WO2007145070A1 - 載置台構造及び熱処理装置 - Google Patents

載置台構造及び熱処理装置 Download PDF

Info

Publication number
WO2007145070A1
WO2007145070A1 PCT/JP2007/060778 JP2007060778W WO2007145070A1 WO 2007145070 A1 WO2007145070 A1 WO 2007145070A1 JP 2007060778 W JP2007060778 W JP 2007060778W WO 2007145070 A1 WO2007145070 A1 WO 2007145070A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting table
heat
table structure
container
structure according
Prior art date
Application number
PCT/JP2007/060778
Other languages
English (en)
French (fr)
Inventor
Tomohito Komatsu
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2007800021311A priority Critical patent/CN101366099B/zh
Priority to KR1020107028657A priority patent/KR101249654B1/ko
Priority to KR1020087030562A priority patent/KR101063104B1/ko
Publication of WO2007145070A1 publication Critical patent/WO2007145070A1/ja
Priority to US12/336,207 priority patent/US8203104B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • the present invention relates to a heat treatment apparatus and a mounting table structure for an object to be processed such as a semiconductor wafer.
  • various single wafer processes such as a film formation process, an etching process, a heat treatment, a modification process, and a crystallization process are repeated on an object to be processed such as a semiconductor wafer. This is done to form the desired integrated circuit.
  • the necessary processing gas corresponding to the type of the process for example, a film forming gas or a halogen gas is used in the case of a film forming process, and an ozone gas is used in the case of a reforming process.
  • an inert gas such as N gas or O gas is introduced into the treatment vessel.
  • a mounting table including, for example, a resistance heater is provided in a processing container that can be evacuated.
  • the semiconductor wafer is placed on the upper surface, and a predetermined processing gas is flowed in a state heated at a predetermined temperature (for example, 100 ° C. to 1 000 ° C.). Heat treatment is performed (Patent Documents 1 to 6).
  • a predetermined temperature for example, 100 ° C. to 1 000 ° C.
  • Heat treatment is performed (Patent Documents 1 to 6).
  • the members in the processing container are required to have heat resistance against such heating and corrosion resistance that does not corrode even when exposed to the processing gas.
  • a mounting table structure on which a semiconductor wafer is mounted generally has a heat resistance and corrosion resistance and needs to prevent metal contamination such as metal contamination.
  • a ceramic material such as A1N is used. It has a mounting table formed by embedding a resistance heater as a heating element inside and integrally baking at a high temperature. Also, in another process, ceramic materials are fired in the same way to form the pillars. Then, the mounting table structure is manufactured by welding the mounting table side integrally fired and the support column by, for example, heat diffusion bonding. The integrally formed mounting table structure is provided upright on the bottom of the processing container. In some cases, quartz glass having heat and corrosion resistance is used instead of the ceramic material.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-278322
  • Patent Document 2 Japanese Patent Application Laid-Open No. 07-0778766
  • Patent Document 3 Japanese Patent Laid-Open No. 03-220718
  • Patent Document 4 Japanese Patent Laid-Open No. 06-260430
  • Patent Document 5 JP-A-8-78193
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-356624
  • the resistance heater which is a heating element, is integrally embedded in quartz glass in a ceramic material and integrally fired to form a mounting table.
  • the entire mounting table structure has to be replaced only by a defect such as a part of the heater being broken, and other parts other than the defective member are wasted. there were.
  • the support is welded to the lower surface of the mounting table and integrally formed, the thermal conductivity at the joint between the mounting table and the support becomes good, and this portion is moved to the support side. The heat flow is improved. As a result, this joint becomes colder than the rest of the mounting table, so-called cool spots are generated, and thermal stress is concentrated here. As a result, the joint is placed as a starting point. There was a problem that the cradle was easily cracked.
  • thermocouple a force for attaching a thermocouple to the back surface of the mounting table in order to control the temperature of the heater of the mounting table.
  • This thermocouple is attached after the mounting table is baked, and the detection force is also detected in the line.
  • only one thermocouple can be installed at the center of the back of the mounting table to which the column is connected. For this reason, while the temperature at the center of the mounting table can be measured with the thermocouple, the temperature at the periphery of the mounting table can only be determined by empirical rules.Therefore, the heat radiation environment in the processing vessel is large. When it changed, the uniformity of the in-plane temperature of the mounting table or the semiconductor wafer could not be kept high! / There was a problem that occurred.
  • the lead wire of the resistance heater is accurately placed at the calculated position, but the stress of the heater itself is caused by the stress applied during firing. In some cases, the cross-section may be slightly deformed. In this case, the heater position cannot be repaired, making it difficult to achieve the designed temperature distribution.
  • An object of the present invention is to provide a mounting table structure in which a heating plate is replaced or exchanged by providing a heating plate detachably in a heating plate storage container, and a heat treatment apparatus using the same. Is to provide.
  • Another object of the present invention is a mounting table structure and a mounting table structure in which a conductive member such as a lower electrode and a chuck electrode of a plasma processing apparatus is provided so as to be repairable without being integrally fired together with the mounting table. It is in providing the heat processing apparatus using this.
  • the present invention provides a mounting table on which the object to be processed is placed and placed on the bottom of the processing container in order to perform a predetermined heat treatment on the object to be processed.
  • the mounting table includes a heat generating plate having a heat resistant material and a heat generating element embedded in the heat resistant material and formed of an electric heating source, and the heat generating plate is attached to and detached from the inside.
  • a heat generating plate containing container made of a heat-resistant and corrosion-resistant material having a container body that can be accommodated and has an opening, and a lid portion that is detachably attached to the opening of the container body. It is a pedestal structure.
  • the heat generating plate As described above, by providing the heat generating plate so as to be detachable in the heat generating plate storage container and configuring the mounting table, the heat generating plate can be replaced or exchanged.
  • the detachable lid can be replaced with a lid made of a material having heat resistance and corrosion resistance corresponding to the process to be executed. It can be prevented from becoming a peck. As a result, it is possible to use a material that is relatively inexpensive and has good workability, so that the apparatus cost can be greatly reduced.
  • the present invention provides the mounting table structure in which the joint portion of the lid portion is engaged with the container main body of the heat generating plate storage container by an engagement pin made of a heat-resistant and corrosion-resistant material. .
  • the present invention is the mounting table structure in which a seal member and a Z or seal structure are provided at a joint portion between the lid and the container body.
  • the present invention is the mounting table structure in which the heating element is divided into a plurality of zones, and temperature control is possible for each zone.
  • the present invention provides the mounting table structure in which a plurality of temperature measurement elements are provided on the back surface side of the lid portion so as to correspond to the zone.
  • the present invention is the mounting table structure characterized in that a measurement line of the temperature measuring element extends into the support column.
  • the present invention provides the mounting table structure in which the upper end portion of the support column is detachably attached to the central portion of the lower surface of the mounting table by a bolt member.
  • the support column and the mounting table are provided so as to be detachable from each other, even if a defect occurs in one of them, it is not necessary to replace the whole, and only the member in which the defect has occurred is provided. Because it is only necessary to replace it, maintenance costs can be reduced, and it is possible to replace it with a mounting table or column made of a material having heat resistance and corrosion resistance corresponding to the process to be performed. In addition, it is possible to prevent the mounting table and the support column from becoming overspec. As a result, a material that is relatively inexpensive and has good workability can be used, so that the apparatus cost can be greatly reduced.
  • the present invention is the mounting table structure in which the bolt member is made of a heat resistant material.
  • the present invention provides the mounting table structure in which a seal member is interposed at a joint portion between the upper end portion of the support column and the lower surface of the mounting table.
  • a line enclosing tube made of a heat resistant material enclosing a power supply line for supplying power to the heat generating body extends through the container body and into the support column.
  • the mounting table structure is characterized by that.
  • the present invention provides the mounting table structure in which the inside of the support column and the inside of the heat generating plate storage container are in a positive pressure state by an inert gas.
  • a conductive member extending in a planar direction is embedded in the lid portion, and a conductive line is connected to the conductive member.
  • the conductive line extends into the column.
  • a conductive member extending in a planar direction is provided on the heat generating plate.
  • the mounting structure is characterized in that a conductive line is connected to the conductive member, and the conductive line extends into the support column.
  • a conductive line is connected to the conductive member. Is a mounting table structure that extends into the column.
  • the conductive member has a structure that is not integrally fired on the lid portion, for example, the above-described conductive member used as a lower electrode or a chuck electrode should be repaired. In this case, this compensation can be easily performed.
  • the present invention provides the mounting table structure in which the conductive member is bonded to the lower surface of the lid.
  • the present invention provides the mounting table structure in which the conductive member is bonded to the upper surface of the heating element.
  • the present invention provides the mounting table structure in which a protective layer made of a heat-resistant insulating material is provided on the surface of the conductive member so as to cover the entire surface.
  • the present invention provides a mounting table that is disposed in a processing container and on which the processing object is mounted in order to perform a predetermined heat treatment on the processing object, and the mounting table is raised from the bottom of the processing container.
  • the mounting table includes a heat-generating plate having a heat-resistant material, a heat-generating body embedded in the heat-resistant material and formed of an electric heating source, and the heat generation inside.
  • a heat generating plate housing container made of a heat-resistant and corrosion-resistant material having a container body that detachably accommodates a plate and has an opening, and a lid material that is attached to the opening of the container body itself, and an upper surface of the lid portion Connected to the conductive member, a conductive material extending in the planar direction, a protective layer made of a heat-resistant insulating material provided to cover the entire surface of the conductive member, and the conductive member.
  • the mounting table structure is provided with a conductive line.
  • the detachable lid portion can be replaced with a lid portion made of a material having heat resistance and corrosion resistance corresponding to the process to be executed. For this reason, the lid portion is overspecked. Can be prevented. As a result, it is possible to use a material that is relatively inexpensive and has good workability, so that the apparatus cost can be greatly reduced.
  • the conductive member has a structure that is integrally fired on the lid portion, for example, when repairing or the like is added to the conductive member used as the lower electrode or the chuck electrode, for example. In addition, this compensation and the like can be easily performed.
  • the present invention provides the mounting table structure, wherein the protective layer is formed by applying the heat-resistant insulating material.
  • the present invention provides the mounting table structure, wherein the protective layer is formed by bonding thin plates made of the heat-resistant insulating material with an adhesive.
  • the present invention provides the mounting table structure, wherein the lid portion has a thickness in a range of 1 to 20 mm.
  • the present invention provides the mounting table structure, wherein the heat-resistant material and the heat-resistant and corrosion-resistant material are made of an insulating material.
  • the insulating material is quartz glass or a cell containing A1N, Al 2 O, or Si N.
  • the present invention includes a processing container that can be evacuated, a mounting table structure disposed in the processing container, and a gas supply unit that supplies a predetermined processing gas into the processing container.
  • the mounting table structure includes a mounting table on which the object to be processed is placed in order to perform a predetermined heat treatment on the object to be processed, and the mounting table is raised from the bottom of the processing container.
  • the above-mentioned mounting table has a heat generating plate having a heat resistant material and a heat generating element embedded in the heat resistant material and made of an electric heating source, and the heat generating plate can be attached and detached inside.
  • a heat generating plate housing container made of a heat and corrosion resistant material having a container body having an opening and a lid portion detachably attached to the opening of the container body. It is the heat processing apparatus characterized by the above.
  • the present invention includes a processing container that can be evacuated, a mounting table structure disposed in the processing container, and a gas supply unit that supplies a predetermined processing gas into the processing container.
  • the mounting table structure is arranged in a processing container, and a mounting table on which the processing object is mounted to perform a predetermined heat treatment on the processing object, and the mounting table is raised from the bottom of the processing container.
  • the above-mentioned mounting table includes a heat generating plate having a heat resistant material, a heat generating element embedded in the heat resistant material, and a heating element composed of an electric heating source, and the heat generating plate attached to and detached from the inside.
  • a heat treatment apparatus comprising a protective layer made of a heat-resistant insulating material provided so as to cover the entire surface, and a conductive line connected to the conductive member.
  • the heat generating plate By providing the heat generating plate so as to be detachable in the heat generating plate storage container to constitute the mounting table, the heat generating plate can be replaced or exchanged.
  • the detachable lid portion can be replaced with a lid portion made of a material having heat resistance and corrosion resistance corresponding to the process to be executed. For this reason, the lid portion is overspecked. Can be prevented. As a result, it is possible to use a material that is relatively inexpensive and has good workability, so that the apparatus cost can be greatly reduced.
  • the support column and the mounting table are provided so as to be detachable from each other. Therefore, even if one of the defects occurs, it is not necessary to replace the entire member, and the defective member is generated. Since it is only necessary to replace the maintenance table, maintenance costs can be reduced, and it can be replaced with a mounting table or support column made of a material having heat resistance and corrosion resistance corresponding to the process to be executed. For this reason, it is possible to prevent the mounting table and the support column from becoming overspec. As a result, materials that are relatively inexpensive and have good workability can be used, so that the cost of the apparatus can be greatly reduced.
  • FIG. 1 is a cross-sectional configuration diagram showing a heat treatment apparatus according to the present invention.
  • FIG. 2 is a cross-sectional view showing a first embodiment of the mounting table structure.
  • FIG. 3 is a plan view showing a heating element having a mounting table structure.
  • FIGS. 4 (A) and 4 (B) are partially enlarged sectional views showing a part of the mounting table structure.
  • FIG. 5 is an exploded view showing the mounting table structure.
  • FIG. 6 is a cross-sectional view showing a second embodiment of the mounting table structure according to the present invention.
  • FIG. 7 is a partially enlarged view showing a modification of the second embodiment of the mounting table structure.
  • FIG. 8 is a partial sectional view showing a third embodiment of the mounting table structure of the present invention.
  • FIG. 9 is a partial cross-sectional view showing a fourth embodiment of the mounting table structure of the present invention.
  • FIG. 1 is a sectional view showing a heat treatment apparatus according to the present invention
  • FIG. 2 is a sectional view showing a first embodiment of the mounting table structure
  • FIG. 3 is a plan view showing a heating element of the mounting table structure
  • FIG. (B) is a partially enlarged sectional view showing a part of the mounting table structure
  • FIG. 5 is an exploded view of the mounting table structure.
  • a heat treatment apparatus that can also use plasma by high-frequency power will be described.
  • the heat treatment apparatus 2 has a processing vessel 4 made of aluminum, for example, whose inside is substantially circular.
  • a shower head section 6 serving as a gas supply means for introducing a necessary processing gas, for example, a film forming gas, is provided via an insulating layer 7 on the ceiling of the processing container 4.
  • the treatment gas is ejected from a large number of gas ejection holes provided on the ejection surface 8 toward the treatment space S.
  • This shower head unit 6 also serves as an upper electrode during plasma processing.
  • gas diffusion chambers 12A and 12B divided into two hollow shapes are formed. After the processing gas introduced therein is diffused in the plane direction, The gas is blown out from the gas injection holes 10A and 10B communicated with the diffusion chambers 12A and 12B, respectively. That is, the gas injection holes 10A and 10B are arranged in a matrix.
  • This shower head part 6 The whole is formed of, for example, nickel alloy such as nickel nickel steloy (registered trademark), aluminum, or aluminum alloy.
  • the shower head 6 may have one gas diffusion chamber.
  • a sealing member 14 made of, for example, an O-ring is interposed at the joint between the shower head unit 6 and the insulating layer 7 at the upper end opening of the processing container 4 to improve the airtightness in the processing container 4. maintain.
  • the shower head unit 6 is connected with a high frequency power source 17 for plasma of 13.56 MHz, for example, via a matching circuit 15 to generate (form) plasma when necessary. This frequency is not limited to 13.56MHz above.
  • a loading / unloading port 16 for loading / unloading semiconductor wafers and W as objects to be processed into / from the processing vessel 4 is provided on the side wall of the processing vessel 4.
  • a gate valve 18 that can be opened and closed in an airtight manner is provided.
  • An exhaust drop space 22 is formed in the bottom 20 of the processing container 4. Specifically, a large opening 24 is formed in the central portion of the container bottom 20, and a cylindrical partition wall 26 having a bottomed cylindrical shape extending downward is connected to the opening 24. The above-described exhaust dropping space 22 is formed.
  • a mounting table structure 29, which is a feature of the present invention, is provided at the bottom 28 of the cylindrical partition wall 26 that defines the exhaust dropping space 22 and is erected from the bottom 28.
  • the mounting table structure 29 includes a cylindrical column 30 and a mounting table 32 that is detachably fixed to the upper end portion thereof. Details of the mounting table structure 29 will be described later.
  • the opening 24 of the exhaust drop space 22 is set to be smaller than the diameter of the mounting table 32, and the processing gas flowing outside the peripheral edge of the mounting table 32 is below the mounting table 32. Wrap around and flow into opening 24.
  • An exhaust port 34 is formed in the lower side wall of the cylindrical partition wall 26 so as to face the exhaust drop space 22.
  • An exhaust pipe 36 having a vacuum pump (not shown) is connected to the exhaust port 34, and the atmosphere in the processing container 4 and the exhaust dropping space 22 can be evacuated and exhausted.
  • the mounting table 32 includes a heat generating plate 40.
  • the heat generating plate 40 is embedded in the heat resistant materials 64 and 68 and the heat resistant materials 64 and 68 as shown in FIG.
  • a heating element 38 made of an electric heating source such as a carbon wire heater and having a pattern shape may be included.
  • the heat generating plate 40 is accommodated in the heat generating plate accommodating container 42.
  • a semiconductor wafer W as an object to be processed is placed on the upper surface of the heat generating plate storage container 42.
  • the mounting table 32 is also used as a heating means.
  • the mounting table 32 is formed with a plurality of, for example, three pin insertion holes 44 penetrating in the vertical direction (only two are shown in FIG. 1 and not shown in FIG. 2 and subsequent figures).
  • the push-up pins 46 inserted in the above-described pin insertion holes 44 in a loosely-fitted state so as to be vertically movable are arranged.
  • a push-up ring 48 made of a ceramic such as alumina having a circular ring shape is disposed, and the lower end of each push-up pin 46 is on the push-up ring 48.
  • the arm portion 50 extending from the push-up ring 48 is connected to a retracting rod 52 provided through the container bottom portion 20, and the retracting rod 52 can be moved up and down by an actuator 54.
  • the push-up pins 46 are projected and retracted upward from the upper ends of the pin insertion holes 44 when the wafer W is transferred.
  • an extendable bellows 56 is interposed in the through-hole portion of the container bottom of the retractable rod 52 of the actuator 54 so that the retractable rod 52 can be raised and lowered while maintaining the airtightness in the processing container 4. It is summer.
  • the bottom portion of the support column 30 of the mounting table structure 29 is closed, and an enlarged flange portion 58 is provided here, and the flange portion 58 is formed at the center portion of the bottom portion 28 of the processing container 4. It is detachably attached with a bolt or the like (not shown) so as to cover the through-hole 60 formed in FIG.
  • a seal member 62 such as an O-ring is interposed between the flange portion 58 and the bottom portion 28 in the peripheral portion of the through hole 60, so that the airtightness of this portion is maintained. ing.
  • the mounting table structure 29 is mainly composed of the mounting table 32 and the support column 30.
  • the mounting table 32 includes the heat generating plate 40 and a heat generating plate that accommodates the heat generating plate 40.
  • the heating plate 40 has a circular flat pedestal 64 made of a heat-resistant material.
  • a heater groove 66 is formed on the entire surface of the pedestal 64, and an electric heating source is formed along the heater groove 66.
  • the heating element 38 is provided.
  • a circular flat plate 68 made of the same heat-resistant material is disposed on the upper surface of the pedestal 64, and is fired at a high temperature to be integrated. As a result, the heating element 38 is embedded in the heating plate 40.
  • the heating element 38 is divided into a plurality of zones, and temperature control is possible for each zone. That is, in the present embodiment, as shown in FIG. 3, the heating element 38 is concentrically arranged in two zones, namely, the heating element 38A in the inner zone 70A and the heating element 38B in the outer zone 70B. It is divided into In FIG. 3, in order to facilitate understanding of the drawing, the heating elements 38A and 38B are shown with a reduced number of times. You can also set the number of zones to 3 or more.
  • Power supply lines 72 are connected to both ends of each of the divided heating elements 38A and 38B, and the power supply lines 72 extend downward from the center of the back surface of the heat generating plate 40.
  • the feed line 72 is hermetically sealed in a line enclosing tube 74 made of a heat-resistant material up to the middle of its length direction, and the upper part of the line enclosing tube 74 is integrally welded to the heating plate 40. .
  • each heat-resistant material is made of, for example, transparent quartz glass having an insulating property. Therefore, the entire heat generating plate 40 including the line enclosing tube 74 is integrally formed of quartz glass.
  • four line sealing pipes 74 are provided (see FIG. 3), but only one is shown in FIGS. 1 and 2 for simplification of the drawings.
  • the heat generating plate container 42 is detachably attached to a container body 76 made of, for example, aluminum nitride (A1N), which is a heat and corrosion resistant material, and an upper opening of the container body 76. It may also include a similarly heat and corrosion resistant material, such as a lid 78 made of aluminum nitride.
  • the container body 76 is shaped like a container whose peripheral portion is bent upward to form a side wall 80 and opened upward. Further, as shown in FIG. 5, a central portion of the container body 76 corresponds to the portion where the support column 30 is joined, as shown in FIG.
  • the through-hole 82B and the other necessary number of line through-holes 82C are provided.
  • the diameter of the line enclosing tube through hole 82A is set to be considerably larger than the outer diameter of the line enclosing tube 74, so that the line enclosing tube 74 can be inserted and removed in a loosely fitted state.
  • a pin hole portion 84 (see also FIG. 4) having a pin member to be described later as a seal is formed at a predetermined position on the outer peripheral surface of the side wall 80 of the container body 76.
  • the lid portion 78 is bent downward at its peripheral portion to form a side wall 86, and covers the container body 76 so as to overlap the side wall 80 of the container body 76.
  • the upper surface of the lid portion 78 is formed flat, and this upper surface serves as a mounting surface so that the wafer W can be directly mounted thereon.
  • the thickness of the lid portion 78 is, for example, in the range of about 1 to 20 mm. For this reason, when the thickness is thinner than 1 mm, the strength is increased between the inside of the heat generating plate container 42 and the outer process space. If it is thicker than 20 mm, the impedance of this part becomes excessively large and the plasma potential becomes high.
  • a conductive member 88 having a mesh shape extending in the plane direction is embedded in the lid portion 78, and a conductive line 90 is connected to the conductive member 88 to be below.
  • the conductive member 88 is a mesh-like member, a punching plate-like member formed on a sheet by dispersing a large number of holes, a thinly-coated conductive layer-like member, and printed in various forms. It can be formed of a member having a conductive pattern.
  • the lid portion 78 is made of a ceramic material such as quartz, Al 2 O, or A1N, and is integrated with the conductive member 88.
  • a plurality of temperature measuring elements 92 are embedded on the back surface side of the lid portion 78 at different positions in the radial direction of the lid portion 78. Specifically, here, a plurality of, ie, two temperature measuring elements 92A and 92B are provided corresponding to the number of zones of the heating element 38, and one temperature measuring element 92A is provided at the center of the lid 78. It is provided to measure the temperature of the inner peripheral zone, and the other temperature measuring element 92B is provided in the peripheral portion of the lid portion 78 so that the temperature of the outer peripheral zone can be measured.
  • thermocouples can be used, which are attached by glass welding, brazing, screwing, pressing with a panel, or integral firing with the lid portion 78.
  • Each temperature measuring element 92A The measurement lines 94A and 94B extend downward from 92B, respectively.
  • a plurality of pin holes 96 communicating with a pin hole portion 84 provided in the side wall 80 of the container body 76 are provided in a predetermined position on the side wall 86 of the lid portion 78 (see FIG. )),
  • An engagement pin 98 is detachably fitted in the pin hole 96 and the pin hole portion 84. Therefore, the lid 78 can be attached to and detached from the container body 76 by removing the engaging pin 98.
  • a heat-resistant and corrosion-resistant material such as quartz glass or ceramic material can be used. In this case, in order to ensure the engagement of the engagement pin 98, the engagement pin 98, the pin hole 96, and the pin hole portion 84 may be threaded.
  • the present invention is not limited to the above-described mounting structure.
  • a ring-shaped flammability made of a heat-resistant and corrosion-resistant material such as A1N, which is partially cut away.
  • a retainer is provided along the side wall 86, and the engagement pins 98 cannot be easily removed by the elastic force of the spontaneous retainer!
  • a seal member 100 (see FIG. 4A) is provided at the joint between the lid 78 and the container body 76.
  • a thin ring-shaped sealing member 100 is interposed between the upper end surface of the side wall 80 of the container body 76 and the peripheral portion of the lower surface of the lid portion 78.
  • a ring-shaped gasket made of nickel can be used for this seal member 100.
  • the sealing performance here is not required to be as high as that of an O-ring or the like.
  • the inside of the heat generating plate housing container 42 is brought into a positive pressure state by an inert gas, so This will prevent gas intrusion.
  • a seal structure 102 having an uneven labyrinth may be provided here as shown in FIG. 4 (B).
  • the support column 30 is also made of a heat and corrosion resistant material such as acid aluminum (Al 2 O 3).
  • the upper end portion is closed by a top plate 106 and the lower end portion is closed by a flange portion 58.
  • the top plate 106 is provided with a line enclosing tube through-hole 110A, a bolt through-hole 110B, and other necessary number of line through-holes 110C in the same manner as the center side of the back surface of the container body 76. Each is provided (see Figure 5).
  • the container body 76 and the support column 30 are detachably attached to each other by the bolt member 112. Be attached. That is, by passing the bolt 112A of the bolt member 112 through the bolt through hole 82B of the container body 76 and the bolt through hole 110B of the top plate 106, and tightening the bolt 112A with the nut 112B, both can be attached and fixed in a disassembly manner Is done.
  • the bolt member 112 is formed of a heat-resistant material such as silicon nitride (Si N). This installation
  • a thin ring-shaped seal member 114 (see FIG. 5) is interposed between the container body 76 and the top plate 106.
  • this seal member 114 for example, a ring-shaped gasket made of nickel can be used, and such a seal portion is not required to have a high sealing performance like an O-ring.
  • the line enclosing tube 74 of the heat generating plate 40 extends through the both ends of the line enclosing tube through-holes 82A and 110A and extends downward in the support column 30, and is also electrically conductive from the conductive member 88.
  • the line 90 is also inserted into the support column 30 through the open spaces 82A and 110A for both encapsulated pipes (see Fig. 2), and the measurement lines 94A and 94B from the temperature measuring elements 92A and 92B are also inserted. Are respectively threaded into the column 30 through the line through holes 82C and 110C.
  • a plurality of, for example, three line through holes 118A, 118B, and 118C are formed in the flange portion 58 at the bottom of the support column 30 in addition to the gas inlet port 116 as shown in FIG. Yes.
  • a power supply line 72 having the lower end force of the line enclosing tube 74 extended through the line through hole 118A is airtightly inserted through the seal member 120A.
  • a conductive line 90 is airtightly passed through the line through-hole 118B through a seal member 120B.
  • two measurement lines 94A and 94B are inserted into the line through-hole 118C through the seal member 120C in an airtight manner.
  • an inert gas supply system 122 for supplying an inert gas is connected to the gas inlet 116 so that the inert gas can be supplied while controlling the flow rate as necessary.
  • N gas is used as the inert gas.
  • a heater power supply 114 is connected to the power supply line 72, and the heating elements 38A and 38B can be individually heated for each zone to control the temperature.
  • a high frequency power supply 116 for bias is connected to the conductive line 90 so that the conductive member 88 functions as a lower electrode during plasma processing.
  • this high frequency for example, 13.56MHz Can be used.
  • a DC power source 118 for electrostatic chuck is connected to the conductive line 90 so that the conductive member 88 also functions as a chuck electrode, and the wafer W on the mounting table 32 is statically fixed. It can be electroadsorbed.
  • the DC power supply 118 or the high frequency power supply 116 is not connected to the conductive line 90, and may be simply grounded and used as a ground line.
  • the two measurement lines 94A and 94B are input to the temperature control unit 120, and each zone is controlled by controlling the heater power supply 114 in accordance with the detected temperature of each zone.
  • the temperature control of each can be done individually.
  • the force for forming the pin insertion hole 44 in the mounting table 32 As shown in FIG. 1, the force for forming the pin insertion hole 44 in the mounting table 32.
  • the heating plate 40 For example, a gasket (not shown) is interposed as a seal member so as to surround the periphery of the pin insertion hole 44 between the surface of the heat generating plate and the inner surface of the heat generating plate housing container 42.
  • the unprocessed semiconductor wafer W is loaded into the processing container 4 through the gate valve 18 and the loading / unloading port 16 that are opened by being held by a transfer arm (not shown).
  • the push-up pin 46 is lowered, whereby the wafer W is placed on the upper surface of the mounting table 32, specifically, the upper surface of the lid portion 78.
  • the electrostatic chuck functions by applying a DC voltage from the DC power source 118 to the conductive member 88 of the mounting table 32, and the wafer W is held on the mounting table 32.
  • various processing gases are supplied to the shower head unit 6 while controlling the flow rate, and the gases are blown out through the gas injection holes 10A and 10B and injected into the processing space S.
  • the atmosphere in the processing container 4 and the exhaust dropping space 22 is evacuated, and the pressure regulating valve
  • the atmosphere of the processing space S is maintained at a predetermined process pressure by adjusting the valve opening.
  • the temperature of the wafer W is maintained at a predetermined process temperature. That is, by applying a voltage from the heater power supply 114 to the heating element 38 of the mounting table 32, the heating element 38 is heated, and as a result, the entire heating plate 40 is heated.
  • the wafer W is heated and heated by the heat from the heating plate 40.
  • the wafer temperature is measured at each of the temperature measuring elements 92A and 92B provided on the lid 78, and the temperature controller 120 controls the temperature for each zone based on the measured value. For this reason, the temperature of the wafer W can always be controlled in a state where the in-plane uniformity is high.
  • a high frequency power source 17 is driven to apply a high frequency between the shower head unit 6 that is the upper electrode and the mounting table 32 that is the lower electrode, and plasma is generated in the processing space S.
  • plasma ions can be attracted by applying a high frequency from the bias high frequency power supply 116 to the conductive member 88 of the mounting table 32.
  • an inert gas for example, N gas
  • N gas is supplied into the support column 30 and the heating plate storage container 42 of the mounting table 32, and the processing container 4 Than pressure
  • N gas is supplied by the inert gas supply system 122.
  • the processing gas and corrosive gas used in the process particularly the etching gas and the cleaning gas during the tiling, from entering the support column 30 and the heating plate container 42.
  • the force due to the process pressure is an example of N gas pressure.
  • the members constituting the mounting table structure 29 can be disassembled and assembled, so only the member in which the defect has occurred. Can be replaced.
  • the lid 78 and the container body 76 The other support column 30 and the heat generating plate storage container 42 may be used as they are by removing the engaging pin 98 that connects them, opening the cover 78, and replacing only the heat generating plate 40 including the heat generating element 38. it can.
  • the heat-resistant and corrosion-resistant material of each of the above components or the insulating material that is a heat-resistant material is either quartz glass or a ceramic material containing A1N, Al 2 O, or Si N 1
  • each of the above materials is an optimum material according to the process, such as a process that particularly requires corrosion resistance, a process that particularly requires resistance to thermal shock, and a process that requires resistance to contamination (contamination).
  • a process that particularly requires corrosion resistance such as a corrosion resistance, a process that particularly requires resistance to thermal shock, and a process that requires resistance to contamination (contamination).
  • the heating element 38 is incorporated into the heating plate 40, the heating element 38 is accommodated along the heater groove 66, so that it is prevented from being deformed during integral molding, and is formed to the dimensions as designed. can do.
  • the thermal resistance is increased as compared with the conventional apparatus in which this portion is welded.
  • the occurrence of cool spots can be suppressed, so that not only the occurrence of breakage due to thermal shock (thermal stress concentration) can be prevented, but also the firing and machining of these parts is easy. Can be done.
  • the above-described bolt member 112 is not used, and other detachable joining members, for example, a joint that is joined by fitting a convex portion provided on the support column 30 into a concave portion provided on the container body 76. A member or the like may be used. The concave portion and the convex portion may be provided in reverse.
  • the temperature measuring element 92 is provided at a plurality of locations (three or more in total) in addition to the central portion of the mounting table 32. It is possible to control with high temperature accuracy.
  • the force formed by embedding the conductive member 88 in the lid portion 78 is not limited to this, and the force may be set so as to spread on the heat generating plate 40 in the plane direction. .
  • This use a thin plate-like conductive member that spreads in a disc shape rather than a mesh-like member.
  • the conductive member 88 is a ceramic made of Al 2 O or the like.
  • the conductive material 88 functioning as the lower electrode and the chuck electrode is embedded in the ceramic material, even if it is intended to repair the shape and material of the conductive member 88, the repair becomes very difficult. It is not only possible to perform repairing or repair itself, but it is also fired at a high temperature, for example, about 1900 ° C. The material may be limited.
  • the conductive member 88 when the conductive member 88 is embedded in a soft ceramic material before firing, the conductive member 88 is baked and hardened. However, the conductive member 88 causes uneven settlement in the soft ceramic material before baking. As a result, the embedding depth of the conductive member 88 is not uniform within the surface, and variations occur. For this reason, there is a possibility that the electrostatic capacity between the plasma formed above this becomes non-uniform and adversely affects the plasma formation.
  • FIG. 6 is a sectional view showing a second embodiment of the mounting table structure according to the present invention.
  • the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the description of the temperature measuring element 92 is omitted.
  • the conductive member 88 is provided between the lid 78 and the heat generating plate 40 located below, instead of being integrally fired in the lid 78 made of a ceramic material.
  • the conductive member 88 is directly joined to the lower surface (back surface) of a lid portion 78 made of a fired ceramic material or quartz glass.
  • the entire surface of the conductive member 88 (the bottom surface in FIG. 6) is used to prevent metal contamination.
  • a protective layer 130 made of a heat-resistant insulating material is provided so as to cover the whole).
  • the power supply line 90 extending from the conductive member 88 is wired so as to pass through the column 30.
  • a through hole 132 is formed in the heat generating plate 40, and the feed line 90 is inserted into the through hole 132 and extends downward.
  • the conductive member 88 includes not only refractory metals such as W (tungsten) and Mo (molybdenum), but also MoSi, Ti Al
  • Conductive intermetallic compounds such as C and Ti SiC can also be used.
  • the conductive member 88 is bonded to the lower surface after the lower surface of the lid 78 is polished flat.
  • the conductive member 88 may be attached or formed by screen printing or the like.
  • the protective layer 130 includes alumina (Al 2 O 3), which is a heat-resistant insulating material, and yttria.
  • (Y o) etc. may be applied by thermal spraying, or liquid material or solid phase material may be applied by diffusion welding.
  • a thin plate 134 made of alumina or yttria may be attached with an adhesive 136.
  • the adhesive 136 for example, carbon, SiO, or the like can be used.
  • the thickness of the lid portion 78 used here is the same as that in the first embodiment, and is in the range of about l to 20 mm because the thickness is thinner than lmm. This strength will not be able to withstand the pressure difference between the inside of the heat generating plate container 42 and the outer process space, and if it is thicker than 20 mm, the impedance of this part will become excessively large and the plasma will Inconveniences such as high potential will occur.
  • the conductive member 88 is not integrally fired in the lid portion 78.
  • the protective layer 130 or the conductive member 88 is relatively removed. Since it can be easily peeled off, the above repairs and material changes can be easily performed.
  • the lower surface of the lid portion 78 only needs to be polished flat, so that the conductive member 88 can be uniformly and flatly formed.
  • the lid portion 78 is broken. The risk of giving damages can be greatly suppressed.
  • an inert gas such as N flowing in the heating element housing container 42 is in direct contact with the conductive member 88.
  • the force that is bonded to the lower surface of the conductive member 88 and the lid portion 78 is not limited to this, but may be bonded to the upper surface of the heat generating plate 40.
  • FIG. 8 is a partial sectional view showing a third embodiment of such a mounting table structure of the present invention.
  • the same components as those shown in FIGS. 1 and 6 are given the same reference numerals, and the description thereof is omitted.
  • the conductive member 88 is joined to the upper surface of the top plate 68 that forms the upper portion of the heat generating plate 40.
  • the conductive member 88 is bonded to the upper surface after the upper surface of the top plate 68 is polished flat like the lower surface of the lid portion 78 of the second embodiment.
  • the protective layer 130 is formed so as to cover the entire upper surface of the conductive member 88.
  • the method of joining the conductive member 88 is the same as that of the second embodiment in that it uses spraying or the like. Also, as explained in FIG. 7, the thin plate 134 and the adhesive are used. 136 may be used for joining.
  • FIG. 9 is a partial sectional view showing a fourth embodiment of such a mounting table structure according to the present invention. The same components as those shown in FIGS. 1 and 6 are given the same reference numerals, and the description thereof is omitted.
  • the conductive member 88 is joined to the upper surface of the lid portion 78.
  • the conductive member 88 is bonded to the upper surface after the upper surface of the lid portion 78 is polished flat like the lower surface of the lid portion 78 of the first embodiment.
  • a protective layer is provided so as to cover the entire upper surface of the conductive member 88. 130 is formed.
  • the joining method of the conductive member 88 is the same as that of the second embodiment in that it uses radiation or the like. Also, as described in FIG. 7, the thin plate 134 and the adhesive are used. 136 may be used for joining. Further, in the case of the fourth embodiment, a through hole 140 is formed in the lid portion 78, and a conductive line 90 is inserted into the through hole 140 and connected to the conductive member 88.
  • the same operational effects as those of the second embodiment can be exhibited. Further, in the case of the fourth embodiment, the distance between the conductive member 88 and the wafer W or plasma placed above the conductive member 88 is the shortest. Can be increased.
  • the force described by taking as an example the case where the heat generating member 38 is integrally incorporated in a disc-shaped quartz glass is not limited to this.
  • a heating plate 40 formed by inserting a heating element (for example, a carbon wire heater) into a quartz glass tube bent like a meandering or spiral shape may be used.
  • the force described with reference to the case of using plasma is used as an example of a simple heat treatment apparatus that does not use plasma.
  • the high frequency power supply 17 for plasma, the matching circuit 15, and the noise circuit are used.
  • the high frequency power supply 116 or the like is not necessary. Even in this case, the conductive member 88 having an electrostatic chuck function should be used.
  • the force described by taking the semiconductor wafer as an example of the object to be processed is not limited to this, and it is needless to say that the present invention can be applied to an LCD substrate, a glass substrate, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Resistance Heating (AREA)

Description

載置台構造及び熱処理装置
技術分野
[0001] 本発明は、半導体ウェハ等の被処理体の熱処理装置及び載置台構造に関する。
背景技術
[0002] 一般に、半導体集積回路を製造するには、半導体ウェハ等の被処理体に、成膜処 理、エッチング処理、熱処理、改質処理、結晶化処理等の各種の枚葉処理を繰り返 し行なって、所望する集積回路を形成する。上記したような各種の処理を行なう場合 には、その処理の種類に対応して必要な処理ガス、例えば成膜処理の場合には成 膜ガスやハロゲンガスを、改質処理の場合にはオゾンガス等を、結晶化処理の場合 には Nガス等の不活性ガスや Oガス等をそれぞれ処理容器内へ導入する。
2 2
[0003] 例えば半導体ウェハに対して 1枚毎に熱処理を施す枚葉式の熱処理装置を例にと れば、真空引き可能になされた処理容器内に、例えば抵抗加熱ヒータを内蔵した載 置台を設置し、この上面に半導体ウェハを載置し、所定の温度 (例えば 100°Cから 1 000°C)で加熱した状態で所定の処理ガスを流し、所定のプロセス条件下にてウェハ に各種の熱処理を施す (特許文献 1〜6)。このため処理容器内の部材につ 、ては、 これらの加熱に対する耐熱性と処理ガスに曝されても腐食されない耐腐食性が要求 される。
[0004] ところで、半導体ウェハを載置する載置台構造は、一般的には耐熱性耐腐食性を 持たせると共に、金属コンタミネーシヨン等の金属汚染を防止する必要から、例えば A1N等のセラミック材中に発熱体として抵抗加熱ヒータを埋め込んで高温で一体焼 成して形成された載置台を有している。また、別工程で同じくセラミック材等を焼成し て支柱を形成する。そして一体焼成した載置台側と、上記支柱とを、例えば熱拡散 接合で溶着して一体ィ匕して載置台構造を製造して ヽる。このように一体成形した載 置台構造は処理容器内の底部に起立させて設ける。また上記セラミック材に代えて 耐熱耐腐食性のある石英ガラスを用いる場合もある。
特許文献 1:特開昭 63— 278322号公報 特許文献 2 :特開平 07— 078766号公報
特許文献 3:特開平 03 - 220718号公報
特許文献 4:特開平 06 - 260430号公報
特許文献 5:特開平 8— 78193号公報
特許文献 6:特開 2004— 356624号公報
[0005] ところで、上述のように発熱体である抵抗加熱ヒータは、セラミック材中ゃ石英ガラス 中に一体的に埋め込んで一体焼成して載置台を形成して 、るので、例えば抵抗力口 熱ヒータの一部が破断するなど、一部に欠陥が生じただけで、この載置台構造全体 を取り換えなければならず、欠陥を有する部材以外の他の部分が無駄になってしまう 、という問題があった。
[0006] また、処理 (プロセス)の種類によっては、耐腐食性が特に求められるプロセスや、 熱衝撃に対する耐久性が特に求められるプロセスや、金属汚染に対する耐性が特に 求められるプロセス等があって、プロセスの種類に応じて種々の要求スペックが存在 する。そして、一般的には部品の共通化を図るために耐腐食性、耐熱性等に対して 最も過酷なプロセスに対応させて上記載置台構造を製造する。このため、使用される プロセスの種類によっては、載置台構造の材料の選定に関して必要以上に耐性の 大きな特性を有する材料が用いられてしまってオーバースペックになる場合がある。 特にこれらの耐性の高 、部材は、部材自体が高価で且つ加工も高価であることから 、装置自体の必要以上なコスト高を招いてしまう、という問題があった。
[0007] また、上記載置台の下面に支柱を溶着して一体成形して 、ることから、この載置台 と支柱との接合部における熱伝導性が良好になって、この部分の支柱側への熱の流 れがよくなる。その結果、この接合部が他の載置台の部分よりも冷えた状態となって、 いわゆるクールスポットが発生してしまい、ここに熱応力の集中が生じ、結果としてこ の接合部を起点として載置台割れが発生し易くなる、といった問題があった。
[0008] また、載置台のヒータの温度制御を行うために、載置台の裏面に熱電対を取り付け る力 この熱電対は載置台の焼成後に取り付けるようになっており、し力も、その検出 ラインが処理ガスや腐食性ガス等に晒されることを防止するために、上記熱電対は支 柱が接続されることになる載置台の裏面中心部に 1つしか設置することができない。 このため、載置台の中心部の温度は上記熱電対で測定できるのに対して、載置台の 周辺部の温度は経験則で求めるしかなぐこのため、処理容器内の熱輻射環境が大 きく変わった時などは載置台、或いは半導体ウェハの面内温度の均一性を高く維持 することができな!/、場合が生ずる、 t 、つた問題があった。
[0009] 更には、上記抵抗加熱ヒータを載置台内に一体焼成する場合に、抵抗加熱ヒータ の引き回し配線は計算上求めた位置に精度良く配設されるが、焼成時に加わる応力 によりヒータ自体の断面が僅かに変形する場合があり、この場合にはヒータの位置補 修ができないことから設計通りの温度分布を実現することが困難になる、といった問 題もあった。
発明の開示
[0010] 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたもの である。本発明の目的は、発熱板を、発熱板収容容器内へ着脱可能に設けて載置 台を構成することにより、発熱板を取り換え、或いは交換可能にした載置台構造及び これを用いた熱処理装置を提供することにある。
[0011] また本発明の他の目的は、プラズマ処理装置の例えば下部電極やチャック電極等 になる導電性部材を載置台と共に一体焼成しな 、で補修可能に設けるようにした載 置台構造及びこれを用いた熱処理装置を提供することにある。
[0012] 本発明は、処理容器内に配置され被処理体に対して所定の熱処理を施すために 前記被処理体を載置する載置台と、前記載置台を前記処理容器の底部より起立さ せて支持する筒体状の支柱とを備え、前記載置台は、耐熱性材料と耐熱性材料中 に埋め込まれ電気加熱源よりなる発熱体とを有する発熱板と、内部に前記発熱板を 着脱可能に収容するとともに開口を有する容器本体と、容器本体の開口に着脱可能 に取付けられた蓋部とを有する耐熱耐腐食性材料製の発熱板収容容器と、を備えた ことを特徴とする載置台構造である。
[0013] このように、発熱板を、発熱板収容容器内へ着脱可能に設けて載置台を構成する ことにより、発熱板を取り換え、或いは交換可能にすることができる。
[0014] また、着脱可能になされた蓋部を、実行すべきプロセスに対応した耐熱性及び耐 腐食性を有する材料よりなる蓋部に換えることができ、このために蓋部がオーバース ペックになることを防止することができる。この結果、比較的安価な且つ加工性の良 好な材料を使用できることから、装置コストを大幅に削減することができる。
[0015] 本発明は、前記蓋部の接合部は、前記発熱板収容容器の容器本体に耐熱耐腐食 性材料よりなる係合ピンにより係合されていることを特徴とする載置台構造である。
[0016] 本発明は、前記蓋部と前記容器本体との接合部には、シール部材及び Z又はシ ール構造が設けられていることを特徴とする載置台構造である。
[0017] 本発明は、前記発熱体は、複数のゾーンに分割されており、ゾーン毎に温度制御 が可能になされていることを特徴とする載置台構造である。
[0018] 本発明は、前記蓋部の裏面側には、前記ゾーンに対応させて複数の温度測定素 子が設けられて 、ることを特徴とする載置台構造である。
[0019] 本発明は、前記温度測定素子の測定ラインは、前記支柱内に延びていることを特 徴とする載置台構造である。
[0020] 本発明は、前記支柱の上端部は、前記載置台の下面の中央部に、ボルト部材によ り着脱可能に取り付けられていることを特徴とする載置台構造である。
[0021] このように、支柱と載置台とを互いに着脱可能に設けるようにしたので、 、ずれか一 方に欠陥が生じても全体を交換する必要がなく欠陥が生じた方の部材のみを交換す るだけでよいので、メンテナンス費用を抑制でき、また、実行すべきプロセスに対応し た耐熱性及び耐腐食性を有する材料よりなる載置台、或いは支柱に交換することが できるので、このため、載置台や支柱がオーバースペックになることを防止することが できる。この結果、比較的安価な且つ加工性の良好な材料を使用できることから、装 置コストを大幅に削減することができる。
[0022] 本発明は、前記ボルト部材は、耐熱性材料よりなることを特徴とする載置台構造で ある。
[0023] 本発明は、前記支柱の上端部と前記載置台の下面との接合部には、シール部材 が介設されて 、ることを特徴とする載置台構造である。
[0024] 本発明は、前記発熱板からは、前記発熱体へ給電を行うための給電ラインを封入し てなる耐熱性材料よりなるライン封入管が前記容器本体を貫通して前記支柱内に延 びて 、ることを特徴とする載置台構造である。 [0025] 本発明は、前記支柱の内部と前記発熱板収容容器の内部は、不活性ガスにより陽 圧状態になされていることを特徴とする載置台構造である。
[0026] 本発明は、前記蓋部には、平面方向に広がる導電性部材が埋め込まれていると共 に、該導電性部材に導電ラインが接続され、この導電ラインは前記支柱内に延びて
V、ることを特徴とする載置台構造である。
[0027] 本発明は、前記発熱板上には、平面方向に広がる導電性部材が設けられると共に
、該導電性部材に導電ラインが接続され、この導電ラインは前記支柱内に延びてい ることを特徴とする載置台構造である。
[0028] 本発明は、前記蓋部と前記発熱板との間には、平面方向に広がる導電性部材が設 けられると共〖こ、該導電性部材に導電ラインが接続され、この導電ラインは前記支柱 内に延びて 、ることを特徴とする載置台構造である。
[0029] これによれば、導電性部材は、蓋部には一体的に焼成されていない構造となるの で、例えば下部電極やチャック電極として用いられる上記導電性部材に補修等をカロ えようとする場合に、この補償等を容易に行うことができる。
[0030] 本発明は、前記導電性部材は、前記蓋部の下面に接合されていることを特徴とす る載置台構造である。
[0031] 本発明は、前記導電性部材は、前記発熱体の上面に接合されていることを特徴と する載置台構造である。
[0032] 本発明は、前記導電性部材の表面には、この全面を覆うようにして耐熱絶縁性材 料よりなる保護層が設けられることを特徴とする載置台構造である。
[0033] 本発明は、処理容器内に配置され、被処理体に対して所定の熱処理を施すために 前記被処理体を載置する載置台と、前記載置台を前記処理容器の底部より起立さ せて支持する筒体状の支柱とを備え、前記載置台は、耐熱性材料と、耐熱性材料中 に埋め込まれ、電気加熱源よりなる発熱体とを有する発熱板と、内部に前記発熱板 を着脱可能に収容するとともに開口を有する容器本体と、容器本体の開口に着脱自 在に取付けられた蓋材とを有する耐熱耐腐食性材料製の発熱板収容容器と、前記 蓋部の上面に設けられて平面方向に広がる導電性材料と、前記導電性部材の表面 全体を覆うように設けた耐熱絶縁性材料よりなる保護層と、前記導電性部材に接続さ れる導電ラインと、を備えたことを特徴とする載置台構造である。
[0034] このように、発熱板を、発熱板収容容器内へ着脱可能に設けて載置台を構成する ことにより、発熱板を取り換え、或いは交換可能にすることができる。
[0035] また、着脱可能になされた蓋部を、実行すべきプロセスに対応した耐熱性及び耐 腐食性を有する材料よりなる蓋部に換えることができ、このために蓋部がオーバース ペックになることを防止することができる。この結果、比較的安価な且つ加工性の良 好な材料を使用できることから、装置コストを大幅に削減することができる。
[0036] また、導電性部材は、蓋部には一体的に焼成されて ヽな 、構造となるので、例えば 下部電極やチャック電極として用いられる上記導電性部材に補修等を加えようとする 場合に、この補償等を容易に行うことができる。
[0037] 本発明は、前記保護層は、前記耐熱絶縁性材料を塗布することにより形成されるこ とを特徴とする載置台構造である。
[0038] 本発明は、前記保護層は、前記耐熱絶縁性材料よりなる薄板を接着剤により接合 することにより形成されることを特徴とする載置台構造である。
[0039] 本発明は、前記蓋部の厚さは、 l〜20mmの範囲内であることを特徴とする載置台 構造である。
[0040] 本発明は、前記耐熱性材料および耐熱耐腐性材料は、絶縁性材料よりなることを 特徴とする載置台構造である。
[0041] 本発明は、前記絶縁性材料は、石英ガラス、或いは A1N、 Al O、 Si Nを含むセ
2 3 3 4 ラミック材の内のいずれか 1つよりなることを特徴とする載置台構造である。
[0042] 本発明は、真空引き可能になされた処理容器と、処理容器内に配置された載置台 構造と、前記処理容器内へ所定の処理ガスを供給するガス供給手段と、を備え、前 記載置台構造は、処理容器内に配置され被処理体に対して所定の熱処理を施すた めに前記被処理体を載置する載置台と、前記載置台を前記処理容器の底部より起 立させて支持する筒体状の支柱とを備え、前記載置台は、耐熱性材料と耐熱性材料 中に埋め込まれ電気加熱源よりなる発熱体とを有する発熱板と、内部に前記発熱板 を着脱可能に収容するとともに開口を有する容器本体と、容器本体の開口に着脱可 能に取付けられた蓋部とを有する耐熱耐腐食性材料製の発熱板収容容器と、を備え たことを特徴とする熱処理装置である。
[0043] 本発明は、真空引き可能になされた処理容器と、処理容器内に配置された載置台 構造と、前記処理容器内へ所定の処理ガスを供給するガス供給手段と、を備え、前 記載置台構造は、処理容器内に配置され、被処理体に対して所定の熱処理を施す ために前記被処理体を載置する載置台と、前記載置台を前記処理容器の底部より 起立させて支持する筒体状の支柱とを備え、前記載置台は、耐熱性材料と、耐熱性 材料中に埋め込まれ、電気加熱源よりなる発熱体とを有する発熱板と、内部に前記 発熱板を着脱可能に収容するとともに開口を有する容器本体と、容器本体の開口に 着脱自在に取付けられた蓋材とを有する耐熱耐腐食性材料製の発熱板収容容器と 、前記蓋部の上面に設けられて平面方向に広がる導電性材料と、前記導電性部材 の表面全体を覆うように設けた耐熱絶縁性材料よりなる保護層と、前記導電性部材 に接続される導電ラインと、を備えたことを特徴とする熱処理装置である。
[0044] 本発明に係る載置台構造及び熱処理装置によれば、次のように優れた作用効果を 発揮することができる。
[0045] 発熱板を、発熱板収容容器内へ着脱可能に設けて載置台を構成することにより、 発熱板を取り換え、或いは交換可能にすることができる。
[0046] また、着脱可能になされた蓋部を、実行すべきプロセスに対応した耐熱性及び耐 腐食性を有する材料よりなる蓋部に換えることができ、このために蓋部がオーバース ペックになることを防止することができる。この結果、比較的安価な且つ加工性の良 好な材料を使用できることから、装置コストを大幅に削減することができる。
[0047] 特に、本発明によれば、支柱と載置台とを互いに着脱可能に設けるようにしたので 、いずれか一方に欠陥が生じても全体を交換する必要がなく欠陥が生じた方の部材 のみを交換するだけでよいので、メンテナンス費用を抑制でき、また、実行すべきプロ セスに対応した耐熱性及び耐腐食性を有する材料よりなる載置台、或いは支柱に交 換することができるので、このため、載置台や支柱がオーバースペックになることを防 止することができる。この結果、比較的安価な且つ加工性の良好な材料を使用できる ことから、装置コストを大幅に削減することができる。
図面の簡単な説明 [0048] [図 1]図 1は、本発明に係る熱処理装置を示す断面構成図である。
[図 2]図 2は、載置台構造の第 1実施例を示す断面図である。
[図 3]図 3は、載置台構造の発熱体を示す平面図である。
[図 4]図 4 (A) (B)は、載置台構造の一部を示す部分拡大断面図である。
[図 5]図 5は、載置台構造を示す分解組立図である。
[図 6]図 6は、本発明に係る載置台構造の第 2実施例を示す断面図である。
[図 7]図 7は、載置台構造の第 2実施例の変形例を示す部分拡大図である。
[図 8]図 8は、本発明の載置台構造の第 3実施例を示す部分断面図である。
[図 9]図 9は、本発明の載置台構造の第 4実施例を示す部分断面図である。
発明を実施するための最良の形態
[0049] 以下に本発明に係る載置台構造及び熱処理装置の一実施例を添付図面に基づ いて詳述する。
[0050] <第 1実施例 >
図 1は本発明に係る熱処理装置を示す断面構成図、図 2は載置台構造の第 1実施 例を示す断面図、図 3は載置台構造の発熱体を示す平面図、図 4 (A) (B)は載置台 構造の一部を示す部分拡大断面図、図 5は載置台構造の分解組立図である。本実 施例では、高周波電力によるプラズマも用いることができる熱処理装置について説明 する。
[0051] 図示するようにこの熱処理装置 2は、例えば断面の内部が略円形状になされたアル ミニゥム製の処理容器 4を有している。この処理容器 4内の天井部には必要な処理ガ ス、例えば成膜ガスを導入するためにガス供給手段であるシャワーヘッド部 6が絶縁 層 7を介して設けられており、この下面のガス噴射面 8に設けた多数のガス噴射孔か ら処理空間 Sに向けて処理ガスを吹き出すようにして噴射する。このシャワーヘッド部 6はプラズマ処理時に上部電極を兼ねるものである。
[0052] このシャワーヘッド部 6内には、中空状の 2つに区画されたガス拡散室 12A、 12B が形成されており、ここに導入された処理ガスを平面方向へ拡散した後、各ガス拡散 室 12A、 12Bにそれぞれ連通された各ガス噴射孔 10A、 10Bより吹き出す。すなわ ち、ガス噴射孔 10A、 10Bはマトリクス状に配置されている。このシャワーヘッド部 6の 全体は、例えばニッケルゃノヽステロイ (登録商標)等のニッケル合金、アルミニウム、 或いはアルミニウム合金により形成されている。尚、シャワーヘッド部 6としてガス拡散 室が 1つの場合でもよい。そして、このシャワーヘッド部 6と処理容器 4の上端開口部 の絶縁層 7との接合部には、例えば Oリング等よりなるシール部材 14が介在されてお り、処理容器 4内の気密性を維持する。そして、このシャワーヘッド部 6には、マツチン グ回路 15を介して例えば 13. 56MHzのプラズマ用の高周波電源 17が接続されて おり、必要時にプラズマを立てる(形成する)。この周波数は上記 13. 56MHzに限定 されない。
[0053] また、処理容器 4の側壁には、この処理容器 4内に対して被処理体としての半導体 ウエノ、 Wを搬入搬出するための搬出入口 16が設けられると共に、この搬出入口 16 には気密に開閉可能になされたゲートバルブ 18が設けられている。
[0054] そして、この処理容器 4の底部 20に排気落とし込め空間 22が形成されている。具 体的には、この容器底部 20の中央部には大きな開口 24が形成されており、この開口 24に、その下方へ延びる有底円筒体状の円筒区画壁 26を連結してその内部に上 記排気落とし込め空間 22を形成している。そして、この排気落とし込め空間 22を区 画する円筒区画壁 26の底部 28には、これより起立させて本発明の特徴とする載置 台構造 29が設けられる。具体的には、この載置台構造 29は、円筒状の支柱 30と、こ の上端部に着脱可能に固定される載置台 32とを備えている。この載置台構造 29の 詳細については後述する。
[0055] そして、上記排気落とし込め空間 22の開口 24は、載置台 32の直径よりも小さく設 定されており、上記載置台 32の周縁部の外側を流下する処理ガスが載置台 32の下 方に回り込んで開口 24へ流入する。そして、上記円筒区画壁 26の下部側壁には、 この排気落とし込め空間 22に臨ませて排気口 34が形成されて 、る。この排気口 34 には、図示しない真空ポンプが介設された排気管 36が接続されて、処理容器 4内及 び排気落とし込め空間 22の雰囲気を真空引きして排気できる。
[0056] そして、この排気管 36の途中には、開度コントロールが可能になされた図示しない 圧力調整弁が介設されており、この弁開度を自動的に調整することにより、上記処理 容器 4内の圧力を一定値に維持したり、或いは所望する圧力へ迅速に変化させ得る [0057] また、上記載置台 32は、発熱板 40を有し、この発熱板 40は図 2にも示すように耐 熱性材料 64、 68と、この耐熱性材料 64、 68中に埋め込まれ、例えばカーボンワイヤ ヒータ等の電気加熱源よりなりパターン形状をもつ発熱体 38とを含んで ヽる。この発 熱板 40は発熱板収容容器 42内へ収容されている。そして、この発熱板収容容器 42 の上面に、被処理体としての半導体ウェハ Wが載置される。ここで載置台 32は加熱 手段と兼用されることになる。
[0058] 上記載置台 32には、この上下方向に貫通して複数、例えば 3本のピン揷通孔 44が 形成されており(図 1においては 2つのみ示し、図 2以降では記載省略)、上記各ピン 揷通孔 44に上下移動可能に遊嵌状態で挿通させた押し上げピン 46を配置している 。この押し上げピン 46の下端には、円形リング形状の例えばアルミナのようなセラミツ ク製の押し上げリング 48が配置されており、この押し上げリング 48に、上記各押し上 げピン 46の下端が乗っている。この押し上げリング 48から延びるアーム部 50は、容 器底部 20を貫通して設けられる出没ロッド 52に連結されており、この出没ロッド 52は ァクチユエータ 54により昇降可能になされて 、る。
[0059] これにより、上記各押し上げピン 46をウェハ Wの受け渡し時に各ピン揷通孔 44の 上端から上方へ出没させるようになつている。また、ァクチユエータ 54の出没ロッド 52 の容器底部の貫通部には、伸縮可能なベローズ 56が介設されており、上記出没ロッ ド 52が処理容器 4内の気密性を維持しつつ昇降できるようになつている。
[0060] そして、載置台構造 29の支柱 30の底部は閉じられると共に、ここには拡径されたフ ランジ部 58が設けられ、そしてこのフランジ部 58が、処理容器 4の底部 28の中央部 に形成した貫通孔 60を覆うようにして、図示しないボルト等により着脱可能に取り付 けられている。
[0061] このフランジ部 58と、貫通孔 60の周辺部の底部 28との間には、 Oリング等のシー ル部材 62が介設されており、この部分の気密性を保持するようになっている。
[0062] 次に、上記載置台構造 29について図 2乃至図 5も参照して具体的に説明する。
[0063] 前述したように、この載置台構造 29は、載置台 32と支柱 30とにより主に構成されて いる。具体的には、上記載置台 32は、上記発熱板 40と、これを収容する発熱板収容 容器 42とよりなる。上記発熱板 40は、耐熱性材料よりなる円形平面状の台座 64を有 しており、この台座 64の表面全面にはヒータ溝 66が形成され、このヒータ溝 66に沿 つて電気加熱源よりなる上記発熱体 38を配設している。そして、この台座 64の上面 に、同じく耐熱性材料よりなる円形状の平板 68を配置し、これを高温で焼成して一体 化する。これにより、発熱体 38が発熱板 40内に埋め込まれることになる。
[0064] ここで、上記発熱体 38は、複数のゾーンに分割されており、ゾーン毎に温度制御が 可能になされている。すなわち、本実施例では、図 3にも示すように、上記発熱体 38 は、同心円状に 2つのゾーン、すなわち内周側のゾーン 70Aの発熱体 38Aと外周側 のゾーン 70Bの発熱体 38Bとに分割されている。尚、図 3中においては図面の理解 を容易にするために各発熱体 38A、 38Bの卷回数を減らして記載している。また、ゾ 一ン数を 3以上に設定してもよ 、。
[0065] そして、各分割された発熱体 38A、 38Bの両端には、それぞれ給電ライン 72が接 続され、この給電ライン 72は発熱板 40の裏面中心部から下方向へ延びている。この 給電ライン 72は、その長さ方向の途中まで耐熱性材料よりなるライン封入管 74内に 密閉状態に封入され、このライン封入管 74の上部は上記発熱板 40に一体的に溶着 されている。
[0066] この結果、上記ライン封入管 74は、上記筒体状の支柱 30内に挿通されて下方向 に向けて延びて 、る状態となって 、る。ここで上記各耐熱性材料は絶縁性のある例 えば透明石英ガラスよりなり、従って、このライン封入管 74を含む発熱板 40の全体は 、石英ガラスにより一体成形されることになる。尚、本実施例においては上記ライン封 入管 74は 4本設けられるが(図 3参照)、図 1及び図 2中では図面の簡略化のために 1本のみ記載してある。
[0067] 次に、上記発熱板収容容器 42は、開口を有し耐熱耐腐食性材料である例えば窒 化アルミ (A1N)よりなる容器本体 76と、この容器本体 76の上部開口に着脱可能に設 けられた同じく耐熱耐腐食性材料、例えば窒化アルミ製の蓋部 78とを含んで ヽる。 上記容器本体 76は、その周辺部が上方へ屈曲されて側壁 80となり、上方が開口さ れた容器状になっている。またこの容器本体 76の中央部には、上記支柱 30が接合 される部分に対応させて、図 5にも示すように、ライン封入管用貫通孔 82A、ボルト用 貫通孔 82B及び他に必要な数のライン用貫通孔 82Cがそれぞれ設けられる。
[0068] ここで上記ライン封入管用貫通孔 82Aの直径は、ライン封入管 74の外径よりもかな り大きく設定されており、遊嵌状態で上記ライン封入管 74を挿脱できるようになつてい る。また、この容器本体 76の側壁 80の外周面の上部の所定の箇所には、後述する ピン部材を封に有するピン穴部 84 (図 4も参照)が形成されている。
[0069] また上記蓋部 78はその周辺部が下方へ屈曲されて側壁 86となり、上記容器本体 7 6の側壁 80と重なり合うようにして容器本体 76を覆う。この蓋部 78の上面は平坦に形 成されており、この上面が載置面となってここにウェハ Wを直接的に載置できるように なっている。この蓋部 78の厚さは、例えば l〜20mm程度の範囲内であり、その理由 はこの厚さが lmmよりも薄いと、この強度が発熱板収容容器 42内とその外側のプロ セス空間との間の差圧に耐えられなくなってしまい、また 20mmよりも厚いと、この部 分のインピーダンスが過度に大きくなつてプラズマ電位が高くなる等の不都合が生じ てしまう。
[0070] また、この蓋部 78には、平面方向に広がる網目状になされた導電性部材 88がー体 的に埋め込まれており、この導電性部材 88には導電ライン 90が接続されて下方に 伸びている。尚、この導電性部材 88は、メッシュ状の部材、多数の孔を分散させてシ ートに形成したようなパンチングプレート状の部材、薄ぐ塗布された導電層状の部材、 種々の形に印刷された導電性パターン状の部材等により形成することができる。上記 蓋部 78は石英や Al Oや A1N等のセラミック材よりなり、上記導電性部材 88と一体
2 3
焼成されること〖こなる。
[0071] またこの蓋部 78の裏面側には、蓋部 78の半径方向の異なった位置で複数の温度 測定素子 92が埋め込まれている。具体的には、ここでは上記発熱体 38のゾーン数 に対応させて複数の、すなわち 2個の温度測定素子 92A、 92Bを設けており、一方 の温度測定素子 92Aは蓋部 78の中心部に設けて内周側のゾーンの温度測定し、 他方の温度測定素子 92Bは蓋部 78の周辺部に設けて外周側のゾーンの温度を測 定し得るようになつている。これらの温度測定素子 92A、 92Bとしては、例えば熱電 対を用いることができ、これをガラス溶着、ロウ付け、ネジ止め、パネによる押し付け或 いは蓋部 78との一体焼成により取り付けている。そして、上記各温度測定素子 92A 、 92Bからは測定ライン 94A、 94Bがそれぞれ下方へ延びている。
[0072] またこの蓋部 78の側壁 86には、上記容器本体 76の側壁 80に設けたピン穴部 84 に連通されるピン孔 96が所定の箇所に複数設けられており(図 4 (A)参照)、このピ ン孔 96及びピン穴部 84に係合ピン 98が着脱自在に嵌め込まれている。従って、こ の係合ピン 98を取り外すことによって上記蓋部 78は、上記容器本体 76に対して着 脱可能になされている。この係合ピン 98の材料としては耐熱耐腐食性材料、例えば 石英ガラス或いはセラミック材等を用いることができる。この場合、係合ピン 98の係合 を確実にするために、この係合ピン 98及びピン孔 96やピン穴部 84にネジ切りを施し ておいてもよい。
[0073] 更に、蓋部 78が着脱可能に設けられるならば、上記取り付け構造に限定されず、 例えば一部を切り欠 、た耐熱耐腐食性材料、例えば A1N等よりなるリング状の弹発 性保持具を側壁 86に沿って設け、上記弹発性保持具の弾発力により上記各係合ピ ン 98が容易には抜け落ちな!/、ようにしてもよ!、。
[0074] そして、上記蓋部 78と容器本体 76との接合部には、シール部材 100 (図 4 (A)参 照)が設けられている。ここでは上記容器本体 76の側壁 80の上端面と蓋部 78の下 面の周辺部との間に、薄いリング状のシール部材 100が介設されている。このシール 部材 100は、例えばニッケルよりなるリング状のガスケットを用いることができる。ここで のシール性は、 Oリング等のような高いシール性は求められておらず、後述するように この発熱板収容容器 42内を不活性ガスにより陽圧状態にすることで、内部へのガス の侵入を防止することになる。尚、上記シール部材 100に代えて、或いはシール部 材 100と併用して、図 4 (B)に示すようにここに凹凸状のラビリンスを形成したシール 構造 102を設けるようにしてもょ 、。
[0075] 一方、上記支柱 30は同じく耐熱耐腐食性材料、例えば酸ィ匕アルミ (Al O )等によ
2 3 り円筒体状に成形されており、その上端部は天板 106で塞がれ、下端部はフランジ 部 58で塞がれている。そして、上記天板 106には、上記容器本体 76の裏面の中央 部側と同じように、ライン封入管用貫通孔 110A、ボルト用貫通孔 110B及び他に必 要な数のライン用貫通孔 110Cがそれぞれ設けられる(図 5参照)。
[0076] そして、上記容器本体 76と支柱 30とはボルト部材 112により着脱可能に互いに取 り付けられる。すなわち、上記容器本体 76のボルト用貫通孔 82Bと天板 106のボルト 用貫通孔 110Bとにボルト部材 112のボルト 112Aを揷通し、これをナット 112Bにより 締め付けることにより、両者は分解可能に取り付け固定される。ここで上記ボルト部材 112は耐熱性材料、例えば窒化シリコン(Si N )等により形成されている。この取り付
3 4
けに際しては、上記容器本体 76と天板 106との間に薄いリング状のシール部材 114 (図 5参照)が介設されている。このシール部材 114は、例えばニッケルよりなるリング 状のガスケットを用いることができ、このシール箇所は Oリング等のような高いシール 性は求められていない。
[0077] そして、発熱板 40のライン封入管 74は、上記両ライン封入管用貫通孔 82A、 110 Aをそれぞれ挿通して支柱 30内の下方に延びており、また導電性部材 88からの導 電ライン 90も上記両ライン封入管用貫通孔 82A、 110Aの空きスペースを通って支 柱 30内に挿通されており(図 2参照)、更に各温度測定素子 92A、 92Bからの測定ラ イン 94A、 94Bはそれぞれライン用貫通孔 82C、 110Cを通って支柱 30内に揷通さ れている。
[0078] また支柱 30の底部のフランジ部 58には、図 5に示すようにガス導入口 116の他に、 複数、例えば図示例では 3つのライン用貫通孔 118A、 118B、 118Cが形成されて いる。そして、ライン用貫通孔 118Aには、上記ライン封入管 74の下端力も延びた給 電ライン 72がシール部材 120Aを介して気密に挿通されている。またライン用貫通孔 118Bには導電ライン 90がシール部材 120Bを介して気密に揷通されている。更にラ イン用貫通孔 118Cには、 2本の測定ライン 94A、 94Bがシール部材 120Cを介して 気密に挿通されている。また、上記ガス導入口 116には、不活性ガスを供給する不 活性ガス供給系 122が接続されており、不活性ガスを必要に応じて流量制御しつつ 供給できるようになつている。ここで上記不活性ガスとしては、 Nガスが用いられるが
2
、これに代えて、 Ar、 He等の他の不活性ガスを用いてもよい。
[0079] そして、上記給電ライン 72にはヒータ電源 114が接続されて、発熱体 38A、 38Bを ゾーン毎に個別に加熱して温度制御し得る。また、導電ライン 90には、バイアス用の 高周波電源 116が接続されており、プラズマ処理時には上記導電性部材 88を下部 電極として機能させるようになつている。尚、この高周波としては例えば 13. 56MHz を用いることができる。また、この導電ライン 90には、静電チャック用の直流電源 118 が接続されており、上記導電性部材 88をチャック電極としても機能させるようになって おり、載置台 32上のウェハ Wを静電吸着できるようになつている。尚、静電チャックが 不要の時や、プラズマ処理を行わな 、時にはこの導電ライン 90に直流電源 118や高 周波電源 116を接続しな 、で、単に接地して接地ラインとして用いる場合もある。
[0080] また、上記 2本の測定ライン 94A、 94Bは、温度制御部 120へ入力されており、ここ で検出した各ゾーンの温度に応じて上記ヒータ電源 114を制御することにより、各ゾ ーンの温度制御を個別にできるようになつている。尚、図 1に示すように載置台 32に ピン揷通孔 44を形成する力 このピン揷通孔 44に対して発熱板収容容器 42内のシ 一ル性を確保するために、発熱板 40の表面と発熱板収容容器 42の内面との間には 上記ピン揷通孔 44の周囲を囲むようにして、シール部材として例えばガスケット(図 示せず)を介在させるようにする。
[0081] 次に、以上のように構成されたプラズマを用いた熱処理装置の動作について説明 する。
[0082] まず、未処理の半導体ウェハ Wは、図示しない搬送アームに保持されて開状態と なったゲートバルブ 18、搬出入口 16を介して処理容器 4内へ搬入される。このゥェ ハ Wは、上昇された押し上げピン 46に受け渡された後に、この押し上げピン 46を降 下させることにより、ウェハ Wは載置台 32の上面、具体的には蓋部 78の上面に載置 されて支持される。この時に、載置台 32の導電性部材 88に直流電源 118より直流電 圧を印加することにより静電チャックが機能し、ウェハ Wを載置台 32上に保持する。
[0083] 次に、シャワーヘッド部 6へ各種の処理ガスを、それぞれ流量制御しつつ供給して 、このガスをガス噴射孔 10A、 10Bより吹き出して噴射し、処理空間 Sへ導入する。そ して、図示してないが排気管 36に設けた真空ポンプの駆動を継続することにより、処 理容器 4内や排気落とし込め空間 22内の雰囲気を真空引きし、そして、圧力調整弁 の弁開度を調整して処理空間 Sの雰囲気を所定のプロセス圧力に維持する。この時 、ウェハ Wの温度は所定のプロセス温度に維持されている。すなわち、載置台 32の 発熱体 38にヒータ電源 114より電圧を印加することにより発熱体 38は加熱し、これに より発熱板 40全体が加熱される。 [0084] この結果、発熱板 40からの熱でウェハ Wが昇温加熱される。この時、蓋部 78に設 けた各温度測定素子 92A、 92Bでは、ウェハ温度が測定され、この測定値に基づい て温度制御部 120は、各ゾーン毎に温度制御することになる。このため、ウェハ Wの 温度を常に面内均一性が高い状態で温度制御することができる。
[0085] またプラズマ処理を行う時には、高周波電源 17を駆動することにより、上部電極で あるシャワーヘッド部 6と下部電極である載置台 32との間に高周波を印加し、処理空 間 Sにプラズマを立てて所定のプラズマ処理を行う。また、この際に、載置台 32の導 電性部材 88にバイアス用の高周波電源 116から高周波を印加することにより、プラズ マイオンの引き込みを行うことができる。
[0086] ここで、上述した所定の処理が行われている間は、支柱 30内及び載置台 32の発 熱板収容容器 42内に不活性ガス、例えば Nガスを供給し、処理容器 4内よりも圧力
2
が少し高い陽圧状態に維持する。具体的には、不活性ガス供給系 122により Nガス
2 を供給すると、この Nガスは支柱 30内に導入される。更に、この Nガスは各ライン封
2 2
入管用貫通孔 82A、 110Aやライン用貫通孔 82C、 110Cを介して発熱板収容容器 42内へ供給される。ここで Nガスの圧力は陽圧状態に維持されているので、この N
2 2 ガスは、支柱 30と載置台 32との接合部分のシール部材 114や、容器本体 76と蓋部 78との接合部分のシール部材 100の僅かな隙間を介して矢印 130、 132 (図 2及び 図 4を参照)に示すように、処理容器 4内へ僅かずつ洩れ出ることになる。
[0087] 従って、プロセスに用いる処理ガスや腐食性ガス、特にエッチングガスやタリーニン グ時のクリーニングガスが支柱 30内や発熱板収容容器 42内へ侵入することを防止 することができる。この場合、上記シール部材 100、 114を設けた部分にラビリンス状 のシール構造 102を採用した場合には、プロセス圧力にもよる力 Nガスの圧力を例
2
えば 10Torr (1333Pa)以上に設定すれば、処理容器 4内に対して臨界圧力比(0. 55)をやや上回る程度の圧力にでき、ラビリンス内部の流速 =音速として処理ガス等 の逆流を防ぐことができる。
[0088] ここで、上記載置台構造 29の一部に欠陥が生じた場合には、この載置台構造 29を 構成する部材が分解組み立てが可能になっているので、その欠陥が生じた部材のみ を交換すればよい。例えば発熱体 38が断線した場合には、蓋部 78と容器本体 76と を連結する係合ピン 98を抜 、て蓋部 78を開放し、この発熱体 38を含む発熱板 40の みを取り代えればよぐ他の支柱 30や発熱板収容容器 42はそのまま用いることがで きる。また同様に、発熱板収容容器 42、或いは支柱 30に欠陥(エッチング等による 消耗を含む)が生じたならば、両者を結合するボルト部材 112を取り外して両者の結 合を解き、新しい部品と交換すればよい。
[0089] また、上記各部品の耐熱耐腐食性材料、或いは耐熱性材料である上記絶縁性材 料は、石英ガラス、或いは A1N、 Al O、 Si Nを含むセラミック材の内のいずれか 1
2 3 3 4
つを用いることができる。
[0090] この場合、耐食性を特に求められるプロセス、熱衝撃に対する耐性を特に求められ るプロセス、コンタミネーシヨン (汚染)に対する耐性を求められるプロセスなど、プロセ スに応じた最適な材料を上記各材料中からなる同形の部品を交換して用いることに より、同じ設計で種々のプロセスに対応可能な載置台構造を実現することができる。 また、発熱板 40に発熱体 38を組み込む際には、発熱体 38はヒータ溝 66内に沿って 収容されるので、これが一体成形時に変形することを防止して、設計通りの寸法に形 成することができる。
[0091] また、載置台 32と支柱 30とをボルト部材 112で着脱自在に接合するようにしたので 、この部分を溶着した従来装置と比較して熱抵抗が大きくなる。この結果、クールスポ ットの発生を抑制することができるので、その分、熱衝撃 (熱応力集中)による破損の 発生を防止することができるのみならず、これらの部品の焼成や機械加工も容易に 行うことが可能になる。尚、上記ボルト部材 112を用いないで、他の着脱可能になさ れた接合部材、例えば容器本体 76に設けた凹部に支柱 30に設けた凸部を嵌め込 むことで接合するようにした接合部材等を用いてもよい。この凹部及び凸部は、逆に 設けてもよい。
[0092] また、発熱板収容容器 42内へは、処理ガスが侵入しな 、ので、温度測定素子 92を 、載置台 32の中心部以外に更に複数箇所 (全体で 3点以上)に設けることができ、温 度精度の高 、制御を行うことができる。
[0093] また、上記実施例では、導電性部材 88を、蓋部 78に埋め込んで形成した力 これ に限定されず、これを発熱板 40上に平面方向へ広がるようにして設定してもよい。こ の場合には、メッシュ状の部材ではなぐ円板状に広がる薄板状の導電性部材を用 いるようにしてちょい。
[0094] <第 2実施例 >
以下に上記導電性材料 88の構造を改良した第 2実施例について説明する。
[0095] 前述した第 1実施例の載置台構造では導電性部材 88は、 Al O等よりなるセラミツ
2 3
ク材中に埋め込んで、これと一体焼成するように設けている。この場合、下部電極や チャック電極として機能する導電性材料 88はセラミック材中へ埋め込まれているので 、上記導電性部材 88の形状や材質等を補修しようと思っても補修が非常に困難にな る力、或いは補修自体を行うことができないのみならず、高温、例えば 1900°C程度 で焼成されるので、材料として W (タングステン)や Mo (モリブデン)等の高融点金属 しか使用できず、電極材料が限定されてしまうことがある。
[0096] また焼成前の軟らかなセラミック材中に上記導電性部材 88を埋め込んだ後にこれ を焼き固めるが、焼き固める前の軟らかなセラミック材中で上記導電性部材 88が不 等沈下を起こす場合があり、上記導電性部材 88の埋め込み深さが面内均一になら ずにバラツキが生じてしまう。これがために、この上方に形成されるプラズマとの間の 静電容量が不均一になってプラズマの形成に悪影響を与える恐れがある。
[0097] 更には、上記導電性部材 88に対する電気的導通をとるためにセラミック製の蓋部 にその下方より導電性部材 88に届くまでのコンタクト用の穴を形成しなければならな いが、この穴を起点として蓋部に破損等が生ずる恐れがある。
[0098] 本発明の第 2実施例は上記したような不都合を解決するための構成である。図 6は 本発明に係る載置台構造の第 2実施例を示す断面図である。尚、図 1及び図 2に示 す構成部分と同一構成部分については同一符号を付してその説明を省略する。尚、 図 6中にお 、て温度測定素子 92の記載は省略して 、る。
[0099] すなわち、ここでは上記導電性部材 88をセラミック材よりなる蓋部 78中に一体焼成 するのではなぐ上記蓋部 78と下方に位置する発熱板 40との間に設けるようにして いる。具体的には、図 6中においては、焼成されたセラミック材ゃ石英ガラスよりなる 蓋部 78の下面 (裏面)に上記導電性部材 88を直接的に接合している。この場合、好 ましくは、金属汚染を防止するために上記導電性部材 88の表面全体(図 6中の下面 全体)を覆うようにして、耐熱絶縁性材料よりなる保護層 130を設けるのがよ 、。
[0100] この場合も、上記導電性部材 88から延びる給電ライン 90は上記支柱 30内を通す ように配線される。また、発熱板 40には貫通孔 132が形成されており、この貫通孔 13 2に上記給電ライン 90を挿通して下方へ延ばしている。上記導電性部材 88としては 、 W (タングステン)や Mo (モリブデン)等の高融点金属は勿論のこと、 MoSi、 Ti Al
2 2
C、Ti SiC等の導電性を有する金属間化合物等も用いることができる。
3 2
[0101] ここで上記導電性部材 88は、上記蓋部 78の下面を平坦状に研磨した後に、この 下面に接合する。この導電性部材 88の接合に際しては、これを貼り付けてもよいし、 スクリーン印刷等により形成してもよい。
[0102] また上記保護層 130としては、耐熱絶縁性材料であるアルミナ (Al O )やイットリア
2 3
(Y o )等を溶射により塗布してもよいし、液状の材料、或いは固相の材料を拡散接
2 3
合させてもよいし、又は図 7に示す蓋部の部分拡大図に示すように、上記アルミナや イットリアよりなる薄板 134を接着剤 136で貼り付けるように構成してもよい。この場合 の接着剤 136としては、例えばカーボン、 SiO等を用いることができる。
2
[0103] 尚、ここで用いられる蓋部 78の厚さは、第 1実施例の場合と同じで、 l〜20mm程 度の範囲内であり、その理由は、この厚さが lmmよりも薄いと、この強度が発熱板収 容容器 42内とその外側のプロセス空間との間の差圧に耐えられなくなってしまい、ま た 20mmよりも厚いと、この部分のインピーダンスが過度に大きくなつてプラズマ電位 が高くなる等の不都合が生じてしまう。
[0104] この第 2実施例によれば、先の第 1実施例と同様な作用効果を発揮することができ るのみならず、導電性部材 88は蓋部 78中に一体焼成されておらず、例えば蓋部 78 の下面に貼り付けるようにして設けて!/ヽるので、導電性部材 88の補修や材料を変更 する等の場合には、保護層 130やこの導電性部材 88を比較的容易に剥ぎ取ること ができるので、上記補修や材料変更等を容易に行うことができる。
[0105] また、導電性部材 88を接合する際には、蓋部 78の下面を平坦状に研磨しておけ ばよいので、この導電性部材 88を均一に平坦に形成することができ、従って、この上 方に形成されるプラズマとの間の静電容量の面内均一性を高めることでき、プラズマ 形成に悪影響を与えることを防止することができる。 [0106] 更には、上記導電性部材 88に対して導電ライン 90に対する導通をとるために、蓋 部 78に対してコンタクト用の穴を形成する必要がないので、この蓋部 78に対して破 損等を与える恐れを大幅に抑制することができる。
[0107] また、この導電性部材 88の全体は、保護層 130で覆われて ヽるので、この発熱体 収容容器 42内を流れた N等の不活性ガスが上記導電性部材 88と直接接触するこ
2
とはなく、従って、この Nガス等が処理空間 S側へ洩れ出ても、ウェハに対して金属
2
汚染を生ぜしめることを防止することができる。
[0108] <第 3実施例 >
次に、上記載置台構造の第 3実施例について説明する。上記第 2実施例にあって は、導電性部材 88と蓋部 78の下面に接合するようにした力 これに限定されず、発 熱板 40の上面に接合するようにしてもょ 、。
[0109] 図 8はこのような本発明の載置台構造の第 3実施例を示す部分断面図である。尚、 図 1及び図 6に示す構成部分と同一構成部分については同一符号を付して説明を 省略する。
[0110] 図 8に示すように、ここでは発熱板 40の上部を形成する天板 68の上面に、上記導 電性部材 88を接合している。この場合には、上記導電性部材 88は、先の第 2実施例 の蓋部 78の下面と同様に、上記天板 68の上面を平坦状に研磨した後に、この上面 に接合する。そして、好ましくはこの導電性部材 88の上面全面を覆うようにして保護 層 130を形成する。
[0111] この導電性部材 88の接合方法は、容射等を用いるようにする点は、先の第 2実施 例と同様であり、また、図 7で説明したように、薄板 134と接着剤 136を用いるようにし て接合してもよい。
[0112] この第 3実施例の場合にも、先の第 2実施例と同様な作用効果を発揮することがで きる。
[0113] <第 4実施例 >
次に、上記載置台構造の第 4実施例について説明する。上記第 2及び第 3実施例 にあっては、導電性部材 88を蓋部 78と発熱板 40との間に設けた場合を例にとって 説明したが、これに限定されず、蓋部 78の上面側に設けるようにしてもよい。 [0114] 図 9はこのような本発明の載置台構造の第 4実施例を示す部分断面図である。尚、 図 1及び図 6に示す構成部分と同一構成部分については同一符号を付して説明を 省略する。
[0115] 図 9に示すように、ここでは蓋部 78の上面に、上記導電性部材 88を接合している。
この場合には、上記導電性部材 88は、先の第 1実施例の蓋部 78の下面と同様に、 上記蓋部 78の上面を平坦状に研磨した後に、この上面に接合する。そして、ここで は腐食性ガスの雰囲気となる処理空間 Sに直接的に接することから上記導電性部材 88の腐食を防止するために、上記導電性部材 88の上面全面を覆うようにして保護 層 130を形成する。
[0116] この導電性部材 88の接合方法は、容射等を用いるようにする点は、先の第 2実施 例と同様であり、また、図 7で説明したように、薄板 134と接着剤 136を用いるようにし て接合してもよい。また、この第 4実施例の場合には、蓋部 78に貫通孔 140を形成し 、これに導電ライン 90を挿通して上記導電性部材 88に接続する。
[0117] この第 4実施例の場合にも、先の第 2実施例と同様な作用効果を発揮することがで きる。また、この第 4実施例の場合には、上記導電性部材 88と、この上方に載置され るウェハ Wやプラズマとの間の距離が最も短くなるので、その分、プラズマの作用効 率を高めることができる。
[0118] 尚、以上の各実施例では発熱板 40として、例えば発熱体 38を円板状の石英ガラス 中に一体的に組み込んで成形した場合を例にとって説明した力 これに限定されず 、例えば蛇行状、或いは渦巻状等のように屈曲した石英ガラス管内に発熱体 (例え ばカーボンワイヤヒータ)を挿通して形成したような発熱板 40を用いてもょ 、。
[0119] また、ここではプラズマを用いた場合を例にとって説明した力 プラズマを用いない 単なる熱処理装置として用いてもよぐその場合には、プラズマ用の高周波電源 17 やマッチング回路 15、ノィァス用の高周波電源 116等は不要となる。また、この場合 でも静電チャック機能を有する導電性部材 88は用いるのがよ 、。
[0120] また、本実施例では被処理体として半導体ウェハを例にとって説明した力 これに 限定されず、 LCD基板、ガラス基板等にも適用できるのは勿論である。

Claims

請求の範囲
[1] 処理容器内に配置され被処理体に対して所定の熱処理を施すために前記被処理 体を載置する載置台と、
前記載置台を前記処理容器の底部より起立させて支持する筒体状の支柱とを備え 前記載置台は、耐熱性材料と耐熱性材料中に埋め込まれ電気加熱源よりなる発熱 体とを有する発熱板と、
内部に前記発熱板を着脱可能に収容するとともに開口を有する容器本体と、容器 本体の開口に着脱可能に取付けられた蓋部とを有する耐熱耐腐食性材料製の発熱 板収容容器と、を備えたことを特徴とする載置台構造。
[2] 前記蓋部の接合部は、前記発熱板収容容器の容器本体に耐熱耐腐食性材料より なる係合ピンにより係合されていることを特徴とする請求項 1記載の載置台構造。
[3] 前記蓋部と前記容器本体との接合部には、シール部材及び Z又はシール構造が 設けられていることを特徴とする請求項 2記載の載置台構造。
[4] 前記発熱体は、複数のゾーンに分割されており、ゾーン毎に温度制御が可能にな されて ヽることを特徴とする請求項 1記載の載置台構造。
[5] 前記蓋部の裏面側には、前記ゾーンに対応させて複数の温度測定素子が設けら れて!ヽることを特徴とする請求項 4記載の載置台構造。
[6] 前記温度測定素子の測定ラインは、前記支柱内に延びていることを特徴とする請 求項 5記載の載置台構造。
[7] 前記支柱の上端部は、前記載置台の下面の中央部に、ボルト部材により着脱可能 に取り付けられていることを特徴とする請求項 1記載の載置台構造。
[8] 前記ボルト部材は、耐熱性材料よりなることを特徴とする請求項 7記載の載置台構 造。
[9] 前記支柱の上端部と前記載置台の下面との接合部には、シール部材が介設され て ヽることを特徴とする請求項 7記載の載置台構造。
[10] 前記発熱板からは、前記発熱体へ給電を行うための給電ラインを封入してなる耐熱 性材料よりなるライン封入管が前記容器本体を貫通して前記支柱内に延びているこ とを特徴とする請求項 1記載の載置台構造。
[11] 前記支柱の内部と前記発熱板収容容器の内部は、不活性ガスにより陽圧状態にな されて ヽることを特徴とする請求項 1記載の載置台構造。
[12] 前記蓋部には、平面方向に広がる導電性部材が埋め込まれていると共に、該導電 性部材に導電ラインが接続され、この導電ラインは前記支柱内に延びて 、ることを特 徴とする請求項 1記載の載置台構造。
[13] 前記発熱板上には、平面方向に広がる導電性部材が設けられると共に、該導電性 部材に導電ラインが接続され、この導電ラインは前記支柱内に延びて 、ることを特徴 とする請求項 1記載の載置台構造。
[14] 前記蓋部と前記発熱板との間には、平面方向に広がる導電性部材が設けられると 共に、該導電性部材に導電ラインが接続され、この導電ラインは前記支柱内に延び て ヽることを特徴とする請求項 1記載の載置台構造。
[15] 前記導電性部材は、前記蓋部の下面に接合されていることを特徴とする請求項 14 記載の載置台構造。
[16] 前記導電性部材は、前記発熱体の上面に接合されて!ヽることを特徴とする請求項 14記載の載置台構造。
[17] 前記導電性部材の表面には、この全面を覆うようにして耐熱絶縁性材料よりなる保 護層が設けられることを特徴とする請求項 15記載の載置台構造。
[18] 前記導電性部材の表面には、この全面を覆うようにして耐熱絶縁性材料よりなる保 護層が設けられることを特徴とする請求項 16記載の載置台構造。
[19] 処理容器内に配置され、被処理体に対して所定の熱処理を施すために前記被処 理体を載置する載置台と、
前記載置台を前記処理容器の底部より起立させて支持する筒体状の支柱とを備え 前記載置台は、耐熱性材料と、耐熱性材料中に埋め込まれ、電気加熱源よりなる 発熱体とを有する発熱板と、
内部に前記発熱板を着脱可能に収容するとともに開口を有する容器本体と、容器 本体の開口に着脱自在に取付けられた蓋材とを有する耐熱耐腐食性材料製の発熱 板収容容器と、
前記蓋部の上面に設けられて平面方向に広がる導電性材料と、
前記導電性部材の表面全体を覆うように設けた耐熱絶縁性材料よりなる保護層と、 前記導電性部材に接続される導電ラインと、
を備えたことを特徴とする載置台構造。
[20] 前記保護層は、前記耐熱絶縁性材料を塗布することにより形成されることを特徴と する請求項 17、 18又は 19記載の載置台構造。
[21] 前記保護層は、前記耐熱絶縁性材料よりなる薄板を接着剤により接合することによ り形成されることを特徴とする請求項 17、 18又は 19記載の載置台構造。
[22] 前記蓋部の厚さは、 l〜20mmの範囲内であることを特徴とする請求項 1又は 19記 載の載置台構造。
[23] 前記耐熱性材料および耐熱耐腐性材料は、絶縁性材料よりなることを特徴とする 請求項 1又は 19記載の載置台構造。
[24] 前記絶縁性材料は、石英ガラス、或いは A1N、 Al O、 Si Nを含むセラミック材の
2 3 3 4
内のいずれか 1つよりなることを特徴とする請求項 23記載の載置台構造。
[25] 真空引き可能になされた処理容器と、
処理容器内に配置された載置台構造と、
前記処理容器内へ所定の処理ガスを供給するガス供給手段と、
を備え、
前記載置台構造は、
処理容器内に配置され被処理体に対して所定の熱処理を施すために前記被処理 体を載置する載置台と、
前記載置台を前記処理容器の底部より起立させて支持する筒体状の支柱とを備え 前記載置台は、耐熱性材料と耐熱性材料中に埋め込まれ電気加熱源よりなる発熱 体とを有する発熱板と、
内部に前記発熱板を着脱可能に収容するとともに開口を有する容器本体と、容器 本体の開口に着脱可能に取付けられた蓋部とを有する耐熱耐腐食性材料製の発熱 板収容容器と、を備えたことを特徴とする熱処理装置。
真空引き可能になされた処理容器と、
処理容器内に配置された載置台構造と、
前記処理容器内へ所定の処理ガスを供給するガス供給手段と、を備え、 前記載置台構造は、
処理容器内に配置され、被処理体に対して所定の熱処理を施すために前記被処 理体を載置する載置台と、
前記載置台を前記処理容器の底部より起立させて支持する筒体状の支柱とを備え 前記載置台は、耐熱性材料と、耐熱性材料中に埋め込まれ、電気加熱源よりなる 発熱体とを有する発熱板と、
内部に前記発熱板を着脱可能に収容するとともに開口を有する容器本体と、容器 本体の開口に着脱自在に取付けられた蓋材とを有する耐熱耐腐食性材料製の発熱 板収容容器と、
前記蓋部の上面に設けられて平面方向に広がる導電性材料と、
前記導電性部材の表面全体を覆うように設けた耐熱絶縁性材料よりなる保護層と、 前記導電性部材に接続される導電ラインと、
を備えたことを特徴とする熱処理装置。
PCT/JP2007/060778 2006-06-16 2007-05-28 載置台構造及び熱処理装置 WO2007145070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800021311A CN101366099B (zh) 2006-06-16 2007-05-28 载置台结构以及热处理装置
KR1020107028657A KR101249654B1 (ko) 2006-06-16 2007-05-28 탑재대 구조 및 열처리 장치
KR1020087030562A KR101063104B1 (ko) 2006-06-16 2007-05-28 탑재대 구조 및 열처리 장치
US12/336,207 US8203104B2 (en) 2006-06-16 2008-12-16 Mounting table structure and heat treatment apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-167576 2006-06-16
JP2006167576 2006-06-16
JP2007081949A JP5245268B2 (ja) 2006-06-16 2007-03-27 載置台構造及び熱処理装置
JP2007-081949 2007-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/336,207 Continuation US8203104B2 (en) 2006-06-16 2008-12-16 Mounting table structure and heat treatment apparatus

Publications (1)

Publication Number Publication Date
WO2007145070A1 true WO2007145070A1 (ja) 2007-12-21

Family

ID=38831588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060778 WO2007145070A1 (ja) 2006-06-16 2007-05-28 載置台構造及び熱処理装置

Country Status (6)

Country Link
US (1) US8203104B2 (ja)
JP (1) JP5245268B2 (ja)
KR (2) KR101063104B1 (ja)
CN (1) CN101366099B (ja)
TW (1) TW200807513A (ja)
WO (1) WO2007145070A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059837A (ja) * 2010-09-07 2012-03-22 Nihon Ceratec Co Ltd シャフトおよび支持装置
WO2015174287A1 (ja) * 2014-05-12 2015-11-19 東京エレクトロン株式会社 ヒータ給電機構及びステージの温度制御方法
JP6123952B1 (ja) * 2015-08-27 2017-05-10 住友大阪セメント株式会社 静電チャック装置
JP7449806B2 (ja) 2020-07-28 2024-03-14 株式会社アルバック 吸着装置及び真空処理装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780440B2 (en) * 2004-10-19 2010-08-24 Canon Anelva Corporation Substrate supporting/transferring tray
US7884925B2 (en) * 2008-05-23 2011-02-08 Lam Research Corporation Electrical and optical system and methods for monitoring erosion of electrostatic chuck edge bead materials
TWI463016B (zh) * 2008-09-26 2014-12-01 Hon Hai Prec Ind Co Ltd 金屬熱處理裝置及金屬熱處理方法
US8206829B2 (en) * 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
CN102308380B (zh) * 2009-02-04 2014-06-04 马特森技术有限公司 用于径向调整衬底的表面上的温度轮廓的静电夹具系统及方法
JP2011222931A (ja) * 2009-12-28 2011-11-04 Tokyo Electron Ltd 載置台構造及び処理装置
WO2012050255A1 (ko) * 2010-10-15 2012-04-19 주식회사 썬닉스 온도 균일도가 우수한 반도체 제조용 적층형 스테이지 히터
KR101042284B1 (ko) * 2010-10-22 2011-06-17 주식회사 썬닉스 온도 균일도가 우수한 반도체 제조용 적층형 스테이지 히터
JP5816454B2 (ja) * 2011-05-09 2015-11-18 新光電気工業株式会社 基板温調固定装置
JP6017906B2 (ja) * 2011-10-19 2016-11-02 株式会社Kelk 温調装置
US10276410B2 (en) 2011-11-25 2019-04-30 Nhk Spring Co., Ltd. Substrate support device
JP5973731B2 (ja) 2012-01-13 2016-08-23 東京エレクトロン株式会社 プラズマ処理装置及びヒータの温度制御方法
KR101381181B1 (ko) * 2012-11-16 2014-04-04 주성엔지니어링(주) 서셉터 및 이를 포함하는 기판 처리 장치
JP2015060877A (ja) * 2013-09-17 2015-03-30 トランスフォーム・ジャパン株式会社 基板処理装置
JP6007885B2 (ja) * 2013-11-14 2016-10-19 トヨタ自動車株式会社 プラズマcvd装置
CN103606508A (zh) * 2013-11-27 2014-02-26 苏州市奥普斯等离子体科技有限公司 一种颗粒材料表面等离子体处理装置
US20150194326A1 (en) * 2014-01-07 2015-07-09 Applied Materials, Inc. Pecvd ceramic heater with wide range of operating temperatures
CN104109750B (zh) * 2014-07-31 2016-10-05 江苏丰东热技术股份有限公司 一种适用于网带加热炉的残料挡板装置
CN105336644B (zh) * 2014-08-06 2018-07-03 沈阳芯源微电子设备有限公司 一种热盘工艺腔气流均布装置
CN104195528A (zh) * 2014-09-05 2014-12-10 厦门大学 一种耦合高频振动的微型等离子增强化学气相沉积装置
JP5962833B2 (ja) * 2015-01-16 2016-08-03 Toto株式会社 静電チャック
CN104878370A (zh) * 2015-05-29 2015-09-02 沈阳拓荆科技有限公司 一种分体式可控温加热盘结构
KR102348108B1 (ko) 2015-10-05 2022-01-10 주식회사 미코세라믹스 온도 편차 특성이 개선된 기판 가열 장치
JP7018882B2 (ja) * 2015-12-31 2022-02-14 アプライド マテリアルズ インコーポレイテッド 処理チャンバのための高温ヒータ
KR20180112794A (ko) * 2016-01-22 2018-10-12 어플라이드 머티어리얼스, 인코포레이티드 전도성 층들이 매립된 세라믹 샤워헤드
JP6837806B2 (ja) * 2016-10-31 2021-03-03 信越化学工業株式会社 加熱素子
JPWO2018135038A1 (ja) * 2017-01-18 2019-11-07 株式会社Ihi 発熱体及び真空熱処理装置
US10674566B2 (en) * 2017-03-02 2020-06-02 Coorstek Kk Planar heater
US11848177B2 (en) * 2018-02-23 2023-12-19 Lam Research Corporation Multi-plate electrostatic chucks with ceramic baseplates
US11562890B2 (en) 2018-12-06 2023-01-24 Applied Materials, Inc. Corrosion resistant ground shield of processing chamber
KR102432592B1 (ko) * 2018-12-20 2022-08-18 엔지케이 인슐레이터 엘티디 세라믹 히터
KR102311213B1 (ko) * 2019-04-19 2021-10-13 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
JP7348877B2 (ja) * 2020-04-20 2023-09-21 日本碍子株式会社 セラミックヒータ及びその製法
JP7372224B2 (ja) * 2020-10-16 2023-10-31 日本碍子株式会社 ウエハ載置台
JP2022165477A (ja) * 2021-04-20 2022-11-01 日新イオン機器株式会社 ウエハ支持装置
CN114351107B (zh) * 2022-01-06 2023-10-13 北京北方华创微电子装备有限公司 承载装置及半导体工艺设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244143A (ja) * 1993-02-15 1994-09-02 Tokyo Electron Ltd 処理装置
JP2001102435A (ja) * 1999-07-28 2001-04-13 Tokyo Electron Ltd 載置台構造及び処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493089B1 (en) * 1990-12-25 1998-09-16 Ngk Insulators, Ltd. Wafer heating apparatus and method for producing the same
KR100290748B1 (ko) 1993-01-29 2001-06-01 히가시 데쓰로 플라즈마 처리장치
JP3165938B2 (ja) * 1993-06-24 2001-05-14 東京エレクトロン株式会社 ガス処理装置
JP3863582B2 (ja) * 1995-09-22 2006-12-27 松下電器産業株式会社 プラズマcvd装置
JP3253002B2 (ja) * 1995-12-27 2002-02-04 東京エレクトロン株式会社 処理装置
US6035101A (en) * 1997-02-12 2000-03-07 Applied Materials, Inc. High temperature multi-layered alloy heater assembly and related methods
US6835916B2 (en) * 1999-08-09 2004-12-28 Ibiden, Co., Ltd Ceramic heater
KR100744860B1 (ko) * 2003-04-07 2007-08-01 동경 엘렉트론 주식회사 탑재대 구조체 및 이 탑재대 구조체를 갖는 열처리 장치
JP4380236B2 (ja) 2003-06-23 2009-12-09 東京エレクトロン株式会社 載置台及び熱処理装置
JP4627164B2 (ja) * 2003-08-18 2011-02-09 東京エレクトロン株式会社 基板保持構造物および基板処理装置
TWI281833B (en) * 2004-10-28 2007-05-21 Kyocera Corp Heater, wafer heating apparatus and method for manufacturing heater
KR100584189B1 (ko) 2005-03-16 2006-05-29 동경 엘렉트론 주식회사 기판가열기능을 구비한 기판 탑재 기구 및 기판 처리 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244143A (ja) * 1993-02-15 1994-09-02 Tokyo Electron Ltd 処理装置
JP2001102435A (ja) * 1999-07-28 2001-04-13 Tokyo Electron Ltd 載置台構造及び処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059837A (ja) * 2010-09-07 2012-03-22 Nihon Ceratec Co Ltd シャフトおよび支持装置
WO2015174287A1 (ja) * 2014-05-12 2015-11-19 東京エレクトロン株式会社 ヒータ給電機構及びステージの温度制御方法
JP2015216254A (ja) * 2014-05-12 2015-12-03 東京エレクトロン株式会社 ヒータ給電機構及びステージの温度制御方法
JP6123952B1 (ja) * 2015-08-27 2017-05-10 住友大阪セメント株式会社 静電チャック装置
US10256131B2 (en) 2015-08-27 2019-04-09 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP7449806B2 (ja) 2020-07-28 2024-03-14 株式会社アルバック 吸着装置及び真空処理装置

Also Published As

Publication number Publication date
KR101063104B1 (ko) 2011-09-07
KR20110004485A (ko) 2011-01-13
US20090095733A1 (en) 2009-04-16
KR101249654B1 (ko) 2013-04-01
US8203104B2 (en) 2012-06-19
CN101366099B (zh) 2012-05-16
JP5245268B2 (ja) 2013-07-24
KR20090014386A (ko) 2009-02-10
CN101366099A (zh) 2009-02-11
TW200807513A (en) 2008-02-01
JP2008021963A (ja) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5245268B2 (ja) 載置台構造及び熱処理装置
JP4450106B1 (ja) 載置台構造及び処理装置
JP4736564B2 (ja) 載置台装置の取付構造及び処理装置
US20100163188A1 (en) Mounting table structure and processing apparatus
KR200372083Y1 (ko) 착탈가능한 정전기 척
JP5188326B2 (ja) 半導体装置の製造方法、基板処理方法、及び基板処理装置
WO2011099481A1 (ja) 載置台構造及び処理装置
JP2011061040A (ja) 載置台構造及び処理装置
WO2011081049A1 (ja) 載置台構造及び処理装置
JP2008214763A (ja) 成膜装置
JP2007335425A (ja) 載置台構造及び熱処理装置
JP2008199024A (ja) 基板支持アセンブリ
JP2004356624A (ja) 載置台構造及び熱処理装置
JP2011054838A (ja) 載置台構造及び処理装置
JP2007141895A (ja) 載置台構造及び成膜装置
JP4992630B2 (ja) 載置台構造及び処理装置
JP4853432B2 (ja) 載置台構造及び処理装置
JP3181364B2 (ja) プラズマ処理装置
JP4782761B2 (ja) 成膜装置
KR20080114284A (ko) 개선된 가열 지지부재를 구비한 화학증착장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780002131.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020107028657

Country of ref document: KR