橋構造、及びエポキシ化合物との架橋構造を有している。
また、本手袋は、これに加え、凝固剤由来のカルシウムとカルボキシル基との架橋構造も有している。
この手袋は、好ましくは上述の本実施形態のディップ成形用組成物を用いて製造することができる。エラストマーは、(メタ)アクリロニトリル由来の構造単位が12~36重量%、不飽和カルボン酸由来の構造単位が2~10重量%、及びブタジエン由来の構造単位が50~75重量%であることが好ましい。
第2の実施形態における手袋は、第1の実施形態における架橋構造に加え、エラストマーのカルボキシル基と、亜鉛および/またはアルミニウムとの架橋構造を持つものである。
本発明の実施形態にかかる手袋の膜厚として、0.04~0.2mmを挙げることができるが、これに限定されない。この膜厚の範囲のうち、0.09超~0.2mm(90超~200μm)は市販される手袋の普通の厚みの範囲である。
他方で、第1の実施形態における手袋は、特に厚手(膜厚200超~300μm)の手袋を製造する際に有効である。フィルムの膜厚が厚ければ、引張強度、疲労耐久性等を出せるからである。
一方で、第2の実施形態における手袋として、カルシウム架橋の弱点を、亜鉛および/またはアルミニウム架橋で補ったものを挙げることができる。カルシウム架橋は、初期性能としての強度は維持できるものの、塩水中でのカルシウムの溶出による強度低下を起こしやすく、薬品を透過しやすいという欠点を亜鉛および/またはアルミニウム架橋で補うことができる。
第2の実施形態にかかる手袋は、特に、超薄手~薄手の手袋(膜厚40~90μm)を製造する際に好ましい。
以上のように、第2の実施形態による手袋は、エポキシ架橋、カルシウム架橋、亜鉛および/またはアルミニウム架橋の比率を変えることによって、手袋の性能を変化させることができる。
(a)本発明の実施形態にかかる手袋は、他の加硫促進剤フリーの手袋と同じく、従来のXNBR手袋のように硫黄及び加硫促進剤を実質的に含まないので、IV型アレルギーを生じさせないことが特徴である。ただし、エラストマー製造時の界面活性剤等に硫黄が含まれているため、ごく微量の硫黄は検出されることがある。
手袋の伸びについては、後述する引張試験時の破断時伸び率が500~750%、100%モジュラス(伸び100%時における引張応力)が、3~10MPaの範囲内、疲労耐久性については指股部分で90分以上(手のひらでは240分以上に相当)が合格基準である。
本発明の実施形態にかかる手袋は、上記の物性を満たすものである。
以下、本発明を実施例に基づきより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。特に断らない限り、「%」は「重量%」であり、「部」は「重量部」である。
また、以下の説明において「重量部」は、原則としてエラストマー100重量部に対しての重量部数を示す。
各添加剤の重量部数は固形分量によるものであり、エポキシ架橋剤の重量部数については架橋剤の総重量によるものである。
また、ディップ成形用組成物に使用したXNBRとエポキシ架橋剤の種類については、各表に記載している。
<アクリロニトリル(AN)残基量及び不飽和カルボン酸(MMA)残基量>
上記各エラストマーを乾燥して、フィルムを作製した。該フィルムをFT-IRで測定し、アクリロニトリル基に由来する吸収波数2237cm-1とカルボン酸基に由来する吸収波数1699cm-1における吸光度(Abs)を求め、アクリロニトリル(AN)残基量及び不飽和カルボン酸(MMA)残基量を求めた。
アクリロニトリル残基量(%)は、予め作成した検量線から求めた。検量線は、各エラストマーに内部標準物質としてポリアクリル酸を加えた、アクリロニトリル基量が既知の試料から作成したものである。不飽和カルボン酸残基量は、下記式から求めた。
不飽和カルボン酸残基量(wt%)=[Abs(1699cm-1)/Abs(2237cm-1)]/0.2661
上式において、係数0.2661は、不飽和カルボン酸基量とアクリロニトリル基量の割合が既知の、複数の試料から検量線を作成して求めた換算値である。
硝酸カルシウムと炭酸カルシウムとの4:1混合物の飽和水溶液200mlを室温にて攪拌した状態で、各エラストマーラテックスをピペットにより滴下し、固形ゴムを析出させた。得られた固形ゴムを取り出し、イオン交換水約1Lでの攪拌洗浄を10回繰り返した後、固形ゴムを搾って脱水し、真空乾燥(60℃、72時間)して、測定用ゴム試料を調製した。得られた測定用ゴムを、ロール温度50℃、ロール間隙約0.5mmの6インチロールに、ゴムがまとまるまで数回通したものを用い、JIS K6300-1:2001「未加硫ゴム-物理特性、第1部ムーニー粘度計による粘度およびスコ-チタイムの求め方」に準拠して、100℃にて大径回転体を用いて測定した。
MEK(メチルエチルケトン)不溶解(ゲル)成分は、次のように測定した。0.2gのXNBRラテックス乾燥物試料を、重量を測定したメッシュ籠(80メッシュ)に入れて、籠ごと100mLビーカー内のMEK溶媒80mL中に浸漬し、パラフィルムでビーカーに蓋をして、24時間、ドラフト内で静置した。その後、メッシュ籠をビーカーから取り出し、ドラフト内にて宙吊りにして1時間乾燥させた。これを、105℃で1時間減圧乾燥したのち、重量を測定し、籠の重量を差し引いて、XNBRラテックス乾燥物の浸漬後重量とした。
MEK不溶解成分の含有率(不溶解分量)は、次の式から算出した。
不溶解成分含有率(重量%)=(浸漬後重量g/浸漬前重量g)×100
なお、XNBRラテックス乾燥物試料は、次のようにして作製した。すなわち、500mLのボトル中で、回転速度500rpmでXNBRラテックスを30分間攪拌したのち、180×115mmのステンレスバットに14gの該ラテックスを量り取り、23℃±2℃、湿度50±10RH%で5日間乾燥させてキャストフィルムとし、該フィルムを5mm四方にカットして、XNBRラテックス乾燥物試料とした。
メチルイソブチルケトン(MIBK)/水分配率(%)は、ラテックス液中と類似した環境でエポキシ架橋剤がどれほどMIBK層へ移動するかを確認するために計測した値である。
有機層としてMIBKを用いたのは、ラテックスの物性がメチルエチルケトン(MEK)と類似しているため、MEKと性質が近く、かつ水への溶解性がMEKより低く、層の分離がはっきりできると考えられたためである。
1.ホールねじ口試験管(マルエム社製φ16.5×105×φ10.0 12mL NR-10H)に純水5.0g、メチルイソブチルケトン(MIBK)5.0gを正確に秤量し、架橋剤試料0.5gを加え室温(23±2℃)で攪拌(3分間)し、よく混合させる。
2.遠心分離機(株式会社コクサン製、卓上遠心分離機 H-103N)に3000rpm、10分の条件(1.0×103G)でかけ、水層とMIBK層に分離させる。
3.分離したMIBK層をパスツールピペットで、ディスポカップに分取、計量する。
4.次式でMIBK/水分配率を算出する。
MIBK/水分配率(%)=(分配後MIBK層重量(g)-分配前MIBK重量(g))/(架橋剤添加重量(g))×100
5.この計測を3回行い、平均値を算出し、MIBK/水分配率の数値とした。
なお、手順2.の攪拌時には、ボルテックスミキサー(Scientific Industries, Inc.製、スタンダードモデル、VORTEX-GENIE 2 Mixer)を使用した。
本実施例で使用したポリカルボジイミドは、主に日清紡ケミカル社製V-02-L2である。その物性は以下のとおりである。
平均粒子径:11.3nm
数平均分子量:3600
1分子あたりのカルボジイミド官能基数:9.4
(a)ディップ成形用組成物の調製
表1に記載したXNBRの溶液250gに、水100gを加えて希釈し攪拌を開始した。
その後、5重量%水酸化カリウム水溶液を使用して予備的にpH9.2~9.3に調整した。
表2に示すエポキシ架橋剤1.0重量部とジエチレングリコール1.0重量部と混合したものと、上記(3)のポリカルボジイミド0.5重量部とを、上記溶液に加えた。
さらに、酸化防止剤0.2重量部(Farben Technique(M)社製「CVOX-50」(固形分53%))、酸化亜鉛1.0重量部(Farben Technique(M)社製、商品名「CZnO-50」)及び酸化チタン1.5重量部(Farben Technique(M)社製、「PW-601」(固形分71%))を添加し、終夜(16時間)撹拌混合した。その後、5重量%水酸化カリウム水溶液を使用してpHを10~10.5に調整した後、ディップ成形用組成物の固形分濃度を、水を加えて22%に調整し、使用するまでビーカー内で撹拌を続け、ディップ成形用組成物を得た。
なお、固形分濃度は凝固液のカルシウム濃度と組み合わせ、フィルムの膜厚を調整するためのもので、この場合の固形分濃度22%は、凝固液のカルシウム濃度20%とによってフィルムの膜厚を80μmに調整できる。
ハンツマン社(Huntsman Corporation)製の界面活性剤「Teric 320」0.56gを水42.0gに溶解した液に、離型剤としてCRESTAGE INDUSTRY社製「S-9」(固形分濃度25.46%)19.6gを、あらかじめ計量しておいた水30gの一部を用いて約2倍に希釈した後にゆっくり加えた。容器に残ったS-9を残った水で洗い流しながら全量を加え、3~4時間撹拌し、S-9分散液を作成する。
別のビーカーに硝酸カルシウム四水和物143.9gを水153.0gに溶解させたものを用意し、撹拌しながら、先に調製したS-9分散液を硝酸カルシウム水溶液に加えた。
5%アンモニア水でpHを8.5~9.5に調整し、最終的に硝酸カルシウムが無水物として20%、S-9が1.2%の固形分濃度となるように水を加え、500gの凝固液を得た。得られた凝固液は、使用するまで1Lビーカーで撹拌を継続した。
上記凝固液を撹拌しながら50℃程度に加温し、200メッシュのナイロンフィルターでろ過した後、浸漬用容器に入れ、洗浄後70℃に温めた陶製の板(200×80×3mm、以下「陶板」と記す。)を浸漬した。具体的には、陶板の先端が凝固液の液面に接触してから、陶板の先端から18cmの位置までを4秒かけて浸漬させ、浸漬したまま4秒保持し、3秒間かけて抜き取った。速やかに陶板表面に付着した凝固液を振り落し、陶板表面を乾燥させた。乾燥後の陶板は、ディップ成形用組成物(ラテックス)浸漬に備えて、再び70℃まで温めた。
上記ディップ成形用組成物を、室温のまま200メッシュナイロンフィルターでろ過した後、浸漬用容器に入れ、上記の凝固液を付着させた60℃の陶板を浸漬した。具体的には、陶板を6秒かけて浸漬し、4秒間保持し、3秒かけて抜き取った。ディップ成形用組成物が垂れなくなるまで空中で保持し、先端に付着したラテックス滴を軽く振り落した。
ディップ成形用組成物に浸漬した陶板を50℃で2分間放置して硬化フィルム前駆体を作製した。(ゲリング)。
次いで、50℃の脱イオン水で硬化フィルム前駆体を2分間リーチングした。
このフィルムを、70℃で5分間乾燥させ(プレキュアリング)、主に140℃で30分間、熱硬化させた(キュアリング)。
得られた硬化フィルムを陶板からきれいに剥がし、物性試験に供するまで、23℃±2℃、湿度50%±10%の環境で保管した。
<引張強度、モジュラス及び伸び率>
ディップ成形体の引張強度、モジュラス及び伸び率の測定は、ASTM D412記載の方法に従って行った。ディップ成形体をダンベル社製DieCを用いて打ち抜き、試験片を作製した。試験片はA&D社製のTENSILON万能引張試験機RTC-1310Aを用い、試験速度500mm/分、チャック間距離75mm、標線間距離25mmで測定される。
手袋物性としては、引張強度は14MPa以上、伸び率としては500%以上を基準として考えている。
モジュラスについては、特に、手袋装着時の指の動きを妨げないような柔軟性を満たす観点から、100%伸びの時点でのモジュラス(100%モジュラス)、300%伸びの時点でのモジュラス(300%モジュラス)、500%伸びの時点でのモジュラス(500%モジュラス)に着目した。
硬化フィルムからJIS K6251の1号ダンベル試験片を切り出し、これを、人工汗液(1リットル中に塩化ナトリウム20g、塩化アンモニウム17.5g、乳酸17.05g、酢酸5.01gを含み、水酸化ナトリウム水溶液によりpH4.7に調整)中に浸漬して、上述の耐久性試験装置を用いて疲労耐久性を評価した。
すなわち、長さ120mmのダンベル試験片の2端部からそれぞれ15mmの箇所を固定チャック及び可動チャックで挟み、固定チャック側の試験片の下から60mmまでを人工汗液中に浸漬した。可動チャックを、147mm(123%)となるミニマムポジション(緩和状態)に移動させて11秒間保持したのち、試験片の長さが195mm(163%)となるマックスポジション(伸長状態)と、再びミニマムポジション(緩和状態)に1.8秒かけて移動させ、これを1サイクルとしてサイクル試験を行った。1サイクルの時間は12.8秒であり、試験片が破れるまでのサイクル数を乗じて、疲労耐久性の時間(分)を得た。
疲労耐久性は、手袋としての実用化の観点から、240分以上であることが好ましい。
硬化フィルムから、JIS K 6263に規定の短冊2号に準じて打ち抜きカッター(ダンベル社製 スーパーストレートカッター SK-1000-D)を用いて、試験片を作製し、該試験片の両端に速度100 mm/分もしくは500 mm/分にて引張応力をかけ、該試験片が2倍(100%)に伸張した時点で伸張を止めると共に引張応力M100(0)を測定し、また、そのまま6分間経過した後の引張応力M100(6)を測定した。そして、M100(0)に対するM100(6)の百分率を応力保持率とした。
応力保持率が高いほど、伸長後により応力が維持される状態を示しており、外力が取り除かれた際に元の形に戻ろうとする弾性変形力が高いことを示し、手袋のフィット感、裾部の締め付けが良好になり、しわ寄りが少なくなる。
上記の方法で測定された応力保持率は、従来の硫黄架橋XNBR手袋の応力保持率が30%台であるので、本実施形態の成形体は50%以上あればXNBR手袋としては良好であり、60%以上であることがより好ましい。
Claims (7)
- (メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーと、ポリカルボジイミドと、エポキシ架橋剤と、水と、及びpH調整剤とを少なくとも含むディップ成形用組成物であって、
前記エラストマーにおいて、(メタ)アクリロニトリル由来の構造単位が12~36重量%、不飽和カルボン酸由来の構造単位が2~10重量%、及びブタジエン由来の構造単位が50~75重量%であり、
前記エポキシ架橋剤は、1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤を含み、
前記エポキシ架橋剤は、複数のグリシジルエーテル基と、脂環族、脂肪族又は芳香族の炭化水素を有し、
前記エポキシ架橋剤の下記測定方法によるMIBK/水分配率が50%以上であり、
ディップ成形用組成物に対するエポキシ架橋剤の添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.4重量部以上、1.0重量部以下であり、ディップ成形用組成物に対するポリカルボジイミドの添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.3重量部以上、2.0重量部以下であり、
前記ディップ成形用組成物における、酸化亜鉛の含有量が、前記エラストマー100重量部に対して0.5重量部以下であり、
前記ポリカルボジイミドは、分子構造内に親水性セグメントを含むポリカルボジイミドを少なくとも1種含むものである、ディップ成形用組成物。
MIBK/水分配率測定方法:試験管に水5.0g、メチルイソブチルケトン(MIBK)5.0gおよびエポキシ架橋剤0.5gを精秤し、23℃±2℃で3分間攪拌、混合した後、1.0×10 3 Gで10分間遠心分離し、水層とMIBK層に分離させる。次いで、MIBK層を分取、計量し、次式によりMIBK/水分配率を算出する。
MIBK/水分配率(%)=(分配後MIBK層重量(g)-分配前MIBK重量(g))/架橋剤添加重量(g)×100
上記測定を3回行い、平均値をMIBK/水分配率とする。 - 前記pH調整剤がアルカリ金属の水酸化物である、請求項1に記載のディップ成形用組成物。
- さらにエポキシ架橋剤の分散剤を含む、請求項1又は2に記載のディップ成形用組成物。
- 前記エポキシ架橋剤の分散剤が、一価の低級アルコール、以下の式(1)で表されるグリコール、以下の式(2)で表されるエーテル、以下の式(3)で表されるエステルからなる群から選択される1種以上である、請求項3に記載のディップ成形用組成物。
HO-(CH2CHR1-O)n1-H (1)
[式(1)中、R1は、水素またはメチル基を表し、n1は1~3の整数を表す。]
R2O-(CH2CHR1-O)n2-R3 (2)
[式(2)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、R3は、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
R2O-(CH2CHR1-O)n3-(C=O)-CH3 (3)
[式(3)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。] - (1)手袋成形型を、カルシウムイオンを含む凝固剤液中に浸して、該凝固剤を手袋成形型に付着させる工程、
(2)pH調整剤によりpHを9.5~12.0に調整した請求項1~4のいずれか一項に記載のディップ成形用組成物を撹拌する工程、
(3)前記(1)の凝固剤が付着した手袋成形型を、前記(2)の工程を経たディップ成形用組成物に浸漬し、手袋成形型にディップ成形用組成物を凝固させ、膜を形成させるディッピング工程、
(4)手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作製するゲリング工程、
(5)手袋成形型上に形成された硬化フィルム前駆体から不純物を除去するリーチング工程、
(6)前記リーチング工程の後に、手袋の袖口部分に巻きを作るビーディング工程、
(7)硬化フィルム前駆体を加熱及び乾燥し、硬化フィルムを得る、キュアリング工程、を含み、上記(3)~(7)の工程を上記の順序で行う、手袋の製造方法。 - 上記(3)及び(4)の工程をその順序で2回繰り返す、請求項5に記載の手袋の製造方法。
- 上記(6)と(7)の工程の間に、前記硬化フィルム前駆体を(7)の工程の温度よりも低温で加熱及び乾燥するプリキュアリング工程をさらに含む、請求項5または6に記載の手袋の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019130409 | 2019-07-12 | ||
JP2019130409 | 2019-07-12 | ||
PCT/JP2020/027068 WO2021010334A1 (ja) | 2019-07-12 | 2020-07-10 | ディップ成形用組成物、手袋の製造方法及び手袋 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021010334A1 JPWO2021010334A1 (ja) | 2021-01-21 |
JP7270738B2 true JP7270738B2 (ja) | 2023-05-10 |
Family
ID=74210942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021533045A Active JP7270738B2 (ja) | 2019-07-12 | 2020-07-10 | ディップ成形用組成物、手袋の製造方法及び手袋 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7270738B2 (ja) |
WO (1) | WO2021010334A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240042078A (ko) * | 2022-05-09 | 2024-04-01 | 미도리안젠 가부시키가이샤 | 딥 성형용 조성물 및 장갑과 딥 성형용 조성물 및 장갑의 제조 방법 |
CN116061362B (zh) * | 2022-12-27 | 2024-08-30 | 安徽和佳医疗用品科技有限公司 | Pvc医用手套生产用浸胶装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217542A1 (ja) | 2016-06-16 | 2017-12-21 | ミドリ安全株式会社 | 手袋の製造方法、手袋、及び手袋用エマルション組成物 |
WO2018188966A1 (de) | 2017-04-10 | 2018-10-18 | Arlanxeo Deutschland Gmbh | Vulkanisierbare zusammensetzung enthaltend hxnbr-latex und polyfunktionales epoxid |
WO2019102985A1 (ja) | 2017-11-24 | 2019-05-31 | ミドリ安全株式会社 | 手袋、ディップ成形用組成物及び手袋の製造方法 |
JP2020037635A (ja) | 2018-09-03 | 2020-03-12 | ミドリ安全株式会社 | 手袋用ディップ組成物、手袋の製造方法、及び手袋 |
JP7240361B2 (ja) | 2018-04-06 | 2023-03-15 | ミドリ安全株式会社 | ディップ成形用組成物、手袋の製造方法及び手袋 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5272226B2 (ja) * | 2008-12-16 | 2013-08-28 | エルジー・ケム・リミテッド | カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物 |
JPWO2017126660A1 (ja) * | 2016-01-21 | 2018-11-08 | ミドリ安全株式会社 | 手袋 |
JP6533812B2 (ja) * | 2017-09-01 | 2019-06-19 | ノーベル サイエンティフィック エスディーエヌ.ビーエイチディー. | ポリマー物品の作成方法及び得られる物品 |
-
2020
- 2020-07-10 JP JP2021533045A patent/JP7270738B2/ja active Active
- 2020-07-10 WO PCT/JP2020/027068 patent/WO2021010334A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017217542A1 (ja) | 2016-06-16 | 2017-12-21 | ミドリ安全株式会社 | 手袋の製造方法、手袋、及び手袋用エマルション組成物 |
WO2018188966A1 (de) | 2017-04-10 | 2018-10-18 | Arlanxeo Deutschland Gmbh | Vulkanisierbare zusammensetzung enthaltend hxnbr-latex und polyfunktionales epoxid |
WO2019102985A1 (ja) | 2017-11-24 | 2019-05-31 | ミドリ安全株式会社 | 手袋、ディップ成形用組成物及び手袋の製造方法 |
JP7240361B2 (ja) | 2018-04-06 | 2023-03-15 | ミドリ安全株式会社 | ディップ成形用組成物、手袋の製造方法及び手袋 |
JP2020037635A (ja) | 2018-09-03 | 2020-03-12 | ミドリ安全株式会社 | 手袋用ディップ組成物、手袋の製造方法、及び手袋 |
Also Published As
Publication number | Publication date |
---|---|
WO2021010334A1 (ja) | 2021-01-21 |
JPWO2021010334A1 (ja) | 2021-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7225162B2 (ja) | 手袋、ディップ成形用組成物及び手袋の製造方法 | |
JP7240361B2 (ja) | ディップ成形用組成物、手袋の製造方法及び手袋 | |
JP6860698B2 (ja) | ディップ成形用組成物、手袋の製造方法及び手袋 | |
JP7270738B2 (ja) | ディップ成形用組成物、手袋の製造方法及び手袋 | |
JP7344279B2 (ja) | ディップ成形用組成物、これを用いた手袋の製造方法、及び手袋 | |
WO2021010343A1 (ja) | ディップ成形用架橋剤、ディップ成形用組成物、及び手袋 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220816 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7270738 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |