WO2009118901A1 - 薄膜形成方法 - Google Patents

薄膜形成方法 Download PDF

Info

Publication number
WO2009118901A1
WO2009118901A1 PCT/JP2008/056144 JP2008056144W WO2009118901A1 WO 2009118901 A1 WO2009118901 A1 WO 2009118901A1 JP 2008056144 W JP2008056144 W JP 2008056144W WO 2009118901 A1 WO2009118901 A1 WO 2009118901A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
raw material
reaction chamber
film formation
solvent
Prior art date
Application number
PCT/JP2008/056144
Other languages
English (en)
French (fr)
Inventor
久良 矢元
貞義 堀井
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2008/056144 priority Critical patent/WO2009118901A1/ja
Publication of WO2009118901A1 publication Critical patent/WO2009118901A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Definitions

  • the present invention relates to a thin film formation method, and in particular, is applied to an ALD (Atomic Layer Deposition) type CVD (Chemical Vapor Deposition) apparatus in which a raw material gas is intermittently supplied to a reaction chamber to grow a thin film one atomic layer or one molecular layer at a time. Therefore, it is suitable.
  • ALD Atomic Layer Deposition
  • CVD Chemical Vapor Deposition
  • CVD apparatuses and PVD apparatuses are used for forming the thin film.
  • a source gas is intermittently sprayed onto a substrate to uniformly adsorb a single molecular layer on the substrate.
  • an ALD is performed in which an oxidizing gas is blown onto the substrate, the adsorbed monomolecular layer (the substrate is heated by a heating device such as a heater) is oxidized, and a monomolecular oxide thin film is formed on the substrate.
  • a type of CVD apparatus see, for example, Patent Document 1).
  • a raw material gas is generated by dissolving a raw material compound containing a predetermined atom in a solvent and gasifying it with a vaporizer, and this raw material gas is adsorbed on a substrate by one atomic layer or one molecular layer.
  • the amount to be supplied is supplied to the reaction chamber, and the raw material compound is adsorbed on the heated substrate.
  • an oxidizing gas is supplied to the reaction chamber, and the raw material compound adsorbed on the substrate surface is oxidized to form an oxide layer containing the atoms.
  • Patent Document 1 when a raw material gas is supplied to a reaction chamber and the raw material compound is adsorbed on a heated substrate, carbon atoms generated by thermal decomposition of an organic solvent are deposited on the substrate. There was a problem that a high-quality thin film could not be formed.
  • an object of the present invention is to provide a thin film forming method capable of forming a high quality thin film by preventing carbon atoms from being deposited on a substrate.
  • the invention according to claim 1 is a method in which a raw material compound containing a predetermined atom is dissolved in a solvent to produce a raw material solution, and the raw material gas obtained by gasifying the raw material solution with a vaporizer is supplied to the reaction chamber
  • a thin film forming method comprising: forming a thin film on a thin film formation object by repeating a thin film forming cycle from the adsorption step to the layer forming step.
  • the thermal decomposition temperature of is higher than the temperature of the thin film formed article.
  • the invention according to claim 2 is characterized in that the solvent is any one of toluene, benzene, and xylene.
  • the thin film forming method of the first aspect of the present invention it is possible to prevent the carbon atoms from being deposited on the substrate and to form a high quality thin film.
  • a high-quality STO (strontium titanate) film or BST (barium strontium titanate) film can be formed.
  • a raw material compound containing a predetermined atom is dissolved in a solvent to form a raw material solution, and a raw material gas obtained by gasifying the raw material solution with a vaporizer is supplied to a reaction chamber and heated.
  • An adsorption step for adsorbing the raw material compound, and a layer that supplies an oxidizing gas to the reaction chamber and oxidizes the raw material compound adsorbed on the surface of the thin film forming object to form an oxide layer containing the atoms A process for forming a thin film on a thin film formation object by repeating the thin film formation cycle up to the adsorption process and the layer formation process.
  • the solvent is thermally decomposed in the reaction chamber in the adsorption process. It was confirmed that the generation of carbon caused a problem.
  • the ALD method in which adsorption treatment is performed in a high-temperature reducing atmosphere or inert gas atmosphere, a carbon film is formed on a heated substrate due to thermal decomposition of the organic solvent, and the thickness of the formed film is It increases in proportion to the amount of solvent supplied and the substrate temperature.
  • a raw material compound containing a predetermined atom is dissolved in a solvent to form a raw material solution, a raw material gas obtained by gasifying the raw material solution with a vaporizer is supplied to a reaction chamber, and the raw material is added to the heated thin film formation
  • the thermal decomposition temperature of the solvent is higher than the temperature of the thin film formation It is desirable. With this thin film forming method, it is possible to obtain the effect of preventing carbon atoms from being deposited on the thin film formation object. (Thin film forming equipment) Next, preferred embodiments of the present invention will be described with reference to the drawings.
  • a gas shower type thermal CVD apparatus as a thin film forming apparatus as a whole, and is configured to perform a series of ALD type operations performed by intermittently supplying a source gas from above the reaction chamber 2. ing.
  • a gas shower type thermal CVD apparatus 1 for performing the thin film forming method of the present invention includes a CVD unit 3 and a CVD vaporizer 4 mounted on the CVD unit 3, and from the CVD vaporizer 4 during ALD operation.
  • a carrier gas can always be supplied to the reaction chamber 2 of the CVD unit 3.
  • the CVD vaporizer 4 includes a vaporization mechanism 5 and a raw material solution supply mechanism 6 provided in the vaporization mechanism 5, and the vaporization mechanism 5 passes through a reaction chamber side valve 7 to provide a gas inlet 8 for the reaction chamber. It is connected to.
  • the CVD vaporizer 4 always supplies the carrier gas to the reaction chamber 2 by the vaporization mechanism 5 and reliably vaporizes almost all of the predetermined amount of the raw material solution supplied from the raw material solution supply mechanism 6. And is configured to be supplied to the reaction chamber 2.
  • the inside of the reaction chamber 10 can be maintained at a predetermined temperature by a heater (not shown) provided on the outer surface of the reaction chamber body 9.
  • the reaction chamber body 9 has a door portion 11 at a predetermined position, and is configured such that a substrate 12 as a thin film forming object can be taken in and out from the reaction chamber portion 10 through the door portion 11.
  • the reaction chamber body 9 is provided with an oxidizing gas supply port 13 through which an oxidizing gas (for example, O 2 ) can be supplied to the reaction chamber 10.
  • an oxidizing gas for example, O 2
  • a shower plate 14 is provided at the upper part, and a substrate stage 15 is provided at the lower part and a substrate stage heater 16 is provided inside the substrate stage 15.
  • the shower plate 14 diffuses the source gas supplied to the internal space 17 through the gas ejection holes 18 so that the source gas can be uniformly sprayed onto the substrate 12 placed on the substrate stage 15.
  • Reference numeral 19 denotes a vaporizer.
  • argon gas Ar can be used as a carrier gas, for example, Sr (DPM) 2 can be vaporized and supplied to the internal space 17 of the shower plate 14.
  • DPM Sr
  • a shower plate heater 20 and a temperature sensor 21 are provided on the upper surface portion of the shower plate 14, and the shower plate heater 20 is heated and controlled via the control unit 22 based on the temperature detected by the temperature sensor 21, so that the inside of the reaction chamber 10 etc. can be heated to a predetermined temperature.
  • a heater wiring 23 is routed to and connected to the shower plate heater 20.
  • the substrate stage heater 16 is controlled to be heated via the control unit 25 based on the temperature detected by the temperature sensor 24, and is configured to heat the substrate 12 placed on the substrate stage 15 to a predetermined temperature. Yes.
  • the heater wiring 26 is routed and connected to the substrate stage heater 16.
  • the reaction chamber support 30 is provided with a pressure gauge 27 for measuring the pressure in the reaction chamber 10.
  • an exhaust pipe 32 extending to the exhaust vacuum pump 31 communicates with the reaction chamber support 30, and a trap 33 is provided in the middle of the exhaust pipe 32.
  • the carrier gas and the raw material gas supplied from the CVD vaporizer 4 to the reaction chamber 10 are guided to the trap 33 through the exhaust pipe 32, and then the specific harmful substances in the exhaust gas are trapped in the trap 33.
  • the gas can be removed and exhausted from the exhaust vacuum pump 31 via the exhaust valve 34 or the like.
  • a CVD vaporizer 4 is communicated with the gas introduction port 8 through the reaction chamber side valve 7 in the reaction chamber 2.
  • the reaction chamber side valve 7 is always open during the ALD operation of sequentially forming a thin film of one atomic layer or one molecular layer on the substrate 12.
  • the vent side valve 35 is always closed.
  • the carrier gas can always be supplied from the CVD vaporizer 4 to the reaction chamber 2 during the ALD operation.
  • the carrier gas supplied to the reaction chamber 2 can always be exhausted from the exhaust vacuum pump 31 via the exhaust pipe 32.
  • a raw material gas obtained by gasifying the raw material solution supplied from the raw material solution supply means 6 by the vaporization mechanism 5 can be supplied to the reaction chamber 2 at a predetermined timing.
  • the raw material solution is generated by dissolving a raw material compound containing a predetermined atom in a solvent, and is supplied to the vaporization mechanism 5 after being quantified by a predetermined amount.
  • This solvent is selected from the viewpoints of low vapor pressure, high solubility, non-reaction with the solute as a raw material compound, high safety, and high-purity products readily available. It is desirable. Furthermore, the thin film forming method according to the present embodiment is selected from the viewpoint that carbon due to thermal decomposition of the solvent in a reducing atmosphere does not remain in the thin film.
  • examples of the solvent having a low vapor pressure include decane, octane, ethylcyclohexane (ECH), butyl acetate, toluene, cyclohexane, dibutyl ether and xylene.
  • the thermal decomposition temperature of the solvent is high and does not interfere with the adsorption phenomenon
  • the thermal decomposition is performed even at 500 ° C. as shown in Table 3 showing the result of evaluating the presence or absence of decomposition after heating in an Ar atmosphere for 1 hour.
  • Benzene, toluene having a thermal decomposition temperature of about 500 ° C., and ECH having a thermal decomposition temperature of 400 ° C. can be selected.
  • a solvent having a thermal decomposition temperature higher than the temperature of the substrate 12 is selected.
  • the temperature of the substrate 12 is set at 450 ° C. to 500 ° C. Since a high-quality thin film can be obtained, it is preferable to select benzene that does not thermally decompose even at 500 ° C. or toluene that has a thermal decomposition temperature of about 500 ° C. as the solvent.
  • Sr (DPM) 2 and Ti (Oi-Pr) 2 (DPM) 2 can be used as raw material compounds.
  • Pb (DPM) 2 , Zr (DPM) 4 and Ti (Oi-Pr) 2 (DPM) 2 can be used as raw material compounds.
  • the temperature of the substrate 12 is preferably less than 400 ° C.
  • a solvent containing oxygen in the molecule for example, tetrahydrofuran (THF), dimethoxyethane, and the like are not suitable as a solvent for forming a thin film in a reducing atmosphere because of a low thermal decomposition temperature.
  • a raw material gas is uniformly sprayed onto the substrate 12 and heated by a heating device such as a heater to cause a chemical reaction, thereby forming a monolayer or monolayer thin film having a desired thickness. Can be formed on the substrate 12.
  • the substrate 12 is placed on the substrate stage 15 in the reaction chamber 2 of the thin film forming apparatus 1. Then, the substrate is heated by the substrate stage heater 16.
  • the temperature of the substrate 12 is set to be lower than the thermal decomposition temperature of the solvent used. Therefore, for example, when toluene is used as the solvent, the thermal decomposition temperature of toluene is about 500 ° C., and therefore the temperature of the substrate 12 can be in the range of 450 ° C. to 500 ° C.
  • a raw material gas obtained by vaporizing only the raw material solution quantified from the CVD vaporizer 4 is supplied through the shower plate 14.
  • the raw material compound containing a predetermined atom is adsorbed on the substrate 12 (adsorption process).
  • the raw material compound is adsorbed on the substrate 12 in the state of a molecule in which the atom and the organic group are bonded.
  • the thin film formation method by setting the temperature of the substrate 12 to be lower than the thermal decomposition temperature of the solvent, it is possible to prevent the solvent from being thermally decomposed and to prevent carbon from being deposited on the substrate 12. Thereby, in a thin film formation method, a high quality thin film can be formed.
  • the oxidizing gas O 2 is supplied into the reaction chamber 2 from the oxidizing gas supply port 13.
  • the raw material compound adsorbed on the substrate 12 is oxidized to form an oxide layer containing the atoms (layer forming step). That is, the organic group of the raw material compound adsorbed on the substrate 12 is eliminated, and an oxide layer containing only the atoms is formed.
  • O 2 is used as the oxidizing gas.
  • the present invention is not limited to this, and it is only necessary to oxidize the raw material compound contained in the raw material gas, and ozone (O 3 ), excess Hydrogen oxide (H 2 O 2 ) or water (H 2 O) may be used.
  • the present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the present invention is not limited thereto, and a thin film may be formed on a film forming tape.
  • the case where the present invention is applied to a thermal CVD apparatus has been described.
  • the present invention is not limited to this and can also be applied to a plasma CVD apparatus.
  • the present invention is not limited to this, and a high viscosity / low vapor at room temperature is described. It can also be applied to a raw material solution formed by dissolving a liquid raw material compound under pressure, such as Sr (METHD) 2 or Ti (MPD) 2 (THD) 2 in a solvent.
  • a liquid raw material compound under pressure, such as Sr (METHD) 2 or Ti (MPD) 2 (THD) 2 in a solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

炭素原子が基板上に堆積するのを防いで、高品質の薄膜を形成することができる薄膜形成方法を提供する。 薄膜形成方法は、所定の原子を含む原料化合物を溶媒に溶かした原料溶液を生成し、前記原料溶液を気化器4でガス化した原料ガスを反応室2に供給して、加熱した薄膜被形成物12に前記原料化合物を吸着させる吸着工程と、前記反応室2に酸化性ガスを供給し、前記薄膜被形成物12の表面に吸着した前記原料化合物を酸化して前記原子を含む酸化物層を形成する層形成工程とを備え、前記吸着工程から前記層形成程までの薄膜形成サイクルを繰り返して薄膜被形成物12上に薄膜を形成する。前記溶媒の熱分解温度が前記薄膜被形成物12の温度より高いことを特徴とする。

Description

薄膜形成方法
 本発明は、薄膜形成方法に関し、特に反応室に原料ガスを間欠的に供給し、薄膜を1原子層又は1分子層ずつ成長させるALD(Atomic Layer Deposition)式CVD(Chemical Vapor Deposition)装置に適用して好適なものである。
 半導体集積回路は薄膜の形成とそのパターニングとの多数の繰り返しによって製造されている。そして薄膜の形成には各種のCVD装置とPVD装置が用いられている。ここで成膜の均一性に優れ、しかも高品質の膜が形成可能である装置の一つとして、例えば、原料ガスを間欠的に基板上に吹き付け、基板上に均一に1分子層を吸着させて、次に酸化ガスを基板上に吹き付け、吸着した1分子層(ヒータ等の加熱装置により基板を加熱しておく)を酸化させ、基板上に1分子層の酸化物薄膜を形成するといったALD式のCVD装置等がある(例えば、特許文献1参照)。
 上記特許文献1では、原料ガスは、所定の原子を含む原料化合物を溶媒で溶かして気化器でガス化することにより生成され、この原料ガスを1原子層又は1分子層分を基板上に吸着させる量だけ反応室に供給し、加熱された基板上に原料化合物を吸着させる。次いで、反応室に酸化性ガスを供給し、基板表面に吸着させた前記原料化合物を酸化して前記原子を含む酸化物層を形成する。この操作を数十回から数千回繰り返すことにより、基板上に所望の厚さの薄膜を形成することができる。
国際公開WO2007/097024号公報
 しかしながら、上記特許文献1では、原料ガスを反応室に供給して、加熱された基板上に前記原料化合物を吸着させる場合、有機溶媒が熱分解して生じる炭素原子が基板上に堆積することにより、高品質の薄膜を形成することができない、という問題があった。
 そこで本発明は上記した問題点に鑑み、炭素原子が基板上に堆積するのを防いで、高品質の薄膜を形成することができる薄膜形成方法を提供することを目的とする。
 上記目的を達成するために、請求項1に係る発明は、所定の原子を含む原料化合物を溶媒に溶かして原料溶液を生成し、前記原料溶液を気化器でガス化した原料ガスを反応室に供給して、加熱した前記薄膜被形成物に前記原料化合物を吸着させる吸着工程と、前記反応室に酸化性ガスを供給し、前記薄膜被形成物の表面に吸着した前記原料化合物を酸化して前記原子を含む酸化物層を形成する層形成工程とを備え、前記吸着工程から前記層形成工程までの薄膜形成サイクルを繰り返して薄膜被形成物上に薄膜を形成する薄膜形成方法において、前記溶媒の熱分解温度が前記薄膜被形成物の温度より高いことを特徴とする。
 また、請求項2に係る発明は、前記溶媒がトルエン、ベンゼン、及びキシレンのうちいずれか1種であることを特徴とする。
 本発明の請求項1に記載の薄膜形成方法によれば、炭素原子が基板上に堆積するのを防いで、高品質の薄膜を形成することができる。
 また、請求項2に記載の薄膜形成方法によれば、高品質のSTO(チタン酸ストロンチウム)膜やBST(チタン酸バリウムストロンチウム)膜を形成することができる。
本発明の薄膜形成方法に係るガスシャワー式熱CVD装置の全体構成を示す図である。
 薄膜形成方法について、所定の原子を含む原料化合物を溶媒に溶かして原料溶液を生成し、前記原料溶液を気化器でガス化した原料ガスを反応室に供給して、加熱した前記薄膜被形成物に前記原料化合物を吸着させる吸着工程と、前記反応室に酸化性ガスを供給し、前記薄膜被形成物の表面に吸着した前記原料化合物を酸化して前記原子を含む酸化物層を形成する層形成工程とを備え、前記吸着工程と前記層形成工程までの薄膜形成サイクルを繰り返して薄膜被形成物上に薄膜を形成するものを検討した結果、吸着工程において反応室内で溶媒が熱分解することにより炭素が生成されることが問題となることを確認した。特に、高温の還元性雰囲気又は不活性ガス雰囲気で吸着処理をするALD法では、有機溶媒が熱分解することにより、加熱された基板上に炭素被膜が形成され、形成される被膜の厚さは供給された溶媒の量と基板温度等に比例して増大する。
 そこで、層形成工程において反応室内で炭素を生じさせない薄膜形成方法を検討した結果、溶媒が熱分解しない温度で吸着工程を行なうことが有効であることを見出した。
 すなわち、所定の原子を含む原料化合物を溶媒に溶かして原料溶液を生成し、前記原料溶液を気化器でガス化した原料ガスを反応室に供給して、加熱した前記薄膜被形成物に前記原料化合物を吸着させる吸着工程と、前記反応室に酸化性ガスを供給し、前記薄膜被形成物の表面に吸着した前記原料化合物を酸化して前記原子を含む酸化物層を形成する層形成工程とを備え、前記吸着工程から前記層形成工程までの薄膜形成サイクルを繰り返して薄膜被形成物上に薄膜を形成する薄膜形成方法において、前記溶媒の熱分解温度が前記薄膜被形成物の温度より高いことが望ましい。この薄膜形成方法であれば、薄膜被形成物上に炭素原子が堆積するのを防ぐ効果を得ることができる。
(薄膜形成装置)
 次に、図面を参照して、本発明の好適な実施形態について説明する。
 1は全体として薄膜形成装置としてのガスシャワー式熱CVD装置を示し、反応室2の上部方向から原料ガスを間欠的に供給して行なわれる一連のALD式の動作を実行し得るように構成されている。
 本発明の薄膜形成方法を行なうガスシャワー式熱CVD装置1は、CVD部3と、このCVD部3に搭載されたCVD用気化器4とから構成され、ALD動作時、CVD用気化器4からCVD部3の反応室2にキャリアガスが常に供給され得るようになされている。
 このCVD用気化器4は、気化機構5と、当該気化機構5に設けられた原料溶液供給機構6とを備え、当該気化機構5が反応室側バルブ7を介して反応室のガス導入口8に連結されている。
 この場合、CVD用気化器4は、気化機構5によってキャリアガスを常に反応室2へ供給するとともに、原料溶液供給機構6から供給された所定量の原料溶液ほぼ全てを気化機構5で確実に気化して反応室2に供給し得るように構成されている。
 反応室2は、反応室本体9の外面に設けられたヒータ(図示せず)によって、反応室内部10が所定温度に維持され得る。また反応室本体9は、所定位置に扉部11を有し、この扉部11を介して反応室内部10から薄膜被形成物としての基板12を出し入れ可能に構成されている。
 また反応室本体9には、酸化ガス供給口13が設けられており、当該酸化ガス供給口13を介して酸化ガス(例えばO)が反応室内部10に供給され得るようになされている。反応室内部10には、上部にシャワープレート14が設けられているとともに、下部に基板ステージ15及び基板ステージ15の内部に基板ステージ用ヒータ16が設けられている。
 シャワープレート14は、内部空間17に供給された原料ガスをガス噴出孔18により拡散させ、基板ステージ15に載置された基板12上に原料ガスを均一に吹き付け得るようになされている。なお、19は気化器で、例えば原料ガスとしてストロンチウムが必要な場合には、アルゴンガスArをキャリアガスとして、例えばSr(DPM)を気化してシャワープレート14の内部空間17に供給し得るようになされている。
 シャワープレート14の上面部には、シャワープレートヒータ20及び温度センサ21が設けられており、温度センサ21により検出した温度に基づき制御ユニット22を介してシャワープレートヒータ20を加熱制御し、反応室内部10等を所定の温度に加熱し得るように構成されている。なお、このシャワープレートヒータ20にはヒータ配線23が引き回され接続されている。
 基板ステージ用ヒータ16は、温度センサ24により検出した温度に基づいて制御ユニット25を介して加熱制御され、基板ステージ15上に設置された基板12を所定の温度に加熱し得るように構成されている。因みに、この基板ステージ用ヒータ16にはヒータ配線26が引き回され接続されている。なお、反応室支持部30には、反応室内部10の圧力を測る圧力計27が設けられている。
 また反応室支持部30には排気用真空ポンプ31まで延びた排気管32が連通しており、この排気管32の途中にはトラップ33が設けられている。これによりCVD用気化器4から反応室内部10へ供給されたキャリアガスや原料ガスは、排気管32を通過してトラップ33に導かれた後、当該トラップ33において排気ガス内の特定有害物質を除去し、排気バルブ34等を経由して排気用真空ポンプ31から排気され得るようになされている。
 かかる構成に加えて反応室2にはガス導入口8に反応室側バルブ7を介してCVD用気化器4が連通されている。ここで本願発明のガスシャワー式熱CVD装置1では、基板12上に1原子層又は1分子層でなる薄膜を順次形成するALD動作時、当該反応室側バルブ7が常に開状態となっているとともに、ベント側バルブ35が常に閉状態となっている。
 これにより反応室2には、ALD動作時、CVD用気化器4から常にキャリアガスが供給され得る。なお反応室2に供給されたキャリアガスは常に排気管32を介して排気用真空ポンプ31から排気され得るようになされている。
 また、反応室2には、原料溶液供給手段6から供給される原料溶液を気化機構5でガス化した原料ガスが所定のタイミングで供給され得るようになされている。原料溶液は、所定の原子を含む原料化合物を溶媒に溶かして生成され、所定量だけ定量された上で気化機構5に供給される。
 この溶媒は、蒸気圧が低いこと、溶解度が高いこと、原料化合物としての溶質と反応しないこと、安全性が高いこと、及び、高純度製品が容易に入手可能であること、の観点から選択することが望ましい。さらに、本実施形態に係る薄膜形成方法では、還元性雰囲気における溶媒の熱分解による炭素が薄膜中に残留しないこと、の観点から選択される。
 因みに、溶媒の蒸気圧特性を示す表1から明らかなように、蒸気圧が低い溶媒としては、デカン、オクタン、エチルシクロヘキサン(ECH)、酢酸ブチル、トルエン、シクロヘキサン、ジブチルエーテルやキシレンがあげられる。
Figure JPOXMLDOC01-appb-T000001
 また、溶質と反応しないという観点からは、原料化合物(溶質)の溶解度の溶媒依存性を示す表2から明らかなように、酢酸ブチルを選択する場合、注意が必要である。
Figure JPOXMLDOC01-appb-T000002
 さらに、溶媒の熱分解温度が高く、吸着現象を妨げないという観点からは、Ar雰囲気で1時間加熱した後の分解の有無を評価した結果を示す表3から明らかなように500℃でも熱分解しないベンゼン、熱分解温度が500℃程度であるトルエンや、熱分解温度が400℃であるECHを選択することができる。
Figure JPOXMLDOC01-appb-T000003
 溶媒は、具体的には、熱分解温度が前記基板12の温度より高いものが選択される。例えば、STO(チタン酸ストロンチウム)膜、BST(チタン酸バリウムストロンチウム)膜や、PZT(チタン酸ジルコン酸鉛)膜を形成する場合、基板12の温度は、450℃~500℃で行なうことにより、高品質の薄膜を得ることができるので、溶媒としては、500℃でも熱分解しないベンゼンや、熱分解温度が500℃程度であるトルエンを選択するのが好ましい。STO膜の場合、原料化合物としては、Sr(DPM)2とTi(Oi-Pr)2(DPM)2を用いることができる。また、PZT膜の場合、原料化合物としては、Pb(DPM)2とZr(DPM)4およびTi(Oi-Pr)2(DPM)2を用いることができる。
 一方、溶媒として、ECHを用いる場合、熱分解温度が400℃であるので、前記基板12の温度を400℃未満とするのが好ましい。また、分子中に酸素を含む溶媒、例えば、テトラヒドロフラン(THF)や、ジメトキシエタンなどは、熱分解温度が低いので、還元性雰囲気における薄膜形成用の溶媒としては、不向きである。
 これにより反応室内部10では、基板12上に原料ガスを均一に吹き付け、ヒータ等の加熱装置により加熱することで化学反応を起こさせ、所望の膜厚でなる1原子層又は1分子層の薄膜を基板12上に形成し得るようになされている。
 すなわち、ガスシャワー式熱CVD装置1では、CVD用気化器4によって定量された原料溶液だけを気化した原料ガスの供給が終了すると、当該CVD用気化器4からキャリアガスだけが再び反応室内部10に供給されるので、反応室側バルブ7を開状態とし、ベント側バルブ35を閉状態としたままでも所望の膜厚でなる1原子層又は1分子層の薄膜を基板12上に形成し得るようになされている。
(薄膜形成方法)
 次に上記した薄膜形成装置を用いたALD式の薄膜形成方法について説明する。
 まず、基板12を薄膜形成装置1の反応室2内の基板ステージ15上に設置する。そして、当該基板を基板ステージ用ヒータ16で加熱する。ここで基板12の温度は、使用する溶媒の熱分解温度未満に設定される。従って、例えば、溶媒にトルエンを用いた場合、トルエンの熱分解温度は500℃程度であるので、基板12の温度は、450℃~500℃の範囲とすることができる。
 上記基板12の温度が安定してから、CVD用気化器4から定量された原料溶液だけを気化した原料ガスをシャワープレート14を介して供給する。これにより、所定の原子を含む原料化合物を基板12上に吸着させる(吸着工程)。因みに、原料化合物は、前記原子と有機基とが結合している分子の状態で基板12上に吸着する。
 ここで、薄膜形成方法では、基板12の温度を溶媒の熱分解温度未満としたことにより、溶媒が熱分解するのを防いで、炭素が基板12上に堆積するのを防ぐことができる。これにより、薄膜形成方法では、高品質の薄膜を形成することができる。
 上記のように原料ガスを供給した後、酸化ガス供給口13から反応室2内に例えば酸化性ガスOを供給する。これにより、前記基板12上に吸着した原料化合物を酸化して前記原子を含む酸化物層を形成する(層形成工程)。すなわち、前記基板12上に吸着した原料化合物の有機基が脱離し前記原子のみを含む酸化物層が形成される。尚、ここでは、酸化性ガスとしてOを用いる場合について説明したが、本発明はこれに限らず、原料ガスに含有される原料化合物を酸化させることができればよく、オゾン(O)、過酸化水素(H)、水(HO)であってもよい。
 上記した吸着工程及び層形成工程を複数回、例えば数十回~数千回繰り返して、基板12上に所望の厚さの高品質の薄膜を形成することができる。
 本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上記した実施形態では、薄膜被形成物としての基板に薄膜を形成する場合について説明したが、本発明はこれに限らず、成膜テープに薄膜を形成することとしてもよい。また、上記した実施形態では、熱CVD装置に適用した場合について説明したが、本発明はこれに限らず、プラズマCVD装置に適用することもできる。
 さらに、上記した実施形態においては、固体状の原料化合物を溶媒に溶かしたものを原料溶液として適用するようにした場合について述べたが、本発明はこれに限らず、室温で高粘度・低蒸気圧の液体状原料化合物、例えばSr(METHD)2、Ti(MPD)2(THD)2を溶媒に溶かして生成した原料溶液にも適用することが出来る。

Claims (2)

  1.  所定の原子を含む原料化合物を溶媒に溶かして原料溶液を生成し、前記原料溶液を気化器でガス化した原料ガスを反応室に供給して、加熱した前記薄膜被形成物に前記原料化合物を吸着させる吸着工程と、
     前記反応室に酸化性ガスを供給し、前記薄膜被形成物の表面に吸着した前記原料化合物を酸化して前記原子を含む酸化物層を形成する層形成工程とを備え、
     前記吸着工程から前記層形成工程までの薄膜形成サイクルを繰り返して薄膜被形成物上に薄膜を形成する薄膜形成方法において、
     前記溶媒の熱分解温度が前記薄膜被形成物の温度より高いことを特徴とする薄膜形成方法。
  2.  前記溶媒がトルエン、ベンゼン、及びキシレンのうちいずれか1種であることを特徴とする請求項1記載の薄膜形成方法。
PCT/JP2008/056144 2008-03-28 2008-03-28 薄膜形成方法 WO2009118901A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056144 WO2009118901A1 (ja) 2008-03-28 2008-03-28 薄膜形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056144 WO2009118901A1 (ja) 2008-03-28 2008-03-28 薄膜形成方法

Publications (1)

Publication Number Publication Date
WO2009118901A1 true WO2009118901A1 (ja) 2009-10-01

Family

ID=41113129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056144 WO2009118901A1 (ja) 2008-03-28 2008-03-28 薄膜形成方法

Country Status (1)

Country Link
WO (1) WO2009118901A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310865A (ja) * 2005-04-29 2006-11-09 Boc Group Inc:The 原子層堆積に溶液系前駆体を用いる方法及び装置
WO2007097024A1 (ja) * 2006-02-27 2007-08-30 Youtec Co., Ltd. 気化器、半導体製造装置及び半導体製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310865A (ja) * 2005-04-29 2006-11-09 Boc Group Inc:The 原子層堆積に溶液系前駆体を用いる方法及び装置
WO2007097024A1 (ja) * 2006-02-27 2007-08-30 Youtec Co., Ltd. 気化器、半導体製造装置及び半導体製造方法

Similar Documents

Publication Publication Date Title
KR100960273B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
JP4803578B2 (ja) 成膜方法
KR100975268B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
JP2021027343A (ja) 基材処理装置および方法
JP2024001340A (ja) 有機膜の気相堆積
CN110050328A (zh) 半导体处理设备
JP2020510314A (ja) 酸化シリコンの存在下でのシリコン表面上の酸化シリコンまたは窒化シリコンの選択的成長
JP5692842B2 (ja) 半導体装置の製造方法及び基板処理装置
US20100227476A1 (en) Atomic layer deposition processes
KR20070028858A (ko) 인시튜 질화물(in-situ nitride) 박막증착방법
US10253414B2 (en) Liquid phase atomic layer deposition
KR20000060438A (ko) 산화알루미늄 막의 형성 방법
WO2011006064A1 (en) Metal-containing precursors for deposition of metal-containing films
KR101217419B1 (ko) Sr-Ti-O계 막의 성막 방법 및 기억 매체
KR101156305B1 (ko) SrTiO3막의 성막 방법 및 기억 매체
KR20090035015A (ko) 막 형성방법 및 막 형성장치
WO2009118901A1 (ja) 薄膜形成方法
JP5095230B2 (ja) SrTiO3膜の成膜方法およびコンピュータ読取可能な記憶媒体
JP7112793B2 (ja) 成膜方法及び成膜装置
KR100886282B1 (ko) 반도체 장치의 제조 방법
KR20090044285A (ko) Ald 설비 및 그 ald 설비의 세정방법
JP4979965B2 (ja) 基板処理装置及び半導体装置の製造方法
CN115043653A (zh) 钛酸钡膜的制造方法
CN114698381B (zh) 在金属表面上选择性沉积杂环钝化膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08739262

Country of ref document: EP

Kind code of ref document: A1