WO2010131705A1 - アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法 - Google Patents

アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法 Download PDF

Info

Publication number
WO2010131705A1
WO2010131705A1 PCT/JP2010/058098 JP2010058098W WO2010131705A1 WO 2010131705 A1 WO2010131705 A1 WO 2010131705A1 JP 2010058098 W JP2010058098 W JP 2010058098W WO 2010131705 A1 WO2010131705 A1 WO 2010131705A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
polyolefin resin
amide compound
polyolefin
compound
Prior art date
Application number
PCT/JP2010/058098
Other languages
English (en)
French (fr)
Inventor
礼良 生駒
祥平 岩崎
陽平 内山
Original Assignee
新日本理化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本理化株式会社 filed Critical 新日本理化株式会社
Priority to EP10774962A priority Critical patent/EP2431415A4/en
Priority to KR1020117029666A priority patent/KR101711227B1/ko
Priority to BRPI1013736A priority patent/BRPI1013736A2/pt
Priority to US13/264,488 priority patent/US9023921B2/en
Priority to JP2011513370A priority patent/JP5794145B2/ja
Priority to CN201080020641.3A priority patent/CN102421843B/zh
Publication of WO2010131705A1 publication Critical patent/WO2010131705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for suppressing the crystal growth rate of an amide compound present in a molten polyolefin resin, a crystal growth rate inhibitor for an amide compound, the use of a phenol compound as a crystal growth rate inhibitor for an amide compound, and a polyolefin.
  • the present invention relates to a method for producing a resin-based molded product.
  • Polyolefin-based resins have excellent moldability, mechanical properties, electrical properties, etc., so film molding (molding for producing films), sheet molding (molding for producing sheets), blow molding, injection molding It is used in various fields as a material.
  • polyolefin resins generally have excellent physical properties, but have a problem of low transparency, crystallinity and rigidity.
  • Patent Documents 1 to 5 techniques using amide compounds as nucleating agents have been proposed. When a polyolefin resin composition containing these amide compounds is molded, a molded product having excellent transparency and mechanical strength can be obtained.
  • molding methods such as injection molding, extrusion molding, sheet molding, film molding, and blow molding are known as molding methods.
  • injection speed, injection pressure, resin temperature (cylinder temperature, nozzle temperature, etc.), resin injection amount, screw rotation speed, mold temperature, mold shape, gate seal time, etc. are set from a number of combinations. It is necessary, the setting work is complicated, and labor and time are required. If such settings are inappropriate, the physical properties of the molded product may be adversely affected, or undissolved nucleating agents may remain, resulting in white spots and fish eyes, which may impair the appearance of the polyolefin molded product. Occurs.
  • the present invention relates to a method for suppressing the crystal growth rate of an amide compound present in a molten polyolefin-based resin, a crystal growth rate inhibitor for an amide compound, a method for using a phenolic compound as a crystal growth rate inhibitor for an amide compound, And it aims at providing the manufacturing method of a polyolefin-type resin molding.
  • the present inventors performed the production after optimizing the production conditions. However, when the production was performed, the pressure of the extruder increased (the increase was mainly due to clogging of the screen mesh, etc. In this case, loss of operating time, loss of resin, etc. due to replacement of the screen mesh) ) Is a problem, and white spots and fish eyes appear in the molded product.
  • the present inventors examined the cause, and because the amide compound has low solubility in the polyolefin resin, the set temperature of the extruder did not reach the dissolution temperature or the time for dissolution was short. It was estimated that this was caused by remaining in the polyolefin resin as an undissolved product. It was thought that this could be dealt with by pulverizing the amide compound and raising the set temperature of the kneading apparatus.
  • the main cause is that the specific amide compound grows in the crystals present in the molten polyolefin resin.
  • a specific amide compound (fine crystal) once completely dissolved in a polyolefin resin and then cooled and crystallized in the polyolefin resin has a relatively high crystal growth rate in the molten polyolefin resin. Being fast.
  • the crystal growth rate tended to be relatively high in the temperature range of about 180 to 260 ° C. in general.
  • the amide compound has a nucleating agent effect on the polyolefin resin.
  • the crystal growth tends to reduce the nucleating agent effect due to the reduction of the surface area.
  • the present inventors consider that in addition to optimizing the molding process conditions described above, a technique for suppressing crystal growth of a specific amide compound is necessary, and as a result of further intensive studies, a phenolic compound for a specific amide compound is obtained. It has been found that by allowing a compound to coexist in a polyolefin resin within a specific range, the crystal growth rate of the amide compound present in the molten polyolefin resin can be remarkably suppressed.
  • the present inventors considered the phenomenon of crystal growth of the amide compound present in the molten polyolefin resin as follows.
  • the state in which the amide compound is present in the molten polyolefin resin is in a temperature range lower than the temperature at which the amide compound is completely dissolved in the molten polyolefin resin. There are amide compounds dissolved in the resin. Usually, this state is considered that the dissolution and precipitation of crystals are in an equilibrium state.
  • the crystal of the amide compound is more agglomerated between the crystals than in the polyolefin resin. It was considered that the amide compound crystal grew as a result.
  • the suppression effect of the present invention is due to the interaction between a specific amide compound and a phenolic compound, in other words, the decrease in solubility of the amide compound in the molten polyolefin resin and the inhibition of aggregation between crystals. We thought that it was related to.
  • the interaction also affects the dissolution temperature of the amide compound.
  • the effect is that, in the blending ratio of the amide compound and the phenolic compound, when the ratio of the phenolic compound is large, a tendency to increase the dissolution temperature is observed (Examples described later).
  • the present invention has been completed based on such knowledge and ideas. That is, the present invention provides inventions of the following items.
  • a method for producing a polyolefin resin molded body comprising a step of molding a molten polyolefin resin composition in which a crystal of an amide compound represented by the following general formula (1) is present in a molten polyolefin resin.
  • the method for producing a polyolefin resin molded article wherein the molten polyolefin resin composition contains a phenol compound and the blending ratio of the amide compound and the phenol compound is 60:40 to 10:90 (weight ratio).
  • R 1 represents a saturated or unsaturated aliphatic polycarboxylic acid residue having 3 to 6 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 25 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 25 carbon atoms.
  • Represents a group. 2 to 4 R 2 s are the same or different and each represents a saturated or unsaturated aliphatic amine residue having 5 to 22 carbon atoms, an alicyclic amine residue having 5 to 20 carbon atoms, or 6 to 20 carbon atoms. Represents an aromatic amine residue.
  • (Item 2) (i) A step of heating and dissolving an amide compound in a polyolefin resin, (Ii) a step of cooling the molten polyolefin-based resin composition in the step (i) to precipitate amide compound crystals, and (iii) a polyolefin from which the amide compound crystals in the step (ii) are precipitated.
  • a method for producing a polyolefin-based resin molded body comprising a step of molding a resin-based resin composition, Item 2.
  • R 1 described in the general formula (1) is a compound represented by the formula (a):
  • m represents an integer of 2 to 5.
  • m R 3 s are the same or different and each represents a linear or branched alkyl group having 1 to 25 carbon atoms which may have an ester bond, a thioether bond or an ether bond.
  • p represents an integer of 1 to 4.
  • p R 3 s are the same as those in the formula (2a).
  • X represents a linear or branched alkylene group having 1 to 10 carbon atoms which may have an ester bond or an ether bond.
  • q represents an integer of 1 to 4.
  • q R 3 are the same as those in the formula (2a).
  • Y represents a linear or branched alkylene group having 1 to 10 carbon atoms.
  • 4. The method for producing a polyolefin resin molded article according to any one of items 1 to 3 above.
  • the melting temperature of the molten polyolefin resin composition according to Item 1 or the melting temperature in the step (iii) according to Item 2 is 180 to 260 ° C.
  • the polyolefin resin is a polypropylene resin
  • the amide compound is a ⁇ crystal nucleating agent for polypropylene
  • the polyolefin resin molded product is a polypropylene resin molded product having a ⁇ crystal content of 50% or more.
  • R 1 represents a saturated or unsaturated aliphatic polycarboxylic acid residue having 3 to 6 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 25 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 25 carbon atoms.
  • Represents a group. 2 to 4 R 2 s are the same or different and each represents a saturated or unsaturated aliphatic amine residue having 5 to 22 carbon atoms, an alicyclic amine residue having 5 to 20 carbon atoms, or 6 to 20 carbon atoms. Represents an aromatic amine residue.
  • the melting temperature of the molten polyolefin resin composition is T 1 + 10 ° C. to T 2 -10 ° C. (T 1 represents the melting point of the polyolefin resin, and T 2 represents the dissolution temperature of the amide compound. 10. The method according to Item 9, wherein the temperature range is
  • (Item 11) (i) A step of heating and dissolving an amide compound in a polyolefin resin, (Ii) a step of cooling the molten polyolefin-based resin composition in the step (i) to precipitate amide compound crystals, and (iii) a polyolefin from which the amide compound crystals in the step (ii) are precipitated.
  • the method according to Item 9, wherein the compounding ratio of the phenol compound is amide compound: phenol compound 60: 40 to 10:90 (weight ratio).
  • R 1 described in the general formula (1) is a compound represented by the formula (a):
  • m represents an integer of 2 to 5.
  • m R 3 s are the same or different and each represents a linear or branched alkyl group having 1 to 25 carbon atoms which may have an ester bond, a thioether bond or an ether bond.
  • p represents an integer of 1 to 4.
  • p R 3 s are the same as those in the formula (2a).
  • X represents a linear or branched alkylene group having 1 to 10 carbon atoms which may have an ester bond or an ether bond.
  • the melt temperature of the molten polyolefin resin according to Item 9 or the melt temperature in the step (iii) according to Item 11 is 180 to 260 ° C. Method.
  • R 1 represents a saturated or unsaturated aliphatic polycarboxylic acid residue having 3 to 6 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 25 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 25 carbon atoms. Represents a group.
  • R 2 s are the same or different and are each a saturated or unsaturated aliphatic amine residue having 5 to 22 carbon atoms, an alicyclic amine residue having 5 to 20 carbon atoms, or 6 to 6 carbon atoms. Represents 20 aromatic amine residues.
  • T 1 represents the melting point of the polyolefin resin
  • T 2 represents the dissolution temperature of the amide compound.
  • R 1 represents a saturated or unsaturated aliphatic polycarboxylic acid residue having 3 to 6 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 25 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 25 carbon atoms.
  • Represents a group. 2 to 4 R 2 s are the same or different and are each a saturated or unsaturated aliphatic amine residue having 5 to 22 carbon atoms, an alicyclic amine residue having 5 to 20 carbon atoms, or 6 to 6 carbon atoms. Represents 20 aromatic amine residues. ]
  • the crystal growth rate of the amide compound present in the molten polyolefin resin can be suppressed. And it contributes to the improvement of productivity by suppressing the pressure rise of the molding machine etc. caused by the crystal growth of the amide compound (reducing clogging of the screen mesh etc.) or based on the amide compound in the polyolefin molded body It can contribute to the improvement of the external appearance of a molded object by reducing a white spot.
  • the production method of the present invention is a polyolefin resin molded article comprising a step of molding a molten polyolefin resin composition in which crystals of the amide compound represented by the general formula (1) are present in a molten polyolefin resin.
  • the phenol compound is in a ratio of 0.07 to 1 part by weight and / or the amide with respect to 100 parts by weight of the polyolefin resin.
  • An embodiment in which the compound is used in a ratio of 0.07 to 1 part by weight based on 100 parts by weight of the polyolefin resin is recommended.
  • molding in the molding step in the presence of amide compound crystals contributes to the improvement of physical properties such as improvement of the rigidity of the molded body.
  • the molded body since the molecular chain of polyolefin tends to exhibit orientation by the molding method, the molded body also has a feature that it tends to exhibit orientation.
  • Polyolefin resin The polyolefin resin according to the present invention is exemplified by a polyethylene resin, a polypropylene resin, a polymethylpentene resin, a polybutene resin, etc., and can be used alone or in combination of two or more.
  • examples of the polyethylene resin include high density polyethylene, medium density polyethylene, linear polyethylene, ethylene copolymer having an ethylene content of 50% by weight or more (preferably 70% by weight or more, particularly 85% by weight or more);
  • a propylene homopolymer a propylene copolymer having a propylene content of 50% by weight or more (preferably 70% by weight or more, particularly 85% by weight or more);
  • a polybutene resin a butene homopolymer, a butene content of 50% by weight or more (preferably Is 70% by weight or more, particularly 85% by weight or more) butene copolymer;
  • polymethylpentene resin is methylpentene homopolymer, methylpentene content is 50% by weight or more (preferably 70% by weight or more, especially 85% by weight or more) Methylpentene copolymer, polybutane Ene and the like.
  • the copolymer may be a random copolymer or a block copolymer. If these resins have stereoregularity, they may be isotactic or syndiotactic.
  • comonomer that can constitute the copolymer
  • examples of the comonomer that can constitute the copolymer include ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, and the like, ⁇ -olefins having 2 to 12 carbon atoms, 1,4- Examples include bicyclo type monomers such as endomethylenecyclohexene, (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate, and vinyl acetate.
  • polyethylene resins polypropylene resins, particularly polypropylene resins are recommended from the viewpoint of the effects of the present invention.
  • a catalyst applied for producing such a polymer not only a Ziegler-Natta type catalyst generally used but also a transition metal compound (for example, a titanium halide such as titanium trichloride and titanium tetrachloride) is chlorinated.
  • a catalyst system or metallocene catalyst obtained by combining a catalyst formed on a carrier mainly composed of magnesium halide such as magnesium and an alkylaluminum compound (tetraethylaluminum, diethylaluminum chloride, etc.) can also be used.
  • the polyolefin resin melt flow rate (according to JIS K7210-1995) according to the present invention is appropriately selected depending on the molding method to be applied, but is usually 0.01 to 200 g / 10 min, preferably 0.8. 05-100 g / 10 min is recommended.
  • the amide compound according to the present invention is at least one amide compound represented by the general formula (1).
  • the amide compound can be produced according to a known method, and a commercially available product can also be used. Usually, it is also used as a nucleating agent for polyolefin resins.
  • R 1 is a saturated aliphatic polycarboxylic acid residue having 3 to 6 carbon atoms, an alicyclic polycarboxylic acid residue having 3 to 25 carbon atoms, or an aromatic polycarboxylic acid residue having 6 to 25 carbon atoms.
  • a saturated aliphatic polycarboxylic acid residue having 3 or 4 and an aromatic polycarboxylic acid residue having 10 to 20 carbon atoms are recommended.
  • n R 2 s are the same or different and are each a saturated aliphatic amine residue having 5 to 22 carbon atoms, a saturated alicyclic amine residue having 5 to 20 carbon atoms, or an aromatic having 6 to 20 carbon atoms.
  • An aliphatic amine residue preferably a saturated aliphatic amine residue having 6 to 10 carbon atoms, a saturated alicyclic amine residue having 5 to 14 carbon atoms or an aromatic amine residue having 6 to 14 carbon atoms, In particular, saturated alicyclic amine residues having 5 to 12 carbon atoms are recommended.
  • polycarboxylic acid residue means a group remaining after removing all carboxyl groups from the polycarboxylic acid, and the carbon number represents the total carbon number of the polycarboxylic acid residue.
  • amine residue means a group remaining after removing an amino group from a monoamine, and the carbon number represents the total carbon number of the amine residue.
  • amide compound examples include N, N′-dicyclohexyl-1,4-cyclohexanedicarboxamide, N, N′-dicyclohexyl-terephthalamide, N, N′-dicyclohexyl-4,4′-biphenyldi.
  • R 1 is the formula (a):
  • N, N′-di (2-methylcyclohexyl) -2,6-naphthalene dicarboxyamide, N, N′-di (2,3-dimethylcyclohexyl) -2,6-naphthalene dicarboxyamide, N, N '-Di (t-butylcyclohexyl) -2,6-naphthalene dicarboxyamide, N, N'-dicyclopentyl-2,6-naphthalene dicarboxyamide, N, N'-dicyclooctyl-2,6-naphthalene Dicarboxamide, N, N'-dicyclododecyl-2,6-naphthalene dicarboxyamide, N, N'-dicyclohexyl-2,7-naphthalene Carboxamide and the like are exemplified, more preferably N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide, N,
  • formula (b) examples include 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 9-bis ⁇ 4- [N- (4-tert-butylcyclohexyl) carbamoyl] phenyl ⁇ -2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-bis ⁇ 4- [N -(2,3-dimethylcyclohexyl) carbamoyl] phenyl ⁇ -2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-bis ⁇ 4- [N- (2,4-di- tert-butylcyclohexyl) carbamoyl] phenyl ⁇ -2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-bis ⁇ 4- [N- (2
  • the polyolefin resin is a polypropylene resin
  • the amide compounds represented by the general formula (1) a ⁇ crystal structure that can form a crystal form of the polypropylene resin into a ⁇ crystal when the polypropylene resin is molded.
  • Nucleating agents are recommended. In this case, the effect of the present invention is remarkably exhibited.
  • the ⁇ crystal nucleating agent those capable of being formed so that the ⁇ crystal content of the polypropylene resin molded body is preferably 50% or more, more preferably 60% or more are preferable.
  • preferred examples include the general formula (1) in which R 1 has the formula (a) and the formula (b) in the above general formula (1), and more preferably R 2 has 5 to 20 carbon atoms. Of saturated alicyclic amine residues are recommended. More specifically, those described in the specific examples of the above formula (a) and the specific examples of the formula (b) can be given.
  • the ⁇ crystal content according to the present invention was obtained by taking an appropriate amount of a sample for evaluation from the polypropylene resin molded article and performing differential scanning calorimetry (DSC) under a nitrogen atmosphere at a heating rate of 20 ° C./min. It is determined according to the following formula from the heat of fusion of ⁇ crystal and ⁇ crystal obtained from DSC thermogram.
  • ⁇ crystal content (%) 100 ⁇ H ⁇ / (H ⁇ + H ⁇ ) [Wherein, H ⁇ represents the heat of fusion of the ⁇ crystal (unit: J / g), and H ⁇ represents the heat of fusion of the ⁇ crystal (unit: J / g). ]
  • a procedure for obtaining a polypropylene resin molded product having the ⁇ crystal content a procedure known in the art can be used (for example, JP-A-2001-342272, WO2002 / 66233, etc.). Specifically, when the ⁇ crystal nucleating agent is cooled or crystallized from a state where the ⁇ crystal nucleating agent is dissolved or dispersed in the molten polypropylene resin, the cooling temperature and the cooling time are appropriately adjusted, and the ⁇ crystal content is adjusted. Can obtain a molded product of 50% or more.
  • the crystal system of the amide compound according to the present invention is not particularly limited as long as the effects of the present invention can be obtained, and any crystal system such as hexagonal crystal, monoclinic crystal, cubic crystal and the like can be used. These crystals are also known or can be produced according to known methods. For example, it can be obtained by carrying out an amidation reaction using polycarboxylic acid and monoamine as raw materials according to the descriptions in JP-A-7-242610 and JP-A-7-188246. It can also be obtained by subjecting a reactive derivative such as an acid anhydride or chloride of these polycarboxylic acids or an ester compound of the polycarboxylic acid and a lower alcohol having 1 to 4 carbon atoms to amidation.
  • a reactive derivative such as an acid anhydride or chloride of these polycarboxylic acids or an ester compound of the polycarboxylic acid and a lower alcohol having 1 to 4 carbon atoms to amidation.
  • the amide compound produced according to a known method may contain some impurities, but 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 97% by weight or more is recommended.
  • the impurities include partially amidated products derived from reaction intermediates or unreacted materials, imide compounds derived from side reaction products, and the like.
  • the particle size of the amide compound blended in the present invention is not particularly limited as long as the effects of the present invention are obtained, but those having a particle size as small as possible from the viewpoint of dissolution time and dispersibility with respect to the molten polyolefin resin are preferable.
  • the maximum particle size measured by the laser diffraction light scattering method is 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and particularly preferably 10 ⁇ m or less. Examples of the method for adjusting the maximum particle size within the above range include a method of finely pulverizing using a conventional apparatus known in this field, and classifying this.
  • a method of pulverizing and classifying using a fluidized bed type counter jet mill 100AFG (device name, manufactured by Hosokawa Micron Corporation), a supersonic jet mill PJM-200 (device name, manufactured by Nippon Pneumatic Co., Ltd.), etc. is exemplified. Is done.
  • the content of the amide compound is preferably 0.07 to 1 part by weight, more preferably 0.1 to 0.7 part by weight, particularly 0.1 to 0.5 part by weight based on 100 parts by weight of the polyolefin resin. Is recommended. Within this range, a significant difference is recognized in the effect of the present invention.
  • the amount of the amide compound is less than 0.07 part by weight, the modification effect as a nucleating agent may not be sufficiently exhibited.
  • the amount exceeds 1 part by weight it is difficult to obtain a modification effect commensurate with the amount of addition, it is difficult to dissolve in a polyolefin resin, and a tendency to deteriorate the appearance due to white spots or fish eyes is recognized.
  • Phenol compounds The phenol compounds according to the present invention are preferably those of the above formulas (2a), (2b), and (2c).
  • a phenol type compound can be manufactured in accordance with a well-known method, and a commercial item can also be used for it.
  • R 3 is a linear or branched alkyl group having 1 to 25 carbon atoms which may have an ester bond, a thioether bond or an ether bond.
  • R 3 does not have an ester bond, a thioether bond or an ether bond, it is preferably a linear or branched alkyl having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • R 3 is preferably a linear or branched alkyl group having 5 to 25 carbon atoms, more preferably 8 to 22 carbon atoms.
  • the m R 3 s may be the same or different.
  • R 3 is preferably located in the ortho position or para position with respect to the hydroxyl group, and it is recommended that at least one is particularly located in the ortho position.
  • R 3 is the same as the above formula (2a).
  • P in the above formula (2b) is an integer of 1 to 4, preferably an integer of 2 to 4, and more preferably 2.
  • X represents a linear or branched alkylene group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, which may have an ester bond or an ether bond.
  • Q in the above formula (2c) is an integer of 1 to 4, preferably an integer of 2 to 4, more preferably 2.
  • Y represents a linear or branched alkylene group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms.
  • phenol compounds include 2,6-bis (1,1-dimethylethyl) -4-methylphenol, tocopherol, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2 ′.
  • phenolic compounds can be used alone or in combination of two or more.
  • the phenolic compound is less than 60:40, the effect of the present invention is not sufficiently exhibited.
  • the effect corresponding to the said usage-amount is hard to be acquired, and it is economically unpreferable.
  • the phenolic compound is preferably 0.07 to 1 with respect to 100 parts by weight of the polyolefin resin. Part by weight, more preferably in the range of 0.08 to 0.8 part by weight is recommended.
  • the phenolic compound is less than 0.07 parts by weight, the effects of the present invention may not be stably and sufficiently exhibited. Also, the use of a phenol compound exceeding 1 part by weight is not preferable because the resin molded product tends to be colored yellow or yellowish green.
  • the method of allowing the phenolic compound to be contained in the polyolefin resin is that the amide compound containing the amide compound is molded before or before the molding.
  • the compound: phenolic compound can be contained in the polyolefin resin at a blending ratio of 60:40 to 10:90 (weight ratio)
  • a known method can be used without particular limitation.
  • the method for producing a polyolefin resin molded body of the present invention includes a step of molding a molten polyolefin resin composition in a specific state, and the specific state is an amide compound represented by the general formula (1). Is present in the molten polyolefin-based resin.
  • the method for causing the amide compound crystals to be present in the molten polyolefin resin is not particularly limited.
  • the amide compound is heated and dissolved in the polyolefin resin, and then cooled to precipitate the amide compound crystals.
  • fusing point and below the melting temperature of an amide compound is mentioned.
  • the former exemplified procedure is preferable.
  • the master batch method of the above procedure (A) and the procedure (A) is a specific example of the procedures (steps (i) to (iii) according to the present invention (the structure of the invention of the above item 2 and the structure of the above invention of the above item 11)). It corresponds to the explanation.
  • the melting temperature range for achieving the molten state is specifically a polyolefin
  • the temperature range is from the melting point of the resin to less than the dissolution temperature of the amide compound, preferably T 1 + 10 ° C. to T 2 ⁇ 10 ° C., more preferably T 1 + 15 ° C. to T 2 ⁇ 15 ° C., particularly T 1 + 20 ° C. T 2 -15 ° C is recommended.
  • T 1 represents “melting point of polyolefin resin”
  • T 2 represents the amide present in the polyolefin resin composition (a composition that matches the composition of the target polyolefin resin molded product).
  • the temperature at which the compound completely dissolves is expressed as “dissolution temperature of amide compound”.
  • the relationship between the temperature ranges is (T 1 + 10 ° C.) ⁇ (T 2 ⁇ 10 ° C.), (T 1 + 15 ° C.) ⁇ (T 2 ⁇ 15 ° C.), or (T 1 + 20 ° C.) ⁇ (T 2 -15 °C) is established.
  • the melting point of the polyolefin resin of T 1 represents a value measured by the method described in [Melting Point] in the examples described later, and the melting temperature of the amide compound of T 2 is in the examples described later. The value measured by the method described in [Solution temperature and precipitation temperature].
  • the more specific melting temperature range is preferably 180 to 260 ° C., more preferably 190 to 260 ° C., and 200 to 255 ° C. Is more preferable.
  • a pellet type polyolefin resin composition is a known molding method according to a desired shape / form (film, sheet, bottle, case, etc.).
  • a desired shape / form film, sheet, bottle, case, etc.
  • pressure forming, compression forming, vacuum forming, sheet forming, film forming, blow forming, extrusion thermoform forming, extrusion forming, injection forming, spinning, etc. are used to manufacture a polyolefin molded body.
  • a method is mentioned.
  • a phenol compound is coexistent or blended for the purpose of suppressing the growth of amide compound crystals in the molten polyolefin resin.
  • the blending time and procedure of the phenolic compound are not particularly limited as long as they are in the above-mentioned coexistence state, but in at least one step selected from the above procedure and steps (i) to (iii) according to the present invention. They may be blended singly, blended together with amide compounds or other modifiers, etc., or phenolic compounds may be blended together or divided and blended.
  • a conventionally known polyolefin modifier may be added within the range where the effects of the present invention are exhibited.
  • polyolefin modifier examples include various additives described in “Polylist Additives Manual” (January 2002) edited by the Sanitation Council for Polyolefins, and more specifically, Agents (metal compounds, epoxy compounds, nitrogen compounds, phosphorus compounds, sulfur compounds, etc.), UV absorbers (benzophenone compounds, benzotriazole compounds, etc.), antioxidants (phosphite compounds, sulfur compounds), Surfactants, lubricants (aliphatic hydrocarbons such as paraffin and wax, higher fatty acids having 8 to 22 carbon atoms, higher fatty acid metal (Al, Ca, Mg, Zn) salts having 8 to 22 carbon atoms, 8 to 18 carbon atoms) Fatty acids, aliphatic alcohols having 8 to 22 carbon atoms, polyglycol, higher fatty acids having 4 to 22 carbon atoms and aliphatic monohydric alcohols having 4 to 18 carbon atoms Esters, higher fatty acid amides having 8 to 22 carbon atoms, silicone oil, ros
  • the method of the present invention is a method for suppressing the crystal growth rate of the amide compound represented by the general formula (1) present in the molten polyolefin resin in a polyolefin resin containing the amide compound,
  • the phenolic compound is contained in an amide compound: phenolic compound in a weight ratio of 60:40 to 10:90, more preferably the phenolic compound is a polyolefin resin. It is recommended that the ratio of 0.07 to 1 part by weight with respect to 100 parts by weight and / or the ratio of the amide compound be 0.07 to 1 part by weight with respect to 100 parts by weight of polyolefin resin. In the aspect, the effect of the present invention is more remarkable or more stable.
  • the amide compound present in the molten polyolefin resin is an amide compound (fine crystals) once dissolved in the polyolefin resin and then cooled and crystallized in the polyolefin resin, the effect of the present invention is achieved.
  • the saliency is recognized.
  • ⁇ Use as crystal growth rate inhibitor and crystal growth rate inhibitor> the description of the phenol compound has the same meaning as the above description of ⁇ Method for producing polyolefin-based resin molded article>.
  • the top of the glass was pressed with tweezers to adjust the polyolefin-based resin molded body to a uniform thin film (100 ⁇ m).
  • the maximum length of the crystal of the amide compound present in the molten polyolefin resin was visually determined with an optical microscope (Nicon Polarizing Microscope ECLIPSE LV100POL (eyepiece: 10 times, objective lens: 50 times)). evaluated.
  • the crystal of the amide compound in the molten polyolefin resin allowed to stand for 2 hours on a hot stage set at the same temperature as the melting temperature within a rectangular range of 170 ⁇ m in length and 130 ⁇ m in width with an optical microscope field of view.
  • the effect of suppressing the crystal growth rate was evaluated by the difference between the number of crystals having a maximum length of 10 ⁇ m or more and the number of crystals having a length of 10 ⁇ m or more after 1 minute.
  • a polyolefin resin composition having the same composition as the target polyolefin resin molded body is prepared in advance.
  • the polyolefin-based resin composition is obtained by dry blending a predetermined amount of each component at room temperature, melt-kneading the dry blend with a twin-screw extruder, cooling the extruded strand with water, and cutting with a pelletizer.
  • a pellet-shaped polyolefin resin composition was obtained.
  • the kneading temperature was set to a temperature at which the strand was visually transparent.
  • the pellet and the Teflon (registered trademark) sheet are sandwiched between the hot stage (same as above) set at 200 ° C. with a cover glass (same as above) and heated for 1 minute to melt the pellet, and then the heating rate Heat until dissolved at 90 ° C./min (320 ° C. as a guide).
  • the temperature dissolution temperature (° C.)
  • the solution was cooled to 200 ° C. at a cooling rate of ⁇ 45 ° C./min.
  • the temperature at which the amide compound was precipitated during this cooling process was visually determined.
  • MFR 10 g / 10 min, melting point
  • 0.13 weight and steer Calcium phosphate (Nitto Kasei Kogyo Co., Ltd., trade name "CP-S") were dry-blended at room temperature 0.05 wt.
  • the dry blend is melt-kneaded with a twin screw extruder at a kneading temperature (resin temperature) of 300 ° C. to dissolve N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide, and the extruded strand is Water-cooled and cut with a pelletizer to obtain a pellet-shaped polyolefin resin composition.
  • the strand was transparent and no undissolved material was observed.
  • polyolefin resin composition 100 parts by weight of the obtained polyolefin resin composition and 0.3 parts by weight of tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane were dry blended at room temperature.
  • the dry-blended polyolefin resin composition is melted and kneaded at a melting temperature (resin temperature) of 230 ° C. in a single screw extruder, extruded into a strand shape, water-cooled, and then cut with a pelletizer.
  • a polyolefin resin molded product (pellet shape) of the present invention was obtained.
  • the effect of suppressing the crystal growth rate of the amide compound, the dissolution temperature, the precipitation temperature, and the like were evaluated.
  • the number of crystals of 10 ⁇ m or more was 0 at 1 minute and 3 at 2 hours. This result is evaluated as having a high effect of suppressing the crystal growth rate.
  • the dissolution temperature was 295 ° C. and the precipitation temperature was 239 ° C.
  • the crystal to be evaluated is N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide crystal because the hot stage temperature is set to 200 ° C., which is higher than the melting point of other additives. The process was observed and confirmed by the presence of crystals even when the temperature reached 200 ° C.
  • Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • Example 2 100 parts by weight of the above polypropylene homopolymer and 9 parts by weight of tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane were dry blended at room temperature. The dry blend was extruded with a single screw extruder at a resin temperature of 200 ° C., and the extruded strand was cooled with water and cut with a pelletizer to prepare a master batch of pelleted phenolic compounds.
  • the effect of suppressing the crystal growth rate of the amide compound, the dissolution temperature, the precipitation temperature, and the like were evaluated.
  • the number of crystals of 10 ⁇ m or more was 0 at 1 minute and 4 at 2 hours. This result is evaluated as having a high effect of suppressing the crystal growth rate.
  • the dissolution temperature was 295 ° C. and the precipitation temperature was 240 ° C. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • Example 3 100 parts by weight of the above polypropylene homopolymer, 0.3 parts by weight of the above N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide, the above tetrakis [methylene-3- (3,5-di-tert-butyl-4- Hydroxyphenyl) propionate] 0.35 part by weight of methane, 0.13 part by weight of tetrakis (2,4-di-tert-butylphenyl) phosphite and 0.05 part by weight of calcium stearate were dry blended at room temperature.
  • the dry blend is melt-kneaded with a twin screw extruder at a kneading temperature (resin temperature) of 300 ° C. to dissolve N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide, and the extruded strand is Water-cooled and cut with a pelletizer to obtain a pellet-shaped polyolefin resin composition.
  • resin temperature kneading temperature
  • the obtained polyolefin resin composition was melted and kneaded at a melting temperature (resin temperature) of 230 ° C. with a single screw extruder, extruded into a strand shape, water-cooled, and then cut with a pelletizer.
  • the polyolefin resin molded product (pellet shape) of the invention was obtained.
  • the effect of suppressing the crystal growth rate of the amide compound, the dissolution temperature, the precipitation temperature, and the like were evaluated.
  • the number of crystals of 10 ⁇ m or more was 0 at 1 minute and 4 at 2 hours. This result is evaluated as having a high effect of suppressing the crystal growth rate.
  • the dissolution temperature was 295 ° C. and the precipitation temperature was 240 ° C. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • Example 4 100 parts by weight of the polyolefin resin composition obtained in Example 1 and 0.3 parts by weight of octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate as a phenol compound at room temperature Dry blended. The dry blend is melted and kneaded at a melting temperature (resin temperature) of 230 ° C. with a single screw extruder, extruded into a strand shape, water-cooled, and then cut with a pelletizer. A molded body (pellet shape) was obtained.
  • a melting temperature resin temperature
  • the effect of suppressing the crystal growth rate of the amide compound, the dissolution temperature, the precipitation temperature, and the like were evaluated.
  • the number of crystals of 10 ⁇ m or more was 0 at 1 minute and 4 at 2 hours. This result is evaluated as having a high effect of suppressing the crystal growth rate.
  • the dissolution temperature was 295 ° C. and the precipitation temperature was 238 ° C. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • Example 5 100 parts by weight of the polyolefin resin composition obtained in Example 1 and 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2, 0.3 parts by weight of 4,6- (1H, 3H, 5H) -trione was dry blended at room temperature. The dry blend is melted and kneaded at a melting temperature (resin temperature) of 230 ° C. with a single screw extruder, extruded into a strand shape, water-cooled, and then cut with a pelletizer. A molded body (pellet shape) was obtained.
  • a melting temperature resin temperature
  • the effect of suppressing the crystal growth rate of the amide compound, the dissolution temperature and the precipitation temperature were evaluated.
  • the number of crystals of 10 ⁇ m or more was 0 at 1 minute and 3 at 2 hours. This result is evaluated as having a high effect of suppressing the crystal growth rate.
  • the dissolution temperature was 295 ° C. and the precipitation temperature was 241 ° C. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • Example 6 The type and blending amount of the amide compound is set to 0.2 parts by weight of 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane and phenol.
  • the polyolefin resin molded body of the present invention was obtained in the same manner as in Example 3 except that the compounding amount of the system compound was changed to 0.2 parts by weight, the kneading temperature was changed to 80 ° C., and the melting temperature was changed to 200 ° C. Obtained.
  • Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like. The deposition temperature was 210 ° C.
  • Example 7 The type of amide compound was changed to 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, and the kneading temperature was 290 ° C. Except having changed temperature into 210 degreeC, it carried out similarly to Example 1 and obtained the polyolefin resin molding of this invention. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like. The deposition temperature was 240 ° C.
  • Example 8 to 12 A polyolefin resin molded article of the present invention was obtained in the same manner as in Example 3 except that the blending amount of amide compound, kneading temperature, and melting temperature were changed to the values shown in Table 1.
  • Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • precipitation temperature was Example 8; 230 degreeC, Example 9; 235 degreeC, Example 10; 250 degreeC, Example 11; 235 degreeC, Example 12;
  • Example 13 The type of phenolic compound is 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) -1,3,5-triazine-2,4,6- (1H, 3H , 5H) -trione was carried out in the same manner as in Example 3 to obtain a polyolefin resin molded product of the present invention.
  • Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • the deposition temperature was 240 ° C.
  • Example 15 to 16 Except having replaced the kind of amide compound with the amide compound of Table 1, it carried out similarly to Example 3 and obtained the polyolefin resin molding of this invention.
  • Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • precipitation temperature was Example 15; 220 degreeC, Example 16; 250 degreeC.
  • Example 17 Except not using the polyolefin modifier, it carried out similarly to Example 3 and obtained the polyolefin resin molding of this invention.
  • Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • the deposition temperature was 240 ° C.
  • Example 18 In the molding process, the single-screw extruder equipped with a screen mesh (metal mesh; 500 mesh) is replaced with a T-die extruder, and is cooled on a chill roll that is extruded into a sheet and maintained at a surface temperature of 40 ° C.
  • a polyolefin resin molded body (sheet-like) of the present invention was obtained in the same manner as in Example 1 except that continuous production was performed instead of the operation for obtaining the polyolefin resin molded body. The production was performed continuously for 12 hours. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like. There was almost no clogging of the screen mesh. Appearance was good. The deposition temperature was 240 ° C.
  • Example 19 In Example 20, except that the surface temperature of the chill roll was set to 120 ° C. and the cooling time (contact time) in the chill roll was adjusted to 20 seconds, the same procedure as in Example 20 was carried out. Sheet-like) was obtained. The ⁇ crystal content of the molded body was 72%. Appearance was good.
  • Example 1 The polyolefin resin composition described in Example 1 was melted and kneaded as it was at a melting temperature (resin temperature) of 230 ° C. with a single screw extruder, extruded into a strand, cooled with water, and then cut with a pelletizer. Thus, a polyolefin resin molded body (pellet shape) outside the present invention was obtained.
  • the effect of suppressing the crystal growth rate of the amide compound, the dissolution temperature, the precipitation temperature, and the like were evaluated.
  • the number of crystals of 10 ⁇ m or more was 0 at 1 minute and 25 at 2 hours. This result is evaluated as having a low effect of suppressing the crystal growth rate.
  • the dissolution temperature was 288 ° C and the precipitation temperature was 220 ° C. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like.
  • Example 18 a polyolefin-based resin molded body outside the present invention was obtained in the same manner as in Example 18, except that the phenolic compound was not dividedly added and the blending amount was 0.05 parts by weight. . The production was performed continuously for 12 hours. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like. Clogging of the screen mesh was clearly recognized and the screw pressure increased, so the operation was performed for 12 hours while changing the screen mesh. Table 1 summarizes the composition, manufacturing conditions, evaluation results, and the like. The deposition temperature was 220 ° C.
  • h-PP Polypropylene homopolymer
  • b-PP Ethylene propylene block copolymer
  • A N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide
  • B 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane
  • C 1,2,3-propanetricarboxylic acid tri (2-methylcyclohexylamide)
  • D Trimesic acid tricyclohexylamide a: Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane
  • b Octadecyl-3- (3,5-di-tert-butyl -4-hydroxyphenyl) propionate
  • c 1,3,5-tris (3,5-di-tert-
  • the method for suppressing the crystal growth rate of the amide compound present in the molten polyolefin resin of the present invention can suppress the crystal growth rate of the amide compound present in the molten polyolefin resin during molding. This is particularly useful when the polyolefin resin composition has a long residence time during molding. It can contribute to the reduction of the white point based on the amide compound of the polyolefin resin molded product obtained.
  • FIG. 1 is a photomicrograph of a polyolefin resin composition (Example 1).
  • FIG. 2 is a photomicrograph of the polyolefin resin molded body (Example 1) at the time of evaluation of the effect of suppressing the crystal growth rate (heating and standing for 2 hours), showing a crystal of 10 ⁇ m or more surrounded by a circle or ellipse. It was.
  • FIG. 3 is a photomicrograph of the polyolefin resin molded body (Comparative Example 1) at the time of evaluation of the effect of suppressing the crystal growth rate (2 hours of heating and standing), showing a crystal of 10 ⁇ m or more surrounded by a circle or ellipse. It was.

Abstract

溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を抑制する方法、及びポリオレフィン系樹脂成形体の製造方法を提供する。 フェノール系化合物をアミド化合物:フェノール系化合物が60:40~10:90の重量比の割合となるようにアミド化合物含有ポリオレフィン系樹脂に含有せしめる。

Description

アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法
 本発明は、溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶成長速度を抑制する方法、アミド化合物の結晶成長速度抑制剤、アミド化合物の結晶成長速度抑制剤としてのフェノール系化合物の使用、及びポリオレフィン系樹脂成形体の製造方法に関する。
 ポリオレフィン系樹脂は、成形性、機械特性、電気特性等が優れているために、フィルム成形(フィルムを製造するための成形)、シート成形(シートを製造するための成形)、ブロー成形、射出成形等の素材として、様々な分野に利用されている。しかし、ポリオレフィン系樹脂は、一般的には優れた物性を有しているものの、透明性、結晶性及び剛性が低いという問題点があった。これらの問題点を改善するために、アミド系化合物等を造核剤として活用する技術が提案されている(特許文献1~5)。これらのアミド系化合物を含有するポリオレフィン系樹脂組成物を成形した場合、透明性、機械強度に優れた成形品を得ることができる。
 商業的な生産において、そのような優れた特性を有するポリオレフィン成形品を得るためには、所望の成形方法に合わせて成形加工条件を最適化する必要がある。成形方法には、射出成形、押出成形、シート成形、フィルム成形、ブロー成形等の種々の成形方法が知られている。例えば、射出成形では、射出速度、射出圧力、樹脂温度(シリンダー温度やノズル温度等)、樹脂注入量、スクリュウ回転数、金型温度、金型形状、ゲートシール時間等を多数の組み合わせから設定する必要があり、その設定作業が繁雑であり、労力と時間を要するものである。このような設定が不適切な場合、成形品の物理特性に悪影響を生じたり、造核剤の未溶解物が残存して白点やフィッシュアイが生じてポリオレフィン成形品の外観を損なったりという問題が生じる。
特開平6-192496号公報 特開平7-188246号公報 特開平7-242610号公報 特開平7-278374号公報 特開平8-100088号公報
 本発明は、溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を抑制する方法、アミド化合物の結晶成長速度抑制剤、アミド化合物の結晶成長速度抑制剤としてのフェノール系化合物の使用方法、及びポリオレフィン系樹脂成形体の製造方法を提供することを目的とする。
 本発明者らは、特定のアミド化合物を用いた成形品を製造するに当たり、その製造条件の最適化した上で当該製造を行った。ところが、当該製造を行っていたところ、押出機の圧力が上昇したり(当該上昇はスクリーンメッシュ等の目詰まりが主因であった。この場合、スクリーンメッシュの交換による稼働時間ロスや樹脂の損失等による生産性の低下が問題となる。)、成形品に白点やフィッシュアイが生じたりした。
 本発明者らは、当該原因を検討したところ、当該アミド化合物が、ポリオレフィン系樹脂に対して溶解度が低いことから、押出機の設定温度が溶解温度に達していないか又は溶解させる時間が短かったために、未溶解物としてポリオレフィン系樹脂に残存したことが原因であると推定した。これに対しては、アミド化合物を微粉末化や混練装置の設定温度を上げることで対応可能と考えた。
 しかし、特定のアミド化合物を、一旦ポリオレフィン系樹脂に完全溶解させたにも拘わらず、押出機の圧力の上昇や白点が生じた。そこで、さらに本発明者らは原因を追及したところ、次のことがわかった。
(i)その主因が特定のアミド化合物が溶融ポリオレフィン系樹脂中に存在する該結晶が成長することに起因していること。
(ii)一旦ポリオレフィン系樹脂に完全に溶解させ、その後冷却してポリオレフィン系樹脂中で結晶化させた特定のアミド化合物(微細な結晶)は、溶融ポリオレフィン系樹脂中での結晶成長速度が比較的速い傾向にあったこと。
(iii)アミド化合物の種類や含有量にもよるが、概ね樹脂温度が180~260℃の温度範囲で結晶成長速度が比較的速い傾向にあったこと。
(iv)また、当該アミド化合物は、ポリオレフィン系樹脂に対して核剤効果を有している。しかし、当該結晶成長により、その表面積の縮小により核剤効果が低下する傾向があったこと。
 本発明者らは、上記成形加工条件の最適化の他に、特定のアミド化合物の結晶成長を抑制する技術が必要であると考え、さらに鋭意検討した結果、特定のアミド化合物に対してフェノール系化合物を特定量の範囲でポリオレフィン系樹脂に共存せしめることにより、溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を著しく抑制できることを見出した。
 本発明者らは、溶融状態のポリオレフィン系樹脂中に存在するアミド化合物が結晶成長する現象について、次のように考えた。
 溶融状態のポリオレフィン系樹脂中にアミド化合物が存在する状態は、当該アミド化合物が溶融ポリオレフィン系樹脂に完全に溶解する温度よりも低い温度領域にある状態なので、結晶として存在するアミド化合物と溶融ポリオレフィン系樹脂に溶解しているアミド化合物とが存在する。通常その状態は、結晶の溶解と析出とが平衡状態にあるものと考えられる。
 しかし、極性が比較的低いポリオレフィン系樹脂と極性が比較的高いアミド化合物とは相溶し難いと考えられるので、アミド化合物の結晶はポリオレフィン系樹脂に溶解するよりもその結晶同士の凝集の方が起こり易くなり、その結果としてアミド化合物の結晶が成長するものと考えた。
 本発明者らは、本発明の抑制効果が、特定のアミド化合物とフェノール系化合物との相互作用によるもの、換言すれば溶融ポリオレフィン樹脂へのアミド化合物の溶解性の低下や結晶同士の凝集の阻害などに関係しているものと考えた。その相互作用は、アミド化合物の溶解温度にも影響が表れている。その影響とは、アミド化合物とフェノール系化合物との配合割合において、フェノール系化合物の割合が大きい場合、溶解温度が上昇する傾向が認められることである(後述の実施例)。
 本発明は、かかる知見や考えに基づいて完成した。即ち、本発明は、以下の項目の発明を提供するものである。
 (項1)下記一般式(1)で表されるアミド化合物の結晶が溶融状態のポリオレフィン系樹脂中に存在する溶融ポリオレフィン系樹脂組成物を成形する工程を含むポリオレフィン系樹脂成形体の製造方法であって、
前記溶融ポリオレフィン系樹脂組成物はフェノール系化合物を含有し、かつ、アミド化合物とフェノール系化合物との配合割合が60:40~10:90(重量比)である、ポリオレフィン系樹脂成形体の製造方法。
一般式(1):
-(CONHR)n     (1)
[式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20脂環族アミン残基又は炭素数6~20の芳香族アミン残基を表す。]
 (項2)(i)ポリオレフィン系樹脂にアミド化合物を加熱溶解させる工程、
(ii)前記工程(i)の溶融状態のポリオレフィン系樹脂組成物を冷却して、アミド化合物の結晶を析出させる工程、及び
(iii)前記工程(ii)のアミド化合物の結晶を析出させたポリオレフィン系樹脂組成物をT+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)の温度範囲で溶融させた溶融ポリオレフィン系樹脂組成物を成形する工程
を含むポリオレフィン系樹脂成形体の製造方法であって、
前記工程(i)~工程(iii)から選ばれる少なくとも1つの工程においてフェノール系化合物を前記配合割合の範囲で配合する、上記項1に記載のポリオレフィン系樹脂成形体の製造方法。
 (項3)一般式(1)に記載のRが、式(a):
Figure JPOXMLDOC01-appb-C000011
、又は式(b):
Figure JPOXMLDOC01-appb-C000012
である、上記項1又は項2に記載のポリオレフィン系樹脂成形体の製造方法。
 (項4)フェノール系化合物が、一般式(2a):
Figure JPOXMLDOC01-appb-C000013
[式中、mは、2~5の整数を表す。m個のRは、同一又は異なって、それぞれ、エステル結合、チオエーテル結合又はエーテル結合を有していてもよい炭素数1~25の直鎖状又は分枝鎖状のアルキル基を表す。]、
一般式(2b):
Figure JPOXMLDOC01-appb-C000014
[式中、pは、1~4の整数を表す。p個のRは前記式(2a)と同じである。Xは、エステル結合又はエーテル結合を有していてもよい炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]、又は一般式(2c):
Figure JPOXMLDOC01-appb-C000015
[式中、qは、1~4の整数を表す。q個のRは前記式(2a)と同じである。Yは、炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]
である上記項1~3のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
 (項5)上記項1に記載の溶融ポリオレフィン系樹脂組成物の溶融温度又は上記項2に記載の工程(iii)における溶融温度が180~260℃である、上記項1~4のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
 (項6)フェノール系化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である上記項1~5のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
 (項7)アミド化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である上記項1~6のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
 (項8)ポリオレフィン系樹脂がポリプロピレン系樹脂であり、かつアミド化合物がポリプロピレン用β晶造核剤であって、ポリオレフィン系樹脂成形体がβ晶含有量50%以上のポリプロピレン系樹脂成形体である上記項1~7のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
 (項9)溶融ポリオレフィン系樹脂中に存在する下記一般式(1)で表されるアミド化合物の結晶の成長速度を抑制する方法であって、アミド化合物とフェノール系化合物とが60:40~10:90(重量比)の割合となるようにフェノール系化合物をポリオレフィン系樹脂に含有せしめることを特徴とする方法。
一般式(1):
-(CONHR)n     (1)
[式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20脂環族アミン残基又は炭素数6~20芳香族アミン残基を表す。]
 (項10)溶融ポリオレフィン系樹脂組成物の溶融温度が、T+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)の温度範囲である、上記項9に記載の方法。
 (項11)(i)ポリオレフィン系樹脂にアミド化合物を加熱溶解させる工程、
(ii)前記工程(i)の溶融状態のポリオレフィン系樹脂組成物を冷却して、アミド化合物の結晶を析出させる工程、及び
(iii)前記工程(ii)のアミド化合物の結晶を析出させたポリオレフィン系樹脂組成物をT+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)の温度範囲で溶融させた溶融ポリオレフィン系樹脂組成物を成形する工程から選ばれる少なくとも1つの工程においてフェノール系化合物を配合し、工程(iii)において溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を抑制する方法であって、
フェノール系化合物の配合割合が、アミド化合物:フェノール系化合物=60:40~10:90(重量比)である、上記項9に記載の方法。
 (項12)一般式(1)に記載のRが、式(a):
Figure JPOXMLDOC01-appb-C000016
、又は式(b):
Figure JPOXMLDOC01-appb-C000017
である、上記項9~11のいずれかに記載の方法。
 (項13)フェノール系化合物が、一般式(2a):
Figure JPOXMLDOC01-appb-C000018
[式中、mは、2~5の整数を表す。m個のRは、同一又は異なって、それぞれ、エステル結合、チオエーテル結合又はエーテル結合を有していてもよい炭素数1~25の直鎖状又は分枝鎖状のアルキル基を表す。]、
一般式(2b):
Figure JPOXMLDOC01-appb-C000019
[式中、pは、1~4の整数を表す。p個のRは前記式(2a)と同じである。Xは、エステル結合又はエーテル結合を有していてもよい炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]、又は一般式(2c):
Figure JPOXMLDOC01-appb-C000020
[式中、qは、1~4の整数を表す。q個のRは前記式(2a)と同じである。Yは、炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]
である上記項9~12のいずれかに記載の方法。
 (項14)上記項9に記載の溶融ポリオレフィン系樹脂の溶融温度又は上記項11に記載の工程(iii)における溶融温度が、180~260℃である上記項9~13のいずれかに記載の方法。
 (項15)フェノール系化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である上記項9~14のいずれかに記載の方法。
 (項16)アミド化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である上記項9~15のいずれかに記載の方法。
 (項17)フェノール系化合物を有効成分とする、溶融ポリオレフィン系樹脂中に存在する下記一般式(1)で表されるアミド化合物の結晶の結晶成長速度抑制剤。
一般式(1):
-(CONHR)n     (1)
[式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20の脂環族アミン残基又は炭素数6~20の芳香族アミン残基を表す。]
(項18)T+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)
の温度範囲にある溶融ポリオレフィン系樹脂中に存在する下記一般式(1)で表されるアミド化合物の結晶の結晶成長速度抑制剤としてのフェノール系化合物の使用。
一般式(1):
-(CONHR)n     (1)
[式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20の脂環族アミン残基又は炭素数6~20の芳香族アミン残基を表す。]
 本発明によれば、溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を抑制することができる。そして、アミド化合物の結晶の成長に起因する成形機等の圧力上昇の抑制(スクリーンメッシュ等の目詰まりの低減)することにより生産性の向上に寄与したり、ポリオレフィン成形体中のアミド化合物に基づく白点の低減することにより成形体の外観の改善に寄与したりすることができる。
<ポリオレフィン系樹脂成形体の製造方法>
 本発明の製造方法は、上記一般式(1)で表されるアミド化合物の結晶が溶融状態のポリオレフィン系樹脂中に存在する溶融ポリオレフィン系樹脂組成物を成形する工程を含むポリオレフィン系樹脂成形体の製造方法であって、前記ポリオレフィン系樹脂組成物はフェノール系化合物を含有し、かつ、アミド化合物とフェノール系化合物との配合割合が60:40~10:90(重量比)であることを特徴とする。より好ましくは、本発明の効果をより顕著に或いはより安定的に発揮させる観点から、該フェノール系化合物がポリオレフィン系樹脂100重量部に対して0.07~1重量部の割合及び/又は該アミド化合物がポリオレフィン系樹脂100重量部に対して0.07~1重量部の割合とする態様が推奨される。
 また、前記成形工程においてアミド化合物の結晶が存在する状態で成形することにより、当該成形体の剛性の向上などの物性の改質に寄与する。また、当該成形方法によりポリオレフィンの分子鎖が配向性を示す傾向があるため、当該成形体は配向性を示す傾向があるという特徴もある。
ポリオレフィン系樹脂
 本発明に係るポリオレフィン樹脂は、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチルペンテン系樹脂、ポリブテン系樹脂等が例示され、1種で又は2種以上適宜混合して使用することもできる。
 具体的には、ポリエチレン系樹脂としては、高密度ポリエチレン、中密度ポリエチレン、直鎖状ポリエチレン、エチレン含量50重量%以上(好ましくは70重量%以上、特に85重量%以上)のエチレンコポリマー;ポリプロピレン系樹脂としては、プロピレンホモポリマー、プロピレン含量50重量%以上(好ましくは70重量%以上、特に85重量%以上)のプロピレンコポリマー;ポリブテン系樹脂としては、ブテンホモポリマー、ブテン含量50重量%以上(好ましくは70重量%以上、特に85重量%以上)のブテンコポリマー;ポリメチルペンテン系樹脂としてはメチルペンテンホモポリマー、メチルペンテン含量50重量%以上(好ましくは70重量%以上、特に85重量%以上)のメチルペンテンコポリマー、ポリブタジエン等が例示される。
 上記コポリマーはランダムコポリマーであってもよく、ブロックコポリマーであってもよい。これらの樹脂の立体規則性がある場合は、アイソタクチックでもシンジオタクチックでもよい。
 上記コポリマーを構成し得るコモノマーとして、具体的にはエチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ウンデセン、ドデセン等の炭素数2~12のα-オレフィン、1,4-エンドメチレンシクロヘキセン等のビシクロ型モノマー、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル、酢酸ビニル等が例示できる。
 上記のポリオレフィン樹脂の中でも、本発明の効果の観点から、好ましくはポリエチレン系樹脂、ポリプロピレン系樹脂、特にポリプロピレン系樹脂が推奨される。
 かかる重合体を製造するために適用される触媒としては、一般に使用されているチーグラー・ナッタ型触媒はもちろん、遷移金属化合物(例えば、三塩化チタン、四塩化チタン等のチタンのハロゲン化物)を塩化マグネシウム等のハロゲン化マグネシウムを主成分とする担体に担持してなる触媒と、アルキルアルミニウム化合物(テトラエチルアルミニウム、ジエチルアルミニウムクロリド等)とを組み合わせてなる触媒系やメタロセン触媒も使用できる。
 本発明に係るポリオレフィン系樹脂メルトフローレート(JIS K 7210-1995に準じる。)は、その適用される成形方法により適宜選択されるが、通常、0.01~200g/10分、好ましくは0.05~100g/10分が推奨される。
アミド化合物
 本発明に係るアミド化合物は、上記一般式(1)で表わされる少なくとも1種のアミド化合物である。アミド化合物は、公知の方法に従って製造することができ、また市販品を使用することもできる。通常、ポリオレフィン系樹脂用造核剤としても使用される。
 上記一般式(1)において、nは2~4であり、好ましくは2又は3の整数が推奨される。Rは、炭素数3~6の飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基、炭素数6~25の芳香族ポリカルボン酸残基であり、好ましくは炭素数3~5の飽和の脂肪族ポリカルボン酸残基、炭素数5~10の脂環族ポリカルボン酸残基、炭素数6~22の芳香族ポリカルボン酸残基、特に炭素数3又は4の飽和の脂肪族ポリカルボン酸残基、炭素数10~20の芳香族ポリカルボン酸残基が推奨される。n個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和の脂肪族アミン残基、炭素数5~20の飽和の脂環族アミン残基又は炭素数6~20の芳香族アミン残基であり、好ましくは炭素数6~10の飽和の脂肪族アミン残基、炭素数5~14の飽和の脂環族アミン残基又は炭素数6~14の芳香族アミン残基、特に炭素数5~12の飽和の脂環族アミン残基が推奨される。
 なお、「ポリカルボン酸残基」とはポリカルボン酸から全てのカルボキシル基を除いて残った基を意味し、かかる炭素数はポリカルボン酸残基の総炭素数を表す。また、「アミン残基」とはモノアミンからアミノ基を除いて残った基を意味し、かかる炭素数はアミン残基の総炭素数を表す。
 アミド化合物としては、具体的には、N,N’-ジシクロヘキシル-1,4-シクロヘキサンジカルボキシアミド、N,N’-ジシクロヘキシル-テレフタルアミド、N,N’-ジシクロヘキシル-4,4’-ビフェニルジカルボキシアミド、N,N’-ジシクロペンチル-4,4’-ビフェニルジカルボキシアミド、N,N’-ジシクロオクチル-4,4’-ビフェニルジカルボキシアミド、N,N’-ジシクロドデシル-4,4’-ビフェニルジカルボキシアミド、N,N’-ジシクロヘキシル-2,2’-ビフェニルジカルボキシアミド、N,N’-ジフェニルヘキサンジアミド、N,N’-ビス(p-メチルフェニル)ヘキサンジアミド、N,N’-ビス(p-エチルフェニル)ヘキサンジアミド、N,N’-ビス(4-シクロヘキシルフェニル)ヘキサンジアミド、1,2,3-プロパントリカルボン酸トリシクロヘキシルアミド、1,2,3-プロパントリカルボン酸トリ(2-メチルシクロヘキシルアミド)、1,2,3-プロパントリカルボン酸トリ(3-メチルシクロヘキシルアミド)、1,2,3-プロパントリカルボン酸トリ(4-メチルシクロヘキシルアミド)、1,2,3,4-ブタンテトラカルボン酸テトラシクロヘキシルアミド、1,2,3,4-ブタンテトラカルボン酸テトラ(2-メチルシクロヘキシルアミド)、1,2,3,4-ブタンテトラカルボン酸テトラ(3-メチルシクロヘキシルアミド)、1,2,3,4-ブタンテトラカルボン酸テトラ(4-メチルシクロヘキシルアミド)、アジピン酸ジアニリド、スベリン酸ジアニリド、トリメシン酸トリシクロヘキシルアミド、トリメシン酸トリ-tert-ブチルアミド、トリメシン酸トリ(2-メチルシクロヘキシルアミド)、トリメシン酸トリ(4-メチルシクロヘキシルアミド)、トリメシン酸トリ(2-エチルシクロヘキシルアミド)、トリメシン酸トリ(4-エチルシクロヘキシルアミド)、トリメシン酸トリ(4-n-プロピルシクロヘキシルアミド)、トリメシン酸トリ(4-イソプロピルシクロヘキシルアミド)、トリメシン酸トリ(4-n-ブチルシクロヘキシルアミド)、トリメシン酸トリ(4-イソブチルシクロヘキシルアミド)、トリメシン酸トリ(4-tert-ブチルシクロヘキシルアミド)、トリメシン酸トリ(4-sec-ブチルシクロヘキシルアミド)、トリメシン酸トリ(2,3-ジメチルシクロヘキシルアミド)、トリメシン酸トリ(2,4-ジメチルシクロヘキシルアミド)、N,N’-ジ(p-t-ブチルフェニル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(2-メチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(2,3-ジメチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(t-ブチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロペンチル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロオクチル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロドデシル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロヘキシル-2,7-ナフタレンジカルボキシアミド、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(4-tert-ブチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,4-ジ-tert-ブチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(1-アダマンチル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-フェニルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(4-tert-ブチルフェニル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,4-ジ-tert-ブチルフェニル)カルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(1-ナフチル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ブチルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ドデシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-オクタデシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス(4-カルバモイルフェニル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N,N-ジシクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N,N-ジフェニルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ブチル-N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ブチル-N-フェニルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(1-ピロリジニルカルボニル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(1-ピペリジニルカルボニル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等が例示される。
 好ましくは、一般式(1)において、Rが上記式(a):
Figure JPOXMLDOC01-appb-C000021
、又は上記式(b):
Figure JPOXMLDOC01-appb-C000022
を有する一般式(1)であることが推奨される。
 上記式(a)の具体例としては、N,N’-ジ(p-t-ブチルフェニル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(2-メチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(2,3-ジメチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(t-ブチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロペンチル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロオクチル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロドデシル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロヘキシル-2,7-ナフタレンジカルボキシアミド等が例示され、より好ましくはN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(2-メチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(2,3-ジメチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミド、N,N’-ジ(t-ブチルシクロヘキシル)-2,6-ナフタレンジカルボキシアミドが推奨される。
 また、上記式(b)の具体例としては、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(4-tert-ブチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,3-ジメチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,4-ジ-tert-ブチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(1-アダマンチル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-フェニルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(4-tert-ブチルフェニル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,4-ジ-tert-ブチルフェニル)カルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(1-ナフチル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ブチルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ドデシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-オクタデシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス(4-カルバモイルフェニル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N,N-ジシクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N,N-ジフェニルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ブチル-N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(N-n-ブチル-N-フェニルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(1-ピロリジニルカルボニル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス[4-(1-ピペリジニルカルボニル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等が例示され、より好ましくは3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(4-tert-ブチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,4-ジ-tert-ブチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{4-[N-(2,3-ジメチルシクロヘキシル)カルバモイル]フェニル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンが推奨される。
 ポリオレフィン系樹脂がポリプロピレン系樹脂の場合、上記一般式(1)で表されるアミド化合物の中でも、ポリプロピレン系樹脂を成形させる際にポリプロピレン系樹脂の結晶形態をβ晶にさせることのできるβ晶造核剤が推奨される。この場合、本発明の効果が顕著に発揮される。β晶造核剤としては、ポリプロピレン系樹脂成形体のβ晶含有量が好ましくは50%以上、より好ましくは60%以上となるように形成できるものが好ましい。
 具体的には、好ましい例示として上記一般式(1)において、Rが式(a)及び式(b)を有する一般式(1)が挙げられ、より好ましくはRが炭素数5~20の飽和の脂環族アミン残基である場合が推奨される。より具体的には、上述の式(a)の具体例や式(b)の具体例に記載されたものが挙げられる。
 本発明に係るβ晶含有量は、前記ポリプロピレン系樹脂成形体から適当量の評価用サンプルを採取し、窒素雰囲気下、昇温速度20℃/minで示差走査熱量分析(DSC)を行い、そのDSCサーモグラムから得られるα晶とβ晶の融解熱量から以下の式に従い求めたものである。
β晶含有量(%)=100×Hβ/(Hβ+Hα
[式中、Hβはβ晶の融解熱量(単位:J/g)を示し、Hαはα晶の融解熱量(単位:J/g)を示す。]
 当該β晶含有量を有するポリプロピレン樹脂成形体を得る手順としては、当該分野で公知の手順を用いることができる(例えば、特開2001-342272、WO2002/66233等)。具体的には、β晶造核剤が溶融ポリプロピレン系樹脂に溶解又は分散した状態から、冷却してポリプロピレンを結晶化させるに際して、当該冷却温度や冷却時間などを適宜調整して、β晶含有量が50%以上の成形体を得ることができる。
 本発明に係るアミド化合物の結晶系は、本発明の効果が得られる限り特に限定されず、六方晶、単斜晶、立方晶等の任意の結晶系が使用できる。これらの結晶も公知であるか又は公知の方法に従い製造できる。例えば、特開平7-242610号公報や特開平7-188246号公報の記載に従って、ポリカルボン酸とモノアミンを原料にアミド化反応を行うことにより得ることができる。また、これらのポリカルボン酸の酸無水物、塩化物、該ポリカルボン酸と炭素数1~4の低級アルコールとのエステル化合物等の反応性誘導体をアミド化に供することによっても得ることができる。公知の方法に従い製造されたアミド化合物は、若干不純物を含むものであってもよいものの、好ましくは90重量%以上、より好ましくは95重量%以上、特に好ましくは97重量%以上が推奨される。不純物としては、反応中間体又は未反応物由来の部分アミド化物、副反応物由来のイミド化合物等が例示される。
 本発明で配合されるアミド化合物の粒径は、本発明の効果が得られる限り特に限定されないが、溶融したポリオレフィン系樹脂に対する溶解時間や分散性の観点からできる限り粒径が小さいものが好ましく、通常、レーザー回折光散乱法で測定した最大粒径が200μm以下、好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは10μm以下である。最大粒子径を上記範囲内に調製する方法としては、この分野で公知の慣用装置を用いて微粉砕し、これを分級する方法等が挙げられる。具体的には、流動層式カウンタージェットミル100AFG(装置名、ホソカワミクロン社製)、超音速ジェットミルPJM-200(装置名、日本ニューマチック社製)等を用いて微粉砕並びに分級する方法が例示される。
 アミド化合物の含有量は、ポリオレフィン系樹脂100重量部に対して、好ましくは0.07~1重量部、より好ましくは0.1~0.7重量部、特に0.1~0.5重量部が推奨される。この範囲で、本願発明の効果に有意差が認められる。アミド系化合物が0.07重量部より少ない場合、造核剤としての改質効果が十分に発揮されない場合がある。また、1重量部を超える場合、添加量に見合う改質効果が得られ難く、またポリオレフィン系樹脂への溶解がし難く、白点やフィッシュアイなどにより外観を悪くする傾向が認められる。
フェノール系化合物
 本発明に係るフェノール系化合物は、上記式(2a)、(2b)、(2c)のものが好ましい。フェノール系化合物は、公知の方法に従って製造することができ、また市販品を使用することもできる。
 上記式(2a)におけるmは、2~5の整数であり、好ましくは2~4の整数、より好ましくは3である。Rは、エステル結合、チオエーテル結合又はエーテル結合を有していてもよい炭素数1~25の直鎖状又は分枝鎖状のアルキル基である。また、Rにおいて、エステル結合、チオエーテル結合及びエーテル結合の結合基を有さない場合には、好ましくは炭素数1~6、より好ましくは1~4の直鎖状又は分枝鎖状のアルキル基であることが好ましく、前記結合基を有する場合には、好ましくは炭素数5~25、より好ましくは8~22の直鎖状又は分枝鎖状アルキル基であることが好ましい。また、m個のRは同一又は異なっていても良い。さらにRは、水酸基に対してオルト位又はパラ位に位置することが好ましく、特にオルト位に少なくとも一つが位置していることが推奨される。
 具体的には式(2a’):
Figure JPOXMLDOC01-appb-C000023
[式中、Rは上記式(2a)と同じある。]
等が挙げられ、より具体的には、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)プロピオネート、2,4,ビス(オクチルチオメチル)-6-メチルフェノール等が例示される。
 上記式(2b)におけるpは、1~4の整数、好ましくは2~4の整数、より好ましくは2である。Xは、エステル結合又はエーテル結合を有していてもよい炭素数1~10、好ましくは炭素数1~6の直鎖状又は分枝鎖状のアルキレン基を表す。
 上記式(2b)の具体例としては、テトラキス〔メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタンが例示される。
 上記式(2c)におけるqは、1~4の整数、好ましくは2~4の整数、より好ましくは2である。Yは、炭素数1~10、好ましくは炭素数1~4の直鎖状又は分枝鎖状のアルキレン基を表す。
 上記式(2c)の具体例としては、1,3,5-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)-s-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が例示される。
 その他のフェノール化合物としては、2,6-ビス(1,1-ジメチルエチル)-4-メチルフェノール、トコフェロール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(6-tert-ブチル-m-クレゾール)、1,1-ビス(2’-メチル-4’-ヒドロキシ-5’-tert-ブチルフェニル)ブタン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルフォスフォン酸モノエチルエステルカルシウム塩、2,2’-オキサミドビス〔エチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレ-ト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス〔3,3-ビス(4’-ヒドロキシ-3’-tert-ブチルフェニル)ブタン酸〕グリコールエステル、1,4-ベンゼンジカルボン酸ビス〔2-(1,1-ジメチルエチル)-6-〔〔3-(1,1-ジメチルエチル)-2-ヒドロキシ-5-メチルフェニル〕メチル〕-4-メチルフェニル〕エステル、
N,N,-ビス{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル}ヒドラジン、3,9-ビス[2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、2,6-ジ-tert-ブチル-4-{4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル-アミノ}フェノール、2-[4,6-ジ(2,4-キシリル)-1,3,5-トリアジン-2-イル]-5-オクチルオキシフェノール、トリエチレングリコール-ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレ-ト等が挙げられる。
 これらのフェノール系化合物は、1種で又は2種以上を適宜組み合わせて使用することができる。
 かかるフェノール系化合物の使用量は、アミド化合物に対して、アミド化合物:フェノール系化合物=60:40~10:90(重量比)であり、好ましくは60:40~20:80(重量比)の配合割合である。フェノール系化合物が60:40より少ない場合、本発明の効果が十分に発揮されない。また、10:90よりも多い場合には、当該使用量に見合った効果が得られ難く経済的に好ましくない。
 また、前記配合割合に加えて、フェノール系化合物によるアミド化合物の結晶の成長速度抑制の効果をより安定的に発揮させる観点から、ポリオレフィン系樹脂100重量部に対して、好ましくは0.07~1重量部、より好ましくは0.08~0.8重量部の範囲が推奨される。フェノール系化合物が0.07重量部より少ない場合、本発明の効果が安定的に十分に発揮されない場合がある。また、1重量部を超えるフェノール系化合物の使用は、樹脂成形体が黄色や黄緑色に着色する傾向が認められ好ましくない。
 本発明のアミド化合物の結晶の成長速度を抑制する方法において、フェノール系化合物をポリオレフィン系樹脂に含有せしめる方法は、上記アミド化合物を含有するポリオレフィン樹脂組成物を成形するとき又は成形する前に、アミド化合物:フェノール系化合物を60:40~10:90(重量比)の配合割合でポリオレフィン系樹脂に含有せしめることができれば、特に制限なく、公知の方法が使用できる。
 本発明のポリオレフィン系樹脂成形体の製造方法は、特定状態の溶融ポリオレフィン系樹脂組成物を成形する工程を含むものであり、前記特定状態とは、上記一般式(1)で表されるアミド化合物の結晶が溶融状態のポリオレフィン系樹脂中に存在していることを意味する。
 アミド化合物の結晶を溶融状態のポリオレフィン系樹脂中に存在させる方法としては、特に限定されないが、例えば、ポリオレフィン系樹脂にアミド化合物を加熱溶解させた後、一旦冷却してアミド化合物の結晶を析出させてポリオレフィン系樹脂組成物とし、次いでそれをポリオレフィン系樹脂の融点以上でアミド化合物の溶解温度未満まで加熱する方法や、アミド化合物をポリオレフィン系樹脂とドライブレンドした後、そのドライブレンド物をポリオレフィン系樹脂の融点以上アミド化合物の溶解温度未満の温度範囲までで加熱する方法などが挙げられる。アミド化合物によりポリオレフィンの改質効果を考慮すれば、前者の例示の手順が好ましい。
 より具体的には、次のような手順が挙げられる。
(A)ポリオレフィン系樹脂(粉末、顆粒、フレーク又はペレット等の形態)、本発明に係るアミド化合物及び必要に応じて後述のポリオレフィン改質剤を所定の比率で仕込み、次いで慣用の混合機(例えば、ヘンシェルミキサー、リボンブレンダー、Vブレンダー、ドラムミキサー等)を用いて、通常室温付近で粉体混合してドライブレンド物を得た後、そのドライブレンド物を、慣用の混練機(例えば、(例えば、単軸若しくは多軸(二軸、四軸等)の混練押出機、混練ニーダ、混練ロール機、ミキシングロール機、加圧ニーダ混練機、バンバリーミキサー等)を用いて、好ましくはアミド化合物の溶解温度以上で溶融混練する(混練温度;通常180~320℃、好ましくは200~310℃。以下、特に断りがない限り、アミド化合物とポリオレフィン系樹脂とが混練りされる工程での溶融温度を「混練温度」という。)。次いで、押し出されたストランドを水冷、空冷等により冷却し(通常、ポリオレフィン樹脂組成物の結晶化温度以下、好ましくは室温まで冷却される。)、得られたストランドをカッティングすることにより、ペレットタイプのポリオレフィン系樹脂組成物を得る。そのポリオレフィン系樹脂組成物をポリオレフィン系樹脂の融点以上でアミド化合物の溶解温度未満まで加熱する手順、
(B)前記ドライブレンド物をポリオレフィン系樹脂組成物として、それをポリオレフィン系樹脂の融点以上アミド化合物の溶解温度未満の温度範囲までで加熱する手順、
(C)前記手順(A)や(B)のフルコンパウンド法に代えて、マスターバッチ法にして同様の行う手順。
 上記の手順(A)や手順(A)のマスターバッチ法は、本発明に係る工程(i)~(iii)の手順(上記項2の発明及び上記項11の発明に係る構成)の具体的な説明に相当する。
 本発明に係るアミド化合物の結晶が溶融状態のポリオレフィン系樹脂中に存在する溶融ポリオレフィン系樹脂組成物を成形する方法において、当該溶融状態とする為の溶融温度の範囲は、具体的にはポリオレフィン系樹脂の融点以上アミド化合物の溶解温度未満の温度範囲が挙げられ、好ましくはT+10℃~T-10℃、より好ましくはT+15℃~T-15℃、特にT+20℃~T-15℃が推奨される。
 ここで、Tは、「ポリオレフィン系樹脂の融点」を表し、Tは、ポリオレフィン系樹脂組成物(目的とするポリオレフィン系樹脂成形体の組成と一致している組成物)において存在する当該アミド化合物が完全に溶解する温度を「アミド化合物の溶解温度」として表す。なお、当該温度範囲の関係には、(T+10℃)<(T-10℃)、(T+15℃)<(T-15℃)、或いは(T+20℃)<(T-15℃)が成立する。
 また、Tのポリオレフィン系樹脂の融点は、後述の実施例にある[融点]に記載の方法によって測定された値を表し、Tのアミド化合物の溶解温度は、後述の実施例にある[溶解温度及び析出温度]に記載の方法によって測定された値を表す。
 また、ポリオレフィン系樹脂の種類、アミド化合物の種類および配合量にもよるが、より具体的な溶融温度の範囲としては、180~260℃が好ましく、190~260℃がより好ましく、200~255℃がさらに好ましい。
 本発明に係る溶融ポリオレフィン系樹脂組成物を成形する方法としては、例えば、ペレットタイプのポリオレフィン系樹脂組成物を、所望の形状・形態(フィルム、シート、ボトル、ケース等)に応じた公知の成形方法(例えば、圧空成形、圧縮成形、真空成形、シート成形、フィルム成形、ブロー成形、押出サーモフォーム成形、押出成形、射出成形、紡糸等)を採用して成形することにより、ポリオレフィン成形体を製造する方法が挙げられる。
 本発明は、上述の通り、アミド化合物の結晶が溶融ポリオレフィン系樹脂中で成長することを抑制することを目的として、フェノール系化合物を共存ないし配合させる。換言すれば、アミド化合物の結晶が溶融ポリオレフィン系樹脂に存在しその結晶の成長を抑制したい場合、上記特定量のフェノール系化合物が共存している状態にせしめることが肝要である。よって、フェノール系化合物の配合時期及び手順は、前記の共存状態となれば特に制限はないものの、上記の手順や本発明に係る工程(i)~工程(iii)から選ばれる少なくとも1つの工程において、単独で配合したり、アミド化合物や他の改質剤等と一緒に配合したり、或いはフェノール系化合物を一括して配合したり、分割して配合したりしてもよい。
 本発明において、ポリオレフィン系樹脂の改質を目的として、従来公知のポリオレフィン改質剤を本発明の効果を奏する範囲で添加してもよい。
 かかるポリオレフィン用改質剤としては、例えば、ポリオレフィン等衛生協議会編「ポジティブリストの添加剤要覧」(2002年1月)に記載されている各種添加剤が挙げられ、より具体的には、安定剤(金属化合物,エポキシ化合物,窒素化合物,燐化合物,硫黄化合物等)、紫外線吸収剤(ベンゾフェノン系化合物,ベンゾトリアゾール系化合物等)、酸化防止剤(亜リン酸エステル系化合物,イオウ系化合物)、界面活性剤、滑剤(パラフィン、ワックス等の脂肪族炭化水素、炭素数8~22の高級脂肪酸、炭素数8~22の高級脂肪酸金属(Al,Ca,Mg,Zn)塩、炭素数8~18の脂肪酸、炭素数8~22の脂肪族アルコール、ポリグリコール、炭素数4~22の高級脂肪酸と炭素数4~18の脂肪族1価アルコールとのエステル、炭素数8~22の高級脂肪酸アマイド、シリコーン油、ロジン誘導体等)、充填剤(タルク,ハイドロタルサイト,マイカ,ゼオライト,パーライト,珪藻土,炭酸カルシウム,ガラス繊維等)、中和剤、制酸剤、発泡剤、発泡助剤、ポリマー添加剤、蛍光増白剤、可塑剤、分子量調整剤(ラジカル発生剤)、架橋剤、架橋促進剤、帯電防止剤、防曇剤、ポリマーアロイ成分(ブロックSBR或いはランダムSBR及びそれらの水素化物等のゴム類やポリスチレン等)、難燃剤、分散剤、有機・無機の顔料、染料、加工助剤、アンチブロッキング剤、上記アミド化合物以外の有機造核剤、等の各種改質剤が例示される。
 これらの改質剤は、1種で又は2種以上を適宜組み合わせて使用することができる。
<溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶成長速度の抑制方法>
 本発明の方法は、アミド化合物を含有するポリオレフィン系樹脂において、溶融ポリオレフィン系樹脂中に存在する上記一般式(1)で表されるアミド化合物の結晶の成長速度を抑制する方法であって、該アミド化合物に対して、上記フェノール系化合物をアミド化合物:フェノール系化合物を60:40~10:90の重量比の割合で含有せしめることを特徴とし、より好ましくは、該フェノール系化合物がポリオレフィン系樹脂100重量部に対して0.07~1重量部の割合及び/又は該アミド化合物がポリオレフィン系樹脂100重量部に対して0.07~1重量部の割合とすることが推奨され、当該推奨の態様において本発明の効果がより顕著に或いはより安定的に奏する。
 特に、溶融ポリオレフィン系樹脂中に存在するアミド化合物が、一旦ポリオレフィン系樹脂に溶解させ、その後冷却してポリオレフィン系樹脂中で結晶化したアミド化合物(微細な結晶)である場合には本発明の効果の顕著性が認められる。
 本発明に係るポリオレフィン樹脂、アミド化合物及びフェノール化合物の説明としては、前記<ポリオレフィン系樹脂成形体の製造方法>についての上記説明と同義である。
<結晶成長速度抑制剤及び結晶成長速度抑制剤としての使用>
 本発明の結晶成長速度抑制剤及び結晶成長速度抑制剤としての使用において、かかるフェノール化合物の説明は、前記<ポリオレフィン系樹脂成形体の製造方法>についての上記説明と同義である。
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例における評価方法は、以下の通りである。
[結晶成長速度の抑制効果の評価方法]
 溶融温度と同じ温度にセットしたホットステージ(METLLER TOLEDO株式会社製,Hot Stage(FP82HT型))に、ポリオレフィン系樹脂成形体及びスペーサーとしてテフロン(登録商標)シート(100μm厚)をカバーガラス(松浪硝子工業株式会社製/18mm×18mm/No.1[0.12-0.17mm])で挟み込み、1分間加熱してポリオレフィン系樹脂成形体を溶融させた。1分間経過直後に、ピンセットでガラスの上を押さえて、ポリオレフィン系樹脂成形体が均一な薄膜(100μm)となるように調整した。光学顕微鏡(Nicon社製偏光顕微鏡ECLIPSE LV100POL(接眼レンズ:10倍、対物レンズ:50倍))にて、溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の最大の長さを目視で判断して評価した。
 更に、ホットステージ上で2時間静置させた溶融ポリオレフィン系樹脂中のアミド化合物の結晶の最大の長さを目視で判断して評価した。
 評価方法としては、光学顕微鏡の視野が縦170μm、横130μmの四角形の範囲内において、溶融温度と同じ温度にセットしたホットステージ上で2時間静置させた溶融ポリオレフィン系樹脂中のアミド化合物の結晶の最大の長さが10μm以上の結晶の個数と前記1分間後の10μm以上の結晶の個数との差により、結晶成長速度の抑制の効果を評価した。
[融点]
 示差走査熱量分析装置(パーキンエルマー社製、ダイヤモンドDSC)を用い、JIS K 7121(1987)に従って測定した。ポリオレフィン系樹脂約10mgを装置にセットし、30℃で3分間保持した後、10℃/分の加熱速度で加熱し、吸熱ピークの頂点を融点(℃)とした。
[溶解温度及び析出温度]
 予め目的とするポリオレフィン系樹脂成形体と同じ組成となるポリオレフィン系樹脂組成物を調製する。該ポリオレフィン系樹脂組成物は、所定量の各成分を室温でドライブレンドし、そのドライブレンド物を二軸押出機にて溶融混練りして、押し出されたストランドを水冷し、ペレタイザーでカッティングして、ペレット状のポリオレフィン系樹脂組成物とした。混練温度は、前記ストランドが目視で透明となる温度に設定した。
 200℃にセットしたホットステージ(同上装置)にそのペレットとスペーサーとしてテフロン(登録商標)シート(同上)とをカバーガラス(同上)で挟み込み、1分間加熱してペレットを溶融させた後、加熱速度90℃/分で溶解するまで加熱した(目安として320℃)。光学顕微鏡(同上装置)を用いて、この昇温過程においてアミド化合物がポリオレフィン系樹脂に溶解した温度(溶解温度(℃))を目視で判定した。次いで、その溶解した状態から冷却速度-45℃/分で200℃まで冷却した。この冷却過程においてアミド化合物が析出した温度(析出温度(℃))を目視で判定した。
[外観]
 ポリオレフィン系樹脂成形体の外観を下記の判定基準で目視により判断して評価した。
 ○;外観が良好である。
 △;僅かながら淡黄色の着色が知覚できる。
 ×;着色、フィッシュアイ、白点、クレーターなど外観に異常が認められる。
[Tダイ押出機のスクリーンメッシュの状態]
 連続押出成形を実施した実施例及び比較例について、スクリーンメッシュ(金網;500mesh)の状態を下記の判定基準で目視により判断して評価した。
 ○;目詰まりが殆ど認められない。
 △;僅かながら目詰まりが認められる。
 ×;明らかに目詰まりが認められる。
[実施例1]
 ポリオレフィン系樹脂として、ポリプロピレンホモポリマー(MFR=10g/10分,融点;168℃)100重量部、アミド化合物としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(商品名;エヌジェスターNU-100,新日本理化株式会社製)0.3重量部及びフェノール系化合物としてテトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(チバスペシャルティーケミカルズ社製、商品名「IRGANOX1010」)0.05重量部、並びにポリオレフィン改質剤としてテトラキス(2,4-ジ-tert-ブチルフェニル)ホスファイト(チバスペシャルティーケミカルズ社製、商品名「IRGAFOS168」)0.13重量及びステアリン酸カルシウム(日東化成工業株式会社製、商品名「CP-S」)0.05重量を室温でドライブレンドした。そのドライブレンド物を二軸押出機にて混練温度(樹脂温度)300℃で溶融混練りして、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドを溶解させ、押し出されたストランドを水冷し、ペレタイザーでカッティングして、ペレット状のポリオレフィン系樹脂組成物を得た。当該ストランドは透明であり、未溶解物は認められなかった。
 得られたポリオレフィン系樹脂組成物100重量部とテトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.3重量部とを室温でドライブレンドした。そのドライブレンドしたポリオレフィン系樹脂組成物を単軸押出機にて溶融温度(樹脂温度)230℃で溶融させ混練りをし、ストランド状に押し出して、それを水冷した後、ペレタイザーでカッティングして、本発明のポリオレフィン系樹脂成形体(ペレット状)を得た。
 得られたポリオレフィン系樹脂成形体を用いて、アミド化合物の結晶成長速度の抑制効果、溶解温度、析出温度等を評価した。その結果、該抑制効果について、10μm以上の結晶の個数は、1分後のときに0個、2時間後のときに3個であった。この結果は、結晶成長速度の抑制効果が高いと評価される。また、溶解温度は295℃、析出温度は239℃であった。
 なお、評価対象の結晶がN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドの結晶であることは、他の添加剤の融点以上である200℃にホットステージ温度を設定しその昇温過程を観察して、200℃に達しても結晶が存在していたことにより確認した。表1に組成、製造条件、評価結果等を纏めた。
[実施例2]
 上記ポリプロピレンホモポリマー100重量部、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン9重量部を室温でドライブレンドした。そのドライブレンド物を単軸押出機にて樹脂温度200℃で押し出し、押し出されたストランドを水冷し、ペレタイザーでカッティングして、ペレット状のフェノール系化合物のマスターバッチを調製した。
 前記マスターバッチ3重量部と実施例1で得られたポリオレフィン系樹脂組成物100重量部とを室温でドライブレンドした。そのドライブレンド物を単軸押出機にて溶融温度(樹脂温度)230℃で溶融させ混練りをし、ストランド状に押し出して、それを水冷した後、ペレタイザーでカッティングして、本発明のポリオレフィン系樹脂成形体(ペレット状)を得た。
 得られたポリオレフィン系樹脂成形体を用いて、アミド化合物の結晶成長速度の抑制効果、溶解温度、析出温度等を評価した。その結果、10μm以上の結晶の個数は、1分後のときに0個、2時間後のときに4個であった。この結果は、結晶成長速度の抑制効果が高いと評価される。また、溶解温度は295℃、析出温度は240℃であった。表1に組成、製造条件、評価結果等を纏めた。
[実施例3]
 上記ポリプロピレンホモポリマー100重量部、上記N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3重量部、上記テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.35重量部、上記テトラキス(2,4-ジ-tert-ブチルフェニル)ホスファイト0.13重量及び上記ステアリン酸カルシウム0.05重量を室温でドライブレンドした。そのドライブレンド物を二軸押出機にて混練温度(樹脂温度)300℃で溶融混練りして、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドを溶解させ、押し出されたストランドを水冷し、ペレタイザーでカッティングして、ペレット状のポリオレフィン系樹脂組成物を得た。
 得られたポリオレフィン系樹脂組成物を単軸押出機にて溶融温度(樹脂温度)230℃で溶融させ混練りをし、ストランド状に押し出して、それを水冷した後、ペレタイザーでカッティングして、本発明のポリオレフィン系樹脂成形体(ペレット状)を得た。
 得られたポリオレフィン系樹脂成形体を用いて、アミド化合物の結晶成長速度の抑制効果、溶解温度、析出温度等を評価した。その結果、10μm以上の結晶の個数は、1分後のときに0個、2時間後のときに4個であった。この結果は、結晶成長速度の抑制効果が高いと評価される。また、溶解温度は295℃、析出温度は240℃であった。表1に組成、製造条件、評価結果等を纏めた。
[実施例4]
 実施例1で得られたポリオレフィン系樹脂組成物100重量部とフェノール系化合物としてオクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート0.3重量部とを室温でドライブレンドした。そのドライブレンド物を単軸押出機にて溶融温度(樹脂温度)230℃で溶融させ混練りをし、ストランド状に押し出し、それを水冷した後、ペレタイザーでカッティングして、本発明のポリオレフィン系樹脂成形体(ペレット状)を得た。
 得られたポリオレフィン系樹脂成形体を用いて、アミド化合物の結晶成長速度の抑制効果、溶解温度、析出温度等を評価した。その結果、該抑制効果について、10μm以上の結晶の個数は、1分後のときに0個、2時間後のときに4個であった。この結果は、結晶成長速度の抑制効果が高いと評価される。また、溶解温度は295℃、析出温度は238℃であった。表1に組成、製造条件、評価結果等を纏めた。
[実施例5]
 実施例1で得られたポリオレフィン系樹脂組成物100重量部と1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン0.3重量部を室温でドライブレンドした。そのドライブレンド物を単軸押出機にて溶融温度(樹脂温度)230℃で溶融させ混練りをし、ストランド状に押し出し、それを水冷した後、ペレタイザーでカッティングして、本発明のポリオレフィン系樹脂成形体(ペレット状)を得た。
 得られたポリオレフィン系樹脂成形体を用いて、アミド化合物の結晶成長速度の抑制効果、溶解温度及び析出温度を評価した。その結果、該抑制効果について、10μm以上の結晶の個数は、1分後のときに0個、2時間後のときに3個であった。この結果は、結晶成長速度の抑制効果が高いと評価される。また、溶解温度は295℃、析出温度は241℃であった。表1に組成、製造条件、評価結果等を纏めた。
[実施例6]
 アミド化合物の種類と配合量を3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン0.2重量部に、フェノール系化合物の配合量を0.2重量部に代え、さらに混練温度を80℃、溶融温度を200℃に代えた他は、実施例3と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は210℃であった。
[実施例7]
アミド化合物の種類を3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンに代え、さらに混練温度を290℃、溶融温度を210℃に代えた他は、実施例1と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は240℃であった。
[実施例8~12]
 アミド化合物の配合量、混練温度、溶融温度を表1に記載の数値に代えた他は、実施例3と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は、実施例8;230℃、実施例9;235℃、実施例10;250℃、実施例11;235℃、実施例12;240℃であった。
[実施例13]
 フェノール系化合物の種類を1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンに代えた他は、実施例3と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は、240℃であった。
[実施例14]
 ポリオレフィン系樹脂の種類をエチレンプロピレンブロックコポリマー(エチレン含有量;9.5重量%,MFR=26g/10分,融点;164℃)に代えた他は、実施例1と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は、240℃であった。
[実施例15~16]
 アミド化合物の種類を表1に記載のアミド化合物に代えた他は、実施例3と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は、実施例15;220℃、実施例16;250℃であった。
[実施例17]
 ポリオレフィン改質剤を使用しなかった他は、実施例3と同様に行って、本発明のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は、240℃であった。
[実施例18]
 成形工程において、スクリーンメッシュ(金網;500mesh)を装備した単軸押出機をTダイ押出機に代えて、シート状に押し出して表面温度40℃に保持されたチルロール上で冷却して、シート状のポリオレフィン系樹脂成形体を得る操作に代えて連続製造を行った他は、実施例1と同様に行って、本発明のポリオレフィン系樹脂成形体(シート状)を得た。なお、当該製造は12時間連続で行った。表1に組成、製造条件、評価結果等を纏めた。スクリーンメッシュの目詰まりは、殆ど認められなかった。外観は良好であった。析出温度は、240℃であった。
[実施例19]
 実施例20において、チルロールの表面温度を120℃とし、チルロールでの冷却時間(接触時間)を20秒に調整した他は、実施例20と同様に行って、本発明のポリオレフィン系樹脂成形体(シート状)を得た。当該成形体のβ晶含有量は、72%であった。外観は良好であった。
[比較例1]
 実施例1に記載のポリオレフィン系樹脂組成物をそのまま単軸押出機にて溶融温度(樹脂温度)230℃で溶融させ混練りをし、ストランド状に押し出し、それを水冷した後、ペレタイザーでカッティングして、本発明外のポリオレフィン系樹脂成形体(ペレット状)を得た。
 得られたポリオレフィン系樹脂成形体を用いて、アミド化合物の結晶成長速度の抑制効果、溶解温度、析出温度等を評価した。その結果、該抑制効果について、10μm以上の結晶の個数は、1分後のときに0個、2時間後のときに25個であった。この結果は、結晶成長速度の抑制効果が低いと評価される。また、溶解温度は288℃、析出温度は220℃であった。表1に組成、製造条件、評価結果等を纏めた。
[比較例2]
 フェノール系化合物の配合量を3重量部に代えた他は、実施例3と同様に行って、本発明外のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は250℃であった。
[比較例3]
アミド化合物の種類を3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンに、フェノール系化合物の配合量を0.05重量部に代え、さらに混練温度を280℃、溶融温度を210℃に代えた他は、実施例3と同様に行って、本発明外のポリオレフィン系樹脂成形体を得た。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は230℃であった。
[比較例4]
 実施例18において、フェノール系化合物を分割添加せずに、その配合量を0.05重量部とした他は、実施例18と同様に行って、本発明外のポリオレフィン系樹脂成形体を得た。当該製造は12時間連続で行った。表1に組成、製造条件、評価結果等を纏めた。スクリーンメッシュの目詰まりが明らかに認められ、スクリュ-の圧力が上昇したので、スクリーンメッシュを交換しながら12時間運転した。表1に組成、製造条件、評価結果等を纏めた。なお、析出温度は220℃であった。
Figure JPOXMLDOC01-appb-T000024
 なお、表1に示す略号は、以下の通りである。
 h-PP:ポリプロピレンホモポリマー
 b-PP:エチレンプロピレンブロックコポリマー
 A:N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド
 B:3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン
 C:1,2,3-プロパントリカルボン酸トリ(2-メチルシクロヘキシルアミド)
 D:トリメシン酸トリシクロヘキシルアミド
 a:テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン
 b:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート
 c:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン
 d:1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン
 本発明の溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶成長速度を抑制する方法により、成形加工時の溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を抑制することができる。特に成形加工時にポリオレフィン系樹脂組成物が滞留時間の長い工程がある場合に有用である。得られるポリオレフィン樹脂成形品のアミド化合物に基づく白点の低減に寄与することができる。
図1は、ポリオレフィン系樹脂組成物(実施例1)の顕微鏡写真である。 図2は、ポリオレフィン系樹脂成形体(実施例1)の、結晶成長速度の抑制効果の評価(2時間加熱静置)時の顕微鏡写真であり、円又は楕円の囲みで10μm以上の結晶を示した。 図3は、ポリオレフィン系樹脂成形体(比較例1)の、結晶成長速度の抑制効果の評価(2時間加熱静置)時の顕微鏡写真であり、円又は楕円の囲みで10μm以上の結晶を示した。

Claims (18)

  1. 下記一般式(1)で表されるアミド化合物の結晶が溶融状態のポリオレフィン系樹脂中に存在する溶融ポリオレフィン系樹脂組成物を成形する工程を含むポリオレフィン系樹脂成形体の製造方法であって、
    前記溶融ポリオレフィン系樹脂組成物はフェノール系化合物を含有し、かつ、アミド化合物とフェノール系化合物との配合割合が60:40~10:90(重量比)である、ポリオレフィン系樹脂成形体の製造方法。
    一般式(1):
    -(CONHR)n     (1)
    [式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20の脂環族アミン残基又は炭素数6~20の芳香族アミン残基を表す。]
  2. (i)ポリオレフィン系樹脂にアミド化合物を加熱溶解させる工程、
    (ii)前記工程(i)の溶融状態のポリオレフィン系樹脂組成物を冷却して、アミド化合物の結晶を析出させる工程、及び
    (iii)前記工程(ii)のアミド化合物の結晶を析出させたポリオレフィン系樹脂組成物をT+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)の温度範囲で溶融させた溶融ポリオレフィン系樹脂組成物を成形する工程
    を含むポリオレフィン系樹脂成形体の製造方法であって、
    前記工程(i)~工程(iii)から選ばれる少なくとも1つの工程においてフェノール系化合物を前記配合割合の範囲で配合する、請求項1に記載のポリオレフィン系樹脂成形体の製造方法。
  3. 一般式(1)に記載のRが、式(a):
    Figure JPOXMLDOC01-appb-C000001
    、又は式(b):
    Figure JPOXMLDOC01-appb-C000002
    である、請求項1又は請求項2に記載のポリオレフィン系樹脂成形体の製造方法。
  4. フェノール系化合物が、一般式(2a):
    Figure JPOXMLDOC01-appb-C000003
    [式中、mは、2~5の整数を表す。m個のRは、同一又は異なって、それぞれ、エステル結合、チオエーテル結合又はエーテル結合を有していてもよい炭素数1~25の直鎖状又は分枝鎖状のアルキル基を表す。]、
    一般式(2b):
    Figure JPOXMLDOC01-appb-C000004
    [式中、pは、1~4の整数を表す。p個のRは前記式(2a)と同じである。Xは、エステル結合又はエーテル結合を有していてもよい炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]、又は一般式(2c):
    Figure JPOXMLDOC01-appb-C000005
    [式中、qは、1~4の整数を表す。q個のRは前記式(2a)と同じである。Yは、炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]
    である請求項1~3のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
  5. 請求項1に記載の溶融ポリオレフィン系樹脂組成物の溶融温度又は請求項2に記載の工程(iii)における溶融温度が180~260℃である、請求項1~4のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
  6. フェノール系化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である請求項1~5のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
  7. アミド化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である請求項1~6のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
  8. ポリオレフィン系樹脂がポリプロピレン系樹脂であり、かつアミド化合物がポリプロピレン用β晶造核剤であって、ポリオレフィン系樹脂成形体がβ晶含有量50%以上のポリプロピレン系樹脂成形体である請求項1~7のいずれかに記載のポリオレフィン系樹脂成形体の製造方法。
  9. 溶融ポリオレフィン系樹脂中に存在する下記一般式(1)で表されるアミド化合物の結晶の成長速度を抑制する方法であって、アミド化合物とフェノール系化合物とが60:40~10:90(重量比)の割合となるようにフェノール系化合物をポリオレフィン系樹脂に含有せしめることを特徴とする方法。
    一般式(1):
    -(CONHR)n     (1)
    [式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20の脂環族アミン残基又は炭素数6~20芳香族アミン残基を表す。]
  10. 溶融ポリオレフィン系樹脂組成物の溶融温度が、T+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)の温度範囲である、請求項9に記載の方法。
  11. (i)ポリオレフィン系樹脂にアミド化合物を加熱溶解させる工程、
    (ii)前記工程(i)の溶融状態のポリオレフィン系樹脂組成物を冷却して、アミド化合物の結晶を析出させる工程、及び
    (iii)前記工程(ii)のアミド化合物の結晶を析出させたポリオレフィン系樹脂組成物をT+10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)の温度範囲で溶融させた溶融ポリオレフィン系樹脂組成物を成形する工程から選ばれる少なくとも1つの工程においてフェノール系化合物を配合し、工程(iii)において溶融ポリオレフィン系樹脂中に存在するアミド化合物の結晶の成長速度を抑制する方法であって、
    フェノール系化合物の配合割合が、アミド化合物:フェノール系化合物=60:40~10:90(重量比)である、請求項9に記載の方法。
  12.  一般式(1)に記載のRが、式(a):
    Figure JPOXMLDOC01-appb-C000006
    、又は式(b):
    Figure JPOXMLDOC01-appb-C000007
    である、請求項9~11のいずれかに記載の方法。
  13. フェノール系化合物が、一般式(2a):
    Figure JPOXMLDOC01-appb-C000008
    [式中、mは、2~5の整数を表す。m個のRは、同一又は異なって、それぞれ、エステル結合、チオエーテル結合又はエーテル結合を有していてもよい炭素数1~25の直鎖状又は分枝鎖状のアルキル基を表す。]、
    一般式(2b):
    Figure JPOXMLDOC01-appb-C000009
    [式中、pは、1~4の整数を表す。p個のRは前記式(2a)と同じである。Xは、エステル結合又はエーテル結合を有していてもよい炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]、又は一般式(2c):
    Figure JPOXMLDOC01-appb-C000010
    [式中、qは、1~4の整数を表す。q個のRは前記式(2a)と同じである。Yは、炭素数1~10の直鎖状又は分枝鎖状のアルキレン基を表す。]
    である請求項9~12のいずれかに記載の方法。
  14. 請求項9に記載の溶融ポリオレフィン系樹脂の溶融温度又は請求項11に記載の工程(iii)における溶融温度が180~260℃である、請求項9~13のいずれかに記載の方法。
  15. フェノール系化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である請求項9~14のいずれかに記載の方法。
  16. アミド化合物の配合量が、ポリオレフィン系樹脂100重量部に対して、0.07~1重量部である請求項9~15のいずれかに記載の方法。
  17.  フェノール系化合物を有効成分とする、溶融ポリオレフィン系樹脂中に存在する下記一般式(1)で表されるアミド化合物の結晶の結晶成長速度抑制剤。
    一般式(1):
    -(CONHR)n     (1)
    [式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20の脂環族アミン残基又は炭素数6~20の芳香族アミン残基を表す。]
  18. +10℃~T-10℃(Tは、ポリオレフィン系樹脂の融点を表し、Tは、アミド化合物の溶解温度を表す。)
    にある溶融ポリオレフィン系樹脂中に存在する下記一般式(1)で表されるアミド化合物の結晶の結晶成長速度抑制剤としてのフェノール系化合物の使用。
    一般式(1):
    -(CONHR)n     (1)
    [式中、nは、2~4の整数を表す。Rは、炭素数3~6の飽和若しくは不飽和の脂肪族ポリカルボン酸残基、炭素数3~25の脂環族ポリカルボン酸残基又は炭素数6~25の芳香族ポリカルボン酸残基を表す。2~4個のRは、同一又は異なって、それぞれ、炭素数5~22の飽和若しくは不飽和の脂肪族アミン残基、炭素数5~20の脂環族アミン残基又は炭素数6~20の芳香族アミン残基を表す。]
PCT/JP2010/058098 2009-05-13 2010-05-13 アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法 WO2010131705A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10774962A EP2431415A4 (en) 2009-05-13 2010-05-13 METHOD FOR REGULATING THE CRYSTALLINE GROWTH SPEED OF AN AMIDE COMPOUND AND METHOD FOR PRODUCING A POLYOLEFIN RESIN MOLDED ARTICLE
KR1020117029666A KR101711227B1 (ko) 2009-05-13 2010-05-13 아미드 화합물의 결정 성장 속도를 억제하는 방법 및 폴리올레핀계 수지 성형체의 제조 방법
BRPI1013736A BRPI1013736A2 (pt) 2009-05-13 2010-05-13 metodo para inibir taxa de crescimento de cristal de composto de amida e metodo para produzir artigo moldado de resina a base de poliolefina
US13/264,488 US9023921B2 (en) 2009-05-13 2010-05-13 Method for inhibiting crystal growth rate of amide compound and method for producing molded article of polyolefin-based resin
JP2011513370A JP5794145B2 (ja) 2009-05-13 2010-05-13 アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法
CN201080020641.3A CN102421843B (zh) 2009-05-13 2010-05-13 用于抑制酰胺化合物的晶体生长速度的方法和聚烯烃基树脂成形体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-116550 2009-05-13
JP2009116550 2009-05-13

Publications (1)

Publication Number Publication Date
WO2010131705A1 true WO2010131705A1 (ja) 2010-11-18

Family

ID=43085078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058098 WO2010131705A1 (ja) 2009-05-13 2010-05-13 アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法

Country Status (8)

Country Link
US (1) US9023921B2 (ja)
EP (1) EP2431415A4 (ja)
JP (1) JP5794145B2 (ja)
KR (1) KR101711227B1 (ja)
CN (1) CN102421843B (ja)
BR (1) BRPI1013736A2 (ja)
TW (1) TWI483978B (ja)
WO (1) WO2010131705A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047020A1 (ja) * 2011-09-30 2013-04-04 新日本理化株式会社 アミド化合物の結晶化を制御する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品
JP2013256613A (ja) * 2012-06-13 2013-12-26 New Japan Chem Co Ltd アミド化合物の結晶を微細化する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192496A (ja) 1992-10-22 1994-07-12 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH07188246A (ja) 1993-12-27 1995-07-25 Mitsubishi Chem Corp テトラオキサスピロ化合物およびその利用
JPH07242610A (ja) 1994-03-07 1995-09-19 New Japan Chem Co Ltd 新規なアミド系化合物
JPH07278374A (ja) 1994-04-06 1995-10-24 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08100088A (ja) 1994-09-29 1996-04-16 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08134227A (ja) * 1994-11-09 1996-05-28 Mitsubishi Chem Corp プロピレン系樹脂成形体の製造方法
JPH08197640A (ja) * 1995-01-24 1996-08-06 Mitsubishi Chem Corp ポリオレフィン樹脂成形体
JP2001342272A (ja) 2000-06-02 2001-12-11 New Japan Chem Co Ltd 多孔性ポリプロピレンフィルム、その製造方法及び該フィルムを用いた吸収性物品
WO2002066233A1 (en) 2001-02-21 2002-08-29 New Japan Chemical Co., Ltd. Successively biaxial-oriented porous polypropylene film and process for production thereof
WO2003025047A1 (fr) * 2001-09-12 2003-03-27 New Japan Chemical Co., Ltd. Moulages en resine de polypropylene et procede de production correspondant
JP2006089727A (ja) * 2004-08-24 2006-04-06 New Japan Chem Co Ltd 多孔性フィルムの製造法及び該製造法により得られる多孔性フィルム
JP2008120931A (ja) * 2006-11-14 2008-05-29 Toray Ind Inc 微多孔ポリプロピレンフィルムおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235823B1 (en) * 1992-01-24 2001-05-22 New Japan Chemical Co., Ltd. Crystalline polypropylene resin composition and amide compounds
CN1972986B (zh) * 2004-04-22 2010-11-24 东丽株式会社 微孔性聚丙烯薄膜及其制造方法
WO2008075410A1 (ja) * 2006-12-19 2008-06-26 New Japan Chemical Co., Ltd. 新規なポリオレフィン系樹脂組成物及びその樹脂成形体
JP5077229B2 (ja) 2006-05-16 2012-11-21 東レ株式会社 二軸配向白色ポリプロピレンフィルム、反射板および感熱転写記録用受容シート
JP4946609B2 (ja) * 2007-04-27 2012-06-06 新日本理化株式会社 ポリオレフィン用核剤組成物、該核剤組成物を含有したポリオレフィン系樹脂組成物及びその成形体

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192496A (ja) 1992-10-22 1994-07-12 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH07188246A (ja) 1993-12-27 1995-07-25 Mitsubishi Chem Corp テトラオキサスピロ化合物およびその利用
JPH07242610A (ja) 1994-03-07 1995-09-19 New Japan Chem Co Ltd 新規なアミド系化合物
JPH07278374A (ja) 1994-04-06 1995-10-24 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08100088A (ja) 1994-09-29 1996-04-16 New Japan Chem Co Ltd ポリプロピレン系樹脂組成物
JPH08134227A (ja) * 1994-11-09 1996-05-28 Mitsubishi Chem Corp プロピレン系樹脂成形体の製造方法
JPH08197640A (ja) * 1995-01-24 1996-08-06 Mitsubishi Chem Corp ポリオレフィン樹脂成形体
JP2001342272A (ja) 2000-06-02 2001-12-11 New Japan Chem Co Ltd 多孔性ポリプロピレンフィルム、その製造方法及び該フィルムを用いた吸収性物品
WO2002066233A1 (en) 2001-02-21 2002-08-29 New Japan Chemical Co., Ltd. Successively biaxial-oriented porous polypropylene film and process for production thereof
WO2003025047A1 (fr) * 2001-09-12 2003-03-27 New Japan Chemical Co., Ltd. Moulages en resine de polypropylene et procede de production correspondant
JP2006089727A (ja) * 2004-08-24 2006-04-06 New Japan Chem Co Ltd 多孔性フィルムの製造法及び該製造法により得られる多孔性フィルム
JP2008120931A (ja) * 2006-11-14 2008-05-29 Toray Ind Inc 微多孔ポリプロピレンフィルムおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431415A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047020A1 (ja) * 2011-09-30 2013-04-04 新日本理化株式会社 アミド化合物の結晶化を制御する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品
JPWO2013047020A1 (ja) * 2011-09-30 2015-03-26 新日本理化株式会社 アミド化合物の結晶化を制御する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品
JP2013256613A (ja) * 2012-06-13 2013-12-26 New Japan Chem Co Ltd アミド化合物の結晶を微細化する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品

Also Published As

Publication number Publication date
US20120035304A1 (en) 2012-02-09
EP2431415A1 (en) 2012-03-21
EP2431415A4 (en) 2012-11-14
KR20120023778A (ko) 2012-03-13
TWI483978B (zh) 2015-05-11
CN102421843B (zh) 2015-01-28
BRPI1013736A2 (pt) 2019-09-24
TW201114823A (en) 2011-05-01
JP5794145B2 (ja) 2015-10-14
CN102421843A (zh) 2012-04-18
US9023921B2 (en) 2015-05-05
KR101711227B1 (ko) 2017-02-28
JPWO2010131705A1 (ja) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5239869B2 (ja) 新規なポリオレフィン系樹脂組成物及びその樹脂成形体
JP4835159B2 (ja) ポリオレフィン系樹脂の結晶化速度制御のための組成物及び方法、樹脂組成物及び樹脂成形体
JP7122640B2 (ja) ポリオレフィン系樹脂中での分散性に優れた脂環式ジカルボン酸の金属塩、該脂環式ジカルボン酸の金属塩の製造方法
JP4940601B2 (ja) 新規なポリプロピレン樹脂組成物、該組成物を用いたシート又はフィルム成形体及びその製造方法
JP5794145B2 (ja) アミド化合物の結晶成長速度を抑制する方法及びポリオレフィン系樹脂成形体の製造方法
JP4244806B2 (ja) ポリプロピレン系樹脂成形体及びその製造方法
JP7397310B2 (ja) 樹脂中での分散性の改良されたポリオレフィン系樹脂用の結晶核剤、及び該結晶核剤を含むポリオレフィン系樹脂組成物
JP7406162B2 (ja) ポリオレフィン系樹脂用の結晶核剤組成物、及び該結晶核剤組成物を含むポリオレフィン系樹脂組成物
JP2007231134A (ja) 改良されたポリプロピレン樹脂組成物及びその成形体
JP5861713B2 (ja) アミド化合物の結晶化を制御する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品
JP2013256613A (ja) アミド化合物の結晶を微細化する方法を含むポリプロピレン系樹脂成形体の製造方法、該製造方法により得られるポリプロピレン系樹脂成形体、及びその二次加工成形品
JP6928923B2 (ja) ポリオレフィン系樹脂成形体
TW202200501A (zh) 聚烯烴系樹脂用改質劑、及包含該改質劑之聚烯烴系樹脂組成物
JP2018035335A (ja) ポリオレフィン系樹脂用結晶核剤の流動性の改良方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020641.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264488

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011513370

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8124/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117029666

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010774962

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013736

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111110