WO2007097024A1 - 気化器、半導体製造装置及び半導体製造方法 - Google Patents

気化器、半導体製造装置及び半導体製造方法 Download PDF

Info

Publication number
WO2007097024A1
WO2007097024A1 PCT/JP2006/303616 JP2006303616W WO2007097024A1 WO 2007097024 A1 WO2007097024 A1 WO 2007097024A1 JP 2006303616 W JP2006303616 W JP 2006303616W WO 2007097024 A1 WO2007097024 A1 WO 2007097024A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
material solution
carrier gas
supplied
vaporizer
Prior art date
Application number
PCT/JP2006/303616
Other languages
English (en)
French (fr)
Inventor
Hisayoshi Yamoto
Shinichi Koshimae
Yuji Honda
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Priority to JP2007525119A priority Critical patent/JPWO2007097024A1/ja
Priority to US12/278,531 priority patent/US20100022097A1/en
Priority to PCT/JP2006/303616 priority patent/WO2007097024A1/ja
Priority to TW095108412A priority patent/TW200733196A/zh
Publication of WO2007097024A1 publication Critical patent/WO2007097024A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Definitions

  • the present invention relates to a vaporizer, a semiconductor manufacturing apparatus, and a semiconductor manufacturing method.
  • a vaporizer for example, an ALD (A tomic Layer) is provided in which a raw material gas is intermittently supplied to a reaction chamber and thin films are grown one atomic layer or one molecular layer at a time. It is suitable for use in Deposition-style VD (and hemical Vapor Deposition) equipment.
  • ALD A tomic Layer
  • Semiconductor integrated circuits are manufactured by many repetitions of formation of a thin film and patterning thereof.
  • Various CVD apparatuses are used for forming the thin film.
  • a raw material gas is intermittently sprayed onto a substrate and heated by a heating apparatus such as a heater.
  • a heating apparatus such as a heater.
  • An ALD type CVD apparatus and the like when a chemical reaction is caused to form a thin film on a substrate (see, for example, Patent Document 1).
  • a CVD apparatus 400 for ALD as shown in FIG. 9 includes a gas shower type CVD unit 401.
  • the reaction chamber 402 of the CVD unit 401 has a gas inlet 403 and a reaction chamber side valve 4.
  • a gas supply path 405 is connected via 04.
  • the gas supply path 405 has a branch portion 406 that extends horizontally at a position upstream of the reaction chamber side valve 404, and a vent side valve 407 is provided at the branch portion 406.
  • An exhaust pipe 408 is connected to the vent side valve 407, and the gas supply path 405 is connected to the exhaust vacuum pump 410 via the vent side valve 407, the exhaust pipe 408 and the exhaust valve 409. Configured to gain.
  • the reaction chamber 402 includes a lid portion 411 having a gas inlet 403, a reaction chamber support portion 412 that supports the reaction chamber 402, and a reaction chamber main body 413.
  • the reaction chamber interior 415 can be maintained at a predetermined temperature by a heater (not shown) provided on the outer surface or the like.
  • the reaction chamber 415 is provided with a shower plate 416.
  • the shower plate 416 has an internal space 417 for receiving the raw material gas from the gas inlet 403, and has a lower surface. A number of gas ejection holes 418 are provided!
  • the reaction chamber side valve 404 is opened and the vent side solenoid 407 is closed.
  • the raw material gas is supplied to the reaction chamber 402 and the raw material gas is sprayed uniformly on the substrate 420 through the gas ejection holes 418.
  • the source gas is heated in the reaction chamber 415 by the heater 422 in the substrate stage 421 and causes a chemical reaction on the substrate 420.
  • the reaction chamber side valve 404 is closed at a predetermined timing and the vent side valve 407 is opened to supply the source gas 415 to the reaction chamber inside 415. Is stopped, and a thin film of one atomic layer or one molecular layer having a desired film thickness is formed.
  • the reaction chamber side valve 404 and the vent side are again returned after a predetermined time has elapsed.
  • an opening / closing operation that is, a thin film forming operation
  • a thin film of one atomic layer or one molecular layer having a desired film thickness is newly formed on the substrate 420.
  • Patent Document 1 JP 2006-28572 A
  • the reaction chamber side valve 404 is opened and closed.
  • the pressure and temperature in the reaction chamber 415 easily change each time, and the film forming process conditions in the reaction chamber 415 become non-uniform. As a result, a thin film is uniformly formed on the substrate 420. There was a problem that it was difficult to form.
  • the reaction chamber side valve 404 and the vent side valve 407 are concerned.
  • the open / close operation of 407 has increased, and its operating life is generally short. For this reason, conventionally, it is necessary to maintain the reaction chamber side valve 404 and the vent side valve 407 in a short cycle. As a result, there is a problem that the operation rate is lowered and it is difficult to improve productivity.
  • the present invention has been made in consideration of the above points.
  • the use efficiency of the raw material gas can be remarkably improved, and the film thickness according to the raw material gas can be uniformly formed.
  • the vaporizer according to claim 1 is a vaporizer for supplying a raw material gas obtained by vaporizing the raw material solution to the reaction chamber, and a carrier gas flow path in which the carrier gas flows toward the inlet loca outlet and the raw material solution.
  • the raw material solution flow path to which the raw material solution is supplied, the connecting pipe communicating the carrier gas flow path and the raw material solution flow path, and the raw material solution supplied to the raw material solution flow path are quantified and discharged to the connecting pipe.
  • a raw material solution discharging means, and a vaporization section that is provided between the outlet of the carrier gas flow path and the raw material solution discharging means and vaporizes a predetermined amount of the raw material solution discharged from the raw material solution discharging means. It is characterized by this.
  • the vaporizer according to claim 3 is provided with a solvent flow path that is provided in the connection pipe and supplies a purge solvent to the carrier gas flow path.
  • the vaporizer according to claim 4 wherein the carrier gas channel is supplied with the carrier gas, and the carrier gas pipe force is supplied with the carrier gas, so that the raw material solution is in the form of fine particles or mist.
  • the carrier gas channel is supplied with the carrier gas
  • the carrier gas pipe force is supplied with the carrier gas, so that the raw material solution is in the form of fine particles or mist.
  • a vapor pipe, and the vaporizing section includes heating means for heating and vaporizing the raw material solution dispersed in the carrier gas.
  • the vaporizer according to claim 5 is characterized in that the raw material solution discharging means is a micro metering pump.
  • the vaporizer according to claim 7 is characterized in that it has a quantity according to the film thickness of 500 nm or less and a quantity corresponding to one atomic layer or one molecular layer formed on the substrate.
  • the vaporizer according to claim 8 is characterized in that the raw material solution discharging means includes a storage unit that stores the raw material solution in an amount corresponding to the one atomic layer or one molecular layer.
  • the semiconductor manufacturing apparatus includes a reaction chamber on which a substrate is placed, and a vaporizer that supplies a raw material gas obtained by vaporizing a raw material solution to the reaction chamber.
  • the vaporizer communicates the carrier gas flow path through which the carrier gas flows from the inlet to the outlet, the raw material solution flow path to which the raw material solution is supplied, the carrier gas flow path, and the raw material solution flow path.
  • a raw material solution discharging means for quantifying and discharging the raw material solution supplied to the raw material solution flow path, and an outlet of the carrier gas flow path and the raw material solution discharging means And a vaporizing section for vaporizing a predetermined amount of the raw material solution discharged from the raw material solution discharging means.
  • the semiconductor manufacturing apparatus is characterized in that the raw material solution discharging means intermittently discharges the raw material solution into the connecting pipe.
  • the semiconductor manufacturing apparatus is provided with a solvent flow path that is provided in the connection pipe and supplies a purge solvent to the carrier gas flow path.
  • the carrier gas flow path includes the carrier gas.
  • the vaporizing section includes heating means for heating and vaporizing the raw material solution dispersed in the carrier gas.
  • the semiconductor manufacturing apparatus is characterized in that the raw material solution discharge means comprises a micro metering pump.
  • the raw material solution discharging means quantifies the raw material solution supplied to the raw material solution flow path in an amount corresponding to a film thickness of 500 nm or less formed on the substrate. It is characterized by this.
  • the semiconductor manufacturing apparatus wherein the amount corresponding to the film thickness of 500 nm or less is an amount corresponding to one atomic layer or one molecular layer formed on the substrate. It is.
  • the raw material solution discharging means includes a storage unit that stores the raw material solution in an amount corresponding to the one atomic layer or one molecular layer. is there.
  • the semiconductor manufacturing apparatus wherein the raw material solution discharging means is a tank for raw material solution.
  • the storage of the raw material solution is supplied in advance according to the amount corresponding to the one atomic layer or one molecular layer.
  • the gas is stored in a part and discharged to the vaporization part at a predetermined timing.
  • the semiconductor manufacturing method is a semiconductor manufacturing method of treating a substrate surface in the reaction chamber by supplying a source gas obtained by vaporizing the source solution to the reaction chamber.
  • a carrier gas supply step for supplying a carrier gas to the reaction chamber by flowing a carrier gas toward the loca outlet, a raw material solution supply step for supplying the raw material solution to the raw material solution flow path, and the raw material solution
  • the raw material solution discharge step and the vaporization section provided between the outlet of the carrier gas flow path and the raw material solution discharge means discharged in the raw material solution discharge step.
  • the predetermined And a vaporizing step for vaporizing an amount of the raw material solution.
  • the purging solvent is supplied to the vaporizing section through the connecting pipe instead of the raw material solution discharging step and the vaporizing step.
  • a purge supply step is provided.
  • the carrier gas supply step includes an orifice tube gas supply step of supplying the carrier gas from a carrier gas tube to the orifice tube, and after the orifice tube gas supply step,
  • the raw material solution discharging step the raw material solution is discharged into the orifice tube, and the raw material solution is dispersed in a carrier gas in the form of fine particles or mist in the orifice tube, and is supplied to the vaporizing section.
  • the raw material solution dispersed in the carrier gas by the step is heated by the heating means of the vaporizing section to be vaporized.
  • the semiconductor manufacturing method according to claim 23 is characterized in that the quantification step quantifies the raw material solution with a micro metering pump.
  • the raw material solution supplied to the raw material solution channel is quantified according to a film thickness of 500 nm or less formed on the substrate. It is characterized by this.
  • the semiconductor manufacturing method according to claim 25, wherein the amount corresponding to the film thickness of 500 nm or less is an amount corresponding to one atomic layer or one molecular layer formed on the substrate. It is.
  • the semiconductor manufacturing method according to claim 26 is characterized in that in the quantification step, the raw material solution is stored in the storage part by an amount corresponding to the one atomic layer or one molecular layer.
  • the raw material solution tank force is supplied to the storage unit in advance in an amount corresponding to the one atomic layer or one molecular layer. It is stored and discharged to the vaporizing section at a predetermined timing.
  • the use efficiency of the raw material gas can be remarkably improved, the maintenance frequency can be reduced as compared with the conventional case, and the productivity can be improved.
  • a film thickness corresponding to the source gas can be uniformly formed on the formation surface.
  • the supply of the raw material solution can be repeated a plurality of times as required by the raw material solution discharging means.
  • the raw material solution is dispersed in the carrier gas in the form of fine particles or mist in the orifice tube, and all the raw material solution is easily vaporized by heat. By doing so, it is possible to accurately vaporize all the predetermined amount of raw material solution precisely quantified by the raw material solution discharging means, and to constantly supply a constant amount of raw material gas more accurately into the reaction chamber. .
  • the raw material solution can be accurately and easily quantified.
  • the raw material solution can be supplied to the vaporizing section in an amount corresponding to a film thickness of 500 nm or less.
  • the raw material solution can be supplied to the vaporizing section by an amount corresponding to one atomic layer or one molecular layer.
  • the raw material solution can be supplied to the vaporization section by an amount corresponding to one atomic layer or one molecular layer simply by storing the raw material solution in the storage section.
  • FIG. 1 is a schematic diagram showing an overall configuration of a gas shower thermal CVD apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a detailed configuration of a vaporizer for CVD.
  • FIG. 3 is a schematic diagram showing an overall configuration of a thermal CVD apparatus according to a second embodiment.
  • FIG. 4 is a schematic diagram showing an overall configuration of a plasma CVD apparatus according to a third embodiment.
  • FIG. 5 is a schematic view showing an overall configuration of a shower type plasma CVD apparatus according to a fourth embodiment.
  • FIG. 6 is a schematic diagram showing the overall configuration of a roller plasma CVD apparatus according to a fifth embodiment.
  • FIG. 7 is a schematic diagram showing the overall configuration of a roller type plasma CVD apparatus according to a sixth embodiment.
  • FIG. 8 is a schematic diagram showing the overall configuration of a roller thermal CVD apparatus according to a seventh embodiment.
  • FIG. 9 is a schematic diagram showing the overall configuration of a conventional CVD apparatus for ALD.
  • FIG. 1 shows a gas shower type thermal CVD apparatus as a manufacturing apparatus, and is configured to execute a series of ALD type operations performed by intermittently supplying a raw material gas from above the reaction chamber 402.
  • the gas shower type thermal CVD apparatus 1 for performing the semiconductor manufacturing method of the present invention is composed of a CVD unit 2 and a CVD gas vessel 3 mounted in the CVD unit 2, During the ALD operation, the carrier gas can always be supplied from the CV D vaporizer 3 to the reaction chamber 402 of the CVD unit 2.
  • reaction chamber interior 415 can be maintained at a predetermined temperature by a heater (not shown) provided on the outer surface of reaction chamber main body 413.
  • the reaction chamber body 413 has a door 4 at a predetermined position, and the substrate 420 can be taken in and out of the reaction chamber 415 via the door 4.
  • reaction chamber body 413 is provided with an oxidizing gas supply port 5 so that an oxidizing gas (for example, O 2) can be supplied to the reaction chamber inside 415 through the oxidizing gas supply port 5.
  • an oxidizing gas for example, O 2
  • a shower plate 416 is provided at the upper part, and a substrate stage 421 is provided at the lower part, and a substrate stage heater 422 is provided inside the substrate stage 421.
  • the shower plate 416 diffuses the source gas supplied to the internal space 417 through the gas ejection holes 418 so that the source gas can be uniformly sprayed onto the substrate 420 placed on the substrate stage 421.
  • ing. 8 is a vaporizer, for example, steam H 2 O is required as an oxygen gas.
  • a oxidizing gas O as a carrier gas, e.g.
  • the internal space 417 of the rate 416 can be supplied.
  • a shower plate heater 10 and a temperature sensor 11 are provided on the upper surface of the shower plate 416, and the shower plate heater 10 is heated and controlled via the control unit 12 based on the temperature detected by the temperature sensor 11.
  • the reaction chamber 415 and the like can be heated to a predetermined temperature.
  • the shower plate heater 10 is connected to a heater wiring 13 that is routed.
  • the substrate stage heater 422 is heated and controlled via the control unit 15 based on the temperature detected by the temperature sensor 14, so that the substrate stage 421 can be heated to a predetermined temperature. It is configured. Incidentally, the heater wiring 16 is routed and connected to the substrate stage heater 422.
  • the reaction chamber support 412 is provided with a pressure gauge 412a for measuring the pressure in the reaction chamber 415.
  • an exhaust pipe 17 extending to the exhaust vacuum pump 410 communicates with the reaction chamber support 412, and a trap 18 is provided in the middle of the exhaust pipe 17.
  • a trap 18 is provided in the middle of the exhaust pipe 17.
  • the vaporizer for CVD 3 is connected to the reaction chamber 402 via the reaction chamber side valve 404 to the gas inlet 403.
  • the conventional CVD apparatus 400 (FIG. 9) performs the ALD operation in which a thin film consisting of one atomic layer or one molecular layer is sequentially formed on the substrate 420. Accordingly, the reaction chamber side valve 404 and the vent side valve 407 are not opened and closed, the reaction chamber side valve 404 is always open, and the vent side valve 407 is always closed.
  • the carrier gas can always be supplied to the reaction chamber 402 from the CVD gas vessel 3 during the ALD operation.
  • the carrier gas supplied to the reaction chamber 402 can always be exhausted from the exhaust vacuum pump 410 via the exhaust pipe 17.
  • reaction chamber 402 is supplied with a raw material gas obtained by vaporizing only the raw material solution quantified by the CVD vaporizer 3 at a predetermined timing.
  • a source gas is uniformly sprayed onto the substrate 420 and heated by a heating device such as a heater to cause a chemical reaction, so that one atomic layer or 1 having a desired film thickness is obtained.
  • a thin film of a molecular layer can be formed on the substrate 420.
  • the gas shower type thermal CVD apparatus when the supply of the raw material gas obtained by vaporizing only the raw material solution quantified by the CVD vaporizer 3 is completed, only the carrier gas reacts again from the CVD vaporizer 3. Since the reaction chamber side valve 404 is opened and the vent side valve 407 is closed, a single atomic layer or monomolecular layer thin film having a desired film thickness is formed on the substrate 420. It is made to be able to form. [0066] In this way, in the gas shower type thermal CVD apparatus 1, a predetermined amount of the raw material solution quantified according to the film thickness of one atomic layer or one molecular layer formed on the substrate 420 as an object to be thin film formed.
  • reaction chamber side valve 404 and the vent side valve 407 are not opened and closed each time.
  • a single atomic layer or monomolecular layer thin film having a desired film thickness can be sequentially formed.
  • the CVD vaporizer 3 includes a vaporization mechanism 20 and a raw material solution supply mechanism 21 provided in the vaporization mechanism 20, and the vaporization mechanism 20 is connected to a gas inlet 403 of the reaction chamber via a reaction chamber side valve 404. It is connected to.
  • the CVD vaporizer 3 always supplies the carrier gas to the reaction chamber 402 by the vaporization mechanism 20, and substantially vaporizes the predetermined amount of the raw material solution supplied from the raw material solution supply mechanism 21.
  • the gas can be reliably vaporized and supplied to the reaction chamber 402.
  • the vaporization mechanism 20 includes a carrier gas flow path 22 for supplying various carrier gases such as nitrogen gas and argon into the reaction chamber inside 415, which is formed by the carrier gas pipe 23, the orifice pipe 24, and the vaporization section 25. Has been.
  • the vaporization mechanism 20 is configured such that the base end of the carrier gas pipe 23 (that is, the inlet of the carrier gas flow path 22) is connected to a supply mechanism (not shown) for supplying a carrier gas.
  • the distal end 30 of the carrier gas pipe 23 is connected to the proximal end 31 of the orifice pipe 24 so that a high-speed carrier gas can be supplied from the carrier gas pipe 23 to the orifice pipe 24!
  • a row controller (not shown) is provided.
  • the carrier gas pipe 23 has a pressure transducer 32 attached!
  • the pressure transducer 32 accurately measures the pressure of the carrier gas in the carrier gas pipe 23 and its fluctuation, and constantly monitors it while recording it. Pressure transducer 32 An output signal having a signal level corresponding to the pressure level of the carrier gas is transmitted to a control unit (not shown).
  • the pressure of the carrier gas can be displayed on a display unit (not shown) by force based on the output signal so that the operator can monitor it. This allows the operator to monitor the clogging of the carrier gas channel 22 based on the pressure result.
  • the carrier gas pipe 23 is selected so that its inner diameter is larger than the inner diameter of the orifice pipe 24, and the flow velocity of the carrier gas supplied from the carrier gas pipe 23 to the orifice pipe 24 can be further increased. ing.
  • the orifice tube 24 is arranged in a vertical direction, and a tip portion 33 is provided with a convex portion 34 having a trapezoidal cone shape, and a pore 35 is provided at the top of the convex portion 34. .
  • an inclined surface 34a is formed around the outer periphery of the spray port 36, which is the tip of the pore 35, so that the residue accumulates in the spray port 36. It has become difficult to prevent clogging of the spray port 36!
  • the apex angle ⁇ of the convex portion 34 is formed at an acute angle of 45 ° to 135 °, particularly 30 ° to 45 °. It is possible to prevent the spray port 36 from being clogged with raw materials.
  • the pore 35 of the spray port 36 is selected so that its inner diameter is smaller than the inner diameter of the orifice tube 24, and the flow velocity of the carrier gas supplied to the orifice tube 24 force pore 35 is further increased.
  • the tip of the pore 35 can be disposed so as to protrude into the internal space 38 of the vaporizing portion 25 by inserting the convex portion 34 of the orifice tube 24 into the proximal end 37 of the vaporizing portion 25.
  • a plurality (for example, five in this case) of connecting pipes 40a to 40e communicate with the orifice pipe 24 from the base end 31 to the convex portion 34 in consideration of the powerful configuration.
  • Each of the connection pipes 40a to 40e is provided with a raw material solution supply mechanism 21 described later.
  • the orifice pipe 24 is configured such that a predetermined amount of the raw material solution can be supplied from the raw material solution supply mechanism 21 through the connection pipes 40a to 40e.
  • the orifice tube 24 applies, for example, a carrier gas flowing at high speed to the raw material solution supplied from the connection tube 40a, and the raw material solution is made into a fine particle shape or a mist shape to thereby generate a carrier gas In this state, it is dispersed in the vaporization part 25 through the pores 35 at a high speed (230 mZ sec. To 35
  • the orifice tube 24 is selected to have an inner diameter of, for example, about ⁇ 1. Omm, and a longitudinal length extending in the vertical direction is selected to be about 100 mm.
  • the inner diameter of the pore 35 is selected to be about ⁇ 0.2 to 0.7 mm, and the carrier gas can be made to move at a high speed inside.
  • the vaporizing section 25 connected to the orifice pipe 24 is tubular, and is arranged in the vertical direction in the same manner as the orifice pipe 24. As shown in FIG. Since the pressure is selected to be remarkably larger, the pressure in the vaporizing section 25 is formed to be smaller than the pressure in the orifice pipe 24 !.
  • the raw material solution and the carrier gas are supplied at the tip of the orifice pipe 24 at a high speed (for example, 230 mZ sec. It is ejected at 350 mZ seconds) and can be expanded into the internal space 38!
  • the pressure in the vaporizing section 25 is selected to be about lOTorr, for example, whereas the pressure in the orifice pipe 24 is selected to be about 500 to 1000 Torr, for example.
  • a large pressure difference is provided between 25 and the orifice tube 24.
  • the pressure of the carrier gas after the flow rate control is a force that increases or decreases depending on the flow rate of the carrier gas, the solution flow rate, and the size of the pores 35.
  • the size of the spray port 36 is selected and the pressure of the carrier gas is set. It is preferable to control to 500 to 1000 Torr.
  • a heater as a heating means is provided between a base end 37 and a front end (that is, an outlet of the carrier gas channel 22) 41. 42 is attached, and the vaporizer 25 can be heated to, for example, about 270 ° C. by the heater 42.
  • the base end 37 of the vaporizing section 25 is formed in a substantially hemispherical shape, so that the base end 37 side can be uniformly heated by the heater 42! ⁇ .
  • the vaporizing section 25 is configured to instantaneously vaporize the raw material solution dispersed and atomized in the orifice pipe 24 by the high-speed carrier gas flow by the heater 42. Has been. At this time, when the raw material solution is mixed in the orifice tube 24, the time until the force is sprayed in the vaporizing section 25 is preferably extremely short (preferably within 0.1 to 0.002 seconds). The raw material solution becomes fine immediately after being dispersed in the orifice pipe 24 by the high-speed carrier gas flow, and is instantly vaporized in the vaporizing section 25. In addition, the phenomenon of vaporizing only the solvent is suppressed.
  • the mist size is reduced (the mist diameter is 1 IX m or less), and the evaporation area and the evaporation rate are increased. Can. If the fog size is reduced by an order of magnitude, the evaporation area will increase by an order of magnitude.
  • the angle of the spray port 36 and the dimensions of the vaporization unit 25 so that the mist ejected from the spray port 36 does not collide with the inner wall of the vaporization unit 25.
  • the mist collides with the inner wall of the vaporizing section 25 it adheres to the wall surface, and the evaporation area decreases by an order of magnitude, resulting in a reduction in evaporation rate.
  • the mist has adhered to the wall of the vaporizing section 25 for a long time, it is a column that changes into a compound that does not evaporate due to thermal decomposition.
  • the vaporization unit 25 can reduce the sublimation temperature of the raw material mixture contained in each raw material solution by reducing the pressure inside, and as a result, the heater 42 has a large force.
  • the raw material solution can be easily vaporized by heat.
  • the vaporizing unit 25 vaporizes the raw material solution, supplies this to the reaction chamber 402 as a raw material gas, and forms a thin film of one atomic layer or one molecular layer in the reaction chamber 402 by the CVD method. Has been made to get.
  • the base end 37 of the vaporizing section 25 has a heat insulating material 43 between the vaporizing section 25 and the heat insulating material 43 so that heat from the vaporizing section 25 is hardly transmitted to the orifice pipe 24.
  • the proximal end 37 of the vaporizing portion 25 is hermetically sealed by the collar ring 44.
  • a heat insulating material 46 is also provided in the fastening member 45 that connects the orifice pipe 24 and the vaporizing portion 25.
  • the mist sprayed from the pores 35 does not wet the inner wall of the vaporizing section 25.
  • the reason is that the evaporation area is reduced by orders of magnitude on wet walls compared to fog. That is, a structure in which the inner wall of the vaporizing portion 25 is not dirty at all is preferable. In addition, it is preferred that the vaporization part 25 wall be mirror-finished so that the dirt on the inner wall of the vaporization part 25 can be easily evaluated.
  • the vaporization mechanism 20 instantaneously mists the raw material solution with a high-speed carrier gas flow.
  • the carrier gas pressurized in the carrier gas pipe 23 is introduced into the orifice pipe 24 at a high speed (for example, the carrier gas is 500 to 1000 Torr, 200 ml Zmin to 2 LZmin).
  • the carrier gas is 500 to 1000 Torr, 200 ml Zmin to 2 LZmin. The temperature rise of the raw material solution can be suppressed.
  • this vaporization mechanism 20 since only the solvent in the raw material solution can be suppressed from evaporating in the orifice pipe 24, it is possible to prevent the raw material solution from increasing in concentration in the orifice pipe 24. In addition, the increase in viscosity can be suppressed by force, and precipitation of the raw material compound can be prevented.
  • the raw material solution dispersed in the carrier gas can be instantaneously vaporized by the vaporization section 25, only the solvent in the raw material solution is vaporized in the vicinity of the pores 35 and the pores 35. Therefore, clogging of the pores 35 can be suppressed. Forcibly, the continuous use time of the CVD heater 3 can be extended.
  • each of the connection pipes 40a to 40e is provided with a raw material solution supply mechanism 21 for quantifying the raw material solution. Since the configuration is the same, only the raw material solution supply mechanism 21 provided in the connecting portion 40a will be described for convenience of description.
  • connection pipes 40a to 40e are arranged in the orifice pipe 24 so that the openings do not face each other.
  • the opening force of the connecting pipe 40a can be reliably prevented from flowing into the opening of the other connecting pipes 40b to 40e. ing.
  • the raw material solution stored in the raw material solution tank 50 is passed through a predetermined raw material solution flow path 51, thereby liquid mass flow.
  • the controller (LMFC) 52, the block valve 53, and the micro metering pump 54 are sequentially supplied to the orifice pipe 24.
  • the liquid mass flow controller 52 is configured to control the flow rate of the raw material solution flowing through the raw material solution channel 51.
  • the block valve 53 includes first to fourth switching valves 55a to 55d, and these first to fourth switching valves 55a to 55d are not shown. Is controlled in a centralized manner.
  • the block valve 53 opens only the first switching valve 55a and closes the other second to fourth switching valves 55b to 55d.
  • the raw material solution can be supplied to the micro metering pump 54.
  • the micro metering pump 54 is comprehensively controlled by the control unit together with the block valve 53, and a predetermined amount of raw material corresponding to the thickness of one atomic layer or one molecular layer formed on the substrate 420. It is configured so that the solution can be stored in the storage unit 56, and the raw material solution supplied from the raw material solution tank 50 can be quantified! Speak.
  • the micro metering pump 54 as the raw material solution discharging means has a film thickness of one atomic layer or one molecular layer formed on the substrate 420 with respect to the raw material solution supplied from the raw material solution tank 50.
  • a predetermined amount is temporarily stored in the storage unit 56 so that it can be separated from the raw material solution supplied from the raw material solution tank 50.
  • the internal capacity of the storage unit 56 is selected in advance so that a predetermined amount of the raw material solution optimal for forming one atomic layer or one molecular layer is stored. It is possible to easily and reliably quantify a predetermined amount of a raw material solution that is optimal for forming a film thickness of one atomic layer or one molecular layer simply by accumulating the above.
  • the micro metering pump 54 waits for a control signal from the control unit after storing a predetermined amount of the raw material solution in the storage unit 56. After that, the micro metering pump 54 is When a predetermined control signal is received, a predetermined amount of the raw material solution stored in the storage unit 56 can be supplied to the orifice pipe 24 at a predetermined timing! RU
  • the raw material solution supply mechanism 21 has a small amount of pump 54 force applied to the solvent tank 57 when no raw material solution is supplied to the orifice tube 24 as shown in FIG.
  • the stored solvent is supplied to the orifice pipe 24 through the liquid mass flow controller (LMFC) 59, the cut valve 60 and the connecting pipe 40a in order by passing through a predetermined solvent flow path 58. Yes.
  • LMFC liquid mass flow controller
  • the control unit closes the second switching valve 55b and the third switching valve 55c, and opens the cut valve 60, thereby allowing the connecting pipe 40a to pass through the orifice.
  • the tube 24 can be supplied with a solvent. By forcefully flowing only the solvent from the connection pipe 40a to the orifice pipe 24, it is possible to prevent clogging of solid matter in the connection pipe 40a.
  • control unit vents through the block valve 53 by closing the second switching valve 55b and the cut valve 60 and opening the third switching valve 55c.
  • the tube 61 can be drained by draining the solvent!
  • control unit closes the third switching valve 55c and the cut valve 60 when the first switching valve 55a is closed and the raw material solution is supplied to the micro metering pump 54.
  • the second switching valve 55b the solvent can be supplied to the orifice pipe 24 through the block valve 53, the micro metering pump 54, and the connecting pipe 40a in this order.
  • the micro metering pump 54 can be prevented from being clogged with solid matter.
  • control unit closes the first switching valve 55a, the second switching valve 55b, and the third switching valve 55c and opens the fourth switching valve 55d.
  • the raw material solution is allowed to flow through the vent pipe 61 via the block valve 53 and can be discarded.
  • the CVD vaporizer 3 is provided with the micro metering pump 54 in the raw material solution channel 51 provided between the raw material solution tank 50 and the orifice pipe 24, and the raw material supplied from the raw material solution tank 50 is supplied.
  • the solution is quantified by a micro metering pump 54 and the raw material solution is stored in the storage unit 56 in an amount corresponding to the thickness of one atomic layer or one molecular layer.
  • a predetermined amount of the raw material solution quantified by the micro metering pump 54 is supplied to the carrier gas flow always flowing at a high speed toward the reaction chamber 402 in the orifice pipe 24.
  • a predetermined amount of the raw material solution is finely divided or atomized and dispersed in the carrier gas, and is vaporized as it is in the vaporization section 25 and supplied to the reaction chamber 402 as a raw material gas.
  • the gas shower type thermal CVD apparatus 1 that performs CVD film formation processing by force, only a predetermined amount of the raw material solution quantified by the micro quantitative pump 54 can be supplied into the reaction chamber 402 as a raw material gas.
  • the source gas is sprayed uniformly on the substrate 420 and heated by the heater 422 or the like to cause a chemical reaction on the substrate 420.
  • the gas shower type thermal CVD apparatus when all the predetermined amount of the raw material solution quantified by the micro metering pump 54 has been supplied to the vaporization mechanism 20, the supply of the raw material gas into the reaction chamber 415 is stopped accordingly. As a result, only the carrier gas is supplied to the reaction chamber 402 again. In the gas shower type thermal CVD apparatus 1, the atomic layer or monomolecular thin film with the desired film thickness is formed on the substrate 420 without opening / closing the reaction chamber side valve 404 and the vent side valve 407. Can be formed.
  • the micro metering pump 54 is used again.
  • a thin film of one atomic layer or one molecular layer having a desired film thickness is newly formed on the substrate 420.
  • the thin film forming operation for supplying the raw material solution to the vaporization mechanism 20 by a predetermined amount quantified by the micro metering pump 54 is repeated a plurality of times, and the raw material gas is supplied to the reaction chamber 402.
  • a predetermined film thickness can be sequentially formed by intermittent supply, and a high-density and high-quality thin film can be formed on the substrate 420 by crushing.
  • the ALD operation repeats the film forming operation.
  • the reaction chamber side valve 404 and the vent side valve 407 which are performed in the conventional CVD apparatus 400 (Fig. 9), are not opened and closed at all, and a predetermined amount of raw material accurately measured by the micro metering pump 54 is used.
  • a predetermined amount of raw material accurately measured by the micro metering pump 54 is used.
  • the gas shower type thermal CVD apparatus 1 it is composed of one atomic layer or one molecular layer while avoiding the disposal of the raw material gas by the opening and closing operation of the reaction chamber side valve 404 and the vent side valve 407.
  • a thin film having a desired film thickness can be sequentially formed on the substrate 420.
  • the reaction chamber side valve 404 is always open, the vent side valve 407 is always closed, and the carrier gas from the CVD vaporizer 3 is always supplied.
  • the film forming process conditions in the reaction chamber 402 can be maintained uniformly without causing a pressure change in the reaction chamber 402.
  • reaction chamber side valve 404 and the vent side valve 407 are not repeatedly opened and closed repeatedly, so these reaction chamber side valves
  • the operating life of the 404 and the vent side valve 407 can be extended. As a result, it is possible to prevent the operation rate from being lowered by reducing the maintenance frequency as compared with the conventional case.
  • a storage unit 56 of the micro metering pump 54 stores a predetermined amount of the raw material solution that is optimal for forming the film thickness of one atomic layer or one molecular layer. By simply storing the raw material solution in the reservoir 56, a predetermined amount of the raw material solution optimal for forming a single atomic layer or single molecular layer can be easily and reliably obtained. Vaporization mechanism 20 can be supplied.
  • the raw material solution is dispersed in the carrier gas in the form of fine particles or mist in the orifice tube 24, and all the raw material solution is easily vaporized by heat.
  • the temperature of the raw material solution is suppressed in the orifice tube 24 and the raw material mixture does not precipitate, all the predetermined amount of the raw material solution precisely quantified by the micro metering pump is used. It is possible to accurately vaporize and constantly supply a certain amount of raw material gas into the reaction chamber 402.
  • the carrier gas is continuously supplied to the reaction chamber 402, and a predetermined amount corresponding to the film thickness of one atomic layer or one molecular layer determined by the micro metering pump 54 is obtained.
  • the raw material solution was intermittently supplied to the vaporization mechanism 20, and the raw material gas consisting of a predetermined amount of the raw material solution thus obtained was supplied to the reaction chamber 402 together with the carrier gas.
  • the gas shower type thermal CVD apparatus 1 is composed of one atomic layer or one molecular layer while avoiding the disposal of the source gas by the opening / closing operation of the reaction chamber side valve 404 and the vent side valve 407.
  • a thin film having a desired film thickness can be sequentially formed on the substrate 420.
  • the raw material gas is not discarded. The usage efficiency can be greatly improved.
  • the reaction chamber side valve 404 is always opened so that the carrier gas from the CVD vaporizer 3 is always supplied to the reaction chamber 402. Therefore, the film formation process conditions in the reaction chamber 402 can be maintained uniformly without causing a pressure change in the reaction chamber 402, and the film thickness of one atomic layer or one molecular layer according to the raw material gas Can be uniformly formed on the substrate 420.
  • the reaction chamber side valve 404 and the vent side valve 407 are not frequently opened and closed repeatedly.
  • the operating life of the vent-side valve 407 can be extended, and the maintenance frequency can be reduced compared to conventional methods, and productivity can be improved.
  • reference numeral 70 denotes a thermal CVD apparatus as a semiconductor manufacturing apparatus, which is operated by intermittently supplying a source gas from the side of the reaction chamber 71. It is configured to be able to execute a series of ALD-type operations, and otherwise has the same configuration as that of the first embodiment described above.
  • the thermal C VD apparatus 70 that performs such a CVD film generation process is also equipped with the CVD vaporizer 3, so that the same effect as described above can be obtained.
  • FIG. 4 in which parts corresponding to those in FIG. 1 are denoted by the same reference numerals, 75 represents a plasma CVD apparatus as a semiconductor manufacturing apparatus, and the configuration of the CVD unit 76 is different from that of the first embodiment described above. Is different.
  • the CVD unit 76 is provided with an RF (Radio Frequency) plasma generation electrode 77 in the reaction chamber 402, and the RF plasma generation electrode 77 generates plasma in the reaction chamber 402. Has been made to get. 79 is a noise cut filter.
  • RF Radio Frequency
  • an RF power supply 78 is disposed above the reaction chamber 402, and a plasma generating electrode 77 is attached to the RF power supply 78.
  • the plasma CVD apparatus 75 is configured to generate plasma in the reaction chamber 12 and cause a chemical reaction on the substrate 420 to form a single atomic layer or single molecular layer thin film having a desired film thickness.
  • the plasma CVD apparatus 75 that performs such a CVD film generation process also has the same effect as that of the first embodiment described above since the CVD vaporizer 3 is mounted.
  • reference numeral 80 denotes a shower type plasma CVD apparatus as a semiconductor manufacturing apparatus, and the configuration of the CVD unit 81 is different from that of the first embodiment described above. It is a different type and has a configuration using a plasma system and a shower plate 416.
  • an RF (Radio Frequency) power supply 83 is formed on the upper portion of the shower plate 416 via an insulating material 82, and the shower plate heater 10 is provided on the upper portion thereof.
  • Reference numeral 84 denotes a noise cut filter for preventing the RF voltage from entering the control unit 12.
  • reference numeral 90 denotes a roller type plasma CVD apparatus as a semiconductor manufacturing apparatus, which has a configuration in which a plurality of the above-described CVD vaporizers 3 are provided in a central type CVD unit 91.
  • this roller-type plasma CVD apparatus 90 a plurality of plasma generation apparatuses 92a to 92e are provided in the roller-type CVD unit 91, and the film-forming tape 93 is run in the forward direction F, or By running in the direction R opposite to the direction F, a thin film can be formed in each of the plasma generators 92a to 92e, and a multilayer film made of thin films made of different raw materials can be formed. It is.
  • the CVD vaporizer 3 of the present invention is provided for each of the plasma generators 92a to 92e, and the same effects as those of the first embodiment described above are provided. Can be obtained.
  • a first take-up roller 96 and a second take-up roller 97 are arranged in a reaction chamber 94 with a film forming roller 95 interposed therebetween.
  • a first feed roller 98 and a first tension control roller 99 are disposed on one side of the film formation roller 95, and a second feed roller 100 and a second feed roller 99 are disposed on the other side of the film formation roller 95.
  • the tension control roller 101 is arranged.
  • the film forming roller 95 has a large diameter of 1000 to 20000 mm, for example, and a width of 2 m, for example.
  • the first take-up roller 96 to the first feed roller 98, the first tension control roller 99, the film forming roller 95, and the second tension control roller 101 is moved along the travel path by the first take-up tape 93.
  • the roller 96 can travel in the direction (forward direction F) toward the second take-up roller 97 and the opposite direction R from the second take-up roller 97 to the first take-up roller 96. Can travel in the direction.
  • each of the plasma generators 92a to 92e is provided corresponding to each area on the film forming roller 95, and a CVD vaporizer is formed on a portion of the film forming tape 93 located on that area. 3 can be operated to form a thin film.
  • each plasma generator 92a to 92e and CVD vaporizer 3 are controlled so that various CVD conditions can be set individually, and the thin film to be formed can also be set individually. It is configured so that the control of stopping the film forming operation or stopping the film forming operation can be performed individually.
  • a partition plate 105 is disposed between the plasma generators 92a to 92e adjacent to each other in order to prevent interference of the source gas.
  • Reference numeral 106 denotes an exhaust pipe
  • 107 denotes a deposition plate
  • 108 denotes a gas shower electrode
  • 109 denotes an RF power source.
  • the film forming roller 95 is grounded
  • the gas shower electrode 108 is connected to the terminal of the RF power source 109, and the potentials of the plasma generators 92a to 92e become high!
  • the operation of causing the film-forming tape 93 to run in the forward direction F or in the reverse direction R is alternately repeated.
  • a multilayer film of 50 to 1000 layers can be formed relatively efficiently.
  • reference numeral 120 denotes a roller type plasma CVD apparatus as a semiconductor manufacturing apparatus.
  • This roller type plasma CVD apparatus 120 is the fifth type described above. This is different from the embodiment in that the potential of the film forming roller 95 is increased.
  • the roller type plasma CVD apparatus 120 is different in that one end of one RF power source 121 is connected to the film forming roller 95 and the gas shower electrode 108 of each plasma generator 92a to 92e is grounded. Even in such a roller type plasma CVD apparatus 120, since the CVD vaporizer 3 of the present invention is provided, the same effects as those of the first embodiment described above can be obtained.
  • 130 indicates a roller thermal CVD apparatus as a semiconductor manufacturing apparatus, and this roller thermal CVD apparatus 130 is provided with a plasma generator.
  • this embodiment is different from the fifth embodiment described above in that no voltage is applied between the shower plate portions 131a to 131e and the film forming roller 95.
  • the roller thermal CVD apparatus 130 is configured so that the film-forming tape 93 can be heated mainly by the film-forming roller 95.
  • the CVD vaporizer 3 of the present invention is provided for each of the shower plate portions 131a to 131e. The same effect as in the first embodiment can be obtained.
  • each micro metering pump provided in the connecting pipes 40a to 40e 54 force Supply different types of raw material solutions to the vaporization mechanism 20 at the same time, or connect pipes
  • Each micro metering pump provided in 40a to 40e 54 force Different types of raw material solutions may be sequentially supplied to the vaporizing mechanism 20 with a time interval.
  • the raw material solution is instantaneously atomized by the high-speed carrier gas flow, and the raw material solution is easily vaporized by the heat of the heater 42.
  • the vaporization mechanism 20 is applied has been described, the present invention is not limited to this, and a normal vaporization mechanism that is used in a CVD apparatus may be applied.
  • the conventional gas supply as shown in Fig. 9 is not provided without providing a vaporization section in the vicinity of the gas inlet 403 (Fig. 1) of the reaction chamber 402.
  • Connecting pipes 40a to 40e are provided at the branching point of the path 405, and a vaporizing section is provided in the connecting pipes 40a to 40e, and the raw material gas obtained in the vaporizing section is supplied to the gas supply path 405 through the connecting pipes 40a to 40e (see FIG. You may make it supply to 9).
  • a vaporization unit is provided at a predetermined position between the outlet of the carrier gas channel 22 and the microquantitative pump 54, and when the raw material solution is supplied from the raw material solution tank 50 to the vaporization unit, the microquantitative pump is used.
  • a predetermined amount of a raw material solution corresponding to the thickness of one atomic layer or one molecular layer determined in 54 is supplied to the vaporization mechanism 20, and only the raw material gas consisting of the predetermined raw material solution obtained by this is reacted. If it is configured to supply to room 402!
  • the raw material solution quantified by the micro metering pump 54 is intermittently supplied to the vaporization mechanism 20 at regular intervals.
  • the present invention is not limited to this, and the raw material solution quantified by the micro metering pump 54 may be intermittently supplied to the vaporizing mechanism 20 at irregular intervals. In this case, the raw material solution can be repeatedly supplied by the micro metering pump 54 as needed.
  • a thermal CVD apparatus 70 a plasma CVD apparatus 75, a shower type plasma CVD apparatus 80, a roller type plasma CVD apparatus 90, and a roller type plasma CVD apparatus 120 that perform CVD film generation processing.
  • a thin film forming apparatus such as the roller thermal CVD apparatus 130 is applied has been described, but the present invention is not limited to this, and an edging apparatus that performs an etching process in the reaction chamber or a sputtering process in the reaction chamber.
  • Spa to do A semiconductor manufacturing apparatus that performs various other processes such as an ashing apparatus that performs an ashing process in a reaction apparatus or a reaction chamber may be applied.
  • the vaporizer according to the present invention can be provided in the reaction chamber, whereby the same effect as in the above-described embodiment can be obtained.
  • the semiconductor manufacturing method is applied to a thin film forming method performed in a thin film forming apparatus.
  • the invention is this
  • the present invention may be applied to various other semiconductor manufacturing methods such as an etching method.
  • the force described in the case where the raw material solution is quantified to the amount of one atomic layer or one molecular layer by the micro metering pump 54 is not limited to this.
  • the amount of the raw material solution may be supplied to the vaporizing unit 25 by an amount corresponding to the film thickness of 500 nm or less. Can supply.
  • the power described in the case where the micro metering pump 54 having a predetermined amount of storing the raw material solution is applied is not limited thereto, and the present invention is not limited thereto. Therefore, a variable micro metering pump whose storage amount can be appropriately changed may be applied.
  • the force described in the case where the micro quantitative pump 54 is applied as the raw material solution discharging means is not limited to this. If the quantity can be quantitatively supplied to the vaporization mechanism 20, various other raw material solution discharge means may be applied.
  • the power described in the case where a solution obtained by dissolving a solid raw material compound in a solvent is applied as a raw material solution is not limited thereto, and the present invention is not limited to this.
  • the raw material compound itself may be applied as a raw material solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

原料ガスの使用効率を格段と向上し得るとともに、原料ガスに応じた膜厚を均一に形成でき、かつ従来に比してメンテナンス頻度を少なくして生産性を向上させ得る気化器、半導体製造装置及び半導体製造方法を提供する。 ALD動作時、反応室402にキャリアガスを供給し続け、微量定量ポンプ54で定量した1原子層又は1分子層の膜厚に応じた所定量の原料溶液を間欠的に気化機構20に供給し、これにより得られた所定量の原料溶液からなる原料ガスをキャリアガスと共に反応室402に供給するようにした。従って、ガスシャワー式熱CVD装置1では、反応室側バルブ404及びベント側バルブ407の開閉動作によって原料ガスが廃棄されるのを回避しながら、1原子層又は1分子層でなる所望の膜厚の薄膜を基板420上に順次形成させてゆくことができ、かくして1原子層又は1分子層の薄膜を順次形成してゆく過程で原料ガスを廃棄しない分だけ原料ガスの使用効率を格段と向上させ得る。

Description

明 細 書
気化器、半導体製造装置及び半導体製造方法
技術分野
[0001] 本発明は、気化器、半導体製造装置及び半導体製造方法に関し、例えば反応室 に原料ガスを間欠的に供給し、薄膜の成長を 1原子層又は 1分子層ずつ行う ALD (A tomic Layer Depositionノ式のし VD (し hemical Vapor Deposition)装 に適用し一し好 適なものである。
背景技術
[0002] 半導体集積回路は薄膜の形成とそのパターユングとの多数の繰り返しによって製 造されている。そして薄膜の形成には各種の CVD装置が用いられている。ここで成 膜の均一性に優れ、し力も高品質の膜が形成可能である装置の一つとして、例えば 、原料ガスを間欠的に基板上に吹き付け、ヒータ等の加熱装置により加熱することで 化学反応を起こさせ、基板上に薄膜を形成するといつた ALD式の CVD装置等があ る (例えば、特許文献 1参照)。
[0003] 例えば、図 9に示すような ALD用 CVD装置 400では、ガスシャワー式の CVD部 401 を備えており、この CVD部 401の反応室 402にはガス導入口 403に反応室側バルブ 4 04を介してガス供給路 405が連通されている。ガス供給路 405には、反応室側バルブ 404の上流の位置に水平に延びる分岐部 406を有し、この分岐部 406にベント側バル ブ 407が設けられている。
[0004] ベント側バルブ 407には排気管 408が接続されており、力べしてガス供給路 405は、 ベント側バルブ 407、排気管 408及び排気バルブ 409を介して排気用真空ポンプ 410と 連通し得るように構成されて ヽる。
[0005] 因みに、反応室 402は、ガス導入口 403を有する蓋部 411と、反応室 402を支持する 反応室支持部 412と、反応室本体 413とで構成されており、反応室本体 413の外面等 に設けられたヒータ(図示せず)によって、反応室内部 415が所定温度に維持され得 る。反応室内部 415にはシャワープレート 416が設けられており、このシャワープレート 416は、ガス導入口 403からの原料ガスを受け入れる内部空間 417を有し、下面に複 数のガス噴出孔 418が設けられて!/、る。
[0006] 以上の構成にお!ヽて、 ALD用 CVD装置 400では、薄膜を形成する時、反応室側 バルブ 404を開状態とするとともに、ベント側ノ レブ 407を閉状態とすることにより、原 料ガスを反応室 402に供給し、当該原料ガスをガス噴出孔 418を介して基板 420上に 均一に吹き付ける。これにより反応室内部 415において原料ガスは基板ステージ 421 内のヒータ 422等で加熱され、基板 420上でィ匕学反応を起こさせる。
[0007] その後、 ALD用 CVD装置 400では、所定のタイミングで反応室側バルブ 404を閉 状態とするとともに、ベント側バルブ 407を開状態とすることにより、反応室内部 415へ の原料ガスの供給を停止し、所望の膜厚でなる 1原子層又は 1分子層の薄膜を形成 する。
[0008] また、 ALD用 CVD装置 400では、上述した 1原子層又は 1分子層の薄膜を形成す る薄膜形成動作をし終えると、所定時間経過後、再び反応室側バルブ 404及びベン ト側バルブ 407の開閉動作 (すなわち薄膜形成動作)を行うことにより、新たに所望の 膜厚でなる 1原子層又は 1分子層の薄膜を基板 420上に形成するように構成されてい る。
[0009] このようにして ALD用 CVD装置 400では、薄膜形成動作を複数回繰り返す ALD動 作を行うことにより、反応室 402に原料ガスを間欠的に供給して所定の膜厚を順次形 成し、高密度及び高品質の薄膜を基板 420上に形成し得るように構成されている。 特許文献 1:特開 2006 - 28572号公報
発明の開示
発明が解決しょうとする課題
[0010] しかしながら、このような ALD用 CVD装置 400においては、原料ガスを間欠的に反 応室 402へ供給する際、その都度、反応室側バルブ 404を閉状態にするとともに、ベ ント側バルブ 407を開状態にすることにより、反応室 402へ供給されるべき原料ガスが 排気管 408に供給されてそのまま廃棄されるように構成されていた。この結果、反応 室 402に原料ガスを間欠的に供給する際には原料ガスを廃棄する分だけ原料ガスの 使用効率が悪くなるという問題があった。
[0011] また、このような ALD用 CVD装置 400においては、反応室側バルブ 404の開閉動 作が繰り返し行なわれることにより、反応室内部 415の圧力と温度がその都度変化し 易ぐ当該反応室内部 415における成膜処理条件が不均一となり、この結果、基板 42 0上に薄膜を均一に形成し難いという問題があった。
[0012] さらに、力かる ALD用 CVD装置 400にお!/、ては、反応室側バルブ 404及びベント側 バルブ 407の開閉動作が繰り返し行なわれるため、当該反応室側バルブ 404及びべ ント側バルブ 407の開閉動作が多くなり、その動作寿命は一般的に短いものとなって いる。このため従来においては、短い周期で反応室側バルブ 404及びベント側バル ブ 407をメンテナンスする必要があり、この結果、稼働率が低下し、生産性を向上し難 いという問題がある。
[0013] 本発明は以上の点を考慮してなされたもので、原料ガスの使用効率を格段と向上 し得るとともに、原料ガスに応じた膜厚を均一に形成でき、かつ従来に比してメンテナ ンス頻度を少なくして生産性を向上し得る気化器、半導体製造装置及び半導体製造 方法を提案しょうとするものである。
課題を解決するための手段
[0014] 請求項 1記載の気化器は、原料溶液を気化した原料ガスを反応室に供給する気化 器において、流入ロカ 流出口に向けてキャリアガスが流れるキャリアガス流路と、前 記原料溶液が供給される原料溶液流路と、前記キャリアガス流路と前記原料溶液流 路とを連通する接続管と、前記原料溶液流路に供給された前記原料溶液を定量して 前記接続管に排出する原料溶液排出手段と、前記キャリアガス流路の流出口及び 前記原料溶液排出手段の間に設けられ、前記原料溶液排出手段から排出された所 定量の原料溶液を気化する気化部とを備えたことを特徴とするものである。
[0015] 請求項 2記載の気化器は、前記原料溶液排出手段は前記接続管に前記原料溶液 を断続的に排出するものである。
[0016] 請求項 3記載の気化器は、前記接続管に設けられ、前記キャリアガス流路にパージ 用の溶媒を供給する溶媒流路を備えたことを特徴とするものである。
[0017] 請求項 4記載の気化器は、前記キャリアガス流路は前記キャリアガスが供給される キャリアガス管と、該キャリアガス管力 前記キャリアガスが供給され、前記原料溶液 を微粒子状又は霧状にしてキャリアガス中に分散させて前記気化部に供給するオリ フィス管とを備え、前記気化部は、前記キャリアガス中に分散させた原料溶液を加熱 して気化する加熱手段を備えていることを特徴とするものである。
[0018] 請求項 5記載の気化器は、前記原料溶液排出手段は微量定量ポンプでなることを 特徴とするものである。
[0019] 請求項 6記載の気化器は、前記原料溶液排出手段は前記原料溶液流路に供給さ れた前記原料溶液を、基板に形成する 500nm以下の膜厚に応じた量に定量するこ とを特徴とするものである。
[0020] 請求項 7記載の気化器は、前記 500nm以下の膜厚に応じた量力 前記基板に形 成する 1原子層又は 1分子層に応じた量であることを特徴とするものである。
[0021] 請求項 8記載の気化器は、前記原料溶液排出手段は前記 1原子層又は 1分子層 に応じた量だけ前記原料溶液を貯える貯留部を備えたことを特徴とするものである。
[0022] 請求項 9記載の気化器は、前記原料溶液排出手段は原料溶液用タンクから供給さ れてきた前記原料溶液を、前記 1原子層又は 1分子層に応じた量だけ予め前記貯留 部に貯えておき、所定のタイミングで前記気化部に排出するように構成したことを特 徴とするちのである。
[0023] 請求項 10記載の半導体製造装置は、基板が載置される反応室と、原料溶液を気 化した原料ガスを前記反応室に供給する気化器とを備える半導体製造装置におい て、前記気化器は、流入口から流出口に向けてキャリアガスが流れるキャリアガス流 路と、前記原料溶液が供給される原料溶液流路と、前記キャリアガス流路と前記原料 溶液流路とを連通する接続管と、前記原料溶液流路に供給された前記原料溶液を 定量して前記接続管に排出する原料溶液排出手段と、前記キャリアガス流路の流出 口及び前記原料溶液排出手段の間に設けられ、前記原料溶液排出手段から排出さ れた所定量の原料溶液を気化する気化部とを備えたことを特徴とするものである。
[0024] 請求項 11記載の半導体製造装置は、前記原料溶液排出手段は前記接続管に前 記原料溶液を断続的に排出することを特徴とするものである。
[0025] 請求項 12記載の半導体製造装置は、前記接続管に設けられ、前記キャリアガス流 路にパージ用の溶媒を供給する溶媒流路を備えたことを特徴とするものである。
[0026] 請求項 13記載の半導体製造装置は、前記キャリアガス流路は前記キャリアガスが 供給されるキャリアガス管と、該キャリアガス管力 前記キャリアガスが供給され、前記 原料溶液を微粒子状又は霧状にしてキャリアガス中に分散させて前記気化部に供給 するオリフィス管とを備え、前記気化部は、前記キャリアガス中に分散させた原料溶液 を加熱して気化する加熱手段を備えていることを特徴とするものである。
[0027] 請求項 14記載の半導体製造装置は、前記原料溶液排出手段は微量定量ポンプ でなることを特徴とするものである。
[0028] 請求項 15記載の半導体製造装置は、前記原料溶液排出手段は前記原料溶液流 路に供給された前記原料溶液を、前記基板に形成する 500nm以下の膜厚に応じた 量に定量することを特徴とするものである。
[0029] 請求項 16記載の半導体製造装置は、前記 500nm以下の膜厚に応じた量が、前 記基板に形成する 1原子層又は 1分子層に応じた量であることを特徴とするものであ る。
[0030] 請求項 17記載の半導体製造装置は、前記原料溶液排出手段は前記 1原子層又 は 1分子層に応じた量だけ前記原料溶液を貯える貯留部を備えたことを特徴とするも のである。
[0031] 請求項 18記載の半導体製造装置は、前記原料溶液排出手段は原料溶液用タンク 力 供給されてきた前記原料溶液を、前記 1原子層又は 1分子層に応じた量だけ予 め前記貯留部に貯えておき、所定のタイミングで前記気化部に排出するように構成し たことを特徴とするものである。
[0032] 請求項 19記載の半導体製造方法は、原料溶液を気化した原料ガスを反応室に供 給することにより、前記反応室内で基板表面を処理する半導体製造方法において、 キャリアガス流路の流入ロカ 流出口に向けてキャリアガスを流すことにより、前記反 応室にキャリアガスを供給するキャリアガス供給ステップと、原料溶液流路に前記原 料溶液を供給する原料溶液供給ステップと、前記原料溶液流路に供給された前記 原料溶液を定量する定量ステップと、前記キャリアガス流路と前記原料溶液流路とを 連通する接続管に、前記定量ステップで定量した所定量の原料溶液を排出する原 料溶液排出ステップと、前記キャリアガス流路の流出口及び前記原料溶液排出手段 の間に設けられた気化部によって、前記原料溶液排出ステップで排出した前記所定 量の原料溶液を気化する気化ステップとを備えたことを特徴とするものである。
[0033] 請求項 20記載の半導体製造方法は、前記原料溶液排出ステップは前記接続管に 前記原料溶液を断続的に排出することを特徴とするものである。
[0034] 請求項 21記載の半導体製造方法は、前記原料溶液排出ステップ及び前記気化ス テツプに替えて、前記接続管を介して前記キャリアガス流路力 前記気化部にパー ジ用の溶媒を供給するパージ用供給ステップを備えたことを特徴とするものである。
[0035] 請求項 22記載の半導体製造方法は、前記キャリアガス供給ステップはキャリアガス 管からオリフィス管に前記キャリアガスを供給するオリフィス管ガス供給ステップを有し 、前記オリフィス管ガス供給ステップの後に、前記原料溶液排出ステップによって前 記オリフィス管に前記原料溶液を排出し、前記オリフィス管内で前記原料溶液を微粒 子状又は霧状にしてキャリアガス中に分散させて前記気化部に供給し、前記気化ス テツプによって前記キャリアガス中に分散させた原料溶液を前記気化部の加熱手段 で加熱して気化することを特徴とするものである。
[0036] 請求項 23記載の半導体製造方法は、前記定量ステップは微量定量ポンプによつ て前記原料溶液を定量することを特徴とするものである。
[0037] 請求項 24記載の半導体製造方法は、前記定量ステップは前記原料溶液流路に供 給された前記原料溶液を、前記基板に形成する 500nm以下の膜厚に応じた量に定 量することを特徴とするものである。
[0038] 請求項 25記載の半導体製造方法は、前記 500nm以下の膜厚に応じた量が、前 記基板に形成する 1原子層又は 1分子層に応じた量であることを特徴とするものであ る。
[0039] 請求項 26記載の半導体製造方法は、前記定量ステップは前記 1原子層又は 1分 子層に応じた量だけ前記原料溶液を貯留部で貯えることを特徴とするものである。
[0040] 請求項 27記載の半導体製造方法は、前記定量ステップは原料溶液用タンク力 供 給されてきた前記原料溶液を、前記 1原子層又は 1分子層に応じた量だけ予め前記 貯留部に貯えておき、所定のタイミングで前記気化部に排出することを特徴とするも のである。
発明の効果 [0041] 請求項 1、 10及び 19記載の発明によれば、原料ガスの使用効率を格段と向上し得 るとともに、従来に比してメンテナンス頻度を少なくして生産性を向上でき、かつ薄膜 形成面に原料ガスに応じた膜厚を均一に形成し得る。
[0042] 請求項 2、 11及び 20記載の発明によれば、原料溶液排出手段により必要に応じて 原料溶液の供給を複数回繰り返して行うことができる。
[0043] 請求項 3、 12及び 21記載の発明によれば、パージ用の溶媒を流すことにより、接続 管からキャリアガス流路の間で固形物が目詰まりすることを防止できる。
[0044] 請求項 4、 13及び 22記載の発明によれば、オリフィス管内で原料溶液を微粒子状 又は霧状にしてキャリアガス中に分散させ、熱で当該原料溶液全てを容易に気化さ せ易いようにしたことにより、原料溶液排出手段で精密に定量された所定量の原料 溶液全てを正確に気化でき、力べして反応室内に常に一定量の原料ガスを一段と正 確に供給することができる。
[0045] 請求項 5、 14及び 23記載の発明によれば、原料溶液を正確に、かつ容易に定量 することができる。
[0046] 請求項 6、 15及び 24記載の発明によれば、 500nm以下の膜厚に応じた量だけ気 化部に原料溶液を供給できる。
[0047] 請求項 7、 16及び 25記載の発明によれば、 1原子層又は 1分子層に応じた量だけ 気化部に原料溶液を供給できる。
[0048] 請求項 8、 17及び 26記載の発明によれば、単に原料溶液を貯留部に貯えるだけ で、 1原子層又は 1分子層に応じた量だけ気化部に原料溶液を供給できる。
[0049] 請求項 9、 18及び 27記載の発明によれば、原料溶液用タンクから供給されてきた 原料溶液を、貯留部により予め隔離させておくことができるので、 1原子層又は 1分子 層に応じた正確な量の原料溶液を容易に最適なタイミングで気化部に排出すること ができる。
図面の簡単な説明
[0050] [図 1]第 1の実施の形態によるガスシャワー式熱 CVD装置の全体構成を示す概略図 である。
[図 2]CVD用気化器の詳細構成を示す概略図である。 [図 3]第 2の実施の形態による熱 CVD装置の全体構成を示す概略図である。
[図 4]第 3の実施の形態によるプラズマ CVD装置の全体構成を示す概略図である。
[図 5]第 4の実施の形態によるシャワー式プラズマ CVD装置の全体構成を示す概略 図である。
[図 6]第 5の実施の形態によるローラ式プラズマ CVD装置の全体構成を示す概略図 である。
[図 7]第 6の実施の形態によるローラ式プラズマ CVD装置の全体構成を示す概略図 である。
[図 8]第 7の実施の形態によるローラ式熱 CVD装置の全体構成を示す概略図である
[図 9]従来の ALD用 CVD装置の全体構成を示す概略図である。
符号の説明
[0051] 1 ガスシャワー式熱 CVD装置(半導体製造装置)
3 CVD用気化器 (気化器)
22 キャリアガス流路
25 気化部
40a〜40e 接続管
42 ヒータ (加熱手段)
51 原料溶液流路
54 微量定量ポンプ (原料溶液排出手段)
58 溶媒流路
402 反応室
420 基板 (被薄膜形成対象物)
発明を実施するための最良の形態
[0052] 以下、本発明を実施するための形態について図面を参照しながら説明する。
[0053] (1)第 1の実施の形態
(1 - 1)縦型ガスシャワー式熱 CVD装置の全体構成
図 9との対応部分に同一符号を付して示す図 1において、 1は全体として半導体製 造装置としてのガスシャワー式熱 CVD装置を示し、反応室 402の上部方向から原料 ガスを間欠的に供給して行なわれる一連の ALD式の動作を実行し得るように構成さ れている。
[0054] 実際上、本発明の半導体製造方法を行うガスシャワー式熱 CVD装置 1は、 CVD部 2と、この CVD部 2に搭載された CVD用気ィ匕器 3とカゝら構成され、 ALD動作時、 CV D用気化器 3から CVD部 2の反応室 402にキャリアガスが常に供給され得るようになさ れている。
[0055] 反応室 402は、反応室本体 413の外面に設けられたヒータ(図示せず)によって、反 応室内部 415が所定温度に維持され得る。また反応室本体 413は、所定位置に扉部 4を有し、この扉部 4を介して反応室内部 415から基板 420を出し入れ可能に構成され ている。
[0056] また反応室本体 413には、酸化ガス供給口 5が設けられており、当該酸化ガス供給 口 5を介して酸ィ匕ガス (例えば O )が反応室内部 415に供給され得るようになされてい
2
る。反応室内部 415には、上部にシャワープレート 416が設けられているとともに、下部 に基板ステージ 421及び基板ステージ 421の内部に基板ステージ用ヒータ 422が設け られている。
[0057] シャワープレート 416は、内部空間 417に供給された原料ガスをガス噴出孔 418によ り拡散させ、基板ステージ 421に載置された基板 420上に原料ガスを均一に吹き付け 得るようになされている。なお、 8は気化器で、例えば酸ィ匕ガスとして水蒸気 H Oが必
2 要な場合には、酸化ガス Oをキャリアガスとして、例えば H Oを気化してシャワープ
2 2
レート 416の内部空間 417に供給し得るようになされている。
[0058] シャワープレート 416の上面部には、シャワープレートヒータ 10及び温度センサ 11が 設けられており、温度センサ 11により検出した温度に基づき制御ユニット 12を介して シャワープレートヒータ 10を加熱制御し、反応室内部 415等を所定の温度に加熱し得 るように構成されている。なお、このシャワープレートヒータ 10にはヒータ配線 13が引き 回され接続されている。
[0059] 基板ステージ用ヒータ 422は、温度センサ 14により検出した温度に基づいて制御ュ ニット 15を介して加熱制御され、基板ステージ 421を所定の温度に加熱し得るよう〖こ 構成されている。因みに、この基板ステージ用ヒータ 422にはヒータ配線 16が引き回さ れ接続されている。なお、反応室支持部 412には、反応室内部 415の圧力を測る圧力 計 412aが設けられている。
[0060] また反応室支持部 412には排気用真空ポンプ 410まで延びた排気管 17が連通して おり、この排気管 17の途中にはトラップ 18が設けられている。これにより CVD用気化 器 3から反応室内部 415へ供給されたキャリアガスや原料ガスは、排気管 17を通過し てトラップ 18に導かれた後、当該トラップ 18において排気ガス内の特定有害物質を除 去し、排気バルブ 409等を経由して排気用真空ポンプ 410から排気され得るようになさ れている。
[0061] 力かる構成にカ卩えて反応室 402にはガス導入口 403に反応室側バルブ 404を介して CVD用気化器 3が連結されて 、る。ここで本願発明のガスシャワー式熱 CVD装置 1 では、基板 420上に 1原子層又は 1分子層でなる薄膜を順次形成する ALD動作時、 従来の CVD装置 400 (図 9)にお 、て行なわれて 、た反応室側バルブ 404及びベント 側バルブ 407の開閉動作がおこなわれず、当該反応室側バルブ 404が常に開状態と なっているとともに、ベント側バルブ 407が常に閉状態となっている。
[0062] これにより反応室 402には、 ALD動作時、 CVD用気ィ匕器 3から常にキャリアガスが 供給され得る。なお反応室 402に供給されたキャリアガスは常に排気管 17を介して排 気用真空ポンプ 410から排気され得るようになされて ヽる。
[0063] また、反応室 402には、 CVD用気化器 3によって定量された原料溶液だけを気化し た原料ガスが所定のタイミングで供給され得るようになされて 、る。
[0064] これにより反応室内部 415では、基板 420上に原料ガスを均一に吹き付け、ヒータ等 の加熱装置により加熱することで化学反応を起こさせ、所望の膜厚でなる 1原子層又 は 1分子層の薄膜を基板 420上に形成し得るようになされて ヽる。
[0065] すなわち、ガスシャワー式熱 CVD装置 1では、 CVD用気化器 3によって定量された 原料溶液だけを気化した原料ガスの供給が終了すると、当該 CVD用気化器 3からキ ャリアガスだけが再び反応室内部 415に供給されるので、反応室側バルブ 404を開状 態とし、ベント側バルブ 407を閉状態としたままでも所望の膜厚でなる 1原子層又は 1 分子層の薄膜を基板 420上に形成し得るようになされて ヽる。 [0066] このようにしてガスシャワー式熱 CVD装置 1では、被薄膜形成対象物としての基板 420上に形成する 1原子層又は 1分子層の膜厚に応じて定量された所定量の原料溶 液だけを気化し、この原料ガスを反応室内部 415に間欠的に供給してゆくことで、反 応室側バルブ 404及びベント側バルブ 407の開閉動作をその都度行うことなく、基板 4 20上に所望の膜厚でなる 1原子層又は 1分子層の薄膜を順次形成し得るようになさ れている。
[0067] (1 2) CVD用気化器の詳細構成
次に CVD用気化器 3の詳細構成について以下説明する。この CVD用気化器 3は 、気化機構 20と、当該気化機構 20に設けられた原料溶液供給機構 21とを備え、当該 気化機構 20が反応室側バルブ 404を介して反応室のガス導入口 403に連結されて ヽ る。
[0068] この場合、 CVD用気化器 3は、気化機構 20によってキャリアガスを常に反応室 402 へ供給するとともに、原料溶液供給機構 21から供給された所定量の原料溶液ほぼ全 てを気化機構 20で確実に気化して反応室 402に供給し得るように構成されている。
[0069] (1 - 2- 1)気化機構の構成
ここで先ず初めに気化機構 20について説明する。図 2に示すように、気化機構 20は 、窒素ガスやアルゴン等の各種キャリアガスを反応室内部 415に供給するキャリアガス 流路 22が、キャリアガス管 23、オリフィス管 24及び気化部 25により形成されている。
[0070] 実際上、この気化機構 20は、キャリアガスを供給する供給機構(図示せず)にキヤリ ァガス管 23の基端 (すなわちキャリアガス流路 22の流入口)が連結されて 、るとともに 、キャリアガス管 23の先端 30がオリフィス管 24の基端 31に連結され、これによりキャリア ガス管 23からオリフィス管 24に高速のキャリアガスを供給し得るように構成されて!、る
[0071] 因みに、キャリアガス管 23の基端と供給機構との間には、 N供給バルブ及びマスフ
2
ローコントローラ(図示せず)が設けられている。またキャリアガス管 23には、圧カトラン スデューサ 32が取り付けられて!/、る。
[0072] なお、圧力トランスデューサ 32は、キャリアガス管 23内のキャリアガスの圧力及びそ の変動を正確に測定し、記録しながら常時モニタする。圧力トランスデューサ 32は、 キャリアガスの圧力レベルに応じた信号レベルを有する出力信号を制御部(図示せ ず)に送信する。
[0073] 力べして図示しない表示部に、キャリアガスの圧力結果を出力信号に基づいて表示 してオペレータにモニタさせ得るようになされている。これによりオペレータは、圧力 結果に基づ 、てキャリアガス流路 22の目詰まりをモニタできる。
[0074] ここでキャリアガス管 23は、その内径がオリフィス管 24の内径よりも大きく選定され、 キャリアガス管 23からオリフィス管 24に供給されるキャリアガスの流速を一段と速くさせ 得るように構成されている。
[0075] オリフィス管 24は、鉛直向きに配置され、その先端 33に台形円錐状でなる凸状部 34 が設けられているとともに、この凸状部 34の頂部に細孔 35が設けられている。このよう にオリフィス管 24では、先端に凸状部 34を設けたことにより、細孔 35の先端たる噴霧 口 36の外周周辺に傾斜面 34aを形成し、これにより残留物が噴霧口 36に溜まり難く なり、噴霧口 36の目詰まりを抑止し得るようになされて!、る。
[0076] 因みに、この実施の形態の場合、凸状部 34の頂角 Θは、 45° 〜135° 、特に 30 ° 〜45° の鋭角に形成することが好ましぐこの場合、例えば析出した原料ィ匕合物 によって噴霧口 36が詰まることを防止できる。
[0077] 噴霧口 36の細孔 35は、その内径がオリフィス管 24の内径よりも小さく選定され、当該 オリフィス管 24力 細孔 35に供給されるキャリアガスの流速がさらに一段と速くなるよう に構成されている。ここで細孔 35の先端は、オリフィス管 24の凸状部 34が気化部 25の 基端 37に挿入されていることにより、気化部 25の内部空間 38に突出するように配置さ れ得る。
[0078] 力かる構成にカ卩えてオリフィス管 24には、基端 31から凸状部 34までの間に複数 (こ の場合、例えば 5つ)の接続管 40a〜40eが連通しており、この接続管 40a〜40eにそれ ぞれ後述する原料溶液供給機構 21が設けられている。これによりオリフィス管 24は、 所定量の原料溶液が原料溶液供給機構 21から接続管 40a〜40eを介して供給され得 るように構成されている。
[0079] この場合、オリフィス管 24は、例えば接続管 40aから供給された原料溶液に高速で 流れるキャリアガスをあて、当該原料溶液を微粒子状又は霧状にさせてキャリアガス 中に分散させ、この状態のまま細孔 35を介して気化部 25内に高速(230mZ秒〜 35
OmZ秒)で噴霧するように構成されて 、る。
[0080] この実施の形態の場合、オリフィス管 24は、内径が例えば Φ 1. Omm程度に選定さ れているとともに、鉛直向きに延びる長手方向の長さが 100mm程度に選定され、さ らに細孔 35の内径が Φ0. 2〜0. 7mm程度に選定されており、その内部でキャリア ガスを高速にさせ得るようになされている。
[0081] ここでオリフィス管 24に連結した気化部 25は、管状でなり、当該オリフィス管 24と同 様に鉛直向きに配置され、図 2に示したように、その内径がオリフィス管 24の内径より 顕著に大きく選定されていることにより、当該気化部 25内の圧力がオリフィス管 24内 の圧力よりも小さくなるように形成されて!、る。
[0082] このように気化部 25では、オリフィス管 24との間で大きな圧力差が設けられているこ とにより、原料溶液及びキャリアガスがオリフィス管 24の先端 36力 高速 (例えば 230 mZ秒〜 350mZ秒)で噴出し、内部空間 38にお 、て膨張させ得るようになされて!ヽ る。
[0083] 実際上、この実施の形態の場合、気化部 25内の圧力が例えば lOTorr程度に選定 されているのに対し、オリフィス管 24内の圧力が例えば 500〜1000Torr程度に選定 され、気化部 25とオリフィス管 24との間に大きな圧力差が設けられている。
[0084] 因みに、流量制御後のキャリアガスの圧力は、キャリアガスの流量、溶液流量及び 細孔 35の寸法によって増減する力 最終的には噴霧口 36の寸法を選定してキャリア ガスの圧力を制御し、 500〜1000Torrにすることが好ましい。
[0085] これに加えて気化部 25の外周には、図 1に示したように、基端 37及び先端 (すなわ ちキャリアガス流路 22の流出口) 41の間に加熱手段としてのヒータ 42が取り付けられ ており、このヒータ 42によって気化部 25が例えば 270°C程度に加熱され得る。なお、 この実施の形態の場合、気化部 25の基端 37がほぼ半球形状に形成されていることに より、ヒータ 42によって当該基端 37側を均一に加熱することができるようになされて!ヽ る。
[0086] 力べして気化部 25では、オリフィス管 24内で高速のキャリアガス流によって分散され 霧化した原料溶液を、ヒータ 42によって瞬時に加熱して瞬間的に気化するように構成 されている。このとき、原料溶液がオリフィス管 24内で混合されたとき力も気化部 25内 に噴霧されるまでの時間は極めて短時間(好ましくは 0. 1〜0. 002秒以内)であるこ とが好ましい。原料溶液は、高速のキャリアガス流によって、オリフィス管 24内で分散 させた直後に微細になり、瞬時に気化部 25内で気化する。また、溶媒のみが気化す る現象は抑制される。
[0087] 因みに原料溶液及びキャリアガスを高速で気化部 25に噴霧することによって、霧の 寸法が微細化 (霧の直径が 1 IX m以下)し、蒸発面積の増大と蒸発速度の増大を図 ることができる。なお霧の寸法が 1桁減少すると、蒸発面積は 1桁増大する。
[0088] なお噴霧口 36から噴出した霧が気化部 25の内壁に衝突しないように、噴霧口 36の 角度と気化部 25の寸法を設計することが好ましい。霧が気化部 25の内壁に衝突する と、壁面に付着し、蒸発面積が桁違いに減少して、蒸発速度が低下する力もである。 また、霧が長時間気化部 25壁に付着していると、熱分解して蒸発しない化合物に変 ィ匕する ί列ちあるカゝらである。
[0089] またこの場合、気化部 25は、その内部が減圧されていることにより原料溶液それぞ れに含まれる原料ィ匕合物の昇華温度を低下させることができ、その結果ヒータ 42力も の熱で原料溶液を容易に気化させ得るようになされて 、る。
[0090] このようにして気化部 25は、原料溶液を気化し、これを原料ガスとして反応室 402に 供給し、この反応室 402で CVD法によって 1原子層又は 1分子層の薄膜を形成させ 得るようになされている。
[0091] なお、気化部 25の基端 37は、オリフィス管 24との間に断熱材 43を有し、この断熱材 4 3によって気化部 25からの熱がオリフィス管 24に伝達され難くなるように構成されてい る。因みに気化部 25の基端 37は Οリング 44によって気密封止されている。またオリフィ ス管 24と気化部 25とを連結する締結部材 45にも断熱材 46が設けられている。
[0092] 因みに、細孔 35から噴霧された霧が気化部 25の内壁を濡らさないことが好ましい。
理由は、霧に比べて、濡れ壁では蒸発面積が桁違いに減少するからである。つまり、 気化部 25の内壁が全く汚れない構造が好ましい。また、気化部 25の内壁の汚れが簡 単に評価できるように、気化部 25壁は鏡面仕上げをすることが好ま 、。
[0093] 力べして、気化機構 20では、高速のキャリアガス流によって原料溶液を瞬間的に霧 化させて、ヒータ 42の熱で当該原料溶液を容易に気化させ易 、ようにして!/、ることに より、気化させ難い原料ィ匕合物を溶媒に溶カゝして得た原料溶液であっても気化部 25 にお 、て容易に気化できる。
[0094] 因みに、例えば SBT (タンタル酸ストロンチウムビスマス)膜を基板 420上に形成する 場合、原料化合物としては、 Sr[Ta(OEt)5(OEtOMe)]2,Bi(OtAm)3を用いることができ 、またこのとき溶媒としては、トルエンを用いることが好ましい。また、 PZT (チタン酸ジ ルコン酸鉛)膜を基板 420上に形成する場合、原料ィ匕合物としては、 Pb(DPM)2, Zr(DI BM)4,Ti(0ト Pr)2(DPM)2又は Pb(METHD)2,Zr(MMP)4,Ti(MMP)4を用いることができ 、またこのとき溶媒としては、トルエンを用いることが好ましい。
[0095] また気化機構 20では、キャリアガス管 23において加圧されたキャリアガスを高速にし てオリフィス管 24に導入するため(例えばキャリアガスは 500〜1000Torrで、 200ml Zmin〜2LZmin)、オリフィス管 24において原料溶液の温度上昇を抑制することが できる。
[0096] 従って、この気化機構 20では、オリフィス管 24において原料溶液中の溶剤のみが蒸 発気化することを抑制できるので、オリフィス管 24にお 、て原料溶液が高濃度化する ことを防止でき、力べして粘度の上昇を抑制できるとともに、原料化合物が析出するこ とを防止できる。
[0097] さらに、気化機構 20では、キャリアガス中に分散した原料溶液を気化部 25で瞬時に 気化させることができるので、細孔 35や細孔 35付近に原料溶液中の溶剤のみが気化 することを抑止できるため、細孔 35の目詰まりを抑止できる。力べして CVD用気ィ匕器 3 の連続使用時間を長くすることができる。
[0098] (1 - 2- 2)原料溶液供給機構の構成
次に上述した気化機構 20に設けられた原料溶液供給機構 21について以下説明す る。なお、接続管 40a〜40eにはそれぞれ原料溶液を定量する原料溶液供給機構 21 が設けられているが、当該原料溶液供給機構 21は、オリフィス管 24に対して供給する 原料溶液の種類が異なるだけで、その構成は同一であることから、説明の便宜上、接 続部 40aに設けられた原料溶液供給機構 21につ ヽてのみ説明する。
[0099] 因みに、接続管 40a〜40eは、互いに開口部が対向しないようにオリフィス管 24に配 置されていることにより、例えば接続管 40aの開口部力 オリフィス管 24に供給される 原料溶液が、他の接続管 40b〜40eの開口部に流入され得ることを確実に防止し得る ようになされている。
[0100] この場合、図 1に示したように、原料溶液供給機構 21では、原料溶液用タンク 50に 貯えられた原料溶液を、所定の原料溶液流路 51を経由させることにより、液体マスフ ローコントローラ(LMFC) 52、ブロックバルブ 53及び微量定量ポンプ 54を順次介して オリフィス管 24に供給するように構成されている。なお、この液体マスフローコントロー ラ 52は、原料溶液流路 51を流れる原料溶液の流量を制御するようになされて ヽる。
[0101] ブロックバルブ 53は、図 2に示したように、第 1〜第 4の切換バルブ 55a〜55dからな り、これら第 1〜第 4の切換バルブ 55a〜55dが図示しな 、制御部で統括的に制御さ れている。
[0102] 実際上、原料溶液をオリフィス管 24に供給する場合、ブロックバルブ 53は、第 1の切 換バルブ 55aのみを開状態として他の第 2〜第 4の切換バルブ 55b〜55dを閉状態と することにより、微量定量ポンプ 54に原料溶液を供給し得るようになされている。
[0103] ここで微量定量ポンプ 54は、ブロックバルブ 53とともに制御部によって統括的に制 御されており、基板 420上に形成する 1原子層又は 1分子層の膜厚に応じた所定量の 原料溶液を貯留部 56に貯留し得るように構成され、原料溶液用タンク 50から供給さ れてくる原料溶液を定量し得るようになされて!ヽる。
[0104] このようにして原料溶液排出手段としての微量定量ポンプ 54は、原料溶液用タンク 50から供給されてくる原料溶液について、基板 420上に形成する 1原子層又は 1分子 層の膜厚に応じた所定量だけ貯留部 56に一且貯留し、原料溶液用タンク 50から供給 されてくる原料溶液と隔離し得るようになされて ヽる。
[0105] ここで貯留部 56は、 1原子層又は 1分子層を形成するのに最適な所定量の原料溶 液が貯まるようにその内部容量が予め選定されており、単にその内部に原料溶液を 貯めるだけで、 1原子層又は 1分子層の膜厚を形成するのに最適な所定量の原料溶 液を容易に、かつ確実に定量できるように構成されて ヽる。
[0106] そして、微量定量ポンプ 54は、貯留部 56にー且所定量の原料溶液を貯留すると、 制御部からの制御信号を待ち受ける。その後、微量定量ポンプ 54は、制御部から所 定の制御信号を受け取ると、貯留部 56に貯留した所定量の原料溶液を所定のタイミ ングでオリフィス管 24に供給し得るように構成されて!、る。
[0107] これにより、オリフィス管 24では、高速に流れるキャリアガスに対し、定量された微量 の原料溶液が供給され、この高速に流れるキャリアガスによって当該原料溶液を微 粒子状又は霧状にさせてキャリアガス中に分散させ、これを気化部 25に供給し得るよ うになされている。
[0108] また、力かる構成に加えて原料溶液供給機構 21では、図 1に示したように、微量定 量ポンプ 54力もオリフィス管 24に原料溶液を供給していないとき、溶媒用タンク 57に 貯えられた溶媒を、所定の溶媒流路 58を経由させることにより、液体マスフローコント ローラ(LMFC) 59、カットバルブ 60及び接続管 40aを順次介してオリフィス管 24に供 給するように構成されている。
[0109] この場合、制御部は、第 2の切換バルブ 55b及び第 3の切換バルブ 55cを閉状態と するとともに、カットバルブ 60を開状態とすることにより、接続管 40aを通過させてオリフ イス管 24に溶媒を供給し得るようになされている。力べして接続管 40aからオリフィス管 24に溶媒だけを流すことにより接続管 40aに固形物が目詰まりすることを防止できる。
[0110] これに対して、制御部は、第 2の切換バルブ 55b及びカットバルブ 60を閉状態とする とともに、第 3の切換バルブ 55cを開状態とすることにより、ブロックバルブ 53を介して ベント管 61に溶媒を流して廃棄し得るようになされて!、る。
[0111] さらに、制御部は、第 1の切換バルブ 55aを閉状態として微量定量ポンプ 54に原料 溶液を供給して ヽな ヽとき、第 3の切換バルブ 55c及びカットバルブ 60を閉状態とする とともに、第 2の切換バルブ 55bを開状態とすることにより、ブロックバルブ 53、微量定 量ポンプ 54及び接続管 40aを順次介してオリフィス管 24に溶媒を供給し得るようにな されている。力べして微量定量ポンプ 54に溶媒だけを流すことにより、当該微量定量 ポンプ 54に固形物が目詰まりすることを防止できる。
[0112] なお、制御部は、第 1の切換バルブ 55a、第 2の切換バルブ 55b及び第 3の切換バル ブ 55cを閉状態とするとともに、第 4の切換バルブ 55dを開状態とすることにより、ブロッ クバルブ 53を介してベント管 61に原料溶液を流して廃棄し得ることもできるように構成 されている。 [0113] (1 3)動作及び効果
以上の構成において、 CVD用気化器 3では、原料溶液用タンク 50及びオリフィス管 24の間に設けた原料溶液流路 51に微量定量ポンプ 54を設け、原料溶液用タンク 50 から供給されてくる原料溶液を微量定量ポンプ 54で定量し、 1原子層又は 1分子層の 膜厚に応じた量だけ原料溶液を貯留部 56に貯留する。
[0114] 次いで CVD用気ィ匕器 3では、オリフィス管 24において反応室 402に向けて常に高 速で流れるキャリアガス流に、微量定量ポンプ 54で定量した所定量の原料溶液を供 給することにより、原料溶液を所定量だけ微粒子状又は霧状にさせてキャリアガス中 に分散させ、そのまま気化部 25で気化し原料ガスとして反応室 402に供給する。
[0115] 力べして、 CVD膜生成処理を行うガスシャワー式熱 CVD装置 1では、微量定量ポ ンプ 54によって定量した所定量の原料溶液だけを原料ガスとして反応室 402内に供 給でき、これにより当該原料ガスを基板 420上に均一に吹き付けてヒータ 422等により 加熱して基板 420上で化学反応を起こさせる。
[0116] ガスシャワー式熱 CVD装置 1では、微量定量ポンプ 54によって定量した所定量の 原料溶液全てが気化機構 20に供給し終えると、これに伴い反応室内部 415への原料 ガスの供給が停止し、その結果、反応室 402にはキャリアガスだけが再び供給される。 力くしてガスシャワー式熱 CVD装置 1では、反応室側バルブ 404及びベント側バルブ 407の開閉動作を行わずに、所望の膜厚でなる 1原子層又は 1分子層の薄膜を基板 4 20上に形成できる。
[0117] また、ガスシャワー式熱 CVD装置 1では、このようにして 1原子層又は 1分子層の薄 膜を形成する薄膜形成動作をし終えると、所定時間経過後、再び微量定量ポンプ 54 によって定量した所定量の原料溶液が気化機構 20に供給されることにより、新たに所 望の膜厚でなる 1原子層又は 1分子層の薄膜を基板 420上に形成する。
[0118] このようにしてガスシャワー式熱 CVD装置 1では、微量定量ポンプ 54によって定量 した所定量だけ気化機構 20に原料溶液を供給する薄膜形成動作を複数回繰り返し 、反応室 402に原料ガスを間欠的に供給して所定の膜厚を順次形成でき、カゝくして高 密度及び高品質の薄膜を基板 420上に形成できる。
[0119] このようにガスシャワー式熱 CVD装置 1では、成膜形成動作を繰り返す ALD動作 時、従来の CVD装置 400 (図 9)において行なわれていた反応室側バルブ 404及びべ ント側バルブ 407の開閉動作を一切行わずに、微量定量ポンプ 54によって正確に定 量した所定量の原料溶液だけを気化機構 20で気化し、これを原料ガスとして反応室 4 02に供給することにより反応室 402内で 1原子層又は 1分子層でなる所望の膜厚を形 成できる。
[0120] 従って、ガスシャワー式熱 CVD装置 1では、反応室側バルブ 404及びベント側バル ブ 407の開閉動作によって原料ガスが廃棄されるのを回避しながら、 1原子層又は 1 分子層でなる所望の膜厚の薄膜を基板 420上に順次形成させてゆくことができる。
[0121] また、ガスシャワー式熱 CVD装置 1では、 ALD動作時、反応室側バルブ 404を常 に開状態とし、ベント側バルブ 407を常に閉状態として CVD用気化器 3からのキャリア ガスを常に反応室 402に供給するように構成したことにより、反応室 402の圧力変化が 生じることがなぐ当該反応室 402内における成膜処理条件を均一に維持できる。
[0122] さらに、このガスシャワー式熱 CVD装置 1では、 ALD動作時、反応室側バルブ 404 及びベント側バルブ 407の開閉動作が繰り返し頻繁に行なわれることがないため、こ れら反応室側バルブ 404及びベント側バルブ 407の動作寿命を延ばすことができ、そ の結果、従来に比してメンテナンス頻度を少なくして稼働率が低下することを回避で きる。
[0123] そして、このガスシャワー式熱 CVD装置 1では、 1原子層又は 1分子層の膜厚を形 成するのに最適な所定量の原料溶液が貯まるように微量定量ポンプ 54の貯留部 56 が予め選定されていることにより、単に貯留部 56に原料溶液を貯めるだけで、 1原子 層又は 1分子層の膜厚を形成するのに最適な所定量の原料溶液を容易に、かつ確 実に気化機構 20に供給することができる。
[0124] また、 CVD用気化器 3において用いた気化機構 20では、オリフィス管 24内で原料 溶液を微粒子状又は霧状にしてキャリアガス中に分散させ、熱で当該原料溶液全て を容易に気化させ易 、ようにし、またオリフィス管 24にお 、て原料溶液の温度上昇を 抑制し原料ィ匕合物が析出することもないので、微量定量ポンプで精密に定量された 所定量の原料溶液全てを正確に気化でき、力べして反応室 402内に常に一定量の原 料ガスを正確に供給できる。 [0125] 以上の構成によれば、 ALD動作時において、反応室 402にキャリアガスを供給し続 け、微量定量ポンプ 54で定量した 1原子層又は 1分子層の膜厚に応じた所定量の原 料溶液を間欠的に気化機構 20に供給し、これにより得られた所定量の原料溶液から なる原料ガスをキャリアガスと共に反応室 402に供給するようにした。
[0126] 従って、ガスシャワー式熱 CVD装置 1では、反応室側バルブ 404及びベント側バル ブ 407の開閉動作によって原料ガスが廃棄されるのを回避しながら、 1原子層又は 1 分子層でなる所望の膜厚の薄膜を基板 420上に順次形成させてゆくことができ、かく して 1原子層又は 1分子層の薄膜を順次形成してゆく過程で原料ガスを廃棄しない 分だけ原料ガスの使用効率を格段と向上させ得る。
[0127] また、ガスシャワー式熱 CVD装置 1では、 ALD動作時、反応室側バルブ 404を常 に開状態とし、 CVD用気化器 3からのキャリアガスが常に反応室 402に供給するよう にしたことにより、反応室 402の圧力変化が生じることがなぐ当該反応室 402内にお ける成膜処理条件を均一に維持でき、力べして原料ガスに応じた 1原子層又は 1分子 層の膜厚を基板 420上に均一に形成し得る。
[0128] さらに、ガスシャワー式熱 CVD装置 1では、 ALD動作時、反応室側バルブ 404及び ベント側バルブ 407の開閉動作が繰り返し頻繁に行なわれることもないため、これら反 応室側バルブ 404及びベント側バルブ 407の動作寿命を延ばすことができ、力べして 従来に比してメンテナンス頻度を少なくして生産性を向上できる。
[0129] (2)第 2の実施の形態
図 1との対応部分に同一符号を付して示す図 3において、 70は半導体製造装置とし ての熱 CVD装置を示し、反応室 71の側部方向から原料ガスを間欠的に供給して行 なわれる一連の ALD式の動作を実行し得るように構成されており、それ以外は上述 した第 1の実施の形態と同様の構成を有する。このような CVD膜生成処理を行う熱 C VD装置 70でも、 CVD用気化器 3を搭載していることから、上述した同様の効果を得 ることがでさる。
[0130] (3)第 3の実施の形態
図 1との対応部分に同一符号を付して示す図 4において、 75は半導体製造装置とし てのプラズマ CVD装置を示し、上述した第 1の実施の形態とは CVD部 76の構成が 異なるものである。
[0131] 実際上、この CVD部 76には、反応室 402に RF (Radio Frequency)プラズマ発生電 極 77が設けられており、当該 RFプラズマ発生電極 77によって反応室 402内でプラズ マを発生させ得るようになされている。なお、 79はノイズカットフィルタである。
[0132] この場合、反応室 402の上方には RF電源 78が配設され、当該 RF電源 78にはプラ ズマ発生電極 77が装着されている。これによりプラズマ CVD装置 75では反応室 12内 にプラズマを発生させ、基板 420上でィ匕学反応を起こさせて所望の膜厚でなる 1原子 層又は 1分子層の薄膜を形成できるように構成されている。このような CVD膜生成処 理を行うプラズマ CVD装置 75でも、 CVD用気化器 3を搭載していることから、上述し た第 1の実施の形態と同様の効果を得ることができる。
[0133] (4)第 4の実施の形態
図 1との対応部分に同一符号を付して示す図 5において、 80は半導体製造装置とし てのシャワー式プラズマ CVD装置を示し、上述した第 1の実施の形態とは CVD部 81 の構成が異なるものであり、プラズマ方式で、かつシャワープレート 416を備えた構成 を有する。
[0134] 実際上、この CVD部 81には、シャワープレート 416の上部に絶縁材 82を介して RF ( Radio Frequency)電源 83が形成され、その上部にシャワープレートヒータ 10が設けら れている。なお 84はノイズカットフィルタであり、制御ユニット 12に RF電圧が侵入する のを防止するためのものである。このような CVD膜生成処理を行うシャワー式プラズ マ CVD装置 80でも、 CVD用気化器 3を搭載していることから、上述した第 1の実施の 形態と同様の効果を得ることができる。
[0135] (5)第 5の実施の形態
図 6において、 90は半導体製造装置としてのローラ式プラズマ CVD装置を示し、口 ーラ式 CVD部 91に上述した CVD用気化器 3が複数設けられた構成を有する。
[0136] このローラ式プラズマ CVD装置 90は、ローラ式 CVD部 91に複数のプラズマ発生装 置 92a〜92eが設けられており、被成膜テープ 93を正方向 Fに走行させたり、或いは 当該正方向 Fとは逆方向 Rに走行させることにより、各プラズマ発生装置 92a〜92eに おいて薄膜を形成し、異なる原料でなる薄膜からなる多層膜を形成し得るようになさ れている。
[0137] 実際上、このローラ式プラズマ CVD装置 90では、各プラズマ発生装置 92a〜92e毎 に本願発明の CVD用気化器 3が設けられており、上述した第 1の実施の形態と同様 の効果を得ることができる。
[0138] 因みに、このローラ式プラズマ CVD装置 90は、反応室 94内に成膜ローラ 95を挟ん で第 1の巻き取りローラ 96及び第 2の巻き取りローラ 97が配置されている。また、成膜 ローラ 95の一方側には第 1の送りローラ 98及び第 1のテンションコントロールローラ 99 が配置されているとともに、成膜ローラ 95の他方側には第 2の送りローラ 100及び第 2 のテンションコントロールローラ 101が配置されている。なお、成膜ローラ 95は、直径が 例えば 1000〜 20000mmと大径であり、幅が例えば 2mである。
[0139] これによりローラ式プラズマ CVD装置 90では、第 1の巻き取りローラ 96から第 1の送 りローラ 98、第 1のテンションコントロールローラ 99、成膜ローラ 95、第 2のテンションコ ントロールローラ 101及び第 2の送りローラ 100を経由して第 2の巻き取りローラ 97に被 成膜テープ 93を走行させる走行経路が形成され、被成膜テープ 93がその走行経路 に沿って第 1の巻き取りローラ 96から第 2の巻き取りローラ 97に向力う方向(正方向 F) に走行し得るとともに、その逆方向 Rたる第 2の巻き取りローラ 97から第 1の巻き取り口 ーラ 96に向力 方向に走行し得る。
[0140] この場合、各プラズマ発生装置 92a〜92eは、成膜ローラ 95上の各エリアに対応して 設けられており、被成膜テープ 93のそのエリア上に位置する部分に CVD用気化器 3 を動作させて薄膜を形成することができる。また、各プラズマ発生装置 92a〜92e及び CVD用気化器 3はそれぞれ個別に各種 CVD条件を設定できるように制御され、形 成する薄膜も個別に設定できるようにされており、個別に成膜動作をさせたり、成膜 動作を停止させたりする制御も個別に行え得るように構成されて 、る。
[0141] なお、それぞれ隣接するプラズマ発生装置 92a〜92e間には原料ガスの干渉を防止 するため仕切板 105が配置されている。なお 106は排気管、 107は防着板、 108はガス シャワー電極、 109は RF電源である。本実施例では、成膜ローラ 95がアースされ、ガ スシャワー電極 108が RF電源 109の端子に接続されており、プラズマ発生装置 92a〜 92eの電位が高くなつて!/、る。 [0142] 力べしてこのような CVD膜生成処理を行うローラ式プラズマ CVD装置 90では、被成 膜テープ 93を正方向 Fに走行させたり、或いは逆方向 Rに走行させる動作を交互に 繰り返し、例えば 50層〜 1000層という多層膜を比較的効率的に形成できる。
[0143] (6)第 6の実施の形態
図 6との対応部分に同一符号を付して示す図 7において、 120は半導体製造装置と してのローラ式プラズマ CVD装置を示し、このローラ式プラズマ CVD装置 120は、上 述した第 5の実施の形態とは成膜ローラ 95の電位が高くなつて 、る点で相違する。す なわち、ローラ式プラズマ CVD装置 120では、 1つの RF電源 121の一端が成膜ローラ 95に接続され、各プラズマ発生装置 92a〜92eのガスシャワー電極 108がアースされて いる点で異なる。このようなローラ式プラズマ CVD装置 120でも、本願発明の CVD用 気化器 3が設けられていることから、上述した第 1の実施の形態と同様の効果を得る ことができる。
[0144] (7)第 7の実施の形態
図 6との対応部分に同一符号を付して示す図 8において、 130は半導体製造装置と してのローラ式熱 CVD装置を示し、このローラ式熱 CVD装置 130は、プラズマ発生 装置が設けられておらず、シャワープレート部 131a〜131eと成膜ローラ 95との間に電 圧が力かっていない点で上述した第 5の実施の形態と相違する。因みに、このローラ 式熱 CVD装置 130では主として成膜ローラ 95により被成膜テープ 93を加熱し得るよう に構成されている。
[0145] このような CVD膜生成処理を行うローラ式熱 CVD装置 130でも、各シャワープレー ト部 131a〜131e毎に本願発明の CVD用気化器 3が設けられていることから、上述し た第 1の実施の形態と同様の効果を得ることができる。
[0146] (8)他の実施の形態
なお本願発明は上述した実施の形態に限定されるものではなぐ種々の変形実施 が可能である。例えば、上述した実施の形態においては、接続管 40aに設けられた微 量定量ポンプ 54から 1種類の原料溶液を気化機構 20に供給するようにした場合につ いて述べたが、本発明はこれに限らず、接続管 40a〜40eに設けられた各微量定量ポ ンプ 54力 異なる種類の原料溶液を同時に気化機構 20に供給したり、或いは接続管 40a〜40eに設けられた各微量定量ポンプ 54力 異なる種類の原料溶液を時間を空 けて順次気化機構 20に供給するようにしても良い。
[0147] また、上述した実施の形態においては、高速のキャリアガス流によって原料溶液を 瞬間的に霧化させて、ヒータ 42の熱で当該原料溶液を容易に気化させ易 、ように構 成した気化機構 20を適用するようにした場合について述べたが、本発明はこれに限 らず、 CVD装置にぉ 、て用いられて 、る通常の気化機構を適用するようにしても良 い。
[0148] またこのように通常の気化機構を用いる場合には、反応室 402のガス導入口 403 (図 1)の近傍に気化部を設けずに、図 9に示したような従来のガス供給路 405の分岐点 に接続管 40a〜40eを設け、この接続管 40a〜40eに気化部を設けて、当該気化部で 得た原料ガスを接続管 40a〜40eを介してガス供給路 405 (図 9)に供給するようにして も良い。
[0149] 要は、キャリアガス流路 22の流出口及び微量定量ポンプ 54の間の所定位置に気化 部を設け、原料溶液用タンク 50から気化部に原料溶液を供給する際、微量定量ボン プ 54で定量した 1原子層又は 1分子層の膜厚に応じた所定量の原料溶液を気化機 構 20に供給し、これにより得られた所定量の原料溶液カゝらなる原料ガスだけを反応 室 402に供給する構成であれば良!、。
[0150] さらに、上述した実施の形態にぉ 、ては、微量定量ポンプ 54で定量した原料溶液 を、規則的な間隔を空けて間欠的に気化機構 20に供給するようにした場合について 述べたが、本発明はこれに限らず、微量定量ポンプ 54で定量した原料溶液を、不規 則な間隔を空けて断続的に気化機構 20に供給するようにしても良い。この場合、微 量定量ポンプ 54により必要に応じて原料溶液の供給を複数回繰り返して行うことがで きる。
[0151] さらに、上述した実施の形態においては、 CVD膜生成処理を行う熱 CVD装置 70、 プラズマ CVD装置 75、シャワー式プラズマ CVD装置 80、ローラ式プラズマ CVD装 置 90、ローラ式プラズマ CVD装置 120及びローラ式熱 CVD装置 130等の薄膜形成装 置を適用するようにした場合について述べたが、本発明はこれに限らず、反応室内 でエッチング処理を行うエッジング装置や、反応室内でスパッタリング処理を行うスパ ッタリング装置又は反応室内でアツシング処理を行うアツシング装置等のこの他種々 の処理を行う半導体製造装置を適用するようにしても良い。この場合にも本発明によ る気化器を反応室に設けることができ、これにより上述の実施の形態と同様の効果を 得ることができる。
[0152] さらに、上述した実施の形態においては、半導体製造方法として、薄膜形成装置に お!、て行われる薄膜形成方法にっ 、て適用するようにした場合にっ 、て述べたが、 本発明はこ
れに限らず、エッチング方法等のこの他種々の半導体製造方法に適用するようにし ても良い。
[0153] さらに、上述した実施の形態においては、微量定量ポンプ 54で原料溶液を 1原子層 又は 1分子層の量に定量するようにした場合について述べた力 本発明はこれに限 らず、微量定量ポンプ 54で 500nm以下の膜厚に応じた量等この他種々の量に定量 するようにしても良ぐこの場合、例えば 500nm以下の膜厚に応じた量だけ原料溶液 を気化部 25に供給できる。
[0154] さらに、上述した実施の形態においては、原料溶液を貯留する量が予め定められ た微量定量ポンプ 54を適用するようにした場合について述べた力 本発明はこれに 限らず、必要に応じて適宜貯留量が可変する可変型の微量定量ポンプを適用するよ うにしても良い。
[0155] さらに、上述した実施の形態においては、原料溶液排出手段として、微量定量ボン プ 54を適用するようにした場合について述べた力 本発明はこれに限らず、原料溶 液を所定量に定量して気化機構 20に供給できれば、この他種々の原料溶液排出手 段を適用するようにしても良 、。
[0156] さらに、上述した実施の形態においては、固体状の原料化合物を溶媒に溶かした ものを原料溶液として適用するようにした場合について述べた力 本発明はこれに限 らず、液体状の原料化合物自体を原料溶液として適用するようにしても良 、。

Claims

請求の範囲
[1] 原料溶液を気化した原料ガスを反応室に供給する気化器にお!ヽて、
流入口から流出口に向けてキャリアガスが流れるキャリアガス流路と、
前記原料溶液が供給される原料溶液流路と、
前記キャリアガス流路と前記原料溶液流路とを連通する接続管と、
前記原料溶液流路に供給された前記原料溶液を定量して前記接続管に排出する 原料溶液排出手段と、
前記キャリアガス流路の流出口及び前記原料溶液排出手段の間に設けられ、前記 原料溶液排出手段から排出された所定量の原料溶液を気化する気化部と
を備えたことを特徴とする気化器。
[2] 前記原料溶液排出手段は、前記接続管に前記原料溶液を断続的に排出する ことを特徴とする請求項 1記載の気化器。
[3] 前記接続管に設けられ、前記キャリアガス流路にパージ用の溶媒を供給する溶媒 流路を備えた
ことを特徴とする請求項 1又は 2記載の気化器。
[4] 前記キャリアガス流路は、
前記キャリアガスが供給されるキャリアガス管と、
該キャリアガス管力 前記キャリアガスが供給され、前記原料溶液を微粒子状又は 霧状にしてキャリアガス中に分散させて前記気化部に供給するオリフィス管とを備え、 前記気化部は、前記キャリアガス中に分散させた原料溶液を加熱して気化する加 熱手段を備えている
ことを特徴とする請求項 1乃至 3のうちいずれか 1項記載の気化器。
[5] 前記原料溶液排出手段は、微量定量ポンプでなる
ことを特徴とする請求項 1乃至 4のうちいずれか 1項記載の気化器。
[6] 前記原料溶液排出手段は、前記原料溶液流路に供給された前記原料溶液を、基 板に形成する 500nm以下の膜厚に応じた量に定量する
ことを特徴とする請求項 1乃至 5のうちいずれか 1項記載の気化器。
[7] 前記 500nm以下の膜厚に応じた量力 前記基板に形成する 1原子層又は 1分子 層に応じた量である
ことを特徴とする請求項 6記載の気化器。
[8] 前記原料溶液排出手段は、前記 1原子層又は 1分子層に応じた量だけ前記原料 溶液を貯える貯留部を備えた
ことを特徴とする請求項 7記載の気化器。
[9] 前記原料溶液排出手段は、原料溶液用タンクから供給されてきた前記原料溶液を 、前記 1原子層又は 1分子層に応じた量だけ予め前記貯留部に貯えておき、所定の タイミングで前記気化部に排出するように構成した
ことを特徴とする請求項 8記載の気化器。
[10] 基板が載置される反応室と、原料溶液を気化した原料ガスを前記反応室に供給す る気化器とを備える半導体製造装置において、
前記気化器は、
流入口から流出口に向けてキャリアガスが流れるキャリアガス流路と、
前記原料溶液が供給される原料溶液流路と、
前記キャリアガス流路と前記原料溶液流路とを連通する接続管と、
前記原料溶液流路に供給された前記原料溶液を定量して前記接続管に排出する 原料溶液排出手段と、
前記キャリアガス流路の流出口及び前記原料溶液排出手段の間に設けられ、前記 原料溶液排出手段から排出された所定量の原料溶液を気化する気化部とを備えた ことを特徴とする半導体製造装置。
[11] 前記原料溶液排出手段は、前記接続管に前記原料溶液を断続的に排出する ことを特徴とする請求項 10記載の半導体製造装置。
[12] 前記接続管に設けられ、前記キャリアガス流路にパージ用の溶媒を供給する溶媒 流路を備えた
ことを特徴とする請求項 10又は 11記載の半導体製造装置。
[13] 前記キャリアガス流路は、
前記キャリアガスが供給されるキャリアガス管と、
該キャリアガス管力 前記キャリアガスが供給され、前記原料溶液を微粒子状又は 霧状にしてキャリアガス中に分散させて前記気化部に供給するオリフィス管とを備え、 前記気化部は、前記キャリアガス中に分散させた原料溶液を加熱して気化する加 熱手段を備えている
ことを特徴とする請求項 10乃至 12のうちいずれ力 1項記載の半導体製造装置。
[14] 前記原料溶液排出手段は、微量定量ポンプでなる
ことを特徴とする請求項 10乃至 13のうちいずれ力 1項記載の半導体製造装置。
[15] 前記原料溶液排出手段は、前記原料溶液流路に供給された前記原料溶液を、前 記基板に形成する 500nm以下の膜厚に応じた量に定量する
ことを特徴とする請求項 10乃至 14のうちいずれ力 1項記載の半導体製造装置。
[16] 前記 500nm以下の膜厚に応じた量力 前記基板に形成する 1原子層又は 1分子 層に応じた量である
ことを特徴とする請求項 10乃至 15のうちいずれ力 1項記載の半導体製造装置。
[17] 前記原料溶液排出手段は、前記 1原子層又は 1分子層に応じた量だけ前記原料 溶液を貯える貯留部を備えた
ことを特徴とする請求項 16記載の半導体製造装置。
[18] 前記原料溶液排出手段は、原料溶液用タンクから供給されてきた前記原料溶液を 、前記 1原子層又は 1分子層に応じた量だけ予め前記貯留部に貯えておき、所定の タイミングで前記気化部に排出するように構成した
ことを特徴とする請求項 17記載の半導体製造装置。
[19] 原料溶液を気化した原料ガスを反応室に供給することにより、前記反応室内で基 板表面を処理する半導体製造方法において、
キャリアガス流路の流入ロカ 流出口に向けてキャリアガスを流すことにより、前記 反応室にキャリアガスを供給するキャリアガス供給ステップと、
原料溶液流路に前記原料溶液を供給する原料溶液供給ステップと、
前記原料溶液流路に供給された前記原料溶液を定量する定量ステップと、 前記キャリアガス流路と前記原料溶液流路とを連通する接続管に、前記定量ステツ プで定量した所定量の原料溶液を排出する原料溶液排出ステップと、
前記キャリアガス流路の流出口及び前記原料溶液排出手段の間に設けられた気 化部によって、前記原料溶液排出ステップで排出した前記所定量の原料溶液を気 化する気化ステップとを備えた
ことを特徴とする半導体製造方法。
[20] 前記原料溶液排出ステップは、前記接続管に前記原料溶液を断続的に排出する ことを特徴とする請求項 19記載の半導体製造方法。
[21] 前記原料溶液排出ステップ及び前記気化ステップに替えて、前記接続管を介して 前記キャリアガス流路力 前記気化部にパージ用の溶媒を供給するパージ用供給ス テツプを備えた
ことを特徴とする請求項 19又は 20記載の半導体製造方法。
[22] 前記キャリアガス供給ステップは、キャリアガス管力もオリフィス管に前記キャリアガ スを供給するオリフィス管ガス供給ステップを有し、
前記オリフィス管ガス供給ステップの後に、前記原料溶液排出ステップによって前 記オリフィス管に前記原料溶液を排出し、
前記オリフィス管内で前記原料溶液を微粒子状又は霧状にしてキャリアガス中に分 散させて前記気化部に供給し、前記気化ステップによって前記キャリアガス中に分散 させた原料溶液を前記気化部の加熱手段で加熱して気化する
ことを特徴とする請求項 19乃至 21のうちいずれ力 1項記載の半導体製造方法。
[23] 前記定量ステップは、微量定量ポンプによって前記原料溶液を定量する
ことを特徴とする請求項 19乃至 22のうちいずれ力 1項記載の半導体製造方法。
[24] 前記定量ステップは、前記原料溶液流路に供給された前記原料溶液を、前記基板 に形成する 500nm以下の膜厚に応じた量に定量する
ことを特徴とする請求項 19乃至 23のうちいずれ力 1項記載の半導体製造方法。
[25] 前記 500nm以下の膜厚に応じた量力 前記基板に形成する 1原子層又は 1分子 層に応じた量である
ことを特徴とする請求項 19乃至 24のうちいずれ力 1項記載の半導体製造方法。
[26] 前記定量ステップは、前記 1原子層又は 1分子層に応じた量だけ前記原料溶液を 貯留部で貯える
ことを特徴とする請求項 25記載の半導体製造方法。 前記定量ステップは、原料溶液用タンクから供給されてきた前記原料溶液を、前記
1原子層又は 1分子層に応じた量だけ予め前記貯留部に貯えておき、所定のタイミン グで前記気化部に排出する
ことを特徴とする請求項 26記載の半導体製造方法。
PCT/JP2006/303616 2006-02-27 2006-02-27 気化器、半導体製造装置及び半導体製造方法 WO2007097024A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007525119A JPWO2007097024A1 (ja) 2006-02-27 2006-02-27 気化器、半導体製造装置及び半導体製造方法
US12/278,531 US20100022097A1 (en) 2006-02-27 2006-02-27 Vaporizer, semiconductor production apparatus and process of semiconductor production
PCT/JP2006/303616 WO2007097024A1 (ja) 2006-02-27 2006-02-27 気化器、半導体製造装置及び半導体製造方法
TW095108412A TW200733196A (en) 2006-02-27 2006-03-13 Vaporizer, semiconductor manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303616 WO2007097024A1 (ja) 2006-02-27 2006-02-27 気化器、半導体製造装置及び半導体製造方法

Publications (1)

Publication Number Publication Date
WO2007097024A1 true WO2007097024A1 (ja) 2007-08-30

Family

ID=38437083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303616 WO2007097024A1 (ja) 2006-02-27 2006-02-27 気化器、半導体製造装置及び半導体製造方法

Country Status (4)

Country Link
US (1) US20100022097A1 (ja)
JP (1) JPWO2007097024A1 (ja)
TW (1) TW200733196A (ja)
WO (1) WO2007097024A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118901A1 (ja) * 2008-03-28 2009-10-01 株式会社日立国際電気 薄膜形成方法
JP2010135846A (ja) * 2007-08-30 2010-06-17 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2011137208A (ja) * 2009-12-28 2011-07-14 Sony Corp 成膜装置および成膜方法
US20150013607A1 (en) * 2010-03-25 2015-01-15 Novellus Systems, Inc. In-situ deposition of film stacks
JPWO2017010125A1 (ja) * 2015-07-16 2018-04-26 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び気化システム
JP2019035147A (ja) * 2017-08-14 2019-03-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 金属酸化膜形成方法及びプラズマ強化化学気相蒸着装置

Families Citing this family (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361231B2 (en) * 2009-09-30 2013-01-29 Ckd Corporation Liquid vaporization system
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
JP5973178B2 (ja) * 2012-02-01 2016-08-23 Ckd株式会社 液体制御装置
PT2841620T (pt) * 2012-04-27 2019-01-22 Arkema Inc Campânula para revestir recipientes de vidro com vapor de óxido metálico
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US10683571B2 (en) * 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
KR102483924B1 (ko) * 2016-02-18 2023-01-02 삼성전자주식회사 기화기 및 이를 구비하는 박막 증착 장치
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
TWI779134B (zh) 2017-11-27 2022-10-01 荷蘭商Asm智慧財產控股私人有限公司 用於儲存晶圓匣的儲存裝置及批爐總成
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102657269B1 (ko) 2018-02-14 2024-04-16 에이에스엠 아이피 홀딩 비.브이. 주기적 증착 공정에 의해 기판 상에 루테늄-함유 막을 증착하는 방법
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
KR20190128558A (ko) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
TWI819010B (zh) 2018-06-27 2023-10-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
JP7094172B2 (ja) * 2018-07-20 2022-07-01 東京エレクトロン株式会社 成膜装置、原料供給装置及び成膜方法
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP7504584B2 (ja) 2018-12-14 2024-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
JP7509548B2 (ja) 2019-02-20 2024-07-02 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための周期的堆積方法および装置
JP2020136678A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための方法および装置
JP2020133004A (ja) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材を処理するための基材処理装置および方法
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
KR20200123380A (ko) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. 층 형성 방법 및 장치
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TWI839544B (zh) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 形成形貌受控的非晶碳聚合物膜之方法
TW202113936A (zh) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 用於利用n型摻雜物及/或替代摻雜物選擇性沉積以達成高摻雜物併入之方法
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (ko) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 화학물질 공급원 용기를 위한 액체 레벨 센서
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
CN112635282A (zh) 2019-10-08 2021-04-09 Asm Ip私人控股有限公司 具有连接板的基板处理装置、基板处理方法
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
KR20210043460A (ko) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN112992667A (zh) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 形成氮化钒层的方法和包括氮化钒层的结构
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
TW202140135A (zh) 2020-01-06 2021-11-01 荷蘭商Asm Ip私人控股有限公司 氣體供應總成以及閥板總成
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
KR20210100010A (ko) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. 대형 물품의 투과율 측정을 위한 방법 및 장치
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (zh) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 用於生長磷摻雜矽層之方法及其系統
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210116249A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
TW202140831A (zh) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 形成含氮化釩層及包含該層的結構之方法
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202147383A (zh) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 基材處理設備
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202200837A (zh) 2020-05-22 2022-01-01 荷蘭商Asm Ip私人控股有限公司 用於在基材上形成薄膜之反應系統
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220006455A (ko) 2020-07-08 2022-01-17 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TW202219628A (zh) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 用於光微影之結構與方法
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
KR20220027026A (ko) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
KR20220076343A (ko) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터
CN114639631A (zh) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 跳动和摆动测量固定装置
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100803A (ja) * 1998-09-21 2000-04-07 Nec Corp 高分子膜の製造装置とこの装置を用いた成膜方法
JP2001049438A (ja) * 1999-08-12 2001-02-20 Air Water Inc 液体材料の気化供給装置
WO2004040630A1 (ja) * 2002-10-30 2004-05-13 Hitachi Kokusai Electric Inc. 半導体デバイスの製造方法及び基板処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100803A (ja) * 1998-09-21 2000-04-07 Nec Corp 高分子膜の製造装置とこの装置を用いた成膜方法
JP2001049438A (ja) * 1999-08-12 2001-02-20 Air Water Inc 液体材料の気化供給装置
WO2004040630A1 (ja) * 2002-10-30 2004-05-13 Hitachi Kokusai Electric Inc. 半導体デバイスの製造方法及び基板処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135846A (ja) * 2007-08-30 2010-06-17 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
WO2009118901A1 (ja) * 2008-03-28 2009-10-01 株式会社日立国際電気 薄膜形成方法
JP2011137208A (ja) * 2009-12-28 2011-07-14 Sony Corp 成膜装置および成膜方法
US20150013607A1 (en) * 2010-03-25 2015-01-15 Novellus Systems, Inc. In-situ deposition of film stacks
US10214816B2 (en) * 2010-03-25 2019-02-26 Novellus Systems, Inc. PECVD apparatus for in-situ deposition of film stacks
US11746420B2 (en) 2010-03-25 2023-09-05 Novellus Systems, Inc. PECVD apparatus for in-situ deposition of film stacks
JPWO2017010125A1 (ja) * 2015-07-16 2018-04-26 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及び気化システム
JP2019035147A (ja) * 2017-08-14 2019-03-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 金属酸化膜形成方法及びプラズマ強化化学気相蒸着装置
JP7297358B2 (ja) 2017-08-14 2023-06-26 三星ディスプレイ株式會社 金属酸化膜形成方法及びプラズマ強化化学気相蒸着装置

Also Published As

Publication number Publication date
TW200733196A (en) 2007-09-01
JPWO2007097024A1 (ja) 2009-07-09
US20100022097A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2007097024A1 (ja) 気化器、半導体製造装置及び半導体製造方法
US6409839B1 (en) Method and apparatus for vapor generation and film deposition
TWI391994B (zh) 汽化器及半導體處理系統
KR100934296B1 (ko) 기화기, 가스 생성 장치 및 반도체 처리 시스템
KR101240031B1 (ko) 기화기 및 이를 이용한 성막 장치
TWI541378B (zh) 原子層沉積鍍膜系統及方法
KR100654400B1 (ko) 용액 기화식 cvd 장치
JP3390517B2 (ja) 液体原料用cvd装置
KR20180016563A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기화 시스템
KR101054595B1 (ko) 기화기 및 성막 장치
KR100683441B1 (ko) 원자층 증착 장치 및 방법
JPWO2006093168A1 (ja) Cvd装置と、それを用いた多層膜形成方法と、それにより形成された多層膜
US7672575B2 (en) Evaporator featuring annular ridge member provided on side wall surface of evaporating chamber
JP2009246173A (ja) 気化器およびそれを用いた成膜装置
JP2001064777A (ja) ガス噴射ヘッド
WO1998055668A1 (en) Method and apparatus for vapor generation and film deposition
JP5203843B2 (ja) 気化器およびそれを用いた成膜装置
JP2012162754A (ja) 液体原料の気化方法及び気化器
JP4831526B2 (ja) 薄膜形成装置、及び薄膜形成方法
JP2000252270A (ja) ガス噴射ヘッド
KR101773038B1 (ko) 기화기를 갖는 증착장치 및 증착방법
JPWO2008026242A1 (ja) Cvd装置と、それを用いた薄膜形成方法
KR100267972B1 (ko) 반도체소자 제조를 위한 화학 기상 증착용 유기금속 소스 기화장치
JP2002012975A (ja) 液体原料供給装置及びこれを用いた銅層形成方法
JPH07106254A (ja) 液体原料用気化供給器とその供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007525119

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12278531

Country of ref document: US