WO2007073932A2 - Proteinbasiertes trägersystem zur resistenzüberwindung von tumorzellen - Google Patents

Proteinbasiertes trägersystem zur resistenzüberwindung von tumorzellen Download PDF

Info

Publication number
WO2007073932A2
WO2007073932A2 PCT/EP2006/012524 EP2006012524W WO2007073932A2 WO 2007073932 A2 WO2007073932 A2 WO 2007073932A2 EP 2006012524 W EP2006012524 W EP 2006012524W WO 2007073932 A2 WO2007073932 A2 WO 2007073932A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
protein
drug
group
doxorubicin
Prior art date
Application number
PCT/EP2006/012524
Other languages
English (en)
French (fr)
Other versions
WO2007073932A3 (de
Inventor
Sebastian Dreis
Klaus Langer
Jörg KREUTER
Martin Michaelis
Jindrich Cinatl
Original Assignee
Lts Lohmann Therapie-Systeme Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lts Lohmann Therapie-Systeme Ag filed Critical Lts Lohmann Therapie-Systeme Ag
Priority to NZ569898A priority Critical patent/NZ569898A/en
Priority to US12/087,175 priority patent/US20090181090A1/en
Priority to BRPI0620800A priority patent/BRPI0620800A2/pt
Priority to CA002631003A priority patent/CA2631003A1/en
Priority to EP06841159A priority patent/EP1965769A2/de
Priority to AU2006331030A priority patent/AU2006331030A1/en
Priority to JP2008547893A priority patent/JP2009521515A/ja
Publication of WO2007073932A2 publication Critical patent/WO2007073932A2/de
Publication of WO2007073932A3 publication Critical patent/WO2007073932A3/de
Priority to IL192343A priority patent/IL192343A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • Protein-based carrier system for the resistance of tumor cells Protein-based carrier system for the resistance of tumor cells
  • Pgp P-glycoprotein
  • MDR multidrug resistance
  • cyclosporin A are potent inhibitors of Pgp, as has been shown [Slater et al., (1986) J. Clin. Invest. 77, 1405]. In these studies, the resistance of acute lymphocytic leukemia cells to vincristine and daunorubicin was overcome by the concomitant administration of cyclosporin A.
  • Another strategy for overcoming multidrug resistance is chemical modification of drugs. This strategy seeks to overcome the resistance of tumor cells by conjugating antineoplastic agents to various macromolecules. Serve the macromolecules as a carrier for the active ingredient. One speaks also of a carrier system.
  • doxorubicin-loaded polyisohexylcyanoacrylate (PIHCA) nanospheres were shown to overcome Pgp-mediated resistance in various cancer cell lines [Cuvier et al., (1992) Biochem. Pharmacol. 44, 509]. These studies were confirmed on doxorubicin-resistant C6 cells in which the inhibitory concentration 50 (IC50) of doxorubicin-loaded polyisohexylcyanoacrylate nanospheres was significantly lower than for nonconjugated doxorubicin [Bennis et al., (1994), Eur. J. Cancer 3OA, 89]. With corresponding doxorubicin-loaded PIHCA nanoparticles, this result was also confirmed in hepatocellular carcinoma cells [Barraud et al. , (2005) J. Hepatol. 42, 736].
  • PIHCA doxorubicin-loaded polyisobutylcyanoacrylate
  • doxorubicin-bovine serum albumin conjugates showed an increased cytotoxic effect compared to unmodified drug control. The cause of this effect was an increased accumulation of conjugates due to decreased efflux. Treatment of peritoneal tumor bearing rats showed that the doxorubicin-bovine serum albumin conjugates increased the median survival from 30 days in the control group to 50 days. The preparation of the Ohkawa et al. Doxorubicin-bovine serum albumin conjugates described by dissolving the active ingredient and bovine serum albumin in a suitable solvent and then adding glutaraldehyde.
  • the glutaraldehyde reacts with functional groups of the drug and the target protein, in this case amino groups, resulting in a covalent linkage of the molecules.
  • functional groups of the drug and the target protein in this case amino groups, resulting in a covalent linkage of the molecules.
  • doxorubicin-bovine albumin conjugates a transport capacity of three to four drug molecules per carrier unit is given.
  • doxorubicin-bovine serum albumin conjugates described are covalent chemical bonds of doxorubicin to bovine serum albumin.
  • the physicochemical properties of the active ingredient are changed.
  • New active ingredients (NCI: new chemical entities) are emerging that have other and new effects in biological systems.
  • colloidal "drug delivery systems” or drug-conjugated carrier systems such as nanoparticles or nanospheres is one of the promising strategies for overcoming the resistance of tumor cells.
  • the object of the present invention was therefore to provide a colloidal "drug delivery system" for overcoming resistances in tumor cells, which does not have the disadvantages of the known conjugates of active ingredients covalently bound to a carrier material.
  • the invention relates to nanoparticles whose particle matrix is based on at least one protein and in which at least one active substance is embedded, to processes for producing such nanoparticles and to the use of such nanoparticles for the treatment of tumors or for the production of medicaments for the treatment of tumors, in particular for treatment tumors that are resistant to chemotherapeutic agents.
  • the nanoparticles according to the invention comprise at least one protein on which the particle matrix is based and at least one active substance embedded in the particle matrix.
  • protein or proteins which (s) form the matrix of the nanoparticles, in principle all physiologically compatible, pharmacologically acceptable proteins which are soluble in an aqueous medium are suitable.
  • Particularly preferred proteins are gelatin and
  • Albumin which is derived from different animal species (cattle, Pig, etc.), as well as the milk protein casein.
  • other proteins can also be used as starting material for the preparation of the nanoparticles according to the invention, eg. B. immunoglobulins.
  • any intracellular acting drug can be embedded in the particle matrix.
  • cytostatics and / or other antineoplastic agents are used to be administered with the aid of nanoparticles according to the invention for the treatment of tumors, in particular for the treatment of tumors which are resistant to cytostatics or other antineoplastic agents.
  • Particularly preferred nanoparticles have anthracyclines such as doxorubicin, daunorubicin, epirubicin or idarubicin embedded in their protein matrix.
  • Suitable antineoplastic agents which may be embedded in the protein matrix of the nanoparticles are, for example:
  • - alkaloids and podophyllotoxins - vinca alkaloids and analogs, e.g. Vinblastine, vincristine, vindesine, vinorelbine,
  • Podophyllotoxin derivatives eg. Etoposide, teniposide
  • Nitrogen-free Analbga e.g. B. cyclophosphamide, Estramustine, melphalan, ifosfamide, trofosfamide, chlorambucil, bendamustine,
  • alkylating agents eg. B. dacarbazine, busulfan, procarbazine, treosulfan, temozolomide, thiotepa, - cytotoxic antibiotics,
  • cytotoxic antibiotics eg. Bleomycin, mitomycin, dactinomycin, antimetabolites
  • Purine analogs e.g. Fludarabine, cladribine, mercaptopurine, thioguanine
  • cytotoxic agents such as Paclitaxel, docetaxel - other antineoplastic agents,
  • Irinotecan hydroxycarbamide, pentostatin, porfimer sodium, aldesleukin, tretinoin and asparaginase.
  • Embed particle matrix of the protein-based carrier system Due to the different physicochemical properties of the active ingredients (eg solubility, adsorption isotherms, plasma protein binding, pKs values), however, it may be necessary to delay the manufacturing process for the active ingredients Optimize nanoparticles for the respective active ingredient.
  • the nanoparticles according to the invention are thus a protein-based carrier system with at least one active substance embedded in the protein matrix of the particles, preferably for the treatment of tumors, in particular for the treatment of resistant tumors.
  • the nanoparticles according to the invention preferably have a size of from 100 to 600 .mu.m, more preferably from 100 to 400 .mu.m. In a very particularly preferred embodiment, the nanoparticles have a size of 100 to 200 ⁇ m.
  • the nanoparticles according to the invention are able to overcome the resistance of tumor cells to chemotherapeutics.
  • Figure 1 is a graph illustrating the influence of doxorubicin nanoparticles (Dxr-NP), doxorubicin solution (Dxr-Lsg) and doxorubicin liposomes (Dxr-Lip) on the cell viability of parental neuroblastoma cells.
  • Dxr-NP doxorubicin nanoparticles
  • Dxr-Lsg doxorubicin solution
  • Dxr-Lip doxorubicin liposomes
  • Figure 2 is a graph illustrating the influence of doxorubicin nanoparticles (Dxr-NP), doxorubicin solution (Dxr-Lsg) and doxorubicin liposomes (Dxr-Lip) on cell viability of resistant neuroblastoma cells.
  • the nanoparticles of the invention may have a modified surface.
  • the surface may be PEGylated, ie polyethylene glycols may be bound to the surface of the nanoparticles through covalent bonds.
  • PEGs polyethylene glycols
  • the nanoparticles may also have "drug-targeting ligands" on their surface, by means of which targeted enrichment of the nanoparticles in a specific organ or in specific cells is possible.
  • drug-targeting ligands are tumor-specific protein-recognizing ligands, for example from Group selected, the tumor-specific proteins recognizing antibodies such as trastuzumab and cetuximab, and transferrin as well
  • the drug-targeting ligands may also be coupled to the surface of the nanoparticles via bifunctional PEG derivatives.
  • the preparation of the nanoparticles according to the invention is preferably carried out by first bringing the active ingredient (s) and the protein (s) together in solution, preferably in water or an aqueous medium. Subsequently, the protein is precipitated by simple desolvation by controlled addition of a non-solvent for the protein, preferably an organic solvent, more preferably ethanol, slowly and in a controlled manner from the solution.
  • a non-solvent for the protein preferably an organic solvent, more preferably ethanol
  • the colloidal carrier system forms around the drug molecules in solution.
  • the active ingredient is thereby embedded unmodified in the matrix of the carrier system.
  • the active ingredient is preferably used in a molar excess, based on the protein.
  • the molar ratio of active ingredient to protein is particularly preferably 5: 1 to 50: 1. Also, loading in molar ratios of more than 50: 1 is possible.
  • nanoparticles are prepared which are stabilized to 50% to 200%.
  • Percentages refer to the molar ratios of the amino groups present on the protein used to the aldehyde functions of glutaraldehyde. A molar ratio of 1: 1 corresponds to 10% stabilization.
  • bifunctional aldehyde glutaraldehyde In addition to the bifunctional aldehyde glutaraldehyde, other bifunctional substances that can form covalent bonds with the protein are suitable for stabilizing the protein matrix.
  • Substances can, for example, react with amino groups or sulfhydryl groups of the proteins.
  • suitable crosslinking agents are formaldehyde, bifunctional succinimides, isothiocyanates, sulfonyl chlorides, maleimides and pyridyl sulfides.
  • a stabilization of the protein matrix can also be effected by the action of heat.
  • the protein matrix is stabilized by a two-hour incubation at 70 0 C or a one-hour incubation at 80 0 C.
  • the carrier system according to the invention is not a chemically covalent bond of an active substance to the protein because of the crosslinking which takes place after precipitation of the nanoparticles. Rather, the active ingredient is embedded in the matrix of the carrier system. Therefore, the incorporation of the drug is largely independent of the nature of the drug and universally applicable.
  • covalently bound drug conjugates where it is necessary that the drug-protein binding can be cleaved in the target tissue to achieve a release of the drug, the drug release takes place in the inventive colloidal carrier system by the degradation of the Protein structure by lysosomal enzymes that are present in all tissues. The direct cleavage of a drug-protein binding is not necessary.
  • the protein-based nanoparticles consist of physiological material. 4. No additional medication with Pgp inhibitors is necessary.
  • the active ingredient is protected from external influences inside the particle matrix.
  • the surface modification of the nanoparticles is essentially brought about by stable, covalent bonds between an amino or sulfhydryl group on the protein and a chemically reactive group (carbonate, ester, aldehyde or tresylate) on the PEG.
  • the resulting structures can be linear or branched.
  • the PEGylation reaction is determined by factors such as mass of the PEG, type of protein, concentration of the protein in the reaction mixture,
  • bifunctional PEG derivatives can also be bound to the particle surface in order to couple so-called "drug-targeting ligands w to the particles.
  • Other surface modifications include, for example, the reaction of functional groups on the particle surface with acetic anhydride or iodoacetic acid to attach acetyl or acetic acid groups, respectively.
  • the surface of the nanoparticles according to the invention can also be modified by protein-chemical reactions with a corresponding drug-targeting ligand, whereby enrichment of the nanoparticles in certain organs or cells can be achieved without prior adaptation of the carrier system.
  • Suitable receptors for the drug-targeting ligands are all tumor-specific proteins.
  • Particularly preferred antibodies recognizing tumor-specific proteins are used as "drug-targeting ligands", for example the antibodies trastuzumab and cetuximab Trastuzumab (Herceptin®) recognizes HER2 receptors that are overexpressed by a large number of tumor cells and is used for the treatment of breast cancer Cetuximab (Erbitux®) recognizes the epidermal receptor
  • drug targeting can also be carried out via ligands bound to the particles, such as transferrin, which recognizes the transferrin receptor overexpressed by tumor cells, or can be achieved via low-molecular receptor ligands such as galactose, which is bound to hepatocytes by the asialoglycoprotein receptor.
  • nanoparticles according to the invention, 20.0 mg of human serum albumin and 1.0 mg doxorubicin hydrochloride were dissolved in 1.0 ml ultrapure water, which corresponds to a molar ratio of 5: 1 (active ingredient to protein), and incubated for 2 h with stirring. Addition of 3.0 ml of 96% ethanol through a pump system (1.0 ml / min) precipitated serum albumin as nanoparticles. These were obtained by adding different amounts of glutaraldehyde, 8% (Table 1). cross-linked in different amounts for 24 h. The stabilized nanoparticles were divided into 2.0 ml aliquots and purified by centrifugation and redispersion in an ultrasonic bath for 3 cycles.
  • the supernatants of the individual washing steps were collected and determined the proportion of unbound doxorubicin in them by RPl8-HPLC.
  • To determine the nanoparticle concentration 50.0 ul of the preparation were applied to a balanced metal boat and dried at 80 0 C for 2 h. After cooling, the mixture was weighed again and the nanoparticle concentration was calculated.
  • the loading efficiency with doxorubicin was determined by quantitation of the unbound fraction by RP18-HPLC. Depending on the degree of cross-linking, the absolute loading was 35.0-48.0 ⁇ g of active ingredient per mg of the carrier system.
  • Table 1 Stabilization of doxorubicin-containing nanoparticles based on human serum albumin
  • the MTT test was used to determine cytotoxicity. With this test, the viability of the cells in the presence of different concentrations of a substance is determined and compared with a cell control. From the results it is possible to calculate the IC50 value (inhibitory concentration 50), the concentration of a substance at which 50% of the cells die off.
  • the assay is based on the reduction of 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2H-tetrazolium bromide in the mitochondria of vital cells. The yellow tetrazolium salt is reduced to formazan, which precipitates as blue crystals. After dissolution of the crystals with SDS / DMF solution, the color intensity can be measured photometrically.
  • high absorption means high cell viability.
  • the cells were evenly divided into a 96-well microtiter plate.
  • One column of the wells contained pure medium and corresponded to the blank, in a second column the cells for growth control (100% value) were cultured.
  • the other wells were pipetted with doxorubicin-containing preparations (Dxr-NP, Dxr-Lsg and Dxr-Lip) with increasing from right to left (0.75, 1.5, 3.0, 6.0, 12.5 25.0, 50.0, 100.0 ng / ml).
  • the microtiter plate was then incubated for 5 days in the incubator at 37 ° C, 5% CO 2 .
  • the doxorubicin-containing preparations were also tested on doxorubicin-resistant neuroblastoma cells.
  • a significant difference in the various preparations showed ( Figure 2).
  • the highest cytotoxicity is shown by the nanoparticulate Dxr preparation with an IC50 of 14.4 ng / ml.
  • a significantly weaker influence on cell viability was found in the Dxr solution.
  • the IC50 increased to 53.46 ng / ml compared to the test in the parent UKF-NB3 cells.
  • the liposomal Dxr preparation had no effect on the growth of the UKF-NB3 Dxr-R. Cells.
  • Even concentrations of 100 ng / ml doxorubicin showed no cytotoxic effect.
  • Table 2 IC50 values of Dxr-NP, Dxr-Lsg, Dxr-liposomes in parental and resistant UKF-NB3 cells.
  • UKF-NB3 par. UKF-NB3 Dxr-R.
  • the nanoparticulate Dxr preparation is superior to a drug solution.
  • liposomal Dxr preparations are unable to overcome resistance mechanisms of tumor cells.

Abstract

Die Erfindung betrifft Nanopartikel, deren Partikelmatrix auf mindestens einem Protein basieren und in die mindestens ein Wirkstoff eingebettet ist, Verfahren zur Herstellung der Nanopartikel mit mindestens einem in die Proteinmatrix eingebundenen Wirkstoff sowie die Verwendung derartiger Nanopartikel zur Behandlung von Tumoren, insbesondere zur Behandlung von Tumoren, die resistent gegen Chemotherapeutika sind.

Description

Proteinbasiertes Trägersystem zur Resistenzüberwindung von Tumorzellen
Die Entwicklung von Resistenzen bei der Behandlung von soliden Tumoren stellt ein großes Problem in der Onkologie dar. Die Resistenzen beruhen häufig auf einer erhöhten Exkretion der chemotherapeutischen Substanzen durch die Tumorzellen. Der Mechanismus dieser Resistenzentwicklung steht im Zusammenhang mit der Überexpression von P-Glyko- protein (Pgp) [Krishna et al. , (2000) , Eur. J. Pharm. Sei. 11, 265] . Pgp ist eine ATP-abhängige Efflux-Pumpe, die aktiv Arzneistoffe aus Tumorzellen ausschleusen kann. Infolge seiner Überexpression kommt es zu einer verminderten Akkumulation des Chemotherapeutikums in den Zellen, so daß dessen intrazelluläre Konzentration für einen antineoplastischen Effekt nicht ausreicht. Um die verminderte Akkumulation des Chemotherapeutikums zu kompensieren, ist eine Dosisanpassung des Zytostatikums notwendig, d. h. eine Erhöhung der Dosis, die aber aufgrund der damit einhergehenden toxischen Nebenwirkungen des Zytostatikums limitiert ist. Die Überexpression von Pgp führt zur sogenannten Multiresistenz (multidrug resistance, MDR) , in der die Zelle nicht nur gegenüber der ursprünglichen Substanz, sondern zusätzlich auch gegenüber einer Vielzahl von Zytostatika resistent ist. Dieses Phänomen limitiert den Erfolg einer Tumor-Chemotherapie erheblich.
In der Vergangenheit wurden verschiedene Ansätze entwickelt, um die Resistenz von Tumorzellen gegenüber xneistuntersuchten Ansätze ist der Einsatz von Wirkstoffen, die als Inhibitoren des Pgp wirken. Bereits 1981 wurde die hemmende Wirkung von Calcium-Antagonisten auf Pgp festgestellt [Tsuruo et al., (1981), Cancer Res. 41, 1967]. Bei diesen Untersuchungen wurde eine erhöhte
Akkumulation von Vincristin und Doxorubicin in Vincristin- resistenten P388 Tumorzellen beobachtet, wenn die Tumorzellen zusätzlich mit einem Calcium-Antagonisten inkubiert wurden. Als vielversprechender Vertreter der Wirkstoffgruppe der Calcium-Antagonisten hat sich
Verapamil herausgestellt. Aber auch andere Wirkstoffe wie Cyclosporin A sind potente Inhibitoren von Pgp, wie gezeigt werden konnte [Slater et al., (1986), J. Clin. Invest. 77, 1405] . Bei diesen Untersuchungen konnte die Resistenz von akut-lymphatischen Leukämie-Zellen gegen Vincristin und Daunorubicin durch die gleichzeitige Gabe von Cyclosporin A überwunden werden.
Da sowohl Verapamil als auch Cyclosporin A ein erhebliches Nebenwirkungspotential haben, wurde nach weiteren Pgp- Inhibitoren gesucht. So konnte mit den beiden Pgp- Inhibitoren MS-209 und SDZ PSC 833 in in-vitro Experimenten die Multiresistenz der P388/ADM und K562/ADM Zellen überwunden werden [Naito et al., (1997), Cancer Chemother. Pharmacol. 40, Suppl. S20] .
Eine andere Strategie zur Überwindung der Multiresistenz ist die chemische Modifikation von Wirkstoffen. Bei dieser Strategie wird versucht, die Resistenz der Tumorzellen durch Konjugation von antineoplastisehen Wirkstoffen mit verschiedenen Makromolekülen zu überwinden. Dabei dienen die Makromoleküle als Träger für den Wirkstoff. Man spricht auch von einem Trägersystem.
Bereits 1992 wurde gezeigt, daß sich mit Doxorubicin beladenen Polyisohexylcyanoacrylat (PIHCA) -Nanosphären die Pgp-vermittelte Resistenz bei verschiedenen Krebszelllinien überwinden läßt [Cuvier et al., (1992), Biochem. Pharmacol. 44, 509] . Bestätigt wurden diese Untersuchungen an Doxorubicin-resistenten C6-Zellen, bei denen die inhibitorische Konzentration 50 (IC50) von Doxorubicin- beladenen Polyisohexylcyanoacrylat-Nanosphären signifikant niedriger war als für nicht konjugiertes Doxorubicin [Bennis et al., (1994), Eur. J. Cancer 3OA, 89]. Mit entsprechenden Doxorubicin-beladenen PIHCA- Nanopartikeln konnte dieses Ergebnis auch an hepatozellulären Karzinomzellen bestätigt werden [Barraud et al . , (2005), J. Hepatol . 42, 736].
Der Mechanismus der Resistenzüberwindung durch kolloidale Trägersysteme war zunächst Anlaß für
Spekulationen. Eine weitverbreitete Meinung war, daß solche Trägersysteme durch einen endozytotischen Prozeß von den Zielzellen aufgenommen und dadurch an den Pgpvermittelten Resistenzmechanismen vorbeigeschleust würden. Diese Meinung wurde in Bezug auf Polyisohexylcyanoacrylat-Nanopartikβl widerlegt [Henry-Toulme et al., (1995), Biochem. Pharmacol. 50, 1135]. Bei fluoreszenzmikroskopischen Untersuchungen von resistenten Tumorzelllinien nach Inkubation mit PIHCA- Nanopartikeln wurde keine Anreicherung der Partikel in den Zellen beobachtet, wohingegen ihre Anreicherung in phagozytierenden Zellen wie Makrophagen nachzuweisen war. Die Überwindung der Multiresistenz durch PIHCA- Nanopartikel wurde daher als Synergismus von Produkten der Polymermatrix und des Wirkstoffs diskutiert. Unterstützt wird diese Hypothese durch Untersuchungen, die zeigten, daß Doxorubicin-beladene Polyisobutylcyanoacrylat (PIBCA) -Nanopartikel einen gesteigerten zytotoxischen Effekt auf resistente P388/Adr-Zellen haben [Colin de Verdiere et al . , (1994), Cancer Chemother. Pharmacol . 33, 504]. Die
Inkubation der Zellen mit PIBCA-Nanopatikeln führte zu einer 5-fach höheren Wirkstoffkonzentration in den Zielzellen. Als diesem Phänomen zugrundeliegender Mechanismus wurde im Gegensatz zu einer endozytotisehen Aufnahme der Nanopartikel eine Nanopartikel/ZeIl- Interaktion diskutiert.
Im Jahr 1993 wurde von Ohkawa et al. [Cancer Res. 53, 4238-4242] eine Untersuchung zur Wirkung von Doxorubicin- Rinderserumalbumin-Konjugaten auf resistente Ratten-
Hepatom-Zellen (AH66DR) veröffentlicht. Die Doxorubicin- Rinderserumalbumin-Konjugate zeigten einen gesteigerten zytotoxischen Effekt im Vergleich zur Kontrolle mit unmodifiziertem Wirkstoff. Als Ursache für diesen Effekt wurde eine gesteigerte Akkumulation der Konjugate durch einen verringerten Efflux diskutiert. Eine Behandlung von peritoneal tumortragenden Ratten zeigte, daß die Doxorubicin-Rinderserumalbumin-Konjugate die mittlere Überlebensrate von 30 Tagen in der Kontrollgruppe auf 50 Tage erhöhte. Die Herstellung der von Ohkawa et al. beschriebenen Doxorubicin-Rinderserumalbumin-Konjugate erfolgte durch Lösen des Wirkstoffs und des Rinderserumalbumins in einem geeigneten Lösungsmittel und anschließender Zugabe von Glutaraldehyd. Der Glutaraldehyd reagiert mit funktionellen Gruppen des Wirkstoffs und des Zielproteins, in diesem Fall Aminogruppen, und führt so zu einer kovalenten Verknüpfung der Moleküle. Für die Doxorubicin-Rinderalbumin-Konjugate wird eine Transportkapazität von drei bis vier Wirkstoffmolekülen pro Trägereinheit angegeben.
Bei den von Ohkawa et al. beschriebenen DoxorubicinRinderserumalbumin-Konjugaten handelt es sich also um kovalente chemische Bindungen von Doxorubicin an Rinderserumalbumin. Durch eine derartige chemische Modifikation des Wirkstoffs werden die physikalischchemischen Eigenschaften des Wirkstoffs verändert. Es entstehen neue Wirkstoffe (NCI: new chemical entities) , die andere und neue Wirkungen in biologischen Systemen haben.
Für eine antineoplastische Wirkung der DoxorubicinRinderserumalbumin-Konjugate ist es notwendig, daß die kovalente Wirkstoff-Protein-Bindung im Zielgewebe gespalten werden kann. Erst dadurch wird eine Freisetzung des therapeutisch wirksamen Agens erreicht.
Trotz dieser Nachteile gehört die Verwendung von kolloidalen „Drug Delivery Systemen" bzw. mit Wirkstoff konjugierten Trägersystemen wie Nanopartikel oder Nanosphären zu den vielversprechenden Strategien, um eine Resistenz von Tumorzβllen zu überwinden. Aufgabe der vorliegenden Erfindung war daher die Bereitstellung eines kolloidalen „Drug Delivery Systems" zur Überwindung von Resistenzen bei Tumorzellen, welche die Nachteile der bekannten Konjugate aus kovalent an ein Trägermaterial gebundene Wirkstoffe nicht aufweist.
Diese Aufgabe wird durch die Bereitstellung von Nanopartikeln gelöst, bei denen zumindest ein Wirkstoff in einer Matrix aus Protein eingeschlossen, aber nicht kovalent an das Protein gekoppelt ist .
Gegenstand der Erfindung sind Nanopartikel, deren Partikelmatrix auf mindestens einem Protein basiert und in die mindestens ein Wirkstoff eingebettet ist, Verfahren zur Herstellung solcher Nanopartikel sowie die Verwendung derartiger Nanopartikel zur Behandlung von Tumoren bzw. zur Herstellung von Medikamenten zur Behandlung von Tumoren, insbesondere zur Behandlung von Tumoren, die resistent gegen Chemotherapeutika sind.
Die erfindungsgemäßen Nanopartikel umfassen zumindest ein Protein, auf welchem die Partikelmatrix basiert, und mindestens einen Wirkstoff, der in der Partikelmatrix eingebettet ist.
Als Protein bzw. Proteine, welche (s) die Matrix der Nanopartikel bilden, sind im Prinzip alle physiologisch verträglichen, pharmakologisch akzeptablen Proteine geeignet, die in einem wäßrigen Medium löslich sind. Besonders bevorzugte Proteine sind Gelatine und
Albumin, welches aus unterschiedlichen Tierarten (Rind, Schwein etc.) stammen kann, sowie das Milchprotein Casein. Als Ausgangsmaterial für die Herstellung der erfindungsgemäßen Nanopartikel können prinzipiell auch andere Proteine verwendet werden, z. B. Immunglobuline.
Dem Grunde nach kann jeder beliebige, intrazellulär wirkende Wirkstoff in die Partikelmatrix eingebettet werden. Vorzugsweise werden jedoch Zytostatika und/oder andere antineoplastische Wirkstoffe verwendet, um mit Hilfe der erfindungsgemäßen Nanopartikel zur Behandlung von Tumoren verabreicht zu werden, insbesondere zur Behandlung von Tumoren, die gegen Zytostatika oder andere antineoplastische Wirkstoffe resistent sind. Besonders bevorzugte Nanopartikel weisen Anthracycline wie Doxorubicin, Daunorubicin, Epirubicin oder Idarubicin in ihrer Proteinmatrix eingebettet auf.
Als antineoplastische Mittel, die in der Proteinmatrix der Nanopartikel eingebettet sein können, sind beispielsweise geeignet :
- Zytostatika,
- pflanzliche Zytostatika, z. B. Mistelpräparate,
- chemisch definierte Zytostatika,
- Alkaloide und Podophyllotoxine, - Vinca-Alkaloide und Analoga, z. B. Vinblastin, Vincristin, Vindesin, Vinorelbin,
- Podophyllotoxinderivate, z. B. Etoposid, Teniposid,
- Alkylanzien,
- Nitrosoharnstoffe, z. B. Nismutin, Carustin, Lomustin,
- Stickstofflost-Analbga, z. B. Cyclophosphamid, Estramustin, Melphalan, Ifosfamid, Trofosfamid, Chlorambucil, Bendamustin,
- Andere Alkylanzien, z. B. Dacarbazin, Busulfan, Procarbazin, Treosulfan, Temozolomid, Thiotepa, - zytotoxische Antibiotika,
- den Anthracyclinen verwandte Substanzen, z. B. Mitoxantron,
- andere zytotoxische Antibiotika, z. B. Bleomycin, Mitomycin, Dactinomycin, - Antimetabolite,
- Folsäureanaloga, z. B. Methotrexat
- Purin-Analoga, z. B. Fludarabin, Cladribin, Mercaptopurin, Thioguanin
- Pyrimidin-Analoga, z. B. Cytarabin, Gemcitabin, Fluoruracil, Capecitabin,
- andere Zytostatika wie z. B. Paclitaxel, Docetaxel - andere antineoplastische Mittel,
- Platinverbindungen, z. B. Carboplatin, Cisplatin, Oxaliplatin, - sonstige antineoplastische Mittel wie Amsacrin,
Irinotecan, Hydroxycarbamid, Pentostatin, Porfimer natrium, Aldesleukin, Tretinoin und Asparaginase .
Es ist möglich, jeden der in der vorangehenden Wirkstoffliste aufgeführten Wirkstoffe in die
Partikelmatrix des proteinbasierten Trägersystems einzubetten. Aufgrund der unterschiedlichen physikochemischen Eigenschaften der Wirkstoffe (z. B. Löslichkeit, Adsorptionsisotherme, Plasmaeiweißbindung, pKs-Werte) kann es jedoch erforderlich sein, den Herstellungsprozeß für die Wirkstoffenthaltenden Nanopartikel für den jeweiligen Wirkstoff zu optimieren.
Bei den erfindungsgemäßen Nanopartikeln handelt es sich somit um ein auf Protein basierendes Trägersystem mit mindestens einem Wirkstoff, der in der Proteinmatrix der Partikel eingebettet ist, vorzugsweise zur Behandlung von Tumoren, insbesondere zur Behandlung von resistenten Tumoren.
Die erfindungsgemäßen Nanopartikel weisen vorzugsweise eine Größe von 100 bis 600 um auf, besonders bevorzugt von 100 bis 400 um. In einer ganz besonders bevorzugten Ausführungsform weisen die Nanopartikel eine Größe von 100 bis 200 um auf.
Die erfindungsgemäßen Nanopartikel sind in der Lage, die Resistenz von Tumorzellen gegen Chemotherapeutika zu überwinden.
Figur 1 ist eine Graphik, die den Einfluß von Doxorubicin-Nanopartikeln (Dxr-NP) , Doxorubicin-Lösung (Dxr-Lsg) und Doxorubicin- Liposomen (Dxr-Lip) auf die Zellviabilität von parentalen Neuroblastomzellen veranschaulicht.
Figur 2 ist eine Graphik, die den Einfluß von Doxorubicin-Nanopartikeln (Dxr-NP ) , Doxorubicin-Lösung ( Dxr-Lsg) und Doxorubicin- Liposomen (Dxr-Lip) auf die Zellviabilität von resistenten Neuroblastomzellen veranschaulicht . Die erfindungsgemäßen Nanopartikel können eine modifizierte Oberfläche aufweisen. Beispielsweise kann die Oberfläche PEGyIiert sein, d. h. durch kovalente Bindungen können Polyethylen-Glykole an die Oberfläche der Nanopartikel gebunden sein. Durch eine Modifikation der Oberfläche mit Polyethylen-Glykolen (PEGs) lassen sich die Eigenschaften der Nanopartikel so verändern, daß deren Stabilität, Halbwertszeit im Organismus, Wasserlöslichkeit, immunologischen Eigenschaften und/oder Bioverfügbarkeit verbessert werden kann.
Die Nanopartikel können aber auch „Drug-Targeting- Liganden" an ihrer Oberfläche aufweisen, durch die eine gezielte Anreicherung der Nanopartikel in einem bestimmten Organ oder in bestimmten Zellen möglich ist. Bevorzugte Drug-Targeting-Liganden sind tumorspezifische Proteine erkennende Liganden, beispielsweise aus der Gruppe ausgewählt, die tumorspezifische Proteine erkennende Antikörper wie Trastuzumab und Cetuximab, und Transferrin sowie
Galactose umfaßt. Die Drug-Targeting-Liganden können auch über bifunktionale PEG-Derivate an die Oberfläche der Nanopartikel gekoppelt sein.
Im Zusammenhang mit Modifikationen der Oberfläche von erfindungsgemäßen Nanopartikeln wird auf die Offenlegungsschrift WO 2005/089797 A2 verwiesen, deren Inhalt durch diese Bezugnahme vollständig in die Offenbarung der vorliegenden Erfindung einbezogen wird. Die Herstellung der erfindungsgemäßen Nanopartikel erfolgt vorzugsweise, indem zunächst der Wirkstoff/die Wirkstoffe und das Protein/die Proteine gemeinsam in Lösung gebracht werden, vorzugsweise in Wasser oder einem wäßrigen Medium. Anschließend wird das Protein durch einfache Desolvatation mittels kontrollierter Zugabe eines Nichtlösungsmittels für das Protein, vorzugsweise ein organisches Lösungsmittel, besonders bevorzugt Ethanol, langsam und kontrolliert aus der Lösung ausgefällt. Hierbei bildet sich das kolloidale TrägerSystem (Nanopartikel) um die in Lösung befindlichen Wirkstoffmoleküle aus. Der Wirkstoff wird dadurch unmodifiziert in die Matrix des Trägersystems eingebettet .
Bei der Herstellung der mit Wirkstoff beladenen Nanopartikel wird der Wirkstoff bevorzugt in einem molaren Oberschuß, bezogen auf das Protein, eingesetzt. Besonders bevorzugt liegt das molare Verhältnis von Wirkstoff zu Protein bei 5 : 1 bis 50 : 1. Auch eine Beladung in molaren Verhältnissen von mehr als 50 : 1 ist möglich.
Durch eine nachfolgende Vernetzung der Proteinmatrix mittels Zugabe eines Vernetzungsmittels, vorzugsweise Glutaraldehyd, wird die Matrix der Nanopartikel stabilisiert .
Durch Variation der Vernetzermenge kann eine unterschiedlich starke Stabilisierung der Partikelmatrix erreicht werden. Vorzugsweise werden Nanopartikel hergestellt, die zu 50% bis 200% stabilisiert sind. Diese Prozentangaben beziehen sich auf die molaren Verhältnisse der auf dem verwendeten Protein vorhandenen Amino-Gruppen zu den Aldehyd-Funktionen des Glutaraldehyds . Ein molares Verhältnis von 1 : 1 entspricht einer 10Obigen Stabilisierung.
Neben dem bifunktionalen Aldehyd Glutaraldehyd sind weitere bifunktionale Substanzen, die mit dem Protein kovalente Bindungen eingehen können, für die Stabilisierung der Proteinmatrix geeignet. Diese
Substanzen können beispielsweise mit Aminogruppen oder Sulfhydrylgruppen der Proteine reagieren. Beispiele für geeignete Vernetzungsmittel sind Formaldehyd, bifunktionale Succinimide, Isothiocyanate, SuIfonylchloride, Maleinimide und Pyridylsulfide.
Eine Stabilisierung der Proteinmatrix kann aber auch durch Einwirken von Hitze erfolgen. Vorzugsweise wird die Proteinmatrix durch eine zweistündige Inkubation bei 700C oder eine einstündige Inkubation bei 800C stabilisiert.
Bei dem erfindungsgemäßen Trägersystem handelt es sich aufgrund der erst nach dem Ausfällen der Nanopartikel erfolgenden Vernetzung nicht um eine chemisch kovalente Bindung eines Wirkstoffs an das Protein. Vielmehr wird der Wirkstoff in die Matrix des Trägersystems eingebettet. Daher ist die Einbindung des Wirkstoffs weitgehend unabhängig von der Art des Wirkstoffs und universell einsetzbar. Im Unterschied zu kovalent gebundenen Wirkstoff- Konjugaten, bei denen es notwendig ist, daß die Wirkstoff- Protein-Bindung im Zielgewebe gespalten werden kann, um eine Freisetzung des Wirkstoffs zu erreichen, erfolgt die Wirkstoff-Freisetzung bei dem erfindungsgemäßen kolloidalen Trägersystem durch den Abbau der Proteinstruktur durch lysosomale Enzyme, die in allen Geweben vorhanden sind. Dabei ist die direkte Spaltung einer Wirkstoff-Protein-Bindung nicht notwendig.
Das vorliegende PartikelSystem zur Überwindung von
Resistenzen in Tumorzellen weist die folgenden Vorteile auf:
1. Überwindung der Resistenz von Tumorzellen. 2. Gesteigerte Zytotoxizität auf Tumorzellen, im Vergleich zu liposomalen Zubereitungen und der Lösung eines Wirkstoffs.
3. Die proteinbasierten Nanopartikel bestehen aus physiologischem Material. 4. Es ist keine Zusatzmedikation mit Pgp-Inhibitoren notwendig.
5. Der Wirkstoff ist im Inneren der Partikelmatrix vor äußeren Einflüssen geschützt.
6. Modifikationen der Partikeloberflachen sind leicht möglich.
Durch chemische Umsetzung der auf der Partikeloberflache befindlichen funktionellen Gruppen (Aminogruppen, Carboxylgruppen, Hydroxylgruppen) mit geeigneten chemischen Reagenzien, können z.B. Polyethylenglykol- Ketten (PEG) unterschiedlicher Kettenlänge an die Nanopartikθl gebunden werden. Bei dieser als PEGylierung oder Proteinpegylierung bezeichneten Methode wird die Oberflächenmodifikation der Nanopartikel im wesentlichen durch stabile, kovalente Bindungen zwischen einer Amino- oder Sulfhydrylgruppe am Protein und einer chemisch reaktiven Gruppe (Karbonat, Ester, Aldehyd oder Tresylat) auf dem PEG herbeigeführt. Die entstehenden Strukturen können linear oder verzweigt sein. Die PEGylierungsreaktion wird durch Faktoren wie Masse des PEGs, Art des Proteins, Konzentration des Proteins im Reaktionsansatz,
Reaktionszeit, Temperatur und pH-Wert beeinflußt. Daher müssen für jedes Trägersystem die passenden PEGs ermittelt werden.
Neben der PEGylierung der Partikeloberfläche im engeren Sinn, d. h. der Umsetzung der Proteinpartikel mit monofunktionalen PEG-Derivaten, können auch bifunktionale PEG-Derivate an die Partikeloberflache gebunden werden, um sogenannte „Drug-Targeting-Ligandenw an die Partikel zu koppeln. Andere Oberflächenmodifikationen sind beispielsweise die Umsetzung funktioneller Gruppen auf der Partikeloberflache mit Acetanhydrid oder Iodessigsäure, um Acetyl- bzw. Essigsäuregruppen anzulagern.
Die Oberfläche der erfindungsgemäßen Nanopartikel kann auch durch proteinchemische Reaktionen mit einem entsprechenden Drug-Targeting-Liganden modifiziert werden, wodurch eine Anreicherung der Nanopartikel in bestimmten Organen oder Zellen erreicht werden kann, ohne daß eine vorherige Anpassung des Trägersystems erfolgen muß. Als Rezeptoren für die Drug-Targeting-Liganden kommen alle tumorspezifisehen Proteine in Betracht. Besonders bevorzugt werden tumorspezifische Proteine erkennende Antikörper als „Drug-Targeting-Liganden" verwendet, beispielsweise die Antikörper Trastuzumab und Cetuximab. Trastuzumab (Herceptin®) erkennt HER2-Rezeptoren, die von einer Vielzahl von Tumorzellen überexprimiert werden, und ist für die Behandlung von Brustkrebs zugelassen. Cetuximab (Erbitux®) erkennt den Rezeptor für den epidermalen
Wachstumsfaktor auf einer Vielzahl von Tumorzellen und ist für die Behandlung kolorektaler Karzinome zugelassen. Neben Antikörpern kann ein „Drug Targeting" auch über an die Partikel gebundene Liganden wie Transferrin erfolgen, das den von Tumorzellen überexprimierten Transferrin-Rezeptor erkennt, oder über niedermolekulare Rezeptor-Liganden wie Galactose erreicht werden, welche vom Asialoglykoprotein- Rezeptor auf Hepatozyten gebunden wird.
Ausführungsbeispiel
Zur Herstellung erfindungsgemäßer Nanopartikel wurden 20,0mg humanes Serumalbumin und 1,0 mg Doxorubicin- Hydrochlorid in 1,0 ml Reinstwasser gelöst, was einem molaren Verhältnis von 5 zu 1 (Wirkstoff zu Protein) entspricht, und für 2 h unter Rühren inkubiert. Durch Zugabe von 3,0 ml Ethanol 96% über ein Pumpensystem (1,0 ml/min) kam es zur Ausfällung des Serumalbumins in Form von Nanopartikeln. Diese wurden durch die Zugabe unterschiedlicher Mengen Glutaraldehyd, 8%-ig (Tabelle 1) unterschiedlich stark für 24 h quervernetzt. Die stabilisierten Nanopartikel wurden in Aliquote zu 2,0 ml aufgeteilt und durch 3 Zyklen Zentrifugation und Redispergieren im Ultraschallbad aufgereinigt . Die Überstände der einzelnen Waschschritte wurden gesammelt und der in ihnen befindliche Anteil des nicht gebundenen Doxorubicins durch RPl8-HPLC bestimmt. Zur Bestimmung der Nanopartikel-Konzentration wurden 50,0 μl der Zubereitung auf ein ausgewogenes Metallschiffchen aufgetragen und bei 800C für 2 h getrocknet. Nach dem Abkühlen wurde erneut ausgewogen und die Nanopartikel-Konzentration errechnet.
Die Beladungseffizienz mit Doxorubicin wurde durch Quantifizierung des ungebundenen Anteils mittels RP18-HPLC bestimmt. Die absolute Beladung betrug je nach Quervernetzungsgrad 35,0 - 48,0 μg Wirkstoff pro mg des Trägersystems . Die Transportkapazität des Trägersystems liegt somit bei etwa 10 Wirkstoffmolekülen pro Trägereinheit (= Nanopartikel) .
Tabelle 1: Stabilisierung von Doxorubicin enthaltenden Nanopartikeln auf Basis von humanem Serumalbumin
Figure imgf000017_0001
IM die Zytotoxizität der hergestellten Doxorubicin- Nanopartikθl (Dxr-NP) im Vergleich zu einer DoxorubicinLösung (Dxr-Lsg.) und einer liposomalen Doxorubicin- Zubereitung (Caelyx®) zu testen, wurden folgende ZeIl- linien verwendet:
• Parentale Zellen einer humanen Neuroblastom-Zellinie des Universitäts-Klinikums Frankfurt (UKF-NB3 Par.) • Doxorubicin-resistente Zellen der humanen
Neuroblastom-Zellinie des Universitäts-Klinikums Frankfurt (UKF-NB3 Dxr-R.)
Zur Bestimmung der Zytotoxizität wurde der MTT-Test verwendet. Mit diesem Test wird die Viabilität der Zellen in Gegenwart verschiedener Konzentrationen eines Stoffes bestimmt und mit einer Zellkontrolle verglichen. Aus den Ergebnissen läßt sich der IC50 Wert (inhibitorische Konzentration 50), die Konzentration eines Stoffes bei der 50% der Zellen absterben, berechnen. Der Test beruht auf der Reduktion von 3- (4, 5-Dimethyl-2-thiazolyl) -2, 5- diphenyl-2H-tetrazoliumbromid in den Mitochondrien vitaler Zellen. Dabei wird das gelbe Tetrazoliumsalz zu Formazan reduziert, das als blaue Kristalle ausfällt. Nach Lösen der Kristalle mit SDS/DMF-Lösung kann die Farbintensität photometrisch gemessen werden. Hierbei bedeutet eine hohe Absorption eine hohe Zellviabilität .
Für die Testung der Zytotoxizität in parentalen und resistenten Neuroblastomzellen wurden die Zellen gleichmäßig auf eine 96-Loch Mikrotiterplatte aufgeteilt. Eine Spalte der Vertiefungen enthielt reines Medium und entsprach dem Leerwert, in einer zweiten Spalte wurden die Zellen für die Wachstumskontrolle (100%-Wert) kultiviert. In die anderen Vertiefungen wurden die Doxorubicin umfassenden Zubereitungen (Dxr-NP, Dxr-Lsg und Dxr-Lip) mit von rechts nach links zunehmender Konzentration pipettiert (0,75; 1,5; 3,0; 6,0; 12,5; 25,0; 50,0; 100,0 ng/ml) . Die Mikrotiterplatte wurde anschließend 5 Tage im Brutschrank bei 37°C, 5% CO2 inkubiert. Es wurden 25 μl MTT-Lösung in jede Vertiefung pipettiert und für 4 h wiederum bei 37°C im Brutschrank inkubiert. Die Reduktion des Tetrazoliumbromids in die blauen Formazan-Kristalle wurde durch Zugabe von 100 μl SDS/DMF-Lösung gestoppt. Nach einer weiteren Inkubation bei 370C über Nacht hatten sich die Farbkristalle vollständig gelöst und es wurde die Farbintensität in jeder Vertiefung photometrisch bei 620/690 um gemessen. Durch Subtraktion des Leerwertes von den Meßwerten und mit Bezug auf die Kontrolle, kann die Zellviabilität in Prozent ausgedrückt werden.
Die Zytotoxizität verschiedener Doxorubicin enthaltender Zubereitungen wurde an einer parentalen Neuroblastom- Zellinie (UKF-NB3 Par.) ohne Resistenzmechanismen und einer Doxorubicin-resistenten Neuroblastom-ZeIlinie (UKF-NB3 Dxr-R.) durchgeführt. Die Testung der parentalen Zelllinie (FIG. 1) ergab, daß sowohl die Dxr-Lsg als auch die Dxr-NP mit einer Stabilisierung von 100% einen starken zytotoxischen Effekt auf parentale Neuroblastom-Zellen haben. Bereits bei einer geringen Konzentration von 3 ng/ml Doxorubicin sank die Zellviabilität auf unter 50% ab. Die liposomalβ Dxr-Zubereitung (Caelyx®) zeigte einen deutlich geringeren zytotoxischen Effekt auf die Zellen. Hier waren höhere Konzentrationen des Arzneistoffs erforderlich (25,0 ng/ml) . Die Berechnung der IC50-Werte für die einzelnen Zubereitungen bestätigt dieses Ergebnis (Tabelle 2) . Dxr-NP und Dxr-Lsg bewirkten ein Absterben von 50% der Zellen bereits in Konzentrationen von 2,4 ng/ml bzw. 1,6 ng/ml, wohingegen die Dxr-Liposomen mit einem IC50 von 25,8 ng/ml erheblich höher dosiert werden mußten.
Um eine mögliche Resistenzüberwindung zu untersuchen, wurden die Doxorubicin-enthaltenden Zubereitungen auch an Doxorubicin-resistenten Neuroblastom-Zellen getestet. Hier zeigte sich ein erheblicher Unterschied bei den verschiedenen Zubereitungen (FIG. 2) . Die höchste Zytotoxizität zeigt die nanopartikuläre Dxr-Zubereitung mit einem IC50 von 14,4 ng/ml. Einen erheblich schwächeren Einfluß auf die Zellviabilität hatte die Dxr-Lsg. Bei Ihr stieg die IC50 im Vergleich zum Test in den parentalen UKF- NB3 Zellen auf 53,46 ng/ml an. Die liposomale Dxr- Zubereitung hatte keinen Einfluß auf das Wachstum der UKF- NB3 Dxr-R. -Zellen. Selbst Konzentrationen von 100 ng/ml Doxorubicin zeigten keine zytotoxische Wirkung.
Tabelle 2: IC50-Werte von Dxr-NP, Dxr-Lsg, Dxr-Liposomen in parentalen und resistenten UKF-NB3 Zellen.
UKF-NB3 Par. UKF-NB3 Dxr-R.
Dxr-NP 2, 4 ng/ml 14, 4 ng/ml
Dxr-Lsg 1, 6 ng/ml 53, 5 ng/ml
Dxr-Liposomen 25, 8 ng/ml >100, 0 ng/ml Die Ergebnisse des Zytotoxizitätstest machen deutlich, daß Doxorubicin in verschiedenen Zubereitungen das Zellwachstum von Tumorzellβn stark hemmt. In nicht resistenten Zellen zeigten die Dxr-Nanopartikel und die Dxr-Lösung einen vergleichbaren Effekt. Kommt es aber während einer
Zytostatika-Therapie zur Ausbildung von Resistenzen, ist die nanopartikuläre Dxr-Zubereitung einer Wirkstofflösung überlegen. Liposomale Dxr-Zubereitungen hingegen sind nicht in der Lage, Resistenzmechanismen von Tumorzellen zu überwinden.

Claims

Ansprüche
1. Nanopartikθl zur Behandlung resistenter Tumorzellen, umfassend eine Matrix aus mindestens einem Protein, in die mindestens ein Wirkstoff eingebettet ist.
2. Nanopartikθl gemäß Anspruch 1, dadurch gekennzeichnet, daß das Protein aus der Gruppe ausgewählt ist, die Albumin, Gelatine, Casein und Immunglobuline umfaßt, wobei humanes Serumalbumin besonders bevorzugt wird.
3. Nanopartikel gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Wirkstoff ein antineoplastischer Wirkstoff ist.
4. Nanopartikel gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Wirkstoff aus der Gruppe der Zytostatika ausgewählt ist, die pflanzliche Zytostatika, chemisch definierte Zytostatika aus den Gruppen der Alkaloide, insbesondere der Vinca-Alkaloide, der Podophyllotoxine, Podophyllotoxinderivate, Alkylanzien, insbesondere Nitrosoharnstoffe, Stickstofflost-Analoga, der zytotoxischen Antibiotika, vorzugsweise der Anthracycline, der Antimetabolite, insbesondere der Folsäure-Analoga, Purin-Analoga und Pyrimidin-Analoga, umfaßt.
5. Nanopartikel gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Wirkstoff aus der Gruppe ausgewählt ist, die Mistelpräparate, Vinblastin, Vincristin, Vindesin, Vinorelbin, Etoposid, Teniposid,
Nismutin, Carustin, Lomustin, Cyclophosphamid, Estramutin, Melphalan, Ifosfamid, Trofosfamid, Chlorambucil, Bendaiαustin, Dacarbazin, Busulfan, Procarbazin, Treosulfan, Temozolomid, Thiotepa, Daunorubicin, Doxorubicin, Epirubicin, Mitoxantron, Isarubicin, Bleomycin, Mitomycin, Dactinomycin, Methotrexat, Fludarabin, Cladribin, Mercaptopurin, Thioguanin, Cytarabin, Gemcitabin, Fluoruracil, Capecitabin, Paclitaxel, Docetaxel, Carboplatin, Cisplatin und Oxaliplatin umfaßt.
6. Nanopartikel gemäß Anspruch 3, dadurch gekennzeichnet, daß der antineoplastische Wirkstoff aus der Gruppe ausgewählt ist, die Platinverbindungen, Amsacrin, Irinotecan, Hydroxycarbamid, Pentostatin, Porfimer natrium, Aldesleukin, Tretionin und Asparaginase umfaßt.
7. Nanopartikel gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ihre Oberfläche Polyethylenglykol-Moleküle oder Drug-Targeting-Liganden aufweist.
8. Nanopartikel gemäß Anspruch 7, dadurch gekennzeichnet, daß es sich bei den Polyethylenglykol-Molekülen um mono- oder bifunktionale Polyethylenglykol-Derivate handelt.
9. Nanopartikel gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Drug-Targeting-Liganden aus der Gruppe ausgewählt sind, die Trastuzumab, Cetuximab, tumorspezifische Proteine erkennende Antikörper, Transferrin und Galactose umfaßt .
10. Nanopartikel gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sie eine Größe von 100 bis 600 um, vorzugsweise von 100 bis 400 um, und besonders bevorzugt von 100 bis 200 nm, aufweisen.
11. Verfahren zur Herstellung von Nanopartikeln zur Behandlung resistenter Tumorzellen, umfassend die Schritte:
Lösen mindestens eines Proteins und mindestens eines Wirkstoffs in einem wäßrigen Medium; - Ausfällen des Proteins in Form von Nanopartikeln durch kontrollierte Zugabe eines Nichtlösungsmittels für das Protein, vorzugsweise eines organischen Lösungsmittels, besonders bevorzugt von Ethanol;
Stabilisieren der ausgefällten Nanopartikel durch Zugabe eines Vernetzungsmittels oder durch Wärmebehandlung;
Aufreinigen der Nanopartikel durch Waschen/Zentrifugieren.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das molare Verhältnis von Wirkstoff zu Protein 5 : 1 bis 50 : 1 beträgt.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß das Vernetzungsmittel aus der Gruppe von Substanzen ausgewählt ist, die Glutaraldehyd,
Formaldehyd, bifunktionale Succinimide, Isothiocyanate, SuIfonylchloride, Maleinimide und Pyridyldisulfide umfaßt.
14. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Wärmebehandlung für 1 Stunde bei 800C oder für 2 Stunden bei 700C erfolgt.
15. Verfahren gemäß einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß die Oberfläche der Nanopartikel durch kovalentes Binden von PEG-Derivaten und/oder Drug- Targeting-Liganden modifiziert wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß der Drug-Targeting-Ligand aus der Gruppe ausgewählt ist, die tumorspezifische Proteine erkennende Antikörper, Trastuzumab, Cetuximab, Transferrin und Galactose umfaßt.
17. Verwendung von Nanopartikeln gemäß einem der Ansprüche 1 bis 10 zur Herstellung eines Medikaments zur Behandlung von Tumoren, insbesondere zur Behandlung von resistenten Tumoren.
18. Verwendung von Nanopartikeln gemäß einem der Ansprüche 1 bis 10 zur Behandlung von Tumoren, insbesondere zur Behandlung von resistenten Tumoren.
PCT/EP2006/012524 2005-12-27 2006-12-22 Proteinbasiertes trägersystem zur resistenzüberwindung von tumorzellen WO2007073932A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NZ569898A NZ569898A (en) 2005-12-27 2006-12-22 Protein-based delivery system for overcoming resistance in tumour cells
US12/087,175 US20090181090A1 (en) 2005-12-27 2006-12-22 Protein-Based Carrier System for Overcoming Resistance in Tumour Cells
BRPI0620800A BRPI0620800A2 (pt) 2005-12-27 2006-12-22 uso de nano partículas compreendendo uma matriz de pelo menos uma proteína na qual pelo menos um agente ativo anti neoplástico é embutido
CA002631003A CA2631003A1 (en) 2005-12-27 2006-12-22 Protein-based delivery system for overcoming resistance in tumour cells
EP06841159A EP1965769A2 (de) 2005-12-27 2006-12-22 Proteinbasiertes trägersystem zur resistenzüberwindung von tumorzellen
AU2006331030A AU2006331030A1 (en) 2005-12-27 2006-12-22 Protein-based delivery system for overcoming resistance in tumour cells
JP2008547893A JP2009521515A (ja) 2005-12-27 2006-12-22 腫瘍細胞における耐性を克服するためのタンパク質ベースの担体システム
IL192343A IL192343A0 (en) 2005-12-27 2008-06-19 Protein-based delivery system for overcoming resistance in tumor cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062440.5 2005-12-27
DE102005062440A DE102005062440B4 (de) 2005-12-27 2005-12-27 Proteinbasiertes Trägersystem zur Resistenzüberwindung von Tumorzellen

Publications (2)

Publication Number Publication Date
WO2007073932A2 true WO2007073932A2 (de) 2007-07-05
WO2007073932A3 WO2007073932A3 (de) 2007-09-27

Family

ID=38110688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/012524 WO2007073932A2 (de) 2005-12-27 2006-12-22 Proteinbasiertes trägersystem zur resistenzüberwindung von tumorzellen

Country Status (14)

Country Link
US (1) US20090181090A1 (de)
EP (1) EP1965769A2 (de)
JP (1) JP2009521515A (de)
KR (1) KR20080081080A (de)
CN (1) CN101346131A (de)
AU (1) AU2006331030A1 (de)
BR (1) BRPI0620800A2 (de)
CA (1) CA2631003A1 (de)
DE (1) DE102005062440B4 (de)
IL (1) IL192343A0 (de)
NZ (1) NZ569898A (de)
RU (1) RU2404916C2 (de)
WO (1) WO2007073932A2 (de)
ZA (1) ZA200804572B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211815A (zh) * 2014-09-12 2014-12-17 华东理工大学 一种铁蛋白重链亚基纳米载药系统及其制备方法与应用
EP3277268A4 (de) * 2015-03-31 2018-12-05 The General Hospital Corporation Selbstorganisierende moleküle zur gezielten wirkstofffreisetzung

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0811175D0 (en) * 2008-06-18 2008-07-23 Prendergast Patrick T Anti-tumour compositions and methods
WO2011017835A1 (en) * 2009-08-11 2011-02-17 Nanjing University Preparation method of protein or peptide nanoparticles for in vivo drug delivery by unfolding and refolding
US20120263739A1 (en) * 2009-11-13 2012-10-18 Merck Patent Gmbh Anti integrin antibodies linked to nanoparticles loaded with chemotherapeutic agents
CN103202812B (zh) * 2010-08-09 2015-10-28 南京大学 一种制备用于体内递送药理活性物质的蛋白纳米粒的方法
JP6320042B2 (ja) 2011-02-11 2018-05-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 前立腺癌治療のための抗アルファ−vインテグリン抗体
RU2504018C1 (ru) * 2012-05-28 2014-01-10 Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения и социального развития Российской Федерации Способ моделирования состояния индукции функциональной активности гликопротеина-р финастеридом в эксперименте
CN102846562B (zh) * 2012-09-28 2014-11-26 山东大学 一种半乳糖介导的冬凌草甲素白蛋白纳米粒及其制备方法
EP2917183A1 (de) * 2012-11-12 2015-09-16 Ignyta, Inc. Bendamustinderivate und verfahren zur verwendung davon
CN103275965A (zh) * 2013-05-22 2013-09-04 武汉理工大学 一种自恢复多功能软包埋细胞固载体系及其制备方法
CN103611169A (zh) * 2013-12-02 2014-03-05 东南大学 具有靶向性的免疫磁性白蛋白纳米球及制备方法
AU2015258891A1 (en) * 2014-05-16 2016-12-01 Dana-Farber Cancer Institute, Inc. Protein-based particles for drug delivery
WO2016020697A1 (en) * 2014-08-06 2016-02-11 Cipla Limited Pharmaceutical compositions of polymeric nanoparticles
US20160199497A1 (en) * 2014-09-10 2016-07-14 Purdue Research Foundation Cholesterol Ester-Depleting Nanomedicine for Non-toxic Cancer Chemotherapy
CN104382854A (zh) * 2014-10-09 2015-03-04 唐春林 一种多柔比星脂质微泡及其制备方法
CN104324005A (zh) * 2014-10-09 2015-02-04 唐春林 一种争光霉素脂质微泡及其制备方法
CN104382904B (zh) * 2014-10-09 2018-02-13 唐春林 一种长春新碱脂质微泡及其制备方法
US10265413B2 (en) 2014-11-05 2019-04-23 University Of The Sciences In Philadelphia High molecular weight biodegradable gelatin-doxorubicin conjugate
CN105343005A (zh) * 2015-11-06 2016-02-24 中国药科大学 一种新型中药纳米粒口服吸收增强技术
WO2017120504A1 (en) 2016-01-08 2017-07-13 Durfee Paul N Osteotropic nanoparticles for prevention or treatment of bone metastases
WO2018160865A1 (en) * 2017-03-01 2018-09-07 Charles Jeffrey Brinker Active targeting of cells by monosized protocells
CN108741097A (zh) * 2018-05-17 2018-11-06 华南理工大学 一种蛋白自组装包埋难溶活性物质纳米制品及其制备方法
CN112107556A (zh) * 2019-06-03 2020-12-22 北京大学 一种含砷纳米药物及其制备方法
CN110051653A (zh) * 2019-06-03 2019-07-26 辽宁大学 一种制备荜茇酰胺白蛋白纳米粒及冻干粉的方法
CN111249254B (zh) * 2020-01-16 2022-02-18 暨南大学 一种包载黄芩苷的叶酸偶联白蛋白纳米粒的制备方法和应用
US20230135752A1 (en) * 2020-03-27 2023-05-04 PhotoQ3 Inc. Medicament for killing tumor cells
CN112972421B (zh) * 2021-02-26 2022-04-08 清华大学 基于多正电荷蛋白的纳米药物系统、其制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074658A1 (en) * 1999-06-02 2000-12-14 Medinova Medical Consulting Gmbh Use of drug-loaded nanoparticles for the treatment of cancers
WO2002089776A1 (de) * 2001-05-05 2002-11-14 Lts Lohmann Therapie-Systeme Ag Nanopartikel aus protein mit gekoppeltem apolipoprotein e zur überwindung der blut-hirn-schranke und verfahren zu ihrer herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE147976T1 (de) * 1991-01-15 1997-02-15 Hemosphere Inc Protein nanomatrizen und verfahren zur herstellung
US5916596A (en) * 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5543158A (en) * 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
JP2003286199A (ja) * 2002-03-29 2003-10-07 Japan Science & Technology Corp タンパク質中空ナノ粒子を用いる肝臓疾患治療用薬剤
DE102004011776A1 (de) * 2004-03-09 2005-11-03 Lts Lohmann Therapie-Systeme Ag Trägersystem in Form von Nanopartikeln auf Proteinbasis zur zellspezifischen Anreicherung von pharmazeutisch aktiven Wirkstoffen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074658A1 (en) * 1999-06-02 2000-12-14 Medinova Medical Consulting Gmbh Use of drug-loaded nanoparticles for the treatment of cancers
WO2002089776A1 (de) * 2001-05-05 2002-11-14 Lts Lohmann Therapie-Systeme Ag Nanopartikel aus protein mit gekoppeltem apolipoprotein e zur überwindung der blut-hirn-schranke und verfahren zu ihrer herstellung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BALTHASAR S ET AL: "Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes" BIOMATERIALS, ELSEVIER SCIENCE PUBLISHERS BV., BARKING, GB, Bd. 26, Nr. 15, Mai 2005 (2005-05), Seiten 2723-2732, XP004673438 ISSN: 0142-9612 *
DINAUER N ET AL: "Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes" BIOMATERIALS, ELSEVIER SCIENCE PUBLISHERS BV., BARKING, GB, Bd. 26, Nr. 29, Oktober 2005 (2005-10), Seiten 5898-5906, XP004931625 ISSN: 0142-9612 *
LANGER K ET AL: "Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid" EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, Bd. 49, Nr. 3, 2. Mai 2000 (2000-05-02), Seiten 303-307, XP004257171 ISSN: 0939-6411 *
MICHAELIS M ET AL: "Pharmacological activity of DTPA linked to protein-based drug carrier systems" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, Bd. 323, Nr. 4, 29. Oktober 2004 (2004-10-29), Seiten 1236-1240, XP004576596 ISSN: 0006-291X *
WARTLICK H ET AL: "Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles" JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, Bd. 96, Nr. 3, 18. Mai 2004 (2004-05-18), Seiten 483-495, XP004505681 ISSN: 0168-3659 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211815A (zh) * 2014-09-12 2014-12-17 华东理工大学 一种铁蛋白重链亚基纳米载药系统及其制备方法与应用
CN104211815B (zh) * 2014-09-12 2017-06-06 华东理工大学 一种铁蛋白重链亚基纳米载药系统及其制备方法与应用
EP3277268A4 (de) * 2015-03-31 2018-12-05 The General Hospital Corporation Selbstorganisierende moleküle zur gezielten wirkstofffreisetzung
AU2016242920B2 (en) * 2015-03-31 2021-10-21 The General Hospital Corporation Self assembling molecules for targeted drug delivery
EP3936121A1 (de) * 2015-03-31 2022-01-12 The General Hospital Corporation Selbstorganisierende moleküle zur gezielten wirkstofffreisetzung
US11666664B2 (en) 2015-03-31 2023-06-06 The General Hospital Corporation Self assembling molecules for targeted drug delivery

Also Published As

Publication number Publication date
BRPI0620800A2 (pt) 2016-11-01
US20090181090A1 (en) 2009-07-16
NZ569898A (en) 2011-06-30
ZA200804572B (en) 2009-03-25
WO2007073932A3 (de) 2007-09-27
RU2404916C2 (ru) 2010-11-27
JP2009521515A (ja) 2009-06-04
DE102005062440A1 (de) 2007-07-05
EP1965769A2 (de) 2008-09-10
DE102005062440B4 (de) 2011-02-24
CA2631003A1 (en) 2007-07-05
CN101346131A (zh) 2009-01-14
KR20080081080A (ko) 2008-09-05
RU2008130167A (ru) 2010-01-27
IL192343A0 (en) 2009-02-11
AU2006331030A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
DE102005062440B4 (de) Proteinbasiertes Trägersystem zur Resistenzüberwindung von Tumorzellen
DE10121982B4 (de) Nanopartikel aus Protein mit gekoppeltem Apolipoprotein E zur Überwindung der Blut-Hirn-Schranke und Verfahren zu ihrer Herstellung
DE69432867T2 (de) Zubereitung mit gesteuerter freisetzung
DE102006011507A1 (de) Wirkstoffbeladene Nanopartikel auf Basis hydrophiler Proteine
EP1796649B1 (de) Nanotransportsystem mit dendritischer architektur
DE112014004133T5 (de) Tumor-Medikament mit aktivem Targeting und dessen Herstellungsmethode
EP1722816A2 (de) Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen
DE60117583T2 (de) Liposomen welche antikanzeröse wirkstoffe verkapseln und deren verwendung zur behandlung von malignen tumoren
WO2002000162A2 (de) Drug-delivery-systeme
DE10118852A1 (de) Bdellosomen
WO2005094895A1 (de) Herstellung und verwendung des konjugats methotrexat-albumin als mittel zur immunsuppression bei gvhd
EP2026789A2 (de) Neue, an der tumorphysiologie orientierte formulierung eines zytostatikums, insbesondere von cis-platin
DE10118312A1 (de) Drug-Delivery-Systeme
EP1404305B1 (de) Pharmakologische zubereitung aus einem nanopartikulären mesomorphen polyelektrolyt-lipid-komplex und mindestens einem wirkstoff
Nwankwoala et al. Pharmacokinetics of Adriamycin after Intravenous Administration in Rat.
DE102020207195A1 (de) Nanopartikel als bioresorbierbare und röntgenopake Wirkstoffträger für die Therapie von Krebserkrankungen der Bauchspeicheldrüse
EP4190312A1 (de) Synergistischer transport lipophiler und hydrophiler wirkstoffe in nanopartikeln
MX2008008125A (es) Sistema de soporte basado en proteinas para vencer la resistencia de las celulas tumorales
WO2008095652A1 (de) Transport von arzneistoffen über die blut-hirn-schranke mittels apolipoproteinen
DE102010042338A1 (de) Zusammensetzung zur Behandlung von Krebs mit kontrollierter Freisetzung des Wirkstoffes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049072.9

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2631003

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006841159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/008125

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12008501539

Country of ref document: PH

Ref document number: 3238/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008547893

Country of ref document: JP

Ref document number: 12087175

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06841159

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 569898

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2008130167

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006331030

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087018409

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006331030

Country of ref document: AU

Date of ref document: 20061222

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006331030

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006841159

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0620800

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080624