WO2007132826A1 - 二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート - Google Patents

二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート Download PDF

Info

Publication number
WO2007132826A1
WO2007132826A1 PCT/JP2007/059909 JP2007059909W WO2007132826A1 WO 2007132826 A1 WO2007132826 A1 WO 2007132826A1 JP 2007059909 W JP2007059909 W JP 2007059909W WO 2007132826 A1 WO2007132826 A1 WO 2007132826A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
white polypropylene
polypropylene film
particles
Prior art date
Application number
PCT/JP2007/059909
Other languages
English (en)
French (fr)
Inventor
Shigeru Tanaka
Junichi Masuda
Masatoshi Ohkura
Tatsuya Itou
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38693916&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007132826(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP20070743344 priority Critical patent/EP2018962B1/en
Priority to CN2007800175593A priority patent/CN101443193B/zh
Priority to US12/301,018 priority patent/US8512828B2/en
Priority to JP2008515552A priority patent/JP5077229B2/ja
Priority to KR1020087030510A priority patent/KR101385389B1/ko
Publication of WO2007132826A1 publication Critical patent/WO2007132826A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/41Base layers supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2519/00Labels, badges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/32Thermal receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide

Definitions

  • the present invention relates to a biaxially oriented white polypropylene film. Further, the present invention relates to a reflecting plate using it or a receiving sheet for thermal transfer recording.
  • white film is a synthetic paper with excellent water resistance, strength, smoothness, etc., and is used for general packaging, labels, posters, stickers, and other displays, and for thermal transfer recording systems. It is used for thermal transfer recording receiving sheets, reflectors and reflectors.
  • the thermal transfer recording system is a color material or a color material obtained by superimposing an ink ribbon having an ink layer, which is a dye-containing layer, and a receiving sheet and heating the ink ribbon side force with a thermal head.
  • the contained components are melted or sublimated, transferred onto a receiving sheet in a fine dot pattern, and printed.
  • incompatible polypropylene such as inorganic particles or polyester resin is contained in polypropylene, and polypropylene is used in the stretching process.
  • Various white polypropylene films have been proposed, such as white films in which voids are formed by separating the interface between inorganic particles and incompatible resin, for example (see Patent Documents 1 and 2).
  • Patent Documents 1 and 2 disclose a white polypropylene films in which voids are formed by separating the interface between inorganic particles and incompatible resin.
  • the process may be contaminated.
  • the average dispersion diameter of the incompatible resin or inorganic particles in the film is large, the voids formed are coarse and small in volume, and the cushioning ratio is low, and the folding resistance and embossing resistance may be inferior.
  • a thermal transfer recording receiving sheet using it as a substrate has low sensitivity.
  • the light reflectance is low.
  • the particle size of the incompatible resin or inorganic particles to be added is made small and the Z or particle size distribution is made narrow, there is a problem that the cost of the resulting film increases. .
  • a method other than the above for forming voids in a polypropylene film for example, when a non-stretched sheet is produced by melt-extrusion of polypropylene, a ⁇ -type crystal having a low crystal density in the unstretched sheet is used. (Crystal density: 0.992 g / cm 3 ) is formed and stretched to cause a crystal transition to a crystal with high crystal density, a-type crystal (crystal density: 0.936 g / cm 3 ). A method for forming a void based on the difference between the two can be given.
  • a microporous film obtained by adding a nucleating agent and calcium carbonate to an ethylene propylene block copolymer and ethylene-containing polypropylene see, for example, Patent Document 3
  • an orientation promoting polymer, homopolypropylene A white film in which a skin layer having heat sealing properties or a skin layer having printing properties is laminated on at least one side of a core layer made of a ⁇ crystal nucleating agent and inorganic particles
  • Patent Document 4 A microporous polypropylene film having ⁇ crystal activity and biaxial stretching to increase the porosity has been proposed (for example, see Patent Document 5).
  • Patent Document 5 since it is difficult to form the receiving layer uniformly, there are problems that the sensitivity is low and the glossiness of the surface is low. In addition, there was a problem that the embossing depth of the receiving sheet when printing was increased.
  • the sidelight type that is, the type of light that illuminates the screen with side force. Cuck light is applied.
  • Reflectors and reflectors used in such backlights for liquid crystal screens are required to have high reflectivity as well as being thin films.
  • films containing white pigments and inorganic particles have been added.
  • Films containing fine voids inside have been used.
  • a light reflector of a polyolefin resin sheet it contains 100 parts by mass of polyolefin resin and 100 to 300 parts by mass of a fine powdered inorganic filler, and is stretched by 1.5 to 20 times in area magnification.
  • the light reflectance at a wavelength of 550 nm is 95.
  • a light reflector having a rigidity of at least 50 mm has been proposed (see, for example, Patent Document 6).
  • a proposed film has a high specific gravity and inferior processability, and when the reflectance is reduced due to irregular reflection or absorption of light by void-forming resin and inorganic particles, or by irradiation with ultraviolet rays or the like There was a problem that the whiteness of the film decreased due to yellowing of the void-forming resin and inorganic particles. Furthermore, there has been a problem that the void-forming resin and inorganic particles fall off during the film forming process and the light reflector manufacturing process, thereby contaminating the process.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-78512
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-181915
  • Patent Document 3 Japanese Patent Laid-Open No. 4-309546
  • Patent Document 4 International Publication 03Z93004 Pamphlet
  • Patent Document 5 International Publication No. 05Z103127 Pamphlet
  • Patent Document 6 JP-A-8-262208
  • An object of the present invention is to solve the above-described problems. In other words, it is more productive than conventional white films, is flexible and has a low specific gravity, has high whiteness, and has excellent folding and embossing resistance, film-forming properties, and workability. It is to provide an axially oriented white polypropylene film. In addition, when used as a base material for a thermal transfer recording receiving sheet, it provides a high-performance thermal transfer recording receiving sheet that is more sensitive than conventional white films and has a small emboss depth. When used as, it is intended to provide a light reflector that exhibits high light reflectance and enhances the brightness of the liquid crystal display. Means for solving the problem
  • the above-described problem is a biaxially oriented white polypropylene film having a core layer (A) and a skin layer (B layer), wherein the B layer is laminated on at least one side of the A layer, and the A layer Comprises polypropylene resin having j8 crystal activity and particles (a) having an average dispersion diameter of 60 to 400 nm of 1 to 20% by mass, and the layer B comprises polypropylene resin and 0.05 to 5 % by mass
  • the particles (a) added to the core layer are preferably at least one kind of particles selected from the group force consisting of zinc oxide, acid aluminum and acid titanium tank.
  • the porosity of the film is preferably 20% or more.
  • the number of voids having the particle (a) as a nucleus present per 10 mX 10 m of the cross section of the A layer is 5 or more! /.
  • the crystallization temperature of the B layer is preferably 115 ° C or higher.
  • the receiving sheet for thermal transfer recording of the present invention is a sheet in which a receiving layer is provided on at least one side of the biaxially oriented white polypropylene film.
  • the emboss depth after printing of the receiving sheet is preferably 20 ⁇ m or less.
  • the light reflecting plate of the present invention uses the above-mentioned biaxially oriented white polypropylene film.
  • the film has excellent characteristics and productivity, for example, a biaxial orientation having excellent characteristics as a substrate for a reflective sheet for a thermal transfer recording sheet. It is possible to provide a white polypropylene film and a reflecting plate using the same, or a receiving sheet for thermal transfer recording.
  • the biaxially oriented white polypropylene film of the present invention contains fine particles having an average dispersion diameter in the range of 60 to 4 OOnm in the core layer, and has ⁇ crystal activity, thereby forming coarse voids. Fine voids can be increased without forming, and a biaxially oriented white polypropylene film having a high porosity can be obtained efficiently.
  • the biaxially oriented white polypropylene film of the present invention has a specific range of dispersion diameter in the skin layer. Because it contains particles with high adhesion, surface defects do not occur even under high-temperature and high-speed casting conditions, and the surface gloss is high and the slipperiness is good, resulting in excellent productivity.
  • the biaxially oriented white polypropylene film of the present invention has a skin layer, there is no trouble that fine particles in the core layer fall off in the film forming process and the receiving sheet manufacturing process. Therefore, it is excellent in process passability.
  • the biaxially oriented white polypropylene film of the present invention is excellent in whiteness, optical density, cushion rate, embossing resistance and crease resistance where the specific gravity of the film is low.
  • the biaxially oriented white polypropylene film of the present invention has a skin layer on at least one side, it is excellent in adhesiveness with the anchor agent layer of the receiving sheet for thermal transfer recording.
  • the biaxially oriented white polypropylene film of the present invention has a high embossed depth in a high density printed portion with high sensitivity when processed into a receiving sheet for thermal transfer recording due to the above-mentioned excellent characteristics, and the silver salt The image is clearly printed like a photograph.
  • the biaxially oriented white polypropylene film of the present invention exhibits a high light reflectance when added to a reflector having a high light reflectance, and the brightness of the liquid crystal display is increased.
  • FIG. 1 is a photograph of a cross section of a biaxially oriented white polypropylene film of the present invention observed at 10,000 times using a transmission electron microscope.
  • FIG. 2 is a schematic diagram of a calorific curve obtained when a ⁇ -crystal ratio is obtained by the method of [Characteristic measurement and evaluation method] (15) using a differential scanning calorimeter.
  • FIG. 3 is a schematic diagram of a method for calculating a crystal ratio using the calorific curve of FIG.
  • FIG. 4 is an observation photograph of crater-like defects formed on the film surface of the white polypropylene film of Comparative Example 12.
  • the core layer (A) of the biaxially oriented white polypropylene film of the present invention is mainly composed of a homopolymer resin of propylene, but polypropylene and other unsaturated hydrocarbons as long as the object of the present invention is not impaired.
  • a polymer obtained by copolymerizing the monomer components may be used.
  • a polymer in which a monomer component other than propylene and propylene is copolymerized may be blended, and there is a polymer of an unsaturated hydrocarbon monomer component other than propylene. Even if is blended.
  • Examples of the monomer component constituting such a copolymer component or blend include ethylene, propylene (in the case of a copolymer blend), 1-butene, 1-pentene, 3-methylpentene and 1, 3-methylbutene 1, 1-hexene, 4-methylpentene 1, 5-ethylhexene 1, 1-octene, 1-decene, 1-dedecene, butylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene Force including, but not limited to, acrylic acid and derivatives thereof.
  • the polypropylene resin constituting the core layer (A) preferably contains so-called high melt tension polypropylene from the viewpoint of improving the film-forming property.
  • the polypropylene resin constituting the layer A contains high melt tension polypropylene, so that it has excellent film forming properties with less tearing during stretching. Even if the film is stretched at a low temperature and a high magnification in the longitudinal direction, the film can be stably formed without being broken by transverse stretching.
  • Methods for obtaining high melt tension polypropylene include, for example, a method of blending polypropylene containing a large amount of high molecular weight components, a method of blending oligomers and polymers having a branched structure, and JP-A-62-121704.
  • a method in which a linear crystalline polypropylene having a specific relationship between temperature and melting point and a boiling xylene extraction residual ratio in a specific range is preferably used.
  • the A layer has a great effect of stabilizing the melt extrusion and improving the productivity. It is particularly preferable to use polypropylene having a long chain branch.
  • the polypropylene having a long chain branch in the main chain skeleton is a polypropylene having a branched polypropylene chain having the same length as the main chain skeleton force of the polypropylene main chain.
  • polypropylene having a long chain branch in the main chain skeleton described above include polypropylenes manufactured by Basell (type names: PF-814, PF-633, PF-611, SD-632, etc.), Borealis Examples include polypropylene (type name: WB130HMS, etc.) and polypropylene (type names: D114, D201, D206, etc.) manufactured by Dow.
  • the amount of the high melt tension polypropylene added is preferably 1 to LO mass% with respect to the total amount of the force A depending on the performance of the high melt tension polypropylene used. If the amount of the high melt tension polypropylene added is less than 1% by mass, the effect of improving the film forming property may not be obtained. If the amount of high melt tension polypropylene added exceeds 10% by mass, the effect may be saturated even if more is added.
  • the addition amount of the high melt tension polypropylene is more preferably 1 to 5% by mass.
  • the isotactic index of the polypropylene resin constituting the core layer (A) is preferably 90 to 99.5%. If the isotactic index is less than 90%, the strength of the film may decrease, and the crease resistance and emboss resistance may deteriorate. If the isotactic index exceeds 99.5%, film formation may become unstable.
  • the isotactic index of the polypropylene of the A layer is more preferably 92 to 99%.
  • the melt flow rate (MFR) of the polypropylene resin in the core layer (A) is preferably 1 to 30 gZlO. If the MFR is less than lgZlO, the extrusion rate may fluctuate during low temperature melt extrusion at 250 ° C or lower. Also, if the MFR exceeds 30 gZlO, when co-extrusion laminating the A layer and skin layer (B layer, C layer), it may be difficult to laminate with a uniform thickness.
  • the molten polymer that was also extruded is metal
  • the landing point of the molten polymer on the metal drum greatly fluctuates, making it difficult to produce 8 crystals uniformly in the unstretched sheet.
  • the resulting white polypropylene film may have large thickness unevenness and non-uniform voids.
  • the MFR of the polypropylene in the A layer is more preferably 3 to 20 gZlO.
  • the isotactic index and MFR of polypropylene may be measured using raw material chips before film formation, but when additives such as the 13 crystal nucleating agent described below are contained, addition of additives It is preferable to measure later.
  • extract with n-heptane at a temperature of 60 ° C or less for 2 hours, and after removing additives and impurities, 130 ° C
  • the sample dried under reduced pressure for 2 hours or more can be used as a sample.
  • a polymer other than polypropylene may be added to the core layer (A layer).
  • examples of polymers other than polypropylene include, but are not particularly limited to, bull polymer resins containing various polyolefin resins, polyester resins, polyamide resins, polyphenylene sulfide resins, polyimide resins and the like.
  • the addition of so-called polyolefin elastomer monowax can simultaneously reduce the stretching stress and promote void formation of the white polypropylene film.
  • Polyolefin elastomer resin is not particularly limited, but, for example, ultra-low density polyethylene or linear low density polyethylene by the meta-catacene catalyst method, ethylene 'butene rubber, ethylene' propylene rubber, propylene 'butene rubber, ethylene Vinyl acetate, ethylene 'metatalylate copolymer, ethylene' methyl methacrylate copolymer, ethylene / propylene gen copolymer, isoprene rubber, styrene 'butadiene rubber, hydrogenated polystyrene butadiene rubber, styrene' butylene 'styrene Examples thereof include a copolymer and a styrene / ethylene / butylene / styrene copolymer.
  • the resin added to the core layer (A layer) is finely dispersed in polypropylene in the melt extrusion process, and the film-forming property is improved in the subsequent stretching process.
  • ultra low density polyethylene is particularly preferable because it promotes void formation.
  • Super Specific examples of the low density polyethylene include “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical Company.
  • the amount of addition of these other polymers is not particularly limited as long as other film properties are not impaired, but it may be added in an amount of 1 to 15% by mass with respect to the total amount of layer A. I like it. If the addition amount is less than 1% by mass, the addition effect may not be manifested. On the other hand, if the amount of added calories exceeds 15 mass%, poor dispersion may occur and the characteristics may be impaired.
  • the addition amount is more preferably 2 to 10% by mass, and further preferably 2 to 7% by mass.
  • the core layer (A) needs to have ⁇ -crystal activity.
  • ⁇ crystal activity means that when polypropylene is crystallized, ⁇ -type crystal, which is a kind of crystal form of polypropylene, that is, ⁇ crystal can be formed. Since the soot layer has ⁇ crystal activity, j8 crystal is generated in the film before stretching, and crystal transition of j8 crystal to ⁇ -type crystal, so-called ⁇ crystal, is performed in the subsequent stretching process. By utilizing the difference, it becomes possible to form a uniform and precise void in the film.
  • the entire white polypropylene film is measured to determine that the soot layer has 13 crystal activity. That is, using a differential scanning calorimeter, a 5 mg film was heated from room temperature to 260 ° C at a rate of 20 ° CZ under a nitrogen atmosphere, held at that temperature for 5 minutes, and then 20 ° CZ Cool to 30 ° C at a cooling rate of 1 minute, hold at 30 ° C for 5 minutes, and then raise the temperature to 280 ° C at a rate of 20 ° CZ again.
  • the A layer of the white polypropylene film is It is defined as having ⁇ crystal activity.
  • the diffraction peak intensity of the j8 crystal (300) plane observed near 2 0 16 ° (assuming 1
  • the ⁇ value is an empirical value indicating the ratio of ⁇ crystals.
  • the white polypropylene film of the present invention preferably has a j8 crystal ratio of 30 to 100%. If the ⁇ crystal ratio is less than 30%, the amount of void formation becomes insufficient, and the voids may not be uniformly distributed in the thickness direction of the film. In addition, the higher the ⁇ crystal ratio, the more the void formation can be promoted, and when the polypropylene film is processed into a receiving sheet for thermal transfer recording, it shows excellent sensitivity, but if it is too high, the folding resistance of the polypropylene film is reduced. In addition, the embossing resistance may be poor. Therefore, the / 3 crystal ratio is more preferably 40 to 95%, still more preferably 50 to 90%.
  • the ⁇ crystal ratio in the present invention is an endothermic peak derived from melting of j8 crystal of polypropylene observed at 140 to 160 ° C. in the caloric curve at the second temperature rise in the measurement with the above-mentioned differential scanning calorimeter. From the heat of fusion ( ⁇ )), which is also calculated as the area force, and the heat of fusion ( ⁇ ⁇ ), calculated from the area of the endothermic peak derived from the melting of crystals other than ⁇ crystals of polypropylene observed at 160 ° C or higher. The value obtained using the following formula.
  • a so-called ⁇ crystal nucleating agent to the polypropylene constituting the core layer (A) in order to impart a high
  • the ⁇ crystal nucleating agent is not added, the high j8 crystal ratio as described above may not be obtained.
  • Preferred examples of j8 crystal nucleating agents include iron oxides that form nanometer-sized dispersions, potassium 1,2-hydroxystearate, magnesium benzoate, magnesium succinate, and magnesium phthalate.
  • Alkali or alkaline earth metal salts of carboxylic acids N, N, monodicyclohexyl 2, 6
  • Amide compounds represented by naphthalene dicarboxyamide, fragrances represented by sodium benzenesulfonate, sodium naphthalenesulfonate, etc.
  • phthalocyanine pigments such as sulfonic acid compounds, di- or tri-esters of dibasic or tribasic carboxylic acids, tetraoxaspiro compounds, imidocarboxylic acid derivatives, phthalocyanine blue, quinacridone, quinacridonequinone, etc.
  • the following compounds 1 and 2 can increase the ⁇ crystal ratio of the unstretched sheet, and the subsequent stretching step Especially preferred because it can promote the formation of voids.
  • R in the formula is a saturated or unsaturated aliphatic residue having 1 to 24 carbon atoms, a saturated or unsaturated alicyclic residue having 4 to 28 carbon atoms, or an aromatic group having 6 to 28 carbon atoms.
  • R 1 and R 2 are the same or different cycloalkyl group residues having 3 to 18 carbon atoms, and 3 to 12 carbon atoms.
  • a cycloalkyl group residue or a derivative residue thereof is A cycloalkyl group residue or a derivative residue thereof.
  • R in the formula is a saturated or unsaturated aliphatic residue having 1 to 24 carbon atoms, 4 carbon atoms.
  • a particularly preferred example of a strong ⁇ / 3 crystal nucleating agent or j8 crystal nucleating agent-added polypropylene is Shin Nippon Rika Co., Ltd.) 8 crystal nucleating agent "ENJESTER (registered trademark)" (type name: NU -100, etc.), and nucleating agent-added polypropylene “BEPOL (registered trademark)” (type name: ⁇ 022-SP, etc.) manufactured by SUNOCO.
  • the content of the ⁇ crystal nucleating agent is preferably 0.01 to 0.5 mass% with respect to the total amount of the soot layer, although it depends on the ⁇ crystal forming ability of the ⁇ crystal nucleating agent to be used. .
  • the resulting white polypropylene film has a too low j8 crystal ratio, resulting in a high specific gravity or poor crease resistance and emboss resistance. There is a case. Also, the sensitivity may be inferior when processed into a thermal transfer recording receiving sheet. If the amount of ⁇ -crystal nucleating agent exceeds 0.5% by mass, the / 3 crystal ratio of the resulting polypropylene film will be saturated even if it is added more, or the dispersibility of the nucleating agent itself will deteriorate. Conversely, the ⁇ crystal ratio may decrease.
  • the content of the j8-crystal nucleating agent is more preferably 0.1 02-0. 3 wt%, rather more preferably is from 0.05 to 0.2 mass 0/0.
  • the core layer (A) needs to contain particles (a) having an average dispersion diameter of 60 to 400 nm.
  • the white polypropylene film of the present invention comprises a j8 crystal nucleating agent and particles (a) having an average dispersion diameter in the range of 0 to 400 nm in combination, whereby an incompatible resin or organic solvent as a conventional void forming agent.
  • particles or organic particles are used, uniform and dense voids can be formed with fewer non-uniform and coarse voids due to the dispersion state of the void forming agent (dispersion size, presence or absence of aggregation, etc.) .
  • the film since there are few coarse voids, the film has a low specific gravity and excellent crease resistance and emboss resistance.
  • the cushion rate of the entire film is increased and the emboss resistance is also improved. Furthermore, among the L, a, and b values of film color tone, the b value can be lowered (preferably in the blue direction, U).
  • the thermal transfer recording receiving sheet using the white polypropylene film of the present invention as a base material was obtained only with a white polypropylene film using a conventional void forming agent or a ⁇ crystal nucleating agent.
  • a white polypropylene film using a conventional void forming agent or a ⁇ crystal nucleating agent.
  • High sensitivity, crease resistance, emboss resistance and high productivity can be realized at the same time.
  • the average dispersion diameter of the particles (a) needs to be 60 to 400 nm. If the average dispersion diameter is less than 60 nm, the dispersion may be poor in polypropylene resin and the particles may aggregate to form coarse voids in the film. When the average dispersion diameter exceeds 400 nm, coarse voids are formed in the film, the porosity is lowered, and the cushion ratio, crease resistance and emboss resistance may be lowered.
  • the average dispersion diameter of the particles (a) is more preferably 100 to 300.
  • the average dispersion diameter is the average particle diameter of the particles dispersed in the core layer (A).
  • an ultrathin section of a film cross section is measured using a transmission electron microscope by the method shown in the item (1) in the column for measuring and evaluating the following characteristics. Observed and measured all the long diameters of the particles contained per 10 m ⁇ 10 m to obtain an average value. This measurement was performed by changing the observation surface at 10 locations, and the average value was taken as the average dispersion diameter of the particles.
  • the biaxially oriented white polypropylene film of the present invention preferably has 10 or more voids per 10 m x 10 m in cross section of layer A.
  • the number of voids per cross section of layer A 10 ⁇ m X lO ⁇ m is 10 or more, the cushioning ratio of the entire film is increased, the resistance to embossing and crease resistance is improved, and the color tone is improved. Can be made more bluish.
  • a thermal transfer recording receiving sheet using such a white polypropylene film as a base material has high heat insulation from the thermal head of the printer and can realize high sensitivity.
  • the number of voids is 10 to: L00, and more preferably in the range of 15 to 50. This is preferable because both the above characteristics and the mechanical strength can be achieved.
  • the white polypropylene film of the present invention has 5 or more voids with the particle (a) as a core present per A layer cross section 10 ⁇ mXlO ⁇ m.
  • the emboss depth in the high density region is reduced, which is preferable because the emboss resistance is improved. That is, a void having a substantial number of void particles (a) as a nucleus among all voids is preferable. If the number of voids with particles as the core is less than 5, the improvement in embossing resistance may not be observed.
  • the number of voids with particle (a) as the core is 10 ⁇ : L00 It is more preferable if it is 15-50.
  • the A layer cross section is a cross section in the transverse direction and a thickness direction, and is an observation surface of an ultrathin slice sample using a microtome.
  • the content of the particles needs to be 1 to 20% by mass, preferably Is in the range of 2 to 15% by mass, more preferably 5 to LO mass%. If the content is less than 1% by mass, the effect of addition is low. If it exceeds 20% by mass, stable melt extrudability may not be achieved, and coextrudability with the surface layer may be reduced, resulting in uneven lamination. In addition, particles may adhere to the lip of the die, preventing continuous film formation for a long time.
  • the particles (a) in the film after adding and mixing the j8 crystal nucleating agent and the particles together with the polypropylene resin resin acid-detergent and the heat stabilizer to the polypropylene resin powder. It is preferably used to supply to a twin screw extruder and melt mix.
  • particle surface treatment agents, anti-staining agents for bases, surfactants, etc. are added to the extent that the film properties are not deteriorated. .
  • PEONY (registered trademark) WHITE L 11165MPT manufactured by Dainippon Ink & Chemicals, Inc., in which 60% by mass of rutile titanium oxide having an average dispersion diameter in the range of 60 to 400 nm is mixed, and Tokyo Ink.
  • master batches such as “PPM (registered trademark)” 20130 WHITE manufactured by Co., Ltd., and such master batches can be diluted with polypropylene resin and used.
  • the primary average particle diameter of the particles (a) added to and mixed with polypropylene resin is preferably 400 nm or less, more preferably the primary average particle diameter of the particles is 30 to 300 nm. It is preferable because the average dispersion diameter is in the range of 60 to 400 nm in the A layer of the white polypropylene film!
  • the primary average particle size of the particles is less than 30 nm, it is difficult to uniformly disperse into the polypropylene resin, so that the particles may aggregate in the resin and the average dispersion size in the film may exceed 400 nm.
  • the particles (a) to be added to the core layer (A) are not particularly limited as long as the average dispersion diameter is in the range of 60 to 400 nm, but zinc oxide, acid aluminum, and acid titanium titanium, etc. Is it a group At least one kind of particles selected from among them is preferred because of its good dispersibility in polypropylene resin.
  • titanium oxide is particularly preferable because it is finely dispersed in polypropylene having j8 crystal activity and has a high effect of generating fine voids.
  • acid titanium include anatase type and rutile type, and rutile type is preferred from the viewpoint of dispersibility in polypropylene resin and thermal stability.
  • the white polypropylene film of the present invention it is necessary to laminate a B layer as a skin layer on at least one surface of the core layer (A). Further, the B layer needs to contain polypropylene resin and particles (b) having an average dispersion diameter of 1 to 4 ⁇ m of 0.05 to 0.5 mass%.
  • the smoothness and gloss of the film surface can be improved as compared with the case where the B layer is not laminated.
  • the adhesion with the thermal head is improved and heat is dissipated compared to the case where the B layer is not laminated. Suppressed ink ribbon force Improves sensitivity when transferred.
  • the polypropylene resin constituting the skin layer (B layer) preferably has a homopolymer power of propylene in the same manner as the core layer (A), but within the range not impairing the object of the present invention. It may be a polymer obtained by copolymerizing other unsaturated hydrocarbon monomer components. Alternatively, a polymer obtained by copolymerizing propylene and a monomer component other than propylene may be blended, and a polymer or copolymer of an unsaturated hydrocarbon monomer component other than propylene may be blended. Moyo. Examples of the monomer component constituting the copolymer component and the blend include the same components as the core layer (A layer).
  • a skin layer (B layer), by polymerizing 1 to 5 mass 0/0 both an ethylene propylene, the core layer (A layer) and a co-stretchability and a receiving sheet for thermal transfer recording of the receiving layer (or anchor The adhesiveness to the layer) is preferable.
  • the isotactic index of the polypropylene resin constituting the skin layer (B layer) is preferably 95 to 99.8%. If the isotactic index is less than 95%, the heat resistance of the surface of the film or its processed product may be inferior. If the isotactic index exceeds 99.8%, tearing may occur frequently in the film manufacturing process.
  • the isotactic index of the polypropylene resin constituting the B layer is more preferred ⁇ Is 96-99.5%.
  • the crystallization temperature of the skin layer (B layer) is preferably 115 ° C or higher.
  • the crystallization temperature is a value measured for the entire B layer. If the crystallization temperature of layer B is less than 115 ° C, when casting at a high temperature exceeding 100 ° C in the casting process, solidification is not completed until the sheet is peeled off, and the unstretched sheet is cast into the cast drum. It may stick to.
  • the crystallization temperature of the B layer is more preferably 119 ° C or higher.
  • the higher the crystallization temperature of the B layer the more likely it is to produce a film having the same quality as when the temperature of the drum, which is less susceptible to sticking and defects even at high temperature and high speed casting, is low.
  • the crystallization temperature of the B layer is the crystallinity of the polypropylene that constitutes the B layer, the added amount of a crystal nucleating agent, 13 crystal nucleating agent, high melt tension polypropylene, etc., incompatible resin, inorganic particles, organic particles, etc. It can control by the addition amount of.
  • the crystallization temperature of the B layer is more preferably 120 to 145 ° C, most preferably 123 to 130 ° C. Among them, it is particularly preferable to add a high melt tension polypropylene to the B layer to increase the crystallization temperature.
  • the addition amount of the high melt tension polypropylene is preferably 0.5 to LO mass% with respect to the total amount of the B layer from the viewpoint of film formation stability. If the addition amount of the high melt tension polypropylene is less than 0.5% by mass, the added effect may not be obtained. In addition, if the amount of added calories exceeds 10% by mass, the added effect may be saturated.
  • the amount of high melt tension polypropylene added is more preferably 1 to 5% by mass. Examples of the high melt tension polypropylene that can be preferably added to the B layer include the same high melt tension polypropylene that can be preferably added to the core layer (A).
  • Arsenic nucleating agent may be added to the skin layer (B layer).
  • a crystal nucleating agent examples include sorbitol nucleating agents, organophosphate metal salt nucleating agents, organic carboxylic acid metal salt nucleating agents, and rosin nucleating agents.
  • rosin-based nucleating agents are particularly preferable because they have a high effect of promoting crystallization.
  • Examples of rosin nucleating agents include “Pine Crystal (registered trademark)” (type names: KM-1300, KM-1500, KM-1600, etc.) manufactured by Arakawa Chemical Co., Ltd. Can do.
  • the amount of the a crystal nucleating agent added to the B layer is preferably 0.001 to 1% by mass with respect to the total amount of the B layer. If the addition amount of the crystal nucleating agent is less than 0.001% by mass, the added effect may not be obtained. If the addition amount of the crystal nucleating agent exceeds 1% by mass, the effect of the addition may be saturated, and the dispersibility of the nucleating agent itself may deteriorate, resulting in surface defects.
  • the amount of ⁇ -crystal nucleating agent added is more preferably 0.01 to 0.8% by mass.
  • the polypropylene resin of the cocoon layer the total amount of the resin including polypropylene rosin, various polypropylene copolymers and high melt tension polypropylene ⁇ ⁇ ⁇ It should be in the range of 99.95 to 95% by mass of the cocoon layer. Preferred in terms of coextrudability and costretchability.
  • the average dispersion diameter of the particles (b) to be contained in the skin layer (B layer) needs to be 1 to 4 ⁇ m.
  • the film has poor anti-blocking properties and slipperiness, and in the winder slitter when winding the film, the film is wrinkled or immediately, and the slip with the metal roll is also poor.
  • the film may be torn. If the average dispersion diameter of the particles (b) exceeds 4 m, in the film forming process and the subsequent film processing process, the particles may fall off and contaminate the process, and when the white polypropylene film is further rubbed, the film surface May be damaged or the film may be torn immediately.
  • the average dispersion diameter of the incompatible resin, inorganic particles, and organic particles is more preferably 1 to 3; ⁇ ⁇ .
  • the average dispersion diameter here can be measured in the same manner as the average dispersion diameter of the particles in the layer A described above.
  • the content of the particles (b) in the B layer is 0.05 to 5 to the total amount of the B layer from the viewpoint of blocking prevention, slipperiness, and improvement in sensitivity when used as a receiving sheet. It is necessary to be mass%. If the content is less than 0.05% by mass, the anti-blocking property and slipperiness may not be improved. In the winder slitter when winding the film, the film is likely to wrinkle, and the metal roll is It may break due to bad slip. When the content exceeds 5% by mass, in the film forming process and the subsequent film processing process, the particles may fall off and contaminate the process, or the film may be cleaved and torn.
  • the content of the particles in the B layer is more preferably 0.05 to 3% by mass.
  • Inorganic particles that can be preferably added to the skin layer (B layer) include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, Barium sulfate, acid aluminum, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, zinc oxide, antimony oxide, cerium oxide, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, carbonic acid Zinc, basic lead carbonate (lead white), barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, My strength, mica titanium, talc, clay, strength orin, lithium fluoride, calcium fluoride, etc. it can.
  • organic particles examples include polymethoxysilane cross-linked particles, polystyrene cross-linked particles, acrylic compound cross-linked particles, polyurethane cross-linked particles, polyester cross-linked particles, and fluoride compound cross-linked particles. it can. Further, even if it is not crosslinked, it can be used as long as it is incompatible with the polypropylene resin constituting the B layer since it is dispersed as an aggregate in the layer in the same manner as the particles.
  • incompatible resins examples include polymethylpentene, cyclic polyolefin, polycarbonate, polysanophone, polyarylate, isotactic polystyrene, syndiotactic polystyrene, polymethylmetatalylate, saturated polyester, and liquid crystal resin. Can do.
  • the incompatible resin it is particularly preferable to use polymethylpentene from the viewpoints of dispersibility in polypropylene resin and slipperiness when formed into a film.
  • the polymethylpentene to be added to the layer B preferably has a melt flow rate (MFR; 260 ° C., 5 kg) of 5 to 100 g / 10 min. If the V is out of the range, the MFR is preferred.
  • the MFR of polymethylpentene is more preferably 8 to 80 gZlO, further preferably 10 to 60 gZlO.
  • Inorganic particles, organic particles, and incompatible resin may be added as a single substance, or a combination of a plurality of them may be added.
  • the thickness of the skin layer (B layer) is preferably 0.1 to 5 m! /.
  • the thickness of the B layer is less than 0.1 ⁇ m, the crease resistance and the emboss resistance may be deteriorated.
  • the thickness of layer B exceeds 5 m, the sensitivity may be lowered when used as a receiving sheet.
  • the thickness of the B layer is more preferably 2 to 5 ⁇ m.
  • the porosity of the B layer is preferably 0.01 to 5% in terms of sensitivity when used as a receiving paper and adhesion to the receiving layer.
  • the porosity of the B layer is less than 0.01%, the sensitivity is lowered when used as a receiving sheet, and the high-speed printability may be inferior.
  • the B layer vacancies When the ratio exceeds 5%, the surface force of layer B, which is the skin layer of the white polypropylene film, is cleaved, and the adhesion to the receiving layer may deteriorate during processing into the receiving sheet.
  • the porosity of the B layer is more preferably 0.1 to 3%.
  • the porosity of the B layer is the ratio of the void in the S-skin layer when the film cross section is observed with an electron microscope.
  • the metal drum temperature during casting is set to 50 to 130 in the film forming process.
  • the B layer may be laminated on both sides of the core layer (A) to form a BZAZB type three-layer laminated film.
  • a skin layer (C layer) having a composition different from that of the B layer may be laminated on the surface of the core layer (A layer) opposite to the B layer side to form a BZAZC type three-layer laminated film.
  • the receiving layer when processing into a receiving sheet, the receiving layer may be installed on the B layer side or the C layer side.
  • the same resin as the B layer may be used, or a different one may be used.
  • the C layer has a polypropylene resin having a crystallization temperature of less than 115 ° C. Is preferred to use. If the crystallization temperature is less than 115 ° C, the effect of improving the wetting tension when the corona discharge treatment is performed is enhanced, and the adhesiveness with the receiving layer is preferably improved.
  • the polypropylene resin constituting the skin layer (C layer) is preferably mainly composed of propylene homopolymer, but polypropylene and other unsaturated hydrocarbons are within the scope of the object of the present invention. It may be a polymer in which the monomer components are copolymerized! /. Further, a polymer obtained by copolymerization of monomer components other than propylene and propylene may be blended, or a copolymer of monomer components of unsaturated hydrocarbon other than propylene may be blended. . Examples of the monomer component constituting such a copolymer component and blend include those similar to the A layer and the B layer.
  • the stereoregularity (mesopentad) of the low stereoregular polypropylene is preferably 70 to 90% from the viewpoint of adhesion to the receiving layer.
  • the mesopentad is less than 70%, when a receiving layer is formed on the C layer and used as a receiving sheet for thermal transfer recording, the heat resistance against heat from the thermal head may be inferior and the sensitivity may be lowered. .
  • the adhesive strength with the receiving layer may not be substantially improved.
  • Meso pentad is more preferably 72-85%.
  • ethylene may be copolymerized with the low stereoregular polypropylene.
  • ethylene Ethylene copolymers of the propylene random copolymer is preferably 1 to 4 mass 0/0.
  • the ethylene copolymerization amount is less than 1% by mass, for example, when a receiving layer is formed on the C layer and used as a receiving sheet for thermal transfer recording, the adhesive strength with the receiving layer (or anchor layer) is substantially reduced. May not improve. If the amount of ethylene copolymerization exceeds 4% by mass, sticking occurs in the film forming process, and the film forming process may be soiled, and the surface may be roughened, resulting in surface defects.
  • the heat resistance against heat from the thermal head is inferior, and the sensitivity may be lowered depending on the transfer energy.
  • the ethylene copolymerization amount is more preferably 1 to 3% by mass.
  • the C layer preferably contains particles having an average dispersion diameter of 1 to 4 m for the same purpose as the above-described B layer. It is preferable that the particles added to the C layer are the same as the B layer.
  • the porosity of the C layer is preferably 0.01 to 5%.
  • the porosity of the C layer is less than 0.01%, the sensitivity is lowered when used as a receiving sheet, and the high-speed printing property may be inferior.
  • the porosity of the C layer exceeds 5%, the surface of the C layer is likely to be cleaved, and the adhesiveness with the receiving layer may be deteriorated when it is processed into a receiving sheet for thermal transfer recording.
  • the porosity of the C layer is more preferably 0.1 to 3%.
  • the porosity of the C layer can be obtained by observing with a scanning electron microscope in the same manner as the B layer.
  • the metal drum temperature during casting is set to 60 to It is preferable to set a temperature range of 130 ° C [0075]
  • the thickness of the C layer is preferably 0.1 to 5 ⁇ m. If the thickness of the C layer is less than 0.1 ⁇ m, the crease resistance and the emboss resistance may deteriorate. On the other hand, if the thickness of layer C exceeds 5 m, the sensitivity may be low when used as a thermal transfer recording receiving sheet.
  • the thickness of the C layer is more preferably 1 to 3 / ⁇ ⁇ .
  • Examples of the method for laminating the C layer include coextrusion, in-line or off-line extrusion lamination, and the like. However, the best method is not limited to any of these, and the best method may be selected at any time. It is preferable to use the co-extrusion method when simply laminating with a BZAZC type three-layer structure!
  • an antioxidant In the white layer, the B layer and the C layer of the white polypropylene film of the present invention, an antioxidant, a heat stabilizer, an antistatic agent, a slipping agent, a blocking agent are used as long as the characteristics of the film of the present invention are not impaired. You may contain various additives, such as an inhibitor and a filler.
  • the emboss depth of the white polypropylene film of the present invention is preferably 20 ⁇ m or less.
  • the embossing depth is obtained by measuring the thickness of a receiving sheet using the white polypropylene film of the present invention as a base material at 10 points to obtain an average thickness (t), and then performing thermal transfer recording.
  • Emboss depth (m) t— t
  • a white polypropylene film is bonded to one side of a commercially available thermal transfer recording receiving sheet with a spray paste and then printed by the above method.
  • the embossing depth is more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • a dent may be formed in a high density portion, and it may appear as a streak.
  • the white polypropylene film of the present invention preferably has a porosity of 20% or more.
  • the porosity By setting the porosity to 20% or more, the mechanical strength of the film becomes moderately high, and it is possible to improve the winding properties and the film manufacturing process and the subsequent processing process to the reflector and receiving sheet.
  • the processability is excellent, the sensitivity as a thermal transfer recording receiving sheet is increased, and the light reflectance of the reflector can be increased.
  • the porosity of the white polypropylene film is determined by the content of the ⁇ crystal nucleating agent and particles that are preferably added to the polypropylene of the A layer, which is the core layer, and the core layer (saddle layer) and skin layer (saddle layer). , C layer) thickness ratio, and the like. Furthermore, in the film forming process, the crystallization conditions (metal drum temperature, metal drum peripheral speed, thickness of unstretched sheet obtained, etc.) and the stretching process conditions (stretching direction) when the molten polymer is solidified in the casting process The porosity can be controlled by a stretching method such as sequential biaxial stretching and simultaneous biaxial stretching, magnification, speed, temperature, etc.) and heat treatment conditions.
  • a stretching method such as sequential biaxial stretching and simultaneous biaxial stretching, magnification, speed, temperature, etc.
  • the metal drum temperature is preferably 60 to 130 ° C, more preferably 70 to 120 ° C in order to form a uniform and large amount of / 3 crystals in the soot layer.
  • increasing the area ratio which is the product of the stretching ratio in the machine direction and the transverse direction, increases the porosity, and in particular the longitudinal draw ratio is 3.5 to 5 times, more preferably 3.8 to 4.5 times. It is preferable that
  • the porosity is more preferably 25 to 70%, still more preferably 30 to 65%, and most preferably 35 to 60%.
  • the white polypropylene film of the present invention preferably has a glossiness of at least 50% on at least one side surface from the viewpoint of excellent appearance when used as a receiving sheet.
  • the surface glossiness is a value measured on the surface of the B layer or C layer which is a skin layer of a white polypropylene film.
  • the glossiness of the white polypropylene film is 50% or more.
  • the methods for achieving a surface glossiness of 50% or more include the crystallinity of the polypropylene constituting the white polypropylene film, other raw material compositions, crystallization conditions for solidifying the molten polymer in the casting process, and stretching in the stretching process. It can be controlled according to conditions.
  • the surface glossiness is more preferably from 60 to 130%, and even more preferably from 70 to 120%, in order to achieve both smoothness and porosity of the skin layer.
  • the biaxially oriented white polypropylene film of the present invention has a dynamic friction coefficient in the range of 0.2 to 0.6 when the front and back surfaces of the film are overlapped from the viewpoint of the handleability of the film. preferable.
  • the coefficient of dynamic friction is less than 0.2, the slippage may occur due to slipping too much, and conversely if it exceeds 0.6, the slipperiness deteriorates and wrinkles occur in the film forming process and the subsequent processing process. May enter.
  • the average surface roughness (Ra) of at least one surface is 0.01 to 0.5 m.
  • Ra is more preferably 0.05 to 0, and still more preferably 0.1 to 0.
  • the b value of the sample measured by the reflection method is preferably 7 to 0.1.
  • the yellowish color of the image looks strong overall when used as a thermal transfer recording receiving sheet, and the appearance of low-colored colors such as skin color may be poor.
  • the blueness of the image may appear strong.
  • the b value is more preferably in the range of ⁇ 6.5 to ⁇ 0.3.
  • the particle size, added amount, and cocoon content of the layer (saddle layer, C layer) can be controlled by the ratio of the layer thickness. It can also be controlled by the casting conditions and stretching conditions in the film forming process.
  • the white polypropylene film of the present invention preferably has a cushion rate of 15 to 30% from the viewpoint of sensitivity when used as a transfer sheet. If the cushion rate is less than 15%, the sensitivity may be too low. Conversely, if the cushion rate exceeds 30%, the crease resistance and emboss resistance may deteriorate.
  • the cushion rate can also be controlled by the shape and amount of the polypropylene resin used in the polypropylene film and the particles added thereto, and the film forming conditions. The cushion rate is more preferably 17 to 25%.
  • the white polypropylene film of the present invention has a light reflectance at a wavelength of 560 nm of preferably 85% or more, more preferably 90% or more. When the light reflectance is less than 85%, the illumination efficiency of the illumination light source is inferior and the liquid crystal screen becomes dark when used as a reflector.
  • the white polypropylene film of the present invention has a film thickness of 10 to 100 ⁇ m, the film-forming stability of the white polypropylene film, the sensitivity when used as a receiving sheet, the crease resistance and the resistance to folding. The viewpoint power of balancing embossing is preferred. More preferably, the film thickness is 20 to 60 ⁇ m.
  • the white polypropylene film of the present invention is subjected to a corona discharge treatment on at least one surface thereof, and the wetting tension of the film surface is set to 35 to 60 mNZm.
  • the adhesion between the treated surface and the receiving layer, and further the treated surface From the viewpoint of adhesiveness between and other materials.
  • the corona discharge treatment it is preferable to perform the corona discharge treatment in at least one gas atmosphere in which air, oxygen, nitrogen, and carbon dioxide gas power are also selected.
  • air, oxygen, nitrogen, and carbon dioxide gas power are also selected.
  • the surface wetting tension is more preferably 37 to 60 mNZm. If the surface wetting tension exceeds 60m NZm, the surface may deteriorate due to excessive surface treatment, and the adhesion may be adversely affected.
  • the receiving sheet has a glossiness of 50% or more after the receiving layer is coated on the film. This is preferable because the image becomes clear when the image is printed.
  • the glossiness of the surface of the receiving layer is more preferably 70% or more. The higher the glossiness of the receiving layer surface, the clearer the image and the better, so there is no particular upper limit.
  • the thermal transfer recording receiving sheet may be a receiving sheet using a white polypropylene film alone. It may be a receiving sheet bonded to the material.
  • Other materials include plain paper, fine paper, medium paper, coated paper, art paper, cast coated paper, oil-impregnated paper, emulsion-impregnated paper, latex-impregnated paper, synthetic resin internal paper, dalasin paper, Examples thereof include paper such as laminated paper, synthetic paper, non-woven fabric, and other types of films.
  • the white polypropylene film of the present invention is bonded to another material, it is preferable to bond the white polypropylene film to the surface opposite to the surface on which the receiving layer is installed because the curl of the thermal transfer recording receiving sheet is small.
  • the longitudinal or lateral or The horizontal / longitudinal sequential biaxial stretching method, simultaneous biaxial stretching method, and re-stretching after biaxial stretching can be used, but the longitudinal / horizontal sequential biaxial stretching method has excellent productivity and expandability. It is preferable to use it.
  • a / 3 crystal nucleating agent and particles having an average dispersion diameter in the range of 60 to 400 nm are added, and a polypropylene resin having j8 crystal activity is added to the extruder (a).
  • the mixture is melt-kneaded at 180 to 300 ° C., filtered through a filter, and then introduced into a composite die.
  • polypropylene having a high crystallization temperature increased by adding high melt tension polypropylene as the skin layer (B layer) is fed to the extruder (b) and melt-kneaded at 180 to 280 ° C to obtain a filter.
  • the sample is introduced into a composite die and laminated on one side or both sides of layer A.
  • a separate extruder c
  • the composite layer may be laminated on the surface opposite to the skin layer (B layer) laminated on one side of the core layer (A layer) to form the B layer, the ZA layer, and the ZC layer.
  • the composite sheet on which the molten polymer is laminated is discharged from a die and solidified while being in close contact with a drum maintained at a surface temperature of 40 to 120 ° C.
  • a drum temperature and the actual temperature of the sheet are approximately the same, the higher the drum temperature within the above temperature range, the higher the ⁇ crystal ratio of the A layer, so the apparent emptyness of the film after biaxial stretching
  • the porosity tends to increase and the specific gravity tends to decrease.
  • the drum temperature is too high, the sheet sticks to the drum, and a crater-like defect occurs on the surface of the film that contacts the metal drum after biaxial stretching (drum surface, hereinafter abbreviated as D surface).
  • the contact time between the discharged molten polymer and the metal drum is preferably 3 to 60 seconds.
  • the contact time is the time until the point when the unstretched sheet leaves the last drum. If the contact time to the metal drum is less than 3 seconds, solidification will be insufficient and the sheet will stick to the metal drum, or the ratio of ⁇ crystals produced will be low, so the film pores after biaxial stretching will be The rate may be low. Conversely, even if the contact time with the metal drum exceeds 60 seconds, the effect may be saturated.
  • the contact time with the metal drum is more preferably 5 to 45 hours, and even more preferably 7 to 20 seconds.
  • the molten polymer can be brought into close contact with the metal drum by any method such as electrostatic application, contact using water surface tension, air knife method, press roll method, or underwater casting method.
  • any method for obtaining the white polypropylene film of the present invention it is preferable to use an air knife method in which the thickness control is good and the cooling rate of the film surface can be controlled by the temperature of the blowing air.
  • the temperature of the air it is preferable to set the temperature to 10 to 130 ° C, and the glossiness improves as the temperature decreases, and the porosity increases as the temperature increases.
  • the unstretched laminated sheet is introduced into a roll group or oven heated to 90 to 160 ° C and preheated, and the film temperature is set to 80 to 150 ° C.
  • the film is stretched 3-7 times in the longitudinal direction of the film using the difference in the peripheral speed of the roll between the roll whose surface temperature is controlled at 80-145 ° C and the roll whose temperature is controlled at 30-140 ° C.
  • it is cooled with a roll group of 30 ° C to 120 ° C.
  • the porosity is high, and also when the stretch ratio is high, the porosity is high.
  • the film was stretched sideways in an atmosphere heated to 120 to 190 ° C (film temperature: 100 ° C to 165 ° C) while holding both ends of the film stretched in the longitudinal direction with clips. Stretch 5-12 times in the direction. If the ambient temperature for transverse stretching is less than 120 ° C, the film may be easily broken. In addition, when the transverse stretching atmosphere temperature exceeds 190 ° C, voids formed by longitudinal stretching may be crushed and the porosity may be lowered, or the skin layer may stick to the clip and be torn.
  • the longitudinal stretching speed is in the range of 20,000 to 300,000% Z. It is preferable to stretch at a speed in the range of 1,000 to 10,000% Z because the void formation rate is high and uniform voids can be formed in the vertical and horizontal directions. Yes.
  • the longitudinal and transverse stretching speeds are less than the above range, the production amount per unit time decreases and the cost increases.
  • the longitudinal and transverse stretching speeds exceed the above range, the number of voids formed may decrease and the porosity may decrease.
  • the area ratio (longitudinal draw ratio X transverse draw ratio) of the longitudinal-lateral biaxial stretching is preferably 15 to 84 times from the viewpoint of film formation stability, which is preferably 30 to 50 times. preferable. If the area magnification is less than 15 times, the surface gloss of the white polypropylene film after biaxial stretching may be low, or the amount of void formation may be insufficient. Also, if the area magnification exceeds 84 times, the film may be torn during stretching.
  • the biaxially stretched white polypropylene film of the present invention is subsequently heat treated at 140-170 ° C for 1-30 seconds in a tenter to complete crystal orientation and improve planarity and dimensional stability. I do. Then, after gradually cooling uniformly, the film can be obtained by cooling to room temperature and winding. During the heat treatment step, a relaxation treatment of 3 to 12% may be performed in the horizontal direction or the vertical direction as necessary. In addition, it is preferable to wind up the corona discharge treatment to increase the interlayer adhesion when the film is applied to the receiving layer or other substrate!
  • the number of voids having the core in the core layer (A layer) was measured as follows.
  • an ultrathin slice sample of the cross-section in the transverse direction and thickness direction of a white polypropylene film was collected by the embedment method using epoxy resin. Collected The section sample is stained with RuO, and the cross section is examined using a transmission electron microscope under the following conditions:
  • layer A of the film For layer A of the film, take a photograph so that one side of the photo is parallel to the lateral direction of the film and parallel to the thickness direction (10 mm on the photographic paper corresponds to the actual 1 ⁇ m). The obtained photograph was read using a scanner under the following conditions.
  • Particles are used as cores by performing image analysis on Image-Pro Plus, Ver. 4.0 for Windows, made by Planetron Co., Ltd. Counted the number of voids. At this time, voids on the boundary line were also added to the number. At this time, spatial calibration was performed using the scale of the captured cross-sectional image. The numbers were counted for 10 locations at different locations, and the average value was adopted.
  • the porosity of the white polypropylene film is determined by the specific gravity (dl) of the white polypropylene film obtained by the method of (2) above, and the white polypropylene film is heated at 280 ° C for 3 minutes with a preheating time of 3 minutes. Heat for 2 minutes to completely eliminate vacancies, and heat press sheet obtained by rapid cooling by immersing in 30 ° C water, and the specific gravity (dO) determined by the method (3) above is calculated. And obtained by the following formula.
  • the whole white polypropylene film was measured and determined by the following criteria that the soot layer had / 3 crystal activity.
  • An aluminum pan was filled with 5 mg of a white polypropylene film, and measurement was performed using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220 type).
  • the temperature was raised from 30 ° C to 260 ° C (fast run) at a rate of 20 ° CZ (first run) and allowed to stand at 260 ° C for 5 minutes. Subsequently, it was cooled to 30 ° C at a rate of 20 ° CZ and waited at 30 ° C for 5 minutes. Next, the temperature was raised again to 260 ° C at a rate of 20 ° CZ (second run).
  • the endothermic peak means that the heat of fusion is lOjZg or more.
  • the heat of fusion can be calculated as the area force enclosed by the baseline and the calorific curve until the calorimetric curve shifts from the baseline to the endothermic side as the temperature rises and then returns to the baseline position.
  • the melting starting temperature position force is also obtained by comparing the peak area with a melting point (28. 59j / g) when measuring indium, which is a standard material, by drawing a straight line up to the high temperature intersection where the calorific curve returns to the baseline.
  • the ⁇ value is an empirical value indicating the ratio of crystals.
  • the ⁇ value such as the calculation method of each diffraction peak intensity, see A. Turner Jones, et. Al., Makromolekulare Chemie, 75, 1 Refer to 34 (1964).
  • the above confirmation may be measured not only for the biaxially stretched film but also for the corresponding unstretched sheet.
  • the raw material of the resin means the entire resin composition used for forming each layer including polypropylene, other polymers and additives.
  • the sample may be any shape, but it is preferably a chip because it is easy to handle.
  • the B layer and the C layer, which are skin layers may be scraped from the white polypropylene film after film production, and measurement may be performed as a sample.
  • the orientation state of the film is determined by the X-ray diffraction photographic power when X-rays are incident on the film from the following three directions.
  • Imaging plate FUJIFILM BAS-SR • Shooting conditions: Camera radius 40mm, exposure time 5 minutes
  • Tc crystallization temperature
  • the obtained image was subjected to image analysis using Image-Pro Plus, Ver. 4.0 for Windows manufactured by Planetron Co., Ltd. At this time, spatial calibration was performed using the scale of the captured cross-sectional image.
  • the measurement conditions were set as follows.
  • the ratio of the total area of the skin layer of the 10 cross-sectional images, that is, the area of the blackened portion to the area of the rectangular target region to be measured was calculated as a percentage. It was set as the porosity of.
  • Stylus scanning direction film lateral direction
  • Stylus diameter Conical type. 5 / z mR
  • the centerline average surface roughness (Ra) is the roughness curve force of which the measurement length L is extracted
  • the centerline of this extraction portion is the X axis
  • the vertical direction is the Y axis
  • f (X) it is a value obtained by the following formula.
  • the b value was measured under the conditions of the reflection method. The measurement was performed using a ⁇ 30 mm sample stage and a lens. Same Rumumum's bb values are measured at 55 optional points, and the average average of the obtained bb values is the bb value of the filmum. It was assumed. .
  • the QUICK INSIDE QUICK INSIDE DECKS can also determine the residual force of the boiling boiling nn--hepteptatan. .
  • the cylindrical filter paper is dried and dried at 111100 ⁇ 55 °° C for 22 hours, in a room at 2233 ° CC, relative humidity and humidity of 6655 %%. After leaving it to stand for more than 22 hours, leave the sample in the filter paper (circular cylindrical filter paper or any kind of poplar lip such as flakes or flakes).
  • Prolopyrylene Put 1100 gg, use a weighing scale kappa cup and a pin pin set, and use a direct weighing balance to measure the mass of sasunampuru Weigh accurately the amount ((PPoo)) with 44 decimal places. .
  • [[00112288]] Set this in the upper upper part of the extractor with 8800 mmll of hepteptane, and set the extractor and cold cooler. It ’s assembled. .
  • the extractor is heated and heated with an oil heater or electric heater, and extracted for 1122 hours. .
  • the heating heat is adjusted so that the number of drops from the cooler / cooler is at least 113,300 drops for 11 minutes. .
  • Yen circle with remaining extraction and extraction remaining. Take out the cylindrical filter paper and put it in a true vacuum air dry dryer. Dry and dry for 55 hours at a reduced pressure of llOOOOmmmmHHgg or less. .
  • PPoo is the mass and mass of sasanpurpur before extraction
  • PP is the mass and mass of sasanpurpur after extraction.
  • the MFR of polypropylene and thermoplastic elastomer is measured in accordance with JIS K 7210 (1995) Condition M (230 ° C, 2.16 kg).
  • Ethylene resin is measured according to JIS K 7210 (199 5), Condition D (190 ° C, 2.16 kg).
  • the MFR of polymethylpentene is measured according to ASTM D 1238 (260.C, 5. Okg).
  • a first run caloric curve is collected using the sample as an unstretched sheet.
  • the sample was treated with a white polypropylene film and The second run calorimetric curves are taken as the core layer (A layer) and skin layer (B layer, C layer).
  • the heat of fusion ( ⁇ H) which also calculates the area power of the endothermic peak accompanying melting of the j8 crystal having a peak at 140 to 160 ° C, is derived from the polypropylene having a peak at 160 ° C or higher From the heat of fusion ( ⁇ ⁇ ⁇ ) resulting from the melting of crystals other than ⁇ crystals, the following formula is used. In this case, a slight exothermic or endothermic peak may be observed between the ⁇ ⁇ ⁇ ⁇
  • the ⁇ -crystal ratio of the unstretched sheet is important for evaluating how many j8 crystals were produced in the casting process. Therefore, the ⁇ -crystal ratio of the unstretched sheet also calculates the first run caloric curve force that reflects the thermal history experienced by the sample during film formation. In addition, the ⁇ crystal ratio of the biaxially oriented film is important for evaluating how much void forming ability each film has. Therefore, the ⁇ -crystal ratio of the biaxially oriented film is calculated by calculating the calorimetric curve force of the second run that is not affected by the thermal history applied to the film. In the present invention, unless otherwise specified, the j8 crystal ratio used was a value obtained by calculating the calorimetric curve force of the second run for the biaxially oriented film.
  • Samples are prepared by scraping each layer from the white polypropylene film core layer (saddle layer) and skin layer (saddle layer, C layer). A calorimetric curve was collected and measured for (B layer, C layer).
  • Sections were taken. That is, an ultrathin section having the above-mentioned cross section is collected using a microtome method, the section is stained with RuO, and the lower section is observed using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the short diameter and long diameter of all the particles existing per area of 10 m ⁇ 10 m were measured, and the average value of all these was taken as the average dispersion diameter of the particles.
  • the measurement was not performed for the case where particles were cut off at the edge of the image.
  • the minor axis and the major axis are the lengths of the smallest part and the largest part, respectively, among the values obtained by measuring the size of each particle observed in the cross section along the transverse direction and the thickness direction. This measurement was performed 10 times while changing the observation surface, and the average value was adopted.
  • the thickness of the skin layers (B layer, C layer) was measured at 10 locations, and the average value thereof was taken as the thickness of the skin layers (B layer, C layer). That is, one arbitrary point was read as the actual size of the film in each of the 10 cross-sectional photographs, and the average value of the total of 10 points was taken as the thickness of each skin layer of the film. In this case, the observation magnification was 10,000 times. Further, the thickness of the core layer (A layer) was calculated by subtracting the thickness of the skin layer from the thickness of the whole white polypropylene film obtained by the following (20) force.
  • xylene was selected, in which the polypropylene resin and the thermoplastic resin of the film were dissolved and the particles were not dissolved. 10 g of the film was dissolved in xylene heated to 135 ° C., the particles were centrifuged, the mass of the particles was measured, and the content of the particles was determined from the total mass of the sample and the mass ratio of the particles.
  • Dial gauge stand No. 7001DGS-M
  • dial gauge thickness gauge JIS B 7503 (1997), PEACOCK UPRIGHT DIAL GAUGE (0.001 x 2mm), No. 25, probe 5mm ⁇ flat type) Install. From this, the film thickness (d0) is measured. Furthermore, the thickness when a load of 500 gf (4.9 N) is applied to the dial gauge holder (d 500) was measured, and the cushion rate was calculated by the following formula.
  • Wetting tension was measured based on JIS K 6768 (1999) using a mixed liquid of formamide and ethylene glycol monoether.
  • a 65- ⁇ m-thick high-quality paper with adhesive (label sheet for KOKUYO Co., Ltd., tie—2110—W) with a thickness of 65 ⁇ m is evenly bonded to the surface of the white polypropylene film opposite to the receiving layer forming surface, and then folded.
  • a sample for evaluation was prepared. The sample was cut into a length of 200 mm and a width of 15 mm, one end was fixed, and a 200 g weight was connected to both sides with a wire. ° While folding, the remaining end was pulled at 200 mmZ seconds. The state of wrinkles on the film surface was observed at a magnification of 10 using a stereo microscope, and the crease resistance was judged according to the following criteria.
  • Class A 0 to 1 wrinkles with a length of 1 mm or more Zcm occurred
  • Class B 2-4 wrinkles with a length of 1mm or more Zcm occurred
  • Class C 5-8 wrinkles with a length of 1 mm or more Zcm occurred
  • Class D 9 or more wrinkles having a length of 1 mm or more were generated.
  • the length (cm) of the resulting mesh was measured for 10 squares in the machine direction and 10 squares in the width direction, and the average values were taken as the effective draw ratios in the machine and transverse directions, respectively.
  • the part where the unstretched sheet peeled from the metal drum was observed and judged according to the following criteria.
  • the surface of the white polypropylene film after biaxial stretching was visually observed, and surface defects were determined according to the following criteria.
  • a white polypropylene film was bonded to a paper having a thickness of 150 m. Then, using a micro-dalavia coater, apply the following coating agent to form a receptor layer on the skin layer (B layer or C layer) on the film surface so that the coating amount is 3 gZm 2 when dried. Thus, a receiving sheet for thermal transfer recording was prepared.
  • Polyester resin ("Byron (registered trademark) 200” manufactured by Toyobo Co., Ltd.): 20 parts by mass Silicone oil (“X-22-3000T” manufactured by Shin-Etsu Chemical Co., Ltd.): 2 parts by mass Toluene: 39 parts by mass
  • the receiving sheet for thermal transfer recording After preparing the above-mentioned receiving sheet for thermal transfer recording, it was left at 40 ° C for 24 hours, and then the receiving sheet for thermal transfer recording was replaced with a color printer (Professional by Seiko Denshi Kogyo Co., Ltd.). A test pattern was printed on the surface of the receiving sheet on which the receiving layer was formed, using Color Point 1835) and a dedicated ink ribbon. The same printing was performed 10 times on the same receiving sheet, and the sensitivity was judged according to the following criteria from the reproducibility and sharpness of the image of the obtained sheet.
  • Class A Images with high color density on all sheets are clear.
  • Class B There is a sheet where the density is slightly lower or slightly “notch” is observed once or twice, but in other cases, the image with a higher density is clear.
  • Class C 3-5 times the density is low, “chip” or “collapse” is observed, or there is a sheet that looks strong reddish or yellowish overall. .
  • Class D There are sheets whose density is low 6 times or more, “chips” and “collapse” are seen, or the overall image looks reddish or yellowish.
  • a receiving sheet for thermal transfer recording was prepared using a white polypropylene film as a base material.
  • the thickness of the receiving paper is measured at 10 points to obtain the average thickness (t), and then the desktop type small thermal sensor
  • the emboss depth was determined by the following formula.
  • Emboss depth (m) t—t
  • the emboss depth evaluated in (28) above was determined according to the following criteria.
  • Emboss depth is 10-20 ⁇ m.
  • cellophane tapes (made by Chiban Co., Ltd., 18 mm width) are parallel to the receiving layer side surface and the opposite side surface of the obtained thermal transfer recording receiving sheet, They were pasted to a length of 15 cm so that they faced each other at the same part. Then accept The surface on the layer side was held with the hand opposite to the dominant hand, and the cellophane tape on the receiving layer side was quickly released with the dominant hand in the direction of about 45 ° angle. At this time, the proportion of the receiving layer (including other layers of the receiving sheet) transferred to the cellophane tape was observed and evaluated according to the following criteria.
  • A The receiving layer does not transfer to the cellophane tape at all. Or, since the adhesive force between the receiving layer (or anchor layer) and the film is strong, the film itself cohesively breaks.
  • C 20% or more and less than 50% of the receiving layer is transferred to cellophane tape.
  • D 50% or more of the receiving layer is transferred to cellophane tape.
  • Films that are judged as A and B can be used industrially.
  • a biaxially oriented white polypropylene film with a width of 5 m was formed, and when the film was rolled up with 10, OOOm, the film was observed for tearing and judged according to the following criteria.
  • Films that are judged as A and B can be used industrially.
  • the polymer extrusion amount from each extruder was adjusted to a predetermined value. Any of the following industrially manufacturable products The film was also confirmed to be biaxially oriented by the method (6) described above. Further, the film surface characteristics were measured on the drum side of the A layer in the case where the force skin layer measured on the B layer on the drum side was not laminated unless otherwise specified.
  • hPPl Homopolypropylene "WF836DG3" manufactured by Sumitomo Chemical Co., Ltd. (MFR: 7gZlO min., iSOtactic index: 97%)
  • hPP2 Prime polymer homopolypropylene "F107BV” (MFR: 7gZlO min, isotactic index: 98%)
  • HMS-PP Basell-made polypropylene “PF-814” (MFR: 3 gZ, 10 minutes, isotactic index: 97%):
  • the resin is a polypropylene having a long chain branch in the main chain skeleton.
  • the core layer (A layer) and the skin layer (B layer) were prepared as follows.
  • hPPl 73.8% by mass of hPPl, 25% by mass of rEPC, 0.2% by mass of spherical silica particles (Mizusawa Chemical Industries, ATM-20S) with an average particle size of 1. m, and HMS-PP 1% by mass was mixed and fed to a twin screw extruder. After melt-kneading at 280 ° C, it was extruded into a gut shape, cooled through a 20 ° C water bath, cut to 5 mm length with a tip cutter, and then dried at 100 ° C for 2 hours to obtain a chip. .
  • a layer of the resin material is fed to the extruder (a), melted and kneaded at 230 ° C, filtered through a 35 ⁇ m-force leaf disk filter, and then a multi-hold type. Introduced into two types of two-layer compound bases.
  • the resin material for layer B was fed to the extruder (b), melted and kneaded at 260 ° C., filtered through a 35 m cut wire mesh filter, and then introduced into the die.
  • the molten polymer of the extruder (b) was laminated on one side of the molten polymer of the extruder (a) and coextruded into a sheet.
  • the molten polymer laminate thus obtained was extruded into a sheet shape so that the B layer was in contact with the metal drum, and cast and solidified on the metal drum maintained at a surface temperature of 95 ° C. And formed into a sheet shape.
  • the surface of the sheet not contacting the metal drum (hereinafter abbreviated as the ND surface) side force was used to blow the air at 90 ° C. to adhere the sheet to the drum.
  • the contact time of the sheet to the drum was 30 seconds.
  • the obtained unstretched laminated sheet was introduced into an oven heated to 130 ° C and preheated, then stretched 5 times in the machine direction, and cooled with a 100 ° C cooling roll. The longitudinal stretching speed at this time was 30,000% Z min.
  • the longitudinally stretched film was introduced into a tenter while gripping both ends with clips, preheated at 155 ° C, and stretched in the transverse direction at a machine magnification of 9 times in an atmosphere heated to 145 ° C. did.
  • the transverse stretching speed at this time was 2,500% Z min.
  • the biaxially oriented white poly In order to complete the crystal orientation of the propylene film and give flatness and dimensional stability, it was heat-set at 160 ° C while uniformly relaxing 5% in the tenter, and slowly cooled slowly. Cooled to room temperature.
  • the B layer surface (D surface) of the white polypropylene film was subjected to corona discharge treatment in an atmosphere of 100% nitrogen, and the opposite surface (ND surface) was subjected to corona discharge treatment in air.
  • the treatment strength at this time was 15 W * min Zm 2
  • the wetting tension on the D surface was 42 mNZm
  • the wetting tension on the ND surface was 37 mNZm.
  • the A layer of the resin material and the B layer of the resin material were prepared as follows.
  • Example 1 a chip produced under the same conditions was used except that the ratio of hPPl was changed to 90.8% by mass and the ratio of titanium oxide particles to 3% by mass.
  • Example 1 a chip manufactured under the same conditions was used except that the proportion of hPPl was changed to 71 mass% and the amount of spherical silica particles added was changed to 3 mass%.
  • the A layer of the resin material and the B layer of the resin material were prepared as follows.
  • Example 1 the ratio of hPPl was 73.8% by mass, and the titanium oxide particles were 20% by mass. A chip manufactured under the same conditions was used except that the ratio was changed.
  • Example 1 a chip produced under the same conditions was used except that the ratio of hPPl was changed to 73.95% by mass and the spherical silica particles were changed to 0.05% by mass.
  • the A layer of the resin material and the B layer of the resin material were prepared as follows.
  • Ciba's Specialty Chemicals as a heat stabilizer IRGAFOS (registered trademark) 168 manufactured by Co., Ltd. was added in an amount of 0.1 part by mass, melt-kneaded at 300 ° C using a twin screw extruder, extruded into a gut shape, cooled through a 20 ° C water bath. After cutting to 5 mm length with a chip cutter, it was dried at 100 ° C. for 2 hours to obtain a chip.
  • Example 1 A chip prepared by mixing 0.2% by mass of silica particles under the same conditions as in Example 1 was used.
  • the layer A resin, the layer B resin, and the other layer (layer C) resin were prepared as follows.
  • the chip produced in Example 1 was used.
  • Example 1 B A chip manufactured under the same conditions as the layer material was used.
  • the raw material for the A layer of the resin is supplied to the extruder (a), melted and kneaded at 210 ° C, filtered through a 35 ⁇ m cut leaf disk filter, and then a multi-hold type. Introduced into a three-layer composite base.
  • the resin material for layer B was fed to an extruder (b), melted and kneaded at 260 ° C., filtered through a 35 m cut wire mesh filter, and then introduced into the die.
  • the C layer raw material was supplied to the extruder (c), melted and kneaded at 260 ° C., filtered through a 35 m cut wire mesh filter, and then introduced into the die.
  • the molten polymers of the extruder (b) and the extruder (c) were respectively laminated on both sides of the molten polymer of the extruder (a) and coextruded into a sheet.
  • the molten polymer laminate thus obtained was extruded into a sheet form from the die so that the B layer was in contact with the metal drum, and was solidified on a metal drum maintained at a surface temperature of 110 ° C. Molded into. At this time, use the air knives on the ND side of the sheet, and air at 60 ° C. Was sprayed to bring the sheet into close contact with the drum. At this time, the contact time of the sheet to the drum was 15 seconds. Next, the resulting unstretched laminated sheet was introduced into a 130 ° C oven and preheated, then stretched 5 times in the machine direction, and cooled with a 100 ° C cooling roll. The longitudinal stretching speed at this time was 100,000% Z min.
  • the film after longitudinal stretching was introduced into a tenter while holding both ends with clips, preheated at 165 ° C, and stretched 9 times in the transverse direction in an atmosphere heated to 145 ° C. .
  • the transverse stretching speed at this time was 5,000% Z. It was then heat-set at 160 ° C with 5% relaxation in the transverse direction in the tenter to complete the crystal orientation of the biaxially oriented white polypropylene film and to provide planarity and dimensional stability. After uniform cooling, the solution was cooled to room temperature.
  • the B layer surface (D surface side) is in an air atmosphere
  • the C layer surface (ND surface side) is in a mixed gas atmosphere with a nitrogen volume of 80% and carbon dioxide volume of 20%.
  • a biaxially oriented white polypropylene film was produced under the same conditions as in Example 1 except that the discharge treatment was performed. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the C layer on the ND surface side under the same conditions as in Example 1 to prepare a receiving sheet.
  • a layer of resin material, B layer of resin material, and C layer of resin material were prepared as follows:
  • IRGANOX registered trademark
  • IRGAFOS registered trademark
  • 0.1 part by weight of 168 was added, melted and kneaded at 300 ° C with a twin screw extruder, extruded into a gut shape, cooled through a 20 ° C water bath, and cut into 5 mm lengths with a chip cutter. , 100 The chip was obtained by drying at ° C for 2 hours.
  • Example 2 A chip produced under the same conditions as in Example 1 was used by mixing at a mass% ratio.
  • a biaxially oriented white polypropylene film was produced under the same conditions as in Example 5 except that the above-mentioned rosin raw material was used. Further, using the obtained white polypropylene film as a substrate, a receiving layer was formed on the C layer on the ND surface side under the same conditions as in Example 1 to prepare a receiving sheet.
  • a layer of resin material, B layer of resin material, and C layer of resin material were prepared as follows:
  • a chip produced under the same conditions as the resin for the A layer in Example 6 was used except that 84.8% by mass of hPPl and 15% by mass of the titanium oxide particles were added.
  • a chip produced under the same conditions as the resin for the B layer in Example 2 was used except that the particles to be added were changed from spherical silica particles to PMP, which is an incompatible resin.
  • a biaxially oriented white polypropylene film was produced under the same conditions as in Example 5 except that the above-mentioned rosin raw material was used.
  • the average dispersion diameter of PMP in layer B was: Ma
  • a receiving layer was formed on the C layer on the ND surface side under the same conditions as in Example 1 to prepare a receiving sheet.
  • the A layer of the resin material and the B layer of the resin material were prepared as follows.
  • Example 1 a chip produced under the same conditions was used except that acid-zinc particles having an average particle diameter of 200 nm were used instead of acid-zinc titanium particles.
  • a biaxially-oriented white polypropylene film was produced in the same manner as in Example 2 by supplying the two types of three-layer die of the BZAZB type using the A layer and B layer resins. Also, using the obtained white polypropylene film as a base material, a receiving layer was formed on the B layer on the D surface side under the same conditions as in Example 1 to prepare a receiving sheet.
  • the A layer of the resin material and the B layer of the resin material were prepared as follows.
  • the layer A resin used in Example 4 was used.
  • Example 2 film formation and processing were performed under the same conditions except that the metal drum temperature was 50 ° C.
  • Example 2 the particles to be added to the resin of the layer A were changed from the acid titanium particles to the average particle size 0
  • the film was formed and processed under the same conditions except that the particle size was changed to 1 m ⁇ -acid-aluminum particles.
  • Example 4 PEONY MA 10 NU-100 0.05 mVLDPE 5 Ti0 2 15 ⁇ Rix Example 5 hPP1 45 ⁇ ? 45--Ti0 2 10 Male 6 hPP1 89.8 NU-100 0.2 Ti0 2 10
  • Example 1 1 NU-100 0.2 mVLDPE 3 Ti0 2 3
  • Example 1 2 NU-100 0.2 mVLDPE 3 Al 2 0 3 3
  • Example 7 Si0 2 0.2 110 Good 5 x 9 rEPC 50
  • Example 8 ----95 Good 5 x 9
  • Example 10- ---70 Good 4 x 9
  • Example 1 1----50 Good 5 x 9
  • Example 12 ----50 Good 5 x 9
  • Example 1 A Good 20 250 2-(30/5)
  • Example 3 B Good 35 300 2-(1/33/1)
  • Example 4 A Good 28 250 2-(2/31 / 2)
  • Example 1 0.2 90 0.27 -4.5 Good 21 0.8 0.32
  • Example 2 1.2 85 0.45 -2.8 Good 19 0.7 0.25
  • Example 3 0.05 103 0.33 -5.2 Good 25 0.8 0.45
  • Example 4 0.1 125 0.15 -4.1 Good 22 0.7 0.37
  • Example 5 0.1 90 0.27 -4.5 Good 22 0.7 0.47
  • Example 6 0.1 125 0.25-4.0 Good 20 0.7 0.35
  • Example 7 0.1 90 0.47 -4.7 Good 22 0.8 0.30
  • Example 8 0.1 90 0.27 -4.5 Good 18 0.7 0.32
  • Example 9 0.2 75 0.25 -5.5 Good 24 0.8 0.35
  • Example 1 0 0.1 127 0.18-2.5 Good 15 0.6 0.35
  • Example 1 1 1.2 84 0.43 -27 Good 12 0.5 0.25
  • Example 1 2 1.2 84 0.43-2.7 Good 18 0.7 0.25
  • Tables 1 to 6 show the biaxially oriented white polypropylene films of Examples 1 to 10, the resin composition of the receiving sheet, the film forming conditions, the film characteristics, and the receiving sheet characteristics.
  • the white polypropylene films of Examples 1 to 9 did not stick to the metal drum, and were excellent in film forming property and process passability.
  • the film surface after biaxial stretching was strong without any crater-like defects. Reflecting this, the surface friction of the B layer is small and the dynamic friction coefficient Was low, the slipperiness was good, and the glossiness was high.
  • the porosity is high and the cushioning ratio is high so that the folding resistance and embossing resistance are not impaired. It had an optical density and b value.
  • the receiving sheet for thermal transfer recording using such a white polypropylene film as a base material and forming a receiving layer on the B layer was extremely sensitive because of the high adhesive strength of the receiving layer.
  • this white polypropylene film showed a very high light reflectance at 560 nm.
  • Example 10 since the crystallization temperature of the skin layer (B layer) was low, the force was low in reflectivity compared to the other examples.
  • Example 11 since the porosity of the film was low, the sensitivity and light reflectance were slightly inferior, but other characteristics were excellent.
  • Example 12 since the number of voids having nuclei in the core layer (A) was small, the embossing resistance was slightly inferior, but other characteristics were excellent! /.
  • Example 2 Biaxial orientation with a thickness of 35 ⁇ m under the same conditions as in Example 1, except that the skin layer (B layer) is not laminated and a single-layer film with only the core layer (A layer) is used.
  • a white polypropylene film was prepared.
  • a receiving layer was formed on the D-side surface of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • Example 2 The same conditions as in Example 2, except that the amount of hPPl was increased instead of adding acid-titanium particles to the core layer (A layer).
  • a layer the core layer
  • a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • Example 1 the same sucrose raw material except that the titanium oxide particles of the core layer (A layer) were changed to calcium carbonate particles (manufactured by Maruo Calcium Co., Ltd., MSK-PO) having an average particle diameter of 1 ⁇ m.
  • a film was made. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • Comparative Example 4 except that the acid-titanium particles of the core layer (A layer) of Comparative Example 4 were changed to polycarbonate (A-2500, manufactured by Idemitsu Petrochemical Co., Ltd.), which is incompatible with polypropylene resin. Under the same conditions, a biaxially oriented white polypropylene film was produced. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • polycarbonate A-2500, manufactured by Idemitsu Petrochemical Co., Ltd.
  • a biaxially oriented white polypropylene film was produced under the same conditions as in Example 1 except that the ⁇ -nucleating agent was replaced with hPPl in the core layer (A layer) resin composition of Example 1.
  • the film was processed under the same conditions as in Example 1.
  • a receptor layer was formed by forming a receptor layer on the surface of layer B on the D-side of the film.
  • Example 2 The same conditions as in Example 1 except that the spherical silica particles of the skin layer (B layer) of Example 1 were changed to calcium carbonate particles having an average particle diameter of 0.6 ⁇ m (manufactured by Maruo Calcium Co., Ltd., CUBE). Thus, a biaxially oriented white polypropylene film was produced. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • Example 2 The same conditions as in Example 1 except that the spherical silica particles in the skin layer (B layer) of Example 1 were changed to calcium carbonate particles having an average particle size of 5.6 ⁇ m (manufactured by Maruo Calcium Co., Ltd., CUBE). Thus, a biaxially oriented white polypropylene film was produced. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • a biaxially oriented white polypropylene is used under the same conditions as in Example 1, except that the amount of spherical silica particles in the skin layer (B layer) of Example 1 is reduced to 0.02% by mass and hPPl is increased by that amount.
  • a film was prepared. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • a biaxially oriented white polypropylene film was prepared under the same conditions as in Example 1 except that the amount of spherical silica particles in the skin layer (B layer) of Example 1 was increased to 6% by mass and hPPl was reduced accordingly. Produced. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to produce a receiving sheet.
  • the raw material for the layer A As the raw material for the layer A, the same material used in Example 1 was used.
  • the raw material for layer B was a mixture of 99.98% by mass of rEPC and 0.02% by mass of spherical silica particles used in Example 1.
  • a biaxially oriented white polypropylene film was produced under the same conditions as in Example 1. Further, using the obtained white polypropylene film as a base material, a receiving layer was formed on the surface of the B layer on the D surface side of the film under the same conditions as in Example 1 to prepare a receiving sheet.
  • Comparative Example 1 since the skin layer (B layer) was laminated, the film-forming stability and processability were poor, and the resulting film had low gloss. In addition, since it has a through hole, when the receiving layer was applied, the coating agent penetrated into the film, and the receiving sheet was not glossy. Furthermore, since there were a large amount of voids in the film surface layer, the adhesive force of the receptor layer was low.
  • Comparative Example 3 the content of particles having an average dispersion diameter in the range of 60 to 400 nm in the core layer (A) exceeds 20% by mass, and stable melt extrudability cannot be achieved.
  • the film edge is cut and scraped off during the film forming process, the film edge force drops and the roll in the winder For example, the film could become dirty and could not be formed continuously for a long time.
  • the emboss depth after printing exceeded 20 m and streaks entered the photographic paper. Was observed.
  • the average dispersion diameter in the film in which the dispersibility of the acid zinc used in the layer A in polypropylene resin is poor exceeds the range of 60 to 400 nm.
  • the particles dropped out, resulting in poor long-term film formation and processability.
  • the particles are aggregated in the film, coarse voids are formed, so when used as a receiving sheet, the sensitivity is low, the emboss depth after printing exceeds 20 m, and streaks appear on the photographic paper. Observed. Moreover, the light reflectance was also low.
  • a coarse void was formed in the film in order to exceed the average dispersion diameter range of 0 to 400 nm of the polycarbonate in the layer A. Therefore, when used as a receiving sheet, sensitivity was increased. The reflectance was also low.
  • Comparative Example 7 since it had ⁇ crystal activity, the porosity with very little void formation in the soot layer was low. For this reason, film tearing frequently occurred during transverse stretching, resulting in inferior film-forming properties, and when used as a receiving sheet, the sensitivity was low and the reflectance was also low.
  • Comparative Example 11 since the amount of particles added to layer B exceeds 5% by mass, the particles fall off in the film forming process and contaminate the apparatus, resulting in defects on the film surface. Also, this force was inferior in film forming property and process passability because film tearing occurred.
  • the biaxially oriented white polypropylene film of the present invention has excellent film properties and productivity, and can be applied, for example, as follows.
  • the film of the present invention may be used alone or may be used by laminating other layers. Lamination, heat sealability, adhesion, heat resistance, releasability, etc. can be imparted by laminating other layers.
  • the biaxially oriented white polypropylene film of the present invention can be widely used in packaging applications, industrial applications, etc., including thermal transfer recording.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

 コア層(A層)およびスキン層(B層)を有する二軸配向白色ポリプロピレンフィルムであって、該A層の少なくとも片面に該B層が積層され、該A層は、β晶活性を有するポリプロピレン樹脂および1~20質量%の平均分散径60~400nmの粒子(a)を含み、かつ、該B層は、ポリプロピレン樹脂および0.05~5質量%の平均分散径1~4μmの粒子(b)を含む二軸配向白色ポリプロピレンフィルム。本発明は、フィルムの品質、生産性に優れ、受容シートの基材として用いた際の感度と生産性を高いレベルで両立させた二軸配向白色ポリプロピレンフィルムおよびそれを用いた感熱転写記録用受容シートを提供する。

Description

明 細 書
二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受 容シート
技術分野
[0001] 本発明は、二軸配向白色ポリプロピレンフィルムに関する。さらにそれを用いた反射 板または感熱転写記録用受容シートに関する。
背景技術
[0002] ノルプ紙と比較して、白色フィルムは耐水性、強度、平滑性などに優れた合成紙と して、一般包装体、ラベル、ポスター、ステッカーなどの表示物、感熱転写記録方式 用の感熱転写記録受容シート、リフレタターや反射板などに用いられている。
[0003] これらの中で、感熱転写記録方式とは、染料含有層であるインク層を有するインクリ ボンと受容シートを重ね合わせ、インクリボン側力もサーマルヘッドによって加熱する ことにより、色材または色材含有成分を溶融または昇華して、受容シート上に微細な 網点状に転写して印字する方式である。
[0004] 近年、感熱転写記録用受容シートに印刷する際に、印刷速度の高速ィ匕のために受 容シートが受ける熱負荷が大きくなつてきている。また、加工条件が厳しくなつたこと や、印刷装置の小型化などにより、感熱転写記録用受容シートが使用される環境は 、年々厳しくなつている。そのような環境の変化を背景として、感熱転写記録用受容 シートの基材に使用される白色フィルムには、白さおよびクッション率を満足しながら 、耐折れじわ性ゃ耐エンボス性などの加工適性および感度を向上させ、印画された 受容シートの高濃度域部のエンボス深さが小さぐそして低コストであることが強く求 められている。
[0005] 従来、このような感熱転写記録方式に用いられる受容シートの基材として、ポリプロ ピレン中に無機粒子やポリエステル榭脂などの非相溶性榭脂を含有させ、延伸工程 にお 、てポリプロピレンと無機粒子や非相溶性榭脂との界面をはく離させ、ボイドを 形成した白色フィルムなど、各種白色ポリプロピレンフィルムが提案されてきた (たとえ ば、特許文献 1、 2参照)。しかし、これらの提案の非相溶性榭脂または無機粒子から なるボイド形成剤を添加した白色フィルムでは、多量のボイド形成剤を添加すること が必要となる。そのため、フィルム表面に粒子による突起が多量に形成され、表面粗 さが大きくなる場合や、製膜工程およびその後の加工工程で粒子が脱落して工程を 汚す場合がある。さらに、フィルム中の非相溶性榭脂または無機粒子の平均分散径 が大きいため、形成されるボイドが粗大かつ少量となり、クッション率が低ぐ耐折れじ わ性および耐エンボス性に劣る場合がある。また、それを基材として用いた感熱転写 記録用受容シートは感度が低いものとなる。また、それを反射板として用いたときの 光反射率が低いものとなる。さらには、ボイドを緻密にするために、添加する非相溶 性榭脂または無機粒子の粒径を小さくおよび Zまたは粒度分布を狭くすると、得られ るフィルムのコストが高くなるという問題があった。
[0006] また、ポリプロピレンフィルム中にボイドを形成させる上記以外の手法としては、たと えば、ポリプロピレンを溶融押出して未延伸シートを製造する際に、未延伸シート中 に結晶密度の低 、 β型結晶(結晶密度: 0. 922g/cm3)を形成させ、これを延伸す ることにより結晶密度の高 、 a型結晶(結晶密度: 0. 936g/cm3)に結晶転移させ、 両者の結晶密度の差によりボイドを形成させる手法を挙げることができる。
[0007] この手法については、エチレン プロピレンブロックコポリマーとエチレン含有ポリプ ロピレンに 晶核剤と炭酸カルシウムを添加して得た微多孔フィルム (たとえば、特許 文献 3参照)や、配向促進ポリマー、ホモポリプロピレン、 β晶核剤、無機粒子からな るコア層の少なくとも片面にヒートシール性を有するスキン層、もしくは印刷性を有す るスキン層を積層した白色フィルム (たとえば、特許文献 4参照)、さらには、 β晶活性 を有し、二軸延伸して空孔率を高めた微孔性ポリプロピレンフィルム (たとえば、特許 文献 5参照)などが提案されている。し力しながら、これらの提案では、受容層を均一 に形成することが困難であるために、感度が低くなる問題や、表面の光沢度が低いと いう問題があった。さらには印刷した際の受容シートのエンボス深さが大きくなつてし まうという問題があった。
[0008] また、白色フィルムの別の用途として、リフレタターや反射板を挙げることができる。
たとえば、薄型 ·小型化が望まれるノート型パソコンなどに使用される薄型液晶ディス プレー用途には、サイドライト型、つまり画面に対し側面力 光を照射するタイプのバ ックライトが適用されている。このような液晶画面用のバックライトに用いられるリフレタ ターや反射板には、薄膜であることと同時に高い反射率が要求され、従来、白色顔 料を添加したフィルムや、無機粒子などを添加して内部に微細なボイドを含有させた フィルムが使用されてきた。たとえば、ポリオレフイン榭脂シートの光反射体として、ポ リオレフイン榭脂 100質量部、および、微粉末状の無機系充填剤 100〜300質量部 を含み、面積倍率で 1. 5〜20倍に延伸され、かつ、波長 550nmの光反射率が 95
%以上であり、該反射体の剛性が少なくとも 50mmである光反射体が提案されて 、 る(たとえば、特許文献 6参照)。しかし、このような提案のフィルムでは、比重が高くて 加工性に劣り、ボイド形成の榭脂および無機粒子により光の乱反射または吸収が起 こって反射率が低下する場合や、紫外線などの照射によってボイド形成の榭脂およ び無機粒子が黄変して、フィルムの白色度が低下する問題があった。さらに、製膜ェ 程および光反射板製造工程にてボイド形成の榭脂および無機粒子が脱落して工程 を汚すという問題があった。
特許文献 1:特開平 5— 78512号公報
特許文献 2:特開 2006 - 181915号公報
特許文献 3:特開平 4— 309546号公報
特許文献 4 :国際公開 03Z93004号パンフレット
特許文献 5:国際公開 05Z103127号パンフレット
特許文献 6:特開平 8 - 262208号公報
発明の開示
発明が解決しょうとする課題
本発明の課題は上記した問題点を解決することにある。すなわち、従来の白色フィ ルムに比較して生産性に優れ、柔軟かつ低比重であって、白色度が高ぐ耐折れじ わ性おょび耐エンボス性、製膜性、加工性に優れる二軸配向白色ポリプロピレンフィ ルムを提供することにある。また、感熱転写記録用受容シートの基材として用いた場 合、従来の白色フィルムよりも感度が高ぐエンボス深さが少ない高性能な感熱転写 記録用受容シートを提供し、また、反射板用として用いたときは、高い光反射率を示 して、液晶ディスプレーの輝度を高める光反射板を提供することにある。 課題を解決するための手段
[0010] 上記した課題は、コア層(A )およびスキン層(B層)を有する二軸配向白色ポリプ ロピレンフィルムであって、該 A層の少なくとも片面に該 B層が積層され、該 A層は、 j8晶活性を有するポリプロピレン榭脂および 1〜20質量%の平均分散径 60〜400n mの粒子(a)を含み、かつ、該 B層は、ポリプロピレン榭脂および 0. 05〜5質量0 /0の 平均分散径 1〜4 μ mの粒子(b)を含む二軸配向白色ポリプロピレンフィルムによつ て達成できる。
[0011] また、コア層に添加される粒子 (a)は、酸化亜鉛、酸ィ匕アルミニウムおよび酸ィ匕チタ ンカ なる群力 選ばれる少なくとも 1種の粒子であることが好ましい。
[0012] また、フィルムの空孔率が 20%以上であることが好ましい。
[0013] また、 A層断面 10 mX 10 m当たりに存在する、粒子(a)を核とするボイド数が 5 個以上であることが好まし!/、。
[0014] また、 B層の結晶化温度が 115°C以上であることが好ましい。
[0015] また、本発明の感熱転写記録用受容シートは、上記の二軸配向白色ポリプロピレン フィルムの少なくとも片面に受容層を設けたものである。
[0016] 受容シートの印画後のエンボス深さが 20 μ m以下であることが好ましい。
[0017] また、本発明の光反射板は、上記の二軸配向白色ポリプロピレンフィルムを用いた ものである。
発明の効果
[0018] 本発明によれば、以下に説明する通り、フィルムの特性、および、生産性に優れ、 たとえば、反射板用ゃ感熱転写記録用受容シートの基材として優れた特性を有する 二軸配向白色ポリプロピレンフィルム、およびそれを用いた反射板または感熱転写記 録用受容シートを提供できる。
(1)本発明の二軸配向白色ポリプロピレンフィルムは、コア層に平均分散径が 60〜4 OOnmの範囲の微細な粒子を含有し、かつ、 β晶活性を有することにより、粗大なボ イドを形成せずに微細なボイドを増すことが可能となり、空孔率の高い二軸配向白色 ポリプロピレンフィルムを効率よく得ることができる。
(2)本発明の二軸配向白色ポリプロピレンフィルムは、スキン層に特定範囲の分散径 を有する粒子を含有することから、高温'高速のキャスト条件下でも粘着や表面欠点 が発生せず、表面光沢度が高ぐさらに滑り性が良好であることから生産性に優れる
(3)本発明の二軸配向白色ポリプロピレンフィルムは、スキン層を有することにより、フ イルム製膜工程および受容シート製造工程において、コア層の微細な粒子が脱落す るようなトラブルがな 、ことから、工程通過性に優れる。
(4)本発明の二軸配向白色ポリプロピレンフィルムは、フィルムの比重が低ぐ白色度 、光学濃度、クッション率、耐エンボス性および耐折れじわ性に優れる。
(5)本発明の二軸配向白色ポリプロピレンフィルムは、少なくとも片面にスキン層を有 していることから、感熱転写記録用受容シートのアンカー剤層との接着性に優れる。
(6)本発明の二軸配向白色ポリプロピレンフィルムは、上記の優れた特性により、感 熱転写記録用受容シートに加工した際に、感度が高ぐ高濃度印画部のエンボス深 さが小さく、銀塩写真のように画像が鮮明に印画される。
(7)本発明の二軸配向白色ポリプロピレンフィルムは、光反射率が高ぐ反射板に加 ェした際に高い光反射率を示して、液晶ディスプレーの輝度が高くなる。
図面の簡単な説明
[0019] [図 1]透過型電子顕微鏡を用いて、本発明の二軸配向白色ポリプロピレンフィルムの 断面を、 10, 000倍で観察した写真。
[図 2]示差走査型熱量計を用いて、 [特性の測定方法および評価方法] (15)の方法 により β晶比率を求める際に得られる熱量曲線の模式図。
[図 3]図 2の熱量曲線を用いて 晶比率を算出する方法の模式図。
[図 4]比較例 12の白色ポリプロピレンフィルムのフィルム表面に形成されるクレータ状 欠点の観察写真。
符号の説明
[0020] 1 · · β晶含有 ΡΡおよび β晶含有フィルムの全融解曲線
2 · · β晶部分の融解熱量 Δ Η
3 · · α晶部分の融解熱量 Δ Η α
4 · ·ボイド 5· ·ボイド核
6· ·クレータ状の表面欠点
発明を実施するための最良の形態
[0021] 本発明の二軸配向白色ポリプロピレンフィルムのコア層(A )は、主としてプロピレ ンの単独重合体榭脂からなるが、本発明の目的を損なわない範囲でポリプロピレンと 他の不飽和炭化水素の単量体成分が共重合された重合体であっても良い。また、プ ロピレンとプロピレン以外の単量体成分が共重合された重合体がブレンドされても良 V、し、プロピレン以外の不飽和炭化水素の単量体成分の重合体ある 、は共重合体 がブレンドされても良 ヽ。このような共重合成分やブレンド物を構成する単量体成分 としては、たとえば、エチレン、プロピレン(共重合されたブレンド物の場合)、 1ーブテ ン、 1—ペンテン、 3—メチルペンテン一 1、 3—メチルブテン一 1、 1—へキセン、 4— メチルペンテン 1、 5 ェチルへキセン 1、 1—オタテン、 1ーデセン、 1ードデセン 、ビュルシクロへキセン、スチレン、ァリルベンゼン、シクロペンテン、ノルボルネン、 5 ーメチルー 2—ノルボルネン、アクリル酸およびそれらの誘導体を挙げられる力 これ らに限定されない。
[0022] コア層(A )を構成するポリプロピレン榭脂は、製膜性向上の観点から、いわゆる 高溶融張力ポリプロピレンを含有することが好ましい。 A層を構成するポリプロピレン 榭脂が高溶融張力ポリプロピレンを含有することにより、延伸時の破れが少なぐ製 膜性に優れる。また、フィルム縦方向に低温'高倍率延伸しても、横延伸でフィルムが 破れることなく安定に製膜できる。
[0023] 高溶融張力ポリプロピレンを得る方法としては、たとえば、高分子量成分を多く含む ポリプロピレンをブレンドする方法、分岐構造を持つオリゴマーやポリマーをブレンド する方法、特開昭 62— 121704号公報に記載されているように、ポリプロピレン分子 中に長鎖分岐構造を導入する方法、あるいは特開平 6— 157666号公報に記載され ているように、長鎖分岐を導入せずに溶融張力と固有粘度、結晶化温度と融点とが それぞれ特定の関係を満たし、かつ沸騰キシレン抽出残率が特定の範囲にある直鎖 状の結晶性ポリプロピレンとする方法などが好ましく用いられる。これらの中でも、 A層 には、溶融押出の安定化効果、生産性の向上効果が大きいことから、主鎖骨格中に 長鎖分岐を有するポリプロピレンを用いることが特に好ましい。なお、主鎖骨格中に 長鎖分岐を有するポリプロピレンとは、ポリプロピレン主鎖骨格力 主鎖同等の長さを 有する枝分かれしたポリプロピレン鎖を有するポリプロピレンである。
[0024] 上記した主鎖骨格中に長鎖分岐を有するポリプロピレンの具体例としては、 Basell 社製ポリプロピレン(タイプ名: PF— 814、 PF— 633、 PF— 611、 SD— 632など)、 Borealis社製ポリプロピレン(タイプ名: WB130HMSなど)、 Dow社製ポリプロピレ ン(タイプ名: D114、 D201、 D206など)などが挙げられる。
[0025] 高溶融張力ポリプロピレンの添加量は、用いる高溶融張力ポリプロピレンの性能に もよる力 A層の全量に対して、 1〜: LO質量%であることが好ましい。高溶融張力ポリ プロピレンの添加量が 1質量%未満であると、製膜性向上の効果が得られない場合 がある。高溶融張力ポリプロピレンの添加量が 10質量%を超えると、それ以上添加し ても効果が飽和する場合がある。高溶融張力ポリプロピレンの添加量は、より好ましく は 1〜5質量%である。
[0026] また、特にフィルム縦方向に高倍率延伸する場合には、コア層(A )だけでなぐ スキン層(B層、 C層)にも高溶融張力ポリプロピレンを添加することが好ましい。これ により、製膜工程において、スキン層がコア層に追従し、フィルム全体をより安定に延 伸できる。
[0027] コア層(A )を構成するポリプロピレン榭脂のアイソタクチックインデックスは、 90〜 99. 5%であることが好ましい。ァイソタクチックインデックスが 90%未満であると、フィ ルムの強度が低下する場合や、耐折れじわ性および耐エンボス性が悪ィ匕する場合が ある。また、ァイソタクチックインデックスが 99. 5%を超えると、製膜が不安定になる 場合がある。 A層のポリプロピレンのァイソタクチックインデックスは、より好ましくは、 9 2〜99%である。
[0028] コア層(A )のポリプロピレン榭脂のメルトフローレイト(MFR)は l〜30gZlO分で あることが好ましい。 MFRが lgZlO分未満であると、 250°C以下での低温溶融押出 の際に押出量が変動する場合がある。また、 MFRが 30gZlO分を超えると、 A層と スキン層 (B層、 C層)を共押出積層する場合、均一厚みで積層することが難しくなる 場合がある。さら〖こ、キャスト工程において、口金力も押出された溶融ポリマーを金属 ドラム上で固化させて未延伸シートを得る際に、溶融ポリマーの金属ドラム上での着 地点が大きく変動するため、未延伸シート中に均一に )8晶を生成させることが難しく なったり、得られる白色ポリプロピレンフィルムの厚みムラが大きくなつたり、ボイドが不 均一になる場合がある。 A層のポリプロピレンの MFRは、より好ましくは 3〜20gZlO 分である。
[0029] ポリプロピレンのァイソタクチックインデックスや MFRは、製膜前の原料チップを用 いて測定しても良いが、下記する 13晶核剤などの添加剤を含有する場合は、添加剤 の添加後に測定することが好ましい。なお、添加剤の添加後に、添加剤を含まないポ リプロピレンの特性を測定する場合は、 60°C以下の温度の n ヘプタンで 2時間抽 出し、添加剤および不純物を除去後、 130°Cで 2時間以上減圧乾燥したものをサン プルとして用いれば良い。
[0030] また、延伸時の応力を低下させ、延伸に伴うボイド形成が促進できる場合があること から、コア層(A層)には、ポリプロピレン以外のポリマーを添カ卩しても構わない。ポリプ ロピレン以外のポリマーとしては、各種ポリオレフイン榭脂を含むビュルポリマー榭脂 、ポリエステル榭脂、ポリアミド榭脂、ポリフエ二レンサルファイド榭脂、ポリイミド榭脂な どが挙げられ、特に限定されない。中でも、いわゆるポリオレフインエラストマ一榭脂を 添加することにより、白色ポリプロピレンフィルムの延伸応力低下およびボイド形成促 進の効果が同時に得られる。
[0031] ポリオレフインエラストマー榭脂としては、特に限定されないが、たとえば、メタ口セン 触媒法による超低密度ポリエチレンもしくは直鎖状低密度ポリエチレン、エチレン'ブ テンラバー、エチレン 'プロピレンラバー、プロピレン'ブテンラバー、エチレン酢酸ビ -ル、エチレン 'メタタリレート共重合体、エチレン'メチルメタタリレート共重合体、ェ チレン ·プロピレン ジェン共重合体、イソプレンゴム、スチレン 'ブタジエンラバー、 水添スチレブタジエンラバー、スチレン'ブチレン'スチレン共重合体、スチレン'ェチ レン 'ブチレン'スチレン共重合体などを挙げることができる。
[0032] これらのポリオレフインエラストマー榭脂のうち、コア層(A層)に添加する榭脂として は、溶融押出工程でポリプロピレン中に微分散し、その後の延伸工程で製膜性が向 上し、かつボイド形成を促進することから、超低密度ポリエチレンが特に好ましい。超 低密度ポリエチレンの具体例としては、 Dow Chemical Company製" Engage ( エンゲージ)(登録商標)"(タイプ名: 8411、 8452、 8100など)などを挙げることがで きる。
[0033] これら他のポリマーの添カ卩量は、他のフィルム特性を損ねない範囲において、特に 限定されるものではないが、 A層の全量に対して、 1〜15質量%添加することが好ま しい。添加量が 1質量%未満であると、添加効果が発現しない場合がある。また添カロ 量が 15質量%を超えると、分散不良が起り特性を損ねる場合がある。添加量は、より 好ましくは 2〜10質量%、さらに好ましくは 2〜7質量%である。
[0034] コア層(A )は、 β晶活性を有することが必要である。ここで、フィルムが β晶活性 を有するとは、ポリプロピレンを結晶化させた際にポリプロピレンの結晶形態の一種で ある β型結晶、いわゆる β晶が生成しうることを意味する。 Α層が β晶活性を有して いることで、延伸前のフィルムにおいて j8晶を生成させ、その後の延伸工程で j8晶を 、 α型結晶、いわゆる α晶、に結晶転移させ、結晶密度の差を利用して均一かつ緻 密なボイドをフィルム中に形成することが可能となる。
[0035] 本発明では、 Α層が 13晶活性を有して ヽることを、白色ポリプロピレンフィルム全体 を測定し、以下の基準で判定する。すなわち、示差走査熱量計を用いて、窒素雰囲 気下で 5mgのフィルムを 20°CZ分の速度で室温から 260°Cまで昇温し、その温度で 5分間保持し、次に 20°CZ分の冷却速度で 30°Cまで冷却し、 30°Cで 5分間保持し た後に、再度 20°CZ分の速度で 280°Cまで昇温する。得られる熱量曲線において、 140〜160°Cに j8晶の融解に伴う吸熱ピークが存在し、該吸熱ピークのピーク面積 から算出される融解熱量が lOjZg以上であれば、白色ポリプロピレンフィルムの A層 が β晶活性を有すると定義する。
[0036] また、上記温度範囲に吸熱ピークが存在する力 β晶の融解に起因するか不明確 な場合は、フィルムを下記特性の測定方法および評価方法の欄に記載された方法で 、広角 X線回折法を用いて測定し、 2 0 = 16° 付近に観測される β晶(300)面の回 折ピークが存在することと、 Κ値により確認しても良い。すなわち、 2 0 = 16° 付近に 観測される j8晶(300)面の回折ピーク強度 (1 |8 とする)と 2 0 = 14, 17, 19° 付近 にそれぞ; ^測され、 α晶の(110)、 (040)、 (130)面の回折ピーク強度 (それぞれ Ι α 、 Ι α 、 Ι α とする)とから、下記の数式により定義する Κ値力 0. 3以上であるこ
1 2 3
とをもって β晶活性を有すると判定することができる。ここで、 Κ値は、 β晶の比率を 示す経験的な値である。
Κ = Ι β /{Ι β + (ΐ α +Ι α +Ι α ) }
1 1 1 2 3
本発明の白色ポリプロピレンフィルムの j8晶比率は、 30〜100%であることが好ま しい。 β晶比率が 30%未満であると、ボイド形成量が不十分となり、フィルムの厚み 方向にボイドが均一分布しない場合がある。また、 β晶比率は、高いほどボイド形成 を促進でき、ポリプロピレンフィルムを感熱転写記録用受容シートに加工した際に、 優れた感度を示すが、あまりに高すぎるとポリプロピレンフィルムの耐折れじわ性およ び耐エンボス性が悪ィ匕する場合がある。そのため /3晶比率は、より好ましくは 40〜9 5%、さらに好ましくは 50〜90%である。
本発明における β晶比率とは、上記した示差走査熱量計での測定における 2度目 の昇温時の熱量曲線において、 140〜160°Cに観測されるポリプロピレンの j8晶の 融解に由来する吸熱ピークの面積力も算出される融解熱量( Δ Η )と、 160°C以上 に観測されるポリプロピレンの β晶以外の結晶の融解に由来する吸熱ピークの面積 から算出される融解熱量( Δ Ηひ)から、下記式を用いて求められる値である。
晶比率 ニ 厶!! !!ひ +厶!! ;^ ^^
β晶比率が 30〜100%というような高い |8晶活性を付与するために、コア層(A ) を構成するポリプロピレンには、いわゆる β晶核剤を添加することが好ましい。 β晶核 剤が添加されない場合、上記のような高い j8晶比率が得られない場合がある。好まし い j8晶核剤としては、たとえば、ナノメートルサイズの分散体を形成する酸化鉄、 1, 2 —ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、コハク酸マグネシウム、フタ ル酸マグネシウムなどに代表されるカルボン酸のアルカリまたはアルカリ土類金属塩 、 N, N, 一ジシクロへキシル 2, 6 ナフタレンジカルボキシアミドなどに代表される アミド系化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどに 代表される芳香族スルホン酸化合物、二または三塩基カルボン酸のジもしくはトリエ ステル類、テトラオキサスピロ化合物類、イミドカルボン酸誘導体、フタロシアニンブル 一などに代表されるフタロシアニン系顔料、キナクリドン、キナクリドンキノンなどに代 表されるキナクリドン系顔料、有機二塩基酸である成分 Aと周期表第 2族金属の酸化 物、水酸ィ匕物または塩である成分 Bとからなる二成分系化合物を挙げることができる 力 これらに限定されるものではない。また、 β晶核剤は 1種類のみを使用しても良い し、 2種類以上を併用しても良い。
[0038] コア層(A )を構成するポリプロピレンに添加する β晶核剤としては、上記の中で は下記の化合物 1、 2が、未延伸シートの β晶比率を高くでき、その後の延伸工程で ボイドの形成を促進できるので、特に好ま 、。
[化合物 1]
下記化学式(1)、 (2)で表される、 Ν, Ν, 一ジシクロへキシルー 2, 6 ナフタレンジ カルボキシアミドなどに代表されるアミド系化合物。
[0039] R -NHCO-R CONH— R (1)
2 1 3
ここで、式中の Rは、炭素数 1〜24の飽和もしくは不飽和の脂肪族残基、炭素数 4 〜28の飽和もしくは不飽和の脂環族残基または炭素数 6〜28の芳香族残基を表し 、 R 、 Rは同一または異なる炭素数 3〜18のシクロアルキル基残基、炭素数 3〜12
2 3
のシクロアルケ-ル基残基またはこれらの誘導体残基である。
[0040] R -CONH-R NHCO— R (2)
5 4 6
ここで、式中の Rは、炭素数 1〜24の飽和もしくは不飽和の脂肪族残基、炭素数 4
4
〜28の飽和もしくは不飽和の脂環族残基または炭素数 6〜12の複素環式残基また は炭素数 6〜28の芳香族残基を表し、 R 、 Rは同一または異なる炭素数 3〜12の
5 6
シクロアルキル基残基、炭素数 3〜 12のシクロアルケ-ル基残基またはこれらの誘導 体残基である。
[化合物 2]
有機二塩基酸である成分 Aと周期表第 2族金属の酸ィヒ物、水酸ィヒ物または塩であ る成分 Bとからなる二成分系化合物。
[0041] 力かる特に好ま ヽ /3晶核剤もしくは j8晶核剤添加ポリプロピレンの具体例として は、新日本理化 (株)製 )8晶核剤"ェヌジエスター (登録商標)"(タイプ名: NU- 100 など)、 SUNOCO社製 晶核剤添加ポリプロピレン" BEPOL (登録商標) " (タイプ 名: Β022— SPなど)などが挙げられる。 [0042] β晶核剤の含有量は、用いる β晶核剤の β晶生成能にもよるが、 Α層の全量に対 して、 0. 01〜0. 5質量%であることが好ましい。 j8晶核剤の含有量が 0. 01質量% 未満であると、得られる白色ポリプロピレンフィルムの j8晶比率が低すぎて、比重が 高くなる場合や、耐折れじわ性および耐エンボス性に劣る場合がある。また、感熱転 写記録用受容シートに加工した際の感度に劣る場合がある。 β晶核剤の添加量が 0 . 5質量%を超えると、それ以上添加しても得られるポリプロピレンフィルムの /3晶比 率が飽和してしまう場合や、核剤自体の分散性が悪化して逆に β晶比率が低下する 場合がある。 j8晶核剤の含有量は、より好ましくは 0. 02-0. 3質量%、さらに好まし くは 0. 05〜0. 2質量0 /0である。
[0043] コア層(A )には、平均分散径 60〜400nmの粒子(a)が含有されることが必要で ある。
[0044] 本発明の白色ポリプロピレンフィルムは、 j8晶核剤と平均分散径カ ½0〜400nmの 範囲の粒子 (a)を併用することにより、従来のボイド形成剤として非相溶性榭脂、無 機粒子もしくは有機粒子を用いた場合に比較して、ボイド形成剤の分散状態 (分散サ ィズ、凝集の有無など)に起因する不均一で粗大なボイドが少なぐ均一かつ緻密な ボイドを形成できる。その結果、粗大なボイドが少ないことにより、低比重のフィルムで ありながら、耐折れじわ性および耐エンボス性に優れる。さらにはボイド形成剤が製 膜工程や加工工程でフィルムカゝら脱落し、工程を汚染することや、それによりフィルム 破れが発生するようなトラブルを未然に防止できる。また、 β晶核剤のみで得られた 白色ポリプロピレンフィルムに比較して、広 、延伸温度範囲で均一かつ緻密なボイド を多数形成できることから製膜速度を上げることが可能となり、生産性が向上して低コ ストで白色ポリプロピレンフィルムを製造することが可能となる。
[0045] さらには、均一かつ微細なボイドを多数有することにより、フィルム全体のクッション 率が高くなり、耐エンボス性も向上する。さらに、フィルムの色調の L、 a、 b値のうち、 特に b値をより低く(青色方向の好ま U、範囲に)できる。
[0046] 以上のことから、本発明の白色ポリプロピレンフィルムを基材として用いた感熱転写 記録用受容シートは、従来のボイド形成剤を用いた白色ポリプロピレンフィルムや、 β晶核剤のみで得られた白色ポリプロピレンフィルムを基材とした場合に比較して、 高い感度、耐折れじわ性、耐エンボス性および高生産性を同時に実現することがで きる。
[0047] 粒子(a)の平均分散径は、 60〜400nmであることが必要である。平均分散径が 60 nm未満ではポリプロピレン榭脂への分散不良となって粒子が凝集し、フィルム中に 粗大なボイドを形成する場合がある。平均分散径が、 400nmを超えると、フィルム中 に粗大なボイドを形成して、空孔率が低下し、クッション率、耐折れじわ性および耐ェ ンボス性が低下する場合がある。粒子 (a)の平均分散径は、より好ましくは、 100〜3 00應である。
[0048] ここで、平均分散径とは、コア層 (A )中に分散した状態での粒子の平均粒径を!、 う。このような粒子の平均分散径を測定するには、下記特性の測定方法および評価 方法の欄の(1)の項目に示す方法で、フィルム断面の超薄切片を透過型電子顕微 鏡を用いて観察し、 10 m X 10 m当たりに含有される粒子の長径を全て測定して 平均値を求めた。本測定を観察面を 10箇所変えて行い、その平均値を粒子の平均 分散径とした。
[0049] 本発明の二軸配向白色ポリプロピレンフィルムは、 A層断面 10 m X 10 m当た りのボイド数が 10個以上であることが好ましい。 A層断面 10 ^ m X lO ^ m当たりのボ イド数が 10個以上であることにより、フィルム全体のクッション率が高くなり、耐ェンボ ス性および耐折れじわ性も向上し、かつ、色調をより青み側にすることができる。この ような白色ポリプロピレンフィルムを基材として用いた感熱転写記録用受容シートは、 プリンターのサーマルヘッドからの断熱性が高くなり、高い感度を実現できる。ボイド 数は、 10〜: L00個であること、より好ましくは 15〜50の範囲であること力 上記特性と 力学強度を両立できて好ましい。
[0050] また、本発明の白色ポリプロピレンフィルムは、 A層断面 10 ^ mX lO ^ m当たりに 存在する、粒子 (a)を核とするボイド数が 5個以上であることが、感熱転写記録用受 容シートとして印画した時に、高濃度域のエンボス深さが小さくなり、耐エンボス性が 向上するため好ましい。すなわち、全ボイドの内、相当数のボイドカ 粒子 (a)を核と するボイドであることが好ましい。粒子を核とするボイド数が 5個未満であると、耐ェン ボス性の向上が見られない場合がある。粒子(a)を核とするボイド数は 10〜: L00個で あればより好ましぐ 15〜50個であれば特に好ましい。また、粒子 (a)を核とするボイ ド数が 100個を超えると、折れじわが入りやすくなる場合がある。ここで、 A層断面とは 、横方向 厚み方向断面であり、ミクロトームを用いた超薄切片サンプルの観察面で ある。
[0051] また、 A層のボイドの相当数の内部に粒子 (a)を核とするボイドを形成するために、 該粒子の含有量は 1〜20質量%であることが必要であり、好ましくは 2〜15質量%、 より好ましくは 5〜: LO質量%の範囲である。含有量が 1質量%未満では添加効果が 低ぐ 20質量%を超えると安定した溶融押出性ができない場合や、表層との共押出 性が低下し、積層ムラが発生する場合がある。また、口金のリップに粒子が付着して 長時間の連続製膜ができなくなる場合がある。
[0052] フィルム中に粒子 (a)を含有させる方法としては、ポリプロピレン榭脂の粉末に j8晶 核剤と粒子を、ポリプロピレン榭脂の酸ィ匕防止剤と熱安定剤とともに添加し混合した 後に、二軸式押出機に供給して溶融混合することが好ましく用いられる。また、他の 添加剤として、粒子の表面処理剤、口金汚れ防止剤、界面活性剤などをフィルム特 性が悪ィ匕しな 、程度に添加すると、押出性や原料置換性がよくなるので好ま 、。
[0053] また、平均分散径が 60〜400nmの範囲のルチル型酸化チタンを 60質量%添カロ 混合した大日本インキ化学工業株式会社製の" PEONY (登録商標) "WHITE L 11165MPTや、東京インキ株式会社製の" PPM (登録商標)" 20130 WHITE などのマスターバッチがあり、このようなマスターバッチをポリプロピレン榭脂で希釈し て用いることちでさる。
[0054] 本発明で、ポリプロピレン榭脂に添加混合される粒子 (a)の一次平均粒径は、 400 nm以下であることが好ましぐより好ましくは粒子の一次平均粒径は、 30〜300nm の範囲であること力 白色ポリプロピレンフィルムの A層中において平均分散径が 60 〜400nmの範囲となるので好まし!/、。粒子の一次平均粒径が 30nm未満であると、 ポリプロピレン榭脂への均一分散が難しくなり、そのため粒子が榭脂中で凝集し、フィ ルム中での平均分散径が 400nmを超える場合がある。
[0055] コア層(A )に添加する粒子(a)としては、平均分散径が 60〜400nmの範囲であ れば特に限定しないが、酸化亜鉛、酸ィ匕アルミニウムおよび酸ィ匕チタンカゝらなる群か ら選ばれる少なくとも 1種の粒子であることが、ポリプロピレン榭脂への分散性がよく好 ましい。中でも、 j8晶活性を有するポリプロピレン中に微分散して微細なボイド生成効 果の高い酸ィ匕チタンが特に好ましい。酸ィ匕チタンとしては、アナターゼ型と、ルチル 型を挙げることができ、ポリプロピレン榭脂への分散性と熱安定性からルチル型が好 ましい。
[0056] 本発明の白色ポリプロピレンフィルムは、コア層(A )の少なくとも片面にスキン層 として B層を積層することが必要である。また、 B層は、ポリプロピレン榭脂および 0. 0 5〜0. 5質量%の平均分散径 1〜4 μ mの粒子(b)を含有することが必要である。ス キン層(B層)を積層することにより、 B層が積層されない場合に比較して、フィルム表 面の平滑性および光沢を向上できる。さらに、 B層上に受容層を形成して感熱転写 記録用受容シートに加工する際には、 B層が積層されない場合に比較して、サーマ ルヘッドとの密着性が向上し、熱の放散を抑制してインクリボン力 転写した際の感 度が向上する。
[0057] スキン層(B層)を構成するポリプロピレン榭脂は、コア層(A )と同様に、主として プロピレンの単独重合体力もなることが好ましいが、本発明の目的を損なわない範囲 でポリプロピレンと他の不飽和炭化水素の単量体成分を共重合した重合体であって もよい。また、プロピレンとプロピレン以外の単量体成分を共重合した重合体をプレン ドしてもょ 、し、プロピレン以外の不飽和炭化水素の単量体成分の重合体または共 重合体をブレンドしてもよ 、。このような共重合成分やブレンド物を構成する単量体 成分としては、コア層(A層)と同じ成分を挙げることができる。中でも、スキン層(B層) は、プロピレンにエチレンを 1〜5質量0 /0共重合させることにより、コア層(A層)との共 延伸性と熱転写記録用受容シートの受容層 (もしくはアンカー層)との接着性を両立 できるので好ましい。
[0058] スキン層(B層)を構成するポリプロピレン榭脂のァイソタクチックインデックスは、 95 〜99. 8%であることが好ましい。ァイソタクチックインデックスが 95%未満であると、 フィルムまたはその加工品の表面の耐熱性が劣る場合がある。ァイソタクチックインデ ッタスが 99. 8%を超えると、フィルムの製造工程において、破れが頻発する場合が ある。 B層を構成するポリプロピレン榭脂のアイソタクチックインデックスは、より好まし <は 96〜99. 5%である。
[0059] また、スキン層(B層)の結晶化温度は、 115°C以上であることが好ましい。ここで、 結晶化温度は、 B層全体について測定した値である。 B層の結晶化温度が 115°C未 満であると、キャスト工程において、 100°Cを超える高温でキャストした際に、シートを はく離するまでに固化が完了せず、未延伸シートがキャストドラムに粘着する場合が ある。 B層の結晶化温度は、より好ましくは 119°C以上である。また、 B層の結晶化温 度が高いほど、高温'高速キャストでも粘着や欠点が発生しにくぐドラムの温度 '周 速が低い場合と同様の品質を有するフィルムを製造できる傾向にある。 B層の結晶化 温度は、特に上限は設けないが、あまりに高すぎると、 A層との共延伸性が悪ィ匕する 場合がある。また、 B層上に受容層を設置して感熱転写記録用受容シートに加工す る際には、受容層との接着性が悪ィ匕する場合があるため、 B層の結晶化温度は、 15 0°C以下であることが好ましい。 B層の結晶化温度は、 B層を構成するポリプロピレン の結晶性、 a晶核剤や 13晶核剤、高溶融張力ポリプロピレンなどの添加量、非相溶 性榭脂、無機粒子、有機粒子などの添加量により制御できる。 B層の結晶化温度は、 さらに好ましくは 120〜145°C、最も好ましくは 123〜130°Cである。中でも、 B層に は高溶融張力ポリプロピレンを添加して結晶化温度を上げることが特に好ましい。
[0060] ここで、高溶融張力ポリプロピレンの添加量は、製膜安定性の観点から、 B層の全 量に対して、 0. 5〜: LO質量%であることが好ましい。高溶融張力ポリプロピレンの添 加量が 0. 5質量%未満であると、添加した効果が得られない場合がある。また、添カロ 量が 10質量%を超えると、添加した効果が飽和してしまう場合がある。高溶融張力ポ リプロピレンの添加量は、より好ましくは 1〜5質量%である。 B層に好ましく添加でき る高溶融張力ポリプロピレンは、上述のコア層(A )に好ましく添加できる高溶融張 力ポリプロピレンと同じものを挙げることができる。
[0061] スキン層(B層)には、 ひ晶核剤を添カ卩してもょ 、。 a晶核剤としては、ソルビトール 系核剤、有機リン酸エステル金属塩系核剤、有機カルボン酸金属塩系核剤、ロジン 系核剤などを挙げることができる。中でも、ロジン系核剤が結晶化促進の効果が高い ことから特に好ましい。ロジン系核剤としては、荒川化学 (株)製"パインクリスタル (登 録商標)"(タイプ名: KM— 1300、 KM— 1500、 KM— 1600など)などを挙げること ができる。 B層への a晶核剤の添カ卩量は、 B層の全量に対して、 0. 001〜1質量% であることが好ましい。結晶核剤の添加量が 0. 001質量%未満であると、添加した効 果が得られない場合がある。結晶核剤の添加量が 1質量%を超えると、添加した効果 が飽和してしまうだけでなぐ核剤自体の分散性が悪化して表面欠点が発生する場 合がある。 α晶核剤の添カ卩量は、より好ましくは 0. 01〜0. 8質量%である。
[0062] Β層のポリプロピレン榭脂としては、ポリプロピレン榭脂、各種ポリプロピレン共重合 体および高溶融張力ポリプロピレンを含む樹脂の全量力 Β層の 99. 95〜95質量 %の範囲であること力 Α層との共押出性および共延伸性の点で好ま 、。
[0063] スキン層(B層)に含有させる粒子 (b)の平均分散径は、 1〜4 μ mであることが必要 である。平均分散径が 1 m未満であると、フィルムのブロッキング防止性や滑り性が 悪くて、フィルムを巻き取る際のワインダーゃスリツターにおいて、フィルムにしわが入 りやすぐまた、金属ロールとの滑りが悪くてフィルムが破れる場合がある。粒子 (b)の 平均分散径が 4 mを超えると、製膜工程やその後のフィルム加工工程において、 粒子が脱落して工程を汚す場合があり、さらに白色ポリプロピレンフィルムを重ねて 擦った時にフィルム表面が傷つきやすぐフィルムが破れる場合がある。非相溶性榭 脂、無機粒子および有機粒子の平均分散径は、より好ましくは 1〜3 ;ζ ΐηである。な お、ここでの平均分散径は上記した A層中の粒子の平均分散径と同様に測定するこ とがでさる。
[0064] また、 B層の粒子 (b)の含有量は、ブロッキング防止、滑り性、さらには受容シートと した際の感度向上の観点から、 B層の全量に対して、 0. 05〜5質量%であることが 必要である。含有量が 0. 05質量%未満であると、ブロッキング防止性や滑り性が向 上しない場合があり、フィルムを巻き取る際のワインダーゃスリツターにおいて、フィル ムにしわが入りやすくまた、金属ロールとの滑りが悪くて破れる場合がある。含有量が 5質量%を超えると、製膜工程やその後のフィルム加工工程において、粒子が脱落し て工程を汚す場合や、フィルムにへき開が起こり、破れが発生する場合がある。 B層 中の粒子の含有量は 0. 05〜3質量%であればより好ましい。
[0065] スキン層(B層)に好ましく添加できる無機粒子としては、湿式および乾式シリカ、コ ロイダルシリカ、珪酸アルミニウム、酸化チタン、炭酸カルシウム、リン酸カルシウム、 硫酸バリウム、酸ィ匕アルミニウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸ィ匕亜 鉛 (亜鉛華)、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタ ン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、塩基性炭酸鉛 (鉛白)、硫酸バリゥ ム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイ力、雲母チタン、タルク、クレー、力オリ ン、フッ化リチウム、フッ化カルシウムなどを挙げることができる。また、有機粒子として は、ポリメトキシシランの架橋粒子、ポリスチレンの架橋粒子、アクリル系化合物の架 橋粒子、ポリウレタンの架橋粒子、ポリエステルの架橋粒子、フッ化物系化合物の架 橋粒子などを挙げることができる。さらに、架橋していなくても、 B層を構成するポリプ ロピレン樹脂に非相溶な榭脂であれば、層中で粒子と同様に凝集体として分散する ことから用いることができる。非相溶性榭脂としては、ポリメチルペンテン、環状ポリオ レフイン、ポリカーボネート、ポリサノレホン、ポリアリレート、ァイソタクチックポリスチレン 、シンジオタクチックポリスチレン、ポリメチルメタタリレート、飽和ポリエステル、液晶榭 脂などを挙げることができる。中でも、非相溶性榭脂としては、ポリプロピレン榭脂中 での分散性、フィルムとした際の滑り性などの観点から、ポリメチルペンテンを用いる ことが特に好ましい。 B層に添加するポリメチルペンテンとしては、メルトフローレイト( MFR; 260°C、 5kg)が 5〜100g/10分であることが好ましい。 MFRが掛かる好まし V、範囲外である場合、ポリプロピレン中に粗大に分散したポリメチルペンテン成分が 形成され、その結果粗大なボイドが形成され、 B層がへき開しやすくなる場合がある。 ポリメチルペンテンの MFRは、より好ましくは 8〜80gZlO分、さらに好ましくは 10〜 60gZlO分である。なお、無機粒子、有機粒子および非相溶性榭脂は単体で添カロ してもょ 、し、複数を組み合わせて添加しても良 、。
[0066] スキン層(B層)の積層厚みは、 0. 1〜5 mであることが好まし!/、。 B層の厚みが 0 . 1 μ m未満であると、耐折れじわ性および耐エンボス性が悪ィ匕する場合がある。また 、 B層の厚みが 5 mを超えると、受容シートとして用いる際に、感度が低下する場合 がある。 B層の厚みは、より好ましくは 2〜5 μ mである。
[0067] また、 B層の空孔率は、受容紙として用いる際の感度および受容層との密着性の点 で 0. 01〜5%であることが好ましい。 B層の空孔率が 0. 01%未満だと、受容シート として用いる際に、感度が低下し、高速印画性に劣る場合がある。また、 B層の空孔 率が 5%を超えると、白色ポリプロピレンフィルムのスキン層である B層表面力 へき開 しゃすくなり、受容シートへの加工の際に、受容層との密着性が悪化する場合がある 。 B層の空孔率は、より好ましくは 0. 1〜3%である。ここで、 B層の空孔率は、フィル ム断面を電子顕微鏡で観察した際に、ボイドカ Sスキン層に占める割合を求めたもので ある。 B層の空孔率を、力かる好ましい範囲にするには、 B層中に適度なボイドを形成 すればよぐそのためには、製膜工程において、キャスト時の金属ドラム温度を、 50 〜 130°Cの温度範囲に設定することが好まし!/、。
[0068] コア層(A )の両側に B層を積層し、 BZAZB型の 3層積層フィルムとしても良い 。また、コア層(A層)の B層側とは反対側の面に、 B層とは組成が異なるスキン層 (C 層)を積層し、 BZAZC型の 3層積層フィルムとしても良い。 BZA/C型の積層フィ ルムとした場合、受容シートに加工する際には、受容層を B層側に設置しても、 C層 側に設置してもよい。
[0069] C層を構成する榭脂としては、 B層と同一のものを用いても良いし、異なったものを 用いても良い。受容層を C層側に設置して、受容シートとして用いる場合に、受容層 との接着性を良好とするためには、 C層には、結晶化温度が 115°C未満のポリプロピ レン榭脂を用いることが好まし 、。結晶化温度が 115°C未満であればコロナ放電処 理を施したときの濡れ張力向上効果が高くなり、受容層との接着性が向上して好まし い。
[0070] スキン層(C層)を構成するポリプロピレン榭脂は、主としてプロピレンの単独重合体 力も構成されることが好ましいが、本発明の目的を損なわない範囲で、ポリプロピレン と他の不飽和炭化水素の単量体成分が共重合された重合体であってもよ!/、。また、 プロピレンとプロピレン以外の単量体成分が共重合された重合体がブレンドされても よ!、し、プロピレン以外の不飽和炭化水素の単量体成分の共重合体がブレンドされ てもよい。このような共重合成分やブレンド物を構成する単量体成分としては、 A層お よび B層と同様なものを挙げることができる。 C層上に受容層を設置する場合には、 低立体規則性ポリプロピレンやエチレン ·プロピレンランダム共重合体などを用いるこ とが、コア層 (A )との共延伸性と受容層との接着性を両立させるために特に好まし い。 [0071] 低立体規則性ポリプロピレンの立体規則性 (メソペンタッド)は、受容層との接着性 の観点から、 70〜90%であることが好ましい。メソペンタッドが 70%未満であると、 C 層上に受容層を形成して感熱転写記録用受容シートとして用いる際に、サーマルへ ッドからの熱に対する耐熱性に劣り、感度が低くなる場合がある。一方、メソペンタッド が上記範囲を超えると、たとえば、 C層上に受容層を形成して感熱転写記録用受容 シートとして用いる際に、受容層との接着力が実質的に向上しない場合がある。メソ ペンタッドは、より好ましくは 72〜85%である。また、受容層との接着力がさらに向上 する場合があるので、低立体規則性ポリプロピレンには、エチレンが共重合されてい てもよい。
[0072] 一方、エチレン.プロピレンランダム共重合体のエチレン共重合量は、 1〜4質量0 /0 であることが好ましい。エチレン共重合量が 1質量%未満であると、たとえば、 C層上 に受容層を形成して感熱転写記録用受容シートとして用いる際に、受容層 (もしくは アンカー層)との接着力が実質的に向上しない場合がある。エチレン共重合量が 4質 量%を超えると、製膜工程において粘着が起こり、製膜工程を汚し、また、表面が粗 れて表面欠点となる場合がある。また、 C層上に受容層を形成して感熱転写記録用 受容シートとして用いる際に、サーマルヘッドからの熱に対する耐熱性に劣り、転写 エネルギーによっては、感度が低くなる場合がある。エチレン共重合量は、より好まし くは 1〜3質量%である。
[0073] C層には、上記した B層と同じ目的で平均分散径 1〜4 mの粒子を含有することが 好ま 、。 C層に添加する粒子も B層と同様のものとすることが好ま U、。
[0074] C層の空孔率は 0. 01〜5%であることが好ましい。 C層の空孔率が 0. 01%未満で あると、受容シートとして用いる際に、感度が低下し、高速印画性に劣る場合がある。 C層の空孔率が 5%を超えると、 C層表面が、へき開しやすくなり、感熱転写記録用 受容シートに加工する際に、受容層との接着性が悪ィ匕する場合がある。 C層の空孔 率は、より好ましくは 0. 1〜3%である。ここで、 C層の空孔率は、 B層と同様に走査型 電子顕微鏡で観察し求めることができる。 C層の空孔率を、力かる好ましい範囲にす るには、 C層中に適度なボイドを形成すればよぐそのためには、製膜工程において 、キャスト時の金属ドラム温度を、 60〜130°Cの温度範囲に設定することが好ましい [0075] C層の積層厚みは、 0. 1〜5 μ mであることが好ましい。 C層の厚みが 0. 1 μ m未 満であると、耐折れじわ性および耐エンボス性が悪ィ匕する場合がある。また、 C層の 積層厚みが 5 mを超えると、感熱転写記録用受容シートとして用いた場合に、感度 が低い場合がある。 C層の積層厚みは、より好ましくは 1〜3 /ζ πιである。
[0076] C層の積層方法としては、共押出、インラインまたはオフライン押出ラミネートなどが 挙げられるが、これらのうちいずれかに限定されるわけではなぐ随時最良の方法を 選択すればよい。単に BZAZC型の 3層構成で積層する場合には、共押出法を用 、ることが好まし!/、。
[0077] 本発明の白色ポリプロピレンフィルムの Α層、 B層および C層には、本発明のフィル ムの特性を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、滑り剤 、ブロッキング防止剤、充填剤などの各種添加剤を含有させてもよい。
[0078] 本発明の白色ポリプロピレンフィルムのエンボス深さは 20 μ m以下であることが好ま しい。ここで、エンボス深さとは、本発明の白色ポリプロピレンフィルムを基材として用 いた受容シートの厚みを 10点測定して平均厚み (t )を求め、その後、感熱転写記録
0
用プリンターで、画像評価用に階調を白色力も黒色までに 16階調に濃度を変えて印 画した時に、印画前の厚み (t )と高階調域 (最も濃い黒色部)の厚み (t )の差から、
0 1
下記式にて求めたものである。
[0079] エンボス深さ( m) = t— t
O 1
また、簡易的な評価としては、白色ポリプロピレンフィルムを市販の感熱転写記録用 受容シートの片面上にスプレー糊で貼り合わせた後に、上記の方法で印画して求め ることちでさる。
[0080] エンボス深さはより好ましくは 10 μ m以下であり、さらに好ましくは 5 μ m以下である 。エンボス深さが 20 mを超えると、感熱転写記録用受容シートに画像を印画したと きに、濃度の高い部分に凹みができて、筋が入ったように見える場合がある。
[0081] 本発明の白色ポリプロピレンフィルムは、空孔率が 20%以上であることが好ましい。
空孔率を 20%以上とすることによって、フィルムの力学強度が適度に高くなり、フィル ム製造工程やその後の反射板や受容シートへの加工工程にぉ 、て、巻き取り性や 加工性に優れ、また、感熱転写記録用受容シートとしての感度を高ぐさらに、反射 板の光反射率を高くすることができる。
[0082] 白色ポリプロピレンフィルムの空孔率は、コア層である A層のポリプロプロピレンに好 ましく添加する β晶核剤と粒子の含有量や、コア層(Α層)とスキン層(Β層、 C層)の 厚みの比率などにより制御することができる。さらには、製膜工程において、キャスト 工程での溶融ポリマーを固化させる際の結晶化条件 (金属ドラム温度、金属ドラムの 周速、得られる未延伸シートの厚みなど)や延伸工程の条件 (延伸方向、逐次二軸 延伸や同時二軸延伸などの延伸方式、倍率、速度、温度など)、さらには熱処理条 件などにより、空孔率を制御することができる。具体的には、キャスト工程では、 Α層 に均一かつ多量の /3晶を形成させるため、金属ドラム温度を 60〜130°C、より好まし くは 70〜 120°Cとすることが好ま 、。延伸工程では縦方向と横方向の延伸倍率の 積である面積倍率を大きくすると空孔率が高くなり、特に縦延伸倍率を 3. 5〜5倍、 より好ましくは 3. 8〜4. 5倍とすることが好ましい。
[0083] 空孔率は、高いほど受容シートにカ卩ェした際の感度が高い傾向にあり好ましい。し かし、空孔率が 80%を超えると、フィルム製造工程やその後の加工工程において、 フィルムが伸びたり、シヮが入ったり、破断したり、耐折れじわ性および耐エンボス性 が悪ィ匕する場合がある。空孔率は、より好ましくは 25〜70%、さらに好ましくは 30〜 65%,最も好ましくは 35〜60%である。
[0084] 本発明の白色ポリプロピレンフィルムは、受容シートとした際の優れた外観の点で、 少なくとも片側表面の光沢度が 50%以上であることが好ましい。ここで、表面光沢度 とは、白色ポリプロピレンフィルムのスキン層である B層または C層表面について測定 した値である。さらに、反射板として用いた際の高光反射率を実現する観点からも、 白色ポリプロピレンフィルムの光沢度を 50%以上とすることは好ましいことである。表 面光沢度 50%以上を達成する方法としては、白色ポリプロピレンフィルムを構成する ポリプロピレンの結晶性やその他の原料組成、キャスト工程での溶融ポリマーを固化 させる際の結晶化条件や延伸工程での延伸条件などにより制御することができる。表 面光沢度は、スキン層の平滑性と空孔率の両立から、より好ましくは 60〜130%、さ らに好ましくは 70〜 120%である。 [0085] また、本発明の二軸配向白色ポリプロピレンフィルムは、フィルムの取扱性の観点 から、フィルムの表裏を重ね合わせた際の、動摩擦係数が 0. 2〜0. 6の範囲である ことが好ましい。動摩擦係数が 0. 2未満であると、滑り過ぎて巻きズレが起こる場合が あり、逆に 0. 6を超えると、滑り性が悪ィ匕し、製膜工程やその後の加工工程でしわが 入る場合がある。動摩擦係数を 0. 2〜0. 6の範囲にするには、少なくとも片面の平 均表面粗さ(Ra)を、 0. 01-0. 5 mとすることが好ましい。 Raを掛力る好ましい範 囲とする方法としては、他の特性と同様に、使用するポリプロピレンの結晶性や製膜 条件などにより制御できる。 Raはより好ましくは 0. 05〜0. であり、さらに好まし くは 0. 1〜0. である。
[0086] 本発明の白色ポリプロピレンフィルムは、感熱転写記録用受容シートとして用いた 際の感度の観点から、反射法により測定した試料の b値が 7〜一 0. 1であることが 好ましい。 b値が 0. 1よりも大きいと、感熱転写記録用受容シートとして用いた際に 、全体的に画像の黄色味が強く見え、特に肌色などの低色彩色の見栄えが悪い場 合がある。また、 b値が— 7よりも低いと、画像の青味が強く見える場合がある。 b値は 、より好ましくは— 6. 5〜― 0. 3の範囲である。 b値を掛力る好ましい範囲とする方法 としては、 A層のポリプロピレンに添加する β晶核剤の添力卩量ゃ粒子の粒径、添カロ量 、および、コア層(Α層)とスキン層(Β層、 C層)の粒子の粒径、添加量、さら〖こは、積 層厚みの比率などにより制御できる。また、製膜工程でのキャスト条件や延伸条件に よっても制御でさる。
[0087] 本発明の白色ポリプロピレンフィルムは転写シートとして用いた際の感度の観点か ら、クッション率が 15〜30%であることが好ましい。クッション率が 15%未満であると、 感度が低すぎる場合があり、逆に、クッション率が 30%を超えると、耐折れじわ性や 耐エンボス性が悪化する場合がある。クッション率も、ポリプロピレンフィルムに用いる ポリプロピレン榭脂やそれに添加する粒子の形状、量、さらには、製膜条件により制 御できる。クッション率はより好ましくは 17〜25%である。
[0088] 本発明の白色ポリプロピレンフィルムは、波長 560nmでの光反射率が 85%以上が 好ましぐより好ましくは 90%以上である。光反射率が 85%未満では反射板用として 用いた時に、照明光源の照明効率に劣り、液晶画面が暗くなる。 [0089] 本発明の白色ポリプロピレンフィルムは、フィルム厚みが 10〜100 μ mであることが 、白色ポリプロピレンフィルムの製膜安定性や、受容シートとして用いた際の感度、耐 折れじわ性および耐エンボス性の両立の観点力 好まし 、。フィルム厚みが 20〜60 μ mであればより好ましい。
[0090] 本発明の白色ポリプロピレンフィルムは、少なくとも片側表面にコロナ放電処理を施 し、フィルム表面の濡れ張力を 35〜60mNZmとすること力 処理面と受容層との接 着性、さらには処理面と他の素材との接着性の観点力 好ましい。コロナ放電処理を 行う際には、雰囲気ガスとして、空気、酸素、窒素および炭酸ガス力も選ばれる少なく とも 1種のガス雰囲気で行うことが好ましい。これらの中でも接着性向上の観点からは 窒素雰囲気下、または窒素 Z炭酸ガスの混合雰囲気下で表面処理することが好まし い。表面濡れ張力は、より好ましくは 37〜60mNZmである。表面濡れ張力が 60m NZmを超える場合、過度な表面処理のため、表面が劣化してしまい、接着性が逆 に悪ィ匕する場合がある。
[0091] 本発明の白色ポリプロピレンフィルムを感熱転写記録用受容シートの基材として用 いる場合、フィルムに受容層を塗布した後の受容層表面の光沢度が 50%以上である ことが、受容シートに画像を印画した時に、画像が鮮明となるので好ましい。受容層 表面の光沢度は、より好ましくは 70%以上である。受容層表面の光沢度は、高いほ ど画像が鮮明となり好ましいので、特に上限は設けない。
[0092] 本発明の白色ポリプロピレンフィルムを感熱転写記録用受容シートの基材として用 いる場合、該感熱転写記録用受容シートは、白色ポリプロピレンフィルムを単独で用 いた受容シートであっても、他の素材と貼合せた受容シートであってもよい。他の素 材としては、普通紙、上質紙、中質紙、コート紙、アート紙、キャストコート紙、榭脂含 浸紙、ェマルジヨン含浸紙、ラテックス含浸紙、合成樹脂内添紙、ダラシン紙、ラミネ ート紙などの紙、合成紙、不織布、あるいは他種フィルムなどを挙げることができる。 また、本発明の白色ポリプロピレンフィルムを他の素材と貼合せる場合、フィルムの受 容層を設置する面と反対の面に貼合せることが、感熱転写記録用受容シートのカー ルが小さいので好ましい。
[0093] 本発明の二軸配向白色ポリプロピレンフィルムの延伸方法としては、縦一横もしくは 横 縦逐次二軸延伸法、同時二軸延伸法、さらには二軸延伸後の再延伸などを用 いることができるが、生産性および装置の拡張性に優れた縦 横逐次二軸延伸法を 用いることが好ましい。
[0094] 以下に、縦 横逐次二軸延伸法を用いた本発明の白色ポリプロピレンフィルムの 製造方法を具体例を用いて説明するが、本発明のフィルムは、かかる例のみに限定 されるものではない。
[0095] コア層(A )榭脂として、 /3晶核剤と平均分散径が 60〜400nmの範囲となる粒子 を添加して、 j8晶活性を有するポリプロピレン榭脂を押出機 (a)に供給し、 180〜30 0°Cで溶融混練し、フィルターで濾過した後、複合口金に導入する。一方、スキン層 ( B層)榭脂として、高溶融張力ポリプロピレンを添加して結晶化温度を高めたポリプロ ピレンを、押出機 (b)に供給し、 180〜280°Cで溶融混練し、フィルターで濾過した 後、複合口金内に導入し、 A層の片面あるいは両面に積層する。この際、 B層とは異 なる組成力もなるスキン層(C層)を積層する際には、別の押出機 (c)を使用し、 C層 の榭脂を 180〜280°Cで溶融混練し、フィルターで濾過した後、複合口金内でコア 層 (A層)の片面に積層したスキン層(B層)と反対の面に積層し、 B層 ZA層 ZC層の 構成にすればよい。
[0096] この溶融ポリマーを積層した複合シートを口金から吐出し、表面温度を 40〜120°C に保持したドラム上に密着させながら固化させる。ドラム温度とシートの実際の温度が ほぼ同等である場合、上記の温度範囲内ではドラム温度が高ければ高いほど、 A層 の β晶比率が高くなるため、二軸延伸後のフィルムの見掛けの空孔率が高くなり、比 重が低くなる傾向にある。し力しながら、あまりにドラム温度が高温すぎると、シートが ドラムに粘着し、二軸延伸後にフィルムの金属ドラムと接触した面 (ドラム面、以下、 D 面と略す)にクレータ状の欠点が発生する場合がある。 Β層の結晶化温度が 115°C 以上である場合、金属ドラムと接触させるようにキャストを行うことでシートのドラムへの 粘着を抑制し、なおかつ未延伸シートの β晶比率を高くすることが可能となる。また、 二軸延伸後に D面である Β層表面にクレータ状の欠点が発生しない。さらに、 |8晶比 率が高 、未延伸シートを延伸することで、縦延伸温度を高く設定しても高 、空孔率の フィルムを得ることが可能となる。 [0097] キャストを行う際、吐出した溶融ポリマーと金属ドラムへの接触時間は 3〜60秒であ ることが好ましい。なお、複数の金属ドラムを用いてポリマーを固化させる場合、接触 時間は最初のドラム上に着地した時点力 未延伸シートが最後のドラムを離れた時 点までの時間である。金属ドラムへの接触時間が 3秒未満であると、固化が不十分と なりシートが金属ドラムに粘着する場合や、生成する β晶比率が低いために、ニ軸延 伸後のフィルムの空孔率が低くなる場合がある。逆に金属ドラムへの接触時間が 60 秒を超えても、効果が飽和してしまう場合がある。金属ドラムへの接触時間は、より好 ましくは、 5〜45禾少、さらに好ましくは、 7〜20秒、である。
[0098] キャストの際、溶融ポリマーを金属ドラムに密着させる方法としては、静電印加法、 水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト 法などいずれの手法を用いてもよいが、本発明の白色ポリプロピレンフィルムを得る 手法としては、厚み制御が良好で、吹き付けエアーの温度によりフィルム表面の冷却 速度を制御可能であるエアーナイフ法を用いることが好まし 、。エアーの温度として は、 10〜130°Cとすることが好ましぐ低温ほど光沢度が向上し、高温ほど空孔率が 高くなる。
[0099] 次に、フィルムの A層にボイドを形成するために、未延伸積層シートを 90〜160°C に加熱したロール群またはオーブンに導入して予熱し、フィルム温度を 80〜150°C にした後、表面温度を 80〜145°Cに制御したロールと、 30〜140°Cに制御したロー ルの間で、ロールの周速差を利用してフィルム縦方向に 3〜7倍延伸し、 30°C〜120 °Cのロール群で冷却する。この時、フィルム温度が低いと、空孔率は高くなり、また、 延伸倍率が高い場合も、空孔率は高くなる。
[0100] 続いて、縦方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き 、 120〜190°Cに加熱した雰囲気中(フィルム温度: 100°C〜165°C)でフィルム横方 向に 5〜12倍に延伸する。横延伸の雰囲気温度が 120°C未満ではフィルムが破れ 易くなる場合がある。また、横延伸雰囲気温度が 190°Cを超えると、縦延伸で形成さ れたボイドが潰れて、空孔率が低下する場合や、スキン層がクリップに粘着して破れ てしまう場合がある。
[0101] なお、これら延伸工程において、縦延伸速度は、 20, 000〜300, 000%Z分の範 囲で、横延伸速度は 1, 000-10, 000%Z分の範囲の速度で延伸すること力 ボイ ド形成率が高ぐ縦および横方向に均一なボイドを形成することができるので好まし い。縦 横延伸速度が上記範囲未満では、単位時間あたりの生産量が低下してコス トアップとなる。縦 横延伸速度が上記範囲を超えると、形成されるボイド数が減少し て空孔率が低下する場合がある。
[0102] また、縦-横二軸延伸の面積倍率 (縦延伸倍率 X横延伸倍率)は、 15〜84倍が 好ましぐ製膜安定性の点からは 30〜50倍であることがより好ましい。面積倍率が 15 倍未満であると、二軸延伸後の白色ポリプロピレンフィルムの表面光沢度が低い場合 や、ボイドの形成量が不十分な場合がある。また、面積倍率が 84倍を超えると、延伸 時にフィルムが破れる場合がある。
[0103] 本発明の二軸延伸白色ポリプロピレンフィルムは引き続いて、結晶配向を完了させ て平面性および寸法安定性を向上させるために、テンター内で 140〜170°Cで 1〜3 0秒間の熱処理を行う。その後均一に徐冷後、室温まで冷却して巻き取ることにより、 フィルムを得ることができる。なお、熱処理工程中では、必要に応じて横方向あるいは 縦方向に 3〜12%の弛緩処理を施してもよい。また、フィルムの表面に、受容層の塗 布または他基材と貼り合わせる際の層間接着力を高めるため、コロナ放電処理を行 つて力 巻き取ることが好まし!/、。
[0104] なお、白色ポリプロピレンフィルムの製造工程中で表面改質層を塗布し、設置する ことも可能である。すなわち、縦方向に延伸したフィルム上に濡れ性を高めるために コロナ放電処理を行い、アクリル榭脂、ポリエステル榭脂、ポリウレタン榭脂などを塗 布し、引き続きテンターに導入して横延伸、乾燥するインラインコーティング法は、低 コストで表面改質層を設置できることから好ましく用いることができる。
[0105] [特性の測定方法および評価方法]
本発明における各種特性値は、以下の評価方法および評価基準により求めた。
[0106] (1)コア層(A )の断面の粒子を核とするボイド数
コア層(A層)中の粒子を核とするボイド数は、以下のように測定した。
[0107] エポキシ榭脂を用いた榭脂包埋法により、ウルトラミクロトームを用い、白色ポリプロ ピレンフィルムの横方向 厚み方向断面の超薄切片サンプルを採取した。採取した 切片サンプルを RuOで染色し、以下の条件にて透過型電子顕微鏡を用いて断面を
4
観祭した。
'装置 :(株)日立製作所製 透過型電子顕微鏡 H- 7100FA
'加速電圧: lOOkV
•観察倍率: 10, 000倍
フィルムの A層について、写真の一辺がフィルムの横方向に平行となるように、かつ 厚み方向に平行に観察した写真を採取する(印画紙上での 10mmが実際の 1 μ mに 相当)。得られた写真を、スキャナを用いて、下記条件で読み込んだ。
'スキャナ :セイコーエプソン (株)製 GT— 7600U
•ソフト : EPSON TWAIN ver. 4. 20J
•イメージタイプ:線画
'解像度 :600dpi
得られた画像から任意の 10 mX 10 mの範囲について、(株)プラネトロン製 Im age -Pro Plus, Ver. 4. 0 for Windouwsを用いて、画像解析を行うことで、粒 子を核とするボイド数の数を数えた。この時、境界線上のボイドについても数に加え た。この際、取り込んだ断面像のスケールを使用して空間校正を行った。場所を変え て 10箇所について数を数え、その平均値を採用した。
[0108] (2)フィルムの比重
高精度電子比重計 (ミラージュ貿易(株)製 SD— 120L)を用い、 30mm X 40mm のサイズに切り出したサンプルを用いて 23°C、相対湿度 65%の雰囲気にて測定を 行った。同じフィルムで任意の 5箇所力 採取したサンプルにて測定を行い、 5回の 測定値の平均を該フィルムの比重とした。
[0109] (3)未延伸シートおよび熱プレスシートの比重
JIS K7112 (1999)の D法 (密度こうばい管法)に準じて測定した。比重が 1以下 のシート (たとえば、ポリプロピレンの非相溶性榭脂ゃ無機粒子、有機粒子が添加さ れていないもの)については、エタノール (特級)と精製水を液として選択し、比重が 1 よりも高いシート (たとえば、非相溶性榭脂、無機粒子または有機粒子が添加されて いるもの)については、臭化ナトリウム水溶液と精製水を液として選択して密度こうば い管を作成した。密度こうばい管の温度を 25°Cに制御し、その中に 5mm角に切り出 した試料を入れて測定した。同じサンプルにつ!/、て任意の 5箇所カゝら試料を切り出し て測定を行 、、得た比重の値の平均を当該サンプルの比重とした。
[0110] (4)二軸配向白色ポリプロピレンフィルムの空孔率
白色ポリプロピレンフィルムの空孔率は上記(2)の方法で求めた白色ポリプロピレン フィルムの比重(dl)と、この白色ポリプロピレンフィルムを 280°Cに加熱した熱プレス によって、予熱時間 3分、加圧 lOMPaで 2分加熱して完全に空孔を排除し、 30°Cの 水に浸漬して急冷して得た熱プレスシートにっ 、て、上記(3)の方法で求めた比重( dO)を用いて、下記式で求めた。
[0111] 空孔率(%) = (l— dlZdO) X 100
(5) β晶活性の確認
[フィルム全体に関する確認]
本発明では、 Α層が /3晶活性を有していることを、白色ポリプロピレンフィルム全体 を測定し、以下の基準で判定した。
[0112] 5mgの白色ポリプロピレンフィルムをアルミニウムパンに充填し、示差走査熱量計( セイコー電子工業製 RDC220型)を用いて測定を行った。測定は窒素雰囲気下で、 20°CZ分の速度で 30°Cから 260°Cまで昇温し(ファーストラン)、 260°Cで 5分間待 機させた。引き続き、 20°CZ分の速度で 30°Cまで冷却し、 30°Cで 5分間待機させた 。次いで、再度 20°CZ分の速度で 260°Cまで昇温した (セカンドラン)。セカンドラン の熱量曲線において、 140〜160°Cにピークを有する β晶の融解に伴う吸熱ピーク が観測される場合に、該フィルムが β晶活性を有するものと判定した。なお、ここでい う吸熱ピークとは、融解熱量が lOjZg以上であるものをいう。また、融解熱量は、熱 量曲線が昇温に伴いベースラインから吸熱側にずれ、次いでベースラインの位置に 戻るまでのベースラインと熱量曲線で囲まれる面積力 算出できる。融解開始温度位 置力もベースライン上に熱量曲線が復帰する高温側の交点まで直線を引き、標準物 質であるインジウム測定時の融解熱量(28. 59j/g)とピーク面積との対比により求 めることができる。なお、熱量曲線で吸熱側にピークがあらわれた後、ベースラインの 位置に復帰するまでに、再び吸熱側にピークがあらわれるような場合には、熱量曲線 の微分値が 0となる温度位置 (熱量曲線が吸熱側に対して極小値となる温度)で熱量 曲線からベースラインに垂線を引き、熱量曲線とベースラインと垂線で囲まれる面積 力 β晶の融解熱量を求めた。
[0113] また、上記の手法で 140〜160°Cに頂点を有する融解ピークが存在する力 β晶 の融解に起因するものか不明確な場合は、以下の条件で調製したサンプルについ て、広角 X線回折法による 2 θ / Θスキャンで得られる回折プロファイルで j8晶に起 因する回折ピークが存在し、各回折ピーク強度力 算出される K値が 0. 3以上である ことをもって β晶活性を有することを確認すればよい。
[0114] 広角 X線回折法の測定条件は以下の通り。
•サンプル:フィルムを、方向を揃えて、熱プレス調整後のサンプル厚さが lmm程度 になるよう重ね合わせた後、これを 0. 5mm厚みの 2枚のアルミ板で挟み、 280°Cで 熱プレスして融解および圧縮させ、ポリマー鎖をほぼ無配向化した。得たシートを、ァ ルミ板ごと取り出した直後に沸騰水中に 5分間浸漬して結晶化させ、その後 25°Cの 雰囲気下で冷却して得られたシートを幅 lmmに切り出したサンプルを測定に供した
•X線回折装置:理学電気 (株)製 4036A2
• X線源 : CuK a線(Niフィルター使用 )
'出力 :40kV、 20mA
'スリット系 :2πιπι φ—1。 一 1°
'検出器 :シンチレーシヨンカウンター
•計数記録装置:理学電気 (株)製 RAD— C型
'測定方法 :2 0 Ζ 0スキャン (ステップスキャン、 2 Θ範囲 10〜55° 、 0. 05° ス テツプ、積算時間 2秒)。
[0115] ここで、 Κ値は、 2 0 = 16° 付近に観測される β晶(300)面の回折ピーク強度 (I β
)と 2 Θ = 14, 17, 19° 付近にそれぞれ観測される α晶(110)、 (040)、 (130)面 の回折ピーク強度 (それぞれ Ι α 、 Ι α 、 Ι α )とから、下記の数式により算出できる。
1 2 3
なお、 Κ値は 晶の比率を示す経験的な値であり、各回折ピーク強度の算出方法な ど Κ値の詳細については、 A. Turner Jones, et. al., Makromolekulare Chemie, 75, 1 34 (1964)を参考にすればよい。
K = 1 β / {Ι β + (ΐ α +Ι α +Ι α ) }
1 1 1 2 3
なお上記確認は、二軸延伸後のフィルムはもちろんのこと、対応する未延伸シート につ 、て測定しても構わな 、。
[0116] 本発明では、上記の方法で β晶活性を有するものを良 (good)、有さないものを不良 (bad)とした。
[コア層(A層)およびスキン層(B層、 C層)に関する確認]
上記同様の手法により、示差走査熱量計を用いてコア層(A )およびスキン層 (B 層、 C層)に使用した榭脂原料について熱量曲線を採取し、判定した。なお、ここで 榭脂原料とは、ポリプロピレン、その他のポリマーおよび添加剤を含めた、各層の形 成に用いられる榭脂組成物全体のことを意味する。なお、サンプルの形状は、何を用 いても構わないが、取扱いが容易なので、チップ状であることが好ましい。また、フィ ルム製造後の白色ポリプロピレンフィルムから、スキン層である B層および C層を削り 取り、サンプルとして測定を行っても良い。
[0117] (6)二軸配向の判別
フィルムの配向状態を、フィルムに対して以下に示す 3方向から X線を入射した X線 回折写真力 判別する。
• Through入射:フィルムの縦方向 ·横方向で形成される面に垂直に入射
• End入射 :フィルムの横方向 ·厚み方向で形成される面に垂直に入射 •Edge入射 :フィルムの縦方向'厚み方向で形成される面に垂直に入射 なお、サンプルは方向を揃えて重ね合わせ、厚さ lmm程度に調整した後、幅 lm m程度に切り出し、測定に供した。
[0118] X線回折写真は以下の条件でイメージングプレート法により測定した。
•X線発生装置 :理学電気 (株)製 4036A2型
•X線源 : CuK a線(Niフィルター使用)
'出力 : 40Kv、20mA
'スリット系 : lmm φピンホールコリメータ
•イメージングプレート: FUJIFILM BAS - SR •撮影条件 :カメラ半径 40mm、露出時間 5分
ここで、フィルムの無配向、一軸配向、二軸配向の判定は、たとえば、松本喜代一ら 、繊維学会誌、 26卷、 p537 (1970)。松本喜代一、 "フィルムをつくる"、共立出版、 東京(1993)、 p67— 86。岡村誠三、中島章夫、小野木重治、河合弘迪、西島安則 、東村敏延、伊勢典夫著、 "高分子化学序論 (第 2版) "、化学同人、京都(1981)、 p 92— 93。などで解説されているように、以下の基準で判別できる。
•無配向:いずれの方向の X線回折写真においても等強度を有するデバィ'シエラー 環が得られる
•縦一軸配向: End入射の X線回折写真にぉ 、て均等強度を有するデバイ ·シエラー 環が得られる
•二軸配向:いずれの方向の X線回折写真においてもその配向を反映した、回折強 度が均等ではな 、回折像が得られる。
[0119] (7)スキン層の結晶化温度 (Tc)
示差走査熱量計 (セイコー電子工業製熱分析装置 RDC220型)を用いて測定した 。窒素雰囲気下で 5mgのスキン層(B層、 C層)の榭脂を、 10°CZ分の速度で 30°C 力も 280°Cまで昇温し、 280°Cで 5分間保持させた。引き続き、 10°CZ分の速度で 3 0°Cまで冷却した。この際、溶融状態からの結晶化に伴う発熱ピークの頂点温度を結 晶化温度 (Tc)とした。なお、サンプルは、チップ形状であることが好ましいが、白色 ポリプロピレンフィルムからスキン層のみを削り取ることにより準備してもよい。測定は 5 回行い、得られた値の平均を該サンプルの結晶化温度 (Tc)とした。
[0120] (8)スキン層(B層、 C層)の空孔率
上記した(1)と同様の方法で、白色ポリプロピレンフィルムのスキン層の断面を横方 向に平行に観察位置を変えて連続観察し、断面像を 10点採取した。
[0121] 得た各断面像の上に OHPシート(セィコ一エプソン (株)製 EPSON専用 OHPシー ト)を乗せ、スキン層のボイドのみを、 OHPシート上力 油性ペンで黒く塗りつぶした
。このようにして得た OHPシートの画像を、スキャナを用いて、下記条件で読み込ん に。
'スキャナ :セイコーエプソン (株)製 GT— 7600U •ソフト : EPSON TWAIN ver. 4. 20J
•イメージタイプ:線画
'解像度 :600dpi
得た画像を、(株)プラネトロン製 Image— Pro Plus, Ver. 4. 0 for Windouws を用いて、画像解析を行った。この際、取り込んだ断面像のスケールを使用して空間 校正を行った。なお、測定条件は、以下の通りに設定した。
•カウント Zサイズオプション内の表示オプション設定で、アウトラインの形式を塗りつ ぶしにする。
•オブジェクト抽出オプション設定で、境界上の除外を"なし (None) "にする。
•測定の際の輝度レンジ選択設定を喑 、色のオブジェクトを自動抽出にする。
[0122] 上記条件下で、 10枚の断面像のスキン層の全面積、すなわち測定の対象とした矩 形対象領域の面積に対する、黒く塗りつぶした部分の面積の比を百分率で算出し、 スキン層の空孔率とした。
[0123] (9)フィルム表面の平均表面粗さ(Ra)
JIS B 0601 (2001)に基づいて、触針式表面粗さ計 (小坂研究所 (株)製、高精 度薄膜段差測定器 ET— 30HKおよび三次元粗さ分析装置 SPA— 11)を使用し、 白色ポリプロピレンフィルムのスキン層(B層、 C層)の表面について、以下の条件に て測定を行った。
•触針走査方向:フィルムの横方向
測定モード :触針式(STYLUS)
処理モード : 8 (ROUGHNESS)
測定長さ : 1mm
触針径 :円錐型。. 5 /z mR
荷重 : 16mg
カットオフ : 250 μ πι
測定ライン数 : 30本
走査速度 : 100 mZ秒
ピッチ :X方向 4 πι、 Υ方向 10 m •SLOPE COMP : ON
•GAIN : X I
•測定面積 : 0. 2988mm2
'標準面積 :0. lmm2
測定に当たって、適宜レコーダーを用いて粗さ曲線を記録した。その際の条件は以 下の通りである。
• X · Y軸方向記録倍率: 100倍
•Z軸方向倍率 :10, 000倍 (レコーダー上で粗さ曲線の倍率が大きすぎる場 合は、適宜 5, 000倍としてもよい)
.レコーダー速度 : 40 μ mZ秒
•Y記録ピッチ :2mm
この際、中心線平均表面粗さ (Ra)は、粗さ曲線力も測定長さ Lの部分を抜き取り、 この抜き取り部分の中心線を X軸、縦方向を Y軸とし、粗さ曲線を y=f (X)で表した時 、次の式によって求められる値である。
Ra= (l/L) J I f (X) I dx
同じフィルムにつ 、て任意の箇所 5箇所で測定を行 、、得た値の平均を該フィルム の Raとした。
[0124] (10)光学濃度
マクベス製光学濃度計 TR— 927を用いて測定した。同じフィルムにつ ヽて同様の 測定を 5回行 ヽ、得た値の平均を該フィルムの光学濃度とした。
[0125] (11)表面光沢度
JIS Z 8741 (1997)に基づいて、スガ試験機 (株)製デジタル変角光沢度計 UG V—5Dを用い、入出角度 60° の条件下で、白色ポリプロピレンフィルムのスキン層( B層、 C層)の表面について表面光沢度を測定した。同じフィルムの任意の 5箇所で 測定を行!、、得られた表面光沢度の平均を該フィルムの表面光沢度とした。
[0126] (12) b値
日本電色工業 (株)製の分光式色彩計 SE— 2000を用いて、反射法の条件下、 b 値を測定した。なお、測定は φ 30mmの試料台、レンズを使用して行った。同じフィ ルルムムのの任任意意のの 55箇箇所所でで測測定定をを行行 、、、、得得らられれたた bb値値のの平平均均をを該該フフィィルルムムのの bb値値ととししたた。。
[[00112277]] ((1133))ァァイイソソタタククチチッッククイインンデデッッククスス
ァァイイソソタタククチチッッククイインンデデッッククススはは、、沸沸騰騰 nn——ヘヘププタタンン抽抽出出残残分分力力もも求求めめるる。。円円筒筒濾濾紙紙をを 111100±± 55°°CCでで 22時時間間乾乾燥燥しし、、 2233°°CC、、相相対対湿湿度度 6655%%のの室室内内でで 22時時間間以以上上放放置置ししててかからら 、、円円筒筒濾濾紙紙中中ににササンンププルル ((粉粉体体ままたたははフフレレーークク状状ななどどののポポリリププロロピピレレンン)) 1100ggをを入入れれ、、 秤秤量量カカッッププおおよよびびピピンンセセッットトをを用用いいてて直直示示天天秤秤ににてて、、ササンンププルルのの質質量量 ((PPoo))をを小小数数点点 44 桁桁ままでで精精秤秤すするる。。
[[00112288]] ここれれををヘヘププタタンン 8800mmllがが入入っったた抽抽出出器器のの上上部部ににセセッットトしし、、抽抽出出器器とと冷冷却却器器をを組組みみ立立 ててるる。。抽抽出出器器ををオオイイルルババススままたたはは電電機機ヒヒーータターーでで加加熱熱しし、、 1122時時間間抽抽出出すするる。。加加熱熱はは冷冷 却却器器かかららのの滴滴下下数数がが 11分分間間 113300滴滴以以上上ででああるるよよううにに調調節節すするる。。抽抽出出残残分分がが入入っったた円円 筒筒濾濾紙紙をを取取りり出出しし、、真真空空乾乾燥燥器器にに入入れれてて 8800°°CC、、 llOOOOmmmmHHgg以以下下のの減減圧圧度度でで 55時時間間 乾乾燥燥すするる。。乾乾燥燥後後 2233°°CC、、相相対対湿湿度度 6655%%のの室室内内でで 22時時間間放放置置ししたた後後、、ササンンププルルのの質質 量量 ((PP))をを精精秤秤しし、、下下記記式式ででアアイイソソタタククチチッッククイインンデデッッククススをを算算出出すするる。。ここここでで、、 PPooはは抽抽出出 前前ののササンンププルルのの質質量量、、 PPはは抽抽出出後後ののササンンププルルのの質質量量ででああるる。。
Figure imgf000037_0001
測測定定はは 55回回行行 、、、、得得らられれたた値値のの平平均均をを該該ササンンププルルののァァイイソソタタククチチッッククイインンデデッッククススととしし
[0129] (14)メルトフローレイト(MFR)
ポリプロピレンおよび熱可塑性エラストマ一の MFRは、 JIS K 7210 (1995)の条 件 M (230°C、2. 16kg)に準拠して測定する。エチレン榭脂は、 JIS K 7210 (199 5)の条件 D (190°C、 2. 16kg)に準拠して測定する。ポリメチルペンテンの MFRは、 ASTM D 1238 (260。C、 5. Okg)に従って測定する。
[0130] (15) |8晶比率
[未延伸シートの IS晶比率]
上記(5)に記載の測定方法に従って、サンプルを未延伸シートとして、ファーストラ ンの熱量曲線を採取する。
[二軸配向白色ポリプロピレンフィルムの β晶比率]
上記(5)に記載の測定方法に従って、サンプルを白色ポリプロピレンフィルムおよ びコア層(A層)、スキン層(B層、 C層)の各層として、セカンドランの熱量曲線を採取 する。
[ ι8晶比率の算出]
それぞれ得られた熱量曲線において、 140〜160°Cに頂点を有する j8晶の融解に 伴う吸熱ピークの面積力も算出される融解熱量( Δ H )と、 160°C以上に頂点を有 するポリプロピレン由来の β晶以外の結晶の融解に起因する融解熱量( Δ Η α )から 下記の式で求める。この際、 Δ Η |8の融解ピークと Δ Η α融解ピークの間に、微少な 発熱もしくは吸熱ピークが観測される場合があるが、このピークは無視してもよい。そ れぞれ、測定を 5回行い、得られた β晶比率の平均をそのサンプルの /3晶比率とし た。なお、未延伸シートの /3晶比率は、キャスト工程内でいかに多くの j8晶が生成さ れたかを評価するために重要である。そのため、未延伸シートの β晶比率は、製膜 時にサンプルが受けた熱履歴を反映した、ファーストランの熱量曲線力も算出する。 また、二軸配向フィルムの β晶比率は、各フィルムがどの程度のボイド形成能力を有 するかを評価するために重要である。そのため、二軸配向フィルムの β晶比率は、フ イルムが受けた熱履歴の影響を受けない、セカンドランの熱量曲線力 算出する。本 発明では、特に断りがない限り j8晶比率は、二軸配向フィルムについてセカンドラン の熱量曲線力 算出した値を用いた。
[0131] j8晶比率(%) = { Δ Η α / ( Δ Η α + Δ Η |8 ) } Χ 100
[コア層(Α層)およびスキン層(Β層、 C層)の β晶比率]
白色ポリプロピレンフィルムのコア層(Α層)およびスキン層(Β層、 C層)から、各層 を削り取ることによりサンプルを準備し、上記同様の手法により、 DSCを用いてコア層 (Afi)およびスキン層(B層、 C層)について熱量曲線を採取して測定した。
[0132] (16)フィルム中の粒子の平均分散径
RuO染色超薄切片法により、フィルムの横方向 厚み方向に断面を有する超薄
4
切片(サンプル)を採取した。すなわち、ミクロトーム法を用いて上記断面を有する超 薄切片を採取し、該切片を RuOで染色し、透過型電子顕微鏡 (TEM)を用いて、下
4
記条件で観察した。
•装置 :(株)日立製作所製 透過型電子顕微鏡 (H— 7100FA) '加速電圧: lOOkV
•観察倍率: 10, 000倍
得られた像を用いて、面積 10 m X 10 m当たりに存在する全ての粒子の短径 および長径を測定し、これら全ての平均値を粒子の平均分散径とした。また、像の端 で粒子が見切れてしまっているものについては、測定しなかった。なお、ここでいう短 径および長径とは、断面に観察される各粒子のサイズを横方向および厚み方向に沿 つて計測した値のうち、それぞれ最も小さい部分と最も大きい部分の長さである。本 測定は観察面を変更して 10回行い、その平均値を採用した。
[0133] (17)粒子の一次平均粒径
堀場製作所製 CAPA500を用いて、ポリプロピレン榭脂に添加される前の粒子に つ!ヽて、遠心沈降法により測定した体積平均粒径を一次平均粒径とした。
[0134] (18)フィルムを構成する各層の厚み
上記 (8)において、観察箇所を変えて、スキン層(B層、 C層)の厚みを 10箇所測定 し、それらの平均値をそれぞれスキン層(B層、 C層)の厚みとした。すなわち、 10枚 の各断面写真で任意の 1点をフィルムの実寸として読みとり、合計 10点の値の平均 値を当該フィルムの各スキン層の厚みとした。この際、観察倍率は 10, 000倍を採用 した。また、コア層(A層)の厚みは、下記(20)力 求めた白色ポリプロピレンフィルム 全体の厚みから、上記スキン層の厚みを差し引くことにより、算出した。
[0135] (19)粒子の含有量
溶媒として、フィルムのポリプロピレン榭脂および熱可塑性榭脂は溶解し、粒子は 溶解しな 、キシレンを選択した。フィルム 10gを 135°Cに加熱したキシレンで溶解し、 粒子を遠心分離して粒子の質量を測定し、試料の全質量と粒子の質量比から、粒子 の含有量を求めた。
[0136] (20)クッション率
ダイヤルゲージ式厚み計 (JIS B 7503 (1997)、 PEACOCK社製 UPRIGHT DIAL GAUGE (0. 001 X 2mm)、 No. 25、測定子 5mm φ平型)に、ダイヤルゲ ージスタンド(No. 7001DGS— M)を設置する。これよりフィルム厚み(d0)を測定す る。さらに、ダイヤルゲージ押さえ部分に 500gf (4. 9N)の荷重をかけた時の厚み(d 500)を測定し、クッション率を下記式により算出した。
[0137] クッシ 3ン率(%) = { (dO— d500) ZdO} X 100
同じサンプルについて同様の測定を 5回行い、得られたクッション率の平均値を当該 サンプルのクッション率とした。
[0138] (21)フィルムの厚み
ダイヤルゲージ式厚み計 (JIS B 7503 (1997)、 PEACOCK社製 UPRIGHT DIAL GAUGE (0. 001 X 2mm) , No. 25、測定子 5mm φ平型、 125gf (l. 23 N)荷重)を用いて、フィルムの縦方向および幅方向に 10cm間隔で 10点測定し、そ れらの平均値を当該サンプルのフィルム厚みとした。
[0139] (22)濡れ張力
ホルムアミドとエチレングリコールモノエーテルとの混合液を用いて、 JIS K 6768 (1999)に基づいて、濡れ張力を測定した。
[0140] (23)耐折れじわ性
白色ポリプロピレンフィルムの受容層形成面と反対側の面に厚さ 65 μ mの粘着剤 付き上質紙 (コクョ (株)ワープロ用ラベルシート、タイ— 2110— W)を均一に貼り合わ せ、折れしわ評価用のサンプルを作製した。該サンプルを長さ 200mm、幅 15mmに 切り出し、一端を固定し、 200gの重りをワイヤーにて両サイドに繋げた直径 5mmの 鉄の円芯を軸に、該シートのフィルム面を内側にして 180° 折り返しながら、残る一 端を 200mmZ秒で引っ張った。フィルム面上のしわの発生状態を、実体顕微鏡を 用いて 10倍で観察し、以下の基準で耐折れじわ性を判定した。
[0141] A級: 1mm以上の長さを有するしわが 0〜1個 Zcm発生した
B級: 1mm以上の長さを有するしわが 2〜4個 Zcm発生した
C級: 1mm以上の長さを有するしわが 5〜8個 Zcm発生した
D級: 1mm以上の長さを有するしわが 9個以上 Zcm発生した。
工業的に実用に供することができるのは、 A級、 B級と判定されるフィルムである。
[0142] (24)実効延伸倍率
溶融ポリマーを口金力 押し出し、金属ドラム上で固化させてシート状に冷却固化 せしめた未延伸シートに、長さ lcm四方の升目をそれぞれの辺がフィルムの縦方向 、幅方向に平行になるように刻印した。その後、引き続き延伸および巻き取りを行った
。得られたフィルムの升目の長さ(cm)を縦方向に 10升目分、幅方向に 10升目分測 定し、これらの平均値をそれぞれ縦方向および横方向の実効延伸倍率とした。
[0143] (25)キャスト工程における金属ドラムへの粘着の判定
キャスト工程において、未延伸シートが金属ドラムからはく離する箇所を観察し、以 下の基準で判定した。
[0144] 良 (good) :未延伸シートのドラム側表層が、ドラムに粘着しておらず、粘着痕がない
[0145] 不良 (bad) :未延伸シートのドラム側表層が、ドラムに粘着し、粘着痕がある。
工業的に実用に供することができるのは、良と判定された場合である。
[0146] (26)表面欠点の判定
二軸延伸後の白色ポリプロピレンフィルムの表面を目視により観察し、以下の基準 で表面欠点を判定した。
[0147] 良 (good):クレータ状の欠点が観察されな!、。
[0148] 不良 (bad):クレータ状の欠点が観察される。
工業的に実用に供することができるのは、良と判定されるフィルムである。
[0149] (27)感度
白色ポリプロピレンフィルムを、厚さ 150 mの紙に貼合せた。その後、マイクロダラ ビアコーターを用いて、塗工量が乾燥時で 3gZm2となるように、フィルム表面のスキ ン層(B層または C層)に受容層を形成するための以下のコーティング剤を塗布し、感 熱転写記録用受容シートを作製した。
[0150] [受容層形成塗液]
ポリエステル榭脂 (東洋紡績 (株)製"バイロン (登録商標) 200"): 20質量部 シリコーンオイル (信越化学工業 (株)製" X— 22- 3000T"): 2質量部 トルエン: 39質量部
メチルェチルケトン: 39質量部
上記の感熱転写記録用受容シートを作製後、 40°Cで 24時間放置した後に、感熱 転写記録用受容シートをカラープリンター(セイコー電子工業 (株)製 Professional Color Point 1835)、および専用のインクリボンを用いて、上記受容シートの受容 層を形成した面に、テストパターンを印画した。同じ受容シートについて同様の印画 を 10回行い、得られたシートの画像の再現性および鮮明さから、以下の基準で感度 を判定した。
[0151] A級:全てのシートの色の濃度が高ぐ画像が鮮明である。
[0152] B級:1〜2回、若干濃度が低いか、僅かに「欠け」が観察されるシートがあるが、そ れ以外は濃度が高ぐ画像が鮮明である。
[0153] C級: 3〜5回濃度が低いか、「欠け」や「つぶれ」が観察され、あるいは全体的に画 像の赤味が強く見えたり、黄色味が強く見えたりするシートがある。
[0154] D級: 6回以上濃度が低いか、「欠け」や「つぶれ」が見られ、あるいは全体的に画像 の赤味が強く見えたり、黄色味が強く見えたりするシートがある。
[0155] (28)エンボス深さ
白色ポリプロピレンフィルムを基材として感熱転写記録用受容シートを作製した。そ の受容紙の厚みを 10点測定して平均厚み (t )を求め、その後、卓上型の小型感熱
0
転写記録用プリンター (キャノン社製 CP— 300)で、画像評価用に階調を白色から黒 色までに 1 (白)〜 16 (黒)階調に濃度を変えて印画した。印画前の厚み (t )と高階
0 調域 (最も濃い黒色部)の厚み (t )の差から、下記式にてエンボス深さを求めた。
[0156] エンボス深さ( m) = t—t
0 1
(29)耐エンボス性
耐エンボス性の評価として、上記(28)において評価したエンボス深さについて、以 下の基準で判定した。
A:エンボス深さが 10 m未満。
B:エンボス深さが 10〜 20 μ m。
C:エンボス深さが 20 μ mを超えて!/、る。
[0157] (30)受容層の接着力
上記(27)において、得られた感熱転写記録用受容シートの受容層側の面、および その反対側の面に、それぞれセロハンテープ (-チバン (株)製、 18mm幅)を互いに 平行になり、同じ部分で対向するように、 15cmの長さに貼り合わせた。その後、受容 層側の面を利き手とは反対の手で抑え、受容層側のセロハンテープを約 45° の角 度の方向に利き手で急速にはく離した。この際、セロハンテープに移行した受容層( 受容シートのその他の層を含む)の割合を観察し、以下の基準で評価した。
[0158] A:受容層がセロハンテープに全く移行しない。または受容層(もしくはアンカー層) とフィルムの接着力が強力であるために、フィルム自体が凝集破壊する。
[0159] B: 20%未満の受容層がセロハンテープに移行する。
[0160] C : 20%以上 50%未満の受容層がセロハンテープに移行する。
[0161] D: 50%以上の受容層がセロハンテープに移行する。
工業的に実用に供することができるのは、 A、 Bと判定されるフィルムである。
[0162] (31)製膜性
5m幅の二軸配向白色ポリプロピレンフィルムを製膜し、 10, OOOm巻き取る際にフ イルムの破れを観察し、以下の基準で判定した。
[0163] A:破れが 0回であり、製膜が安定していた。
[0164] B:破れが 1回以下であり、製膜が安定していた。
[0165] C :破れが 2回以上あり、必ずしも製膜は安定していな力つた。
工業的に実用に供することができるのは、 Aと Bと判定されるフィルムである。
[0166] (32)工程通過性
上記(31)において、製膜機に配置された金属製ロール、特に延伸ロールやワイン ダー内ロールおよび受容紙製造工程での金属ロールに非相溶性樹脂や粒子の脱 落に起因する白粉が付着していないか観察し、以下の基準で判定した。
[0167] 良 (good):ロールに白粉が付着して!/、な!/、。
[0168] 不良 (bad) :ロールに白粉が付着しており、工程を汚した。
工業的に実用に供することができるのは、良と判定されるフィルムである。
実施例
[0169] 本発明を以下の実施例を用いて説明するが、本発明はこれらに限定されるもので はない。
[0170] なお、所望の厚み構成を有するフィルムを得るためには、各押出機からのポリマー 押出量を所定の値に調節した。なお、下記で工業的に製造可能であったいずれのフ イルムについても、上記した(6)の方法で、二軸配向していることを確認した。また、フ イルム表面特性は、特に記載のない限りドラム側の B層について測定した力 スキン 層を積層しな 、場合は、 A層のドラム側につ 、て測定した。
また、各実施例で使用した榭脂および添加剤は、以下のものを用いた。
hPPl:住友化学 (株)製ホモポリプロピレン" WF836DG3" (MFR: 7gZlO分、アイ ソタクチックインデックス: 97%)
hPP2 : (株)プライムポリマー製ホモポリプロピレン" F107BV" (MFR: 7gZlO分、ァ イソタクチックインデックス: 98%)
HMS - PP: Basell製ポリプロピレン" PF— 814" (MFR: 3gZ 10分、アイソタクチッ クインデックス: 97%):該榭脂は主鎖骨格中に長鎖分岐を有するポリプロピレンであ る。
mVLDPE : Dow Chemical Company製、 " Engage (エンゲージ)(登録商標),,8 411 (MFR: 18gZlO分(190°C) ):メタ口セン触媒法による低密度ポリエチレン rEPC:住友化学 (株)製のエチレン'プロピレンランダム共重合体" FL6412" (ェチレ ン共重合量 =4質量0 /0、 MFR:6gZlO分、ァイソタクチックインデックス: 97%) β PP: Sunoco Chemicals製 β晶核剤添カ卩ポリプロピレン" BEPOL (登録商標) " B022-SP (MFR: 1. 8gZlO分)
PMP:三井化学 (株)製ポリメチルペンテン" TPX (登録商標) "RT- 18 (MFR: 26g ZlO分 (260°C) )
(実施例 1)
コア層 (A層)の榭脂原料、スキン層 (B層)の榭脂原料を以下の通りに準備した。
[A層の樹脂原料]
hPPlを 83. 8質量%、 HMS— PPを 3質量%、 mVLDPEを 3質量%、 j8晶核剤と して、 N, N,—ジシクロへキシル—2, 6—ナフタレンジカルボキシアミド(新日本理化 (株)製、 NU— 100)を 0. 2質量0 /0、および、フィルム中で平均分散径 60〜400nm の範囲に微分散する粒子として、平均粒径 200nmの酸ィ匕チタン (堺ィ匕学工業 (株) 製、 TITONE、 R— I IP)を 10質量%からなる混合物 100質量部に、酸化防止剤と して、チノく'スペシャルティ'ケミカルズ (株)製 IRGANOX (登録商標) 1010を 0. 15 質量部および熱安定剤として、チバ'スペシャルティ ·ケミカルズ (株)製 IRGAFOS ( 登録商標) 168を 0. 1質量部添加し、 LZD= 50の異方向回転スクリューの二軸押 出機に供給した。 300°Cで溶融混練した後、ガット状に押出し、 20°Cの水槽に通して 冷却し、チップカッターで 5mm長にカットした後、 100°Cで 2時間乾燥して、チップを 得た。
[B層の樹脂原料]
hPPlを 73. 8質量%、 rEPCを 25質量%、平均粒径 1. mの球状シリカ粒子( 水澤化学工業 (株)製、 ATM— 20S)を 0. 2質量%、および、 HMS— PPを 1質量% 混合し、二軸押出機に供給した。 280°Cで溶融混練した後、ガット状に押出し、 20°C の水槽に通して冷却し、チップカッターで 5mm長にカットした後、 100°Cで 2時間乾 燥して、チップを得た。
[0172] 上記 A層の榭脂原料を押出機 (a)に供給して、 230°Cで溶融混練させ、 35 μ m力 ットのリーフディスク型のフィルターで濾過した後、マルチマ-ホールド型の 2種 2層複 合口金に導入した。次に、上記 B層の榭脂原料を押出機 (b)に供給して、 260°Cで 溶融混練させ、 35 mカットの金網フィルターで濾過した後、上記口金に導入した。 口金内で押出機 (a)の溶融ポリマーの片面に、押出機 (b)の溶融ポリマーを積層して シート状に共押出成形した。
[0173] このようにして得られた溶融ポリマー積層体を、 B層が金属ドラムに接するように口 金力もシート状に押出し、表面温度 95°Cに保持された金属ドラム上にキャストし固化 させて、シート状に成形した。この際、シートの金属ドラムと接さない面 (以下、 ND面 と略す)側力 エアーナイフを用いて、 90°Cのエアーを吹き付けてシートをドラムに密 着させた。この時のドラムへのシートの密着時間は 30秒であった。得られた未延伸積 層シートを、 130°Cに加熱したオーブンに導いて予熱した後、縦方向に 5倍延伸し、 100°Cの冷却ロールで冷却した。この時の縦延伸速度は、 30, 000%Z分であった
[0174] 引き続き、縦延伸したフィルムを、その両端をクリップで把持しながらテンターに導 入し、 155°Cで予熱し、 145°Cに加熱した雰囲気中で横方向に機械倍率 9倍に延伸 した。この時の横延伸速度は 2, 500%Z分であった。次いで、二軸配向白色ポリプ ロピレンフィルムの結晶配向を完了させて平面性および寸法安定性を付与するため に、テンター内で横方向に 5%の弛緩を与えつつ、 160°Cで熱固定し、均一に徐冷 した後、室温まで冷却した。
[0175] さらに、白色ポリプロピレンフィルムの B層表面(D面)を窒素 100%の雰囲気下でコ ロナ放電処理し、反対面 (ND面)を空気中でコロナ放電処理した。この際の処理強 度は 15W*分 Zm2であり、 D面の表面の濡れ張力は 42mNZm、 ND面の濡れ張力 は 37mNZmであった。また、得られた白色ポリプロピレンフィルムの厚み構成は、 A 層 ZB層 = 30 m/5 μ mである。
[0176] 次に、 [特性の測定方法および評価方法] (27)の方法で、 B層上に受容層を塗布 して感熱転写記録用受容シートに加工した。
[0177] (実施例 2)
A層の榭脂原料、 B層の榭脂原料を以下の通り準備した。
[A層の樹脂原料]
実施例 1において、 hPPlの割合を 90. 8質量%、酸ィ匕チタン粒子を 3質量%の比 率に変更したこと以外は同様の条件で作製したチップを用いた。
[B層の樹脂原料]
実施例 1において、 hPPlの割合を 71質量%、球状シリカ粒子の添加量を 3質量% と変更した以外は同様の条件で作製したチップを用いた。
[0178] 上記の榭脂原料を 2種 3層口金に供給し、 A層の両面に B層を積層した BZAZB 型の 2種 3層構成とした以外は実施例 1と同様にして二軸配向白色ポリプロピレンフィ ルムを作製した。また、得られた白色ポリプロピレンフィルムを基材として用い、実施 例 1と同様の条件で、金属ドラムと接した面 (D面)側の B層上に受容層を形成し、受 容シートを作製した。なお、得られた白色ポリプロピレンフィルムの厚み構成は、 B層 ZA層 ZB層 = 1 μ m/33 μ m/1 μ mであった。
[0179] (実施例 3)
A層の榭脂原料、 B層の榭脂原料を以下の通り準備した。
[A層の樹脂原料]
実施例 1において、 hPPlの割合を 73. 8質量%、酸ィ匕チタン粒子を 20質量%の 比率に変更したこと以外は同様の条件で作製したチップを用いた。
[B層の樹脂原料]
実施例 1において、 hPPlの割合を 73. 95質量%、球状シリカ粒子を 0. 05質量% と変更した以外は同様の条件で作製したチップを用いた。
[0180] 上記の榭脂原料を 2種 3層口金に供給し、 A層の両面に B層を積層した BZAZB 型の 2種 3層構成とした以外は実施例 1と同様にして二軸配向白色ポリプロピレンフィ ルムを作製した。また、得られた白色ポリプロピレンフィルムを基材として用い、実施 例 1と同様の条件で D面側の B層上に受容層を形成し、受容シートを作製した。
[0181] なお、得た白色ポリプロピレンフィルムの厚み構成は、 B層 ZA層 ZB層 = 1 mZ 63 μ / 1 μ mであつに。
[0182] (実施例 4)
A層の榭脂原料、 B層の榭脂原料を以下の通り準備した。
[A層の樹脂原料]
hPP2を 69. 95質量0 /0、 mVLDPEを 5質量0 /0、 j8晶核剤として、 N, N,—ジシクロ へキシル—2, 6—ナフタレンジカルボキシアミド (新日本理化 (株)製、 NU— 100)を 0. 05質量0 /0、および、大日本インキ化学工業製の酸ィ匕チタン 60質量0 /0マスターチ ップ(PEONY (登録商標) WHITE L— 11 165MPT)を 25質量%カもなる混合 物 100質量部に、酸ィ匕防止剤として、チバ'スペシャルティ'ケミカルズ (株)製 IRGA NOX (登録商標) 1010を 0. 15質量部および熱安定剤として、チバ'スペシャルティ •ケミカルズ (株)製 IRGAFOS (登録商標) 168を 0. 1質量部添加し、二軸押出機を 用いて 300°Cで溶融混練した後、ガット状に押出し、 20°Cの水槽に通して冷却し、チ ップカッターで 5mm長にカットした後、 100°Cで 2時間乾燥して、チップを得た。
[B層の樹脂原料]
rEPCを 99. 6質量%、ロジン系 α晶核剤 (荒川化学 (株)製、 "パインクリスタル (登 録商標)" KM— 1600)を 0. 2質量%、および、実施例 1と同じ球状シリカ粒子 0. 2 質量%を混合して、実施例 1と同様の条件で作製したチップを用 V、た。
[0183] 上記の榭脂原料を 2種 3層口金に供給し、 A層の両面に B層を積層した BZAZB 型の 3層構成とし、金属ドラムの表面温度を 85°Cとし、厚み構成を B層 ZA層 ZB層 = 2 /z mZ31 μ πιΖ2 /ζ mとしたこと以外は実施例 1と同様にして二軸配向白色ポリ プロピレンフィルムを作製した。また、得た白色ポリプロピレンフィルムを基材として用 い、実施例 1と同様の条件で D面側の B層上に受容層を形成し、受容シートを作製し た。
[0184] (実施例 5)
A層の榭脂原料、 B層の榭脂原料、および、他の層(C層)の榭脂原料を以下の通り 準備した。
[A層の樹脂原料]
hPPlを 45質量0 /0と、 |8 ΡΡを 45質量0 /0、および、実施例 1と同様の酸ィ匕チタン粒 子を 10質量%の比率で混合したこと以外は実施例 1と同様の条件で作製したチップ を用いた。
[Β層の樹脂原料]
実施例 1で作製したチップを用いた。
[C層の樹脂原料]
hPPlを 49. 8質量0 /0、 rEPCを 50質量0 /0、および、平均粒径 1. の球状シリ 力粒子を 0. 2質量%の比率で混合したこと以外は、実施例 1の B層原料同様の条件 で作製したチップを用いた。
[0185] A層の榭脂原料を押出機 (a)に供給して、 210°Cで溶融混練させ、 35 μ mカットの リーフディスク型のフィルターで濾過した後、マルチマ-ホールド型の 3種 3層複合口 金に導入した。次に、上記 B層の榭脂原料を押出機 (b)に供給して、 260°Cで溶融 混練させ、 35 mカットの金網フィルターで濾過した後、上記口金に導入した。また、 上記 C層の榭脂原料を押出機 (c)に供給して、 260°Cで溶融混練させ、 35 mカット の金網フィルターで濾過した後、上記口金に導入した。
[0186] 口金内で押出機 (a)の溶融ポリマーの両面に、押出機 (b)および押出機 (c)の溶融 ポリマーをそれぞれ積層してシート状に共押出成形した。
[0187] このようにして得た溶融ポリマー積層体を、 B層が金属ドラムに接するように口金か らシート状に押出し、表面温度 110°Cに保持された金属ドラム上で固化させ、シート 状に成形した。この際、シートの ND面側力 エアーナイフを用いて、 60°Cのエアー を吹き付けてシートをドラムに密着させた。この時のドラムへのシートの密着時間は 1 5秒であった。次に、得られた未延伸積層シートを用いて 130°Cのオーブンに導いて 予熱した後、縦方向に 5倍延伸し、 100°Cの冷却ロールで冷却した。この時の縦延伸 速度は 100, 000%Z分であった。
[0188] 引き続き、縦延伸後のフィルムを、その両端をクリップで把持しながらテンターに導 入し、 165°Cで予熱し、 145°Cに加熱した雰囲気中で横方向に 9倍に延伸した。この 時の横延伸速度は 5, 000%Z分であった。次いで、二軸配向白色ポリプロピレンフ イルムの結晶配向を完了させて平面性および寸法安定性を付与するために、テンタ 一内で横方向に 5%の弛緩を与えつつ、 160°Cで熱固定し、均一に徐冷した後、室 温まで冷却した。
[0189] 二軸延伸後、 B層表面 (D面側)は空気雰囲気下で、 C層表面 (ND面側)は窒素体 積 80%と炭酸ガス体積 20%の混合ガス雰囲気下で、コロナ放電処理を行ったこと以 外は実施例 1と同様の条件で二軸配向白色ポリプロピレンフィルムを作製した。また、 得られた白色ポリプロピレンフィルムを基材として用い、実施例 1と同様の条件で ND 面側の C層上に受容層を形成し、受容シートを作製した。
[0190] なお、得られた白色ポリプロピレンフィルムの B層表面の濡れ張力は 37mNZm、 C 層表面の濡れ張力は 42mNZmであった。また、その厚み構成は、 B層 ZA層 ZC = 1 μ m/ ά ΐ μ m/丄 μ mであつ 7こ。
[0191] (実施例 6)
A層の榭脂原料、 B層の榭脂原料、および、 C層の榭脂原料を以下の通り準備した
[A層の樹脂原料]
hPPlを 89. 8質量0 /0、 β晶核剤として、 NU— 100を 0. 2質量0 /0、および、実施例 1に用いた酸ィ匕チタン粒子を 10質量%からなる混合物に、酸化防止剤として、チパ' スペシャルティ'ケミカルズ (株)製 IRGANOX (登録商標) 1010を0. 15質量部、お よび、熱安定剤として、チバ'スペシャルティ'ケミカルズ (株)製 IRGAFOS (登録商 標) 168を 0. 1質量部添加し、二軸押出機にて 300°Cで溶融混練した後、ガット状に 押出し、 20°Cの水槽に通して冷却し、チップカッターで 5mm長にカットした後、 100 °Cで 2時間乾燥して、チップを得た。
[B層の樹脂原料]
hPPlを 21. 8質量%、 rEPCを 75質量%、 HMS— PPを 3質量%、および、平均 粒径 2 /z mの架橋ポリメチルメタタリレート粒子((株)日本触媒製、 M1002)を 0. 2質 量%の割合で混合し、実施例 1と同様の条件で作製したチップを用いた。
[C層の樹脂原料]
hPPlを 24. 8質量0 /0、 rEPClを 75質量0 /0、および、平均粒径 2. 5mの球状シリカ 粒子 (水澤ィ匕学工業 (株)製、 ATM— 25)を 0. 2質量%の比率で混合したこと以外 は、実施例 1の B層原料同様の条件で作製したチップを用いた。
[0192] 上記の榭脂原料を用いたこと以外は実施例 5と同様の条件で二軸配向白色ポリプ ロピレンフィルムを作製した。また、得た白色ポリプロピレンフィルムを基材として用い 、実施例 1と同様の条件で ND面側の C層上に受容層を形成し、受容シートを作製し た。
[0193] (実施例 7)
A層の榭脂原料、 B層の榭脂原料、および、 C層の榭脂原料を以下の通り準備した
[A層の樹脂原料]
hPPlを 84. 8質量%、酸ィ匕チタン粒子の添加量を 15質量%としたこと以外は実施 例 6の A層の樹脂と同様の条件で作製したチップを用いた。
[B層の樹脂原料]
添加する粒子を球状シリカ粒子から、非相溶性榭脂である PMPに変更する以外は 実施例 2の B層の樹脂と同様の条件で作製したチップを用いた。
[C層の樹脂原料]
添加するシリカ粒子を平均粒径 3 μ mの球状シリカ粒子 (水澤化学工業 (株)製、 A TM- 30)に変更する以外は実施例 5の C層と同様の条件で作製したチップを用い た。
[0194] 上記の榭脂原料を用いたこと以外は実施例 5と同様の条件で二軸配向白色ポリプ ロピレンフィルムを作製した。 B層における PMPの平均分散径は、 であった。ま た、その厚み構成は、 B層 ZA層 ZC層 = 3 m/29 μ m/3 μ mであった。また、 得られた白色ポリプロピレンフィルムを基材として用い、実施例 1と同様の条件で ND 面側の C層上に受容層を形成し、受容シートを作製した。
[0195] (実施例 8)
A層の榭脂原料、 B層の榭脂原料を以下の通り準備した。
[A層の樹脂原料]
実施例 1において、酸ィ匕チタン粒子の代わりに、平均粒径 200nmの酸ィ匕亜鉛粒子 を用いたこと以外は同様の条件で作製したチップを用いた。
[B層の樹脂原料]
実施例 1と同様のチップを用 V、た。
[0196] A層と B層の榭脂を用いて BZAZB型の 2種 3層口金に供給し、実施例 2と同様に して二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色ポリプロピ レンフィルムを基材として用 ヽ、実施例 1と同様の条件で D面側の B層上に受容層を 形成し、受容シートを作製した。なお、得た白色ポリプロピレンフィルムの厚み構成は 、 B A = 1 β m/33 μ m/1 μ mであった 0
[0197] (実施例 9)
実施例 4の Α層の榭脂原料と Β層の榭脂原料を用いて、実施例 1の製膜条件にお いて、金属ドラムの表面温度を 120°Cに上げ、縦延伸倍率を 6倍としたこと以外は同 様の条件で二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色ポリ プロピレンフィルムを基材として用い、実施例 1と同様の条件で D面側の B層上に受 容層を形成し、受容シートを作製した。なお、得た白色ポリプロピレンフィルムの厚み 構成は、 B層 ZA層 ZB層 = 1 m/33 μ m/1 μ mであった。
[0198] (実施例 10)
A層の榭脂原料および B層の榭脂原料を以下の通り準備した。
[A層の樹脂原料]
実施例 4で用 、た A層の榭脂を用 ヽた。
[0199] [B層の榭脂原料]
hPPlを 74. 8質量0 /0、 rEPClを 25質量0 /0、および、平均粒径 1. の球状シリ 力粒子を 0. 2質量%の割合で混合し、その他の条件は実施例 1の B層の樹脂と同様 にしてチップを作成した。
[0200] 上記の榭脂原料を用いて、実施例 1の製膜条件において、金属ドラムの表面温度 を 70°Cに下げ、縦延伸倍率を 4倍としたこと以外は同様の条件で二軸配向白色ポリ プロピレンフィルムを作製した。また、得られた白色ポリプロピレンフィルムを基材とし て用い、実施例 1と同様の条件で D面側の B層上に受容層を形成し、受容シートを作 製した。なお、得た白色ポリプロピレンフィルムの厚み構成は、 B層 ZA層/ B層 = 1 μ m, 63 μ / 1 μ mであつに。
[0201] (実施例 11)
実施例 2において、金属ドラム温度を 50°Cとする以外は、同じ条件にて製膜、加工 を行った。
[0202] (実施例 12)
実施例 2において、 A層の樹脂に添加する粒子を酸ィ匕チタン粒子から、平均粒径 0
. 1 mの α—酸ィ匕アルミニウム粒子に変更した以外は、同じ条件にて製膜、加工を 行った。
[0203] [表 1]
コア層 (Α層) の樹脂誠
it* 晶核剤 it* P P以外の他 it* 粒子 脾
Ρ Ρ
(® %) /β Ρ Ρ (M*%) のポリマー (質 *%) (a) (質■%) hPP1 83.8
錢例 1 NU-100 0.2 mVLDPE 3 TiO, 10
HMS-PP 3 hPP1 90.8
実施例 2 NU-100 0.2 mVLDPE 3 Ti02 3
HMS-PP 3 hPP1 73.8
実施例 3 NU-100 0.2 mVLDPE 3 Ti02 20
HMS-PP 3
hPP2 69.95
実施例 4 PEONYのマ 10 NU-100 0.05 mVLDPE 5 Ti02 15 卜リックス 実施例 5 hPP1 45 β?? 45 - - Ti02 10 雄例 6 hPP1 89.8 NU-100 0.2 Ti02 10
*ϋ例 7 hPP1 84.8 NU-100 0.2 - - Ti02 15 hPP1 83.8
実施例 8 NU-100 0.2 mVLDPE 3 ZnO 10
HMS-PP 3
hPP2 69.95
実施例 9 PEONYのマ 10 NU-100 0.05 mVLDPE 5 Ti02 15 卜リックス
hPP2 69.95
実施例 1 0 PEONYのマ 10 NU-100 0.05 mVLDPE 5 Ti02 15 トリックス
hPP1 90.8
実施例 1 1 NU-100 0.2 mVLDPE 3 Ti02 3
HMS-PP 3 hPP1 90.8
実施例 1 2 NU-100 0.2 mVLDPE 3 Al203 3
HMS-PP 3 2] スキン層 (B層) の榭脂誠
結晶核剤 T c
P P 粒 T(b)
(質量0 /o) または樹脂 (MM%) (°C) hPP1 73.8
実施例 1 HMS-PP 1 Si02 0.2 121 rEPC 25 hPP1 71
実施例 2 HMS-PP 1 Si02 3 122 rEPC 25 hPP1 73.95
実施例 3 HMS-PP 1 Si02 0.05 121 rEPC 25 パイン
実施例 4 rEPC 99.6 0.2 Si02 0.2 126 クリスタル hPP1 73.8
鶴例 5 HMS-PP 1 Si02 0.2 121 rEPC 25 hPP1 21.8 架橋
実施例 6 HMS-PP 3 0.2 1 15 rEPC 75 PMMA hPP1 71
実施例 7 HMS-PP 1 PMP 3 120 rEPC 25 hPP1 73.8
実施例 8 HMS-PP 1 Si02 0.2 121 rEPC 25 パイン
実施例 9 rEPC 99.6 0.2 Si02 0.2 126 クリスタル hPP1 74.8
1¾例 1 0 - - Si02 0.2 107 rEPC 25 hPP1 71
実施例 1 1 HMS-PP 1 Si02 3 122 rEPC 25 hPP1 71
実施例 1 2 HMS-PP 1
rEPC 25 Si02 3 122
3] スキン層 (C層) の樹脂繊
金属ドラ
PP系 肺 脾 金属ドラム 延伸倍率 添加剤 ム SJt
樹脂 («■%) (HS%) への粘着 (長手
CO 実施例 1 ― - - - 95 良 5 9 実施例 2 - - - - 95 良 5 x 9 実施例 3 - - ― - 95 良 5 x 9 実施例 4 一 - - - 85 良 5 x 9 hPP1 49.8
実施例 5 Si02 0.2 110 良 5 x 9 rEPC 50 hPP1 24.8
実施例 6 Si02 0.2 110 良 5 x 9 rEPC 75 hPP1 49.8
実施例 7 Si02 0.2 110 良 5 x 9 rEPC 50 実施例 8 - - - - 95 良 5 x 9 実施例 9 - - - - 120 良 6 x 9 実施例 10 - - - - 70 良 4 x 9 実施例 1 1 - - - - 50 良 5 x 9 実施例 12 - - - - 50 良 5 x 9
4] A層 B層 C層 工程 厚 成 核を有する 粒子の 粒子の 粒子の 赚性
Si 性 ポィドの数 平均分 1«圣 平均分散径 平均分謝圣
(個) (nm) ( m) ( m)
A/B
実施例 1 A 良 20 250 2 - ( 30 / 5 )
B/A/B
実施例 2 B 良 7 250 2 - ( 1 / 33 / 1 )
B/A/B
実施例 3 B 良 35 300 2 - ( 1 / 33 / 1 )
B/A/B
実施例 4 A 良 28 250 2 - (2/31 /2)
B/A/C
実施例 5 A 良 22 250 2 2
( 1 / 33 / 1 )
B/A/C
実施例 6 A 良 21 250 2 2.5
( 1 / 33 / 1 )
B/A/C
実施例 7 A 良 27 250 1 3
( 3 / 29 / 3 )
B/A/B
実施例 8 A 良 12 350 2
( 1 / 33 / 1 )
B/A/B
実施例 9 B 良 29 250 2
( 1 / 33 / 1 )
B/A/B
難例 10 B 良 28 250 2
( 1 / 33 / 1 )
B/A/B
実施例 1 1 B 良 5 250 2 - ( 1 /33/ 1 )
B/A/B
実施例 12 B 良 4 380 2 - ( 1 / 33 / 1 ) 5] BI 'の表面糊生 クッシ
空 光学 動摩擦
R a 表面 ヨン率
b値 濃度 係数
(%) (%) ( M m) 欠点 (%) 実施例 1 0.2 90 0.27 -4.5 良 21 0.8 0.32 実施例 2 1.2 85 0.45 -2.8 良 19 0.7 0.25 実施例 3 0.05 103 0.33 -5.2 良 25 0.8 0.45 実施例 4 0.1 125 0.15 -4.1 良 22 0.7 0.37 実施例 5 0.1 90 0.27 -4.5 良 22 0.7 0.47 実施例 6 0.1 125 0.25 - 4.0 良 20 0.7 0.35 実施例 7 0.1 90 0.47 -4.7 良 22 0.8 0.30 実施例 8 0.1 90 0.27 -4.5 良 18 0.7 0.32 実施例 9 0.2 75 0.25 -5.5 良 24 0.8 0.35 実施例 1 0 0.1 127 0.18 - 2.5 良 15 0.6 0.35 実施例 1 1 1.2 84 0.43 -27 良 12 0.5 0.25 実施例 1 2 1.2 84 0.43 - 2.7 良 18 0.7 0.25
6] 受容シート撤
β 空 フイルム 光反射率
赚れ エンボス深 耐ェン 受容層
(%) の比重 (%) 感度
じわ性 さ ( ) ボス性 密 *1±
Hffi例 1 良 48 0.61 91 A A 8 A B 実施例 2 良 43 0.57 90 A A 15 B B 実施例 3 良 64 0.54 98 A B 5 A B 諭例 4 良 60 0.53 94 A A 7 A B 実施例 5 良 48 0.62 91 A A 10 B A
H¾例 6 良 54 0.55 90 A A 8 A A 実施例 7 良 61 0.51 95 A A 10 B A 良 42 0.78 90 A · A 12 B B 実施例 9 良 65 0.47 95 A B 17 B B 実施例 1 0 良 30 0.94 85 B A 4 A B 雄例 1 1 良 19 0.81 70 B A 6 A B 実施例 1 2 良 39 0.61 89 A A 18 B B
[0209] 実施例 1〜10の二軸配向白色ポリプロピレンフィルム、受容シートの榭脂組成、製 膜条件、フィルム特性、および、受容シート特性を表 1〜6に示す。
[0210] 表より、実施例 1〜9の白色ポリプロピレンフィルムは、金属ドラムに粘着せず、製膜 性および工程通過性に優れていた。また、二軸延伸後のフィルム表面には、クレータ 状の欠点が見られな力つた。これを反映して、 B層の表面粗さは小さぐ動摩擦係数 が低くて滑り性が良好であり、光沢度は高かった。また、粗大なボイドを形成すること なぐ均一かつ緻密なボイドを形成することから、耐折れじわ性および耐エンボス性が 悪ィ匕しない程度に空孔率が高ぐクッション率が高ぐ良好な光学濃度および b値を 有していた。このような白色ポリプロピレンフィルムを基材として用い、 B層上に受容層 を形成した感熱転写記録用受容シートは、受容層の接着力が高ぐ極めて感度が高 かった。また、本白色ポリプロピレンフィルムは 560nmでの光反射率が非常に高い 値を示した。
[0211] 実施例 10では、スキン層(B層)の結晶化温度が低いため、他の実施例に比較して 反射率が低力つた力 実用上問題な 、レベルであった。
[0212] 実施例 11では、フィルムの空孔率が低いために、感度および光反射率が若干劣つ ていたが、他の特性は優れていた。
[0213] 実施例 12では、コア層(A )中の核を有するボイド数が少ないために、耐エンボス 性に若干劣って 、たが、他の特性は優れて!/、た。
[0214] (比較例 1)
実施例 1において、スキン層(B層)を積層せず、コア層(A層)のみの単層フィルム とした以外は実施例 1と同様の条件で、厚みが 35 μ mである二軸配向白色ポリプロ ピレンフィルムを作製した。また、得られた白色ポリプロピレンフィルムを基材として用 い、実施例 1と同様の条件でフィルムの D面側の表面に受容層を形成し、受容シート を作製した。
[0215] (比較例 2)
コア層(A層)への酸ィ匕チタン粒子添加の代わりに hPPlを増量した以外は、実施 例 2と同様の榭脂原料を 2種 3層口金に供給し、実施例 2と同様の条件で、フィルム 厚み構成を B層 ZA層 ZB層 = 1 πι/33 ^ ιη/1 μ mの二軸配向白色ポリプロピ レンフィルムを作製した。また、得られた白色ポリプロピレンフィルムを基材として用い 、実施例 1と同様の条件でフィルムの D面側の B層表面に受容層を形成し、受容シー トを作製した。
[0216] (比較例 3)
コア層(A層)への酸化チタン粒子添力卩量を 25質量%に増量し、その分の hPPlの 使用割合を減量した以外は、実施例 2と同様の榭脂原料を 2種 3層口金に供給し、フ イルム厚み構成を B層 ZA層 ZB層 = 1 m/33 μ m/1 μ mとして、実施例 2と同 様の条件で、二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色ポ リプロピレンフィルムを基材として用い、実施例 1と同様の条件でフィルムの D面側の B層表面に受容層を形成し、受容シートを作製した。
[0217] (比較例 4)
実施例 1において、コア層(A層)の酸化チタン粒子を、平均粒径 1 μ mの炭酸カル シゥム粒子 (丸尾カルシウム (株)製、 MSK— PO)に変更した以外は同様の榭脂原 料を、 2種 3層口金に供給し、 A層の両面に B層を積層した BZAZB型の 2種 3層構 成とした以外は、実施例 1と同様の条件で、二軸配向白色ポリプロピレンフィルムを作 製した。また、得られた白色ポリプロピレンフィルムを基材として用い、実施例 1と同様 の条件でフィルムの D面側の B層表面に受容層を形成し、受容シートを作製した。
[0218] (比較例 5)
比較例 4のコア層(A層)の酸ィ匕チタン粒子を、一次平均粒径 lOnmの酸ィ匕亜鉛粒 子 (堺ィ匕学工業 (株))製、 FONEX— 75)に変更した以外は、比較例 4と同様の条件 で、二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色ポリプロピレ ンフィルムを基材として用い、実施例 1と同様の条件でフィルムの D面側の B層表面 に受容層を形成し、受容シートを作製した。
[0219] (比較例 6)
比較例 4のコア層(A層)の酸ィ匕チタン粒子を、ポリプロピレン榭脂に非相溶である ポリカーボネート(出光石油化学 (株)製、 A—2500)に変更した以外は、比較例 4と 同様の条件で、二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色 ポリプロピレンフィルムを基材として用い、実施例 1と同様の条件でフィルムの D面側 の B層表面に受容層を形成し、受容シートを作製した。
[0220] (比較例 7)
実施例 1のコア層(A層)榭脂組成にお!、て、 β晶核剤を hPPlに置き換えた以外 は、実施例 1と同様の条件で、二軸配向白色ポリプロピレンフィルムを作製した。また 、得られた白色ポリプロピレンフィルムを基材として用い、実施例 1と同様の条件でフ イルムの D面側の B層表面に受容層を形成し、受容シートを作製した。
[0221] (比較例 8)
実施例 1のスキン層(B層)の球状シリカ粒子を平均粒径 0. 6 μ mの炭酸カルシウム 粒子 (丸尾カルシウム (株)製、 CUBE)に変更した以外は、実施例 1と同様の条件で 、二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色ポリプロピレン フィルムを基材として用い、実施例 1と同様の条件でフィルムの D面側の B層表面に 受容層を形成し、受容シートを作製した。
[0222] (比較例 9)
実施例 1のスキン層(B層)の球状シリカ粒子を平均粒径 5. 6 μ mの炭酸カルシウム 粒子 (丸尾カルシウム (株)製、 CUBE)に変更した以外は、実施例 1と同様の条件で 、二軸配向白色ポリプロピレンフィルムを作製した。また、得られた白色ポリプロピレン フィルムを基材として用い、実施例 1と同様の条件でフィルムの D面側の B層表面に 受容層を形成し、受容シートを作製した。
[0223] (比較例 10)
実施例 1のスキン層(B層)の球状シリカ粒子の添加量を 0. 02質量%に減らし、そ の分 hPPlを増量した以外は、実施例 1と同様の条件で、二軸配向白色ポリプロピレ ンフィルムを作製した。また、得られた白色ポリプロピレンフィルムを基材として用い、 実施例 1と同様の条件でフィルムの D面側の B層表面に受容層を形成し、受容シート を作製した。
[0224] (比較例 11)
実施例 1のスキン層(B層)の球状シリカ粒子の添加量を 6質量%に増やし、その分 hPPlを減量した以外は、実施例 1と同様の条件で、二軸配向白色ポリプロピレンフィ ルムを作製した。また、得られた白色ポリプロピレンフィルムを基材として用い、実施 例 1と同様の条件でフィルムの D面側の B層表面に受容層を形成し、受容シートを作 製した。
[0225] (比較例 12)
A層の榭脂原料は、実施例 1で用いた榭脂を使用した。 B層の榭脂原料は、 rEPC を 99. 98質量%と実施例 1で使用した球状シリカ粒子 0. 02質量%の混合物とした。 実施例 1と同じ条件で、二軸配向白色ポリプロピレンフィルムを作製した。また、得ら れた白色ポリプロピレンフィルムを基材として用い、実施例 1と同様の条件でフィルム の D面側の B層表面に受容層を形成し、受容シートを作製した。
[表 7]
コア層 (AI F)の樹脂繊
it* 3晶核斉 IJ it* P P以外の他 it*
P P
(«■%) //8 P P (»¾%) のポリマー (質量0 /o) (質 M%) hPP1 83.8
NU-100 0.2 mVLDPE 3 Ti02 10 HMS-PP 3
93.8
a i 2 NU-100 0.2 mVLDPE 3 - 3 hPP1 68.8
NU-100 0.2 mVLDPE 3
HMS-PP 3 Ti02 25 hPP1 83.8
NU-100 0.2 mVLDPE 3 CaC03 10 HMS-PP 3 hPP1 83.8
NU-100 0.2 mVLDPE 3 ZnO 10 HMS-PP 3 hPP1 83.8
NU-100 0.2 mVLDPE 3 PC 10 HMS-PP 3 hPP1 84
mVLDPE 3 10 HMS-PP 3 Ti02 hPP1 83.8
NU-100 0.2 mVLDPE 3 Ti02 10 HMS-PP 3 hPP1 83.8
NU-100 0.2 mVLDPE 3 Ti02 10 HMS-PP 3 hPP1 83.8
NU-100 0.2 mVLDPE 3 Ti02 10 HMS-PP 3 hPP1 83.8
tt¾¾5J 1 1 NU-100 0.2 mVLDPE 3 Ti02 10
HMS-PP 3 hPP1 83.8
iWJ 1 2 NU-100 0.2 mVLDPE 3 Ti02 10
HMS-PP 3 [0227] [表 8]
Figure imgf000063_0001
[0228] [表 9]
Figure imgf000064_0001
10]
Figure imgf000065_0001
11]
Figure imgf000066_0001
[0231] 結果を表 7〜: L Iに示す。
[0232] 比較例:!〜 10では、得られたフィルムは金属ドラムに粘着しな力 た。また、ニ軸延 伸後のフィルム表面には、クレータ状の欠点が見られなかった。一方、比較例 11、 1 2では、金属ドラム面に粘着欠点が見られ、光沢度の低いものであった。特に比較例 12では、延伸シート表面に図 4に示すような著しい金属ドラムとの粘着跡が観察され た。
[0233] 比較例 1では、スキン層(B層)が積層されて 、な 、ため製膜安定性および工程通 過性に劣り、得られたフィルムは光沢度が低力つた。また、貫通孔を有しているため、 受容層を塗布すると、コーティング剤がフィルム内部に浸透し、受容シートも光沢感 が無力つた。さらに、フィルム表層に大量の空隙が存在するため力、受容層の接着力 が低かった。
[0234] 比較例 2では、コア層(A )に平均分散径が 60〜400nmの範囲の粒子を添カロし ていないため、フィルム破れが多発し、安定製膜できな力つた。また、フィルムの空孔 率が下がり、受容シートとして用いたときに、印画後のエンボス深さが 20 mを越え て、印画紙にスジが入ったように観察された。
[0235] 比較例 3では、コア層(A )中の平均分散径が 60〜400nmの範囲の粒子の含有 量が 20質量%を超えており、安定した溶融押出性ができず、またスキン層との共押 出性が低下して表面粗れが起こり、さらに、製膜工程中でフィルム端部をカットして卷 き取る際に、フィルム端部力も粒子が脱落してワインダー内のロールが汚れるなど、 長時間の連続製膜ができな力つた。さらに、フィルム中に粒子の凝集による粗大なボ イドを形成しているために、受容シートとして用いたときに、印画後のエンボス深さが 2 0 mを越えて、印画紙にスジが入ったように観察された。
[0236] 比較例 4では、 A層中の粒子が凝集して平均分散径が 60〜400nmの範囲を超え るため、製膜工程中に粒子が脱落して長時間の連続製膜ができなくなって安定製膜 性が低下した。また、フィルム中に粒子の凝集による粗大なボイドを形成しているため に、受容シートとして用いたときに、印画後のエンボス深さが 20 /z mを超えて、印画 紙にスジが入ったように観察された。
[0237] 比較例 5では、 A層に用いた酸ィ匕亜鉛のポリプロピレン榭脂への分散性が悪ぐフィ ルム中での平均分散径が 60〜400nmの範囲を越え、製膜工程中に粒子が脱落し て長時間の安定製膜性および工程通過性が悪ィ匕した。フィルム中で粒子が凝集した ことにより粗大なボイドを形成し、そのため、受容シートとして用いたときに、感度が低 く、印画後のエンボス深さが 20 mを越えて、印画紙にスジが入ったように観察され た。また、光反射率も低いものであった。 [0238] 比較例 6では、 A層中のポリカーボネートの平均分散径カ ½0〜400nmの範囲を超 えるために、フィルム中に粗大なボイドを形成し、そのため、受容シートとして用いたと きに、感度が低ぐまた、反射率も低いものであった。
[0239] 比較例 7では、 β晶活性を有して 、な 、ために、 Α層中のボイド形成が非常に少な ぐ空孔率が低力つた。そのため、横延伸の際にフィルム破れが頻発して製膜性に劣 り、また、受容シートとして用いたときに感度が低ぐさらに反射率も低力つた。
[0240] 比較例 8では、 B層中の粒子の平均分散径が 1 μ m未満であるために、動摩擦係 数が大きくて滑り性が悪く、製膜工程にぉ 、て金属ロールとの滑り性が悪 、ために破 れが起こり、生産性に劣っていた。
[0241] 比較例 9では、 B層中の粒子の平均分散径カ mを越えているために、製膜工程 中の金属ロールで擦過により粒子が脱落し、表面が削られて表面欠点が発生し、破 れが発生したため製膜性や工程通過性に劣っていた。
[0242] 比較例 10では、 B層中の粒子含有量が 0. 05質量%未満であるために、動摩擦係 数が大きぐ製膜工程において金属ロールとの滑りが悪いために破れが起こり、生産 '性に劣っていた。
[0243] 比較例 11では、 B層への粒子添加量が 5質量%を越えているために、製膜工程に おいて粒子が脱落し装置を汚染したため、フィルム表面に欠点が発生してしまい、そ こ力もフィルム破れが起こるため、製膜性および工程通過性に劣って 、た。
[0244] 比較例 12では、スキン層中の粒子添加量が少ないことにカ卩えて、結晶化温度が低 いために、加熱ロールへの粘着し、また滑りが悪いことから破れが多発し、製膜性に 劣っていた。さらに、受容シートにおいても欠点が観察され、感度に劣っていた。 産業上の利用可能性
[0245] 本発明の二軸配向白色ポリプロピレンフィルムは、優れたフィルム特性および、生 産性を有しており、たとえば、以下のような応用が可能である。
(1)感熱転写記録用受容シートの基材として用いた場合、感度と生産性を高いレべ ルで両立している。
(2)隠蔽性、生産性に優れることから、ラベルや一般掲示物の基材に用いることがで きる。 (3)隠蔽性、生産性に優れることから、一般包装用フィルムとして用いることができる。
(4)クッション率が高ぐ生産性に優れ、溶融しても結晶化速度が高いので、工程を 汚すことなく容易に回収できることから、フレキシブルプリント配線基盤に代表される 回路基盤の製造工程において、緩衝離型フィルムとして用いることができる。
(5)隠蔽性、生産性に優れ、光の反射特性にも優れることから、光源の反射板に用 いることがでさる。
[0246] いずれの場合も、本発明のフィルムを単独で用いても、他の層を積層して用いても 構わない。他の層を積層することにより、光沢、ヒートシール性、接着性、耐熱性、離 型性などを付与することができる。
[0247] このように、本発明の二軸配向白色ポリプロピレンフィルムは、感熱転写記録用をは じめとして、包装用途、工業用途などにおいて、広く用いることができる。

Claims

請求の範囲
[1] コア層(A層)およびスキン層(B層)を有する二軸配向白色ポリプロピレンフィルムで あって、該 A層の少なくとも片面に該 B層が積層され、該 A層は、 β晶活性を有する ポリプロピレン榭脂および 1〜20質量%の平均分散径 60〜400nmの粒子(a)を含 み、かつ、該 B層は、ポリプロピレン榭脂および 0. 05〜5質量%の平均分散径 1〜4 μ mの粒子(b)を含む二軸配向白色ポリプロピレンフィルム。
[2] 粒子 (a)力 酸化亜鉛、酸ィ匕アルミニウムおよび酸ィ匕チタン力もなる群力も選ばれる 少なくとも 1種の粒子である、請求項 1に記載の二軸配向白色ポリプロピレンフィルム
[3] フィルムの空孔率が 20%以上である、請求項 1または 2に記載の二軸配向白色ポリ プロピレンフイノレム。
[4] A層断面 10 m X 10 m当たりに存在する、粒子 (a)を核とするボイド数が 5個以上 である、請求項 1〜3のいずれかに記載の二軸配向白色ポリプロピレンフィルム。
[5] B層の結晶化温度が 115°C以上である、請求項 1〜4のいずれかに記載の二軸配向 白色ポリプロピレンフィルム。
[6] 光反射板用である、請求項 1〜5のいずれかに記載の二軸配向白色ポリプロピレンフ イノレム。
[7] 請求項 1〜5のいずれかに記載の二軸配向白色ポリプロピレンフィルムを用いた光反 射板。
[8] 感熱転写記録用受容紙シート用である、請求項 1〜5のいずれかに記載の二軸配向 白色ポリプロピレンフィルム。
[9] 請求項 1〜5のいずれかに記載の二軸配向白色ポリプロピレンフィルムの少なくとも 片面に受容層を設けた感熱転写記録用受容シート。
[10] 感熱転写記録用プリンタ一にて、感熱転写記録用受容シートへの印画後のエンボス 深さが 20 m以下である、請求項 9に記載の感熱転写記録用受容シート。
PCT/JP2007/059909 2006-05-16 2007-05-15 二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート WO2007132826A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20070743344 EP2018962B1 (en) 2006-05-16 2007-05-15 Biaxially oriented white polypropylene film, reflective plate, and receiving sheet for thermal transfer recording
CN2007800175593A CN101443193B (zh) 2006-05-16 2007-05-15 双轴取向白色聚丙烯膜、反射板和热敏转印记录用载片
US12/301,018 US8512828B2 (en) 2006-05-16 2007-05-15 Biaxially oriented white polypropylene film, reflection plate and receiving sheet for thermal transfer recording
JP2008515552A JP5077229B2 (ja) 2006-05-16 2007-05-15 二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート
KR1020087030510A KR101385389B1 (ko) 2006-05-16 2007-05-15 이축 배향 백색 폴리프로필렌 필름, 반사판 및 감열 전사 기록용 수용 시트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-136143 2006-05-16
JP2006136143 2006-05-16

Publications (1)

Publication Number Publication Date
WO2007132826A1 true WO2007132826A1 (ja) 2007-11-22

Family

ID=38693916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059909 WO2007132826A1 (ja) 2006-05-16 2007-05-15 二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート

Country Status (7)

Country Link
US (1) US8512828B2 (ja)
EP (1) EP2018962B1 (ja)
JP (1) JP5077229B2 (ja)
KR (1) KR101385389B1 (ja)
CN (1) CN101443193B (ja)
TW (1) TWI421166B (ja)
WO (1) WO2007132826A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119749A1 (ja) * 2008-03-26 2009-10-01 旭化成イーマテリアルズ株式会社 反射シート
JP2012007156A (ja) * 2010-05-26 2012-01-12 Toray Ind Inc 多孔性ポリプロピレンフィルム
JP2014518783A (ja) * 2011-04-27 2014-08-07 イーストマン コダック カンパニー 両面熱染料受容体要素および方法
KR101515972B1 (ko) * 2013-11-06 2015-04-29 대림산업 주식회사 우수한 생산성 및 내열성을 갖는 합성지
CN105172284A (zh) * 2015-07-30 2015-12-23 中山火炬职业技术学院 具备耐久爽滑特性的bopp薄膜及其制备方法
JP5970815B2 (ja) * 2010-08-27 2016-08-17 東レ株式会社 白色積層フィルムの製造方法および白色積層ポリエステルフィルム
TWI595271B (zh) * 2012-08-03 2017-08-11 Teijin Dupont Films Japan Ltd White reflective film
WO2019059222A1 (ja) * 2017-09-21 2019-03-28 株式会社Tbm 熱可塑性樹脂組成物およびこれを用いてなる成形品
JP2019061162A (ja) * 2017-09-27 2019-04-18 三菱ケミカル株式会社 反射材
JP2020044702A (ja) * 2018-09-19 2020-03-26 三菱ケミカル株式会社 積層多孔フィルム
WO2020196760A1 (ja) * 2019-03-28 2020-10-01 三菱ケミカル株式会社 反射材
WO2021132521A1 (ja) * 2019-12-27 2021-07-01 三菱ケミカル株式会社 多孔性断熱フィルム及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592075B1 (ko) 2009-03-09 2016-02-04 아사히 가세이 이-매터리얼즈 가부시키가이샤 적층 세퍼레이터, 폴리올레핀 미다공막 및 축전 디바이스용 세퍼레이터
WO2010131705A1 (ja) * 2009-05-13 2010-11-18 新日本理化株式会社 アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法
WO2011050042A1 (en) * 2009-10-21 2011-04-28 Milliken & Company Thermoplastic polymer composition
FR2954595B1 (fr) * 2009-12-21 2012-03-30 Bollore Film de separateur, son procede de fabrication, supercondensateur, batterie et condensateur munis du fim
JP5906595B2 (ja) 2011-07-19 2016-04-20 セイコーエプソン株式会社 液晶表示装置および電子機器
JP6959606B2 (ja) * 2016-03-24 2021-11-02 凸版印刷株式会社 化粧シート及び化粧シートの製造方法
WO2017170244A1 (ja) * 2016-03-28 2017-10-05 東洋紡株式会社 二軸配向ポリプロピレンフィルム
DE102022212827A1 (de) * 2022-11-29 2024-05-29 Benecke-Kaliko Aktiengesellschaft Band, insbesondere Narbband, Verfahren zu dessen Herstellung und Verwendung

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121704A (ja) 1985-01-31 1987-06-03 モンテル ノース アメリカ インコーポレイテッド 自由端長鎖枝分れを有するポリプロピレンおよびその製造法
JPH04309546A (ja) 1990-12-21 1992-11-02 Amoco Corp 配向高分子性微孔性フィルム
JPH0578512A (ja) 1989-12-29 1993-03-30 Mobil Oil Corp 不透明な延伸重合フイルム構造物とその製法
JPH06157666A (ja) 1992-11-26 1994-06-07 Chisso Corp 高溶融張力ポリプロピレンおよびその製造方法と成形品
JPH07232397A (ja) * 1994-02-23 1995-09-05 Oji Yuka Synthetic Paper Co Ltd 印刷性の優れた不透明積層樹脂フイルム
JPH08262208A (ja) 1995-01-27 1996-10-11 Mitsui Toatsu Chem Inc 光反射体及びそれを用いた光反射装置
JPH11348136A (ja) * 1998-06-04 1999-12-21 Oji Yuka Synthetic Paper Co Ltd 多層樹脂延伸フィルムの製造方法
WO2003093004A1 (en) 2002-05-01 2003-11-13 Exxonmobil Corporation Thermoplastic film based on polypropylene
JP2004160689A (ja) * 2002-11-08 2004-06-10 Toray Ind Inc 白色二軸延伸ポリプロピレンフィルムおよびそれからなる包装体、表示物、感熱転写記録用受容シート
JP2004309804A (ja) * 2003-04-08 2004-11-04 Yupo Corp 光反射体
WO2005103127A1 (ja) 2004-04-22 2005-11-03 Toray Industries, Inc. 微孔性ポリプロピレンフィルムおよびその製造方法
JP2006095940A (ja) * 2004-09-30 2006-04-13 Toray Ind Inc 微孔性ポリプロピレンシートおよびそれを用いた合成紙
JP2006181915A (ja) 2004-12-28 2006-07-13 Toyobo Co Ltd ポリプロピレン系積層フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW344032B (en) 1995-01-27 1998-11-01 Mitsui Toatsu Chemicals Light reflective sheet and light reflector using it
US6534150B1 (en) * 1998-05-20 2003-03-18 Oji-Yuka Synthetic Paper Co., Ltd. Stretched film of thermoplastic resin
EP1542042A4 (en) 2002-07-24 2008-07-09 Yupo Corp REFLECTING ARTICLE
ATE404381T1 (de) * 2002-09-10 2008-08-15 Yupo Corp Schmelzwärme bertragungs-aufzeichnungspapier
CA2551526C (en) * 2003-12-26 2012-11-13 Toray Industries, Inc. Biaxially oriented white polypropylene film for thermal transfer recording and receiving sheet for thermal transfer recording therefrom

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121704A (ja) 1985-01-31 1987-06-03 モンテル ノース アメリカ インコーポレイテッド 自由端長鎖枝分れを有するポリプロピレンおよびその製造法
JPH0578512A (ja) 1989-12-29 1993-03-30 Mobil Oil Corp 不透明な延伸重合フイルム構造物とその製法
JPH04309546A (ja) 1990-12-21 1992-11-02 Amoco Corp 配向高分子性微孔性フィルム
JPH06157666A (ja) 1992-11-26 1994-06-07 Chisso Corp 高溶融張力ポリプロピレンおよびその製造方法と成形品
JPH07232397A (ja) * 1994-02-23 1995-09-05 Oji Yuka Synthetic Paper Co Ltd 印刷性の優れた不透明積層樹脂フイルム
JPH08262208A (ja) 1995-01-27 1996-10-11 Mitsui Toatsu Chem Inc 光反射体及びそれを用いた光反射装置
JPH11348136A (ja) * 1998-06-04 1999-12-21 Oji Yuka Synthetic Paper Co Ltd 多層樹脂延伸フィルムの製造方法
WO2003093004A1 (en) 2002-05-01 2003-11-13 Exxonmobil Corporation Thermoplastic film based on polypropylene
JP2004160689A (ja) * 2002-11-08 2004-06-10 Toray Ind Inc 白色二軸延伸ポリプロピレンフィルムおよびそれからなる包装体、表示物、感熱転写記録用受容シート
JP2004309804A (ja) * 2003-04-08 2004-11-04 Yupo Corp 光反射体
WO2005103127A1 (ja) 2004-04-22 2005-11-03 Toray Industries, Inc. 微孔性ポリプロピレンフィルムおよびその製造方法
JP2006095940A (ja) * 2004-09-30 2006-04-13 Toray Ind Inc 微孔性ポリプロピレンシートおよびそれを用いた合成紙
JP2006181915A (ja) 2004-12-28 2006-07-13 Toyobo Co Ltd ポリプロピレン系積層フィルム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. TURNER JONES, MAKROMOLEKULARE CHEMIE, vol. 75, 1964, pages 134
KIYOKAZU MATSUMOTO ET AL., JOURNAL OF FIBER SCIENCE AND TECHNOLOGY, no. 26, 1970, pages 537
KIYOKAZU MATSUMOTO, MAKING FILM, 1993, pages 67 - 86
See also references of EP2018962A4
SEIZO OKAMURA ET AL., KOBUNSHI KAGAKU JORON, 1981, pages 92 - 93

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009119749A1 (ja) * 2008-03-26 2011-07-28 旭化成株式会社 反射シート
US8434885B2 (en) 2008-03-26 2013-05-07 Asahi Kasei Kabushiki Kaisha Reflecting sheet
WO2009119749A1 (ja) * 2008-03-26 2009-10-01 旭化成イーマテリアルズ株式会社 反射シート
JP2012007156A (ja) * 2010-05-26 2012-01-12 Toray Ind Inc 多孔性ポリプロピレンフィルム
JP5970815B2 (ja) * 2010-08-27 2016-08-17 東レ株式会社 白色積層フィルムの製造方法および白色積層ポリエステルフィルム
JP2014518783A (ja) * 2011-04-27 2014-08-07 イーストマン コダック カンパニー 両面熱染料受容体要素および方法
TWI595271B (zh) * 2012-08-03 2017-08-11 Teijin Dupont Films Japan Ltd White reflective film
TWI632403B (zh) * 2012-08-03 2018-08-11 日商帝人都朋軟片股份有限公司 White reflective film
TWI632402B (zh) * 2012-08-03 2018-08-11 日商帝人都朋軟片股份有限公司 White reflective film
KR101515972B1 (ko) * 2013-11-06 2015-04-29 대림산업 주식회사 우수한 생산성 및 내열성을 갖는 합성지
CN105172284A (zh) * 2015-07-30 2015-12-23 中山火炬职业技术学院 具备耐久爽滑特性的bopp薄膜及其制备方法
WO2019059222A1 (ja) * 2017-09-21 2019-03-28 株式会社Tbm 熱可塑性樹脂組成物およびこれを用いてなる成形品
JPWO2019059222A1 (ja) * 2017-09-21 2020-06-18 株式会社Tbm 熱可塑性樹脂組成物およびこれを用いてなる成形品
US11643536B2 (en) 2017-09-21 2023-05-09 Tbm Co., Ltd. Thermoplastic resin composition and formed article formed by using thermoplastic resin composition
JP2019061162A (ja) * 2017-09-27 2019-04-18 三菱ケミカル株式会社 反射材
JP2020044702A (ja) * 2018-09-19 2020-03-26 三菱ケミカル株式会社 積層多孔フィルム
JP7215034B2 (ja) 2018-09-19 2023-01-31 三菱ケミカル株式会社 積層多孔フィルム
WO2020196760A1 (ja) * 2019-03-28 2020-10-01 三菱ケミカル株式会社 反射材
WO2021132521A1 (ja) * 2019-12-27 2021-07-01 三菱ケミカル株式会社 多孔性断熱フィルム及びその製造方法

Also Published As

Publication number Publication date
TW200804083A (en) 2008-01-16
US8512828B2 (en) 2013-08-20
US20090208676A1 (en) 2009-08-20
JP5077229B2 (ja) 2012-11-21
JPWO2007132826A1 (ja) 2009-09-24
TWI421166B (zh) 2014-01-01
CN101443193B (zh) 2013-08-28
EP2018962A4 (en) 2012-05-02
KR20090009979A (ko) 2009-01-23
CN101443193A (zh) 2009-05-27
EP2018962A1 (en) 2009-01-28
EP2018962B1 (en) 2013-07-10
KR101385389B1 (ko) 2014-04-14

Similar Documents

Publication Publication Date Title
JP5077229B2 (ja) 二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート
JP5194358B2 (ja) 二軸配向白色ポリプロピレンフィルムおよびそれを用いた感熱転写記録用受容シート
EP1702761B1 (en) Biaxially oriented white polypropylene film for thermal transfer recording and receiving sheet for thermal transfer recording therefrom
JP7205611B2 (ja) 二軸配向ポリプロピレンフィルム
WO2006121217A1 (ja) 二軸延伸積層ポリプロピレンフィルム及びその用途
JP7070426B2 (ja) 積層ポリプロピレンフィルム
TW201834861A (zh) 雙軸配向聚丙烯系膜以及積層體
EP3067385B1 (en) Thermoplastic resin film, adhesive sheet, and thermal transfer image-receiving sheet
AU2013320921B2 (en) Stretched resin film, method for producing the same, and laminate using stretched resin film
JP2004160689A (ja) 白色二軸延伸ポリプロピレンフィルムおよびそれからなる包装体、表示物、感熱転写記録用受容シート
JP4380531B2 (ja) 感熱転写記録用二軸配向白色フィルムおよびそれからなる感熱転写記録用受容シート
JP4506200B2 (ja) 感熱転写記録用白色積層ポリエステルフィルム
JP2005350615A (ja) 2軸延伸ポリエステルフィルム
JP2005059244A (ja) 二軸配向白色フィルム
JP2005059245A (ja) 感熱転写記録用二軸配向白色フィルムおよびそれからなる感熱転写記録用受容シート。
JP3411720B2 (ja) 感熱記録受容体用二軸配向積層ポリエステルフィルム
JP2008265267A (ja) 感熱孔版用ポリプロピレンフイルム及びこれからなる感熱孔版原紙
JP3411724B2 (ja) 感熱記録受容体用積層フィルム
JP2004142321A (ja) 感熱転写記録用二軸延伸ポリプロピレンフィルムおよびそれからなる感熱転写記録用受容シート。
JP2003211610A (ja) 白色積層ポリエステルフィルム
JPH0929912A (ja) 感熱記録受容体用二軸配向積層ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008515552

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780017559.3

Country of ref document: CN

Ref document number: 12301018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743344

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087030510

Country of ref document: KR